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      INTRODUCTION 
The present work illustrates a case of application of processes, methodologies and tools of Systems 
Engineering in the life cycle of an Environmental Control System (ECS) on an Unmanned Aircraft 
Vehicle (UAV) considering two technical solutions:  

 Vapor Cycle Machine; 
 Air Cycle Machine. 

It has been developed in collaboration with Leonardo Aircraft Division. In particular, the different 
phases of the work have been followed adopting the company methodologies/tools and validated by 
experts of “Engineering System & Configuration Management”, “Aircraft Systems” and 
“Independent and Parametric Costing”. 

The results obtained in this work are not related to any of Leonardo Aircraft Division 
projects/programs. 

The main task is to show the process of development of the system through: 

 Functional Analysis supported by means of IBM Ration Rhapsody® applying the IBM 
Harmony® methodology; 

 Performance Analysis supported by means of Siemens Simcentre Amesim®; 
 Cost Estimate supported by means of PRICE TruePlanning®. 

In addition, a study on methodologies related to parametric software cost estimation is presented, 
since nowadays systems need software that controls its functionalities. From the analysis of the 
state of art (COSMIC Function Points, COCOMO, COCOMO II, COSYSMO, etc.), a comparison 
between some selected parametric software cost estimation methods has been implemented. 

In particular, this document focuses on the aspects related to costs. In fact, the cost has not always 
been one of the main targets considered in the first phases of the project, but as years go by costs 
are gaining more relevance, in order to obtain higher profits maintaining a competitive cost on the 
market. In fact, if the development/production costs result to be excessive, the project will be 
modified in order to reduce the costs, but this will cause an increase of the development cost and a 
delay in the delivery of the products. 

Instead, a Design to Cost methodology will provide a cost estimation since the first phases of the 
project fixing a target cost. This methodology will focus on a parametric cost estimation of the 
whole lifecycle of the project by using a commercial tool. In order to calibrate the automatic 
parametric estimation, two Leonardo Aircraft Division specialists have been interviewed and a 
Delphi approach has been adopted to obtain an estimate of the number of Source Lines of Codes 
required by the software. 

The project development needs a multidisciplinary approach, since results must be a compromise to 
optimize all the aspects of the project. 

The whole process is of iterative and multidisciplinary nature, since all the disciplines will 
exchange data with the others. In fact, as the project gains maturity, always more information are 
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available and, so, it is possible to return to previous steps to refine the model and to go in more 
detailed and interdisciplinary analysis. 

In addition to the disciplines presented in this work (Functional, Performance and Cost Analysis), 
another target of the analysis is the Safety Assessment, since the reliability of a system will 
influence all the others aspects of the project.  For example, the level of safety of a system will 
influence the capabilities of the system regarding the functionalities provided, the level of 
performance and the operative costs. 

A Safety Analysis of the system has been covered in parallel in the thesis work “Model based 
approach of an environmental control system for an unmanned air vehicle”.  

 

Figure 1. Scheme of the System Engineering Approach 
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1. SYSTEMS ENGINEERING 

A system is an ensemble of independent elements with variable complexity that must provide the 
achievement of a specific target performing a specific functionality, which cannot be achieved by 
the single elements. Its complexity comes from relations and interfaces between the elements of the 
system. 
The elements that form the system can be of different types, such as hardware, software, human, 
documentation, etc. 

The interconnections and the interfaces between every element give the system a higher value. 

A system can be defined and evaluated in terms of complexity, defined by the number of 
components and their interactions, and in terms of performances. 

Moreover, a system can be part of a bigger ensemble called System of Systems (SoS), where: 

 every system works independently from other systems; 
 every system has a different life cycle; 
 the system requirements depends on System of Systems; 
 adding an element bring to an higher complexity of the system; 
 the System of System evolves continuously, as the technological level goes on. 

Therefore, a System of System is an ensemble of systems called sub-systems that cooperate and 
exchange data to achieve a common target. 

 
Figure 2. System of Systems composition 
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1.1  The Systems Engineering Approach 

Systems Engineering is an interdisciplinary approach that allows the realization of a system, 
focusing on: 

 customer needs; 
 functionality required by the system in the first phase of design; 
 requirement documentation; 
 architecture definition; 
 system validation. 

Therefore, System Engineering integrates various disciplines to create a process that goes from the 
ideation to the realization of the system.  

In addition, it consider the design process from an economical point of view, with the target to 
provide a product that satisfy the customer with the best profit margin. 

Systems Engineering is based on the ability to face and resolve a problem, before seeing it from a 
technical point of view. In fact, in a first time a problem is seen from a global point of view, to 
identify and to handle relations and dependencies between the parts of the entire system.  

Through this process, it is possible to predict and to control the interactions between the 
components that bring to the global behavior. So many qualities are needed, such as specialist 
competence in every field, large understanding of the disciplines, and skills in system approaching, 
open mind and attitude to deepening.  

The International Council on Systems Engineering (INCOSE) synthetized the fundamental 
activities of the system engineering in: 

 understand the problem; 
 define and handle requirements; 
 investigate different solutions; 
 define and handle interfaces; 
 testing and supporting the system; 
 tracing progress compared to the schedule. 

To understand Systems Engineering, it is possible to see it as a method to improve system 
performances and efficiency. It is possible to apply this method to any system at any complexity 
level.  

In addition, this method leads to a reduction in costs among the benefits. In fact, the entire process 
goes through an iterative analysis that allows obtaining a product optimized in terms of costs, 
performance, risks and time. 
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1.2  The V-Diagram 

This iterative process can be clearly explained introducing the V-Diagram. This diagram is strongly 
based on Systems Engineering, and shows how to design a system from the conceptual design 
phase to the disposal phase. 

 
Figure 3. V-Diagram 

As shown in Fig. 3, the process begins on the left with a design phase that starts with a focus on the 
entire system and goes to the single components at an advanced level, passing through a top down 
approach. On the right, the production aspects related to the design phases are shown, and the 
horizontal lines going from a side to the other correspond to the necessity to verify and to validate 
requirements and needs fulfillment.  
The rounded lines remark the necessity to iterate every process during every phase, in order to 
refine the system. 

 

1.3  Costs in Systems Engineering 

So, the main target of Systems Engineering is a product that respect customer requirements 
optimizing the design process and available resources. 

As shown in Fig. 4, the Cost Incurred curve related to costs actually incurred increases from the 
preliminary phases to the last one, converging to the Life Cycle Cost Committed curve related to the 
expected cost obtained by means of analysis. In this curve, it is possible to see that the cost is 
completely defined in first phases of life cycle, with few changing in the last phases. Consequently, 
the Ease to Change curve decreases, due to the difficulty related to reducing costs without 
changing drastically the system.  
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Figure 4. Life Cycle Cost diagram 
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2. THE ECS IN UAVS 

 Unmanned Aerial Vehicles (UAVs) 

An Unmanned Aerial Vehicle (UAV) is an aircraft providing the achievement of a mission without 
any pilot or operator on board. 

This kind of aircraft is often equipped with an autopilot that provides autonomous operations during 
the mission, while a Control Station (CS) allows remote control, when requested. 

Also, UAVs have to send data to the CS about the target of the mission and about the aircraft status. 

Obviously, it needs to carry a payload to achieve its mission and all the various systems needed to 
support the mission, likely common aircraft, but without the need of providing human life support. 
This take to smaller and lighter aircrafts, reducing consumption.  

The UAVs have advantages and disadvantages compared with manned aircraft, depending on the 
type of mission the aircraft must accomplish. In fact, the type of mission brings to a first 
classification for these vehicles. 

 

Figure 5. MQ-1 Predator UAV ref.[1] 
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 UAVs classification 
UAVs are strongly related to missions which are dull, dirty and dangerous (DDD): 

 For example, missions related on extended surveillance, with a great amount of hours spent 
watching without relief, can lead to loss of concentration distraction, resulting in a loss of 
mission efficiency. An UAV equipped with scanner or cameras can perform this kind of 
mission with max efficiency during the whole time of the mission; 

 Also, operating in a contaminated area for surveillance purpose or operating with toxic 
chemicals on board is dangerous and unnecessary for the crew, so an UAV is a better choice 
for this kind of mission, requiring only a decontamination of the aircraft the end of the 
mission; 

 Again, an UAV is smaller than a manned aircraft (due to the absence of a crew) and can 
avoid enemy defenses easier than other aircraft. Also, the loss of both the mission and the 
UAV is not a risk for the personnel operating at the CS. 

An UAV is a better choice also for cover missions, during which a stealth profile is needed due to 
hide the aircraft presence to the target. 

UAVs are used for research and development of new aircraft, too. Producing a scale model of a new 
aircraft allows the developer to do flight test without putting crew members in danger. 

Due to its smaller size, an UAV can operate in inhabited areas with reduced noise and consumption. 

An UAV can be classified based on their dimensions, operative altitude and endurance: 

 High Altitude Long Endurance (HALE) are UAVs operating above 15000 m of altitude with 
an endurance of 24 hours. They are used for extended surveillance; 

 Medium Altitude Long Endurance (MALE) are those UAVs operating between 500 and 
15000 m with an endurance of 24 hours. They are used for extended surveillance, but with a 
reduced range compared with HALE; 

 Medium Range or Tactical UAV (TUAV), with an operative range of 100-300 km. They are 
smaller and simpler than other UAVs and are used by land and naval force for military 
purpose; 

 Close Range UAV, that operates in a range of 100 km and are characterized by a long list of 
application in different field; 

 Mini UAV (MUAV) are UAVs with a mass that is less than 20 kg. These can be hand-
launched and have a range of 30 km; 

 Micro UAV (MAV), characterized by a wingspan of less than 150 mm. It is used for 
operations in urban areas and operates at low speed; 

 Nano Air Vehicles (NAV), vehicles with the size of a seed used for short range surveillance 
and for radar interference; 

 Remotely Piloted Helicopters (RPH) are a category of UAVs characterized by the presence 
of a rotary wing. These vehicles can perform vertical take-off and landing and are less 
susceptible to air turbulences at low speed.  
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Therefore, as we can see, UAVs led to a great advantage when the human action is not always 
required or when the mission can put in danger the crew. 

 

 The Environmental Control System 

The Environmental Control System (ECS) of an aircraft is a system that provides avionic cooling 
and contamination detection, and, in case of manned aircraft, it provides air supply, thermal control 
and cabin pressurization for the crew and passengers. 

The present analysis focuses on UAVs, so the human presence in not contemplated, and the ECS 
must essentially provide cooling to the avionic bay.  

The target of this system is to fulfill these operations in different condition, since the aircraft 
operates at different altitude and temperature, so that avionic components can work correctly during 
the entire duration of the mission. 

It is necessary to define an operative temperature range for the avionic components, in order to size 
the ECS and keep an acceptable temperature in the avionic bay. 

Following the System Engineering way to think, once the requirements are met, it is possible to 
think about the possible configurations of the system. 

In the present case, an analysis about two configuration has been done: 

 Air Cycle Machine; 
 Vapor Cycle Machine. 

These two configurations represent the main architecture for an Environmental Control System in 
aircraft applications and they differ for the type of components and the  cycle type, since the first 
one is an open loop cycle, while the second one is a closed loop cycle. 

 

 The Air Cycle Machine 

The Air Cycle Machine uses bleed air from the engine. This is an open loop cycle, where the bleed 
air is cooled and is sent to the avionic bay, and then it exhaust in external air. 

As shown in Fig. 6, the bleed from the engine goes through a lamination valve that reduce the air 
pressure. The input conditions depend on the engine and on the compressor stage where the bleed 
begins. After the valve, there is a Precooler Unit, a heat exchanger that cools the bleed air thanks to 
external air, increasing the efficiency of the entire system, due to the lower temperature entering 
into the compressor, reducing its work. Before the Precooler, a bypass could split the mass flow, 
regulated by a controller and a valve, so that an average temperature is achieved downstream. 
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External air mass flow is provided by means of an inlet, that uses ram air during flight phases and a 
fan during ground operations. 

 
Figure 6. Air Cycle Machine schematization 

Downstream another bypass is possible, so that part of the mass flow goes downstream this second 
bypass, and the rest goes through the Cold Air Unit (CAU). A compressor (previously anticipated) 
and a turbine essentially compose the CAU: the first one, obviously, compress the airflow with a 
consequent temperature rise, while the turbine expand the airflow with a decrease of temperature. A 
shaft connect the two components, so that the work extracted by the turbine is transmitted to spin 
the compressor and the inlet fan. An Intercooler, another heat exchanger like the Precooler, is 
situated between the compressor and the turbine. Downstream, the two mass flow converge and the 
total, at average temperature, is sent to the avionic bay for cooling and then it exhausts in external 
air. 

Moreover, the air cooled by the Air Cycle Machine needs to be dehumidified, in order to protect 
avionic components from damages related to water presence. 

The advantages of this solution are its simplicity, its reliability and its lower weight compared with 
a Vapor Cycle Machine, but it needs great flow of bleed air from the engine, decreasing the aircraft 
performances.  

In addition, it requires external inlet for the heat exchangers, increasing the drag component. 
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 The Vapor Cycle Machine 
The Vapor Cycle Machine is a closed loop cycle, based on heat exchanged during phase changing 
of a circulating liquid refrigerant. The refrigerant flows by means of a compressor. 

The cycle is shown in Fig””. When the compressor is switched on, it starts delivering pressure and 
making flow. The refrigerant is initially in liquid form and, by means of an expansion valve, its 
pressure is dropped before going into the evaporator, so that its boiling point is decreased. In the 
evaporator, the refrigerant is exposed to the high temperature air coming from the avionic bay. 

                                

 
Figure 7. Vapor Cycle schematization 

 
A fan makes the air from the avionic bay flow with a constant mass flow, making an heat exchange 
by forced convection. This loop is closed, so that the bay receives always the same air. The heat 
transferred to the refrigerant makes it to change into vapor phase. So, the low-pressure vapor is sent 
to the compressor that compress and rise temperature. This high pressure and high temperature flow 
enters the condenser, where heat exchange is imposed with a forced convection of external air. The 
mass flow of external air is provided by means of ram air during flight operations and of a fan 
during ground operations. Therefore, because of this heat transfer, the refrigerant returns to liquid 
phase and the cycle continues. 
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In addition, downstream of the condenser, there could be a receiver dryer acting as reservoir for the 
refrigerant. This is used when it is very hot, because in this condition more refrigerant is required by 
the system. This also act as a filter for foreign particles in the system and captures water that could 
combine with refrigerant forming an acid, or it could form ice and block the flow. 

Vapor Cycle is characterized by higher performances compared with Air Cycle, but, due to the 
refrigerant presence, it operates in shorter temperature range.  Obviously, this cycle depends 
strongly on the selection of the fluids involved in the heat exchange, as well as on the 
characterization on the components of the cycle. 
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3. FUNCTIONAL ANALYSIS 

To understand how a system have to be designed, it is useful to think about what the operations 
required by the system have to be and how it can do these operations, in terms of both what to do 
and when to do it. 
 

