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Résumé du rapport:

La prédiction du bruit de bord de fuite émis par un profil à diffusion
contrôlée à un angle d’attaque de 8◦ a été évaluée, en repartant des travaux
d’un post-doctorat précédemment effectué à l’Université de Sherbrooke. Ce
profil a été conçu pour des applications à basse vitesse. Deux types de
simulation numérique ont été comparés: une simulation directe fondée sur
la résolution des équations de Navier-Stokes et une autre qui exploite la
méthode de Lattice-Boltzmann. Les données de trois sondes positionnées
sur l’extrados du profil ont été considérées.

Les bases théoriques de la turbulence ont été rapidement présentées
ainsi que les méthodes numériques utilisées. La prédiction du bruit exploite
dans ce cas la théorie d’Amiet pour le bruit de bord de fuite et le modèle
statistique anisotropique de Panton et Linebarger pour la modélisation des
sources. Pour cela, une caractérisation de la couche limite ainsi qu’une anal-
yse des statistiques de la turbulence ont été effectuées pour les deux types
de simulation. La prédiction du bruit a été calculée à l’aide de deux méth-
odes Monte Carlo: l’échantillonnage récursif stratifié et l’échantillonnage
préférentiel.

Mots-clés libres: aéroacoustique ; Amiet ; brut de bord de fuite ; large-
bande ; turbulence ; numérique ; CAA ; modèle statistique ; Monte Carlo
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Abstract:

The trailing-edge noise prediction for a Controlled-Diffusion airfoil at
an angle of attack of 8◦ have been evaluated by starting from the work of
a previous post doctoral researcher at Sherbrooke University. Two types
of numerical simulation have been compared: a direct numerical simulation
based on Navier-Stokes equations and another one which exploit the Lattice-
Boltzmann method. Data from three sensors on the suction side of the airfoil
have been considered.

The theoretical basis of turbulence and the considered numerical meth-
ods have been briefly presented. In this case, the noise prediction exploits
Amiet’s theory and the statistical anisotropic Panton and Linebarger model
for source modeling. For this reason, a boundary layer characterisation and
an analysis of turbulence statistics has been carried out for the two kinds
of simulation. Noise prediction has been computed through two different
Monte Carlo methods: the recursive stratified sampling and the importance
sampling.

Keywords: aeroacoustics ; Amiet ; trailing-edge noise ; broadband ; tur-
bulence ; numerical ; CAA ; statistical model ; Monte Carlo
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Introduction

Sherbrooke University has been founded in 1954. The Department of
Mechanical Engineering, created a year later, welcomes 400 new students
every year. Moreover, around 80 students attend there masters or PhDs.
The research carried out by the aeroacoustics group focuses on the char-
acterisation of the acoustic radiation in fluids, on active and passive noise
control methods and to aeroacoustics applied to turbo-engines.

The Center for Acoustic Research at Ecole Centrale de Lyon was cre-
ated in the 1980s to meet the growing interest in aeroacoustics and in the
interaction between acoustics and turbulent flows. It is part of the Fluid
Mechanics and Acoustics Laboratory (LMFA) and of the Fluid Mechanics,
Acoustics and Energy Department (MFAE). The activities of the Center
for Acoustic Research are organized around aeroacoustics of rotating sur-
faces, dynamic and acoustic of compressible shear flows and propagation in
non-homogeneous media and non-linear effects.

The internship was carried out in both research groups. The project
focuses on the study of wall-pressure fluctuations at the trailing edge of an
airfoil and on the effect of boundary-layer pressure gradients. A significant
amount of experimental and numerical data has been collected during PhDs
in both universities. The internship aims at validating the wall-pressure
fluctuations prediction of previous PhDs.

This report firstly presents the internship background and the interest
of airfoil noise reduction. A brief overview about the theoretical concepts
of turbulence is then provided. The state-of-art of empirical and analyti-
cal models to compute wall-pressure spectra and acoustic propagation are
addressed too, with a particular focus on the numerical computation tech-
niques. In the last section, a case study for Direct Numerical Simulation is
presented, along with a description of the obtained post-processing results.
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1.1 Interest of airfoil noise reduction

Aerodynamic noise is the most common by-product of rotating machines
or airframes operating in a flow. As the sound is generated within the
acoustic medium, the complexity of measurement and analysis is consider-
able. For instance, the noise generated by wind turbines in the proximity
of inhabited areas is still a contentious issue. The sound level perceived
at distance depends on countless factors, which make its prediction compli-
cated. Another domain affected by this problem is aviation. The majority
of sound is produced by the motion of air and its interaction with the solid
boundaries of the aircraft structures.

Over the last 30 years, the development of air transport systems and
consequently the increase of air traffic generated an enhanced focus on noise
levels. Governments have enacted more and more legislative controls about
this environmental concern. Noise is produced by aircraft engine propellers,
fans, combustion chambers and external surfaces and have a strong impact
on the health of people living in exposed areas. Aircraft noise has been
progressively reduced through flight paths and traffic optimisation, but di-
rectly dealing with its sources still represents a research challenge. Starting
from Lighthill’s pioneering work in 1950s, many attempts to find a mathe-
matical approach to explain noise generation and to develop noise reduction
methods have been made.

Airfoil trailing-edge noise or self-noise remains one of the main noise
sources for low speed fans. It represents the minimum noise level produced
by a machine in a configuration free of any interaction with other compo-
nents. This sound is produced by the re-organisation of vortices carried
by boundary layer when meeting a singularity: the trailing edge of the
blade profile. As a matter of facts, vorticity distortions and boundary-layer
turbulence scattering produce acoustic waves, propagating upstream and
downstream. Two kinds of noise can be observed:

• tonal noise: if the boundary layer is transitional. Strong acoustic
tones can be present in the sound spectrum, 20 - 30 dB higher than
broadband noise. Acoustic disturbances are produced by the interac-
tion between vortices and the geometrical discontinuity of trailing edge
(ROGER and MOREAU 2004). Numerical simulations proved the ex-
istence of a feedback mechanism: sound waves produced at trailing
edge and propagating upstream blend with the original disturbance.
Recent research stated that both suction and pressure side feedbacks
may contribute to noise. The generation of this phenomenon has been
deeply analysed for analytical and numerical work. Most of the studies
agree on a feedback-loop mechanism at the basis of frequency selection
and tonal noise, but it is still an active debate.
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• broadband noise: if the boundary layer is turbulent. When it is also
detached from trailing-edge (TE) a higher lower frequencies content
can be noticed. A turbulent flow is characterised by random changes
in pressure and velocity. It is composed by eddies of various sizes,
constantly moving with no preferential direction. This creates sur-
face pressure fluctuations which generate acoustic waves at TE. Un-
like tonal noise, the physical insight of broadband noise generation has
already been further explained. However, some topics such as the role
of Kutta condition still need to be clarified. Eventually, numerically
resolving the small scales of turbulence to analyse this kind of noise
is challenging. High Reynolds numbers are required, implying a huge
computational cost.
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1.2 Objectives of the internship

The trailing-edge self-noise was firstly studied through experimental ap-
proaches. Even is the experiments remain a fundamental tool for research,
the analytical and numerical studies play a more and more important role in
this domain. This internship project exploits Direct-Numerical Simulation
(DNS) data of a previous PhD in Sherbrooke University (see (WU 2019),
(SANJOSE and MOREAU 2011)) to investigate wall-pressure fluctuations.
The case study is a Controlled-Diffusion airfoil at high Reynolds number
based on the chord. The objectives of the internship are the following:

1. Validate the wall-pressure fluctuations prediction methods exploited
during previous research for two sensors on a Controlled-Diffusion air-
foil

2. Apply the same methods to different sensors on the airfoil surface for
sake of comparison

3. Compare two types of numerical simulations (Navier-Stokes and Lattice-
Boltzmann method DNS) for the same case study

4. Analyse the effect of adverse pressure gradient on the airfoil and of
boundary layer anisotropy

(a) (b)

Figure 1.1: Some examples of domains which require noise reduction.



2

Theoretical prerequisites and
state-of-the-art

Researches on the trailing-edge noise started in the late 1970s. Initially
based on theoretical models and experimental measurements, they addressed
wall-pressure fluctuations and far-field sound. The introduction of numeri-
cal methods over the past few decades has broadened the field of research.
Experimental data collected in previous studies are used now as a validation
tool for numerical simulations. The following section introduces firstly some
turbulence fundamentals related to the current study. Secondly, acoustic
analogies involving different wall-pressure fluctuations modeling and far-field
sound radiation will be addressed. Eventually, the application of acoustic
analogies to numerical simulations will be covered.

2.1 Turbulence overview

Figure 2.1: A turbulent cascade as seen by Leonardo da Vinci.

Similar measurements on a laminar flow with the same set of initial and
boundary conditions yield similar results. This is, however, not valid for the
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case of turbulent flows: turbulence is not deterministic and must be analysed
from a statistical point of view. (CHASSAING 2000) In the specific case of
a homogeneous turbulent flow, all the statistical properties of the flow are
supposed to be spatially invariants. This assumption allows investigating
the flow way further by introducing many simplifications.

According to Reynolds decomposition, a generic quantity defining the
turbulent field, such as the velocity u, can be separated from its fluctuations
as follows:

u(x, y, z, t) = u(x, y, z, t) + uÍ(x, y, z, t) (2.1)

The spatial and temporal correlation function of a random velocity field
u is defined as

R(x, xÍ; t, tÍ) = uÍ(x, t)uÍ(xÍ, tÍ)
uÍ(x, t)uÍ(x, t)

(2.2)

It is a statistical measure that quantifies the relationship between two
variables at two different positions and instants. A negative correlation
is a relationship between the two velocity fluctuations whereby they have
opposite directions. A correlation of 0 shows no relation between the two
fluctuations instead. In the case of an homogeneous field, the correlation
does not depend on the position of the measurement points, it depends on
their separation r = xÍ − x only (BAILLY and COMPTE-BELLOT 2015).
Applying this to the velocity field fluctuations uÍ with t = tÍ = t0 yields

Rij(x, r, t) = uÍ
i(x, t)uÍ

j(x + r, t) = Rij(r, t) (2.3)

where i and j are the velocity components. Hence, the dimensionless corre-
lation coefficient is defined as

−1 ≤ Rij(x,xÍ) =
uÍ
i(x)uÍ

j(xÍ)ñ
u

Í2
i (x) uÍ2

j (xÍ)
≤ 1 (2.4)

In the following sections, the indices (1, 2, 3) represent streamwise, nor-
mal and spanwise directions. The integral length scale Λ is the spatial
macro-scale of turbulence which characterises the size of the most energetic
eddies. Λ1 and Λ3, named Taylor macro-scales, represent the streamwise
and transverse length scale respectively. These parameters represent the
distance within which there is a non-negligible correlation between velocity
fluctuations.

Λ1 =
∞Ú
0

f(r)dr = πf̂(0) Λ3 =
∞Ú
0

g(r)dr = πĝ(0) (2.5)
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In case of anisotropic turbulence, a coefficient α is introduced

α = Λ1
Λ3

(2.6)

which represents the ratio of length scales thus the level of the eddy stretch-
ing along the spanwise direction. (PANTON and LINEBARGER 1974).
Λ1 = 2Λ3 (WILSON 1998) applies to the case of a 2D homogeneous and
isotropic turbulence. Furthermore, in the case of isotropic flow, the correla-
tion function f(r) can be defined by

σ2f(r) = R11(r, 0, 0) (2.7)

where σ is the total variance of the field and f(r) is the longitudinal corre-
lation function. Since in this case R11(r, 0, 0) = R22(0, r, 0) = R33(0, 0, r), a
similar relation can be written for lateral correlation function g(r) and R22.
Lateral and longitudinal correlation functions are related by

g(r) = f(r) + r

2
df

dr
(2.8)

Moreover, according to the first Karman and Howart relation (CHASSAING
2000):

∞Ú
0

rg(r)dr = 0 (2.9)

This equation shows that g(r), positive for short separations, will become
negative for a specific r, in contrast to f(r).

