
POLITECNICO DI TORINO

Dipartimento di Ingegneria Meccanica ed Aerospaziale

Tesi di Laurea Magistrale

CubeSat Control Centre for the

management of telemetry, telecommand

and operations based on the CCSDS

standards

Relatori

Prof. Sabrina Corpino

Ing. Fabrizio Stesina

Candidato

Antonio Esposito

Matr. 243176

Ottobre 2019

2

Le vent se lève,
il faut tenter de vivre

Paul Valery

3

Abstract

CubeSats are becoming an important reality in space exploration both in

academia and industry. The increasing capabilities of this kind of system enable

new kind of missions able to fulfill more diverse mission goals. Despite their

reduced complexity, spacecraft operations do not scale down with the size. Hence,

training future spacecraft operators via CubeSat operations would be an important

method to increase the effectiveness of future operations with already trained

experts.

To tackle these issues, the thesis presents Cubesat Control Centre (C3) is an

innovative ground segment to support Cubesat Operations directly from

Politecnico di Torino. It is composed by a ground station and a control centre

operated by students and non-professional operators.

Control Centre’s software for the unpacking of telemetries data and the

scheduling of operations are implemented by Python. The aim of this software is

to provide an interface that can read automatically telemetries data and using

scheduled protocols for sending telecommands. The process is monitored by

several consistency checks which identify the correct acquisition of the package,

identify the type of package, extract the data and convert them into an engineering

language.

The main component of this process is a database that helps software and

consistency checks to perform their tasks. The operator can see an interface where

the following are displayed: type of arriving packet, check of correct acquisition

and validation of packets, binary code from satellite, engineering value of arriving

data. From the interface the operator can also select the mission protocols to use

for the mission, can simulate the command to send and sends command directly to

satellite when it is in visibility.

C3 is one of the one of the first academic control centres in Italy using the

ESA CCSDS’s standards and it is a useful facility for educational and research

purposes. Control Centre is divided into three areas: Flight Operation: Where

CubeSats receives telecommands, sends telemetries and where the team evaluate

follow up operations; Payload Data Ground Segment: where the management of

4

payload data happens; User Segment: where consumer could request a series of

products by means of a formal request.

By providing to primary mission fast delivery information and high-quality

data, sending scheduled commands and assisting in managing requests from

stakeholders, C3’s control centre is a valid resource and cheap support for

operation, enabling great learning opportunities and effacement operations with an

open source vison to support CubeSat community.

5

CONTENTS

Contents .. 5

List of Figures .. 7

List of Tables .. 10

Abbreviations .. 11

1. Introduction .. 13

2. The C3 Project ... 15

2.1 Design Approach: Functional Analysis .. 15

2.2 Design Approach: State Analysis ... 21

2.3 Design Approach: Risk Analysis and Management 23

2.4 Design Approach: Baseline Proposal ... 27

3. The Control Centre Design .. 31

3.1 Control Centre Architecture .. 32

3.2 Control Centre CCSDS Standards Overview .. 37

3.2.1 CCSDS Overview: Telemetry Construction .. 38

3.2.2 CCSDS Overview: Telecommand Construction ... 43

3.2.3 CCSDS Overview: Image Compression Construction 45

3.2.4 CCSDS Overview: Mission Planning & Scheduling ... 50

4. Software Philosophy & Architecture ... 52

4.1 Python Multithreading Approach ... 53

4.2 SAT SIM Overview: Software Architecture ... 56

4.3 SAT SIM Overview: Telemetry Branch .. 57

4.4 SAT SIM Overview: Telecommand Branch .. 62

4.5 SAT SIM Overview: Images Management Branch ... 65

4.6 SAT SIM Overview: Interface Overview .. 67

5. Test & Validation ... 79

5.1 Objectives & Requirements .. 80

5.2 Test Sessions ... 82

5.2.1 Test Session: Debugging Process .. 84

5.2.2 Test Session: Software Profiling .. 85

5.2.3 Test Session: TM/TC Nominal Profile (Tc-001) .. 89

5.2.4 Test Session: TM/TC Error Profile (Tc-002) ... 91

5.2.5 Test Session: Image Profile (Tc-003) ... 95

6

5.2.6 Test Session: Scheduler Test (Tc-004) ... 98

5.3 Results ... 101

6. Conclusions ... 104

References... 106

Appendix ... 107

7

LIST OF FIGURES

Figure 1: A traditional CubeSat Mission Architecture, adapted from [2] 14

Figure 2: First Level of the Functional Tree 17

Figure 3: Product Tree (First Level) 18

Figure 4: RF System Block Diagram 19

Figure 5: Tracking System Block Diagram 20

Figure 6: Control Centre System Block Diagram 20

Figure 7: Risk Analysis Flowchart 24

Figure 8: Risk Index and Magnitude Scheme (Before Risk Reduction Action) 25

Figure 9: Index and Magnitude Scheme (After Risk Reduction Action) 26

Figure 10: Trade-Off Analysis Results 28

Figure 11: Cost Budget Diagram for Line 29

Figure 12: Cost Budget for Discipline 30

Figure 13: C3 Control Centre Architecture 32

Figure 14: Control Centre Acquisitions 33

Figure 15: Processing System Architecture 34

Figure 16: Control Centre sharing blocks 36

Figure 17: Overview of the Communication Protocol Core 37

Figure 18: TM Structure 38

Figure 19: CCSDS TM Packet Data System 38

Figure 20: Global Packet Structure 39

Figure 21: Source Packet Format [5] 39

Figure 22: TC Structure 43

Figure 23: TC Packet Format [8] 43

Figure 24: Structure Overview of the Decoding Process 44

Figure 25: CLTU Starting Sequence Pattern according to [7] 45

Figure 26: Functional Block Diagram [10] 46

Figure 27: Image Compression Model: Encoder and Decoder 46

Figure 28: Block and Group structure of DWT transformed data 48

Figure 29: Structure of an Image Packet 48

Figure 30: Bit Plane Encoder [10] 49

Figure 31: Example of Federated Planning for a Science Mission [15] 50

Figure 32: Planning Information Flow 50

Figure 33: Example of how Python can figure out the type at run-time 53

8

Figure 34: Different stages of a process [11] 54

Figure 35: Comparison between process with 1 thread (left) and process with multiple

thread (right) [11] 54

Figure 36: Thread complete life cycle 55

Figure 37: SAT SIM Architecture 56

Figure 38: Example of SAT SIM Databases 57

Figure 39: SAT SIM - TM Branch 58

Figure 40: TM Gen Module 58

Figure 41: Packet Gen Module 59

Figure 42: TM Queue Gen Module 60

Figure 43: GS SIM Extraction Module 60

Figure 44: GS SIM Control Loop Module 61

Figure 45:SAT SIM - TC Branch 62

Figure 46: TC Gen Module 63

Figure 47: SAT SIM Extraction Module 63

Figure 48: New TM Gen after the command execution 64

Figure 49: TC Display module 64

Figure 50: IMG SIM Branch 65

Figure 51: IMAGE_SIM Module 66

Figure 52: Image Display Module 67

Figure 53: SAT SIM Interface architecture 68

Figure 54: SAT SIM Login/Register Interface 68

Figure 55: SAT SIM Login Interface 69

Figure 56: SAT SIM Registration Interface 69

Figure 57: SAT SIM main interface 70

Figure 58: SAT SIM TM Interface 70

Figure 59: Queue of the incoming packets 71

Figure 60: SAT SIM TM Display interface 71

Figure 61: SAT SIM TM Packet Visualization 72

Figure 62: Packet Archive 72

Figure 63: Display of a specific TM packet 73

Figure 64: TC Interface 73

Figure 65: TC Manage Interface 74

Figure 66: TC Packet Generation Module Interface 74

Figure 67: Correct execution of the command 75

9

Figure 68: Command Structure 75

Figure 69: Scheduler Interface Command Choose 77

Figure 70: Command detail window 77

Figure 71: Scheduler Queue Interface 77

Figure 72: Example of a schedule execution 78

Figure 73: The V-model of the V&V process 81

Figure 74: Test evaluation flowchart 82

Figure 75: The Debugging Process 84

Figure 76: cProfiler output of SAT SIM main 85

Figure 77: cProfiler output of the Interface main 86

Figure 78: Call graph of the SAT SIM main 87

Figure 79: Call graph of Interface main 88

Figure 80: Tc Nominal TM generation flowchart 89

Figure 81: Tc-001 Nominal TM packets 90

Figure 82: Tc-001 Nominal TC interface 91

Figure 83: Tc-002 Error TM generation flowchart 91

Figure 84: Tc-002 Error TM packets 92

Figure 85: Alert Notification 93

Figure 86: Detail of the incoming message 93

Figure 87: TC packets generation 94

Figure 88: New Tm correction acquired 94

Figure 89: Incorrect Packet Acquisition 95

Figure 90:Tc-003 Image management flowchart 95

Figure 91: Tc-003 Image compression Interface 96

Figure 92: Tc-003 Frame Extraction 96

Figure 93: Tc-003 Images Display 97

Figure 94: Tc-004 Schedule test flowchart 98

Figure 95: Tc-004 Recognition and display of the pre-set commands 98

Figure 96: Tc-004 Generation of the Schedule queue 99

Figure 97: Tc-004 Schedule queue executed correctly 99

Figure 98: Tc-004 warning message for command with same priority number 100

Figure 99: Tc-006 Register Interface 102

Figure 100: Tc-006 Registration Success 102

Figure 101: Tc-006 Login Interface 103

Figure 102: Tc-006 Login Success 103

10

Figure 103: SAT SIM Call Graph (1) 107

Figure 104: SAT SIM Call Graph (2) 108

Figure 105. SAT SIM Call Graph (3) 109

Figure 106: Interface Call Graph (1) 110

Figure 107: Interface Call Graph (2) 111

Figure 108: Interface Call Graph (3) 112

Figure 109: Interface Call Graph (4) 113

Figure 110: Interface Call Graph (5) 114

Figure 111: Interface Call Graph (6) 115

LIST OF TABLES

Table 1: Mission Requirements 16

Table 2: Mission Planning 21

Table 3: Phase-Scenario Description 23

Table 4: Risk Magnitude and Proposed Action for Individual Risk according to [4] 26