3.1  Model Based Systems Engineering (MBSE) 

Model Based Systems Engineering (MBSE) is a methodology related to Systems Engineering. It is 
based on creating and exploiting conceptual models that incorporates both data and behavior of the 
system, as first step of systems design.  

A model is a simplified version of a system (or of a phenomenon, of a relationship etc.) with the 
objective of facilitate understanding, examine “what if scenarios” and to explain, control and 
predict events. 

These models can also be simulated so that it is possible to explore, update, communicate system 
aspects to stakeholders and overcome the gap between systems requirements and the output of the 
simulation. Also, they allow to evaluate design alternatives and validate results, particularly useful 
when the object of the study is a complex system, where a result is needed before testing it. In fact, 
due to a wrong system design, an unexpected behavior or malfunction could occur, causing loss of 
money or damages on human beings. 

Obviously, models are never a perfect representation of the real system, but can provide knowledge 
and guide in system implementation with the lowest impact on the costs and with a faster feedback. 

Using MBSE tools and model standards, it is possible to design a coherent model of the system that 
respects the specification and the requirements in the best way.   

 
3.2  Systems Modeling Language (SysML) 

A model is realized by means of a certain language having its own proprieties, forms and meaning. 
Examples of language used for MBSE models are Unified Modeling Language (UML) and Systems 
Modelling Language (SysML). 

The first one is a language born to improve software and it evolved to be applied in different fields. 
In fact, SysML is one of this evolutions implemented in order to focus UML potentiality on systems 
model design.  

SysML uses and extends some concepts and elements of UML, adding new functionality (i.e. new 
diagrams, new stereotypes). By means of SysML is possible to analyze, design, verify and validate 
the complex systems, including hardware, software, data, data exchanges and personnel involved. 

The outputs of these models are system architecture, and its components, specifications and activity 
so that it is possible to simulate system’s behavior. 
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As shown in the Fig. 8, we can see that SysML is mostly part of UML and adds to it some new 
stereotypes and diagrams.  

 

Figure 8. Relation between UML and SysML 

 

3.3 SysML Diagrams 

In the SysML architecture, it is possible to implement different types of diagrams, each giving 
different information about the system. As shown in the following figure, it is possible to see the 
diagrams and how they are divided in structural diagrams and behavior diagrams. 

 

Figure 9. SysML diagrams hierarchy 
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The first one is the Requirement Diagram that gives information about what the system’s 

requirements are and the relations between them and the Use Case Diagram. The requirements are 
allocated in the Requirements Table, where it is possible to see the requirements and their 
description and in the traceability matrix, where requirements and Use Case are related. A 
requirement can also appear on other diagrams to show its relationship to other modeling elements. 

 The Use Case diagram describes the usage of a system by its actors to achieve a goal, representing 
the macro functionality of the system and the interactions of the system with the actors to 
accomplish these tasks. 

 The Activity Diagram shows the activity flow related to a specific Use Cases. In this diagram, it is 
possible to have information about how the system accomplish every function in terms of choices, 
data exchanges and sequence of action.   

The Sequence Diagram shows the same information of the Activity Diagram in terms of messages 
and data exchanged between the system, its component and the actors. These are shown by means 
of a control flow between system and actors for a given scenario of a certain Use Case and with 
time increasing vertically. 

The State Machine Diagram describes the possible state of the system and can simulate the 
transition from one state to another by means of trigger events. It can be used to show a specific 
behavior of the system in terms of events, messages and operations. 

The Block Definition Diagram shows the blocks forming the system and describes the dependences 
and associations between them and the environment. 

The Internal Block Diagram describes the internal structure of a block and its interconnections with 
environment by means of ports. These are interconnections that specify the type of interconnection 
between the blocks. 

The Parametric Diagram contains the equations related to the system behavior. 

 

3.4  The ECS Model 

Using the SysML diagrams exposed in the previous paragraph, it is possible to apply the Systems 
Engineering approach and the methodology presented in Chapter 3 to develop a Functional 
Analysis of the system. 

First, it is necessary to study the system to identify the macro functionality that the system has to 
perform and the mission that it must accomplish.  According with the client and the stakeholder, the 
inputs of the system are defined in the form of requirements that are all the actions, the 
performances and the conditions that describe system operations. The process is iterative and has to 
be validate at every step. 

In the following table, it is possible to see the list of the requirements from which the model 
definition starts. 
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ID Name Specification 

SR001 SR001 - Air Conditioning Starting The ECS shall autonomously assure air conditioning to the avionics/electronics 
equipment, allocated in the avionic bay, from start up to shut down  

SR001.1 SR001.1 - Air Conditioning 
During Ground Operation 

The ECS shall autonomously assure air conditioning to the avionics/electronics 
equipment, allocated in the avionic bay, during ground operations  

SR002 SR002 - Air Filtering 
Measurement 

The ECS shall assure air filtered to avionics equipment, allocated in the avionic bay, by 
monitoring the pressure difference between the inlet and outlet air flow in order to 
protect the equipment from fine dust or water  

SR002.1 SR002.1 - Pressure Value 
Comparison 

The ECS shall measure information about pressure difference and compare it with a 
threshold value  

SR002.2 SR002.2 - Filter Clogged 
Verification 

When the measured pressure difference is higher than TBD the ECS shall send the 
value of pressure difference (filter clogged) to Central Maintenance system  

SR003 SR003 - Bay Monitoring The ECS shall monitor the avionic bay temperatures  

SR004 SR004 - Over Temperature Or 
Under Temperature Alert 

The ECS shall provide an alert to Utility Management System when avionic bay 
temperature is out of range TBD  

SR004.1 SR004.1 - Autonomous Air Inlet 
Area Control 

In case an over temperature or under temperature is detected in the avionic bay, the 
ECS shall autonomously increase or decrease air inlet area  

SR004.2 
SR004.3 - Over Temperature Or 
Under Temperature Condition - 
Power Off 

In case an over temperature or under temperature is detected in the avionic bay, the 
ECS shall be powered off by Utility Management System  

SR005 SR005 - ECS Health Status 
Monitoring The ECS shall monitor its health status, from start up to shut down  

SR005.1 SR005.1 - ECS Health Status 
Information 

The ECS shall send information about its health status to the Utility management 
system and Central Maintenance System  

SR005.2 
SR005.2 – ECS working fluid 
Over Or Under Temperature 
Information 

The ECS shall send information about the working fluid over temperature or under 
temperature events to the Utility Management System and Central Maintenance 
System.  

SR006 SR006 - ECS Start Up Condition The ECS shall start when powered on by electrical system  

SR006.1 SR006.1 - IBIT At start up the ECS shall provide IBIT to Central Maintenance System  

SR007 SR007 - MBIT Performing The ECS shall perform MBIT when requested by Central Maintenance System  

SR007.1 SR007.1 - MBIT Results The ECS shall send MBIT result to Central Maintenance System  

SR008 SR008 - Shut Down The ECS shall shut down when electrical system stops providing electrical power  

SR009 SR009 - Bay Temperature The ECS shall protect avionics/electronics equipment, allocated in the avionic bay, 
within the following avionic bays temperature range: from -20°C to 50°C  

SR010 SR010 - Filter The ECS shall provide air filtered to avionics/electronics equipment, allocated in the 
avionic bay, in order to protect the equipment from fine dust or water  

Table 1. System Requirements 
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Requirements must be satisfactory and not in contradiction between themselves. In the present 
work, Leonardo Spa provided the requirement of the system and a study of these has been done 
with the help of a specialist to refine them. 

As shown, the requirements are related to performance or related to the functionality and every of 
them must be verifiable, congruent, not contradictory and univocal. 

 

Figure 10. Processes iterations 

 
The previous figure shows the Harmony methodology. It is possible to see that the next step in the 
system design is to analyze the functionality of the system. The arrows show the iterative nature of 
this process, due to the necessity to refine the model and to obtain the best results. 

So, it is possible to define the Use Case diagram that describes a specific functionality of the system 
and its interaction with the actors. An actor could be a person, a hardware component, the 
environment or a software component.  The relations between them are of Association type and 
they represent the interfaces of the systems and the users of the system. 

The different Use Cases derive from the requirements previously defined and they are divided in: 

 Monitor its health status; 
 Provide air conditioning; 
 Monitor status of air filter; 
 Provide maintenance; 
 Start up; 
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 Shut down. 

As obtained by the requirements, the followings are the actors that exchange information with the 
Use Cases: 

 Utility Management System; 
 Central Maintenance System; 
 Avionic Bay; 
 Electrical System; 
 Environment. 

In the Figure below the Use case chosen for the ECS model are shown related to the respective 
actors. 
 

 

Figure 11. Use Case diagram for the ECS under analysis 
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Shut down Start up Provide 

Maintenance 

Monitor 
Status of 
Air filter 

Monitor its 
Health Status 

Provide Air 
Conditioning 

SR005 - ECS Health Status 
Monitoring 

     x  
SR004.3 - Over Temperature 

Or Under Temperature 
Condition - Power Off 

x      
SR005.2 - ECS Over Or 

Under Temperature 
Information     x  

SR004.2 - Over Temperature 
Or Under Temperature 

Condition - Air Intake Area      x 

SR005.1 - ECS Health Status 
Information 

     x  
SR006 - ECS Start Up 

Condition 
  x     

SR006.1 – IBIT 
 
  x     

SR007 - MBIT Performing 
 
   x    

SR001 - Air Conditioning  
Starting 

      x 

SR001.1 - Air Conditioning 
During Ground Operation 

      x 

SR010 – Filter 
 
    x   

SR002 - Air Filtering 
Measurement    x   

SR002.1 - Pressure Value 
Comparison 

    x   
SR002.2 - Filter Clogged 

Verification    x   
SR003 - Bay Monitoring 

      x 
SR004 - Over Temperature 

Or Under Temperature Alert 
      x 

SR004.1 - Autonomous Air 
Inlet Area Control      x 

SR007.1 - MBIT Results 
   x    

SR008 - Shut Down 
 x      

SR009 - Bay Temperature 
      x 

Table 2. Traceability Matrix 
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Since Use Cases come from the requirements, it is possible to associate every Use Case with the 
respective requirement using a relation of Trace type. The traceability matrix is another instrument 
of the SysML implemented in the present model and it shows these relations between Use Cases 
and requirements. Every requirement can be associated to only one Use Case, but every Use Case 
can be associated to more than one Use Case. 

In the previously page, it is possible to see this matrix. 

At this point, it is possible to start a Black Box analysis, because the architecture is not defined yet. 
Therefore, the next step is the Black Box Activity Diagram defined for every Use Case. Starting 
from the definition of the Use Case, the control flow is schematized using action blocks that show, 
obviously, the actions that the system fulfills. The Actor Pins show when an actor interact with the 
system and how it does it (input or output). It is also possible to introduce a decision node that 
makes a choice between what action to do. The figure below shows an example of Activity 
Diagram for the “Provide Air Conditioning” use case. 

The system measure the temperature bay and then it compare the current temperature with the 
threshold ones. Then the system perform a choice: if the temperature is in the correct range, the 
system continues to send air-conditioned to the bay, but if it is not so, the system must stop and 
send an alert. 

 

Figure 12. Activity Diagram related to the Provide Air Conditioning Use Case 

The next step is the Sequence Diagram, which allows the identification of events and messages 
intervening between the system and the actors during the accomplishment of the actions showed in 
the Activity Diagram. In fact, the Sequence Diagram is strongly related to the Activity and can be 
generated starting from it. 
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Again, an example of the diagram is reported in Fig 13.  

The examined case is the “Provide Air Conditioning” again. It is evident the relation between this 

Diagram and the Activity Diagram. The elements in the two diagrams are the same, but in different 
forms. The system and the actors are represented by the blocks, while the arrows show event and 
messages and between who they are done. 

Moreover, in this case, the Sequence Diagram is spitted up in more than one, due to the different 
possible scenarios the system views when acting. 

 

 

Figure 13. Sequence Diagram related to the Provide Air Conditioning Use Case  
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Next to be done is the Internal Block Diagram, which shows the operations that the system 
performs, ports and interfaces used to interact with the actors. Again, this diagram can be obtained 
starting from the Activity Diagram. In the Fig. 14 is showed the Internal Block Diagram for the 
“Provide Air Conditioning” use case. 
 

 

Figure 14. Internal Block Diagram related to the Provide Air Conditioning Use Case 

In the end, there are the Statechart Diagrams: they convert the action flow of the use cases in states. 
The transition from one state to another is regulated by means of the events generated by the system 
or external actors. 

In Fig 15 the “Provide Air Conditioning” Statechart is shown. The diagram start with a default state, 
then the system goes through the different states according with the trigger events. The Statechart 
finishes with a Termination State. 
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Also this diagram is similar to the Activity Diagram, presenting a similar form and showing the 
states related to the actions the system performs. 

 

Figure 15. Statechart Diagram for the Provide Air Conditioning Use Case 

The importance of this diagram is not only related to the information it gives, but also to the fact 
that it allows a simulation of the system. 

In fact, the model can be simulated by mean of this diagram, using the actions as trigger. To help 
this simulation, it is possible to generate a control panel, as shown in Fig. 16. 
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Figure 16. Control Panel 

The one made until now is a Black Box View, which is disengaged from system architecture. But a 
White Box View is also possible, which recall the diagrams seen in the Black Box View relating 
them with the components of the system. The example of White Box View diagrams for the 
“Provide Air Conditioning” use case are reported in the following figures. 

 

Figure 17. Activity Diagram related to the Provide Air Conditioning Use Case White Box View 
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Figure 18. Sequence Diagrams of  the Provide Air Conditioning Use Case White Box View 
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Figure 19. Statechart Diagram White Box View  
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4. PERFORMANCE ANALYSIS 

4.1  Thermal Flow Analysis  
At this point, it is possible to proceed with performance analysis. Once how the system work has 
been defined, it has to be defined how it does it.  

The first step of this analysis is to define the operative range of the system: the ECS for UAVs is 
responsible for monitoring the temperature of the avionic bay. The components are designed to 
operate in a specific temperature range without performance degradation. From the requirements, it 
has been fixed a range that goes from -20°C to 50°C.  

The system will be subject to thermal flows generated from different sources. The first heat flow 
comes from the avionics operating in the bay that dissipate energy producing heat.  

In addition, the system is subject to a thermal flow dependent from the external temperature. The 
wall temperature is an important factor in this heat exchange and can be calculated as 

𝑇𝑤 = 𝑇𝑟𝑒𝑐 = 𝑇0 [1 + 𝑟 (
𝛾 − 1

2
) 𝑀2] 

where 𝑇𝑤 is the wall temperature, 𝑇𝑟𝑒𝑐 is the recovery temperature, 𝑇0 is the room temperature, M is 
the Mach number, r is the recovery factor and 𝛾 is the specific heat ratio. 