Many models for turbulence spectra have been developed. The ones
considered in this report can be found in Table 2.1. Von Karman’s model is
particularly useful since different values of the parameter ν represent some
of the most used turbulence models:

• ν = 1/2: Liepmann’s model

• ν = 1/3: original Von Karman’s model

• ν = 7/6: Rapid Distortion Theory (RDT) which applies to non homo-
geneous turbulence

A last notion is considered to be useful in the aim of this report: Taylor’s
hypothesis of turbulence frozen convection. Under this assumption, the
advection contributed by turbulent eddies themselves is small and therefore
the advection of the turbulent flow passing a fixed point can be considered
as entirely due to the mean flow.
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Longitudinal correlation function Characteristic length

Gaussian model f(r) = exp

3
− r2

L2

4
L = 2Λ√

π

Von Karman model f(r) = 1
2ν−1Γ(ν)

3
r

L

4ν
Kν

3
r

L

4
L = Γ(ν)√

πΓ(ν + 1/2)Λ

Table 2.1: Main turbulent correlation functions; Γ is the Gamma function
and Kν the modified Bessel function of second kind of real order ν.

2.2 Turbulent boundary layer

The behaviour of the fluid near a solid boundary is of great importance
in engineering problems. The concept was firstly introduced by Prandtl in
1904: he made the assumption that close to the wall the tangential length
scales are greater than the wall-normal ones. On the contrary, the derivatives
are much important in the wall-normal direction. These approximations set
the first basis of understanding and modelling of boundary layers. This
section focuses on the boundary layer formed with the impingement of a
uniform velocity non-turbulent flow on a smooth flat plate.

Figure 2.2: Schematic of a boundary layer transitioning from laminar to
turbulent.

2.2.1 Mean flow properties and law of the wall

To predict the flow pattern, the dimensionless Reynolds number is used.
It depends on the distance from the leading edge x, on the outer flow velocity
Ue and on flow viscosity µ:

Re = ρUex

µ
(2.10)

Under the assumption of a large external Reynolds number, the bound-
ary layer develops along the streamwise direction. The laminar boundary
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layer close to the leading edge is formed by smooth streamlines approxi-
mately parallel to the wall. When the Reynolds number exceeds a spe-
cific value which depends on the level of flow perturbations, the transition
from laminar to turbulent boundary layer occurs. Near the solid boundary,
molecular diffusion is sufficient to make particles adhere to the surface as
in laminar flows. However, the effect of turbulence must be considered for
locations farther from the wall.

The boundary layer thickness δ(x) is commonly defined as the point
where the velocity reaches 99% of the free-stream velocity. Total pressure is
used instead of velocity in the case of loaded profiles since the external flow
is deflected and one cannot define a constant free-stream velocity. Other
integral thicknesses are the displacement and momentum thickness.

δ∗ =
∞Ú
0

3
1 − U

Ue

4
dx2 θ =

∞Ú
0

U

Ue

3
1 − U

Ue

4
dx2 (2.11)

where U is the mean flow velocity at the wall distance x2. The ratio be-
tween them is the shape factor H = δ∗/θ. It characterizes the flatness of
the boundary layer mean streamwise velocity profile. Conventionally, for a
laminar boundary layer over flat plate the shape factor is H = 2.59. For
turbulent boundary layer with zero-pressure-gradient (ZPG), this value is
around 1.3 - 1.4.

A fully developed turbulent boundary layer with zero pressure gradient
on a flat plate is now considered. The no-slip condition for a viscous fluid
results in a wall shear stress τw. In a laminar boundary layer, the gradient
of velocity along the wall-normal direction produces a viscous shear stress:

τv = µ
∂U

∂x2
(2.12)

In a turbulent boundary layer, this quantity is dominant close to the wall.
Farther from the wall, an additional term named Reynolds stress takes over,
generated by flow unsteadiness.

τt = −ρuÍvÍ (2.13)

The total shear stress is the sum of the two shear stresses. At the wall,
Reynolds stresses are zero. So as to compare different boundary layer, a
scaling based on friction velocity and viscosity is introduced:

x+
2 = x2uτ

ν
U+ = U

uτ
(2.14)

Different regions in the boundary layer can be distinguished as a function
of shear stress:
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• viscous sub-layer (x+
2 . 7): viscous effects are predominant

• buffer layer (7 ≤ x+
2 ≤ 30): viscous and turbulent effects are similar

• logarithmic-layer and outer-layer (x+
2 & 30): turbulent effects domi-

nate

Three velocity scales can be defined in the wall-normal direction: U ∼
Ue, which represents the advection by the average flow; uÍ, which repre-
sents the turbulent diffusion and uτ =

ð
τ/ρ, the friction velocity, which

characterises the near-wall region.

2.2.2 Adverse pressure gradient

In the previous section, turbulent boundary layers with a zero pressure
gradient in the streamwise direction have been considered. In the real world,
this condition is rare for wall bounded flows. A pressure gradient is often
encountered when flows advance along curved surfaces, such as airplane
wings or turbine blades. It may lead to the separation of the boundary
layer. Therefore, the understanding of this phenomenon is critical.

Adverse pressure gradient (APG) corresponds to an increase of static
pressure along the airfoil chord in the direction of the flow (dPe/dx > 0),
due to the airfoil camber or angle of attack for subsonic flows. A strong,
extended APG causes the boundary layer to separate. The phenomenon is
accompanied by large-scale unsteadiness and reverse flow. Euler equation
for momentum conservation is now considered:

dPe
dx

= −ρUe
dUe
dx

(2.15)

Hence, adverse pressure gradient is related to decelerating flows (dUe/dx <
0) while favourable pressure gradient (FPG, dPe/dx < 0) to flows which
tend to accelerate. Clauser’s dimensionless parameter allows to quantify
the pressure gradient in the streamwise direction. It represents the ratio of
the pressure gradient to the wall friction.

βc = δ∗

τw

dPe
dx

(2.16)

Eventually, the adverse pressure gradient makes the mean velocity profile
flatten and the skin friction coefficient cf = τw/(0.5ρU2

e ) decrease.
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2.3 Acoustic analogies

2.3.1 Acoustic propagation

The issue of trailing-edge noise at low Mach number was first examined
by Powell in 1959. He used similarity arguments to estimate the strength
of aerodynamic dipole sources located near the trailing-edge of a flat plate.
Since then, theoretical models to predict the trailing-edge noise have been
developed, based on experimental data.

According to Howe (HOWE 1978), almost all theories about acoustic
propagation can be classified into three categories, depending on the aero-
dynamic quantity related to acoustic pressure in the far field :

a) models based on Lighthill’s work, which express acoustic pressure in
terms of vortical velocity components around trailing-edge. This is the
case of Ffowcs Williams & Hall theory.

b) models based on the resolution of the linearised hydro-acoustic equa-
tions, such as Curle’s. They relate acoustic pressure to the statistics
of aerodynamic wall-pressure upstream TE.

c) ad hoc models.

The main acoustic propagation theories will be briefly summarised below.

Lighthill’s theory

According to Lighthill’s analogy, a propagating turbulent flow can be
replaced by equivalent sources radiating in a medium at rest in the case of
a far-field observer. This approach allows to compute a formally equivalent
problem of linear acoustics rather than resolving unsteady and compressible
equations. Navier-Stokes equations are the basis of the method. Lighthill
combined the time derivative of the conservation of mass equation and the
space divergence of the momentum one and introduced a reference fluid of
density ρÍ = ρ − ρ0 and pressure pÍ = p − p0. Thus, he obtained a wave
equation:

∂2ρÍ

∂t2
− c2

0
∂2ρÍ

∂x2
j

= ∂2(Tij)
∂xi∂xj

(2.17)

characterised by a quadrupole-kind source term, the double derivative of the
so-called Lighthill’s stress tensor Tij .

Tij = ρuiuj +
1
pÍ − c2

0ρ
Í
2
δij − τij (2.18)
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The equation can be formally solved by Green’s function technique, as
far as the listener’s is in the far field. This means that the distance between
the source of noise and the listener are larger than the wavelength λ = c0/f
of the source. The RHS represents the source region, with Lighthill’s tensor
as source term. The LHS is the propagating region: since the far-field is
isentropic, this allows shifting from ρÍ to pÍ.

Under the assumptions of large Reynolds numbers (thin boundary layer,
inertial effects stronger than viscous effects) and small Mach number fluctu-
ations (

!
pÍ − c2

0ρ
Í" δij ¹ ρuiuj), the stress tensor simplifies to the Reynolds

stress tensor to Tij ∼ ρuiuj . The observer is supposed to be in the acoustic
far field.

An expansion of Lighthill’s tensor allows identifying two different terms:
the self noise (noise generation) and the shear noise (noise propagation). The
clear advantage of Lighthill’s formulation is the non-linearisation of Navier-
Stokes equations. The equation takes into account not only the sound gen-
eration, but also its reflection and scattering effects. However, the resolution
is not mathematically rigorous.

Ffowcs Williams & Hall’s theory

Ffowcs Williams and Hall solved Lighthill’s equation by a half-plane
Green’s function for rigid bodies in arbitrary motion in free space (HOWE
1978). The airfoil is considered as a semi-infinite half-plane with zero thick-
ness.

Their approach consists in suppressing the volume of the body, replacing
it by the fluid, and introducing sources of mass and momentum in order to
force the original discontinuity represented by the body. Body motion is
replaced by a continuous distribution of stationary sources. By this means,
Ffowcs Williams and Hall obtained the far field mean square sound pressure
< p2 > produced by a turbulent eddy as a function of vortical velocity
components (HOWE 1978).

The real target of the theory is to find a proper Green’s functionG(x, y, t, τ)
which satisfies the wave equation. In the case of free field, it is

1
c2
∂2G

∂t2
− ∂2G

∂x2
j

= δ(t− τ)δ(x− y) (2.19)

in which δ is Dirac distribution. G is a function of source location y,
observer location x, emission and reception time τ and t. Exact Green’s
functions are known for simple geometries only, obtaining a tailored func-
tion is more complicated and often requires numerical computation. Ffowcs
William and Hall’s theory exploits the Green function on a half-plane.
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A general integral solution of (2.17) was then given by Goldstein, stating
that the acoustic pressure in presence of a solid body of surface S is:

pÍ(x, t) =
+∞Ú

−∞

Ú
V

∂2G

∂yi∂yj
(x, y, t− τ)Tij(y, τ)d3ydτ

+
+∞Ú

−∞

j
S

∂G

∂yi
(x, y, t− τ)pÍ

ij(y, τ)d2ydτ

−
+∞Ú

−∞

j
S

∂G

∂τ
(x, y, t− τ)ρ0un(y, τ)d2ydτ

(2.20)

According to (2.20), sound is generated by turbulent stress Tij in the fluid
(quadrupole source), unsteady forces exerted from the surface to the fluid
pÍ
ijnj (dipole source) and from the variation of mass outflow from S (monopole

source).

Curle/Amiet’s theory

Curle’s analogy involves compressibility effects in the source terms and it
applies to the case of surfaces present in the flow. The necessary restrictions
are that the surfaces bounding the flow are stationary and that the medium
is at rest outside the region of turbulent flow. A free field Green’s function
is exploited. The pressure fluctuations are composed by three terms: the
Lighthill’s quadripolar integral, a monopole generated by the flux of mass
through the surface and a dipole due to the instantaneous force of the surface
on the fluid.

Amiet’s theory is based on Curle’s analogy. Its work previously covered
noise production by turbulence impinging on an airfoil (AMIET 1975). The
following work focused on computing the far field noise produced by turbu-
lent flow convected past the airfoil trailing edge. It consists of a different
approach with respect to Lighthill’s theory and deals with non-stationary
compressible flows.

