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Introduction 

Automotive manufacturer continues to develop more fuel-efficient vehicles, efforts taken to 

reduce vehicle mass are considerable, the use of lighter material is widely extended. However, is 

important to produce lighter weight vehicles without sacrificing structural integrity due to occupant 

safety requirements. Vehicle safety is a very important area in the automotive industry, one of the 

most important safety aspects of all is how car body performs and deforms during a crash event. 

 

Full scale-controlled crashes are very expensive to execute, which is why the automotive 

industry relies heavily on computer simulations. One of the most important part of finite element 

simulations for a company operating in automotive sector is the material database. In order to have a 

reliable simulation a very detailed materials definition is needed. Accuracy and reliability of 

simulations are very important, but often another important requirement is time; it is well known that 

a detailed finite solid elements model simulation can replicate almost exactly a real situation, but 

computational time and costs are unsustainable. In automotive sector is widely diffused the use of 

shell elements for vehicle body simulations, the presence of mostly metal sheets justifies the choice, 

but the use of these elements introduces some approximations and material databases must include 

additional models for plastic deformations and fracture. Explicit solvers are mostly used for crash test 

simulation because of their good performances in short duration events. Implicit numerical methods 

are unconditionally stable, but they couple the equations governing the physical problem. On the 

other hand, explicit numerical methods can decouple the equations, but their stability is conditional. 

The second class of numerical methods is particularly suited for crash events. 
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Automotive industry operates with a very wide range of materials, metals, polymers, glues 

and composites. Probably the most important concerning safety are metals, mainly steels, because 

they are responsible for the biggest absorption of energy during crashes.  A detailed material database 

can be very expensive because it needs a very high number of tests on several specimens in order to 

identify all the mechanical properties for each material. However, in literature there is a great quantity 

of academic papers involving materials characterization. The results of this work can be used to create 

a material database with an analytical approach. 

 

The purpose of the present work is to create a mathematical model for steel calibration. The 

first part presents an overview on material characterization with the definitions of physical quantities 

and theories used in the models. The second concern the calibration of several classes of steels which 

are the most used in automotive industry, dual phase steels, mild steels, interstitial free steels, bake 

hardening steels, high strength steels and transformation induced plasticity steels. Then the last part 

is dedicated to press hardened martensitic steels and to the development of a new model depending 

only on Vickers Hardness which is a common parameter to classify this kind of steel. 
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1. Materials characterization 

There is a constant quest for reliable experimental data concerning materials properties to 

produce accurate structural analysis and crash simulations. Usually to obtain these data, a large 

number of tests on several specimens are requested, for this reason an experimental characterization 

can be too expensive. Anyway, some materials, steels for instance, are well known and in literature 

there is large quantity of data and models that can be used to build a material database avoiding the 

costs of a measurement campaign.  

 

Material database for full crash simulations must include basic properties of materials like 

Young modulus, Poisson modulus and density. Strain hardening curve of the material is an important 

attribute, it contains information related to the plastic region of the deformation. Software used for 

crash simulations need fracture models to take in account eventual failure of the material, these 

models are often mesh dependent and vary in case of shell or solid elements discretization. 

 

All the theorical notions useful for material characterization are briefly discussed in this 

chapter. After an overview on steels used in automotive industry, each section is dedicated to a 

physical characteristic of the material that must be modelized in order to build the material card for 

the solver. The sequence of the sections wants to ideally replicate the chronological order of the steps 

taken to build the material characterization models. 

 



4 

 

1.1 The role of different steels in vehicles 

According to the International Organization of Motor Vehicle Manufacturers [1], 95.9 million 

vehicles were produced in 2018, a 1,1% decrease compared to 2017. On average, 900 kg of steel is 

used per vehicle and is distributed as follows: 34% is used in body structures, 23% is in the drive 

train, 12% in the suspension and the remainder is found in steering, braking system, tyres and fuel 

tank. Body structures have a critical importance in crash events, different types of steels are used to 

match requirements of weight and safety, an example of distribution of steels in a body structure is 

shown in Fig.1,2 and 3. 

 

 

 

Figure 1:  Distribution of the most used steels in automotive with respect to Tensile Strength and Yield Strength [45] 
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Figure 2: Position of different steels in a body in white [45] 

Figure 3: Percentages of different class steels used in a body in white [45] 
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1.1.1 Soft steels 

Because of their low yield point and high elongation at break, soft steels for deep drawing are 

especially suited for producing complex components. Soft Interstitial-Free Steels (IF) have even a 

better formability and extremely low carbon and nitrogen content and are stabilized by the addition 

of titanium and niobium. 

1.1.2 Low-alloy and micro-alloyed steels (LA or HSLA) 

This class of steels have a high strength due to alloying with niobium, titanium and 

vanadium. Alternatively, carbon manganese systems can be used in combination with grain 

refinement. 

1.1.3 High strength Interstitial Free steels (IF) 

Like soft IF steels, high strength IF steels have extremely low carbon contents and are 

stabilized by titanium and niobium. The higher strength is reached with solid solution hardening by 

adding manganese, phosphorus, and/or silicon. Very good formability is achieved due to the greater 

hardness, the lack of a pronounced yield point and high elongation at break. 

1.1.4 Bake-hardening steels (BH) 

The strength is achieved with solid solution hardening by adding manganese, phosphorus, and 

silicon. In bake-hardening steels, carbon dissolved in the lattice leads to a defined increase in the yield 

point when heat treatments are performed. The buckling strength is thereby improved for skin parts. 

Because the change in the mechanical properties (yield point, elongation at break, tensile strain 

hardening exponent) occurs even at room temperature, albeit very slowly, the storage life of these 

steel grades is limited. 
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1.1.5 Dual-phase steels (DP) 

The microstructure of dual-phase steels consists of a ferritic matrix, in which islands of a 

predominantly martensitic second phase are embedded. With a high tensile strength, dual-phase steels 

have a low yield point ratio (Re/Rm) and a high cold work hardening rate. Therefore, they are 

especially suited for stretch forming processes. 

1.1.6 TRIP steels 

TRIP (Transformation induced plasticity) or residual-austenite steels have a fine-grained 

ferritic-bainitic matrix structure, in which residual austenite is embedded. In addition, small fractions 

of martensite can be present. During deformation, the residual austenite is transformed into martensite 

and thus causes a high cold work hardening rate. As a result, high tensile strength is achieved together 

with high elongation before reduction. In conjunction with the bake-hardening effect, high component 

strength can be achieved. TRIP steels are suitable for stretch forming as well as for deep drawing. 

However, higher pressing and sheet holder forces are required during forming, and a strong 

springback must be taken into account. 

1.1.7 Martensitic steels (MS) 

Martensitic steels have a largely martensitic microstructure with small fractions of ferrite and/or 

bainite and thus very high strength. Suitability for deep drawing is limited; these steel grades are 

suitable predominantly for forming methods involving bending, such as roll forming. 
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1.2 Premises on material characterization 

In this section basic relationship and definition of the principal physical quantities involved 

in material characterization will be discussed. The tensile test is the principal experimental test to 

determine material properties such as Young Modulus, Poisson ratio, ultimate tensile strength, yield 

strength, shear modulus and so on. The test proceeds with a specimen fixed with two jaws at the 

opposite edges, then one of them start to move slowly applying a tensile load to the specimen up to 

fracture.  The result of the tensile test is a chart of the engineering stress versus engineering strain. 

Engineering stress and strain are defined by: 

 

𝜎 =
𝐹

𝐴0
                                                                  (1.1) 

𝜀 =
∆𝑙

𝐿0
                                                                  (1.2) 

 

Where F is the applied load, 𝐴0 is the initial section of the specimen, ∆𝑙 is the longitudinal 

deformation and 𝐿0 is the initial length of the specimen. 

 

True stress and true strain represent the effective stress and strain applied to the specimen, the 

engineering quantities are normalized with the initial area and the initial length of the specimen. 

Engineering quantities do not consider the deformations caused by the load, but they can be handily 

acquired during a test. Engineering and true quantities are related by the following equations: 
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𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 + 𝜀𝑒𝑛𝑔)                                                   (1.3) 

𝜀𝑡𝑟𝑢𝑒 = ln⁡(1 + 𝜀𝑒𝑛𝑔)                                                      (1.4) 

 

In Fig.4 and 5, one can appreciate the different shape of the stress-strain plot obtained using 

engineering and true quantities. 

 

 

Often can be useful to consider only the plastic component of the deformation using the 

effective plastic strain or true plastic strain defined as: 

 

Figure 4: Dual Phase Steel (DP600) Engineering Stress-Strain plot with marked characteristic points 
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𝜀𝑒𝑓𝑓
𝑝

= 𝜀𝑡𝑟𝑢𝑒 − 𝜀0,2%                                                       (1.5) 

 

In Fig.4 some characteristic points are highlighted. The first one is the yielding point, for steels 

yielding conventionally occurs when 𝜀 = 0,2%. After the yielding point the stress is no longer 

proportional to the strain and the strain hardening begins, at this stage the material increases his 

hardness due to the cold deformation. The elastic response is fully described by the Young Modulus 

and the Poisson ratio for what concern the solver. The strain hardening stage can be read by the 

software as a sequence of points on a true stress-effective plastic strain chart, these points are often 

the result of an analytical model fitted with experimental data, the hardening law. As soon as the peak 

load is reached, the section starts to reduce its dimension along the width of the specimen, this stage 

is called diffuse necking. Then the reduction of the resistant area proceeds up to another stage called 
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localized necking. At this stage the deformation take place only in a small band with a degree of 55° 

with respect to the load direction (Fig.4). During localized necking the deformation develop along 

the thickness of the specimen. The final stage is the fracture with the separation of the two parts of 

the specimen. 