The heat exchanged through the skin can be calculated from the following relation 

ℎ0(𝑇0 − 𝑇𝑤) = −𝐺
𝐴𝑝

𝐴
+ 𝑈(𝑇𝑤 − 𝑇𝑐) +

1

2
𝜎𝑒𝑤(𝑇𝑤

4 − 𝑇𝑢
4) +

1

2
𝜎𝑒𝑤(𝑇𝑤

4 − 𝑇𝑙
4) 

where ℎ0(𝑇0 − 𝑇𝑤) Is the heat exchanged by the skin, 𝐺 𝐴𝑝

𝐴
 is the heat exchanged by solar radiation, 

𝑈(𝑇𝑤 − 𝑇𝑐) is heat exchanged by skin and the interior of the aircraft, 1

2
𝜎𝑒𝑤(𝑇𝑤

4 − 𝑇𝑢
4) is the heat 

exchanged by radiation from the upper part of the aircraft and 1

2
𝜎𝑒𝑤(𝑇𝑤

4 − 𝑇𝑙
4) by the lower part. 

At this point, it is possible to calculate the wall temperature through some steps 

𝑇𝑤 = 𝐵 − 𝐶𝑇𝑤
4 

Where 

𝐵 =
ℎ0𝑇0 + 𝐺

𝐴𝑝

𝐴 + 𝑈𝑇𝑐 −
1
2 𝜎𝑒𝑤𝑇𝑢

4

𝑈 + ℎ0
  

𝐶 =
𝜎𝑒𝑤𝑇𝑤

4

𝑈 + ℎ0
 

Once the values of B and C are known, it is possible to obtain 𝑇𝑤 from the following figure. 
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Figure 20. Wall Temperature in function of B and C 

In addition, it is necessary a definition of the mission profile: the aircraft will be subject to different 
environments due to the altitude variations. These temperature variations will affect the skin 
temperature during the system operations, afflicting the heat flow in the avionic bay. The mission 
profile is showed in the Fig. 21. 

 

Figure 21. Mission profile in terms of altitude 
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As shown previously, the wall temperature will depend also on the Mach number, so the mission 
profile has to be defined also in terms of Mach number. The Mach profile is shown in Fig. 22. 

 

Figure 22. Mission profile in terms of Mach 

Moreover, the environment temperature will not be the same every day and in every moment. 
Therefore, it has to be considered a variation of the external temperature due to climatic changes. It 
is possible to consider two different cases to study the validity of the model:  

 there is the hot case, which considers a temperature of 50°C at sea level; 
 then there is the cold case that considers a temperature of -20°C. 

 

4.2  Vapor Cycle Simulation 
With the support of a simulation software, it is possible to build a model of the system and to 
validate its efficiency.  

Therefore, it is necessary to build the analytic equivalent of the system. In particular, a model of the 
avionic bay is built, considering the heat flows previously cited. First of all the heat dissipated by 
the avionics that starts from a lower value during ground operations and rise after take-off. Then 
there is the heat exchanged by means of convection and irradiation. 

The ECS must be considered in both the considered configurations. The vapor cycle consist of the 
condenser, the compressor, the evaporator and the expansion valve. These components must be 
sized due to obtain the wished performance. 

The system and avionic bay model for the Vapor Cycle are shown in Fig. 23. 
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Figure 23. Vapor Cycle architecture 

At this point, the model can be simulated, starting from the hot case.  For the Vapor Cycle, it is 
important to see the thermodynamic cycle, which must follow the transformations that have been 
told in the previous chapter. First, there is an heat exchange between the evaporator and the avionic 
bay, which gives a temperature rise of the refrigerant at almost constant pressure. Then the pressure 
and the temperature rise as the refrigerant goes through the compressor. Then it arrives in the 
condenser where the refrigerant is cooled at constant temperature and it completes the cycle in the 
expansion valve, where temperature and pressure fall down. The correspondent cycle is reported in 
the following figure. 

 

Figure 24. Thermodynamic cycle for the Vapor Cycle in the hot case 
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The thermal flow produced by the avionic is shown in the following figure. During ground 
operations, only few components are operative, so the thermal flow is lower than the thermal flow 
during flight operation. 

 
Figure 25.Thermal flow in the avionic bay in the hot case 

A zoom on the heat flow in the avionic bay shows that it is not constant, but it changes due to the 
recovery temperature variations that are  negligible compared to the one produced by avionics. 

 

Figure 26. Thermal flow produced detail 
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Figure 27. Recovery temperature and external temperature in the hot case 

The temperature in the avionic bay during the mission is shown in Fig. 28. The temperature never 
exceeds the limits of the imposed range, so it works well.  

 

Figure 28. Temperature in the avionic bay for the Vapor Cycle in the hot case 

Once validated the hot case, it is the turn of the cold case with a temperature of -20°C at sea level. 
The thermodynamic cycle changes, but it maintains the same form, following the type of 
transformations, which it is subject, as it is possible to see in Fig.29. 
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Figure 29. Thermodynamic cycle of the Vapor Cycle in the cold case 

The heat flow in the avionic bay is similar to the previous one, since the avionics produce the most 
of it, but, with a zoom, it is possible to see the differences due to recovery temperature variations. 

In the following figures the heat flow, its zoom, the recovery and external temperature are reported. 

 

Figure 30. Thermal flow in the avionic bay in the cold case for Vapor Cycle 
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Figure 31. Thermal flow detail in the avionic bay for the cold case for Vapor Cycle 

 

Figure 32. Recovery temperature and external temperature in the cold case 

Again, the temperature in the avionic bay stays in the temperature range given by the requirements, 
as shown in Fig. 33. The system is then capable to maintain the right temperature during every 
phase of the mission in the whole range of external temperature that goes from the cold case to the 
hot case.  
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Figure 33. Temperature in the avionic bay for the Vapor Cycle in the cold case 
 

4.3  Air Cycle Simulation 
Now, it is time to build the Air Cycle model that is shown in the following figure. 

 

Figure 34. Air Cycle architecture 
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Considering the hot case, the heat flow in the avionic bay is similar to the previous ones, but, with 
the zoom, the variations due to the different type of cooling system are visible. The external and 
recovery temperature are the same of the previous cases. 

 

Figure 35. Thermal flow in the avionic bay in the hot case for Air Cycle 

 

Figure 36. Thermal flow detail in the avionic bay for the hot case for Air Cycle  
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In this case, the temperature stays again in the given temperature range. Compared with the Vapor 
Cycle, the bay temperature remains more constant, because the Air Cycle system has three PID 
controller, one on the engines bleed valve and two at the bypass valves. 

 
Figure 37. Temperature in the avionic bay for the Air Cycle in the hot case 

In the cold case, again, there is a similar heat flow in the avionic bay with few differences due to the 
recovery temperature. The temperature in the bay stays again in the given range, so the system is 
well sized. 

 

Figure 38. Thermal flow in the avionic bay in the cold case for Air Cycle 
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Figure 39. Thermal flow detail in the avionic bay in the cold case for Air Cycle 

 

Figure 40. Temperature in the avionic bay for the Air Cycle in the cold case 
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5. COST ANALYSIS  

5.1  Design to Cost 
The Design to Cost is an innovative methodology that gives importance to the cost estimation as 
fundamental part of the design process of a system through a systematic approach that controls the 
costs of product development and manufacturing. 

 Recalling the chart related to the Life Cycle Cost, it is possible to see that the costs must be a 
fundamental part of the project, since, with the product development advancement, it is difficult to 
modify the costs without return back to previous phase and strongly modify the project. 

About the 70% of the project cost will be fixed during the conceptual design phase, while in the 
development phase the cost will be allocated until the 80% of the total cost. The remaining costs 
will be fixed during production and operative live.  

Instead, the effective expense of the budget in the conceptual design phases will be a little part of 
the total and grows exponentially in the whole Life Cycle Cost. 

Therefore, costs have become an important parameter of design, forming the project triangle that is 
a triangle with its corner formed from the project scope and schedule, since the quality of the work 
depends on these three parameters. 

These three parameters are competing constraints, because they are dependent by the each other: 
increasing the scope will increase time and costs, while reducing time will increase costs and reduce 
the scope and a low budget means increased time and reduced scope. 

In particular, the cost depends on several variables such as resources, worker skill and productivity. 
Therefore, it is important the cost estimation of all the resources needed to achieve the objectives, 
the budget available and the control of the factors that cause variances in the cost of the system. 

 

Figure 41. Project triangle 
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In particular, the cost depends on several variables such as resources, worker skill and productivity. 
Therefore, it is important the cost estimation of all the resources needed to achieve the objectives, 
the budget available and the control of the factors that cause variances in the cost of the system. 

The results of a well-done cost estimation will be: 

 Reduced global life cycle cost of the project in every phase; 
 Meeting the customer needs in terms of cost without compromising productivity, safety and 

quality; 
 Reduced time to market, through target cost sharing that allows extra cost anticipation; 
 Identifying and reducing useless costs that cause an inefficient production; 
 Optimize cost and time regarding production and marketing; 
 Evaluating the best compromise between performance and cost. 

Therefore, Design to Cost is a decision maker related to cost risks inherent to the project and 
focuses on the cost of alternatives to make these decisions. Once a decision has been taken, it is 
possible to proceed with the project.  

This means that during the project life cycle there are different phases and each phase must be 
reviewed in terms of cost, so that it is possible to evaluate the effective cost and compare it with the 
estimated cost.  

Often, the project cost and schedule decrease as the development goes on, and it is important to 
track the sustained costs, their changes and the causes of these changes. 

 

Figure 42. Cost estimation phases 
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As shown in the Fig. “”, the cost estimating process can be divided in three parts: 

 Project Definition; 
 Cost Methodology; 
 Cost Estimate. 

To pass from a phase to another, it is necessary to satisfy some conditions dictated by decision gates 
that define the maturity of the projects. They represent the most important points of the life cycle of 
the product, since they assure that new activity does not begin before the accomplishment of the 
previous ones.  

Anyway, the process is not a pure succession of steps, but it has an iterative and nonlinear nature, 
since the project must be validate in every phase of development, or due to some changes in the 
baselines or in the assumptions. 

 

5.2  Project Definition 
The Project Definition have to: 

 identify expectations and requirements and begins to understand the project; 
 build a Work Breakdown Structure (WBS) and a technical description; 
 identify a technical description of the project development. 

These are the bases for cost estimation of the project and are the fundamental steps that may be 
revisited when new information are available.  

Then the first step is to communicate with customer and stakeholder to define enough baselines for 
the project starting from the given information. This phase need a documentation of what the 
expectations are, taking into account the purpose of the estimate, the mission needs and goals. It 
also provide to collect and review all relevant data and the discussion of all the variables with the 
customer, since it is not always possible to satisfy all the request and a compromise could be 
needed. Then it is possible to define the workload needed to reach the goals and discuss this factor 
with the customer. 

At this point, the Work Breakdown Structure can be built: it is a first structure of the elements that 
will be part of the project cost estimation. The WBS divide the project in easily manageable parts 
organized in an hierarchical structure to facilitate the control of the cost and the schedule. 

This structure contains the following information related to the project: 

 project planning and scheduling; 
 cost estimation and budget formulation; 
 project status reporting (schedule, cost, workforce, performance); 
 definition of the scope and the specification given by contract; 
 documentation. 
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Then a technical description is defined, providing qualitative and quantitative descriptions of the 
project, so that the team can understand the project description and estimate the cost. It is necessary 
to identify those factors that most impact on the cost, review the relevant project data, its 
characteristic, the different configurations, system risks and so on. 

 

5.3  Cost Methodology 
The Cost Methodology is inherent to the approach used for the estimation: this phase provide to the 
definition of the ground rules and assumptions that most fit the cost model of the system under 
analysis. In addition, as the analysis goes on, these ground rules and assumptions may be refined. 

To define the ground rules and assumptions, there are some points to follow: 

 Define the scope of the estimation through a set of schedule ground rules and assumption, 
specifying what costs are going to be included; 

 Gain approval and agreement from the cost estimate reference points; 
 Agree with vendors, customers and stakeholders on the ground rules; 
 Document the ground rules during the whole process. 

These ground rules must provide a definition of the project and of the estimation, letting all the 
people involved to understand the cost that have been considered. Following this methodology, it is 
possible to allow a comparison between the present project and the future ones.  

Moreover, the ground rules and the assumptions have to refer to both global and element specific.  

The first ones are applied to the entire cost estimation, while the second ones are related to each 
element of the Work Breakdown Structure and goes in the detailed estimation for the specific 
element, giving information about unit cost, quantity etc.  

In addition, to improve the estimation it is useful to have a description of the system characteristics, 
the mission details, data related to maintenance and logistic support, number of flight per year, 
operative lifetime, safety level and commercialization approach. 

First of all, it is necessary to identify the scope, that define the activities, the hardware elements and 
the quantities needed by the cost estimate, that could include the costs of designing and fabricating 
specific components or the costs related to their purchasing, testing, transporting and assembling.  

In addition, costs depending on the efficiency and developing time required by contractors and 
customers are needed, since fulfill these request will influence the cost estimation.  

Another factor of influence will be the budget profile due to the dependence of the availability of 
resources during different period of the program may influence activities, time and costs related.  

In fact, the availability of resources and information will include factors like the skill level of the 
specialists, the labor rates, the number of person involved in every task and the efficiency of the 
tools involved.  
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A Make vs Buy Decision could be useful to decide if it will be more convenient a manufactured 
items, which will require design effort, tooling and product setup, or a purchased item that will 
require integration and testing in the system contest.  

In addition, these ground rules have to take in account the number of units, the spares, the 
prototypes and their costs. This choice strongly affects those that will be the profit of the system, 
considering both the production and operative costs. This will also include the availability of 
existing facilities, their modifications or the assembly of new ones.    

During the estimation, others important ground rules are those related to the risk reduction or 
mitigation, which describe the activities used by estimators to reduce the probability of those effects 
that could increase the project effort. These risks are estimated during every phase of the project 
and, obviously, they have their own documentation.  

Another factor related to the ground rules will be the currency inflation, since the currency value 
will change over the years and, so, it is necessary to specify the year in which the estimation is 
considered.  

 

Figure 43. Inflation trend through the years 

At this point, once the ground rules and the assumptions have been fixed, it is possible to choose the 
most appropriate estimating methodology for the cost estimation, according to the choices done till 
now.  

There are basically three type of cost estimating methodology: 

 Analogy Methodology; 
 Parametric Methodology; 
 Engineering Build-Up Methodology. 
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Figure 44. Cost estimation methodologies related to the Program Life Cycle ref.[2] 

The Analogy Methodology, to estimate the cost of a system, refers to the costs of similar systems 
using some adjustment due to the differences. The systems must be similar in terms of design and 
operations. 