(a) (b)

Figure 2.3: LE and TE resolution sub-domains for Amiet’s model.
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The basis of Amiet’s theory is a Helmoltz equation, obtained by temporal
Fourier transform applied to a combination of the linearised Euler equations.

∆ψ +K2ψ = 0 with (2.21)

φ = ψeiKMX , φÍ = φeiωt, X = x

β
, K = k

β
, β2 = 1 −M2

0

The equation is solved through the Schwarzschild technique. The bound-
ary conditions are defined on two half planes, before and after the LE or
TE depending on the application (turbulence impingement or turbulence
scattering noise). The other half of the plane is considered as infinite. The
imposed BC, which cancel the imaginary infinite extensions, are the follow-
ing:

• LE noise: a constraint on velocity is applied by the rigidity condition
on the surface. The other BC are zero potential upstream and the
Kutta condition (pressure gusts must go to zero in the wake). The
corresponding noise spectrum is

Spp(þx, ω) =
3
ρ0kcx3

2S2
0

42
πU0

d

2

5
ϕww

3
ω

U0
,
kx2
S0

46 ----ÚLE

3
x1,

ω

U0
,
kx2
S0

4 ----2

• TE noise: a constraint on wall-pressure is imposed by Kutta condition.
The other BC are zero potential upstream and the imposition of an
incident pressure gust. The corresponding noise spectrum is

Spp(þx, ω) =
3
kcx3
2πS2

0

42 L

2 ϕpp(ω)üz
3
kx2
S0

, ω

4 ----ÚTE

3
x1,

ω

Uc
,
kx2
S0

4 ----2
where ϕpp is the power spectral density of wall-pressure fluctuations
near the TE, lz the fluctuations transverse coherence length and the
last term is an analytical radiation integral.

Trailing edge noise proves to be very small with respect to noise due to
impinging turbulence on the airfoil. The validity criteria for Amiet’s theory
are:

AR º 1 kxd º 1 (2.22)

in which AR is the airfoil aspect ratio, kx the chord-wise wavelength and
d the semi-span. The assumptions of the theory include a frozen boundary
layer at TE and a thin TE.
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The main limitations to Amiet’s theory are due to necessary assumptions
to apply his model:

• only airfoil -like shapes are considered, with small thickness, camber
and attack angle.

• upstream flow conditions are supposed to be perfectly uniform.

These conditions are rarely achieved in industrial applications, such as
wind turbines or fans. This is the reason why models containing corrections
of Amiet’s theory drew up. For instance, (ROGER and MOREAU 2005)
aim at considering the effects of a limited chord length. The article proposes
a leading edge back-scattering correction and the introduction of 3D gusts
to the model.

Wall-pressure fluctuations intensity and the intensity of broadband noise
generated by the airfoil are strongly linked, as demonstrated by (AMIET
1976). The Power Spectral Density of far-field sound (2.23) for an observer
at (x1, x2, x3) and an angular frequency ω is proportional to a radiation
integral I and to the wall-pressure wavenumber spectral density Π0. k is
the acoustic wavenumber, Uc the turbulence convection velocity and S0 a
distance accounting for the acoustic waves convection.

Spp(x, ω) ∝
----I3 ωUc , k x2

S0

4----2,Π0

3
ω, k

x2
S0

4
(2.23)

The wall-pressure wavenumber spectral density is in turn proportional to
the span-wise correlation length üy and to the aerodynamic wall-pressure
spectrum ϕpp that represents the source of noise. k∗

2 = k x2
S0

is the normalised
wavenumber.

Π0

3
ω, k

x2
S0

4
∝ ϕpp(ω), üy(k∗

2, ω) (2.24)

Pressure fluctuations at trailing-edge are a blend of turbulent fluctua-
tions due to wall-pressure or induced by TE singularity. ϕpp measurements
must be done near trailing-edge but far enough upstream for the information
to correspond only to the incident pressure-field of boundary layer (BL) tur-
bulence, otherwise TE scattering will affect results. Moreover, in the case of
a measurement taken too far upstream, turbulence can still radically change
before reaching the trailing-edge.
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2.3.2 Source models

The computation of trailing-edge noise identifies the wall-pressure spec-
trum near TE as a source of noise within the framework of Amiet’s theory.
Therefore, empirical, semi-empirical and statistical models were created to
represent pressure disturbances in airfoil boundary layers.

Semi-empirical models

A detailed review of all semi-empirical wall-pressure spectra has been pro-
vided by Lee (LEE 2018). Earlier models could be applied only to simplified
flows, such as turbulent flows on a flat plate with zero pressure gradient. Ex-
perimental data showed that an adverse pressure gradient has a significant
impact on wall-pressure spectrum. The understanding of this condition is
then crucial to analyse the phenomenon of boundary layer separation. For
this reason, recent studies starting from Rozenberg’s focused on extensions
of previous models to account for adverse pressure gradient effects. ZPG
is kept as a reference for the lowest pressure fluctuations. Wall-pressure
spectra models differ from the parameters used to scale experimental data
of similar flow conditions so as to make them collapse. A brief description
of main semi-empirical models will follow.

• Corcos model
This is one of the first attempts to create a wall-pressure spectrum
model for a fully turbulent boundary layer over a flat plate with zero
pressure gradient. The correlation length of turbulence is stated to be
inversely proportional to frequency.

üy(k∗
2, ω) = ω/(bcUc)

k2
2 + ω2/(bcUc)2 (2.25)

where bc is a constant and Uc turbulence convection velocity. Even if
this formulation is still largely used, the model consistency at low fre-
quencies has been questioned and many corrections proposed to correct
its overestimations. However, the model proved reliable for medium-
high frequencies if turbulence is almost homogeneous. It is mainly used
for short-term acoustic calculations (ROGER and MOREAU 2005).

• Goody’s model
This model draws inspiration from Chase - Howe’s spectral model:

ϕ(ω)Ue
τ2
wδ

∗ = 2(ωδ∗/Ue)2

[(ωδ∗/Ue)2 + 0.0144]3/2
(2.26)

where δ∗ is the displacement thickness. The model spectrum proposed
in (2.26) is proportional to ω2 at low frequencies and to ω−1 at higher
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frequencies. However, Goody remarks the lack of a consistent spectral
decay at the highest frequencies (ω → ∞). His model accounts for the
effects of Reynolds number through three coefficients (C1, C2, C3) so
as to better agree with experimental data. The resulting wall-pressure
spectrum as a function of frequency ω is

ϕ(ω)Ue
τ2
wδ

= C2(ωδ/Ue)2

[(ωδ/Ue)0.75 + C1]3.7 + [C3(ωδ/Ue)]7
(2.27)

in which Ue is the velocity at boundary-layer edge, τw the shear stress
at wall and δ the boundary-layer thickness. Previous models have
been modified in order to represent a spectrum increase proportional
to ω2 at low frequencies, a decay as ω0.7 in the mid-range and a strong
decay as ω−5 at the highest frequencies. The uncertainty with regard
to experimental data decrease to ±4 dB in this case (GOODY 2004).
Goody introduces different parameters to scale data depending on the
frequency range. At low frequencies, outer-layer parameters are ex-
ploited to make spectra collapse, whereas in the high range inner-layer
scales are used.

• Rozenberg’s model
Since in many applications the turbulent boundary layer upstream
of the trailing edge is subject to an adverse mean-pressure gradient,
this model is the first to account for its effects on pressure fluctua-
tions statistics. Previous studies pointed out an increase of 10 dB in
the low frequencies range in case of adverse pressure. If the effect is
not taken into account, the models lead to a significant underestima-
tion of trailing-edge noise. While resolving the underestimations at
low frequencies, Rosenberg model still proves unreliable at the highest
ones. As a matter of facts, its rapid transition from the mid-region to
the high frequency one does not follow the experimental data trend.
This model consists of a Goody’s model update by slightly changing
the scaling approach. Local parameters are used, so as to take into
account boundary-layer history (ROZENBERG et al. 2012):

– displacement thickness δ∗ is used instead of boundary layer thick-
ness δ.

– the maximum shear stress τmax is used to scale wall-pressure fluc-
tuations.

– in the mid-frequencies region (overlap region) the spectrum can
decay more than ω0.7.

– if the pressure gradient parameters increase, such as Clauser pa-
rameter, the global level of fluctuations increase.
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Figure 2.4: Comparison of wall-pressure fluctuations spectra for Goody’s
and Rozenberg’s models (V2 airfoil RMP23), see (ROZENBERG et al.
2012).

• Hu and Herr’s model
This model accounts for both adverse and favourable pressure gradient
flows. It takes Goody’s model as starting point and introduces a new
parameter H = δ∗/θ (in which θ is the boundary-layer momentum
thickness) as it has a direct correlation with boundary-layer velocity
profile and then with pressure gradient (HU and HERR 2016). Hu
and Herr are the first to consider the effect of a non-frozen turbulence,
in which the Taylor hypothesis of equivalence between time and spa-
tial scales cannot be applied. Moreover, they analysed the weight of
the turbulence-turbulence interaction term in Poisson equation (2.28)
which will be addressed later on.

Eventually, Lee provided an empirical model summarizing all previous
ones, valid over a large range of frequencies and flow conditions (LEE 2018).

Statistical models

Another way to express wall-pressure Power Spectral Density (PSD) is
to use statistical models, such as Kraichnan’s (KRAICHNAN 1956). It
is based on the solution of Poisson equation (2.28), either in space or in
frequency domain. Poisson equation derives from Reynolds decomposition
of the incompressible moment equation: the velocity field ui is split in a sum
of a steady component U i and fluctuations from average uÍ

i.

1
ρ

∇2p = −2∂uj
∂xi

∂Ui
∂xjü ûú ý

1

− ∂2

∂xi∂xj
(uiuj − uiuj)ü ûú ý

2

(2.28)

The indices i and j represent streamwise (1), normal-to-wall (2) and
transverse (3) directions. The sources generating pressure fluctuations are
split in two terms (see (2.28)):
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1. the interaction between turbulence and mean shear.

2. the non-linear interaction between turbulent fluctuations components.

Under the assumption of homogeneous turbulence in planes parallel to
the wall, (2.28) can be Fourier-transformed in space along (x1, x3) directions.

∂2p̂ (k, x2)
∂x2

2
− k2p̂ (k, x2) = −2ρiki

∂Ui
∂xj

ûj (k, x2) (2.29)

By solving the obtained Helmholtz equation to get to p̂(k, x2 = 0), the
PSD of wall-pressure fluctuations can be computed. The contribution of the
turbulence - mean shear interaction is the only one considered as significant
in the derivation of ϕpp(k) (2.32).