 

1.3 Hardening laws 

The hardening law is an analytical expression used to fit the plastic region of an experimental 

true stress - true strain curve; these curves can be very different according to the material. A large 

number of different hardening laws exist in the literature. While most of them fit well with 

experimental flow curves up to necking, the extrapolation for large strains can differ quite sensibly 

depending on the model considered. Several models, summarized in Table 1, can be tested in order 

to find the best correlation between the analytical model and empirical tests. Most of the parameters 

used in these models are purely mathematical, but others can be related to materials properties such 

as yield stress and necking strain. A strategy could be to include all the parameters in the optimization 

cycle and find the set for the best fit of the curve, a different approach is to consider physical 

parameters fixed and out of the optimization. Another option is to use material properties as a starting 

point for the related parameters and then include them in the optimization cycle to find the best set 

for fitting. 

 

El-Magd and generalised Voce models deliver the highest linear work hardening rate at high 

strains. The Voce and Hockett/Sherby models give the lowest flow stress at high strains. The other 

models deliver intermediate flow stress levels, with a variable fitting accuracy. Fig. 6 shows the large 
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scatter that can be obtained with different models, even for the same initial flow curve and the same 

fitting strain range. The fitting results depend strongly on the strain range chosen for the fitting, even 

for the same model chosen. Such discrepancies should be reduced, if the fit range is chosen by 

avoiding the beginning of the flow curve, for example between 0,10 true plastic strain and true 

uniform elongation. This scatter in the extrapolation results will be also transferred to the dynamic 

models. Dynamic models require the same models in order to describe the strain hardening behaviour 

of the reference quasistatic flow curve. 

 

Figure 6:Extrapolation results for quasistatic models (fit range between yield stress and Rm). [34] 
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Model Equation 

Hollomon [2] 𝜎(𝜀) = 𝐶1 ∙ 𝜀
𝐶2                              (1.6) 

Ludwik [3] 𝜎(𝜀) = 𝐶1 + 𝐶2 ∙ 𝜀
𝐶3                         (1.7) 

Swift [4] 𝜎(𝜀) = 𝐶1 ∙ (𝐶2 + 𝜀)
𝐶3                       (1.8) 

Voce [5] 𝜎(𝜀) = 𝐶1 + 𝐶2 ∙ [1 − 𝐸𝑋𝑃(−𝐶3 ∙ 𝜀)]           (1.9) 

Hockett/Sherby [6] 𝜎(𝜀) = 𝐶2 − (𝐶2 − 𝐶1) ∙ 𝐸𝑋𝑃(−𝐶3 ∙ 𝜀
𝐶4)        (1.10) 

Gosh [7] 𝜎(𝜀) = 𝐶1 + 𝐶2 ∙ (𝐶3 + 𝜀)
𝐶4                  (1.11) 

Swift-Voce [8] 𝜎(𝜀) = 𝐶1 ∙ 𝜎𝑆𝑤𝑖𝑓𝑡(𝜀) + (1 − 𝐶1) ∙ 𝜎𝑉𝑜𝑐𝑒(𝜀)       (1.12) 

Swift-Hockett/Sherby [9] 𝜎(𝜀) = 𝐶1 ∙ (𝐶2 + 𝜀)
𝐶3 + 𝐶4 ∙ 𝐸𝑋𝑃(−𝐶5 ∙ 𝜀

𝐶6)     (1.13) 

El-Magd [10] 𝜎(𝜀) = 𝐶1 + 𝐶2 ∙ 𝜀 + 𝐶3 ∙ [1 − 𝐸𝑋𝑃(−𝐶4 ∙ 𝜀)]     (1.14) 

Voce generalised [11] 𝜎(𝜀) = 𝐶1 + 𝐶2 ∙ [1 − 𝐸𝑋𝑃(−𝐶3 ∙ 𝜀)] + 𝐶4 ∙ 𝜀   (1.15) 

 

Table 1: Quasistatic models 
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1.4 Strain Rate Sensitivity 

Another important property of the material is the strain rate sensitivity, it represents the 

response of the material to different deformation velocities. This is crucial for crash simulations 

because usually deformations are very fast. Strain rate is defined by: 

 

𝜀̇(𝑡) =
𝑑𝜀

𝑑𝑡
=

1

𝐿0

𝑑𝐿

𝑑𝑡
(𝑡)⁡                                                  (1.16) 

 

Since ε is a non-dimensional quantity, 𝜀̇ is measured with [𝑠−1]. Usually only a small number of 

strain rate curve are required for the description of the material. The interpolation is demanded to the 

solver, which build a surface between the assigned strain rate flow curves (Fig. 8); 
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The strain rate sensitivity describes the dynamic material behaviour and is therefore an 

important mechanical property to be determined ( [12], [13]). The strain rate sensitivity is defined by 

its relation to the plastic flow curve and for this reason is based on true stress values and not on 

engineering stress values. For the same reason, the tensile strength cannot be used as such, since this 

is an engineering stress value. Only the yield strength Rp0,2⁡can be used directly, since it corresponds 

approximately to the flow stress value 𝜎true,0,2%. The strain rate sensitivity is calculated in most 

publications based on the strain rate dependency flow curves. The logarithmic strain rate sensitivity 

m is originally defined from the extended Hollomon equation ( [14], [15], [16], [17], [18]): 

 

𝜎 = 𝑘 ∙ 𝜀𝑛 ∙ 𝜀̇𝑚                                                         (1.17) 

 

One can also replace the Hollomon equations 𝜎 = 𝑘 ∙ 𝜀𝑛 with another hardening law. The logarithmic 

strain rate sensitivity m can be determined with tensile tests at different velocities.

Figure 8: Three-dimensional representation of strain rate curves 
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1.5 Instability models 

Ductile metal sheets deform uniformly up to the point of localized necking where the area 

reduction begins (maximum load), after this point the deformation enter in the post-necking phase, a 

slanted groove forms and stresses and strains become non-uniform. The localized necking and the 

resulting strain to fracture can’t be predicted by a coarse mesh. The physical phenomenon is an order 

of magnitude smaller than the characteristic length of a coarse mesh element (Fig. 9), for this reason 

an instability criterion is needed to predict necking. 

 

Figure 9:Necking occurring in a fine and a coarse mesh specimen 
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An instability model for crash simulation can be useful due to its mesh-independency and 

since localized necking occurs just before the fracture, this can represent a conservative “quasi-

failure” criterion for sheet metals. 

 

1.5.1 Forming Limit Diagram (FLD) 

The FLD introduced by Keeler and Backofen [19] collect the principal strains (𝜀1,⁡𝜀2) at the 

onset of localized necking for different loading condition of the diagram. The FLD is a valuable 

material property curve; it is used frequently as instability model and failure criterion in sheet metal 

forming. 

 

 
Figure 10: Forming Limit Diagram [43] 
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The forming limit curve intercepts the major strain axis at approximately the value of the strain-

hardening index n. As n decreases, the height of the curve will also decrease [20], Fig. 11. Usually 

the different load states are defined with the principal in-plane plastic strain increment ratio: 

 

𝛼 =
𝑑𝜀1

𝑑𝜀2
                                                                 (1.18) 

 

Each load state is defined by a value of 𝛼:  

 

 

 

 

 

 

 

The forming limit diagram of a specific material can be determined experimentally, anyway several 

numerical models can be used to describe the FLD for a given material. In any case FLD can’t predict 

the fracture that occur outside its domain, so this instability model cannot predict shear fracture and 

bending fracture for instance, these types of failures require ductile fracture criteria. 

 

 

𝜶 = 𝟏 Equibiaxial Tension 

𝜶 = 𝟎 Plain Strain 

𝜶 = −𝟏/𝟐 Uniaxial Tension 

𝜶 = −𝟏 Pure Shear 

𝜶 = −𝟐 Uniaxial Compression 

Table 2:Load states defined by 𝛼 
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1.5.2 Hill-Stören-Rice Model 

Hill-Stören-Rice model [21] can predict the forming limit diagram for a given material, it is a 

quite reliable and simple mono-parametric model that can be implemented in a solver as fracture 

criterion. The analytical expression of the model results in a 𝜀1𝑛-⁡𝛼 plot with 𝜀1𝑛 the major strain at 

necking. 

 

𝜀1𝑛 =

{
 

 
𝑛

(1 + 𝛼)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ , −1 < 𝛼 ≤ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.19)

3𝛼2 + 𝑛(2 + 𝛼)2

2(2 + 𝛼)(1 + 𝛼 + 𝛼2)
, 0 < 𝛼 < 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.20)

 

 

The Hill-Stören-Rice Model can be used also as element elimination criterion through the parameter 

“n” which is equal to the equivalent plastic strain associated to a localized necking in plain strain 

condition. 

 

Figure 11: Forming limit curves for a high and a low strain-hardening sheet [20] 
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1.6 Ductile fracture criteria 

The forming limit diagram can’t predict bending and shear fractures as discussed in the previous 

section. A ductile fracture criterion is needed to cover all the possible failure conditions. Fracture is 

the macroscopic result of deformation and failure phenomena that occur at the micro-structural level 

of the material. Micro-structural fracture models are beyond the possibility of any engineering 

applications. Currently most calculations proceed through phenomenological failure models instead. 

That means a macro scale point of view without considering microscopic factors, for example 

dislocation motion in atomic lattices are not modelled. 