This methodology requires the effective cost data from the past programs that will be the starting 
base of the new cost estimation. Then the data are adjusted depending on the difference between the 
two systems in term of complexity. These adjustments will be subjective and will compromise the 
validity of the estimation, so the opinion of experts is needed due to obtain a good estimation. It is 
possible to use an analogy approach when there are enough technical data available to perform an 
adequate comparison and adjustment or if the system is not well defined yet.  

The advantages of this method are: 

 Less time needed to obtain a first estimation; 
 Availability of historical data; 
 Easy to understand; 
 Accuracy for minor changes respect the reference system. 

Its disadvantages are: 

 Can be difficult to identify analogy; 
 Based on subjective adjustment; 
 Require normalization; 
 In some case, there are only few historical data. 
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The Parametric Methodology uses statistical relationship, performance characteristics, personnel 
skills, design complexity and other variables to perform a cost estimation. This methodology is 
useful in the case of few known data such weight and dimensions. The Fig. 45 shows the step of 
this methodology. 

 

Figure 45. Parametric Methodology phases ref[3] 

The process is iterative and has the scope of identify a cost estimating relationship in the form of 
equations involving dependent variables, which are influenced by changes, and independent 
variables, which are not influenced by them. In this case, the cost will be the dependent variable, 
while the independent variables will be the cost drivers identified by the system parameters. 
Anyway, the cost estimator have to choose what cost drivers to take in account, since each of them 
strongly influences the cost of the system. 

In every project and estimation, the firsts cost drivers come are the requirements, which define a 
first input for the analysis. However, in most case, requirements may not be enough to obtain ad 
adequate estimation, so the results have to be adjusted using a series of other cost drivers that may 
influence the project cost. Cost drivers could be anything that may affect the cost such as 
methodology, personnel experience, weight and others factors. 

Other inputs may be some constraints that have to be considered, such as budget constraints, labor 
constraints, architecture and process. 
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The outputs of the estimate may be: 

 Manpower loading, which is the number of personnel allocated to the project as function of 
time; 

 Project Duration, which is the time required by the project; 
 Effort, which is the effort related to the project completion measured in person-months; 
 Refined requirements, since the project evolves continuously; 
 Work Breakdown Structure; 
 Refined Architecture, since new component may be obtained. 

 

Figure 46. Parametric cost estimation process 

The advantages of this methodology are: 

 The cost estimating relationships can be used to rapidly evaluate the cost of changes; 
 Evaluate the cost from an objective point of view; 
 Reliability of the method based on logical correlation and data. 

The disadvantages of Parametric Methodology are: 

 Definition of the cost estimating relationships requires a lot of time and resources; 
 Loss of effectiveness in lack of data; 
 Requires a lot of documentation related to the equations, validation and data; 
 Difficulty to understand the cost estimating relationships for external users. 

The Engineering Build-Up Methodology, or bottom-up estimating, provide a cost estimation of the 
project starting from the cost of the elements of the Work Breakdown Structure, then sums them 
and adjust the results to considering overheads. This method starts from the lowest level of detail 
that is easily subject to an estimation of the costs and effort, distinguishing the cost for labor from 
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the cost for materials and, once they have been evaluated, overheads such as general and 
administrative expenses, fee and other direct cost are added. 

This method requires experienced people that assure the consistency, the reasonability and the 
completeness of the model, and they have to test and validate it. In addition, it is applicable to 
mature projects, since a lot of information are required. 

The advantages of this method are: 

 Intuitiveness; 
 Cost given for each element; 
 Calculation errors in one element does not compromise the cost estimation of the other 

components; 
 Reusability of the model. 

The disadvantages are: 

 Elevate costs required to obtain a build-up estimate; 
 Not easily changeable; 
 Requires different built-up for every scenario; 
 Cost drivers are not identified; 
 Requires relationships between the elements. 

Regardless the choice of the methodology, the cost estimator will perform two essential steps: 

 Data collection; 
 Data normalization. 

Data collection is an extremely costly activity in terms of time and resources, since data needed are 
not always clear and due to the evolution of the requirements during the project. 

In addition, the collected data may need to be normalized before applying them to the cost 
estimation. The data can also help in prevent or reduce risks resulting in saved time and resources. 

Therefore, data collection occurs in order to understand the project and to support the choices done 
in the following steps. Data are collected by means of: 

 Questionnaires; 
 Model specifications; 
 Interviews; 
 Papers, documentation and statistical analysis; 
 Project technical and schedule data such as budget, contract, labor rates etc. 

Then, collected data may require a normalization that consist in adjustments of the data considering 
the effects of inflation that reflects the decrease in the purchasing power of the currency over the 
time. Therefore, in the estimation, the inflation factor represent a multiplier used to account these 
changes over time and the outlays over a number of years. 
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Others adjustment can come from the improvements in the process as showed by the learning 
curves. In fact, the production rate may also affect the data set and, as the production goes on, later 
produced units will cost less due to improvement of the process and the better understanding of the 
project. 

 

Figure 47. Labor Learning curve 

In the end, normalized data should be validated to ensure a consistency of the data collected, in 
order to avoid anomalies in the results. 

 

5.4  Cost Estimate  
The Cost Estimate regards the effective cost estimation, the development of the cost risk 
assessment, the drawing up of all the documentation and the results.  

The main task of this step is to define an initial Life Cost Cycle by means of the following 
activities: 

 Verify the ground rules and the assumptions; 
 Use normalized data to populate the model; 
 Grant that the estimate includes all the costs; 
 Calculate the costs running the model; 
 Divide the estimate through the phases; 
 Inflation adjustment; 
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 Update the cost through the previous estimation. 

The cost estimation proceed point to point: in fact, with every model run, a point estimate is 
calculated and it will be the starting point for the calculation of the following point estimate. These 
points are subjected to uncertainty, so it is possible that they will need some changes, since they are 
not definitive once calculated. 

The next step is to develop and incorporate a cost risk assessment, in order to understand the 
consistency of the project and evaluate the future overlays. It is an analytical process that identifies 
and analyzes the critical risks of the project in a defined set of cost and schedule constraints, by 
means of uncertainty errors. These uncertainties bring to a probabilistic range of cost in which the 
project must enter. 

 This cost risk assessment comes from some activities: 

 Determination of the cost drivers and risks of the project; 
 Developing of probability distributions for the cost drivers; 
 Developing of probability distributions for the model uncertainty; 
 Running the risk model; 
 Identifying the probability of lesser cost respect to the point estimate. 

By means of the cost risks analysis, it is possible to quantify the budget needed to obtain an 
adequate level of confidence.  

In addition, the cost drivers have to be submitted to a sensitivity analysis, since each of them 
influences the cost estimate with minor or major changes. Understand how sensitive the project is to 
changes in the drivers may help the estimators to take programmed decisions when changes in the 
project are needed.  

During all the processes described until now, data relative to estimations, changes and processing 
are captured to provide a written documentation that justify the project and the taken decisions. 

The final documentation should contain data relative to the estimation of each element, the inputs 
used, the point estimate for the Life Cycle Cost and a description of the cost-risk analysis. Each 
argument should be fully explained and in the clearest way possible. 

In particular, a complete documentation should contain: 

 Models used; 
 Methodology applied; 
 Explanation  of each part of the estimate; 
 Reference to data sources; 
 Explanation of cost drivers; 
 Description of the Life Cycle Cost and the factors that influence it; 
 An analysis on the future overlays that have not been included; 
 The sensitivity analysis; 
 Comparison with previous estimate. 
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 A well-documented estimate takes consistency to a project making it more defendable and credible. 
In fact, it allows an external user to understand the assumptions of the project and to reuse it for a 
new estimate or simply to modify it.  

Obviously, the level of detail can differ depending on the estimate, but it is possible to define a 
minimum amount of detail that should be enough to allow another analyst to understand the work 
done.  

At the end of the estimate and its documentation, it is appropriate an external review of the work, in 
order to check the validity of the work or find issue in it before the presentation.  

 

5.5  Hardware Cost  
Generally, a system will consist of hardware components and software components. 

Therefore, when performing a cost estimate, the analyst should do an analysis of both of them and 
then consider the integration costs, in order to obtain the cost of the whole system. 

As told previously, the main factors that influence the cost estimate are those that goes under the 
name of cost drivers. Therefore, it is necessary to identify what these cost drivers are. 

For the hardware components, it is possible to define some drivers that are universally valid 
regardless of the component.  

A hardware component is the assembly of the physical part of the system that allows the system to 
operate. 

Then, hardware components cost drivers could be: 

 Weight, since increasing weight means more material needed, but it could affect operative 
costs too, causing an increase in the consumption; 

 Volume, intended in terms of encumbrance, because this could take to a need of platform for 
allocation; 

 Type of Equipment, that will define the qualities and the performance level of the system; 
 Material can affect the cost, due to the different value of different materials; 
 Complexity , more complex component will require more machining in order to obtain the 

final product; 
 Production Technology, since a component can be obtained following different processing, 

but some of them could be more expensive than the others; 
 Operative Scenario, because the operative scenario will define the quality of the components 

and the relative cost to obtain them; 
 Number of Units Produced, since, following the labor learning curve, the more units will be 

produced, lower the cost of the 𝑁𝑡ℎ unit will be; 
 Team Experience, obviously a more experienced team will use less time to develop and 

produce a certain component; 
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 Reliability, influencing the costs relative to maintenance.  

Moreover a hardware component can be provided with internal development or purchasing it from 
external producer. 

In the first case, the cost estimate will include the development costs and the component could be 
tailored for the system, while in the other case the estimate will consider the purchasing cost and 
could include some integration costs needed to adapt the component to the system. 

 

5.6  Software Cost  
Usually software project estimate are more difficult and use to go over budget, over deadline or 
both. When considering the cost of the software, the factors involved will be different respect to the 
hardware ones. Also for the software cost estimation, the results will be functions of some cost 
drivers and depends by the methodology applied. 

First, it is necessary to evaluate a characteristic metric dimension for the code that will influence the 
cost. In particular, the cost of the software may be estimated choosing between two characteristic: 

 Source Lines of Code (SLOC), which are the needed line of code to accomplish the function 
attributed to the system; 

 Function Points (FP), which  represent the functions and the operations performed by the 
system to accomplish its tasks; 

 Object Points (OP), which are similar to FP, but count the number of reports,  screens and 
modules classifying them as simple, medium and complex. 

Each Source Lines of Code may represent a command or a function needed to perform some tasks 
and each of them will require time to be developed and refined. Some Source Lines of Code may be 
also constituted of void lines and comments (CLOC), since, generally, they are counted as: 

SLOC=NCLOL+CLOC 

In the cost estimate of a software using SLOC, it is also necessary to consider how the written code 
is, in terms of precision and compactness. This makes the estimate of the SLOC a very difficult task 
in preliminary phases, since it does not consider the complexity of the instructions and the exact 
number of SLOC for every task. 

Instead, Function Points are based on the system functionalities regardless of the language and so 
they are easily estimable. In order to calculate the Function Points, it is necessary to describe the 
system by means of a functional analysis and then identify the different activities performed by the 
system. Therefore, Function Points are estimated starting from a subjective point of view and, so, 
different people may estimate different number of Function Points for the same system. 

Therefore, it is possible to put in relationship the two unity of measurement. In fact, a factor of 
conversion, obviously dependent from the programming language, allows the transformation from 
one to the other. 
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Programming Language SLOC/FP 
Assembler 320 

C 128 
C++ 55 

Pascal 90 
Ada 70  

Cobol/Fortran 105 
Java/VisualBasic 35 

HTML-3 15 

Table 3. SLOC/FP conversion ratio ref.[8] 

The choice of the programming language will be another cost driver that influences the cost 
estimate, since each language could use a higher or lower number of SLOC to perform a specific 
task. This will obviously influence the productivity and then the costs.  

 

Figure 48. Relation between SLOC and FP in terms of production ref.[9] 

In fact, it is possible to fix some parameters like the productivity in terms of Function Point per 
hour (or SLOC per hour), which is the number of hours needed in order to develop a Function Point 
(or a SLOC). 

Another parameter will be the delivered functionalities related to the productivity rate for those 
functionalities that can be calculated as Total Cost/Delivered Function Points (or SLOC). 

Others cost driver may be: 
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 the experience of the programming team, since a more experienced team may require less 
time to develop a certain number of SLOC or Function Points; 

 the required calculation power in terms of time response of the software; 
 the level of DAL, related with security requirements; 
 the number of new SLOC, modified SLOC and reused SLOC; 
 function complexity; 
 operative applications, since a military software will require higher costs due to the 

requirements. 

 

5.7  Software Cost Estimate Methodologies 
In literature, a lot of software cost estimation exist, each of them based on certain cost drivers. Here 
are some of them: 

 COCOMO (Constructive Cost Model); 
 COCOMO II; 
 COSYSMO (Constructive System Engineering Cost Model); 
 REVIC (Revisited Intermediate COCOMO); 
 F-PROM (Effort Prediction Objects Model); 
 Object-Oriented Decomposition; 
 SLIM (Software Life-cycle Management); 
 ESTIMACS; 
 Price-to-Win; 
 Price-S (Programming Review of Information Costing and Evaluation-Software). 

COCOMO is a models used in software cost estimation that was published in 1981 by Barry 
Bohem. It uses algorithms and parameters in order to provide an estimation of the effort and the 
schedule of the project. 

The main metric used by COCOMO in cost estimation is lines of code counted in thousands, but 
could also be used function points or object points. 

The first model of COCOMO was named COCOMO’81, which has three different models that can 
be used during the life cycle of the project depending on the maturity of the project: 

 Basic Model, which is used for small software at low level of maturity. It does not use the 
effort adjustment factors, since it will be too approximate; 

 Intermediate Model, which is used for more detailed project and uses the effort adjustment 
factor EAF and has different value for the constants a, b, c and d; 

 Advanced Model, which is used for complete projects to refine the estimate.   

The equations used for the COCOMO cost estimation, as previously said, are in terms of effort and 
schedule duration. Considering a general model, these equations are: 

𝑃𝑀 = 𝑎 ∗ (𝐾𝐿𝑂𝐶)𝑏 ∗ 𝐸𝐴𝐹 
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𝑇𝐷𝐸𝑉 = 𝑐 ∗ (𝑃𝑀)𝑑 

Where: 

 PM is the effort in person-month; 
 EAF is the effort adjustment factor; 
 TDEV is the schedule time; 
 KLOC is the number of lines of code counted in thousands; 
 a, b, c and d are constants based on the mode used. 

Then, the total cost estimate for the project may be obtained considering the cost per hour spent, 
which will depend on the developers. Once this cost is brought to the cost per month, a simple 
equations let the estimator to obtain the cost of the software: 

𝑇𝐶 = 𝑃𝑀 ∗ 𝐶𝑀 

Where: 

 TC is the total cost estimation of the software; 
 PM is the effort in person-month again; 
  CM is the cost per month considered. 