Table 5: C3 Cost Budget for Line and Cost Budget for Discipline 29

Table 6: C3 Mass Budget 30

Table 7: Control Centre mission requirements 31

Table 8: Advantages and Disadvantages of using threads 55

Table 9: Software Requirements 80

Table 10: Test Classification 83

Table 11: Test Cases Results 101

11

ABBREVIATIONS

ADCS: Attitude Determination and Control System

AOSTF: Advanced Orbiting System Transfer Frame

APID: Application Process ID

BATT: Batteries

BPE: Bit Plane Encoder

C3: CubeSat Control Centre

CADU: Channel Access Data Unit

CAM: Navigation camera

CCSDS: Consultative Committee for Space Data System

CLTU: Communication Link Transmission Unit

COTS: Commercial Off-the-Shelf component

DCT: Discrete Cosine Transform

DSP: Digital Signal Processor

DWT: Discrete Wavelet Transform

ECSS: European Cooperation for Space Standardization

EPS: Electrical Power System

FMECA: Failure Modes, Effects and Criticality Analysis

GS: Ground Station

HYPER: Hyperspectral

IDC: Image Data Compression

IMG PKT: Image Packet

KISS: Keep It Simple, Stupid

OBC: On-board Computer

PAY: Payload

PROP: Propulsion System

RF: Radio Frequency System

RW: Reaction Wheels

S\c: Spacecraft bus

SAT SIM: Satellite Simulator

SCHED: Scheduler

SE: System Engineering

12

TC PKT: Telecommand Packet

TCS: Thermal Control System

TCTF: Telecommand Transfer Frame

THR: Thrusters

TM PKT: Telemetry Packet

V&V: Validation and Verification process

13

1. INTRODUCTION

Communication between ground stations and CubeSats is a complicated

endeavour. There are standardizations that have been set in place by

organizations, like Consultative Committee for Space Data System (CCSDS), or

the European Cooperation for Space Standardization (ECSS), to resolve this

issue and to simplify the construction of communication systems and to promote

their interoperability and uniformities.

The CCSDS is an organization with the aim to define and maintain

standards for data systems and to provide communication between them in space.

These standards cover a large number of fields for a specialized implementation to

fit the need of the project. The ECSS is another organization that takes the

implementation deriving from CCSDS recommendations and define the

requirements that user must to follow. These requirements are used by space

organization as a way to simplify the collaboration between them and

organizations and companies in other countries. The ECCS takes some of CCSDS

standards and consolidates them into more rigid requirements,[1].

According to these rules and recommendations, the thesis presents the

CubeSat Control Centre (C3), an innovative ground segment to support Cubesat

Operations directly from Politecnico di Torino following the CCSDS standards.

The major aim of this work of thesis is to develop a control centre to support

CubeSat operations focused on CCSDS packet utilization for Telemetry

acquisitions and Telecommand generation.

A ground system has two main purposes: to support space segment

(spacecraft bus and payloads) and to transmit missions data derived from on-

board computer to the mission stakeholders. The same concept is applied to both

large and small satellites, such as CubeSats. Then, what are the real needs and the

real benefits in developing a Ground Control Centre totally focused on CubeSats?

A first answer could be to reduce the costs, but even is important, the expenses

related to ground station operations are not the main concern. The most important

benefit in developing a CubeSat control centre is the exploitation of university

facilities and the national autonomy.

14

In this perspective, the C3 project was created to offer students and non-

professional operators a facility where is possible to manage and control CubeSat

missions in complete freedom. Being free to explore different design possibilities

allows to extrapolate the better project according to the national infrastructure and

needs.

The first step to know the system of interest is to identify the conventional

ground station operations taking into account that the ground station is a part of

the space mission architecture. Figure 1 shows a typical mission architecture

adapted to a CubeSat mission. The architecture is the same for small and large

satellites, the only main difference is that the mission control, ground segment and

communication control architecture could join into a single segment.

To achieve the main functions (send telecommand, receive telemetry, track

the CubeSats and process their data) having only one ground station is generally

enough, but the project design must follow special requirements and

characteristics to work effectively like a ground segment.

Figure 1: A traditional CubeSat Mission Architecture, adapted from [2]

For the design project of the ground segment is necessary to analyze the

space segment parameters to support them and to derive some functional

requirements.

15

2. THE C3 PROJECT

The objectives pursued by the team on the C3 project are the following:

• To have a Control Centre at Politecnico di Torino for the

communication between the space segment, ground operators and

users

• The CubeSat Control Centre (C3) aims to support CubeSats mission

operations with capabilities and performance beyond traditional

radio amateur C3s, but at a lower cost than professionally driven

ground segment (control centre and ground station)

• C3 is the mission, spacecraft bus and payload control centre of the

SROC mission and manages its payload while interfacing with other

stations/centres involved in the Space Rider Mission.

2.1 DESIGN APPROACH: FUNCTIONAL ANALYSIS

According to the system engineering approach, the project followed a list of

process steps that helped to better understand the real needs of the design.

The first step of the System Engineering analysis consists basically of the

need statement. Once they are established, the identification of stakeholders and

requirements definition is conducted through iterative processes and generation of

goal and mission objectives. This stage is concluded by generating the concept of

operations, which shows the system behavior into their operational work.

The second step is related to the requirement analysis where the

stakeholders’ needs are converted into requirements and they are analyzed

qualitatively and quantitatively to achieve the better design of the project.

In the last steps, the functional analysis and the life cycle analysis are

conducted to conceptualize all the systems behaviors and their functions, and to

evaluate the operating environment in order to specify all the systems in more

details. At the end, the result of this analysis is the project baseline proposal in

which all the systems are assigned to their physical components.

The result of the mission needs led the team to the first requirements

analysis. In this phase the C3’s requirements identify the functions, physical

16

characteristics or quality factors that limit the needs of the product or process for

which a solution is pursued. Therefore, Table 1 shows some of the mission

requirements identified for the C3 project according to the division indicated in

the ECSS standards [3].

Table 1: Mission Requirements

To fill the different categories of requirements a functional analysis is

mandatory to better identify the correct functions of the project and to understand

what kind of systems could achieve those functions.

For the ground station, the blocks describe its main function with shallow

details. However, it is important to say that at this stage of the system

development, the entire operation of the planned C3 is already covered.

According to the functional tree shown in Figure 2, it is possible to build the

operational mode and state diagrams for the station, where the states are the

operating levels of the systems characterizing the ground segment and the modes

are the functions that run the system under these levels (e.g. operative status and

data acquisition mode). This kind of analysis increases system knowledge. This is

helpful for a better assignment of functions to physical components for the

creation of the product tree.

ID Requirement Text

C3-MIS--1 C3 shall support Cubesats mission operations from ground when they are in LEO orbit

C3-MIS--2 C3 shall guarantee the management of the operations for PoliTO/Cubesat Team missions

C3-MIS--3 C3 shall be located at Politecnico di Torino in TBD location

C3-MIS--4 C3 shall manage mission data from CubeSats payload

C3-MIS--7 C3 shall manage CubeSats housekeeping data

C3-MIS--8 C3 shall manage telecommands to CubeSats

C3-MIS--9 C3 shall guarantee the managment of the planning activities on the CubeSats

C3-MIS--10 C3 shall be operated by students and non-professional operators

C3-MIS--11 C3 shall cost less than 30K

C3-MIS--12 C3 shall implement at least E2 level of autonomy

C3-MIS--13 C3 shall be designed manufactured, integrated and tested in 35 months from the KOM

C3-MIS--14 C3 shall be flexible with respect to the protocols, the frequency bands, the type of signals

C3-MIS--15 C3 shall operate in UHF,VHF, S-band and X-band

C3-MIS--16 C3 shall manage data,voice, image and video

C3-MIS--17 C3 shall satisfy applicable emission regulations (ITU, Ministry of Communications, …)

MISSION REQUIREMENTS

17

Figure 2: First Level of the Functional Tree

The functional tree, in particular the last level, made it possible to identify

the subsystems that make up the ground segment. These elements, as seen in the

product tree in Figure 3, determine the characteristics of the system of interest and

therefore, the better architectural solution for the ground station (Figures 4-6).