ϕTMpp (k) = 4ρ2
0

Ú
kÍ

∞ÚÚ
0

k2
1
k2 e−(X2+XÍ

2)k ∂U1 (X2)
∂x2

∂U1 (X Í
2)

∂x2+
û2 (k, X2) · û2

!
kÍ, X Í

2
",

dX2dX Í
2dkÍ

(2.30)

The normal-to-wall velocity fluctuations statistics are modelled through
the normalised cross-spectrum of u2, S22:+

û2 (k, X2) · û2
!
kÍ, X Í

2
",

= S22
!
k, X2, X

Í
2
"
δ
!
k − kÍ" (2.31)

ϕTMpp (k) = 4ρ2
0

∞ÚÚ
0

k2
1
k2 e−(X2+XÍ

2)k ∂U1 (X2)
∂x2

∂U1 (X Í
2)

∂x2
S22dX2dX Í

2 (2.32)

Under the assumption of frozen turbulence, the streamwise number spec-
trum is transformed into a frequency spectrum through scaling with the
convection velocity Uc:

ϕpp(ω) =
s+∞

−∞ ϕTMpp (Kc, k3) dk3

Uc
(2.33)

The wavenumber spectrum of pressure fluctuations depends on an expo-
nential decay, on the mean velocity gradient and on the root-mean-square
of vertical velocity. The last term of (2.32), S22, depends on the choice of
the turbulence spectrum (Table 2.1). It is the real part of the double spatial
Fourier transform of the vertical velocity two-point correlation R22 in the
streamwise and transverse directions.
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The following analytical models are considered in this report:

• Gaussian energy spectrum, one of the simplest models in literature:

S22
!
k, x2, x

Í
2
"

=ñ
u2

2 (x2)u2
2 (xÍ

2)L4

16π k2 exp
A

−L2k2

4 − (x2 − xÍ
2)2

L2

B (2.34)

• Generalised Von Karman energy spectrum

S22
!
k, x2, x

Í
2
"

=

ñ
u2

2 (x2)u2
2 (xÍ

2)l2k̃2ζν+2

Γ(ν)π2ν+1
1
1 + k̃2

2ν+2 Kν+2(ζ)

ζ = ëx2 − xÍ
2ë

l

ð
1 + l2k2

(2.35)

In the case of x2 → xÍ
2, the auto-spectrum is obtained:

Sa22 (k, x2) = ν(ν + 1)u2
2 (x2) l4k2

π (1 + l2k2)ν+2 (2.36)

Different values of ν correspond to the models listed in section 2.1.
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2.4 Numerical methods

Computational Aero-Acoustics (CAA) is a relatively new branch of aero-
acoustics which deals with the generation of noise by turbulent flows through
numerical methods. Two kinds of these methods can be identified, namely
hybrid methods and direct methods. Moreover, LBM (Lattice Boltzmann
Method) has recently provided interesting results in trailing-edge noise ap-
plications, compared to traditional Navier Stokes solvers.

2.4.1 Hybrid methods

Computation of flow and sound are decoupled. These methods generally
comprise two or three stages: the noise generation and near-field propagation
(turbulent flow), the mid-field propagation (steady flow) and the far-field
propagation (steady and homogeneous flow). This kind of simulation allows
using incompressible equations in case of low Mach numbers and resolving
flow in a small area around the source only.

An example of hybrid method is the solver sAbrinA developed by ON-
ERA (MINCU and MANOHA 2014). So as to predict the aircraft engine
acoustic installation, the computational steps are the following:

1. The noise generation and near-field propagation are computed by a
CAA solver up to a control surface.

2. The acoustic field on the control surface is then exploited to derive
the incident acoustic field on the aircraft scattering surface and at a
specific observer position by a Kirchhoff method.

3. The scattered acoustic field is computed by solving a Helmholtz equa-
tion. The total acoustic field will be the sum of all the computed
acoustic contributions.

Figure 2.5: Computational strategy of ONERA hybrid method for the pre-
diction of installation effects (MINCU and MANOHA 2014).
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2.4.2 Direct methods

Direct methods aim at the computation of flow field and sound at the
same time. Cases in point are LES (Large Eddy Simulation), URANS (Un-
steady Reynolds-Averaged Navier Stokes) and DNS (Direct Numerical Simu-
lation) that will be detailed later. Characterised by high computational cost
due to the acoustic field extent, all these methods require a high number of
time steps for stability reasons.

Figure 2.6: Fields of application of different direct numerical techniques so
as to resolve the turbulent energy spectrum as a function of wavenumber.
Reynolds-Averaged Navier Stokes equations appear to be the less expensive
method, since totally based on turbulence modelling and time-averaging.
On the other hand, Large Eddy Simulations compute flow up to a cutting
frequency. The most expensive method is Direct Numerical Simulation,
which resolves all scales of motion.

DNS aims at resolving the whole range of spatial and temporal scales
of the turbulence while computing compressible Navier-Stokes equations
(2.37).

∂ρ

∂t
+ ∂(ρuk)

∂xk
= 0

∂(ρui)
∂t

+ ∂(ρuiuk + pδik − τik)
∂xk

= 0

∂(ρE)
∂t

+
∂

5
ρuk

3
E + p/ρ

4
− uiτik + qk

6
∂xk

= 0

(2.37)

Since DNS relies does not rely on any turbulence model, in contrast to RANS
and LES approaches, this method requires the highest computation cost and
memory storage even at low Reynolds numbers. Nevertheless, its spatial res-
olution makes DNS a useful tool for research, while RANS approach remains
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the most common industrial tool in the prediction of compressible flow fields.

An approximation of the covered scale is given by:

Lf
lη

∼ Re
3/4
Lf

(2.38)

in which Lf is the integral scale turbulence, giving an order of magni-
tude of vortices dimensions, and lη is the so-called Kolmogorov scale, the
smallest vortex dimension of the flow. ReLf

is the Reynolds number of
the flow, computed through fluctuations velocity and the integral scale as
ReLf

= (uÍLf )/ν (BAILLY and COMPTE-BELLOT 2015). The mesh
points number is given by:

N ∝ Re
9/4
Lf

(2.39)

These orders of magnitude make us understand the computational weight
of DNS and the impossibility to apply it to engineering case studies for the
time being. However, it is used for turbulent model validation, compared to
experimental data.

Numerical considerations of DNS

Numerical schemes

The aforementioned Navier-Stokes equations are solved through a dis-
cretisation in space and in time. The majority of structured-mesh based
DNS solvers exploit the spatial finite differences discretisation thanks to the
easiness of high order schemes development. The key concept of finite dif-
ference is the search for an approximate solution of a partial differential set
of equations at the grid points. The derivatives are approximated by linear
combinations of function values on the mesh. The mesh can be cartesian
or formulated with generic curvilinear coordinates by a change of variables.
The domain is discretised in a certain number of points, in space and time.

The spatial derivatives in proximity to a mesh point

∂u

∂x
(x) = lim

∆x→0

u(x+ ∆x) − u(x)
∆x (2.40)

are approximated by a Taylor’s expansion

u(x+ ∆x) = u(x) + ∆x∂u
∂x

(x) + ∆x2

2
∂2u

∂x2 (x) + · · · (2.41)

so as to obtain

u(x+ ∆x) − u(x)
∆x = ∂u

∂x
(x) + O(∆x) (2.42)
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where O(∆x) represents the truncation error. This latter shows the order
of accuracy of the scheme and depends on the number of points involved in
the stencil around the considered point.

Another spatial discretisation method useful in the framework of this
work is the spectral one. It consists of the discretisation of the Fourier
transforms of Navier-Stokes equations and it is suited to periodic problems.
A periodic function can be expressed though a Fourier series as

f (xi) =
(N/2)−1Ø
q=−N/2

F (kq) expikqxi (2.43)

where xi = i∆x and kq = 2πq/∆xN . This expression is used to interpolate
a continuous function f(x). Spectral methods can be defined as global: high
order polynomials are exploited and their great accuracy allows a less refined
mesh than in the finite differences application. The main idea is to write
the solution of the differential equation as a sum of certain basis functions
and then to choose the coefficients of the sum so as to satisfy the differential
equation as well as possible.

As far as temporal discretisation, finite differences method will be con-
sidered. A Taylor development in time is applied:

u(x, t+ k) = u(x, t) + k
∂u

∂t
(x, t) + k2

2!
∂2u

∂t2
(x, t) + · · · + kn

n!
∂nu

∂tn
(x, t) (2.44)

At the n order:

u(x, t+ k) = exp
3
k
∂

∂t

4
u(x, t) (2.45)

Temporal discretisation can be carried out in two ways. An explicit
scheme allows to compute solution at the instant tn+1 on a grid point xj
through the solution at previous instants tn−1, tn−2. It basically calculates
the state of the system at a later time from the state of the system at
the current time. On the contrary, implicit methods find a solution by
solving an equation involving both the current state tn of the system and
the later one tn+1. DNS solvers usually employ high order Runge-Kutta
methods, renowned for their accuracy and stability. The error introduced
by a temporal scheme is the dissipation effect, which applies a damping to
the solution. Dissipation effects are assessed by studying the ratio un+1

i /uni .
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Boundary conditions

Imposing the right boundary conditions is one of the main issues of nu-
merical simulation, especially as far as computational aeroacoustics is con-
cerned. Acoustics need to radiate outside the domain without spurious noise
and vortical waves must be convected and damped. The main categories of
boundary conditions (BC) are:

• characteristic BC: they deal with small perturbations, locally one di-
mensional and inviscid. The waves are classified depending on their
propagation direction. If the wave is outcoming: it is computed us-
ing an upwind scheme, if it is incoming: it is computed following the
type of the boundary condition. This kind of boundary condition can
be easily applied to any kind of boundary (inlet, outlet, interface...).
Anyway, since the method is locally 1D, this represents an issue when
dealing with discontinuities

• sponge zones: they consist of highly diffusive zones, where fluctuations
are removed through imposing high viscosity. The windowing function
allows a smooth transition and avoid spurious noise generation. This
method is used in the case of disturbances of large amplitude.

• perfectly match layers: an extra domain is created where waves are
damped as in an anechoic chamber, absorbed by the additional layers.
This kind of BC applies to any type of wave of boundary. However,
the extra layers are difficult to be handled with a parallel code.

2.4.3 Lattice - Boltzmann Method

LBM simulations have provided some interesting results for trailing-edge
noise analysis. Compared to classical CFD tools based on the discretisation
of Navier-Stokes equations, LBM is promising as far as integration time
and scalability since the equation system resolution proves simpler. The
method was developed at the end of the nineties and since then it has been
exploited in aeroacoustics more and more. LBM simulation is a mesoscopic
technique, based on gas kinetic theory. It considers a probability distribution
of particles f(x,c,t) characterised by a velocity c at the position x at instant
t. The time and space evolutions of this probability function are tracked on
a lattice grid when the particles are subjected to an external force. The
Lattice - Boltzmann advection equation is:

fi(x∗ + c∗
i∆t∗, t∗ + ∆t∗) − fi(x∗, t) = Ci(x∗, t∗) (2.46)

in which Ci is the so-called collision factor, accounting for the effect of parti-
cles collisions which are considered to be binary and elastic. At equilibrium,
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the collision operator is null and f follows a Maxwell-Boltzmann distribu-
tion. The method is particularly handy since the moments of f over the
considered volume (composed by cells named voxels) are:

1. ρ =
s
R3 fdc

2. ρu =
s
R3 fcdc

3. ρ
1
e+ 1

2u
2
2

=
s
R3 f |c|2dc

Through them, a macroscopic description of the Navier-Stokes equations
can be obtained.

A model named BGK (Bhatnagar, Gross and Krook) has been proposed
to simplify the collision operator as:3

∂f

∂t

4
collision

= −1
τ

(f − feq) (2.47)

where τ is the collision relaxation time. The final equation writes

∂f

∂t
+ ci

∂f

∂xi
+ Fi
m

∂f

∂ci
= −1

τ
(f − feq) (2.48)

f is then developed through Hermite polynomials: the coefficients of the
development will be the moments of the function. Since it is obviously im-
possible to solve equation (2.48) for an infinite number of particle velocities,
a simplification must be chosen before computing. A common discretisation
considers 19 directions for velocity on any 3D voxel, the so-called "D3Q19".
It renders a perfect gas flow at low Mach number. A quadrature method is
eventually used to integrate the function along the characteristic lines. In
the acronym, "D" stands for the truncation order of the Hermite polynomi-
als (only 3 elements of the expansion are considered) while "Q" refers to the
quadrature method.

One of the advantages of LBM is its intrinsic compressibility that makes
it really useful for TE noise applications. It can be used both in LES and
DNS depending on the Reynolds number range.



3

Numerical simulation of CD
airfoil at 8◦ AoA

The airfoil geometry considered in this internship is the Controlled Dif-
fusion airfoil (CD) designed by Valeo. This shape is found at the mid-span
region of the fan blade. The controlled-diffusion airfoils refer to a kind of
cambered airfoil conceived so as to carefully control flow and losses close to
the airfoil surface. It is designed analytically to be shock-free at transonic
Mach numbers and to avoid boundary layer separation on the suction side
for a range of inlet conditions necessary for a compressor. (HOBBS et al.
1984)

Characterised by a 4% thickness to chord ratio and a camber angle of 12◦,
this profile has been used for turbo-engine compressor and fan blades and
automotive engine cooling fan systems. It proved in cascade testing higher
critical Mach numbers, higher incidence range, and higher loading capability
than standard series of airfoils designed for equivalent requirements. The
CD profile shape tend to have thicker leading and trailing edges than their
standard series counterparts, which lead to improved compressor durability.