 

1.6.1 Modified Mohr-Coulomb model 

The Mohr-Coulomb fracture criterion ( [22], [23]) has a good resolution for materials that fail 

in the elastic range and/or under small strain plasticity, but is demonstrated that this criterion can be 

applied to ductile fracture of uncracked bodies [24]. This fracture model is based on the physical 

mechanism of nucleation, growth and coalescence of voids, it was determined that ductile fracture is 

mostly affected by the hydrostatic pressure. Accordingly, the equivalent strain to fracture, which is a 

measure of material ductility, was made dependent on the first invariant of the stress tensor. The 

mixed stress–strain formulation of a fracture criterion is justifiable because, well into the plastic 

range, the resolution of strains is much larger than stresses, as explained in Fig. 12. 
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A large quantity of tests ( [25], [26], [27], [28], [29]) proved that the material ductility depends on 

both stress triaxiality and Lode angle parameter, these two effects are actually captured by the M-C 

model.  

 

The three invariants of a stress tensor [σ] are defined respectively by: 

 

𝑝 = −𝜎𝑚 = −
1

3
𝑡𝑟([𝜎]) = −

1

3
(𝜎1 + 𝜎2 + 𝜎3)                                (1.21) 

 

𝑞 = 𝜎 = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]⁡                           (1.22) 

 

Figure 12: Different resolution quality of strain and stress parameters: the stress parameters have good resolutions in the elastic 

region, and the strain parameters have good resolutions far in the plastic region [24] 
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𝑟 = [
27

2
det([𝑆])]

1

3
= [

27

2
(𝜎1 − 𝜎𝑚)(𝜎2 − 𝜎𝑚)(𝜎3 − 𝜎𝑚)]

1

3                      (1.23) 

 

Where [S] is the deviatoric stress tensor defined by: 

 

[𝑆] = [𝜎] + 𝑝[𝐼]                                                       (1.24) 

 

[I] is the identity tensor and 𝜎1, 𝜎2 and 𝜎3 denote principal stresses. It is assumed that 𝜎1 ≥ 𝜎2 ≥ 𝜎3. 

It is convenient to work with the dimensionless hydrostatic pressure η, defined by: 

 

𝜂 = −
𝑝

𝑞
=

𝜎𝑚

𝜎̅
                                                          (1.25) 

 

The parameter 𝜂 is often referred to as the triaxiality parameter. The second important parameter is 

the Lode angle θ, which is related to the normalized third invariant ξ through: 

 

𝜉 = (
𝑟

𝑞
)
3

= cos⁡(3𝜃)                                                    (1.26) 

 

The range of the Lode angle is 0 ≤ 𝜃 ≤ 𝜋/3 so the range of 𝜉 is −1 ≤ 𝜉 ≤ 1. The geometrical 

representation of Lode angle is shown in Fig. 13. As shown in Fig. 13, one can use three types of 

coordinate systems to describe a stress state. The first is the Cartesian coordinate system (𝜎1, 𝜎2, 𝜎3), 
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the second is the cylindrical coordinate system (𝜎𝑚 , 𝜎, 𝜃), and the third is the spherical coordinate 

system (𝜎, 𝜂, 𝜃). The equivalent stress 𝜎 is related to the equivalent strain 𝜀 ̅ through the strain 

hardening function of a material. The coordinate φ is related to the stress triaxiality 𝜂 by the following 

equation: 

 

𝜂 =
𝜎𝑚

𝜎̅
=

√2

3
𝑐𝑜𝑡𝑎𝑛(𝜑)                                                  (1.27) 

 

Furthermore, the Lode angle can be normalized: 

 

𝜃̅ = 1 −
60

𝜋
= 1 −

2

𝜋
⁡arccos(𝜉)                                            (1.28) 

 

So that the range of 𝜃̅ is −1 ≤ 𝜃̅ ≤ 1. The parameter 𝜃̅ will be called Lode angle parameter 

hereinafter.  
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The direction of every stress vector (or loading condition) in the space of principal stresses 

can be characterized by the above defined set of parameters (𝜂, 𝜃̅). It is easy to show ( [30], [31]) that 

𝜃̅ = 1 corresponds to the axisymmetric tension, 𝜃̅ = 0 corresponds to the generalized shear loading 

condition and 𝜃̅ = −1 corresponds to the axisymmetric compression. Special attention is given to the 

plane stress state, because the plane stress condition, 𝜎3 = 0, uniquely relates the parameters 𝜂 and 𝜃̅ 

through: 

𝜉 = cos(3𝜃) = cos [
𝜋

2
(1 − 𝜃̅)] = −

27

2
⁡𝜂 (𝜂2 −

1

3
)                          (1.29) 

 

Figure 13: Three types of coordinate system in the space of principal 
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The classic Mohr-Coulomb fracture criterion says that fracture occurs when the combination 

of normal stress and shear stress reach a critical value according to: 

 

(𝜏 + 𝑐1𝜎𝑛)𝑓 = 𝑐2                                                      (1.30) 

 

Where 𝑐1, 𝑐2 are material constants, 𝜏 is the shear stress and 𝜎𝑛 is the corresponding normal stress 

given by: 

 

𝜏 = √𝑣1
2𝑣2

2(𝜎1 − 𝜎2)2 + 𝑣2
2𝑣3

2(𝜎2 − 𝜎3)2 + 𝑣3
2𝑣1

2(𝜎3 − 𝜎1)2                      (1.31) 

 

𝜎𝑛 = 𝑣1
2𝜎1 + 𝑣2

2𝜎2 + 𝑣3
2𝜎3                                                  (1.32) 

 

Where (𝜎1, 𝜎2, 𝜎3) are the three principal stresses and (𝑣1, 𝑣2, 𝑣3) are the components of the unit vector 

normal to an arbitrary cutting plane.  

 

The M-C criterion can be shifted from the mixed strain-stress plane to the 𝜂, 𝜃̅ plane generating 

the modified M-C criterion: 

 



26 

 

𝜀𝑓̅(𝜂, 𝜃̅) = {
𝑘

𝑐2
[𝑐3 + (𝑐4 − 𝑐3)

√3

2 − √3
(sec (

𝜋

6
𝜃̅) − 1)] [√

1 + 𝑐1
2

3
cos (

𝜋

6
𝜃̅)

+ 𝑐1 (𝜂 +
1

3
sin (

𝜋

6
𝜃̅))]}

−
1
𝑛

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1.33) 

 

Where 𝑘, 𝑛, 𝑐1, 𝑐2, 𝑐3 and⁡𝑐4 are material parameter. 𝑘 and 𝑛 are related to the hardening law of the 

material and can be calibrated from curve fitting of the stress-strain curve using power function, while 

𝑐1, 𝑐2, 𝑐3 and⁡𝑐4 need to be determined from material tests carried up to fracture. 

 

1.7 Explicit solutions 

Numerical simulations have taken up a substantial part of the increased workload of 

crashworthiness engineers. Simulation is a valuable instrument during the design process for quick 

elimination from prototyping those designs which have a high probability of not satisfying the testing 

criteria. The increasing use of numerical simulation as support for a design team requires the rapid 

development of full vehicle FE models in the early stages of a design. Numerical simulation is also 

used for the diagnosis of the cause of a problem that can occur during a safety-related test. The 

extensive use of numerical simulation consented to introduce increasingly safer cars in less time 

without a corresponding increase in test facilities.  

 

Ground vehicles are one of the most challenging nonlinear problems in structural mechanics. 

Vehicles structures are manufactured from many shell parts welded and fastened with various 
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techniques, and the body-in-white may contain steel of various strength grades, aluminium and 

composite materials. 

 

 Simulations proceed solving numerically a set of non-linear partial differential equations of 

motions in the space-time domain. The solution requires appropriate initial and boundary conditions. 

Solution first discretizes the equations in space by formulating the problem in a weak variational form 

and assuming an admissible displacement field, then the system of equations is solved by 

discretization in the time domain. Techniques to solve equations are labelled implicit if the selected 

integration parameters render the equation coupled, in this case the solution is unconditionally stable. 

If the integration parameters are selected to decouple the equations, then the solution is explicit and 

it is conditionally stable. 

 

 The explicit FE technique solves a set of hyperbolic wave equations in the zone of influence 

of the wave front, and accordingly does not require coupling of large numbers of equations. On the 

other hand, the unconditionally stable implicit solvers provide a solution for all coupled equations of 

motion, which require assembly of a global stiffness matrix. For crash simulations involving 

extensive use of contact, multiple material models and a combination of non‐traditional elements, 

explicit solvers are more robust and computationally more efficient than implicit solvers. 

 

 The stability of explicit solution is conditional as discussed before; it is determined by the 

Courant’s condition: 

∆𝑡 ≤
𝑙𝑐

𝑐
                                                               (1.34) 
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The time step of the discretization in the time domain, ∆𝑡, must not exceed the value obtained 

by dividing the element characteristic length with the acoustic wave speed through the material of the 

element. This requirement means that the numerical time step must be smaller or equal to the time 

needed for the physical stress wave to cross the element. For instance, a typical automotive 

application using mild steel elements (c=5000 m/s) with a characteristic length of 5 mm, results in an 

analysis time step of 1 microsecond. Explicit methods are suited for short duration problems, for 

example high loading velocity or highly nonlinear problems that require small time-steps for accuracy 

reasons. 
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1.8 Materials calibration flow chart 
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2. Calibration of steels 

This chapter concern a procedure suitable for a large range of steels, this model needs data 

from tensile tests that are available for free from a database called Autosteel belonging to Steel Market 

Development Institute [32]. For clarity reasons, the procedure for the material calibration will be 

exposed referring to a sample material, for this aim a Dual Phase steel, DP600, has been chosen. 