To support mission
execution from

ground

To communicate
with the satellites

To control
CubeSats/SROC

To track the
CubeSats

To manage the
acquired data

To operate safely

To guarantee
reliability

To support the
antennas

To provide power
to C3

18

Figure 3: Product Tree (First Level)

Ground Segment

Ground Station

Control Centre

Data Managing
System

Communication
System

Tracking System

Servers

Processor Unit

Memory System

Display System

Sharing Interfaces

SAT Acquisition Subsystem

Calibration Subsystem

Pointing Subsystem

Database (Procedural/TM)

Simulator

Control Subsystem

RF Subsystem

19

Figure 4: RF System Block Diagram

Control Centre
Ground Station

Data Managing System

Servers

Sharing Interfaces Processor Unit

Mechanical Interfaces

CPU

Decoder

USB, Others

Control Unit

Processor

Memory
System

Display
System

Monitors

Internet Interfaces

Cloud

TRACKING SYSTEM

CALIBRATION SUBSYSTEM

SAT ACQUISITION
SUBSYSTEM

POINTING SUBSYSTEM

ORBIT DETERMINATION UNIT

GROUND DATA UNIT

ROTATOR & SENSOR UNIT

CONTROL UNIT

ORBIT DETERMINATION COMPUTER

GROUND DATA COMPUTER

AZ POSITION SENSOR

EL POSITION SENSOR

CONTROL
COMPUTER
INTERFACE

AZ/EL CONTROL BOX

MOTOR AZ

MOTOR EL

Ground Segment

Simulator Database

Control Subsystem

RF Subsystem

Communication Unit

Power Supply Unit

Baseband Component

Instrumentation and Calibration Unit

Passive Measurement

Component

Active Measurement

Component

Spectrum Analyzer

Oscilloscope

Signal Generator

Vector Network

Analyzer

RF Front-end Component

X-Band Upconverter

X-Band

Downconverter

X-Band Circulator

S-Band Circulator Multiplexer

X-Band HPA

X-Band LNA

S-Band HPA

S-Band LNA

UHF HPA

UHF LNA

VHF HPA

VHF LNA

X-Band TX Bandpass

Filter

X-Band RX Bandpass

Filter

S-Band TX Bandpass

Filter

S-Band RX Bandpass

Filter

UHF-Band TX

Bandpass Filter

UHF-Band RX

Bandpass Filter

VHF-Band TX

Bandpass Filter

VHF-Band RX

Bandpass Filter

Antenna Component

S/X Waveguide

 Feed
VHF Antenna UHF Antenna

S/X-Band Parobolic

Antenna SDR

Baseband Processing

Server

Instrumentation and
Calibration Unit

Actuation and Configuration
Unit Storage Unit Thermal Control

Unit

Antenna Heading
Pads

Liquid Cooler

Disk Array

Server(Pc/CPU)

Disk Array

Server(Pc/CPU)

Passive Measurement

Component

Active Measurement

Component

Spectrum

Analyzer

Oscilloscope

Signal Generator

Vector Network

Analyzer

Communication System

20

Figure 5: Tracking System Block Diagram

Figure 6: Control Centre System Block Diagram

Control Centre
Ground Station

Data Managing System

Servers

Sharing Interfaces Processor Unit

Mechanical Interfaces

CPU

Decoder

USB, Others

Control Unit

Processor

Memory
System

Display
System

Monitors

Internet Interfaces

Cloud

TRACKING SYSTEM

CALIBRATION SUBSYSTEM

SAT ACQUISITION
SUBSYSTEM

POINTING SUBSYSTEM

ORBIT DETERMINATION UNIT

GROUND DATA UNIT

ROTATOR & SENSOR UNIT

CONTROL UNIT

ORBIT DETERMINATION COMPUTER

GROUND DATA COMPUTER

AZ POSITION SENSOR

EL POSITION SENSOR

CONTROL
COMPUTER
INTERFACE

AZ/EL CONTROL BOX

MOTOR AZ

MOTOR EL

Ground Segment

Simulator Database

Control Subsystem

RF Subsystem

Communication Unit

Power Supply Unit

Baseband Component

Instrumentation and Calibration Unit

Passive Measurement

Component

Active Measurement

Component

Spectrum Analyzer

Oscilloscope

Signal Generator

Vector Network

Analyzer

RF Front-end Component

X-Band Upconverter

X-Band

Downconverter

X-Band Circulator

S-Band Circulator Multiplexer

X-Band HPA

X-Band LNA

S-Band HPA

S-Band LNA

UHF HPA

UHF LNA

VHF HPA

VHF LNA

X-Band TX Bandpass

Filter

X-Band RX Bandpass

Filter

S-Band TX Bandpass

Filter

S-Band RX Bandpass

Filter

UHF-Band TX

Bandpass Filter

UHF-Band RX

Bandpass Filter

VHF-Band TX

Bandpass Filter

VHF-Band RX

Bandpass Filter

Antenna Component

S/X Waveguide

 Feed
VHF Antenna UHF Antenna

S/X-Band Parobolic

Antenna SDR

Baseband Processing

Server

Instrumentation and
Calibration Unit

Actuation and Configuration
Unit Storage Unit Thermal Control

Unit

Antenna Heading
Pads

Liquid Cooler

Disk Array

Server(Pc/CPU)

Disk Array

Server(Pc/CPU)

Passive Measurement

Component

Active Measurement

Component

Spectrum

Analyzer

Oscilloscope

Signal Generator

Vector Network

Analyzer

Communication System

Control Centre
Ground Station

Data Managing System

Servers

Sharing Interfaces Processor Unit

Mechanical Interfaces

CPU

Decoder

USB, Others

Control Unit

Processor

Memory
System

Display
System

Monitors

Internet Interfaces

Cloud

TRACKING SYSTEM

CALIBRATION SUBSYSTEM

SAT ACQUISITION
SUBSYSTEM

POINTING SUBSYSTEM

ORBIT DETERMINATION UNIT

GROUND DATA UNIT

ROTATOR & SENSOR UNIT

CONTROL UNIT

ORBIT DETERMINATION COMPUTER

GROUND DATA COMPUTER

AZ POSITION SENSOR

EL POSITION SENSOR

CONTROL
COMPUTER
INTERFACE

AZ/EL CONTROL BOX

MOTOR AZ

MOTOR EL

Ground Segment

Simulator Database

Control Subsystem

RF Subsystem

Communication Unit

Power Supply Unit

Baseband Component

Instrumentation and Calibration Unit

Passive Measurement

Component

Active Measurement

Component

Spectrum Analyzer

Oscilloscope

Signal Generator

Vector Network

Analyzer

RF Front-end Component

X-Band Upconverter

X-Band

Downconverter

X-Band Circulator

S-Band Circulator Multiplexer

X-Band HPA

X-Band LNA

S-Band HPA

S-Band LNA

UHF HPA

UHF LNA

VHF HPA

VHF LNA

X-Band TX Bandpass

Filter

X-Band RX Bandpass

Filter

S-Band TX Bandpass

Filter

S-Band RX Bandpass

Filter

UHF-Band TX

Bandpass Filter

UHF-Band RX

Bandpass Filter

VHF-Band TX

Bandpass Filter

VHF-Band RX

Bandpass Filter

Antenna Component

S/X Waveguide

 Feed
VHF Antenna UHF Antenna

S/X-Band Parobolic

Antenna SDR

Baseband Processing

Server

Instrumentation and
Calibration Unit

Actuation and Configuration
Unit Storage Unit Thermal Control

Unit

Antenna Heading
Pads

Liquid Cooler

Disk Array

Server(Pc/CPU)

Disk Array

Server(Pc/CPU)

Passive Measurement

Component

Active Measurement

Component

Spectrum

Analyzer

Oscilloscope

Signal Generator

Vector Network

Analyzer

Communication System

21

2.2 DESIGN APPROACH: STATE ANALYSIS

The operative modes of the ground segment are also identified, during the

design process, to better estimate the project mission plan and all the scenarios in

which the station will operate. During this analysis, as seen in Table 2, four

phases are identified; each phase is characterized by scenarios that describe in

detail the phase, and each scenario is described by objectives, constraints, and

duration.

Table 2: Mission Planning

Four macro operative mode have been identified:

• Visibility On represents the phase in which the satellite is in

visibility of the ground station and real-time operations are carried

out such as receiving telemetry by the satellite and sending remote

control from the station.

• Visibility Off is the phase in which the satellite is not in visibility of

the ground station. This phase includes the preparation of the

subsystems for the next passage of the satellite, communication with

other stations involved in the mission for the exchange of

information, and post-processing activities.

Phase Scenario
1)Visibility On Real time operation

Setup - Preparation for the satellite

visibility

Post processing activity

Checkout communication channel

(internal and with other ground

station)

Post processing analysis

Check of off nominal events

Mission planning activity

Post processing data sharing

Check out

Telemetry Link

Command Link

4)Safe Mode Safe scenario

2)Visibility Off

3)LEOP

22

• LEOP (Launch and Early Orbit Phase): this phase is one of the

most critical phases of a mission. Spacecraft operations engineers

take control of the satellite after it separates from the launch vehicle

up to the time when the satellite is safely positioned in its final orbit.

During this period, the operators works 24 hours a day to activate,

monitor and control the various subsystem of the satellite, including

the deployment of any satellite appendages (antennas, solar array,

reflector, etc.), and undertake critical orbit and attitude control

manoeuvres.

• Safe Mode: represents the security status of the ground segment in

the presence of the catastrophic, critical or off-nominal events. It is

the ability of the ground station, in the presence of a failure, to

secure operators and all subsystem and to correctly protect the data.

Each phase is characterized by different scenarios and each of them, as seen

in Table 3, is described by:

• General Description: a description of the scenario.

• Initial Condition: a description of the condition for the start of the

scenario.

• Final Condition: a description of the condition for the end of the

scenario.

• Environment: a description of the environment in which the

scenario is executed.

• Top Level Objectives: a list of the high level objectives

characterizing the scenario.

• Required I/F with other systems: a description of all the interfaces

required for the correct execution of the scenario.

• Duration: duration of the scenario

• Constraints: a list of all the constraints and requirements that

describe the scenario.

• Potential Off-Nominal Events: a description of the possible off-

nominal events related to that specific scenario.