The CD airfoil has been the object of experimental and numerical re-
searches in aerodynamics and aeroacoustics over two decades. The study
started from the comparison of experimental steady wall-pressure measure-
ments and RANS simulation results attempting to reproduce the same blade
loading.
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3.1 Numerical set-up

Two types of numerical simulations will be analysed for the same CD
airfoil: a DNS conducted using a Navier-Stokes solver (NS-DNS) and a
DNS simulation using LBM (LBM-DNS). Both have been performed at a
geometrical angle of attack (AoA) of α = 8◦, which is the designed working
condition of this airfoil.

3.1.1 NS-DNS set-up

Figure 3.1: Wind-tunnel setup for RANS and DNS computations (left) and
the grid in the truncated domain around the airfoil (right).

Data exploited for post-processing have been obtained by a 2D incom-
pressible RANS computation followed by a 3D DNS (WU 2019). Previous
RANS using k − ω SST model have been performed with Ansys Fluent. It
has been used to infer the inlet velocity profiles, which account for the mean
installation effects on the full wind tunnel set-up, and the initial field of
the DNS. The flow condition is fixed at α = 8◦ and U0 = 16 m/s, with a
50 cm jet-width. The simulation had to be performed at a Mach number
higher than the corresponding experimental conditions (M = 0.25 instead
of 0.05) due to computational cost and time for such a resolution. The con-
sidered Reynolds number of Rec = 150000 was the state-of-the-art for DNS
simulation for trailing-edge noise studies when the simulations were run.

For DNS, the multi-block structured compressible Navier-Stokes solver
HiPSTAR was used, conceived at the University of Southampton by R.D.
Sandberg. 7 flow-through times were recorded at a sampling frequency of 78
kHz. The computational domain comprises six blocks. The aerofoil is sur-
rounded by an O-type grid due to the round leading and trailing edges. The
total grid size is 345 million points. The O-grid around the boundary layer
comprises 3341x279x194 grid points. As far as discretisation, the following
choices were adopted:
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• in space: 4th order central standard-difference scheme in streamwise
and crosswise directions with Carpenter boundary stencils. Spectral
method in spanwise direction: 96 Fourier modes with 100% dealiasing
(194 collocation points in the physical space).

• in time: 4th order Runge-Kutta scheme with a constant time step of
∆t = 7.5 µs (CFL = 2.5). It has been chosen for the ultra low memory
storage required.

Boundary conditions were set so as to avoid unphysical numerical re-
flections and damp the disturbances due to convected turbulence. Charac-
teristic based boundary conditions have been used on domain boundaries
and sub-domain interfaces. An adiabatic, no-slip condition is applied on the
surface of the airfoil.

For post-processing, a parallel tool named FAT (Flow Analysis Tool)
was exploited. The software allows to read the volumes of the primitive flow
field and record them as a Plot3D format. Moreover, a Python based tool
named ANTARES by CERFACS was used.

Figure 3.2: Remote microphone probes positions on the CD experimental
mock-up.

The experimental data used for comparison have been obtained in the
anechoic open-jet wind tunnel at Université de Sherbrooke. The CD airfoil
is instrumented with Remote Microphone Probes (RMP) on the suction side
along the streamwise and spanwise direction as in Figure 3.2. This internship
work focuses on data from sensors 21, 22 and 24 on the suction side of the
airfoil.
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3.1.2 LBM-DNS set-up

Figure 3.3: Position of the refinement volumes in the vicinity of the airfoil
(SANJOSE and MOREAU 2011).

A Lattice-Boltzmann Method solver (PowerFLOW) has been used to
obtain data for the present analysis. It has been successfully applied to
aeroacoustics problems at similar Reynolds number. PowerFLOW directly
resolves the aerodynamic and acoustic fields around the airfoil. The com-
putational domain includes the jet nozzle geometry to correctly capture the
flow in the potential core. Sponge layers have been used to damp all waves
and avoid spurious reflections on the outlet boundary. The simulation in-
cludes only the mid-span section of the experimental mock-up in order to
reduce the computational cost. The depth of the computational domain
(about 10% of the airfoil chord) is larger than twice the spanwise coher-
ence length measured on the wall-pressure statistics on the airfoil. Periodic
boundary conditions have been applied in the spanwise direction.

The Reynolds number, the angle of attack and the inlet velocity are the
same as in the DNS case. The solver set the acoustic CFL number to an
unitary value. Hence, the time step is 0.11 µs. The simulation has been run
for 17 flow-through times. Statistics have been recorded over the last 11 flow-
through times. A DNS resolution has been achieved in the airfoil vicinity
with surface resolution leading to a ∆y+ ∼ 1 all along the profile surface.
Even if the experimental Mach number is about 0.05, in the simulation it has
been increased up to 0.2 so as to obtain a proper DNS resolution in the first
3 refinement volumes (VR). The bounds of the VR closest to the surface are
shown in Figure 3.3. Their thickness is based on the experimental boundary
layer profile on the suction side near the trailing-edge, where the boundary
layer is the thickest on the profile. The first VR height corresponds to
the viscous sub-layer of the experimental boundary profile, the second VR
height corresponds to the log-law part and the last covers the wake region
and extends up the non-viscous zone. The 3D mesh has 640 million voxels.
In this internship work, the considered volume corresponds to DNS sensor
22.
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In order to prevent numerical instabilities, the relaxation time is kept
above a critical value in PowerFlow, increasing artificially the fluid viscosity.
The velocity is increased by a factor 4 by the viscosity raise during the
computation of the dimensionless lattice values. The speed of sound and
the Reynolds number are kept constant. With a higher Mach number, the
real viscosity is achieved in the first three refinement volumes, while it is
lower in volumes further away with a lower mesh resolution.
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3.2 NS-DNS hydrodynamic field

3.2.1 Grid resolution

The quality of a DNS depends on the grid resolution: it must be small
enough to resolve the dissipative scales of turbulence. For wall bounded
flows, the requirements are higher for ∆y+, since the stronger gradients
are in the normal-to-wall direction. The plots depicted in Figure 3.4 show
the evolution of the grid refinement in the three dimensions. They are
comparable to reference DNS run with the same solver. (SANDBERG et al.
2008)

(a) (b) (c)

Figure 3.4: DNS grid resolution (solid line: pressure side, dashed line: suc-
tion side).

A further check of the correct resolution of all scales of turbulence is done
through investigating the kinetic energy balance in the wall-normal direc-
tion. Turbulence kinetic energy is a very important quantity for turbulence
modeling and its budget in its transport equation can provide insight into
the flow physics. In the boundary-layer approximation, the equation for the
turbulent kinetic energy is:

0 = −
3
< U >

∂k

∂x
+ < V >

∂k

∂y

4
+P − ε̃+

+ν ∂
2k

∂y2 − ∂

∂y
<

1
2vu · u > −1

ρ

∂

∂y
< vpÍ >

(3.1)

The terms in this balance equation are respectively (POPE 2000):

1. mean-flow convection

2. production

3. pseudo-dissipation

4. viscous diffusion
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5. turbulent convection

6. pressure transport

For locations far from the wall, the contribution of the turbulence pro-
duction term and dissipation term become dominant. The energy budgets
terms are normalized by a density weighted factor of Re0ρ

2u4/T , where T
is the temperature of the flow. A balance value of almost zero for all the
locations along the chord proves that the DNS managed to properly resolve
the dissipation range. In Figure 3.5, the budgets have been plotted for both
sensor 21 and 22.

In Figure 3.5 (a), the large hump connected by two peaks of the pro-
duction term curve indicates the presence of the adverse pressure gradient
(WU et al. 2019). According to literature, the diffusion rate is higher for
APG and negative diffusion is found below the peak of turbulent production
(KROGSTAD and SKARE 1995). In (b), a comparison is made between
the production and dissipation terms for sensor 21 and 22. Increased levels
of both terms can be seen for the sensor nearer to the trailing edge and
then subject to a stronger pressure gradient. The turbulent mixing dynam-
ics is strongly linked to these two factors: the stronger the APG, the more
enhanced the level of turbulent mixing.

(a) (b)

Figure 3.5: Energy kinetic budget for sensor 21 (a) and comparison between
the production and dissipation terms for sensor 21 and 22 (b).
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3.2.2 Mean flow field

(a) (b)

Figure 3.6: (a) Pressure coefficient and (b) Clauser’s parameter evolution
along the CD airfoil chord for the two DNS. The dashed lines show the
location of sensors 21, 22 and 24.

The pressure distribution along the airfoil is displayed through the mean
pressure coefficient cp in Figure 3.6 (a):

cp = p− pref
1/2ρrefu2

ref

(3.2)

where pref , ρref and uref are the reference pressure, density and velocity. As
shown in the plot by the small plateau between x/c = −1 and x/c = −0.8,
the transition to turbulence is triggered by a laminar recirculation bubble
near the leading edge. The flow remains attached over most of the chord
length. Clauser’s parameter is used in Figure 3.6 (b) to show the increase
of the pressure gradient along the chord (see (2.16)). The airfoil is subject
to a strong and increasing adverse pressure gradient from the mid-chord to
the trailing-edge as shown by the negative slope on the pressure coefficient
plot.
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3.3 NS-DNS Boundary layer characterisation

(a) (b)

Figure 3.7: (a) Tangential velocity profile. (b) Mean tangential velocity
profile scaled on inner variables.

The mean velocity profiles in the wall-normal direction are presented in
Figure 3.7. The adverse pressure gradient yields a flow deceleration along the
profile, as shown in Figure 3.7 (a) by the difference between the two curves.
The velocity profile scaled on inner variables is depicted in Figure 3.7 (b).
The vertical dashed lines represent the locations chosen for further analysis
in the following section. They are located in the log-layer and in the outer
layer respectively. As previously mentioned, several regions can be identified
in the boundary layer:

• viscous sub-layer, in this case for x+
2 ≤ 5. The profile follows a dimen-

sionless linear low: U+ = x+
2 .

• buffer layer, small transition zone between the viscous and the log-
layer.

• log-layer : in this region the dynamic properties of the flow are inde-
pendent of the molecular viscosity (CHASSAING 2000). The log-law,
U+ = 1

k ln x+
2 + B fits only a small fraction of the boundary layer

(20 ≤ x+
2 ≤ 50). The typical ZPG von Karman constant k = 0.41

does not fit properly the curve. A smaller value k = 0.3 must be
considered in this case due to the effect of the pressure gradient. The
constant B in this case is negative (B = −1). Due to the adverse
pressure gradient, the normalised velocity profile lies below the stan-
dard log-law, thus indicating a reduction in the thickness of this layer.
An additional way to observe the small extent of the log-layer in the
considered APG case can be seen in Figure 3.8: the two peaks of
x+

2 ∂U
+
1 /∂x

+
2 correspond to the logarithmic and to the outer part of

the boundary layer.
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• outer layer, for x2 ≥ 50, where the effect of APG can be appreciated
the most: there is a consistent increase of the mean velocity relative
to uτ . The APG makes the boundary layer exhibit a more prominent
wake region. The increase of Clauser parameter while approaching the
TE can be properly observed for x+

2 > 100, but it is also noticeable all
the way down to the log-layer.

sensor 21 sensor 22 sensor 24
δp99 [mm] 4.66 4.94 5.41

H 1.86 1.89 1.94
Ue [m/s] 17.6 17.4 17.3

Table 3.1: Boundary layer integral parameters for the three sensors.