The four constants a, b, c and d depend on the work environment, the size and the constraints and 
are divided in three modes: 

 Organic, which is used for small software in an in-house environment; 
 Embedded, which is used when the system is strongly related to hardware, operational 

procedures and regulations that define tight constraints; 
 Semi-detached, which is at an intermediate level between the two previous modes. 

Model a b c d 
Organic 2.4 1.05 2.5 0.38 
Semi-detached 3.0 1.12 2.5 0.35 
Embedded 3.6 1.2 2.5 0.32 

Table 4. Values of a and b depending on the model type ref. [4] 

The effort adjustment factor EAF let the analyst to tailor the estimation depending on the conditions 
of the development environment.  

In the case of Basic Model COCOMO, as previously said, the effort adjustment factor is not 
considered, so it will be set to a unitary value. 

The Intermediate Model COCOMO considers fifteen different cost drivers that can be used to 
calculate the EAF. These costs drivers are divided in four categories: 

 Product Attributes; 
 Computer Attributes; 
 Personnel Attributes; 
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 Project Attributes. 

Moreover, cost drivers have a value depending on a scale obtained from statistical data that rates 
them from a level that could go from Very Low to Extra High. Once all the cost drivers have been 
assigned, it is possible to multiply them all together to obtain the EAF. 

A table of the cost drivers and their rating is reported below.  

Category Cost Driver Very 
Low 

Low Nominal High Very 
High 

Extra 
High 

Product 
Attributes 

RELY Required Software 
Reliability 

0.75 0.88 1.00 1.15 1.40 - 

DATA Database Size - 0.94 1.00 1.08 1.16 - 

CPLX Product Complexity 0.70 0.85 1.00 1.15 1.30 1.65 

Computer 
Attributes 

TIME Execution Time 
Constraint 

- - 1.00 1.11 1.30 1.66 

STOR Main Storage Constraint - - 1.00 1.06 1.21 1.56 

VIRT Virtual Machine Volatility - 0.87 1.00 1.15 1.30 - 

TURN Computer Turnaround 
Time 

- 0.87 1.00 1.07 1.15 - 

Personnel 
Attributes 

ACAP Analyst Capability 1.46 1.19 1.00 0.96 0.71 - 

AEXP Applications Experience 1.29 1.13 1.00 0.91 0.82 - 

PCAP Programmer Capability 1.42 1.17 1.00 0.86 0.70 - 

VEXP Virtual Machine 
Experience 

1.21 1.10 1.00 0.90 - - 

LEXP Language Experience 1.14 1.07 1.00 0.95 - - 

Project 
Attributes 

MODP Modern Programming 
Practices  

1.24 1.10 1.00 0.91 0.82 - 

TOOL Use of Software Tools 1.24 1.10 1.00 0.91 0.83 - 

SCED Required Development 
Schedule 

1.23 1.08 1.00 1.04 1.10 - 

Table 5. COCOMO cost drivers ref. [5] 
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The Advanced Model COCOMO uses some characteristics of the Intermediate Model, since it uses 
the same cost drivers, but, in this case, they have different values and considers the phase of the 
project reached. In addition, this model requires the division of the software in different modules 
and the estimate of the effort of each module. The total effort will be the sum of the effort of all the 
modules.  

It can be divided in the following phases: 

 Planning and requirements; 
 System design; 
 Detailed design; 
 Module code and test; 
 Integration and test; 
 Cost Constructive model. 

As seen, the COCOMO model is very simple to apply in cost estimation, but due to its low level of 
detail, it may lack in precision and may lead to estimation failure, especially considering the 
continuous improvement of the processes and complexity of the actual software. 

COCOMO II is an evolution of the COCOMO’81 model that focuses on development of the 
software cost and the schedule and on evaluating the effects of software technology improvements. 

In broad terms, the estimation is obtained in similar ways to the COCOMO’81 model, but there is a 
change in the number and the type of cost drivers and in the equations.  

This model can be divided in other three sub-model: 

 Application Composition model, used to estimate effort and schedule for projects that use 
rapid application development tools and could work better starting from Object Points; 

 Early Design model, which is used for projects that require an analysis of different type of 
architectures and concepts; 

 Post-Architecture model, which is used for top level design, when the project is complete 
and detailed. 

The cost drivers will be different from COCOMO’81 in terms of type and value for every sub-
model, but the equation for the effort remains: 

𝑃𝑀 = 𝑎 ∗ (𝐾𝐿𝑂𝐶)𝑏 ∗ 𝐸𝐴𝐹  

The value of a is fixed to 2.94, while b is 0.91. 

The cost driver will be in part different and, again, they are grouped in the four categories: 

 Product Factors; 
 Platform Factors; 
 Personnel Factors; 
 Project Factors. 
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Following, a table of the cost drivers in terms of type and category for COCOMO II is shown.  

Category Cost Driver Very 
Low 

Low Nominal High Very 
High 

Extra 
High 

Product 
Factors 

RELY Required Software 
Reliability 

0.82 0.92 1.00 1.10 1.26 - 

DATA Database Size - 0.90 1.00 1.08 1.16 - 

RUSE Developed for Reusability - 0.95 1.00 1.07 1.15 1.24 

DOCU Documentation match to 
Life-Cycle Needs 

0.81 0.91 1.00 1.11 1.23 - 

Platform 
Factors 

TIME Execution Time 
Constraint 

- - 1.00 1.11 1.29 1.63 

STOR Main Storage Constraint - - 1.00 1.05 1.17 1.46 

PVOL Platform Volatility - 0.87 1.00 1.15 1.30 - 

Personnel 
Factors 

ACAP Analyst Capability 1.42 1.19 1.00 0.85 0.71 - 

APEX Applications Experience 1.22 1.10 1.00 0.88 0.81 - 

PCAP Programmer Capability 1.34 1.15 1.00 0.88 0.76 - 

PCON  Personnel Continuity 1.29 1.12 1.00 0.90 0.81 - 

LTEX Language Experience 1.20 1.09 1.00 0.91 0.84 - 

PLEX Platform Experience 1.19 1.09 1.00 0.93 0.86 0.80 

Project 
Factors 

SITE Multisite Development  1.22 1.09 1.00 0.91 0.82 - 

TOOL Use of Software Tools 1.17 1.09 1.00 0.90 0.78 - 

SCED Required Development 
Schedule 

1.43 1.14 1.00 1.00 1.00 - 

Table 6. COCOMO II cost drivers ref. [6] 

Instead, the schedule equation will be: 

𝑇𝐷𝐸𝑉 = [3.67 ∗ (𝑃𝑀̅̅̅̅̅)(0.28+0.2(𝑏−1.01))] ∗
𝑆𝐶𝐸𝐷%

100
 

Where: 

 TDEV is the schedule time in months; 
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 𝑃𝑀̅̅̅̅̅ is the effort estimated in person-month excluding the SCED cost driver; 
 𝑏 is the usual constant depending on the model; 
 𝑆𝐶𝐸𝐷% is the schedule compression/expansion percentage in the SCED cost driver rating. 

COSYSMO is a model of cost estimation developed by Ricardo Valerdi. It is based on a database of 
more than 50 projects and gives results in terms of effort by means of the following equation: 

𝑃𝑀 = 𝐴 ∗ 𝑆𝑖𝑧𝑒𝐸 ∗ ∏ 𝐸𝑀𝑖

𝑖

 

Where: 

 PM is the effort in person-hours; 
 A is the calibration constant that is equal to 38.55; 
 E is the economy/diseconomy scale; 
 𝐸𝑀𝑖 are the effort multiplier of the cost drivers.  
 Size is the equivalent size obtained by the size drivers. 

The following table shows the costs drivers for the model. 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Personnel Factors 

TEAM Team Cohesion 1,5 1,22 1 0,81 0,66 - 
PCAP Personnel Team 
Capability 1,48 1,22 1 0,81 0,66 - 

PEXP Personnel 
Experience/Continuity 1,46 1,21 1 0,82 0,67 - 

PROC Process Capability 1,46 1,21 1 0,88 0,77 0,68 

Environment 
Factors 

SITE Multisite 
Coordination 1,33 1,15 1 0,9 0,8 0,72 

TOOL Tool Support 1,34 1,16 1 0,85 0,73 - 

  

INST Number of 
Diversity of 
Installations/Platforms - - 1 1,23 1,51 1,86 

Operational 
Factors 

MIGR Migration 
Complexity - - 1 1,24 1,54 1,92 

  
RQMT Requirement 
Understanding 1,85 1,36 1 0,77 0,6 - 

Understanding 
Factors 

ARCH Architecture 
Understanding 1,62 1,27 1 0,81 0,65 - 

Complexity Factors 

TRSK Technology Risk 0,7 0,84 1 1,32 1,74 - 
LSCV Level of Service 
Requirements 0,62 0,79 1 1,32 1,74 - 

RECU Number of 
Recursive Levels in 
Design 

0,8 0,89 1 1,21 1,46 - 

DOCU Documentation 
Match to Life-Cycle 
needs 

0,82 0,91 1 1,13 1,28 - 

Table 7. COSYSMO cost drivers ref.[7] 
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The size is obtained by means of size drivers. These are expressed in terms of: 

 Number of System Requirements obtained by system specification; 
 Number of physical or logical Interfaces between system components and external systems; 
 Number of Algorithms derived in order to achieve system requirements; 
 Number of Operational Scenarios that the system must satisfy. 

These size drivers are rated on a scale divided in Easy, Nominal and Difficult. The equivalent size 
may be obtained using a weighted sum of all the size drivers, where Easy are counted as half, 
Nominal are counted for entire and Difficult ones are doubled. 

REVIC (Revisited Intermediate COCOMO) is another model based on the Intermediate COCOMO 
model. Starting from COCOMO, the Air Force has developed it using coefficient obtained from 
empirical data calibrated on a specific environment. The equation used is: 

𝐸𝑓𝑓𝑜𝑟𝑡 = 4.44 ∗ 𝐾𝐿𝑂𝐶1.2 ∗ ∏ 𝐹𝑖

𝑖

 

In which 𝐹𝑖 are the cost drivers for this model. In particular, compared with the classical COCOMO 
model, it has two additional ratings for cost driver levels that are Extra High (to some of the cost 
drivers that does not have it in COCOMO model) and Extremely High. In addition, the value of 
some cost drivers has been recalibrated based on the environment. 

The schedule time will be: 

𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑀𝑜𝑛𝑡ℎ𝑠 = 6.3 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡0.32 

The F-PROM (Effort Prediction Objects Model) is a model of cost estimate developed to overcome 
the lacks of COCOMO models in early phases of the project. It provides a continue upgrading of 
the model during the life cycle of the project, based on variability of the project, data processed, 
objects involved and resources.  

This model identifies the principal causes of variability in a software project as: 

 Size, which influences the estimate up to 43%; 
 Reuse, with an influence up to 10%; 
 Internal complexity of the modules , up to 8%; 
 Degree of interaction between objects, up to 6%. 

The equations will be similar to the COCOMO ones, but they will be recalibrated every time new 
data will be available. 

The Object-Oriented Decomposition is a technic for software cost estimation that focuses on the 
resolution of: 

 The need of specific knowledge of the system in the early phases of the project; 
 The need to define the size of the schedule based on this knowledge; 
 The need of reliable estimate in the early phases with the few amount of data available. 
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The estimate is based on empirical data to obtain an envelope of the possible cost estimations. The 
model has different level of decomposition that can be viewed as phases of the project. 

 

Figure 49. Learning curve for software estimate 

The curve in Fig. 49 shows the learning curve for the software estimate of a generic project. The 
accuracy will increase with the level of decomposition, since functional specifics will be more 
detailed as the decomposition goes on. B is the rate of exponential decay and it must be defined 
analyzing the number of completed projects. Obviously, like the other models, it has to be 
calibrated to the operating environment. This model lacks in available data, because it is a new 
model. 

The SLIM model was developed by Putnam in 1974 and it is applied to projects exceeding the 
70.000 lines of code. This model considers the effort for software development as a typical 
Rayleigh curve that represent the manpower as function of time, since the personnel needed will 
rise smoothly during project development and then drops down in the testing phase. The Rayleigh 
curves will be different for code development, maintenance, test and validation and management. 

 

Figure 50. Rayleigh curve 
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The SLIM model provides a calculation of the software project size: 

𝑆𝑖𝑧𝑒 = 𝐶𝐸
1
3 (𝑡

4
3) 

Where: 

 Size is the quantity of functions created in terms of lines of code, function points or object 
point; 

 C is the technology factor that considers the used languages, tools, methodologies and 
standards and it is defined by historical data; 

 E is the total project effort in person-years; 
 t is the time from start of detailed design until the operation service. 

The Technology factor will be obtained from cost drivers related to: 

 process maturity and management practices; 
 software engineering practices used; 
 level of programming language; 
 software environment; 
 level of complexity; 
 level of skill of the personnel; 

Even if the model was developed for software exceeding the 70.000 lines of code, it could be 
applied to all types and sizes of projects and for all types of metrics. 

The effort estimate is derived from the following equation: 

𝐷 =
𝐸

𝑡3
 

Where: 

 D is a constant named manpower acceleration; 
 E is the effort in years; 
 t is the elapsed time to delivery in years. 

The manpower accelerations D will be 12.3 for new software with many interfaces and interactions 
with other systems, 15 for standalone systems and 27 for existing systems. 

So, the effort can be calculated as: 

𝐸 = (
𝑆

𝐶
)

9
7

𝐷
4
7 

ESTIMACS is a model developed in 1970s by Howard Rubin and it is available as software 
package. This model focuses on the development phase and it requires Function Points input.  
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It is divided in five sub-models: 

 System development effort estimation, which estimate the development effort in hours; 
 Staffing and cost estimation; which uses the effort in hours derived in the previous sub-

model and distribute it in the various phases; 
 Hardware configuration estimates, which sizes hardware operational resources 

requirements; 
 Risk estimator, which estimates the risk of successfully complete the project; 
 Portfolio analyzer, which analyze the whole project. 

Price-to-Win estimation is a non-algorithmic technique that focuses on the customer budget rather 
than system functionalities. This will require that the cost of the project will be fixed in accordance 
with the customer and the software cost will be restricted by this cost budget. 

This allows a cost fixed in accordance with the customer, but this may lead to delay in software 
delivery.  

PRICE-S is a model developed by RCA PRICE Systems that perform cost estimations starting from 
the size, the complexity and the type of project.  

This model allows the calculation of costs and schedules by means of three sub-models: 

 Acquisition sub-model, which estimates costs and schedules; 
 Sizing sub-model, which estimates the size of the software; 
 Life-Cycle Cost sub-model, which estimates the costs for maintenance and support during 

the early phases. 

Unfortunate, this model is not public, but it is a black box model.  

Most of the models shown until now require an input related to the size of the project that could be 
in terms of lines of code, function points or object points. 