23

Table 3: Phase-Scenario Description

The identification of the operative mode and the relative operational

requirements will allow to establish the schedule generation for the telecommand

(TC) to communicate with CubeSats even when these are not in visibility of the

ground station.

2.3 DESIGN APPROACH: RISK ANALYSIS AND MANAGEMENT

During the design process and mission analysis the risk analysis and

management is essential because it allows to identify which are the several

possible failures during the mission, in order to prevent them. Although it is

almost not possible to avoid a risk, one of the aims of the study is to try to limit

any possible damage in order to complete successfully the mission. Therefore, the

study has been conducted in reference to the possible failures of the C3’s system.

Furthermore, this allows to compare them and to highlight which risks would lead

to compromise the mission’s feasibility or the achievement of mission aim. A

study of catastrophic hazards has therefore been carried out; it has enabled the

identification of possible project corrections.

Characteristics Description

General description
Uplink and Downlink operations in satellite

visibility

Initial Conditions Satellite comes in visibility

Final Conditions Satellite comes out visibility

Environment Earth eviroment

Top Level Objectives

Establish communication link

Up/Down link operations

Track satellite passage

To reduce space loss

Riquired I/F with other systems

Communication system I/F Tracking system

(Move the Antenna)

Communication system I/F Control Centre

Tracking System I/F Control Centre

Duration 8/10 min (LEO Orbit)

Constraints
All operation must have a duration less than

10 minutes

Potetial Off-Nominal Events
Loss of communication link

Down/Up link operation failure

Real time operation

24

The risk analysis is based on Failure Modes, Effects and Criticality

Analysis (FMECA) that is probably the most widely used and the most effective

design reliability analysis method. It is a bottom-up analysis of all possible ways

in which a component may fail, considering every failure mode one by one. This

analysis is performed according to the following steps:

• Identify each possible component in the system;

• Determine all possible failures for the component;

• Determine all the credible causes for each failure;

• Determine the worst effect on the system considering every mission

phase;

• Determine severity and likelihood of each failure;

• Determine criticality of each failure (criticality matrix);

Figure 7: Risk Analysis Flowchart

25

The fundamental actions performed could be summarised in the following

way: Risk Identification, Risk Decomposition, Risk Classification and Risk

Reduction.

During the Risk Identification, any risk that may arise is identified and

divided into categories lifetime, schedule, costs and component.

In the Risk Decomposition, each risk has therefore been divided into cause

and effect to know which are the failures that could lead to the worst

consequences. An inductive method is used so that, from the causes of the

possible failures, it has been possible to move on to the effects.

The Risk Classification is the most fundamental part of the risk analysis. It

consists of a classification and assessment of risks by assigning to each one its

probability of occurrence and its severity of consequences which are respectively

the frequency of its occurrence and the importance of the consequences of an

event on the mission purpose. The likelihood and severity index, established by

[4], has been assigned to every risk.

Figure 8: Risk Index and Magnitude Scheme (Before Risk Reduction Action)

26

Table 4: Risk Magnitude and Proposed Action for Individual Risk according to [4]

The actions proposed to mitigate the risks are Accept, Watch, Mitigate and

Research: they give the risk a trend that allows it to be downgraded according to

the standards [4]. Accept is a partially preventive action that consists in accepting

a problem that cannot be solved in any way. Watch is a partially reactive action

which foresees the system monitoring and the research solutions for issues that

could arise and have not been otherwise prevented. Mitigate is a preventive

action that provides corrective strategies in order to improve mission project and

prevent any possible problem. Research is a reactive action that gives possible

solutions, even if the problem has not been estimated.

Figure 9: Index and Magnitude Scheme (After Risk Reduction Action)

The risk analysis made it possible to identify the redundancies to be
implemented and to arrive at a new physical architecture.

SEVERITY
Negligeble(1) Significant (2) Major (3) Critical (4) Catastrophic (5)

E

L

I

K

E

D COM-03;

E

L

I

H

O

C COM-17; COM-18; LT-01; SCH-06;COM-02;

LT-03; LT-06; SCH-03; SCH-

08; COS-02; COM-05; COM-

20;

COM-01; COM-06; COM-38;

COM-39; COM-40; COM-41;

COM-42;

H

O

O B SCH-04 LT-02; LT-04; LT-10;

LT-07; SCH-02; SCH-05; COS-

01; COM-23; COM-24; COM-

25;

SCH-01; SCH-07; SCH-09; COS-

03; COM-07

LT-09; COM-04; COM-08; COM-

09; COM-19;

D

A COM-37

LT-05; COM-12; COM-11;

COM-16; COM-34; COM-

35;

LT-08; LT-11;LT-12
COM-13; COM-14; COM-43;

COM-44; COM-45; COM-46;

COM-10; COM-15; COM-21;

COM-22; COM-26; COM-27;

COM-28; COM-29; COM-30;

COM-31; COM-32; COM-33;

COM-36;

27

2.4 DESIGN APPROACH: BASELINE PROPOSAL

Three possible proposals of ground architectures are carried out to achieve

the better configuration according to requirements and mission objectives. All the

designs follow the KISS (Keep It Simple, Stupid) approach in order to work best

if systems are kept simple rather than made complicated; therefore, simplicity is a

key goal in design, and unnecessary complexity will be avoided. The three

proposals are the following:

• Compact Architecture: S-band and VHF/UHF-band together on the

same rotator. X-band on a different rotator.

• Large Architecture: S-band, X-band, VHF/UHF-band on three

different rotators.

• Compact Single Feed Architecture: S-band and X-band on the

same rotator. VHF/UHF-band on a different rotator.

In the definition of the system, a trade-off study consists of comparing the

characteristics of each system element (figures of merit) for each candidate

proposal architecture to determine the best solution that could better balances the

choose criteria. For the three proposal the figures of merit are the following:

• Cost: In order to satisfy all requirements with a budget of about 30

k€, COTS components are considered to try to find, adapt and

acquire items already available on the market while minimizing

custom-made designs. This philosophy is a great incentive for the

project because using these components could may increase the

complexity of the ground station but with a lower cost.

• Radio Frequency (RF) Performance: It refers to parameters like

full duplex operation, bandwidth, losses, gain, link budget,

efficiency, error rate and other specific RF attributes.

• Tracking Performance: It refers to parameters like angular

resolution, rotating speed, vertical load, breaking and turning torque.

• Ground Station Performance: It refers to global parameters like

number of satellites with which the station can communicate at the

same time, and the quality of the visibility window.

https://en.wikipedia.org/wiki/Simplicity
https://en.wikipedia.org/wiki/Design

28

• Architectural Reliability: It aim is to minimize the probability of

failures and their severity and criticality to achieve high reliability.

To achieve this important goal, possible solutions could be fewer

components, redundant components (whenever possible), low

complexity components, components protection and distributing the

capabilities of the architecture to lower criticality of faults (separate

rotators for example).

• Footprint: In order to install the antennas on a roof, this figure of

merit is fundamental for the trade-off analysis.

• Mass

• RF Flexibility: It refers to the ability of the ground station to operate

at various microwave frequencies without sacrificing much

performance, and it refers to the capability to move to other

frequency while replacing the minimum number of components.

• Tracking Flexibility: It refers to the high resolution of rotators to

move to higher frequencies, which require high pointing accuracy.

• Simplicity: the ability of the design project to remain in the KISS

approach.

Figure 10: Trade-Off Analysis Results

29

As seen in Figure 10, the best proposal for the project is the Compact

Architecture with S-band and VHF/UHF-band on the same rotator and the X-

band on a different rotator.

In conclusion the Compact Architecture proposal present the follow

characterizes as show in Tables 5-6.

Table 5: C3 Cost Budget for Line and Cost Budget for Discipline

Figure 11: Cost Budget Diagram for Line

X-Line (€) 14620,94

S-Line (€) 8014,303

VHF/UHF-Line (€) 5910,03

Total (€) 28545,27

Cost Budget

Support (€) 3600

RF (€) 18581,27

Tracking (€) 6364

Cost Budget

30

Figure 12: Cost Budget for Discipline

As seen in Table 5 the total cost of the CubeSat Control Centre (C3) is about

29 k€ according to the mission requirement that limit the total cost of the ground

segment to 30 k€.

Table 6: C3 Mass Budget

According to Table 6, the total weight of the station (antennas and rotators)

is less than 210 Kg. This number is important to respect the security standard for

the future installation on a roof.

In conclusion the total consumption of the station in Watt is less than 2 kW.

These characteristics are important for the management of the project, but also for

the developing of the control centre that has the aim to manage and control the

entire station and to communicate with the satellites.

X-Line (Kg) 83

VHF/UHF-Line + S-Line (kg) 124

Total (Kg) 207

Mass Budget

31

3. THE CONTROL CENTRE DESIGN

The objective of this thesis is to develop a full software to manage

telemetries from CubeSats and telecommands from ground, that non-professional

operators and students could use without issues. This software will be integrated

in the C3’s control centre environment and will be the core of the design

architecture. In this section the design of control centre functional architecture

will be described in detail, as well as the details of CCSDS standards that helped

to uniform the software to the European requirements. The mission objectives that

led to the actual architecture are shown in Table 7.

Table 7: Control Centre mission requirements

To achieve these requirements, at the beginning, a functional analysis was

conducted, and the thesis subsequently focused on the software implementation

that will be discuss in Chapter 4.