 

2.1 Hardening law calibration 

When approaching to a material calibration for crash simulation purpose, the first step is the 

description of the plasticity of the material, that is demanded to the hardening law. As discussed in 

section 1.3, many equations have been developed to describe the ductility of a material. A very simple 

and common choice could be the Hollomon flow curve or power law (1.6), it has only two parameters 

and the exponent “n”, called hardening exponent, is equal to the strain at Ultimate Tensile Strength 

(UTS). This model can be used but it is not the most accurate, a better practise is to test various 

hardening laws with a best fit procedure and chose the one showing the best correlation with 

experimental data. The results of this step for DP600 are presented in Fig. 14.  
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 The first step of the fitting procedure consists in choosing a hardening law, Combined Swift-

Voce (CSV) for instance: 

 

σ(ε̅p) = αA(ε̅p + ε0)
n
+ (1 − α) [k0 + Q(1 − EXP(−βε̅p))]                (2.1) 

 

Figure 14: Quasistatic Models: DP600 Results 
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Then all the parameters must be set for a first attempt of the fitting cycle. Parameters related to known 

physical characteristic can be fixed at the beginning of the process and left out of the optimization. 

Using the abscissa of the curve subjected to fitting, one can calculate the respective points of the first 

attempt curve. To improve the quality of the regression the least-squares method has been used. This 

method uses the residual of a model to a data point to evaluate its fit: 

𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖)                                                          (2.2) 

The optimization proceeds iteratively trying to minimize the sum of the squared residuals with the 

model parameters as degrees of freedom. 

𝑆 = ∑ 𝑟𝑖
2𝑛

𝑖=1                                                              (2.3) 

The optimization has been performed using the solver implemented in Microsoft Excel®. 

Correlation coefficient can be calculated to assess the quality of the fit and to compare 

different fitting hardening laws. Correlation coefficient is calculated between data and model points, 

it assumes a value between 0 and 1, where 1 indicate perfect correlation and 0 no correlation. The 

equation for correlation is: 

 

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2∑(𝑦−𝑦̅)2
                                           (2.4) 

 

The Combined Swift-Voce (CSV) (2.1) model has the best correlation with the DP600 

experimental flow curve, for different type of steel another model could fit the data better than the 

CSV or return comparable results with fewer parameters. 
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Combined Swift-Voce 𝑨 𝜺𝟎 𝒏 𝒌𝟎 𝑸 𝜷 𝜶 

𝜶𝑨(𝜺̅𝒑 + 𝜺𝟎)
𝒏
+ (𝟏 − 𝜶) [𝒌𝟎

+ 𝑸(𝟏 − 𝑬𝑿𝑷(−𝜷𝜺̅𝒑))] 

1076,48 0,0018 0,16952 12,289 43,717 6,068 0,85836 

 

Table 3: DP600 CSV Parameters 

 

 

Figure 15: DP600 CSV Hardening Curve 

 

The set of parameters obtained results in a flow curve that fits with experimental data of a 

single test on a single specimen and this can’t represent the totality of the possible cases. Different 

specimens can show higher or lower yield strength or ultimate tensile strength, but the stress-strain 

shape of the curve can reasonably be considered to remain the same. Usually, materials are described 
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not with fixed values for their properties but with ranges between a maximum and a minimum 

tolerance. The flow curve (𝜎[𝜀𝑝]) can be scaled and shifted to meet these limit values, for this purpose 

two parameters, A and B, have been introduced with this form: 

 

𝜎 = 𝐴 + 𝐵⁡𝜎[𝜀𝑝]⁡                                                         (2.5) 

 

Referring to VW Standard 50036 it’s possible to use the followings values for UTS and YS maximum 

and minimum. 

Material YS [GPa] UTS [GPa] 

CR330Y590T-DP 330-430 590-700 

 

Table 4: Mechanical Properties of Dual Phase Steel DP600 

 

Parameters A and B are obtained, for each curve, with an optimization that minimize the 

squared residuals for YS and UTS respectively at 𝜀𝑝 = 0 and 𝜀𝑝 = 𝑛, the process is the same used 

previously. One can set A and B to reach the highest values for UTS and YS, that is the maximum 

tolerance condition. A more conservative approach could be to use the lowest values for mechanical 

properties available on regulations to modify the flow curve. Anyway, once these characteristics are 

chosen, the hardening curve can be easily modified. The following results represent the flow curve 

for DP600 with three different tolerances, maximum, minimum and medium. One can see that the 
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combined Swift-Voce curve interpolated with the tensile test data, is located approximately in 

correspondence of the medium tolerance curve Fig.16. 

 

A max B max A min B min A med B med 

0,949067 74,08327 0,880476 -0,19421 0,914771 36,94453 

 

Table 5: Parameters for hardening curves at maximum, minimum and medium tolerance 

 

 

 Figure 16: Scaled hardening curve for DP600 according maximum, minimum and medium tolerance 
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2.2 Dynamic flow curve modelling 

Dynamic flow curves are increasingly needed for automotive crash FEM-Simulations. New 

models have been implemented in commercial FEM simulation software and model parameters are 

required as input data for FEM simulations. Each flow curve should be extrapolated at high strain 

levels up to at least 𝜀 = 1,0. This can be done for each individual flow curve with an analytical 

model. Dynamic models are based on a quasistatic model extended to take into account strain rate 

effects. 

 

The dynamic behaviour of materials is given with a set of strain rates mostly 1, 10, 100, 

250𝑠−1 according to a German dynamic testing guideline [33]. Additionally, higher strain rate form 

500 up to 1000𝑠−1 are sometimes required for automotive application. 

 

The determination of the strain rate sensitivity is not standardised so far. Larour [34] in his thesis 

provided a reliable method for a quantitative experimental determination of the strain rate sensitivity. 

He plotted the flow stress out of each experimental dynamic flow curve he obtained from dynamic 

tests versus logarithmic strain rate for a specific true plastic strain value, Fig. 17. 
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Usually the strain rate sensitivity increases with increasing strain rate, for this reason, it is 

important to specify the strain and strain rate level chosen when comparing strain rate sensitivity 

values. The average strain rate sensitivity is usually determined by a linear regression of the flow 

stress versus strain rate in a semi-log or log-log scale. A linear regression over a wide strain rate range 

causes a poor fitting correlation. However, if the strain rate range is split between different strain rate 

regions [4], for example a low strain rate ([10−3 − 20⁡𝑠−1]), an intermediate strain rate ([1-200⁡𝑠−1]) 

and a high strain rate region ([102 − 103⁡𝑠−1]), then a linear fitting is suitable (Fig. 17). The average 

strain rate sensitivity is suitable for experimental comparisons and is mostly used in the literature, 

since determined in an objective manner. 

 

Larour in his work [34] chose three true plastic strain levels, 0,002, 0,05 and 0,10 to analyse 

his experimental results. He outlined a power law fitting curve of the strain rate sensitivity m versus 

Figure 17: Low, intermediate and high strain rate sensitivity at increasing true plastic strain [34] 
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the quasistatic yield strength with a relatively good correlation (Fig.18, 19). At any strain, the higher 

the yield strength, the lower the strain rate sensitivity. The strain rate sensitivity decreases with 

increasing plastic strain, whereas only some minor differences can be observed between 0,05 and 

0,10 true plastic strain. 

 

 

 

 

 

Figure 18:Low strain rate log. strain rate sensitivity m vs. quasistatic 𝑅𝑝0,2-Power fitting of 

experimental data ([10−3-20𝑠−1], ε =0,002/0,05/0,10; 296K) [34] 
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Larour did not provide any fit of experimental data for high strain rate ([102 − 103⁡𝑠−1]), anyway 

good results can be obtained using the same strain rate sensitivity used for intermediate ([1-200⁡𝑠−1])  

strain rate as shown in Fig. 20. With the equations in Fig. 18 and 19, one can calculate the strain rate 

sensitivity m, then the true stress values for a strain respectively equals to 𝜀 = 0,002/0,05/0,10 are 

calculated using (1.17). Dynamic flow curves can be interpolated with these points, assuming the 

strain rate curves will have the same shape of the quasistatic curves, the interpolation can be 

performed using (1.40) and the quasistatic hardening law. The dynamic flow curves calculated with 

this method for DP 600 have been compared with the experimental curves provided by the material 

database [32]. In Fig.14 it is possible to see that there is a good correlation between what has been 

measured on real tests and what has been obtained with an empirical model. 

Figure 19:Intermediate strain rate log. strain rate sensitivity m vs. quasistatic  𝑅𝑝0,2-Power fitting of 

experimental data ([10−3-20𝑠−1],ε=0,002/0,05/0,10; 296K) [34] 
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Figure 20: Strain Rate Curves, comparison between DP600 strain rate curves from Autosteel database and Larour’s model results 
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2.3 Tensile Test Simulations 

The results of the previous stages have been communicated to the solver PAMCRASH® 

through the material card MAT 1 for solid elements. It requires the shear modulus, the density, the 

bulk modulus of the material and the hardening curve. A finite elements simulation has been run in 

order to verify the quasistatic flow curve fitted with the tensile test data. Specimen dimensions were 

defining according to ASTM E8/E8M (Fig.21). To avoid problems mesh dependency related, a solid 

mesh has been used with a scaling dimension of the elements from 5 mm to 0,2 mm in the necking 

zone. Along the thickness there are five elements for a total thickness of 1 mm. Only a quarter of the 

specimen, with the proper boundary conditions, has been used in the simulation, that has been 

possible thanks to the symmetry of the load and of the geometry. This reduced considerably the length 

of the simulation. 

 

 

Figure 21: Specimen Dimension according to ASTM E8/E8M 
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The bottom edge of the specimen was fixed then a displacement has been applied to the upper 

edge, the displacement law used is time linear. The result of the simulation can be summarized with 

a stress-strain chart, in Fig. 25. One can see that there is a good correlation between the FEM analysis 

and the real tests, this means that the hardening law obtained with the optimization can represent the 

real material with a good reliability. There are some discrepancies in the failure phase because none 

fracture mode was set for this simulation. 