The integral parameters which characterise the boundary layer are listed
in Table 3.1. The increase of the boundary layer thickness as well as the
increase of the shape factor for the downstream sensor show the effect of
boundary layer thickening due to the adverse pressure gradient. The outer
velocity is reduced by the deceleration of the flow since its direction is op-
posed to the pressure rise.

Figure 3.8: Normalised streamwise velocity gradient evolution in the normal-
to-wall direction.

In Figure 3.9 (a), the normalised Reynolds stress components ρuÍ
iu

Í
j have

been plotted as a function of x+
2 . i and j refer to the streamwise and normal-

to-wall directions. The curve is normalised with inner scales: ρu2
τ . A peak in

Reynolds stress plot corresponds to a location of higher momentum transfer
by fluctuating velocities. In this case, the APG modifies the peaks into a
plateau which extends from the log-layer to the outer-layer (8 ≤ x+

2 ≤ 103):
the turbulent mixing is further increased. For ZPG cases, the maxima would
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be in the viscous layer. It is reported in literature that the outer peak may be
due to the hairpin structures developing away from the wall next to the TE
(WU et al. 2019). Moreover, the anisotropy of the energy distribution among
the stresses can be remarked. The normal-to-wall stress is systematically
lower than the others (CHASSAING 2000).

The trend of viscous and turbulent shear stresses is plotted in Figure 3.9
(b). The red curve represents their sum, normalised by the wall shear stress.
The viscous stress is dominant in proximity to the wall. Viscous and tur-
bulent stresses are at the same level around x+

2 = 10. Beyond this distance,
Reynolds stresses become the main component of the shear stress. The
maximum of the total stress curve and the extensions of its platform shape
mainly depends on the Reynolds number of the flow (CHASSAING 2000).
Eventually, sensor 22 proves a higher level of turbulence with respect to
sensor 21 in both figures.

(a) (b)

Figure 3.9: (a) Reynolds stress components: r11 (solid line), r12 (dashed
dotted line), r22 (dashed line). (b) Shear stress decomposition for sensor 21
and 22.
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3.4 Analysis of velocity and wall-pressure fluctua-
tions

3.4.1 NS-DNS turbulence statistics

The turbulence statistics can be quantitatively analysed by simultane-
ously observing the velocity fluctuations at two neighbouring points in the
flow field. Velocity fluctuations beneath a turbulent boundary layer in the
presence of an APG are investigated in this section. This has been achieved
through two-points statistics for three sensors on the suction side of the air-
foil (sensor 21, 22 and 24, Figure 3.2). A particular focus is made on the
normal-to-wall velocity correlation coefficient R22, since the cross-correlation
S22 presented in (2.32) is its double spatial Fourier transform. The R22
profiles of two different sensors on the suction side of the airfoil will be
compared. Moreover, the evolution of the correlation length and of the
anisotropy coefficient in the normal-to-wall direction are discussed. Python
codes have been used for post-processing.

(a) (b)

Figure 3.10: (a) Normalised longitudinal velocity correlation coefficient and
(b) anisotropy coefficient for two sensors on the suction side of the CD airfoil.

Analytical methods based on Panton&Linebarger’s work involve the vari-
ation of the longitudinal length scale Λ1 as a function of the distance from
the wall and of the wavenumber in order to compute φ22. In the present
work, only the dependence from x2 will be addressed. In Figure 3.10 (a), the
longitudinal length scale is plotted for two sensors on the CD airfoil surface
as in (2.5). The trend of Λ1 according to Prandtl’s theory is plotted too
(PANTON and LINEBARGER 1974):

Λ1 =
; 0.63x2δ x2/δ ≤ 0.22

0.14δ x2/δ > 0.22
(3.3)
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Λ1 increases along the normal-to-wall direction in the boundary layer.
Since this quantity is related to the size of eddies, the reason of this trend
may be the presence of bigger turbulent structures away from the wall.
Moreover, the average value of its plateau proves higher than the theoretical
one. The precise methodology for the calculation of turbulence length scale
is still an open issue. In this case, a trapezoidal numerical method has been
used for the integration. In order to avoid the negative lobes of F (r), the
integration interval is defined up to separations resulting in F (r) > 0.

The trend of the boundary layer anisotropy in the normal-to-wall di-
rection is addressed in Figure 3.10 (b). This parameter is used as a scale
coefficient for the longitudinal separation r1 in order to collapse the curves
of R22(r1) and R22(r3) in Figure 3.11 (see (2.6)). In the presence of an
adverse pressure gradient, strong anisotropy is dominant only close to the
surface, as in (KROGSTAD and SKARE 1995). Indeed, for low x+

2 the two
plots show the largest gap.

(a) x+
2 = 23 (b) x+

2 = 160

Figure 3.11: Vertical velocity correlations calculated for streamwise (r1) and
spanwise (r3) directions for two different planes, sensor 21.

As demonstrated through the Lumley map in (WU 2019), the most se-
vere departure from the 3D isotropy is for locations close to the wall. There
the boundary layer is only 2D isotropic (α = 2), while it tends to 3D isotropy
(α = 1) approaching to the external free-flow. The maximum of isotropy
would be in absence of the airfoil surface then in this case at the farthest
distance from it, where there is no shear influence. The plateau in the plot
of α in the log-law region may be due to the enhanced mixing in the case of
APG.

In Figure 3.12, Λ1 is used to normalise the streamwise and spanwise sep-
arations of three different normal-to-wall layers. The longitudinal velocity
correlation F (r) is plotted as a function of streamwise separations. The
reference point is the most upstream one in the considered volume, whereas
the vertical velocity correlation coefficient is computed with respect to a
reference point located at the centre of the volume. It is plotted against
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spanwise separations for three planes parallel to the suction side of the air-
foil. Negative lobes are present in the R22(r3) plot for low x+

2 . These can
be interpreted as an ascending and descending return flow on a large scale
(CHASSAING 2000). On the contrary, for greater values of x+

2 , the in-
creased size of eddies does not allow a similar recirculation. In the case of
sensor 22, located downstream sensor 21, the correlation plot is more anti-
symmetric. Results for sensor 24 are not reported here for brevity since they
follow the same trend.

(a) (b)

(c) (d)

Figure 3.12: Longitudinal and vertical velocity correlations for sensor 21
(a,c) and 22 (b,d) for three different vertical positions.
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A comparison between the models for F (r) and Λ presented in Table 2.1
and the vertical velocity correlation of DNS data is depicted in Figure 3.13
for sensor 21. The results are computed on a plane at about half of the avail-
able volume, at x+

2 = 90. Similar results were found for different positions
in the normal-to-wall direction. As already discussed by (GRASSO et al.
2019), the models which fit R22 data the best are RDT and Lieppman’s.
While Lieppman’s is in close agreement with numerical data for separations
smaller than unity, RDT captures better the negative lobes of the curve.
The Gaussian model is found to overestimate the numerical curves.

(a) Lieppman’s model

(b) RDT model (c) Gaussian model

Figure 3.13: Comparison between models and measured vertical velocity
correlations for x+

2 = 90 for sensor 21. α = 1.4 has been used to collapse
R22(r1) and R22(r3).
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3.4.2 Comparison with LBM-DNS data

(a) (b)

Figure 3.14: Zoom on the TE recirculation bubble for (a) NS-DNS and (b)
LBM-DNS, velocity magnitude contours.

This section focuses on the comparison between velocity correlations
computed with NS-DNS and LBM-DNS data for sensor 22. In Figure 3.15,
a slight difference between the two velocity profiles can be noticed, with
the same trend remarked in (WU 2019). The boundary layer is thinner in
LBM-DNS case: this is due to a slightly thinner TE recirculation bubble
than the NS-DNS case, as it can be seen on the pressure coefficient plot in
Figure 3.6 and on the velocity contours of Figure 3.14. The shape factor
remains almost the same in both cases (Table 3.2).

Figure 3.15: Comparison between NS-DNS and LBM-DNS velocity profile
for sensor 22.

LBM DNS
δp99 [mm] 4.69 4.94

H 1.76 1.89
Ue [m/s] 18.2 17.40

Table 3.2: NS-DNS and LBM-DNS boundary layer integral parameters.
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The advantage of LBM simulation being its computational speed, it is
easier to achieve a large physical time with respect to traditional Navier-
Stokes solvers. In order to evaluate the convergence of the velocity corre-
lation parameters, the post-processing has been performed for a a physical
time of ∆t ∼ 0.069 s and ∆t ∼ 0.136 s, which correspond to 8 and 16
flow-through times. The comparison of the two ∆t is plotted in Figure 3.16.
A negligible difference can be remarked in terms of longitudinal and verti-
cal velocity correlations. Consequently, only the data for ∆t ∼ 0.069 s is
considered in the following.

(a) (b)

Figure 3.16: Comparison between LBM-DNS results for 8 (red curve) and
16 (black curve) flow-through times.

Figure 3.17: Longitudinal velocity correlation for sensor 22, comparison
between NS-DNS and LBM-DNS data.

As shown in Figure 3.17, the longitudinal correlation function is not
going to zero for large separations. This may be due to numerical errors
caused by the interpolation of data. Since in LBM-DNS, the voxels do not
perfectly follow the airfoil shape and their sides cross it, an interpolation
must be made to impose the presence of the profile in the domain. For this
reason, a great difference can be remarked between the longitudinal Taylor
scale computed for the two different simulations: F (r)LBM not going to
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zero. In order to overcome the problem, the integration of F (r)LBM has
been truncated for the separation considered in the analysis of the corre-
sponding layer in NS-DNS. As shown in Figure 3.18 (a), this method proves
efficient only for the near-to-wall region of boundary layer, where Λ for the
two simulations is comparable. At a farther distance from the wall, ΛLBM
trend diverges to higher values than in NS-DNS case. In (b), the anisotropy
coefficient α has been plotted for the two simulations. The normal-to-wall
evolution proves the same. The slight shift of the plot is due to the different
height of the boundary layer in the two configurations.

(a) x+
2 = 6 (b) x+

2 = 130

Figure 3.18: (a) Longitudinal length scale and (b) anisotropy coefficient for
LBM-DNS and NS-DNS data of sensor 22.

In Figure 3.19, vertical velocity correlation is plotted for the two simu-
lation techniques against spanwise separations. The reference point at the
centre of the domain is the same for LBM-DNS and NS-DNS. Both at a
small and at a large distance from the wall, an overall agreement between
the results of the two simulations can be found. LBM-DNS simulation data
capture well the peak and the correlation negative lobes. However, a small
difference is remarked in the symmetry of the lobes of the R22 curves. As
far as the relation between R22(r1) and R22(r3), LBM-DNS data showed the
same trend as NS-DNS (Figure 3.11) as we can see in the evolution of α.
The plots are not reported here for brevity.

A comparison between the longitudinal and vertical velocity correlations
is made at several normal-to-wall positions of the boundary layer in the plane
(r1, r2) (see Figure 3.20 and 3.21). While approaching to the outer part of the
boundary layer, R11(r1, r2) contours appear to be tilted to the flow direction.
The vortex stretching due to the mean shear causes an inclination of the
structures towards the wall. This phenomenon is opposed to the increase in
induced velocity that each limb of the hairpin structure of eddies imposes on
the other. On the contrary, R22(r1, r2) is aligned almost vertically at every
position in the boundary layer.
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(a) x+
2 = 6 (b) x+

2 = 130

Figure 3.19: Comparison between NS-DNS and LBM-DNS data for sensor
22. The indicated x+

2 values refer to NS-DNS boundary layer.

The wavelet approach made by (KROGSTAD and KASPERSEN 2002)
explained this with a velocity fluctuation analysis. The inclination of turbu-
lent structures depend on their associated length scale. Small-scale motion
is theoretically vertical while larger scales are tilted to the wall. The major
contributions to v2 are at a higher wavenumber (corresponding to a smaller
structure scale) than for u2. Therefore the most important contributions to
R22(r1, r2) are from little wavelet scales, characterised by a small amount of
stretching and then vertical.
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(a) x2/δ = 0.2 (b) x2/δ = 0.3

(c) x2/δ = 0.45

Figure 3.20: R11(r1, r2) contours made with LBM data from sensor 22.
Contour levels: 0.1, 0.2, 0.3, 0.5, 0.8.