 

5.8  Estimation Technique 
The Delphi technique developed by Rand Corporation allows predictions about events. It could be 
used as a guide for a group of experts to reach an accordance regarding some issue. Therefore, it 
may be applied to allow a team of expert to obtain the size of the project in terms of lines of code, 
function point or object points. 

The method is divided in rounds. The first one requires that every expert make individually some 
assessment related to some issue without the opinion of the others. Then, data are collected, 
tabulated and distributed to the experts for the second round. 

In the second round, experts give another opinion on the same issue, but knowing the opinion of the 
other experts for the first round. Usually, this leads to narrow the range and to a convergence of the 
results. 
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The process will continue until all the parts reach an accordance. The estimate is obtained as an 
average of weighted estimates: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝐿𝐵_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 4 ∗ 𝑀𝐿_𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑈𝐵_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

6
 

Where: 

 LB_estimate is the lower bound of estimate; 
 ML_estimate is the most likely estimate; 
 UB_estimate is the upper bound of estimate. 

Another method to define the number of lines of code or the number of the function points is the 
Function Bang Metric is a model to define the size of a software based on specification and it uses 
flow diagrams, data dictionaries, state transition diagrams and entity relationship diagrams. 

This model classifies the model in: 

 Function-Strong, when the software is related to robotic systems; 
 Data-Strong, when the software is related to an information retrieval system; 
 Hybrid, when it is a combination of the other two. 

To classify a system it is possible to use the ratio RE/FP, in which RE are the number of 
relationship and FP are the primitive functions. An entity-relationship diagram derives relationship, 
while primitive functions are calculated from the flow data diagrams. 

Function Strong RE/FP<0.7 
Data Strong RE/FP >1.5 
Hybrid 0.7<RE/FP<1.5 

Table 8. RE/FP ratio basing on the model type 

The size will be calculated as: 

𝐹𝐵𝑀 = ∑ 𝑤𝑖 ∗ 𝐶𝐹𝑃𝐼𝑖

𝑖

 

With 

𝐶𝐹𝑃𝐼𝑖 =
(𝑇𝐶𝑖 ∗ 𝑙𝑜𝑔2(𝑇𝐶𝑖))

2
 

Where: 

 𝑤𝑖 are the weight adjusters; 
 𝑇𝐶𝑖 are the number of data tokens of the 𝑖𝑡ℎ  functional primitive in a data flow diagrams. 

Therefore, for this model, there are no published empirical data, due to its need for considerable 
tailoring to certain environments.  
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6. COST ESTIMATE APPLIED TO THE ECS FOR UAVS 

In this chapter, a case of application of cost estimate has been applied by means of the cost 
estimation software based on a parametric methodology. 

In fact, it requires a series of input that will define, by means of a database of equations on which 
the software is based, an output in terms of costs and effort. 

 

6.1  Scheduling  
The first step when starting a new project will be the control of the settings of the Worksheet Sets. 
Here it is possible to set data related to: 

 Unit Cost in terms of cost per hour, which will be related to the costs per hour of the user; 
 The costs of the Overtime of the personnel in percentage;  
 The costs of Overhead in percentage; 
 Time Worked in hours per year; 
 Other factors. 

By the way, an example of the Worksheet Sets used in the present work is shown in Fig. 51. The 
Worksheet Sets have been set for every department considered in the development of the system. 

 

 

Figure 51. Worksheet Sets 

In addition, a schedule of the project need to be defined. The project is divided in the following 
phases: 
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 Development; 
 Production; 
 Operation and Support. 

The project starts with the development phase that has been considered of three years. 

The production is considered to start after one year from the start of the project and for a duration of 
six years. 

In addition, it has been considered an operative life of twenty-three years, since these are the 
numbers related to aircraft of the category considered. The Operation and support phase starts with 
the Production phase, so it starts after one year from the beginning of the project. 

 

 

Figure 52. Phase Sets 

 

6.2  Product Breakdown Structures 
The next step in the cost estimate is the definition of a Product Breakdown Structure (PBS), which 
will define all the parts of the system and how they are structured. 

This exercise has been made for both the architecture analyzed, so two different models have been 
obtained. 

In order to build a Product Breakdown Structure, the software offers a library of objects of different 
types. 

In particular, in this analysis, the following types of objects have been used: 

 System, which, in this case, is the higher level of the PBS and represent the system itself; 
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 Assembly, which corresponds to the integration level of the system or the sub-systems; 
 Hardware Component, which implements an hardware part that is developed in-house; 
 Hardware COTS, which considers an hardware part purchased as COTS (Commercial Off-

The-Shelf); 
 Software Component, which is used to describe a software developed in-house. 

 

 

Figure 53. Parametric Cost Estimation tool library 

The two architectures have been modeled following the same logic.  

Let us start considering the Vapor Cycle. At the highest level of the Product Breakdown Structure, 
there is the ECS System object. 

Going down on a level in the tree, there are two Assembly objects: 

 Aircraft-ECS Integration, which represents the integration of the system with the aircraft; 
 ECS integration, which represents all the components that allow the system to perform the 

functions that it must provide. 
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The Aircraft-ECS Integration block contains all the components of structural nature related to the 
aircraft integration, so inside of it there are the following Hardware components: 

 Cables, which considers all the wirings related to the system; 
  Inlet, which considers the inlets integrated in the aircraft that allow the air flow on the 

condenser; 
 Structure, which consider all the structural components with the only purpose of supporting 

the system to allocate it in the aircraft. 

The ECS Integration block is composed by the components of the system itself and is divided in: 

 Control Unit, which represent the dedicated motherboard that controls the functionalities of 
the system; 

 Software, which represent the source code that provides the functionalities of the system; 
 Vapor Cycle, represented by an Assembly object, which contains all the component of the 

Vapor Cycle; 
 Back up, another Assembly object used to represent the back-up system used when a failure 

of the system occurs. 

The Vapor Cycle is divided in: 

 Compressor, which is one of the fundamental component of this architecture as shown in 
Chapter 4; 

 Condenser, which is another components of the architecture that provides the cooling action 
of the refrigerant; 

 Electric Motor, which is the component that activate the compressor; 
 Evaporator, another essential component that provides the heat exchange with avionic bay; 
 Expansion Valve, which is another of the components analyzed in Chapter 4; 
 Fan, which in the closed loop of the avionic bay provides mass flow to the evaporator, while 

in the open loop provides mass flow to the condenser during ground operations; 
 Filter, which filters the air sent to the avionic bay; 
 Integration Material, that considers pipes that link the components; 
 Pressure Sensors, which considers, obviously, the pressure sensors; 
 Temperature Sensors, which considers the temperature ones. 

The back-up system will activate when a failure of the system occurs and it consists simply in 
opening an inlet to carry external airflow directly in the avionic bay, allowing a recirculation of the 
air in the avionic bay. In addition, a fan will provide an adequate airflow. 

Therefore, the back-up system has been divided in: 

 Inlet; 
 Fan. 

The following figure shows the Product Breakdown structure just described. 
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Figure 54. Product Breakdown Structure for the Vapor Cycle 

The Air Cycle Product Breakdown Structure is divided in the same way. Again, the highest level is 
the System object that represent the ECS itself. 

Then, in the following level there is the same division in: 

 Aircraft-ECS Integration assembly; 
 ECS Integration assembly. 

This time, the ECS Integration assembly is divided in: 

 Control Unit; 
 Software; 
 Air Cycle; 
 Back-up. 

The only part of the tree that has changed is the Air Cycle assembly that replace the Vapor Cycle 
one. The Air Cycle, obviously, changes in terms of components too: 

 Bleed Valve, which represent the bleed valve that draws the airflow from the engine; 
 By-Pass Valve, which represents the by-pass valves at the precooler and the intercooler; 
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 Cold Air Unit, which incorporate the three components compressor, shaft and turbine, since, 
as it will be shown when talking about the inputs, it has been considered as an unique 
component with a mechanical complexity of an engine, due to the component analogy; 

 Differential Pressure Sensors, since this architecture is provided with this type of sensor at 
the CAU; 

 Fan, which are used at the precooler and the intercooler; 
 Filter, used upstream of the avionic bay; 
 Integration Material, which considers the pipes that link the components of the system; 
 Intercooler, that as told in the Chapter 4 is one of the fundamental components for this 

architecture;   
 Non-Return Valve, used to prevent the flow from reversing its direction; 
 Precooler, another essential component of the Air Cycle; 
 Pressure Sensors; 
 Temperature Sensors. 

The back-up system is the same as the Vapor Cycle one. 

 

Figure 55. Product Breakdown Structure for the Air Cycle 
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6.3  Model Inputs for Hardware 
Once the Product Breakdown Structure has been populated, each of its elements must be 
characterized. In fact, each of them has a set of inputs that could be used to refine the estimate. 

The System object will require input as: 

 Type of equipment; 
 Number of Units; 
 Number of Prototypes; 
 Operating Specification; 
 Number of Requirements; 
 Complexity of the Requirements; 
 Team Capability; 
 Others inputs. 

The Assembly objects will have similar inputs and will consider the type and the number of 
interfaces with external parts. 

When describing the Hardware Components it is needed a higher level of detail of the component.  

 

Figure 56. Inputs for the Hardware Components 
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The inputs for Hardware Components will be: 

 Number of Units; 
 Number of Prototypes; 
 Equipment type, 
 Operating Specification; 
 Weight of Structure; 
 Weight of Electronics; 
 Volume; 
 Manufacturing Complexity for Structure; 
 Manufacturing Complexity for Electronics; 
 Percent of New Structure; 
 Percent of New Electronics; 
 Team experience; 
 Other factors. 

The model will be very sensitive to changes related to the quantity of structure and electronics, 
since electronics results to be more expensive than a simple structural support element. 

In addition, the cost will depend strongly on the percentage of reused structural or electronics and 
on the technology of production adopted. The manufacturing complexity will depend on the 
operating specification, on the type of technology, which can be defined by the material and by the 
shape complexity, and on the type of component that can be described for analogy with the type of 
components considered in the database. 

 

Figure 57. Hardware specifications for structure 

The Manufacturing Complexity for Electronics will depend on the operating specification, the 
equipment type (in terms of circuits) and subtype (in terms of signals). 
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Figure 58. Hardware specifications for electronics 

Other inputs are related to the experience of the team, on the facilities involved in the development 
and on maintenance and support. 

By the way, the inputs related to maintenance and operational support have been set to default 
values, since this inputs require more studies.  

 

6.4 Transformation to a COTS base model  
Since here, all the components of the two architectures have been implemented as object of 
Hardware Component type. This means that the components are developed in-house.  

To follow the policy adopted by the most part of the companies, the various components are 
generally acquired as COTS (Commercial Off-the-Shelf). 

In particular, the components related to a structural purpose such as inlets, cable and structure itself 
are usually developed and produced in-house, while the other elements are purchased as COTS. 

For this reason, an iteration between two models has been made for both the configurations. In fact, 
the first model has been obtained by means of only Hardware Components for the only purpose of 
obtaining an input cost for the model using COTS Components. 
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Figure 59. Transition to the COTS components model 

In fact, one of the inputs for this type of objects will be the purchasing cost of the single unit and the 
cost of the prototype.  

 

 

Figure 60. COTS components inputs 
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To obtain valid unit and prototype costs to use as inputs, the model with Hardware Component 
objects has been modeled considering a mass production of the elements of the Product Breakdown 
Structure.  

In particular, the main input used for this purpose is obviously the number of unit produced. This 
number has been calibrated in function of the type of component considered. 

For example, components like sensors that may be adapted to more projects are considered with a 
large scale production of about 100.000 units. 

Instead, unique components that may be tailored for a certain project are considered with a 
production of about 500 units. 

In fact, the more the units produced, the less expensive will be the production of the lasts units, due 
to the process improvement and the more knowledge acquired related to the project. This behavior 
is described by the lobor learning curve. 

 

Figure 61. Labor Learning Curve 

Then the outputs of the model obtained by means of Hardware Component objects are used as in 
input by increasing it of a 15% of its value to consider the market purchasing cost. 
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Figure 62. Use of the outputs of the first model as inputs 

 

6.5  Model Inputs for Software 
 The software cost estimation using the tool has been implemented adopting a Function Point 
analysis. 

 

Figure 63. Software inputs 
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In fact the inputs to define a cost estimation for the software are: 

 Application type; 
 Functional Complexity, related to the functions the software have to assure; 
 Software produced in-house or outsourced or both of them; 
 Language adopted; 
 Metric adopted; 
 Size of the metric adopted; 
 Reused Code; 
 Adapted Code; 
 New Code; 
 Repeated Code; 
 Team experience; 
 Other inputs. 

The metric adopted for this analysis are COSMIC Function Points. This type of metric can be 
obtained starting from the functional analysis and then entered in the tool as inputs.  

 

Figure 64. COSMIC methodology process 

The COSMIC methodology allows an estimation of the size of the software in terms of Function 
Points starting from the information exchanges between software and system components, software 
and actors. 
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This information have been derived by the White Box Sequence Diagrams counting the number of 
messages.  The messages are divided in four categories: 

 Entry, exchange of information from an external actor to the controller of the system; 
 Exit, exchange of information from the controller  of the system to an external actor; 
 Write, exchange of information from the controller of the system to one of the system 

components; 
 Read, exchange of information from one of the system components to the controller of the 

system. 

 

Figure 65. Acquisition of the COSMIC Function Points from the Sequence Diagrams 

Therefore, for every Use Case, the Sequence Diagram has been analyzed in order to obtain the 
Function Points. The Function Points obtained are shown in the relative tables in the data sheet of 
the software. 

Vapor Cycle 
Use Case Name Entry Exit Read Write Total 

Monitor its health status 0 2 2 1 5 
Monitor Status of air filter 1 1 3 1 6 
Provide air conditioning 2 3 3 4 12 
Provide maintenance 1 1 1 2 5 
Shut down 2 1 1 0 4 
Start up 1 1 1 2 5 
Total 7 9 11 10 37 

Table 9. Vapor Cycle COSMIC Function Points 
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Air Cycle 
Use Case Name Entry Exit Read Write Total 

Monitor its health status 0 2 3 1 6 
Monitor Status of air filter 1 1 3 1 6 
Provide air conditioning 2 3 15 4 24 
Provide maintenance 1 1 2 2 6 
Shut down 2 1 1 0 4 
Start up 1 1 1 2 5 
Total 7 9 25 10 51 

Table 10. Ai Cycle COSMIC Function Points 

 

6.6  Results 
The following tables show the results related to the various costs and efforts of the system. The 
values have been approximated and the cost related to Operation and Support are not reported, due 
to the exclusion of them from the study. The tool allows a cost analysis for every level of the 
Product Breakdown Structure, but only the costs for the higher level represented by the ECS System 
Component are reported. 