 

Figure 22: Specimen mesh 
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In Fig. 23 and in Fig. 24 it is possible to appreciate the diffused and the localized necking 

zones, small solid elements can faithfully capture this phenomenon. This capacity vanishes with 

bigger shell elements, this is why necking criteria are needed.  

 

 

Figure 23: Localized and diffuse necking captured during the simulation 

Figure 24: Reduced thickness in the localized necking zone 
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2.4 Axial crash simulations 

With the tensile test simulation, the quasistatic flow curve has been verified. In this section 

the adaptability of the model and the reliability of the strain rate curves will be investigate. For this 

purpose, a crash box FE model has been used, the structure represented in Fig. 26 is a sheet metal 

box with a series of feature for the trigger of the collapse, the impact structure is a 500 kg block with 

initial speed equals to 8.95 m/s. A MAT 105 material card has been applied to the coarse shell element 

mesh with a characteristic length of 5mm. That card requires Young’s Modulus, Poisson’s ratio, 

density, hardening law and strain rate curves of the material. One can add also a damage model and 

an element elimination criterion, for this purpose Hill-Stören-Rice model can be very suitable since 
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it returns good result with just one parameter “n” as discussed in section 1.5.2. “n” is the equivalent 

plastic strain at necking, and it is communicated to PAMCRASH® through the parameter REL_HSR. 

Equation (2.6) relates “n” to REL_HSR. 

 

𝑛 = ⁡ |ln⁡(𝑅𝐸𝐿_HSR)|                                                     (2.6) 

 

 

The aim is to verify that the performance of the calibrated material is comparable with the 

respective counterparts obtained with a model created by an original equipment manufacturer (OEM), 

called OEM material from hereinafter. First of all, the hardening curve has been translated and scaled 

Figure 26: Sheet metal crash box FEM model 
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with (2.5) to achieve the same yield strength and ultimate tensile strength of the OEM material, then 

the strain rate curves have been calculated with the method explained in section 2.2.  

 

A comparison of the respective geometry obtained after the crash could be a first qualitative 

method to study the performance of the calibrated material, anyway the final shape of the crashed 

box is strongly affected by the collapse sequence of the elements and little discrepancies in material 

description cause a very different geometry, as one can see in Fig. 27 and 28. 

 

 

 

Figure 27: Collapsed crash box, calibrated DP 600 
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A more quantitative method is the comparison of the force-displacement charts (Fig. 29), the 

underlying area of the plot represent the energy absorbed during the crash. This is a very important 

parameter, the energy absorbed during a crash is an indication of the efficiency of the material during 

a crash event. A reliable estimation of the energy absorption of the materials is crucial to design safe 

structures. One can see that despite of the final shape, the energy absorbed by the two material is 

nearly the same, this means that calibrated DP600 performance is comparable with the OEM material 

one. 

Figure 28: Collapsed crash box, OEM DP600 
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3. Martensitic Steel Calibration 

The increasing demand to reduce vehicle weight for improved fuel efficiency, while 

maintaining crash performance, has led to the application of new and innovative materials and 

manufacturing processes in the automotive industry. Hot stamping of boron steel is widely used to 

produce Ultra High Strength Steel (UHSS), this process allows steel to be formed in complex shapes 

with different quench conditions and a tensile strength up to 1500 MPa. These properties are the result 

of in-die quenching which causes a solid-state phase transition from austenite to martensite during 

the formation process. The hot stamping process is currently used to manufacture structural 

components such as bumper beams, door intrusion beams, A- and B-pillar, roof and side rails.  

 

Although components with a fully martensitic microstructure are often desired due to their 

exceptional high strength and intrusion resistance, some structural components, such as a B-pillar, 

may benefit from regions of reduced strength and greater ductility for improved energy absorption 

and fracture resistance. This class of hot stamped parts are said to have “tailored properties” and 

various hot stamping processes exist which are capable of creating such a part.  

 

This process utilizes a segmented hot stamping die with one segment that remained at room 

temperature while the other segment was heated to 400 °C. The as-quenched Vickers Hardness (HV) 

of the B-pillar region hot stamped within the heated die segment varies from 244 HV to 260 HV, 

while the average as-quenched Vickers hardness of the section hot stamped within the room 

temperature die segment is 475 HV. The lower hardness of the tailored region is due to sub-critical 

cooling rates (less than 30 °C/s) imposed on the blank during hot stamping, which allow some volume 
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fraction of bainite (and/or ferrite) to form as shown in the continuous cooling transformation (CCT) 

diagram in Fig. 20.  

 

 

It is useful to have a model easily adaptable to different values of Vickers Hardness for 

martensitic steels with tailored properties. In a crash model each zone with a different HV must be 

described as a single material because the amount of martensite in the alloy change dramatically the 

properties of the steel. 

 

3.1 Hardening law 

There is not a database containing martensitic steel tensile test data that can be used as in the 

previous part of this work. Even if present, tests should cover a wide range of HV because the relation 

between steel properties and HV is not linear and it can’t be easily deduced. 

Figure 30:Schematic of a B-pillar with tailored properties shown with a USIBOR  1500P CCT diagram. 
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3.1.1 Tailored Crash Model 

 A. Bardelcik et al. [35] developed the Tailored Crash Model (TCM), which is a constitutive 

model depending on strain, strain rate, and HV. Boron steel sheet metal blanks were austenized and 

quenched at five different cooling rates, which resulted in as-quenched microstructures that ranged 

from bainitic to martensitic. Tensile specimens were machined from the quenched blanks and tested 

in tension at four strain rates tests, the true stress versus effective plastic strain curves were used to 

develop the TCM. The resulting model for the flow curve is a Voce constitutive model with a strain 

rate contribution, the expressions and the relative parameters are reported below: 

 

𝜎 = 𝑓(𝜀, 𝜀̇, 𝐻𝑉) = [𝐴(𝐻𝑉) + [(𝐵(𝐻𝑉) − 𝐴(𝐻𝑉))𝑒
(−

𝜀

𝐶(𝐻𝑉)
)
]] [1 + 𝜀̇]𝐷(𝐻𝑉)              (3.1) 

 

𝐴(𝐻𝑉) = 𝐴2𝐻𝑉
2 + 𝐴1𝐻𝑉 + 𝐴0                                                   (3.2) 

 

𝐵(𝐻𝑉) = 𝐵1𝐻𝑉 + 𝐵0                                                           (3.3) 

 

𝐶(𝐻𝑉)266<𝐻𝑉<375 = 𝐶3𝐻𝑉
3 + 𝐶2𝐻𝑉

2 + 𝐶1𝐻𝑉 + 𝐶0                                  (3.4) 

 

𝐶(𝐻𝑉)𝐻𝑉>375 = 𝐶0
∗                                                              (3.5) 

 

   𝐷(𝐻𝑉) = 𝐷0                                                                   (3.6) 
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𝑨(𝑯𝑽) - 𝐴2

= 5.318 × 10−3 

𝐴1 = −0.7902 𝐴0 = 699.49 

𝑩(𝑯𝑽) - - 𝐵1 = 2.499 𝐵0 = −71.24 

𝑪(𝑯𝑽)𝟐𝟔𝟔<𝑯𝑽<𝟑𝟕𝟓 𝐶3

= −7.747 × 10−9 

𝐶2

= 9.222 × 10−6 

𝐶1

= −3.652

× 10−3 

𝐶0 = 0.4484 

𝑪(𝑯𝑽)𝑯𝑽>𝟑𝟕𝟓 - - - 𝐶0
∗ = 0.0072 

𝑫(𝑯𝑽) - - - 𝐷0 = 0.018 

 

Table 6: The constant parameters for equations (3.2)-(3.6) [35] 
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As an additional step is possible to find the Voce material parameters as function of the 

Vickers hardness for the classical formulation: 

 

𝜎𝑣[ε̅𝑝] = 𝑘0 + 𝑄(1 − 𝑒−𝛽ε̅𝑝)                                                        (3.7) 

 

For this purpose, quasistatic curves have been calculated for boron steels in a range from 200 HV to 

480 HV with TCM model, then interpolated with (3.7) with an optimization process that returns the 

fitting parameters. This HV range has been chosen because it covers almost all the possible 

microstructures, from fully bainitic to fully martensitic. Parameters for equation (3.7) are presented 

as function of the Vickers Hardness, Fig. 32. 