Eventually, R22(r1, r3) contours have been plotted on several planes par-
allel to the surface of the airfoil. Structures of increasing size can be identi-
fied for locations departing from the wall (see Figure 3.22). The stretching
of vortices along the spanwise direction increases for locations far from the
wall. This underlines once more the impossibility to exploit an isotropic
model.
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(a) x2/δ = 0.2 (b) x2/δ = 0.3

(c) x2/δ = 0.45

Figure 3.21: R22(r1, r2) contours made with LBM data from sensor 22.
Contour levels: 0.1, 0.2, 0.3, 0.5, 0.8.

(a) x2/δ = 0.6 (b) x2/δ = 0.8 (c) x2/δ = 0.95

Figure 3.22: R22(r1, r3) contours made with LBM-DNS data from sensor
22. The location of the chosen plan is for increasing x+

2 from (a) to (c).
Contour levels: -0.2, -0.1, 0.1, 0.2, 0.3, 0.5, 0.8. The dashed lines correspond
to negative values.
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3.4.3 Wavenumber-frequency spectra

The properties of wall-pressure fluctuations both in space and in time can
be expressed in terms of wavenumber-frequency spectrum. Several models
for this spectrum have been proposed, mainly dealing with zero pressure
gradient boundary layers. Different regions can be defined for the pressure
wavenumber-frequency spectrum: Φpp(kx, kz, ω). Firstly, the supersonic re-
gion for k ≤ ka = 2πf/c0, the acoustic wavenumber, which represents the
compressibility effects. Then the sub-convective region, ka ≤ k ≤ kc, a con-
vective peak centred around the convective wavenumber kc = 2πf/Uc and
the viscous region for k ≥ ka. Uc is the convection velocity, c the sound
velocity and ω the radian frequency.

The convective peak is dominant and the most energetic. It represents
the hydrodynamic signature of turbulent structures convected by the flow
in the boundary layer. The pressure levels of the convective region are
approximately 40 dB above the levels in the subconvective range for an
attached turbulent boundary layer with zero pressure gradient. The acoustic
and convective wavenumbers are related by:

ka = Mkc (3.4)

where M is the free-stream Mach number.

This report focuses on two different signal processing methods for sen-
sor 22, proposed by (COHEN and GLOERFELT 2018) and (SALZE et al.
2014). Applying Salze’s post-processing, a simple fast Fourier transform
p̂(k, ω) of the pressure field is performed. A Welch’s algorithm is applied
for the time dimension: three overlapping segments are considered from the
total of the samples, stored every 200 iterations of the DNS. Each segment
is weighted by a Hann window to reduce the creation of new frequency com-
ponents (spectral leakage). The sampling frequency is 666 Hz. Under the
assumption of stationary random signals and ergodicity (the time average
must be the same as the ensemble average), the cross spectral density is
defined as

Rpp(x, r, ω) = lim
T→∞

2π
T
E[p̂(x + ω)p̂∗(x + r, ω)] (3.5)

A Fourier transform in space will then provide the wavenumber-frequency
spectrum:

ϕpp(k, ω) = 1
(2π)2

Ú Ú
Rpp(r, ω)e−ik·rdr (3.6)

In Cohen’s method, a fast Fourier transform is applied in the spanwise di-
rection. Then the Welch’s algorithm is implemented in time with Hann win-
dowing. The main difference from Salze is the Capon’s spectral estimator.
Conventional methods of spectrum estimation employ a fixed wavenumber
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windows. This high-resolution method of estimation employs a wavenumber
window whose shape changes as a function of the wavenumber at which an
estimate is obtained (CAPON 1969). The estimator is eventually exploited
to enhance the resolution along the streamwise direction:

P̂Capon(ω, kx, kz) = nx + 1
eH(kx)R−1

pp (ω, kz)e(kx)
(3.7)

where e(kx) is the steering vector and R−1
pp the inverse of the auto-correlation

matrix.

(a)

Figure 3.23: Wavenumber-frequency spectra for increasing frequencies
(green: acoustic component; red: convective component).

As we can see in Figure 3.23, at low frequencies kx = ka ∼ kc: the
convective contribution (red box) is dominant and the acoustic part (green
box) can hardly be identified. At higher frequencies, the two contributions
separate and the acoustic part becomes non negligible with respect to the
hydrodynamic one. As remarked by (COHEN and GLOERFELT 2018), the
acoustic levels tend to increase in the case of adverse pressure gradient.

Iso-contours of ϕpp(ω, kx, kz) in the (kx, kz) plane are plotted in Fig-
ure 3.24 for both cases of low and high frequencies. The convective ridges
look like an elongated elliptical shape centred on kc, whose major axis is
in the spanwise direction. According to literature, the aspect ratio of the
elliptical shape is lower for APG cases (SALZE et al. 2014). The convective
wavenumber is shifted towards higher positive streamwise wavenumbers as
the frequency increases and the ϕpp level of the convective ridge decreases.
The acoustic domain is contained in the ellipse of equation:1

kx + κ0M/β2
22
/
1
κ0/β

2
22

+ k2
z/ (κ0/β)2 = 1 β =

ð
1 −M2 (3.8)
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which is plotted with a white dashed line. For low frequencies, the ellipse and
the convective ridge are almost superimposed, whereas for high frequency
they can be distinguished neatly.

Figure 3.24: Comparison between wavenumber- frequency spectra for low
and high frequencies in the (kx, kz) domain.

Eventually, in Figure 3.24 the wall-pressure spectrum has been plotted in
the (kx, ω) domain with Cohen and Salze’s methods. The reduced spectral
noise thanks to Capon’s filtering can be appreciated. The white dashed lines
represent the estimations of the convective velocity Uc = nU0 propagating
downstream, with n = 0.6, 0.7 and 0.8. The dotted lines represent the
acoustic velocity. As it can be seen from their slope towards negative lon-
gitudinal wavenumbers, acoustic waves are mainly propagating upstream.
This is due to the low Mach number configuration.

Figure 3.25: Wall-pressure spectrum in the (kx, ω) domain: (right) Salze’s
method, (left) Capon’s filtering.
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3.4.4 Prediction of the wall-pressure power spectral density
function

In order to compute wall-pressure PSD (2.32), a multi-dimensional in-
tegration must be performed. Monte Carlo integration methods have been
used in this work. This technique allows the number of samples of the inte-
grand function and the rate of convergence of the estimation of the integral
to be independent of the number of dimensions.

Monte Carlo method

A Monte Carlo technique is any technique making use of random num-
bers in order to solve a problem. Historically, the first large-scale calculations
which exploited the Monte Carlo method were neutron studies, random pro-
cesses for which the employ of random numbers is natural. The applicability
of the method depends on the ability of the user to formulate the problem
in such a way that random numbers may be used to obtain the solution.
The Monte Carlo result f is an estimator of the integral

I =
1Ú

0

. . .

1Ú
0

f (x1, x2, . . . , xn) dx1dx2 . . . dxn (3.9)

According to the law of large numbers, the sum of the evaluations of a
probability density function f(ui) on an interval from a to b, divided by the
amount N of random numbers ui, will converge to the expectation of the
function f . Hence, as n becomes very large:

éf̃ê = 1
N

nØ
i=1

f (ui) → 1
b− a

bÚ
a

f(u)du (3.10)

The mathematical properties of a Monte Carlo technique are the following:

• If the variance of f is finite, the Monte Carlo estimate converges to
the true value of the integral for very large n.

• The expectation of the Monte Carlo estimate is the true value of the
integral.

• The Monte Carlo estimate approaches a Gaussian distribution.

• The standard deviation of the Monte Carlo estimate is given by:

Ô = O

óVar(éf̃ê)
N

 Var(éf̃ê) = Var(f)
N

(3.11)
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The application of this algorithm requires a random numbers generator.
However, deterministic computers can provide, at best, Quasi-Random num-
bers to sample the integral. Hence, this standard Monte Carlo algorithm is
named Quasi-Uniform sampling.

A different technique to apply the Monte Carlo method is the recursive
stratified sampling. The computational volume is split in two parts, with Na

and N −Na points each. In this case, the estimator f becomes:

éf̃êÍ = 1
2
1
éf̃êa + éf̃êb

2
Var

1
éf̃êÍ

2
= 1

4

3Vara(f)
Na

+ Varb(f)
N −Na

4
(3.12)

Its variance is minimised when:

Na

N
= σa
σa + σb

−→ Var
1
éf̃êÍ

2
= (σa + σb)2

4N (3.13)

where σ =
ñ

Var(éf̃ê). The variance in this case is never greater than the
variance computed by the standard Monte Carlo method. A fixed number of
function evaluations N is allocated at the beginning of the execution, then
each dimension of integration is divided in two sub-volumes. In each sub-
volume, a fraction of the N samples is used to estimate the variance of f .
The remaining points are allocated according to the equation (3.13). This
method is implemented in MISER algorithm, available in the Scikit-Monaco
Python package.

Another way to further reduce the variance and then accelerate the con-
vergence of the integration if to apply the importance sampling. Importance
sampling means choosing a good distribution from which to simulate one’s
random variables. A change in variable is introduced to flatten the func-
tion in the new co-ordinate system so that fewer samples are required to
converge. The sample is drawn from a proposal distribution and the inte-
gral re-weighted using importance weights so that the correct distribution
is targeted. The method can be defined as

Ef [h( þX)] =
Ú
X

h(x)g(x)dx (3.14)

where h is some function and g is the PDF of x. g(x) must be found
to mimic h(x). Another PDF u(x) on the same domain is considered, such
that u(x) = 0 implies h(x)g(x) = 0.

Ú
h(x)g(x)dx =

Ú
h(x)g(x)
u(x) u(x)dx = Eu

C
h( þX)g( þX)
u( þX)

D
(3.15)

Eu is the expectation for a probability for which the distribution of þX is
u(x) rather than g(x). The density g(x) is called the target distribution, u(x)
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the proposal distribution and g(x)/u(x) the likelihood ratio. The random
samples are generated according to u(x) distribution. The Monte Carlo
estimator is

éf̃ê = 1
n

nØ
i=1

h
1
þXi

2
g
1
þXi

2
u
1
þXi

2 (3.16)

Application to the wall-pressure spectrum

(a) (b)

Figure 3.26: (a) Normalised rms of vertical velocity fluctuations and (b)
normalised streamwise velocity gradient for sensor 21.

Data from sensor 21 of NS-DNS is considered. The computation of ϕpp
as in (2.32) requires several inputs:

• the root-mean-square (rms) of the normal-to-wall velocity fluctuations
uÍ

2 (Figure 3.26 (a))

• the mean streamwise velocity gradient profile ∂U1/∂x2 (Figure 3.26
(b))

• the evolution of the longitudinal length scale in the normal-to-wall
direction

• the evolution of the anisotropy coefficient α

Monte Carlo algorithm with a recursive stratified sampling technique
has been used. Built-in Python libraries were exploited. A special focus is
made on the role of boundary layer anisotropy. In section 3.4.1, the relation
between the anisotropy coefficient and the vertical distance from the wall
has been analysed. However, Panton&Linebarger theory (PANTON and
LINEBARGER 1974) suggests that the influence of wavenumber on α should
be accounted for when computing wall-pressure spectra. They calculated
spectra for α = 1, 2, and 3 and found that increasing the anisotropy factor
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increases the level of the spectrum and shifts it to lower wave numbers. A
model based on this concept is Remmler’s (REMMLER et al. 2010) :

α =


3 k1δ < 1
linear decrease 1 ≤ k1δ ≤ 5

1 k1δ > 5
(3.17)

which states that high wave number structures tend more to the isotropic
behaviour.

In the present study, a comparison was made between spectra computed
with a fixed α and a variable α = f(x2). The distribution of α for sensor 21
can be found in Figure 3.10 (b).