ID Requirement Text

C3-MIS--1
C3 shall support Cubesats mission operations from ground

when they are in LEO orbit

C3-MIS--2
C3 shall guarantee the management of the operations for

PoliTO/Cubesat Team missions

C3-MIS--4 C3 shall manage mission data from CubeSats payload

C3-MIS--7 C3 shall manage CubeSats housekeeping data

C3-MIS--8 C3 shall manage telecommands to CubeSats

C3-MIS--9
C3 shall guarantee the managment of the planning

activities on the CubeSats

C3-MIS--10
C3 shall be operated by students and non-professional

operators

MISSION REQUIREMENTS

32

3.1 CONTROL CENTRE ARCHITECTURE

Figure 13 shows the global architecture of the control centre, in particular

the input to processor and all the interface required by the software.

Figure 13: C3 Control Centre Architecture

The first step for the design of the C3 Control Centre is the definition of the

inputs (S\c telemetry and ground station subsystems telemetry) and outputs (S\c

telecommand and information sharing with mission users). The three main inputs

that were identified, shown in Figure 14, in details, are:

• RF Telemetry Acquisition: this block concerns all the telemetry

from the radiofrequency subsystems like the antenna status, SDR

signals and other hardware telemetry. In this environment the control

centre could be able to interface itself with the software that manage

the RF functions to control them or only to manage them.

• Payload and S\c Acquisition: this block concerns all the telemetry

(TM) packets sent from the satellite to ground, black line (input),

and all the telecommand (TC) packets sent from the ground to the

satellite, red line (output). In the input phase, TM packet from the

satellite are acquired and checked for a correct acquisition, therefore

the useful data, contained within the packets, are extracted,

converted and brought to the attention of the operators for the post

processing activities. In the output phase, commands from ground

Control Centre

Users
Users

Data Managing System

Processing System

Payload
Acquisition
/Command

Tracking
Acquisition
/Command

Control CPU/
PROCESSOR

Memory

Monitors

Servers

Users

RF
Telemetry

Acquisition

Database

SimulatorOperators

33

are organized in TC packets and then they are sent to the satellite

when it is in visibility of the ground station, or like a schedule

organization when the satellite is not in visibility. The satellite

acquires the TC packets and executes the command and returns to

ground another TM packet as result of the correct execution of the

command.

• Tracking Acquisition: this block concerns all the telemetry from

the tracking subsystems like the antenna rotators, TLE software and

other hardware telemetry. In this environment the control centre

could be able to interface itself with the software that manage the

tracking functions to control them or only to manage them.

Figure 14: Control Centre Acquisitions

After the acquisitions, the analysis and the processing phase are the major

aim of the Processing Systems that is a computer composed by different blocks

whit different function as shown in Figure 13. In other terms the main objectives

of the processing systems are:

• Check the correct acquisition of the TM and TC packets.

• In input, identify the correct useful data (metadata) in the TM

packets, and correctly extract that metadata.

34

• In input, convert the extracted metadata in engineering language and

display that information to the operators for the post-processing

activities.

• In output, identify the correct command, put them in TC packets and

send them to the satellite and monitor the correct execution of the

command by the S\c.

• Save and track all actions and activities of the operators.

• Display and share the information with the major mission

stakeholders or with the public.

To perform these objectives in Figure 15, the blocks that compose the

processing system are shown.

Figure 15: Processing System Architecture

Figure 15 shows in detail:

• Control Software Block: The principal aim of this block is to

acquire the packets and control them for a correct acquisition. This

block is the first step for packet filtering: in this way the correctly

acquired packets pass thought the data extraction phase, while those

that present errors or incorrect acquisition are discarded and

requested again by the satellite.

• CPU/Processor Block: This block is the core of the control centre.

Its major aims are to extract metadata, convert them and perform all

the processing and post processing activities of all ground segment.

• Memory Block: This block has the function of archiving all the

packets and metadata that arriving to the ground station. The

35

memory block also has the objective of tracking all the activities and

actions performed by operators.

• Database Block: This block helps the processor unit to extract

metadata from TM packets and to convert them into engineering

language. In the control centre software, the database is composed

by roots and dictionaries in which are expressed the TM/TC packets

structures for packets construction and packets extraction,

conversion methods, packet rows and packets check loops to control

the correct acquisition of the packets, the correct extraction of the

metadata, the correct conversion and the control of the conversion

value.

• Simulator Block: This block is fundamental in the command

construction phase. This environment can simulate the execution of

the command and to display the correct result of this execution. It is

able to simulate the spacecraft OBC, housekeeping and science

telemetry and merge them to generate a realistic simulated data

stream. The command packet is sent in input to the simulation

environment and it is tested for the correct execution and to be

secure that the command create by the operators is correct. Once the

TC packet passed the simulation, it is ready to be sent to the real S\c.

• Operators: This block represents the operators working on the

platform interface. It is important to say that the station is managed

by non-professional operators and by students, so a training period

for the operators is mandatory in the design process.

In conclusion, in Figure 16, the last part of the control centre architecture is

shown. In this part the following block are considered:

• Monitors Block: This block has the function of displaying

telemetries and telecommands to the operators through an interface

and monitors.

• Server Block: This block represents the archive where the operators

can save all the information about the mission (telemetries, images).

36

This is an open archive where the major mission stakeholders can

take the access and use the information saved.

• Users Block: This block represents the major mission stakeholders

that can require to the operators or to the servers of the ground

segment information about a specific mission.

Figure 16: Control Centre sharing blocks

Control Centre

Users
Users

Data Managing System

Processing System

Payload
Acquisition
/Command

Tracking
Acquisition
/Command

Control CPU/
PROCESSOR

Memory

Monitors

Servers

Users

RF
Telemetry

Acquisition

Database

SimulatorOperators

37

3.2 CONTROL CENTRE CCSDS STANDARDS OVERVIEW

The Consultative Committee for Space Data Systems (CCSDS) is an

organisation officially established by the management of member space agencies.

The committee meets periodically to address data systems problems that are

common to all participants, and to formulate some technical solutions to these

problems. Insofar as participation in the CCSDS is completely voluntary, the

result of Committee actions are termed recommendations and are not considered

binding on any Agency [5].

At the start of this master thesis there was a period of information gathering.

This entailed a prolonged study of recommendation documents from CCSDS and

ECSS. These documents covered information about how the TM packets, TC

packets and image packets (IMG) are to be structured, about how to encode and

decode the communications to ensure error-free transmission and how to

determine when data has been lost. From all standards and recommendations, a

rough idea of a structure of the packets, transfer protocol and their implementation

could be formed. In Figure 17 a description of all the communication protocol

according to the CCSDS standards is shown.

Figure 17: Overview of the Communication Protocol Core

In Figure 17, it is possible to see the different modules, depicted as squares,

which make up the core of communications. Each module fills a specific function

38

in the communication with the ground station. The top row encodes the telemetry

and the bottom row decodes telecommands. In the next section, it is described in

detail how telemetry branch, telecommand branch and image branch are

structured and how they are encoded and decoded.

3.2.1 CCSDS OVERVIEW: TELEMETRY CONSTRUCTION

According to [5], TM is constructed as shown in Figure 18 with the Space

Packet placed inside an Advanced Orbiting System Transfer Frame (AOSTF)

which is in turn inside a Channel Access Data Unit (CADU). The telemetry

construction process is from the inside out.

Figure 18: TM Structure

In specific terms, Figure 19 describes data structures used to transfer

metadata from on board systems to ground systems.

Figure 19: CCSDS TM Packet Data System

The aim of the packet telemetry concept is to permit multiple application

process running in on-board sources to create units of data as best suits each data

source, and then to allow the on-board systems to transmit these data over a

space-to-ground communication channel in a way that enables the ground systems

to receive the data with efficiency and reliability and provide them to the

operators. To achieve these functions, the CCSDS Recommendation defines

39

different structure such as: Source Packets, and Source Packets from various

Application Processes (APIDs).

Source Packet (PKT), which is also termed packet, is a data structure

generated by an on-board APID in a way that is responsive to the needs of that

process. It could be generated at fixed or variable intervals and may be fixed or

variable length. The packet structure is composed by a header that identifies the

source and the characteristics of the incoming packet and identifies the APID that

controls the internal data content of the packet. Each packet is defined by a fixed

frame called header, at the beginning of the packet, and a tail, at the end of the

packet. The useful field of the packet contains the telemetries generated on-board

and it is characterized by parameters of variable length.

Figure 20: Global Packet Structure

The Packet will encapsulate all the information and the data application

which are to be transmitted from a specific APID in space to one o several

channels on the ground. As aforementioned, the source packet will consist in two

major fields, positioned contiguously, in the following sequence: PKT Primary

Header (mandatory) and PKT Data Field (mandatory).

Figure 21: Source Packet Format [5]

40

As shown in Figure 21, the packet will consist of a least 7 and at most

65542 octets.

The PKT Primary Header is mandatory and will consist of the four fixed

fields positioned contiguously, in the following order:

− Version Number (3 bits length)

− Packet Identification (13 bits)

− Packet Sequence Control (16 bits)

− Packet Data Length (16 bits)

Each field contains a different information.

• VERSION NUMBER: will be contained within the bits 0-2 of the

PKT Primary Header, and will identify the data unit as a source

packet and shall be set to “000”

• PKT IDENTIFICATION FIELD: will be contained within the bits

3-15 of the PKT primary Header. It is divided into three sub-fields:

− TYPE INDICATOR (1 bit): it will identify the type of

packet. Because the CCSDS TC packet uses a similar

structure, the type indicator distinguishes between telemetry

and telecommand data units. For TM packet will be set to

“0”, instead for TC packet will be set to “1”.