 

Figure 31: (a) Voce material parameters plotted as a function of the Vickers hardness and (b) The measured (symbols) and TCM 

predicted (curves) flow stress curves for a variety of as-quenched Vickers hardness and strain rate values [35] 
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𝑘0(𝐻𝑉) = 𝑘0𝟏𝐻𝑉 + 𝑘0𝟎                                                        (3.8) 

 

𝛽𝐻𝑉<370(𝐻𝑉) = 𝛽3𝐻𝑉 3+ 𝛽2𝐻𝑉 2+ 𝛽1𝐻𝑉+ 𝛽0                                   (3.9) 

 

𝛽𝐻𝑉>370(𝐻𝑉) =  𝛽1
∗𝐻𝑉+ 𝛽0

∗                                                     (3.10) 

 

𝑄(𝐻𝑉) = 𝑄2𝐻𝑉 2 + 𝑄1𝐻𝑉 + 𝑄0                                               (3.11) 
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Figure 32: Voce law parameters as a function of Vickers hardness 
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𝒌𝟎(𝑯𝑽) - - - 𝑘01 = 2,5304 𝑘00

= −72,133 

𝜷𝑯𝑽<𝟑𝟕𝟎(𝑯𝑽) 𝛽4

= −5,6794

× 10−8 

𝛽3

= 5,0105

× 10−5 

𝛽2

= −1,2362

× 10−2 

𝛽1

= 0,9795

× 10−4 

𝛽0 = 0,9998 

𝜷𝑯𝑽>𝟑𝟕𝟎(𝑯𝑽) - - - 𝛽1
∗ = 0,0027 𝛽0

∗ = 137,66 

𝑸(𝑯𝑽) - - 𝑄2 = 0,0054 𝑄1

= −3,3305 

𝑄0 = 780,41 

Table 7: Constant parameters for equations (3.8) -(3.11) 

 

These parameters result in a model equivalent to the TCM, the expression of the Voce 

formulation has been changed only for coherence purpose. From hereinafter the strain rate 

contribution will be neglected to simplify the exposition of the model which remains strain rate 

sensitive. 
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3.1.2 Model refinement 

In crash simulations the post necking region of flow curve is very important for a reliable 

result, K. Pack and S. J. Marcadet in their work [36] used a combined Swift-Voce hardening law to 

interpolate tensile tests data for a fully martensitic boron steel using the following parameters: 

 

Combined Swift-Voce 𝑨 𝜺𝟎 𝒏 𝒌𝟎 𝑸 𝜷 𝜶 

𝜎 = 𝛼𝐴(𝜀𝑝̅ + 𝜀0)
𝑛

+ (1 − 𝛼) [𝑘0

+ 𝑄 (1 − 𝐸𝑋𝑃(−𝛽𝜀𝑝̅))] 

2458 3,696

× 10−5 

0,1170 921,9 662,6 208,3 0,3 

 

Table 8: Plasticity model parameters for pure isotropic hardening [36] 

 

A fully martensitic boron steel has a Vickers hardness approximately equals to 480 HV, 

plotting the curves with the combined Swift-Voce parameters and with TCM model parameters 

(Fig.33) differences in the post-necking region are considerable. The saturation of the Voce hardening 

law is not suitable with the actual response of the material at high deformation which are frequent in 

crash events. The tailored crash model has to be modified in order to achieve a more representative 

post-necking region. This improvement is the main upgrade for the Tailored Crash Model developed 

in this thesis, this resulted in a new model, the Enhanced Tailored Crash Model (eTCM). 
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Figure 33: Plot of the hardening law for a fully martensitic boron steel calculated with CSV parameters (orange) and with TCM 

model parameters (blue) 

 

Another important defect of Tailored Crash Model is the poor prediction of the localized 

necking and the diffuse necking. The diffuse necking stage starts at the beginning of the area reduction 

when the engineering stress reach a maximum, the strain rate field can be represented as a 

superposition of two crossing bands, the strain rate map present an hourglass shape and the two bands 

evolution are superposed, the two bands evolve at the same rate. The localized necking stage strain 

field can still be represented as the superposition of two crossing bands, but one of the bands starts to 

evolve faster than the other, while the other slows down and stops. [37] 
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In an analytical point of view diffuse necking is defined by the Considère criterion [38]. 

Consider a part of a tensile test specimen loaded with a tension force F and momentary cross-section 

area A, the momentary yield stress will be 𝜎 = 𝐹/𝐴. Suppose that in that part a small section exists 

that has been strained additionally with a small strain dε ≪ 1, with resulting cross-section area 𝐴′ 

and a stress 𝜎′. Assuming the volume to remain constant the cross-section area 𝐴′ of that part has 

reduced: 𝐴′ = 𝐴/(1 + dε) ≈ A(1 − dε). The tension force in that section has to be equal to F, so that 

for the actual stress in that part  𝜎′𝐴′ = 𝐹 = 𝜎𝐴, consequently: 

 

𝜎′ = 𝜎(1 + dε)                                                        (3.12) 

 

The question is now if that section has actually become stronger or weaker. If the section has 

become stronger, meaning that a force larger than F is required to elongate it more, it will not deform 

any further, but another part of the specimen will start to deform instead; the deformation is table and 

no necking will occur. This depends on the change in yield stress, the stress required to deform that 

part any further. This new yield stress can be expressed as: 

 

𝜎𝑦𝑖𝑒𝑙𝑑,𝑛𝑒𝑤 = 𝜎 + 𝑑𝜎 = 𝜎 +
𝑑𝜎

𝑑𝜀
𝑑𝜀 = 𝜎 (1 +

1

𝜎

𝑑𝜎

𝑑𝜀
𝑑𝜀)                           (3.13) 

 

One can now state that no instability will arise, and necking will not occur, if the new yield 

stress of the section expressed by (3.13) has become larger than the actual acting stress expressed by 

(3.12), this finally yields: 
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1

𝜎

𝑑𝜎

𝑑𝜀
> 1, or:  𝑑𝜎

𝑑𝜀
> 𝜎                                                (3.14) 

 

So the diffuse necking occurs when: 

 

𝑑𝜎

𝑑𝜀
= 𝜎                                                            (3.15) 

 

The Local necking is defined by Hill’s local necking criterion [38], a local neck means that 

there is no elongation along the neck, only across the neck. In that case we can ignore any changes in 

width of the specimen and apply the same analysis on a piece of unit width, so 𝐴 = 1, 𝑡 = 𝑡. This 

yield: 

 

𝑑𝐹 = 0 = 𝑑(𝜎1𝑡) = 𝑑𝜎1𝑡 + 𝜎1𝑑𝑡                                       (3.16) 

 

𝑑𝜎1

𝜎1
= −

𝑑𝑡

𝑡
= −𝑑𝜀3                                                 (3.17) 

 

Or: 

 

𝑑𝜎1

𝑑𝜀3
= −𝜎1                                                         (3.18) 
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This is known as Hill’s local necking criterion. In a more general situation we have defined 

the strain rate state by a constant 𝛽 defined as: 𝜀2 = ⁡𝛽𝜀1 and consequently: 𝜀3 = −(1 + 𝛽)𝜀1 as 𝜀1 +

𝜀2 + 𝜀3 = 0. We can rewrite (3.18) as: 

 

𝑑𝜎1

𝑑𝜀1
= (1 + 𝛽)𝜎1                                                   (3.19) 

 

In the tensile test, 𝛽 = − 1

2
, and the criterion for local necking occurs when [20]: 

 

𝑑𝜎

𝑑𝜀
=

𝜎

2
                                                            (3.20) 

 

Diffuse and localized necking point computed for the two models are quite different (Table 

9), this can cause big discrepancies in simulations involving the post-necking region of the material. 

The TCM model is useful because of its relationship with Vickers hardness, but it needs to be 

improved with a contribution of the Swift law to obtain a combined Swift-Voce model which will 

have plastic region coherent to what observed by K. Pack and S. J. Marcadet. 

 𝜺𝑫 𝜺𝑳 

Marcadet CSV 0,0374 0,0772 

TCM 0,0261 0,0311 

Table 9: 𝜀𝐷 and 𝜀𝐿 computed for CSV ad TCM model 
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3.1.3 Enhanced Tailored Crash Model 

This section concerns the development of a new model for the calibration of press-hardened 

boron steels, which is an upgrade of the Tailored Crash Model introduced by A. Bardelcik. The 

procedure is similar to the one used in the chapter 2, the first step was an interpolation to find the 

missing parameters of the Combined Swift-Voce constitutive equation, then the post-necking region 

was obtained by extrapolation. In the chapter 2 experimental data were used for interpolation, for 

boron steels there are no such data and some assumptions are needed to find the Swift law (3.21) 

parameters for the combined Swift-Voce hardening law.   

 

The first assumption is that flow curves calculated with the Tailored Crash Model are not too 

different from real curves at least up to necking as shown in Fig. 31b. The second assumption is that 

the difference between diffuse necking point computed with (3.15) using the TCM model as 

hardening curves and the real diffuse necking point is small. With these assumptions is possible to 

consider curves obtained with the TCM model almost equals to real tensile test curves up to necking 

and interpolate a Swift law with their points. Applying this procedure for different values of Vickers 

hardness is possible to obtain Swift law parameters as function of HV. 
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Figure 34: "A" as function of HV 
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𝜎𝑠[ε̅𝑝] = 𝐴(ε̅𝑝 + 𝜀0)
𝑛

                                                    (3.21) 

 

𝐴(𝐻𝑉) = A2𝐻𝑉 2 + A1𝐻𝑉 + A𝟎                                         (3.22) 

 

𝜀0𝐻𝑉<370 = 𝜀02𝐻𝑉 2 + 𝜀01𝐻𝑉 + 𝜀00                                       (3.23) 

 

𝜀0𝐻𝑉>370 =  𝜀01
∗𝐻𝑉 + 𝜀00

∗                                                 (3.24) 

 

𝑛 = 𝑛2𝐻𝑉 2 + 𝑛1𝐻𝑉 + 𝑛0                                              (3.25) 
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𝑨(𝑯𝑽) A2 = 1.4091 × 10−2 A1 = −6.2544 A0 = 2066.1 

𝜺𝟎𝑯𝑽<𝟑𝟕𝟎(𝑯𝑽) 𝜀02 = 1.7434 × 10
−7 𝜀01 = −1.5682 × 10

−4 𝜀00 = 3.5022 × 10
−2 

𝜺𝟎𝑯𝑽>𝟑𝟕𝟎(𝑯𝑽) - 𝜀01
∗ = −4.8716 × 10−7 𝜀00

∗ = 1.3515 ∙ 10−3 

𝒏(𝑯𝑽) 𝑛2 = 3.5672 ∙ 10−6 𝑛1 = −2.9656 × 10
−3 𝑛0 = 0.7083 

 

Table 10: Constant parameters for equations (3.22)-(3.25) 

 

These parameters can be used in the CSV constitutive equation (3.26) to complete the TCM 

model, the weighting parameter “α”, can be fixed equals to 0.3 for coherence with K. Pack and S. J. 