Figure 3.27: Wall-pressure PSD for sensor 21 computed with both fixed and
variable anisotropy coefficient α. 100000 samples and 4 CPUs are used for
the application of the Monte Carlo algorithm.

The integration boundaries of(2.32) are fixed to X2 ∈ [0, δp99], X Í
2 ∈

[0, δp99] and k3 ∈ [0, 1000]. The reference spectrum is the one directly com-
puted with NS-DNS data. Pressure signals were recorded for 7 flow-through
times at a sampling frequency of 78 kHz. As shown in Figure 3.27, the
same trend remarked by Panton when the anisotropy coefficient increases is
found. α = 3 curve proves too high at low frequencies and underestimating
the spectrum at high frequencies. The spectrum for α = 1 is the one fitting
NS-DNS data the most, especially at high frequencies. The spectrum cal-
culated for a variable distribution of α totally superimpose to the one for
α = 2.
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(a) (b)

Figure 3.28: Random throw of α for a CPU (50000 samples) for (a) the
distribution of α shown in section 3.4.1 and (b) a different distribution with
a plateau at α = 1.

However, the perfect superimposition of the two curves is not considered
as totally reliable. So as to check the random throw during the interpola-
tion of α computed by the algorithm, two different distributions of α(x2)
have been tested. In Figure 3.28 (a), the random throw for a CPU for the
distribution in Figure 3.10 (b) is shown for a population of 50000 samples
(maximum value 2, minimum value 0.8, monotonically decreasing function).
The random throw mean is around the mean between the extreme values of
α. In Figure 3.28 (b), a distribution of α computed during previous research
has been used. This latter is characterised by a plateau around the value
α = 1 and the maximum value is around 2.5. In this case, 80% of the ran-
dom values is below 1.1. The random throw proves really sensitive to the
distribution of the anisotropy coefficient. Furthermore, the bias in the throw
may be due to both the choice of the sub-volumes in the important sampling
and the exponential decrease in (2.32). Thus, a conclusion cannot be drawn
about the superimposition of the two curves without further analysis.

The importance sampling method has been tested with the same input
data for fixed values of the anisotropy coefficient. Non-parallel Fortran90
codes have been exploited. The obtained spectra are shown in Figure 3.29.
This method shows the same trend of previous cases when the anisotropy
coefficient increases. The curve computed with Remmler’s method is super-
imposed with α = 1 for medium to high frequencies. α = 1 remains the value
fitting DNS data the most. As far as the behaviour at high frequencies, the
result is considered to be not consistent with the one obtained with the re-
cursive stratified sampling. The curves for different values of the anisotropy
coefficient coincide. Further investigations must be done to understand the
reasons of this inconsistency.
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Figure 3.29: Wall-pressure PSD computed with the importance sampling
method for the same airfoil. Comparison between fixed values of α and
Remmler’s model.



Conclusion and perspectives

This report sums up the state-of-the-art and the necessary prerequisites
within the framework of this internship. A brief overview of homogeneous
turbulence and acoustic analogies is given, with a focus on current numerical
techniques. The considered case study for a DNS simulation has been pre-
sented: a Controlled-Diffusion airfoil at an angle of attack of 8◦. Two types
of DNS simulation on the same profile have been addressed: a Navier-Stokes
simulation and a simulation applying the Lattice-Boltzmann method. The
post-processing focused on data from three sensors near the trailing edge
on the suction side of the airfoil. The boundary layer has been analysed
for both simulations and comparable results have been found. The only re-
markable difference is the thickness of the leading edge recirculation bubble,
thicker in the NS-DNS case.

Within the framework of Amiet’s theory, statistical methods based on
Panton and Linebarger’s work have been exploited for modeling the source
terms for wall-pressure spectrum predictions. The considered model is
anisotropic. Turbulence statistics and boundary layer anisotropy have been
investigated both for NS and LBM DNS. Comparable results have been
found. The anisotropy is maximum near the wall due to the effect of shear
and decreases in the outer region of the boundary layer.

Secondly, wavenumber-frequency spectra have been exploited to investi-
gate the acoustic and hydrodynamic contributions on a large range of fre-
quencies. As far as the power spectral density prediction for trailing-edge
noise, two different Monte Carlo techniques have been used for the most
upstream sensor. Previous research findings have been validated for the
application of the recursive stratified sampling to the problem. The distri-
bution of the anisotropy coefficient found during the analysis of turbulence
statistics has been set as an input to the model and compared to fixed values
of anisotropy. The choice of a fixed and unitary anisotropy coefficient gives
the predicted spectrum which fits DNS data the most.

As a continuation of this internship work, three major aspects must
be looked at. Firstly, as far as turbulence statistics, a more accurate way
to compute the longitudinal length scale must be found. It would be in-
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teresting to keep into account the turbulence-turbulence interaction term
too. Secondly, the dependence of the boundary layer anisotropy both on
the wavenumber and on the normal-to-wall location should be considered.
Lastly, the efficiency of the application of recursive stratified sampling to the
wall-pressure spectrum prediction must be evaluated. Further investigation
of the importance sampling application will allow more reliable comparison
between the two methods.



References

AMIET, R. K. (1975). “Acoustic radiation from an airfoil in a turbulent
stream”. In: Journal of Sound and Vibration 41.4, pp. 407–420.

— (1976). “Noise due to turbulent flow past a trailing edge”. In: Journal of
Sound and Vibration.

BAILLY, C. and G. COMPTE-BELLOT (2015). Turbulence. Springer.
CAPON, J. (1969). “High-Resolution Frequency-Wavenumber Spectrum Anal-

ysis”. In: Proceedings of the IEEE 57.
CHASSAING, P. (2000). Turbulence en mècanique des fluides. Cépaduès-

Editions.
COHEN, E. and X. GLOERFELT (2018). “Influence of pressure gradients

on wall pressure beneath a turbulent boundary layer”. In: Journal of
Fluid Mechanics 838, pp. 715–758.

GOODY, M. (2004). “Empirical Spectral Model of Surface Pressure Fluc-
tuations”. In: AIAA Journal 42.9, pp. 1788–1794.

GRASSO, G. et al. (2019). “Analytical models of the wall-pressure spectrum
under a turbulent boundary layer with adverse pressure gradient”. In:
Journal of Fluid Mechanics.

HOBBS, D. E. et al. (1984). “Development of Controlled Diffusion Airfoils
for Multistage Compressor Application”. In: Journal of Engineering for
Gas Turbines and Power 106.

HOWE, M. S. (1978). “A Review of the Theory of Trailing Edge Noise”. In:
Journal of Sound and Vibration 61.3, pp. 437–465.

HU, N. and M. HERR (2016). “Characteristics of wall pressure fluctuations
for a flat plate turbulent boundary layer with pressure gradients”. In:
22nd AIAA/CEAS Aeroacoustics Conference.

KRAICHNAN, R. H. (1956). “Pressure
field within homogeneous anisotropic turbulence”. In: Journal of the
Acoustical Society of America 28.1, pp. 64–72.

KROGSTAD, P.-A. and J.H. KASPERSEN (2002). “Structure inclination
angle in a turbulent adverse pressure gradient boundary layer”. In: Jour-
nal of Fluids Engineering.

KROGSTAD, P.-A. and P.E. SKARE (1995). “Influence of a strong adverse
pressure gradient on the turbulent structure in a boundary layer”. In:
Physics of Fluids.



60

LEE, S. (2018). “Empirical Wall-Pressure Spectral Modeling for Zero and
Adverse Pressure Gradient Flows”. In: AIAA Journal 56.5.

MINCU, D.C. and E. MANOHA (2014). “Numerical and Experimental
Characterization of Fan Noise Installation Effects”. In: Journatl Aerospace
Lab 7.

PANTON, R. L. and J. H. LINEBARGER (1974). “Wall pressure spectra
calculations for equilibrium boundary layers”. In: Journal of Fluid Me-
chanics 65.2, pp. 261–287.

POPE, S.B. (2000). Turbulent Flows. Cambridge.
REMMLER, E. et al. (2010). “Computation of Wall-Pressure Spectra from

Steady Flow Data for Noise Prediction”. In: AIAA JOURNAL 48.
ROGER, M. (2013). “Noise Sources in Turbulent Shear Flows: Fundamentals

and Application”. In: Springer. Chap. Broadband Noise from Lifting
Surfaces Analytical Modeling and Experimental Validation, pp. 289–344.

ROGER, M. and S. MOREAU (2004). “Broadband Self-Noise from Loaded
Fan Blades”. In: AIAA Journal 42.3, pp. 539–544.

— (2005). “Back-scattering correction and further extensions of Amiet’s
trailing-edge noise model. Part 1: theory”. In: Journal of Sound and
Vibration 286.3, pp. 477–506.

— (2009). “Back-scattering correction and further extensions of Amiet’s
trailing-edge noise model. Part II: Application”. In: Journal of Sound
and Vibration 323.1-2, pp. 397–425.

— (2012). “Addendum to the back-scattering correction of Amiet’s trailing-
edge noise model”. In: Journal of Sound and Vibration 331.24, pp. 5383–
5385.

ROZENBERG, Y. et al. (2012). “Wall-pressure spectral model including the
adverse pressure gradient effects”. In: AIAA Journal 50.10, pp. 2168–
2179.

SALZE, E. et al. (2014). “An experimental characterisation of wall pressure
wavevector-frequency spectra in the presence of pressure gradients”. In:
20th AIAA/CEAS Aeroacoustics Conference.

SANDBERG, R. et al. (2008). “Direct numerical simulations of noise gener-
ated by turbulent flow over airfoils.” In: 14th AIAA/CEAS Aeroacoustics
Conference.

SANJOSE, M. and S. MOREAU (2011). “Direct self-noise simulation of the
installed Controlled Diffusion airfoil”. In: AIAA Journal.

SLAMA, M. et al. (Apr. 2018). “A Kriging-based elliptic extended anisotropic
model for the turbulent boundary layer wall pressure spectrum”. In:
Journal of Fluid Mechanics 840, pp. 25–55.

WILSON, D. K. (1998). Turbulence Models and the Synthesis of Random
Fields for Acoustic Wave Propagation Calculations: tech. rep. Fort Belvoir,
VA: Defense Technical Information Center.

WU, H. (2019). “Direct Numerical Simulation of Airfoil Self-Noise at High
Reynolds Numbers”. PhD thesis. Université de Sherbrooke.



61

WU, H. et al. (2019). “Effects of pressure gradient on the evolution of
velocity-gradient tensor invariant dynamics on a controlled-diffusion aero-
foil at Re=150000”. In: Journal of Fluid Mechanics 868, pp. 584–610.



62





64

Glossary

α anisotropy coefficient
βc Clauser’s parameter
c0 sound velocity
cf skin friction coefficient
cp pressure coefficient
δ boundary layer thickness
δ∗ boundary layer displacement thickness
Γ Gamma function
G Green’s function

Φpp power spectral density of wall-pressure fluctuations
f(r) longitudinal correlation function
g(r) transverse correlation function
Kν modified Bessel function
k wavenumber
Λ turbulence length scale
λ wavelength
L characteristic length scale
lz fluctuations transverse coherence length
µ dynamic viscosity
ν parameter for Von Karman’s model
θ boundary layer momentum thickness
Pe free field pressure
pÍ pressure fluctuations
Rij correlation coefficient
Re Reynolds number
ρ flow density
ρÍ density fluctuations
S22 normalised cross-spectrum of vertical velocity fluctuations
Spp noise spectrum
σ variance
U+ normalised streamwise velocity
Ue free field velocity
Uc convection velocity
uτ friction velocity

uÍ, vÍ, wÍ velocity fluctuations
Tij Lighthill’s stress tensor
τw wall shear

x1, x2, x3 streamwise, normal-to-wall and spanwise Cartesian coordi-
nates

x+
2 normalised normal-to-wall position
ω angular frequency
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