− PACKET SECONDARY HEADER FLAG (1 bit): it will

indicate the presence or the absence of the PKT Secondary

Header within this packet. It will be set to “1” if a PKT

Secondary Header is present, it will be set to “0” if a PKT

Secondary Header is not present. This flag will be static with

respect to the APID throughout a mission phase.

− APID (11 bits): it will be different for different application

processes on the same transmission channel. The Application

Process defines the context of the data field and control all

the useful data of the packet for the correct construction on-

board and the correct extraction on ground.

41

• PKT SEQUENCE CONTROL FIELD: it will be contained within

bits 16-31 of the PKT Primary Header. It is divided into two sub-

groups as follows:

− GROUPING FLAGS (2 bits): expresses the segmentation of

the packet groups. It will be set to “01” for the first packet of

the group, to “00” for a continuing packet of the group and

to “10” for a last packet of the group. If there is no

segmentation, it will be set to “11”. All packets belonging to

a specific group of packets will be identified by a unique

APID.

− SOURCE SEQUENCE COUNT (14 bits): it will provide

the sequential binary count of each packet generated by an

APID. The purpose of this field is to order a specific packet

with other packets generated by the same APID, even though

their natural order may have been disturbed during the

transmission to the operators on the ground. This field is

normally associated to a Time Code [6] (its insertion is,

however, not mandatory) to provide unambiguous ordering.

• PKT DATA LENGTH FIELD: it will be contained within bits 32-

47 of the PKT Primary Header. This 16 bit field will contain a

binary number equal to the number of the octets in the PKT Data

Field minus 1. The value contained in this field may be variable and

it is in the range of 0 to 65535, corresponding to 1 to 65536 octets.

The PKT Data Field follows, without gap, the PKT Primary Header. This

field is mandatory, and it is divided in two field with a variable length, positioned

contiguously, as follows:

• PKT SECONDARY HEADER: follows, without gap, the PKT

DATA LENGTH FIELD and it is mandatory if there is not Data

Field, otherwise it is optional. In any case the presence or the

absence of the PKT Secondary Header will be signalled by the PKT

SECONDARY HEADER FLAG. If present, the PKT

SECONDARY HEADER DATA FIELD, consists of an integral

42

number of octets. This field contains the CCSDS time codes formats

defined in [6]. In this field is defined the time of packet construction

and transmission according to the CCSDS recommendation. The

time code defined in [6] generally consists of an optional P-Field

(Preamble Field) which identifies the time code choice and its

characteristics like period, epoch, length and resolution, and a

mandatory T-Field (Time Field). The time code selected must be

static for a given APID throughout all mission phases. All the field

associated to the PKT Secondary Header depending on what time

code is selected for the packet construction.

• SOURCE DATA FIELD: If this field is present, it will follow,

without gap, the PKT Secondary Header. This field is mandatory in

the case of absence of PKT Secondary Header, otherwise it is

optional. The field contains the source data (metadata) from a

specific APID and the length of this field may be variable: it will

contain an integral number of octets.

All the fields described are fundamental for a correct construction of the

packets. When the packets are constructed, they are ready to be sent to the ground

through a space-to-ground channel. This channel allows to transfer these packets

to the ground and, in addition this aim, consents to control and check the correct

construction (and on the ground the correct extraction) of the packets using

several consistency checks like CRC (Cyclic Redundancy Check) loops or other

consistency checks to monitor the correct acquisition of the bits in space and on

the ground. It is important to say that, on the ground, the extraction process uses

the same packet structures to make simple the metadata research, the metadata

extraction and the metadata conversion.

43

3.2.2 CCSDS OVERVIEW: TELECOMMAND CONSTRUCTION

According to [7]-[9], TC construction is shown in Figure 22 with the Space

Packet placed inside a Telecommand Transfer Frame (TCTF) which is in turn

inside a Communication Link Transmission Unit (CLTU). Telecommands are

decoded from the outside in.

Figure 22: TC Structure

The Space Packet is the common standard for the structure of packets that

are sent as telemetry or telecommand. The structure for TM and TC packets is

almost identical, but there are some differences. The structure of the TC packets is

shown in Figure 23.

Figure 23: TC Packet Format [8]

The TC decoding process can be split into three main parts shown in Figure

24. The first part is the channel coding and synchronization (the receiver) and the

second part is the TC data link protocol which in-turn can be split into the lower

procedures. Each part is coded and tested separately before being integrated into

one cohesive piece of code.

44

Figure 24: Structure Overview of the Decoding Process

The standard data structures are the Acquisition Sequence, CLTU, and the

Idle Sequence. They are used to provide synchronization of the symbol stream

and are described below.

• Acquisition Sequence: it is a data structure forming an introduction

which provides for initial symbol synchronization within the

incoming stream of detected symbols. The length of the Acquisition

Sequence will be selected according to the mission telecommand

link performance requirements, but the preferred minimum length is

16 octets. The length is not necessary to be an integral multiple of

octets. The pattern will be alternating “ones” and “zeros”, starting

with either a “one” or a “zero”.

• CLTU: it contains the data symbol that are to be transmitted to the

S\c. Each code block within the CLTU provides at least 2 data

transitions. The CLTU as delivered to the physical layer must have a

random component to guarantee sufficiently frequent transitions for

adequate symbol synchronization [7].

45

Figure 25: CLTU Starting Sequence Pattern according to [7]

• Idle Sequence: it is the data structure which provides for

maintenance of symbol synchronization in the absence of CLTUs.

The bit pattern is a sequence of alternating “1” and “0”. The length

of the idle sequence is an unconstrained number of bits.

3.2.3 CCSDS OVERVIEW: IMAGE COMPRESSION CONSTRUCTION

The CCSDS organization has recommended an image data compression and

construction standard: CCSDS 122.0-B-2 [10], to be used on-board space data

systems. This recommendation describes the algorithm implementation of the

CCSDS image data compression standard (IDC) on “Digital Signal Processor”

(DSP) platform. The algorithm is applied to two-dimensional digital grey scale

image data from imaging payload devices and uses two-dimensional “Discrete

Wavelet Transform” (DWT) followed by progressive “Bit Plane Encoder” (BPE)

to generate the compressed encoded bit stream.

Image data compression is an important element in the on-board space data

systems. It enables to reduce the amount of image data, in order to reduce the on-

board memory and the downlink transmission bandwidth requirements for space

missions. Imaging payloads of space data systems belong to one of the following

two categories:

• CCD Arrays: generate frames of images.

• Sensors: acquire a line or strip of an image at a time.

An image compression scheme has generally two functional modules. The

de-correlation of data is performed by some mathematical transform whereas the

transformed data is processed by an encoder which performs the quantization and

encoding to produce compressed image. Similarly, the [10] uses two functional

46

modules i.e. the discrete wavelet transform (DWT) and the bit plane encoder

(BPE) modules. It can perform both lossy and lossless compression and has very

low complexity so that it can be implemented with minimum power and

processing resources requirements.

Figure 26: Functional Block Diagram [10]

As aforementioned, image compression system consists of the following

two main blocks:

• Encoder: Figure 27 shows the basic building blocks of a source

encoder. Mapper module maps the input image pixels performing

the de-correlation using transform. The quantize block limits the

accuracy of the mapper output values. This is the step where major

compression takes place.

• Decoder: The decoder performs the reverse function of that of the

encoder. However, quantization is generally irreversible hence the

quantization block is excluded from the decoder as shown in Figure

27.

Figure 27: Image Compression Model: Encoder and Decoder

According to the CCSDS standards, the algorithm works on the two

dimensional digital image data i.e. grey scale images from panchromatic single

channel image sensors in space imaging systems. The de-correlation module

consists of discrete wavelet transform which is followed by the progressive BPE

47

(Bit Plane Encoder) module. The BPE produces encoded output bit-stream in the

form of a single segment or a series of segments. Each segment has a segment

header which is followed by the encoded data.

All the processing steps are based on the DCT (Discrete Cosine Transform).

Source image samples are grouped into 8x8 blocks, shifted from unsigned integers

to signed integers and input to the DCT. The following equation is the idealized

mathematical definition of the 8x8 DCT:

The DCT takes such a signal as its input and decomposes of the 64 unique

two-dimensional “spatial frequencies” which comprise the input signal’s

“spectrum”. The output of the DCT is the set of 64 basis-signal amplitudes (DCT

coefficients) whose values can be regarded as the relative amount of the 2D

spatial frequencies contained in the 64-pint input signal. The DCT coefficients are

divided into “DC coefficient” and “AC coefficients”. DC coefficient is the

coefficient with zero frequency in both dimensions, and AC coefficients are

remaining 63 coefficients with non-zero frequencies. The DCT step can

concentrate most of the signal in the lower spatial frequencies. In other words,

most of the spatial frequencies have zero or near-zero amplitude and need not be

encoded.

The BPE encodes the bit planes starting from most significant bit plane to

the least significant bit plane.

48

Figure 28: Block and Group structure of DWT transformed data

Within a single coded segment (or image packet), the segment header is

coded first. After the quantized DC coefficients are coded, the AC coefficient bit

depths are implemented and then the bit planes of the DWT coefficient block are

coded as shown in Figure 29.