Marcadet calibration [36] , this means that the Swift law contribution will be the 30% in the final 

hardening law, obviously this is an assumption, is likely that α won’t change too much with HV, 

anyway this can be a starting point for future optimizations of the model to achieve an higher 

accuracy. 

 

𝜎[ε̅𝑝] = 𝛼 ∙ 𝜎𝑠[ε̅𝑝] + (1 − 𝛼) ∙ 𝜎𝑣[ε̅𝑝]                                          (3.26) 

 

 

As shown in Fig.36, the Enhanced Tailored Crash Model give a full martensitic steel flow 

curve (HV 480) very similar to the one obtained by K. Pack and S. J. Marcadet. It is possible to verify 

the accuracy of the model computing the diffuse necking point and the localized necking point. 
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 𝜺𝑫 𝜺𝑳 

Marcadet CSV 0,0374 0,0772 

Modified TCM 0,0375 0,0682 

 

Table 11: Diffuse and localized necking plastic strain comparison 

 

 

 

Figure 37: Combined Swift-Voce hardening model for HV 480, 400, 320, 200 
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3.2 Diffuse and Localized Necking laws 

As discussed in a section 3.1.2, Hill’s criterion and Considere’s criterion can be used to 

determine diffuse and localized necking strain. With equation (3.15) and (3.20) these characteristic 

points have been calculated for flow curves between HV 200 and HV 480 spaced by 10 units; then 

interpolated with polynomial laws as function of Vickers hardness.  

 

This step is not strictly necessary for the model, but it is convenient because it’s possible to 

use the following laws to obtain 𝜀𝐷 and 𝜀𝐿 without using (5.15) and (5.20); in other words with these 

equations, for a given HV value, is possible to have the flow curve and 𝜀𝐷 and 𝜀𝐿. In the following 

sections, similar relations will be calculated also for fracture criterion; the purpose is to build a tool 

for martensitic steels which shows all the information needed by changing the HV input value. 

 

Figure 38:𝜀𝐷 and 𝜀𝐿 as function of HV 
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𝜀𝐿𝐻𝑉<370(𝐻𝑉) = 𝜀𝐿1𝐻𝑉
3 + 𝜀𝐿2𝐻𝑉

2+𝜀𝐿3𝐻𝑉 + 𝜀𝐿4                               (3.27) 

 

𝜀𝐿𝐻𝑉>370(𝐻𝑉) = 𝜀𝐿5𝐻𝑉
2+𝜀𝐿6𝐻𝑉 + 𝜀𝐿7                                        (3.28) 

 

𝜀𝐷𝐻𝑉<370(𝐻𝑉) = 𝜀𝐷1𝐻𝑉
3 + 𝜀𝐷2𝐻𝑉

2+𝜀𝐷3𝐻𝑉 + 𝜀𝐷4                            (3.29) 

 

𝜀𝐷𝐻𝑉>370(𝐻𝑉) = 𝜀𝐷5𝐻𝑉
2+𝜀𝐷6𝐻𝑉 + 𝜀𝐷7                                     (3.30) 

 

 

𝜺𝑳𝑯𝑽<𝟑𝟕𝟎(𝑯𝑽) 𝜀𝐿1 = −3,0811 × 10^ − 9 𝜀𝐿2 = 8,5545 × 10^ − 6 𝜀𝐿3 = −5,0628 × 10^ − 3 𝜀𝐿4 = 9,2104 × 10^ − 1 

𝜺𝑳𝑯𝑽>𝟑𝟕𝟎(𝑯𝑽) 𝜀𝐿5 = 7,4513 × 10^ − 7 𝜀𝐿6 = −5,7497 × 10^ − 4 𝜀𝐿7 = 1,7261 × 10^ − 1  

𝜺𝑫𝑯𝑽<𝟑𝟕𝟎(𝑯𝑽) 𝜀𝐷1 = 1,2270 × 10^ − 9 𝜀𝐷2 = 2,8328 × 10^ − 6 𝜀𝐷3 = −2,5931 × 10^ − 3 𝜀𝐷4 = 5,4293 × 10^ − 1 

𝜺𝑫𝑯𝑽>𝟑𝟕𝟎(𝑯𝑽) 𝜀𝐷5 = 2,5379 × 10^ − 7 𝜀𝐷6 = −1,9671 × 10^ − 4 𝜀𝐷7 = 7,3470 × 10^ − 2  

Table 12:𝜀𝐷 and 𝜀𝐿 parameters for equations (3.27) -(3.30) 
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3.3 Modified Mohr-Coulomb for Martensitic Steels 

As discussed in section 1.6.1, Modified Mohr-Coulomb model (mMC) can be used as fracture 

criterion to predict fractures in non-plane stress condition. The complete equation for the equivalent 

failure plastic strain 𝜀𝑓̅ is: 

 

𝜀𝑓̅(𝜂, 𝜃̅) = {
𝑘

𝑐2
[𝑐3 + (𝑐4 − 𝑐3)

√3

2 − √3
(sec (

𝜋

6
𝜃̅) − 1)] [√

1 + 𝑐1
2

3
cos (

𝜋

6
𝜃̅)

+ 𝑐1 (𝜂 +
1

3
sin (

𝜋

6
𝜃̅))]}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.31) 

 

• 𝜂 is the stress triaxiality 

• 𝜃̅ is the normalized lode angle parameter 

• k,n are material parameters from strain hardening 

• 𝑐1,⁡𝑐2,⁡𝑐3,⁡𝑐4 are material parameters from fracture experiment 

 

𝜂 and 𝜃̅ are independent parameters, k and n came from the modified TCM model while 

𝑐1,⁡𝑐2,⁡𝑐3,⁡𝑐4 must be determined with tests on materials. 𝑐4 usually is approximately equals to 1, it 

modifies the curve only around 𝜂 = 0.67 and in this zone the HSR criterium for fracture is more 

important as discussed in the following sections. For this reason, 𝑐4 has been fixed equals to 1. 
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Lukas ten Kortenaar in his thesis [39] characterized the failure behaviour of hot stamped 

USIBOR®1500-AS steel sheet with tailored properties. Failure strain has been characterized as a 

function of stress state investigating a range of material quench conditions. Six different material 

quench condition were considered, ranging from fully martensitic (485 HV) to a mixed ferrite-bainite 

microstructure (185 HV). Miniature shear, butterfly, hole expansion, hole tensile and hemispherical 

dome tests were developed for fracture characterization of sheet metal, considering fracture strain to 

be a function of stress state and assuming the material to be isotropic and von Mises yielding, the 

equivalent strain at fracture and stress triaxiality of each experiment was determined. 

 

For the purpose of this work, only test concerning fully bainitic, fully martensitic and 

intermediate quench have been considered. The fully bainitic microstructure was produced by 

austenizing blanks in a furnace to 930 °C, holding at this temperature for 6.5 minutes, and then 

removing it from the furnace, allowing it to cool in still air, with a resulting microhardness of 232 

HV. Fully martensitic blanks followed the same austenization process, however the blanks were 

transferred to still oil in order to quench them, they showed a microhardness of 486 HV. The 

intermediate microstructure has been produced with a forced hair quench calibrated to have a 

microhardness of 386 HV. 
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Figure 40: CCT for USIBOR® 1500-AS. Three quench conditions overlaid on the CCT correspond to the fully martensitic, 

intermediate forced air quench, and fully bainitic, denoted by magenta, purple, and blue. The critical cooling rate of 30 °C/s to 

obtain a fully martensitic microstructure is also shown. [39] 
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The results of the measurement campaign carry out by Lukas ten Kortenaar used in this work 

are presented in the following tables: 

HV232 Averaged Triaxiality Equivalent Failure Plastic Strain 

Butterfly Tensile Test 0° 0,005 0,9 

Butterfly Tensile Test 10° 0,064 0,77 

Butterfly Tensile Test 30° 0,187 0,74 

Uniaxial Tensile Test 0,37 0,81 

4a Notched Tensile Test 0,46 0,46 

1a Notched Tensile Test 0,58 0,52 

Equi-biaxial Dome Test 0,67 0,76 

 

Table 13: Test results for HV 232 equivalent failure plastic strain versus averaged triaxiality 

 

HV386 Averaged Triaxiality Equivalent Failure Plastic Strain 

Butterfly Tensile Test 0° 0,013 0,68 

Butterfly Tensile Test 10° 0,059 0,64 

Butterfly Tensile Test 30° 0,176 0,46 
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Uniaxial Tensile Test 0,4 0,61 

4a Notched Tensile Test 0,51 0,48 

1a Notched Tensile Test 0,6 0,42 

Equi-biaxial Dome Test 0,65 0,3 

 

Table 14: Tests results for HV 386, equivalent failure plastic strain versus averaged triaxiality [39] 

 

 

HV485 Averaged 

Triaxiality 

Equivalent Failure Plastic 

Strain 

Butterfly Tensile Test 0° 0,028 0,54 

Butterfly Tensile Test 10° 0,04 0,52 

Butterfly Tensile Test 30° 0,12 0,46 

Uniaxial Tensile Test 0,41 0,72 

4a Notched Tensile Test 0,54 0,4 

1a Notched Tensile Test 0,59 0,35 

Equi-biaxial Dome Test 0,67 0,35 

Table 15: Tests results for HV 485, equivalent failure plastic strain versus averaged triaxiality [37] 
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These data represent specific points of the mMC curve in the plane triaxiality-equivalent 

failure plastic strain. Parameters 𝑐1,⁡𝑐2,⁡𝑐3 of equation (3.31) can be found with an optimization 

process minimizing the least squared error between the result of (3.31) and the known data points of 

the tables. The parameters obtained for the three HV values are presented in the following table. 