ECS (Vapor Cycle) Value Units 
Total Cost 5.800.000 € 
Total Labor Hours 35.000 Hours 
Development Summary 
Prototype Quantity 1 Units 
Development Cost 1.675.000 € 
Development Labor Hours 25.000 Hours 
Development Duration 36 Months 
Production Summary 
Production Quantities 60 Units 
Unit Production Cost 59.000 € 
Amortized Unit Production Cost 60.000 € 
Production Cost 4.100.000 € 
Production Labor Hours 9.000 Hours 
Production Duration 72 Months 
First Piece Cost 76.000 € 
First Piece Cost Material 56.000 € 
First Piece Cost Labor 20.000 € 
Nth Unit Cost 54.000 € 
Nth Unit Cost Material 46.000 € 
Nth Unit Cost Labor 7.800 €  
Project and Productivity Details 
Total Cost for Hardware 4.700.000 € 
Total Labor for Hardware 19.000 Hours 
Total Cost for Software 670.000 € 
Total Labor for Software 11.000 Hours 

Table 11.Vapor Cycle results obtained in the Parametric Cost Estimation tool 
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ECS (Air Cycle) Value Units 
Total Cost 8.500.000 € 
Total Labor Hours 52.000 Hours 
Development Summary 
Prototype Quantity 1 Units 
Development Cost 2.500.000 € 
Development Labor Hours 39.000 Hours 
Development Duration 36 Months 
Production Summary 
Production Quantities 60 Units 
Unit Production Cost 84.000 € 
Amortized Unit Production Cost 85.000 € 
Production Cost 5.950.000 € 
Production Labor Hours 12.000 Hours 
Production Duration 72 Months 
First Piece Cost 106.000 € 
First Piece Cost Material 81.000 € 
First Piece Cost Labor 25.000 € 
Nth Unit Cost 78.000 € 
Nth Unit Cost Material 68.000 € 
Nth Unit Cost Labor 9.800 €  
Project and Productivity Details 
Total Cost for Hardware 6.500.000 € 
Total Labor for Hardware 20.500 Hours 
Total Cost for Software 880.000 € 
Total Labor for Software 15.000 Hours 

Table 12. Air Cycle results obtained in the Parametric Cost Estimation tool 

As expected, the Air Cycle presents higher costs and effort, due to the higher number of 
components and complexity. This difference is of about the 45% in terms of total costs. 

Obviously, the costs of the software are also higher for the Air Cycle of about a 50%. 

 

6.7  Other methods applications  
In this section, an application of some of the other methodologies previously exposed is presented 
for the two architecture, in order to validate the estimate obtained by means of the tool or at least to 
obtain another reference estimate. 

For these estimations, it is necessary to obtain an input in terms of software size for the two 
architectures.  

By means of the Delphi method and experts opinions, a value of the Source Lines of Code has been 
fixed.  

In particular, two experts of Leonardo Aircraft Division have provided an individual estimation for 
the two architectures. Then the estimations have been provided to the other expert and their opinion 
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has been calibrated. In the end, the Delphi equation has been applied and the estimate of the Source 
Lines of Code has been obtained for the software cost estimate models. 

Estimate Vapor Cycle  Air Cycle 
Expert 1 Estimation 6.000 10.000 
Expert 2 Estimation 10.000 12.000 
Parametric Cost Estimation tool 8.800 12.200 
Delphi Estimation 8.500 11.700 

Table 13. SLOC estimations 

These lines of code have also been used as input for another Parametric Cosst Estimation tool 
model replacing the COSMIC Function Points, in order to obtain another result. 

This model gave as result of 660.000 € for the Vapor Cycle and of 890.000 € for the Air Cycle, very 

similar to the previous ones. 

At this point, it is possible to proceed with the analysis. 

The first model that has been analyzed is COCOMO, for which it is necessary to obtain the inputs 
for the estimate: 

 Source Lines of Code; 
 EAF; 
 Type of model. 

For both the architecture has been fixed a type of model Embedded, from which the values for the 
coefficients has been fixed as shown in the table below. 

Model a b c d 
Organic 2.4 1.05 2.5 0.38 
Semi-detached 3.0 1.12 2.5 0.35 
Embedded 3.6 1.2 2.5 0.32 

Table 14. Values of a and b depending on the model type for the ECS  

To calculate the Effort Adjustment Factor, it is necessary to fix the costs drivers for the two 
architectures and then multiply them to obtain it as: 

𝐸𝐴𝐹 = ∏ 𝐶𝑜𝑠𝑡 𝐷𝑟𝑖𝑣𝑒𝑟 

In order to fix costs drivers, it is necessary to define how the ratings are assigned. For this purpose, 
a description of the ratings related to each cost drivers is shown below. 

Required Reliability levels are: 

 Very Low: A software failure simply causes an inconvenience incumbent on the developers 
to fix the fault; 

 Low: A software failure has a low level effect, easily-recoverable loss to users; 
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 Nominal: A software failure causes a moderate loss to users, but a situation for which one 
can recover without extreme penalty; 

 High: A software failure can lead to a major financial loss or a massive human 
inconvenience; 

 Very High: A software failure can cause the loss of human life; 
 Very High: No rating - defaults to Very High. 

This cost driver has been fixed to high both architectures, since a system failure will compromise 
the mission. 

Database Size is related to the database size to be developed, where size refers to the amount of 
data to be assembled and stored in non-main storage. Its levels are: 

 Very Low: No rating - defaults to Low; 
 Low: D/P < 10; 
 Nominal: 10 <= D/P <= 100; 
 High: 100 <= D/P <= 1000; 
 Very High: D/P > 1000; 
 Extra High: No rating - defaults to Very High. 

Where D/P is the (Database size in bytes or characters) / (Program size in SLOC). 

The database size as been fixed Nominal for the Vapor Cycle and High for Air Cycle, since the 
second one requires a greater database due to the control dynamics of the valves. 

The Product complexity depends on the architecture of the system. This cost driver has been 
considered nominal for Vapor Cycle and high for Air Cycle 

Execution Time Constant represents the degree of the execution time constraint imposed upon a 
software project. The ratings are expressed in terms of available execution time expected to be used 
and they are: 

 Very Low: No rating - defaults to Nominal; 
 Low: No rating - defaults to Nominal; 
 Nominal: <= 50% use of available execution time; 
 High: 70% use of available execution time; 
 Very High: 85% use of available execution time; 
 Extra High: 95% use of available execution time. 

This driver has been fixed to Extra High, since the system must operate in real time. 

Main Constrain is the percentage of main storage expected to be used by the software and any 
subsystems that consumes main storage resources. Main storage is related to direct random access 
storage such as disks, tapes, or optical drives. The ratings are: 

 Very Low: No rating - defaults to Nominal; 
 Low: No rating - defaults to Nominal; 
 Nominal: <= 50% use of available storage; 
 High: 70% use of available storage; 
 Very High: 85% use of available storage; 



Chierchia Alessandro  Cost Estimate Applied to the ECS for UAVs 

84 
 

 Extra High: 95% use of available storage. 

This driver has been fixed to high due to the high number of sensors in the system. 

Virtual Machine Volatility is the level of volatility of the virtual machine underlying the developed 
software. The virtual machine is the complex of hardware and software the product will call upon to 
achieve its tasks. The ratings are defined in terms of the relative frequency of major and minor 
changes as: 

 Major change: significantly affects roughly 10% of routines under development; 
 Minor change: significantly affects roughly 1% of routines under development; 
 Very Low: No rating - defaults to Low; 
 Low: Major change every 12 months; 
 Nominal: Major change every 6 months; Minor: 2 weeks; 
 High: Major: 2 months; Minor: 1 week; 
 Very High: Major: 2 weeks; Minor: 2 days; 
 Extra High: No rating - defaults to Very High. 

This driver has been fixed to high since the system call upon various actors during its operations. 

Computer Turnaround Time represents the level of computer response time experienced by the 
project team that developed the software product. The response time is the average time from when 
the developer submits a task to be run until the results are back and available to the user. The ratings 
are:  

 Very Low: No rating - defaults to Low; 
 Low: Interactive; 
 Nominal: Average turnaround time < 4 hours; 
 High: 4 - 12 hours; 
 Very High: > 12 hours; 
 Extra High: No rating - defaults to Very High. 

The system must communicate in an interactive way with the operator, so this cost driver has been 
fixed to be low. 

Analyst Capability is related to the fact that the analysts are involved in the development and 
validation of system requirements and preliminary design specifications. They consult on detailed 
design and code activities. They participate in the integration and test phases. The ratings for 
analyst capability are expressed in terms of percentiles with respect to the overall population of 
software analysts. The major attributes to be considered are skill, efficiency, thoroughness, 
teamwork and the ability to communicate. This evaluation should not include experience (that is 
considered in other factors) and should be based on the ability of the analysts as a team rather than 
individuals. 

 Very Low: 15th percentile; 
 Low: 35th percentile; 
 Nominal: 55th percentile; 
 High: 75th percentile; 
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 Very High: 90th percentile; 
 Extra High: No rating - defaults to Very High. 

The analysts have been considered experts, so this driver is very high. 

Application Capability is the level of equivalent applications experience of the project team that 
develops the software. Its levels are: 

 Very Low: <= 4 month experience; 
 Low: 1 year of experience; 
 Nominal: 3 years of experience; 
 High: 6 years of experience; 
 Very High: 12 years of experience; 
 Extra High: No rating - defaults to Very High. 

The team has been considered expert, so this driver is very high. 

Programmer Capability is the capability of the programmers who work on the software. The ratings 
are expressed in terms of percentiles with respect to the overall population of programmers. The 
major factors which should be considered in the rating are ability, efficiency, thoroughness, and the 
ability to communicate and cooperate. The evaluation should not consider the level of experience of 
the programmers (it is considered by other factors) and it should be based on the ability of the 
programmers as a team rather than as individuals. The ratings are: 

 Very Low: 15th percentile 
 Low: 35th percentile 
 Nominal: 55th percentile 
 High: 75th percentile 
 Very High: 90th percentile 
 Extra High: No rating - defaults to Very High. 

The programmers have been considered to be expert, so this driver is very high. 

Virtual Machine Experience is the experience of the project team with the complex of hardware and 
software that the software itself calls upon to accomplish its tasks, e.g. computer, operating system, 
or database management system (the programming language is not considered as part of the virtual 
machine). Its ratings are: 

 Very Low: <= 1 month experience; 
 Low: 4 months of experience; 
 Nominal: 1 year of experience; 
 High: 3 years of experience; 
 Very High: No rating - defaults to High; 
 Extra High: No rating - defaults to High. 

The team has been considered expert with the system, so this driver is high. 
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Programming Language Experience represents the level of programming language experience of 
the project team that develops the software. The ratings are defined in terms of the project team's 
equivalent duration of experience with the programming language to be used. The ratings are: 

 Very Low: <= 1 month experience; 
 Low: 4 months of experience; 
 Nominal: 1 year of experience; 
 High: 3 years of experience; 
 Very High: No rating - defaults to High; 
 Extra High: No rating - defaults to High. 

The team has been considered expert with the language, so this driver is high. 

Use of Software Tools represents the degree to which software tools are used in developing the 
software product. The ratings are classified as: 

 Very Low: Basic tools, e.g. assembler, linker, monitor, debug aids; 
 Low: Beginning use of more productive tools, e.g. High-Order Language compiler, macro 

assembler, source editor, basic library aids, database aids; 
 Nominal: Some use tools such as real-time operating systems, database management 

system, interactive debuggers, interactive source editor; 
 High: General use of tools such as virtual operating systems, database design aids, program 

design language, performance measurement and analysis aids, and program flow and test 
analyzer; 

 Very High: General user of advanced tools such as full programming support library with 
configuration management aids, integrated documentation system, project control system, 
extended design tools, automated verification system; 

 Extra High: No rating - defaults to Very High. 

It has been considered that the code writing is supported by few tools, so this cost driver has been 
considered low 

Schedule Constraints represents the level of constraint imposed on the project team that develops a 
software. Ratings are defined in terms of the percentage of schedule stretch-out or acceleration with 
respect to a nominal schedule for a project requiring a given amount of effort. The levels of rating 
are: 

 Very Low: 75% of nominal; 
 Low: 85% of nominal; 
 Nominal: 100%; 
 High: 130% of nominal; 
 Very High: 160% of nominal; 
 Extra High: No rating - defaults to Very High. 

The constraints imposed have been fixed to a low level, since the project duration considered before 
operating phase is long enough for the code needed. 
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For the two architectures, the cost drivers chosen are almost similar. In fact, the ones related to 
Computer Attributes, Personnel Attributes and Project Attributes are fixed, since they do not 
depend on the architecture of the system. 

The tables related to the cost drivers fixed for the two architectures are shown following. 

Vapor Cycle 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Product 
Attributes 

RELY Required 
Software Reliability 0,75 0,88 1 1,15 1,4 - 

DATA Database Size - 0,94 1 1,08 1,16 - 
CPLX Product 
Complexity 0,7 0,85 1 1,15 1,3 1,65 

Computer 
Attributes 

TIME Execution Time 
Constraint - - 1 1,11 1,3 1,66 

STOR Main Storage 
Constraint - - 1 1,06 1,21 1,56 

VIRT Virtual Machine 
Volatility - 0,87 1 1,15 1,3 - 

TURN Computer 
Turnaround Time - 0,87 1 1,07 1,15 - 

Personnel 
Attributes 

ACAP Analyst 
Capability 1,46 1,19 1 0,96 0,71 - 

AEXP Applications 
Experience 1,29 1,13 1 0,91 0,82 - 

PCAP Programmer 
Capability 1,42 1,17 1 0,86 0,7 - 

VEXP Virtual Machine 
Experience 1,21 1,1 1 0,9 - - 

LEXP Language 
Experience 1,14 1,07 1 0,95 - - 

Project 
Attributes 

MODP Modern 
Programming Practices  1,24 1,1 1 0,91 0,82 - 

TOOL Use of Software 
Tools 1,24 1,1 1 0,91 0,83 - 

SCED Required 
Development Schedule 1,23 1,08 1 1,04 1,1 - 

Table 15. COCOMO cost drivers for Vapor Cycle 
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Air Cycle 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Product 
Attributes 

RELY Required 
Software Reliability 0,75 0,88 1 1,15 1,4 - 

DATA Database Size - 0,94 1 1,08 1,16 - 
CPLX Product 
Complexity 0,7 0,85 1 1,15 1,3 1,65 

Computer 
Attributes 

TIME Execution Time 
Constraint - - 1 1,11 1,3 1,66 

STOR Main Storage 
Constraint - - 1 1,06 1,21 1,56 

VIRT Virtual Machine 
Volatility - 0,87 1 1,15 1,3 - 

TURN Computer 
Turnaround Time - 0,87 1 1,07 1,15 - 

Personnel 
Attributes 

ACAP Analyst 
Capability 1,46 1,19 1 0,96 0,71 - 

AEXP Applications 
Experience 1,29 1,13 1 0,91 0,82 - 

PCAP Programmer 
Capability 1,42 1,17 1 0,86 0,7 - 

VEXP Virtual Machine 
Experience 1,21 1,1 1 0,9 - - 

LEXP Language 
Experience 1,14 1,07 1 0,95 - - 

Project 
Attributes 

MODP Modern 
Programming Practices  1,24 1,1 1 0,91 0,82 - 

TOOL Use of Software 
Tools 1,24 1,1 1 0,91 0,83 - 

SCED Required 
Development Schedule 1,23 1,08 1 1,04 1,1 - 

Table 16. COCOMO cost drivers for Air Cycle 

For the two architectures, the cost drivers chosen are almost similar. In fact, the ones related to 
Computer Attributes, Personnel Attributes and Project Attributes are fixed, since they do not 
depend on the architecture of the system. 