Figure 29: Structure of an Image Packet

In details, there are:

• Segment Header: it consists of the follow four parts:

− Part I: (3 or 4 bytes - Compulsory)

− Part II: (5 bytes – Optional)

− Part III: (3 bytes – Optional)

− Part IV: (8 bytes – Optional)

• Initial Coding of DC coefficient: it is performed into two stages:

− Coding quantized DC coefficients

− Coding additional bit planes of DC coefficients

49

• Stages of Bit Plane Encoding: each bit plane is encoded in multiple

stages from 0 to 4 as shown in Figure 30. Stage 0 coding for each

block is the most significant bit of each DC coefficient. Stage 1

encodes the bit planes containing magnitudes of parent coefficients

in a segment. Stage 2 encodes children coefficients and Stage 3

encodes bit planes containing magnitudes of grand-children

coefficients in a segment. Stage 4, in conclusion, encodes the

remaining bits of each AC coefficient.

Figure 30: Bit Plane Encoder [10]

50

3.2.4 CCSDS OVERVIEW: MISSION PLANNING & SCHEDULING

Mission planning and Scheduling are integral parts of Mission Operations

and closely related to the other aspects of the overall monitoring and control space

missions. In some space mission, in particular for CubeSat missions, the planning

may be centralized in a single function. The distribution of functions over

different entities depends by a number of factors such as the availability of

facilities with unique capabilities, the existence of groups of experts with specific

knowledge and availability of planning experts [15].

Figure 31: Example of Federated Planning for a Science Mission [15]

According to the recommendation plan a space mission requires the

collaboration of different elements that have a flow of information at different

levels. For example, the output of a planning function could be the input for a new

planning function at the same level or in a lower level as show in Figure 32.

Figure 32: Planning Information Flow

51

As shown in Figure 32, a Planning flow has the following steps:

• Planning User: a generic function that is responsible for submitting

request to the planning function and control. It also receives

feedbacks on the status of Planning Requests, the generated plans,

and the status of the planning process. It is not a Planning function

itself, but it is a user of Planning data and service. In the specific

case of SAT SIM software, the user plan is the operator that generate

the schedule.

• Planning: this is the function responsible for performing Mission

Planning. The output of the Planning function is the plan that is

retrieved by the Planning Users and distributed to Plan Execution

functions.

• Plan Execution: this is the function responsible for executing a Plan

(or part of one). It is possible to have multiple plan execution

functions distributed between space and ground segments. It is not a

Planning function itself, but it does support a common model of the

plan in its interface with Planning [15].

In conclusion, the generation and the execution of a mission plan is a

monitored process from the start to the end of its protocols and it provide an

important and autonomous way for the execution of all the phases of a mission.

52

4. SOFTWARE PHILOSOPHY & ARCHITECTURE

The thesis follows the Python Multithreading Approach. In this section the

overview of the code philosophy and the software architecture will be explained

in detail.

Python is a computer programming language designed for readability and

functionality. One of Python’s design goals is that the aims of the code are easily

understood because of the very clear syntax of the language. The Python language

has a specific form (syntax) and semantics which are able to express computations

and data manipulations which can be performed by a computer. Python’s

implementation was started in 1989 by Guido van Rossum at CWI (Centrum

Wiskunde & Informatica, research institute in the Netherlands) as an update and a

successor to the ABC programming language.

Python is an interpreted language, meaning a programming language whose

programs are not directly executed by the host CPU but rather executed (or as said

“interpreted”) by a program known as an interpreter. The source code of a Python

program is partially compiled to a bytecode form of a Python “process virtual

machine” language. This is one of the major distinctions with the C codes which

are compiled to CPU-machine code before the run-time.

Another characteristic of Python is that it is “dynamically typed”, that

means that most of its type checking is performed at run-time as opposed to at

compile-time. Other dynamically typed languages are JavaScript, Ruby and

Objective-C.

The data which a Python program deals must be described precisely. The

description of variables is referred to as the data type. In the case of Python, the

fact that it is dynamically typed means that the interpreter will figure out what

type a variable is at run-time, so the programmer doesn’t have to declare variable

types himself. Python is “strongly typed”, meaning that it will raise a run-time

type error when the programmer has violated the Python syntax rule as to how

types can be used together in a statement. Of course, all these facts do not mean

that the programmer can be neglecting and hoping Python to figure out things.

53

Figure 33: Example of how Python can figure out the type at run-time

4.1 PYTHON MULTITHREADING APPROACH

To better explain the processes occurring in the master thesis architecture, it

is important to have an overview about the Python’s concurrency, multiprocessing

and multithreading philosophy.

The concurrency, in Python, is the occurrence of two o more events at the

same time. In terms of programming language, concurrency is the overlapping of

two tasks in execution. With concurrent programming, the performance of

software systems can be improved because it can concurrently deal with the

requests rather than waiting for a previous one to be completed.

Thread is a small unit of execution that can be performed in an operating

system. It is not itself a program but runs within a program; it means that threads

are not independent from one other. Each thread shares code section, data section,

etc. with other threads. A thread has the following components:

− Program counter which consist of the address of the next executable

instruction.

− Stack.

− Set of registers.

− Unique ID thread.

Instead, multithreading is the ability of the CPU to manage and control the

use of operating systems by executing multiple threads concurrently. The main

concept of the multithreading philosophy is to achieve parallelism by dividing a

process into multiple threads [11].

A process is defined as an entity, which represents the basic unit of the code

implemented in the system. In other words, the programmer writes his program

and when he executes it, it becomes a process that performs all the tasks in the

program. During the process execution, the code passes through the stages shown

in Figure 34.

54

Figure 34: Different stages of a process [11]

A process can only have a thread (primary thread) or multiple threads where

each of them have their own set of registers, program counter and stack as shown

in Figure 35.

Figure 35: Comparison between process with 1 thread (left) and process with multiple thread
(right) [11]

Typically, a thread can exist in five different states:

• New Thread: a new thread begins its life cycle in the new state. At

this stage, it has not yet started, and it has not been allocated any

resources (it is only an instance of an object).

• Runnable: the thread is started, and it is waiting to run. At this time,

the thread has all the resources but still task scheduler has not

scheduled it to run.

• Running: the thread makes progress and executes the task, which

are running in the task scheduler. At this moment, the thread can go

to either the dead state or the non-runnable/waiting state.

• Non-running/waiting: the thread is paused because it is waiting for

the response of some I/O request or waiting for the completion of the

execution of other thread.

55

• Dead: the thread enters the terminated state when it completes its

task (the thread is terminated).

The complete thread life cycle is shown in Figure 36.

Figure 36: Thread complete life cycle

In conclusion, in table 8 an overview of advantages and disadvantage of

using threads is shown.

Table 8: Advantages and Disadvantages of using threads

Advantages Disadvantage

Thread library contains code for creating and destroying threads, for

passing message and data between threads, for scheduling thread

execution and for saving and restoring thread contexts.

In a typical operating system,

most system call are blocking

Thread can run on any operating system

Multithreading application

cannot take advantage of

multiprocessing

Scheduling can be application specific in the thread

Threads are fast to create and manage

56

4.2 SAT SIM OVERVIEW: SOFTWARE ARCHITECTURE

Figure 37 shows the global architecture of the SAT SIM library.

Figure 37: SAT SIM Architecture

In this architecture the main software blocks are shown, and for each block

all the methods selected to achieve the blocks’ functions are highlighted.

From the global overview it is possible to see two main threads SAT SIM

and GS SIM.

• SAT SIM Thread: this thread (Satellite Simulator) has the main

function of generating telemetries, pack them and send the CCSDS

standard packets to the GS SIM thread. The SAT SIM thread has

also the aim of receiving telecommands from the GS SIM thread,

recognizing them and executing the telecommand and, in

conclusion, sending new telemetry as proof of the correct execution

of sent telecommand.

• GS SIM Thread: this thread (Ground Station Simulator) has the

main function of receiving telemetries, recognizing them and

extracting the useful data from packets. The GS SIM has also the

aim of generating telecommand packets and sending them to the

SAT SIM thread. In the GS SIM there is also an additional branch to

manage the images from the satellite. The main function of this

57

branch is to receive the images, recognize them and to display

images to the operators.

In the next section, the details of the branches will be examined to better

explain all the methods that compose the software architecture of the master thesis

work.

It is important to say that all the architecture uses different databases to store

data and to read the structure of the packets to build them.

Figure 38: Example of SAT SIM Databases

4.3 SAT SIM OVERVIEW: TELEMETRY BRANCH

In the previous section it was explained the main block of the SAT SIM

architecture. In this section, the telemetry branch will be analyzed. The objectives

that led to the construction of this branch are the following:

• To simulate a CubeSat architecture to generate realistic telemetries.

• To generate packets with the CCSDS standards.

• To generate packet strings to send to the GS SIM.

• To take track of all the action done during the generation of

telemetries.

In Figure 39 the TM branch is shown with the detail of all the methods and

database that led to the CCSDS packets generation.

58

Figure 39: SAT SIM - TM Branch

The generation of telemetry is dedicated to the Python class SAT SIM. This

thread is organized into different module with different functions (methods). The

TM Gen module has the purpose to simulate the CubeSat architecture and to

generate realistic telemetries.

Figure 40: TM Gen Module

In TM Gen has different methods, as follows:

• TM_map (): is the method that generates the telemetry when it is

called. The telemetry is generated in form of dictionary and the

59

gen_fileJSON() method saves it in the TM Archive. In the archive,

there are the telemetries generated saved in form of

“Sat_Telemetry_date and time of generation.json” (i.e.

“Sat_Telemetry_2019_06_01-22_33_18 .json”). The structure of the

TM dictionary is taken from the TM/Packet Archive, where the

structure of dictionaries that the thread needs are saved.

• gen_fileJSON (): this method saves the generated telemetries in the

TM Archive in form of JSON file when it is called. These files are

dictionaries that, when they are called in the software, make it easy

to unpack data and search different fields faster.