 

 𝒄𝟏 𝒄𝟐 𝒄𝟑 

HV 232 0,1510 0,7571 0,9898 

HV 386 0,0761 0,8962 0,9148 

HV 485 0,0918 1,1742 0,9049 

 

Table 16: mMC material parameters for HV 232, HV 386 and HV 485 
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Figure 41: mMC Ductile Failure for HV 232, HV 386, HV 485 

 

 

The points in Table 16 can be plotted as function of Vickers microhardness and interpolated with a 

polynomial function, in this way is possible to find a relation between mMC parameters and the 

microstructure of the steel and obtain the mMC curve for any given HV value. 
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Figure 42: mMC Parameters versus Vickers Hardness 

 

3.3.1 Enhanced Hill-Stören-Rice model parameter 

The Enhanced Hill-Stören-Rice model (eHSR) is a modified version of the original HSR model 

discussed in section 1.5.2. It contains an additional parameter introduced to obtain the coincidence of 

eHSR and mMC when triaxiality is equals to 2/3. The equibiaxial tension stress state does not present 

necking before fracture so the two curves must coincide.  

 

𝜀1𝑛 =

{
 

 
𝑛

(1 + 𝛼)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ , −1 < 𝛼 ≤ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.32)

3𝑐𝛼2 + 𝑛(2 + 𝛼)2

2(2 + 𝛼)(1 + 𝛼 + 𝛼2)
, 0 < 𝛼 < 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.33)
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The original 𝜀1𝑛-⁡𝛼 FLD space obtained with 3.32 and 3.33 can be transformed into the space of 

equivalent plastic strain ratio over plastic strain ratio with:  

 

𝜀𝑛̅ =
2√1+𝛼+𝛼2

√3
𝜀1𝑛                                            (3.34) 

 

𝛼 is related to triaxiality by: 

 

𝜂 =
1+𝛼

√3√1+𝛼+𝛼2
                                                         (3.35) 

 

To obtain the parameter an optimization process has been followed;  when triaxiality “𝜂” is equal to 

2/3, equibiaxial tension stress state, the mMC plot and the eHSR plot must have the same value for 

equivalent plastic strain at failure, so the parameter has been found imposing the eHSR model to have 

the same result of mMC for each of the three different steels mentioned in the previous section. As 

additional step the three parameters have been plotted as function of Vickers hardness and 

interpolated with a linear relation to adapt eHSR model to any given HV value. The results of the 

optimization and the relation between c and HV are reported in the chart below. 
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eHSR and mMC curves are required as input when using material card MAT 127 for shell 

properties in PAMCRASH®. Basically, the software monitors the stress state of each elements 

through the triassiality and when the equivalent plastic strain reaches one of the two curves, the 

element fails. If the stress state is affected by necking it can’t be predicted by mMC for a coarse mesh 

because the model is mesh dependent, so the element will fail when it reaches the equivalent plastic 

strain predicted by eHSR. On the opposite side pure shear is out of the domain of eHSR model and 

the relative element failure can be predicted by mMC since pure shear is not characterized by necking. 
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Figure 44: eHSR Instability and mMC Ductile Failure plot for HV 232, HV 386 and HV 458 
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4. Enhanced Tailored Crash Model Validation 

This chapter is dedicated to the simulation performed in order to validate the enhanced 

Tailored Crash Model (eTCM). Materials characterized with the eTCM has been compared with the 

respective counterparts obtained with a model created by an original equipment manufacturer (OEM) 

based on the work of Eller and Greve [40] used in the automotive industry, this model will be called 

OEM model from hereinafter. The first simulation is a quasi-static four-point bending test on a hat 

section beam, the second is a side crash and the third a frontal crash. A coarse shell elements mesh 

has been applied to each finite element model. Some details of the simulations are omitted for 

confidentiality reasons. 

 

4.1 Hat Test 

The hat test is a four-point bending test with a hat section beam 700mm long and 200mm wide (Fig. 

43).  The test is quasistatic, and the displacement of the bender is time linear. The comparison between 

the two model, eTCM and the OEM, is outlined comparing the respective plot contact force vs 

displacement which is a measure of the energy absorbed by the structure. A good correlation between 

the two models is characterized by similar levels of contact force and displacement. The test has been 

performed for four type of quench hardened steel with Vickers Hardness respectively HV190, 

HV320, HV400, HV480. Each steel has been tested using the eTCM and the OEM model. 
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Figure 45: Hat test configuration 



82 

 

 

Figure 46: Contact Force vs Time for HV190 OEM and eTCM steel 

 

Figure 47: Contact Force vs Time for HV320 OEM and eTCM steel 
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Figure 48: Contact Force vs Time for HV400 OEM and eTCM steel 

Figure 49: Contact Force vs Time for HV480 OEM and eTCM steel 
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Figure 50: Failure Reduced Risk contour for HV480 eTCM and OEM 
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Each test showed a very good correlation with the OEM materials (Fig. 45, 46, 47, 48). HV400 

steel characterized with the eTCM appears less conservative than the OEM one. Probably the 

weighting parameter alpha introduced in section 3.1.3 should not be fixed equals to 0.3 for each HV 

value but it has a dependency on HV. This dependency can be investigated through tensile tests of 

different quench level boron steel or best fitting of experimental data when available. Overall the 

result is representative and proof that eTCM can be used for crash simulations. In Fig. 49 the failure 

risk reduced calculated for both OEM and eTCM materials is displayed. This parameter indicate how 

far is the element from fracture, when it reaches “1” the element fails. As one can see the contour 

map for the different models is very similar and it highlight the same critical areas. 

 

4.2 Side Crash 

To assess the validity of the eTCM model a simulation of a side crash test has been performed. 

The results have been compared with a simulation ran with the OEM database. The reference 

regulation for the simulated side impact crash is the one released by the Insurance Institute for 

Highway Safety (IIHS) [41]. It is a regulation for non-mandatory ratings crash test known for having 

the most severe conditions among the ratings tests in the world. 

 

Side impact crash tests consist of a stationary test vehicle struck on the driver side by a crash cart 

fitted with a deformable barrier element (Fig 51).  
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The 1,500 kg moving deformable barrier has an impact velocity of 50 km/h and strikes the 

vehicle on the driver side at 90-degree angle. Due to the high costs of these tests, a very accurate 

simulation campaign is recommended. This allow companies to predict the result of a crash test and 

to find the best design solutions to perform only one successful crash test. 

The result of the simulations is very similar, and both the models highlighted the same critical areas 

of the body in white as shown in Fig. 52 and 53. 

Figure 51: Moving deformable barrier alignment with test vehicle [41] 
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Figure 52: Static side intrusion after IIHS MDB Side Crash. eTCM vs OEM 
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Figure 53: Failures in Body in White after IIHS MDB Side Crash. eTCM vs OEM 
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4.3 Front Crash 

Another crash test simulation taken in account is the EuroNCAP ODB (Offset Deformable 

Barrier) equivalent to the IIHS moderate overlap frontal crash. The reference regulation is the one 

released by IIHS [42].  The offset barrier crash tests are conducted at 64.4 km/h and 40% overlap. 

The test vehicle is aligned with the deformable barrier such that the right edge of the barrier face is 

offset to the left of the vehicle centreline by 10% of the vehicle width (Fig. 54).  

 

 

Figure 54: Vehicle overlap with deformable barrier [42] 

 

The vehicle is accelerated by the propulsion system at an average of 0.3 g until it reaches the test 

speed and then is released from the propulsion system 25 cm before the barrier. The onboard braking 

system is activated 1.0 second after the vehicle is released from the propulsion system.  

Also in this case the results of the simulations are very similar showing the same levels of intrusion 

and the same critical areas for failures (Fig. 55, 56). 
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Figure 55: Static Intrusion after IIHS ODB Front Crash 
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Figure 56: Failures in Body in White after IIHS ODB Front Crash 
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5. Conclusions 

 The models presented in this thesis successfully characterized the main classes of steel used 

in automotive industry. The first part of this work shown a versatile procedure to calibrate steels 

starting with a few experimental data, while the second part resulted in a new analytical model based 

on the Tailored Crash Model. Both models have been compared with a material database released by 

an OEM and used for crash simulations showing a comparable energy absorption. This means that 

the two strain-rate constitutive models can be directly applied to finite element simulations of 

component-level or full-vehicle impact models. These models can be a very cost-efficient support to 

design and development of vehicle crash structures since they provide a full characterization with no 

experimental tests needed. 

 

The procedure developed for soft, HSLA, IF, BH and Dual Phase steels can be adapted to 

characterize also other types of steel and possibly any other metal with the enough data. 

 

The enhanced Tailored Crash Model has been implemented in a Excel tool which can be used 

to obtain all the curves needed for a crash simulation only by choosing the desired Vickers Hardness. 

This has been possible thanks to the extrapolation of every parameter of the model with respect to 

Vickers Hardness values. Finite elements simulations showed a good correlation with the 

comparation model, but it presents some discrepancies around HV 400, this is caused by the 

weighting parameter fixed equal to 0.3 for every HV values. Probably also the extrapolation of the 

Swift hardening curve with the TCM model instead of real tensile test data played a role in the 

difference between the eTCM model and a material database based on experimental data. A further 
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improvement of the eTCM model could be achieved with a testing campaign to obtain a more accurate 

dependency of the parameters involved. 
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