The only different cost drivers that differs are those related to the Product Attributes, since these 
will be related to the architecture complexity and components. Obviously, the Air Cycle is the one 
with higher ratings related to these cost drivers. 

 

 

 

 



Chierchia Alessandro  Cost Estimate Applied to the ECS for UAVs 

89 
 

By means of the COCOMO methodology, the following results have been obtained. 

 Vapor Cycle Air Cycle 
EAF 0.80 1.04 
Effort [person-months] 38 69 
Schedule Duration [months] 8 10 
Software Cost [€] 530.000 1.000.000 

Table 17. COCOMO results 

The second model adopted is COCOMO II. As told in Chapter 5, this is an evolution of the 
previous method, based on the same equation for the effort and a different equation for schedule. 

Vapor Cycle 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Product Factors 

RELY Required Software 
Reliability 0,82 0,92 1 1,1 1,26 - 

DATA Database Size - 0,9 1 1,08 1,16 - 
RUSE Developed for 
Reusability - 0,95 1 1,07 1,15 1,24 

DOCU Documentation match 
to Life-Cycle Needs 0,81 0,91 1 1,11 1,23 - 

Platform Factors 

TIME Execution Time 
Constraint - - 1 1,11 1,29 1,63 

STOR Main Storage 
Constraint - - 1 1,05 1,17 1,46 

PVOL Platform Volatility - 0,87 1 1,15 1,3 - 

Personnel Factors 

ACAP Analyst Capability 1,42 1,19 1 0,85 0,71 - 
APEX Applications 
Experience 1,22 1,1 1 0,88 0,81 - 

PCAP Programmer 
Capability 1,34 1,15 1 0,88 0,76 - 

PLEX Platform Experience 1,19 1,09 1 0,93 0,86 0,8 
PCON Personnel Continuity 1,29 1,12 1 0,9 0,81 - 
LTEX Language Experience 1,2 1,09 1 0,91 0,84 - 

Project Factors 

SITE Multisite Development 1,22 1,09 1 0,91 0,82 - 
TOOL Use of Software Tools 1,17 1,09 1 0,9 0,78 - 
SCED Required 
Development Schedule 1,43 1,14 1 1 1 - 

Table 18. COCOMO II cost drivers for Vapor Cycle 
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Air Cycle 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Product Factors 

RELY Required Software 
Reliability 0,82 0,92 1 1,1 1,26 - 

DATA Database Size - 0,9 1 1,08 1,16 - 
RUSE Developed for 
Reusability - 0,95 1 1,07 1,15 1,24 

DOCU Documentation match 
to Life-Cycle Needs 0,81 0,91 1 1,11 1,23 - 

Platform Factors 

TIME Execution Time 
Constraint - - 1 1,11 1,29 1,63 

STOR Main Storage 
Constraint - - 1 1,05 1,17 1,46 

PVOL Platform Volatility - 0,87 1 1,15 1,3 - 

Personnel Factors 

ACAP Analyst Capability 1,42 1,19 1 0,85 0,71 - 
APEX Applications 
Experience 1,22 1,1 1 0,88 0,81 - 

PCAP Programmer Capability 1,34 1,15 1 0,88 0,76 - 
PLEX Platform Experience 1,19 1,09 1 0,93 0,86 0,8 
PCON Personnel Continuity 1,29 1,12 1 0,9 0,81 - 
LTEX Language Experience 1,2 1,09 1 0,91 0,84 - 

Project Factors 

SITE Multisite Development 1,22 1,09 1 0,91 0,82 - 
TOOL Use of Software Tools 1,17 1,09 1 0,9 0,78 - 
SCED Required Development 
Schedule 1,43 1,14 1 1 1 - 

Table 19. COCOMO II cost drivers for Air Cycle 

The two previous tables show the cost drivers used for the present valuation.  

Most of cost drivers type is equivalent to the COCOMO’81 ones, but with different values due to 
the data upgrade. By the way, these cost drivers have been fixed to the same ratings of the previous 
estimation. 

Instead, other cost drivers are new or replace others. 

The different cost drivers are: 

 RUSE, fixed to extra high, since the software main functionalities depend on the 
architectures that are the most used; 

 DOCU, fixed to very high, since the model will be documented in each phase; 
 PVOL, fixed to high, since it has been considered that some changes may be applied during 

project duration; 
 PLEX, fixed to high, since it has been considered that the team is familiar with the two 

architectures; 
 PCON, fixed to high, since some of the personnel may change during the project duration; 
 SITE, fixed to low, since it has been considered only one site of development. 
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The results for this model are reported below. 

 Vapor Cycle Air Cycle 
EAF 1.71 1.85 
Effort [person-months] 35 50 
Schedule Duration [months] 5 5 
Software Cost [€] 500.000 720.000 

Table 20. COCOMO II results 

Another result has been obtained by means of the application of the COSYSMO methodology.  

This methodology may be applied for both hardware and software, but, for this analysis, the only 
cost related to software has been considered. 

The effort can be obtained as: 

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐴 ∗ 𝑆𝑖𝑧𝑒𝐸 ∗ ∏ 𝐸𝑀𝑖

𝑖

 

This time, the effort has been calculated in terms of person hour instead of person month. 

In addition, this time the size is not provided in terms of source lines of code, but by means of the 
size drivers used to estimate the equivalent size. 

For this model the cost drivers used to calculate the Effort Adjustment Factor are different again. In 
fact, they are more focused on the requirements and the architecture of the system. 

The different cost drivers for COSYSMO are: 

 TEAM considered nominal as compromise; 
 PCAP has been fixed to high, considering a capable team; 
 PEXP has been fixed to high, since the program will endure for many years; 
 PROC has been fixed to nominal, since the process fixed in the early phases could be 

changed in later phases; 
 INST has been fixed to high, since the software may be adapted for more platforms; 
 MIGR has been fixed to high, since the complexity may change due to requirement refining; 
 RQMT has been fixed to nominal, since requirement may change as the process gains 

maturity; 
 ARCH has been fixed to nominal, since in early phases of the project more components may 

be identified; 
 TRSK has been fixed to nominal, since the two architectures are not experimental; 
 LSCV has been fixed to high, since the requirements given by the customer have to be 

satisfied, but some compromises may be needed; 
 RECU fixed to high, since some of the function and components of the system are repeated. 
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Again, the cost drivers used for these models are reported in tables. 

Vapor Cycle 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Personnel 
Factors 

TEAM Team Cohesion 1,5 1,22 1 0,81 0,66 - 

PCAP Personnel Team 
Capability 1,48 1,22 1 0,81 0,66 - 

PEXP Personnel 
Experience/Continuity 1,46 1,21 1 0,82 0,67 - 

PROC Process 
Capability 1,46 1,21 1 0,88 0,77 0,68 

  
Environment 
Factors 

SITE Multisite 
Coordination 1,33 1,15 1 0,9 0,8 0,72 

TOOL Tool Support 1,34 1,16 1 0,85 0,73 - 

Operational 
Factors 

 

INST Number of 
Diversity of 
Installations/Platforms 

- 
 

- 
 

1 
 

1,23 
 

1,51 
 

1,86 
 

MIGR Migration 
Complexity - - 1 1,24 1,54 1,92 

Understanding 
Factors 
 

RQMT Requirement 
Understanding 1,85 1,36 1 0,77 0,6 - 

ARCH Architecture 
Understanding 1,62 1,27 1 0,81 0,65 - 

Complexity 
Factors 

TRSK Technology 
Risk 0,7 0,84 1 1,32 1,74 - 

LSCV Level of Service 
Requirements 0,62 0,79 1 1,32 1,74 - 

RECU Number of 
Recursive Levels in 
Design 

0,8 0,89 1 1,21 1,46 - 

DOCU Documentation 
Match to Life-Cycle 
needs 

0,82 0,91 1 1,13 1,28 - 

Table 21. COSYSMO cost drivers for Vapor Cycle 
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Air Cycle 

Category Cost Driver Very 
Low Low Nominal High Very 

High 
Extra 
High 

Personnel 
Factors 

TEAM Team 
Cohesion 1,5 1,22 1 0,81 0,66 - 

PCAP Personnel Team 
Capability 1,48 1,22 1 0,81 0,66 - 

PEXP Personnel 
Experience/Continuity 1,46 1,21 1 0,82 0,67 - 

PROC Process 
Capability 1,46 1,21 1 0,88 0,77 0,68 

  
Environment 
Factors 
 

SITE Multisite 
Coordination 1,33 1,15 1 0,9 0,8 0,72 

TOOL Tool Support 
1,34 1,16 1 0,85 0,73 - 

  
Operational 
Factors 
 

INST Number of 
Diversity of 
Installations/Platforms - - 1 1,23 1,51 1,86 
MIGR Migration 
Complexity - - 1 1,24 1,54 1,92 

  
Understanding 
Factors 
 

RQMT Requirement 
Understanding 1,85 1,36 1 0,77 0,6 - 

ARCH Architecture 
Understanding 1,62 1,27 1 0,81 0,65 - 

Complexity 
Factors 

TRSK Technology 
Risk 0,7 0,84 1 1,32 1,74 - 

LSCV Level of 
Service Requirements 0,62 0,79 1 1,32 1,74 - 

RECU Number of 
Recursive Levels in 
Design 

0,8 0,89 1 1,21 1,46 - 

DOCU Documentation 
Match to Life-Cycle 
needs 

0,82 0,91 1 1,13 1,28 - 

Table 22. COSYSMO cost drivers for Air Cycle 

The next step is to define the size drivers for the two architectures. They are defined in terms of 
requirements, interfaces, algorithms and operation scenarios. 

For the two architecture, the requirements analyzed during Functional Analysis have been 
considered and classified.  

The interfaces have been calculated considering the various component of the system and external 
systems that communicate with the software. In particular, interfaces related to control dynamics 
(e.g. PID for the valves in Air Cycle and inlet area control) have been considered difficult. The ones 
related to data acquisition (e.g. sensors) have been considered easy. The ones related to components 
operation with dynamic components that do not present a complex control (e.g. fan, CAU, 
compressor) have been considered nominal. 
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Algorithms take in account all the measurement and the controls required by the two architectures. 
The ones related to valve and inlet controls have been considered difficult. The ones related to 
sensors measurements and comparisons have been considered easy. 

The operational scenarios have been considered the same ones for the two architectures: one 
nominal and two difficult related to the cold case and the hot case. 

The tables relative to the size drivers are shown below. 

Vapor Cycle 
Category Easy Nominal Difficult Equivalent 
Requirements 6 10 3 19 
Interfaces 32 5 2 25 
Algorithms 2 0 6 13 
Operational Scenarios 0 1 2 5 
Total 40 16 13 62 

Table 23. COSYSMO size drivers for Vapor Cycle 

Air Cycle 
Category Easy Nominal Difficult Equivalent 
Requirements 6 10 3 19 
Interfaces 32 11 5 37 
Algorithms 2 0 11 23 
Operational Scenarios 0 1 2 5 
Total 40 22 21 84 

Table 24. COSYSMO size drivers for Air Cycle 

The table below reports the results for this analysis. 

 Vapor Cycle Air Cycle 
EAF 3.19 3.19 
Effort [person-hours] 9.800 13.500 
Software Cost [€] 570.000 790.000 

Table 25. COSYSMO results 

At this point it is possible to compare the results obtained. 

Methodology Vapor Cycle Software Cost [€] Air Cycle Software Cost [€] 
Parametric Cost Estimation tool 
COSMIC Function Points 670.000 880.000 
Parametric Cost Estimation tool 
Source Lines of Code 660.000 890.000 

COCOMO 530.000 1.000.000 

COCOMO II 500.000 720.000 

COSYSMO 570.000 790.000 

Table 26. Results comparison 
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The Air Cycle architecture obviously presents the higher cost for all the methodologies applied, 
with an average of about 840.000 €. 

For the Vapor Cycle, the results give an average cost of about 590.000 €. 

In addition, it is possible to notice that the two Parametric Cost Estimation tool estimate are very 
similar, due to the same inputs set, since they differ only for the metrics adopted.  

In addition, the COCOMO model presents the greater gap between the two architecture and this 
may be due to its weakness in calibration, which seems to be resolved by the refined COCOMO II. 
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7.  CONCLUSIONS 

It has been shown as the tools and the methodologies of the Systems Engineering allow obtaining a 
preliminary cost estimation of the project. 

In fact, Systems Engineering approach allows understanding various aspects of the project. By 
understanding the project, it is possible to obtain information used for the cost estimation. 

The Functional Analysis has been used to identify the functionality of the systems and to define 
some of the components required to accomplish these functions. In addition, as shown, this analysis 
allowed obtaining a first estimate of the size of the software associated to the system. In fact, the 
COSMIC Function Points obtained from the Sequence Diagrams led to a correspondent number of 
Lines of Code similar to the one provided by the experts. 

The Performance Analysis allowed a study of the two architectures in order to define the number 
and type of component required by the system. This analysis has been essential to obtain a Product 
Breakdown Structure of the system and to define the size of the components. 

All the results obtained by these analysis are the inputs for the cost estimates presented in this work. 

In addition, software cost estimation has been calibrated by means of Delphi methodology. This 
method led to an estimate of the Source Lines of Code has been obtained starting from experts 
opinions.  

In fact, different methodologies of cost estimation led to similar results returning a first calibration 
of the results obtained. The differences in the results come from the low level of detail of this phase 
of the project. 

In fact, as the project gains maturity, the cost estimates will be uploaded and refined with the new 
information and details obtained. In addition, if the project reach a sufficient level of maturity, it 
will be possible to apply other methodologies and approaches tailored for more detailed project. 

In addition, starting from this thesis work and on a thesis work on Safety Assessment, it will be 
possible to perform other studies relative to the operative costs that will affect maintainance and 
support costs (e.g. Mean Time Between Failure, Maintainance-Man Hours, Failure Rate 
parameters). 

Another interesting aspect related to the operative costs could also be the costs estimate related to 
the integration of the ECS system (e.g. fuel consumption) in a whole product. 
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