• Get_TM_file (): this method takes the saved files from the TM

Archive and read them to generate new packets. The TM dictionary

structure is created as object in the code, and, when a TM profile is

generated, this structure is filled and saved as json file in the archive.

The output of this module is the TM dictionary where there are the useful

data to packetize according to the CCSDS standards. This dictionary is the input

for the Packet Gen module.

The Packet Gen module has the aim to use the telemetries data, divide them

for the different subsystems, and to generate the CCSDS packet.

Figure 41: Packet Gen Module

The methods in this module according to the specific on-board system, take

the useful data and generate the packets according to the standards specified in the

section 3.2.1. To build the packets this module uses the packet structures saved in

the TM/Packet Dicts Archive where there are all the dictionary structures, divided

by sub-systems, to fill to build a packet. The output of this module is, for each

60

system, a binary string that represents all the packet fields. These strings are the

input to the TM Queue Gen module as shown in Figure 42.

Figure 42: TM Queue Gen Module

The TM Queue Gen module has the main purpose of generating a sequence

of strings that represent the incoming packets from the satellite. The TM_Flow ()

method generates the queue, saves it in the Packet Sent Archive in the form of

“TM Queue_2019_07_12-21_25_48.txt” and, in conclusion, sends it to the GS

SIM thread for the ground station packet extraction.

Figure 43: GS SIM Extraction Module

The TM Queue generated is sent to the GS SIM thread’s extraction module.

The method extraction () receives in input the telemetry queue and the packets

dictionary structure from the GS Packet Dicts Archive and extracts the useful data

from the packets. These data are saved in the GS Extractions Archive in form of

dictionary divided by on-board system (for example ADCS_RW.json is the ground

extraction related to the reaction wheels), and then they are sent to the Control

Loop module.

61

Figure 44: GS SIM Control Loop Module

The Control Loop module receives in input the extracted data and check if

it is acceptable or if it is not acceptable. According to [1], the criteria used to

evaluate the data are the following:

• Checked: the data is acceptable.

• Alarm: the data is not acceptable and not tolerable.

• Tolerance: the data is not acceptable, but it is tolerable.

• OOL: the data is out of the prefixed limits.

The results of the Control Loop module are saved in the Logs Archive and,

if it happened, a message of alert is sent to the operator’s mobile. This is an

important skill for the control centre because in this way the operator can check

the incoming telemetries directly from his mobile phone and he is not forced to be

constantly present in the control center office.

62

4.4 SAT SIM OVERVIEW: TELECOMMAND BRANCH

The telecommand generation has a path similar to the telemetry generation.

The process starts from the GS SIM thread that generate the TC packets and send

them to the SAT SIM thread that extract the command from the packet and

execute it. The architecture of the TC branch is shown in Figure 45.

Figure 45:SAT SIM - TC Branch

The generation of telecommand is dedicated to the Python class GS SIM.

This thread is organized into different module with different functions (methods).

The TC Gen module has the purpose to generate the command packet for each

on-board system; from the TC interface, the operator can manage the on-board

equipment parameters and generate the packets to send to the SAT SIM extraction

module.

63

Figure 46: TC Gen Module

The TC Gen module has different modules:

• run (): this method starts the thread, calls all the method in the

Python class and generates the interface for the generation of the

telecommand.

• Acquire_button (): for each on-board system, this method has the

aim to check that all the parameters changed by the operator are

correct and able to be sent to the satellite. The criteria to establish if

the input parameter is acceptable are the same exposed in the section

4.3.

• Gen_TC_Packet (): for each on-board system, this method

generates the packets according the CCSDS standards expressed in

the section 3.2.2. To build the packets, this method refers to the

packet dictionary structures saved in the TC Packet Dicts Archive.

• Sent_PKT_Button (): this method generates the packet string for

each on-board system and send it to the SAT SIM extraction

module.

Figure 47: SAT SIM Extraction Module

64

The SAT SIM extraction module has objectives similar to the GS SIM

extraction module. This method receives in input the packet strings and extracts

all the packet fields from the strings. When the data is extracted, the extraction

module executes the command updating the on-board equipment parameters and

saving the data in the TC Extractions Archive. The useful data (in this case the

command to execute) is sent to the GS SIM TM Queue Gen to generate new

telemetry as proof of the correct execution of the command; from this point on,

the path is the same path of the TM branch. In the case that the command is not

executed, a message of error is sent to the operator to warn him on the incorrect

event happened.

Figure 48: New TM Gen after the command execution

In conclusion, all the TC logs and data are sent to the TC Display module.

Figure 49: TC Display module

The Display_Command () module has the purpose of displaying the

commands sent and all the messages of correct/incorrect command execution,

correct/incorrect command sending and the new telemetry as proof of the correct

command execution.

65

4.5 SAT SIM OVERVIEW: IMAGES MANAGEMENT BRANCH

The control centre also presents the possibility to manage the incoming

images sent from a payload camera. To achieve these functions, it was considered

an image branch in the SAT SIM architecture called IMG SIM (Image Simulator).

Figure 50: IMG SIM Branch

To simulate the payload camera, the SAT SIM software refers to a dataset

of images takes from the Sentinel Hub a database of multispectral images. The

master thesis work takes in exams some spectral bands and image of Turin city

[12]. This database is the input to the IMAGE_SIM module as shown in Figure

51.

66

Figure 51: IMAGE_SIM Module

The IMAGE_SIM module has different methods:

• run (): this method starts the IMAGE_SIM thread and receive in

input the files in the Sentinel Database. This function takes the files

and compresses them into the CCSDS packets according the

standards presented in the section 3.2.3. These packets are saved in

the Image Processing Archive in form of files

“Acquisition_2019_08_23-19_14_26_1.txt” and sent to the method

Frame_Extraction ().

• Frame_Extraction (): this method receives in input the image

packets and extracts the useful data from them. When the extraction

is ended, the frame extracted is decompressed and converted in the

effective images and sent to the Image Display module.

67

Figure 52: Image Display Module

The converted images coming from the IMAGE_SIM module are saved in

the Image Acquisition Archive in form of file “Acquisition_2019_08_23-

17_30_27_18.jpg” and then they are sent to the Image Display module. This

module has the following methods:

• IMG_LIST (): this method displays to the operator all the incoming

image packets.

• window (): this method allows the operator to display and share the

incoming images.

• Histogram (): this method provides the operator with the first post-

processing operations. This function generates the RGB diagram for

each incoming image and display the diagrams to the operator.

In conclusion, this branch is developed starting from the TC branch where,

from the TC interface, the operator can require the sending of images from the S/c

and display them.

4.6 SAT SIM OVERVIEW: INTERFACE OVERVIEW

The SAT SIM architecture is connected to an interface to allow the operator

a simple use of the code to manage telemetry and commands. Python provide

different tools to create interface for several applications like wxPython, PyQt and

kivy. To achieve the functions of the control centre, the interface library used for

the SAT SIM Interface is Tkinter (Tk Interface) [13].

Tkinter is Python’s standard cross-platform package for creating graphical

user interfaces (GUIs). It provides access to an underlying Tcl interpreter with the

Tk toolkit, with itself is a cross-platform, multilanguage graphical user interface

68

library [13]. Tkinter gives the ability to create windows with widgets (graphical

component on the screen) in them.

The SAT SIM Interface architecture is divided into different modules, each

of which is linked to a branch of the software shown in the previous sections of

chapter 4.

Figure 53: SAT SIM Interface architecture

As shown in Figure 53, the first module of the interface is the Log in

Module. In this module the operator can register himself as operator or log in into

the software with his credentials (name and password).

Figure 54: SAT SIM Login/Register Interface

69

Figure 55: SAT SIM Login Interface

Figure 56: SAT SIM Registration Interface

After the Log-in phase, the operator can access the Main Enter Interface

module. This is the high level interface of the SAT SIM software and from it the

operator can access the TM branch or the TC branch or the STK simulations

branch.

70

Figure 57: SAT SIM main interface

Through the TM Viewer button, the operator can access the TM branch. The

interface shows the results of the telemetry extractions of the incoming packets as

shown in Figure 58.

Figure 58: SAT SIM TM Interface

71

From the TM interface it is possible to see the following modules:

• Incoming Packets: the queue of the incoming packets (in green

correct acquisition of the packet, red incorrect acquisition)

Figure 59: Queue of the incoming packets

• Telemetry Display: The TM information are displayed and divided

by on-board system (ADCS, EPS, TCS, OBC, PROPULSION and

PAYLOAD). In this section there is also the displaying of the

consistency check where it is shown if the parameters are acceptable

or not acceptable. In addition, in this section are shown the packet

type, the time of packet sent and the packet parameters.

Figure 60: SAT SIM TM Display interface

72

• Packet Visualization: on the TM interface, the operator can also

visualize the structure of the incoming packet divided by on-board

system. In this way the operator can check if the structure of the

CCSDS packet is respected.

Figure 61: SAT SIM TM Packet Visualization

From the TM Interface is possible to access to the packet archive. Through

this ability is possible to check a specific packet sent in a specific data and time.

Figure 62: Packet Archive

After that the operator chooses the packet to display, he can open it packet

and can display all the telemetry data sent in that specific data at that specific

time.

73

Figure 63: Display of a specific TM packet

The interface for the generation of the command packet is similar to the TM

interface in which the operator can choose the parameters to change and generate

TC packets to sent to the satellite.

Figure 64: TC Interface

In detail, from Figure 64 it is possible to distinguish the following modules:

• Telecommand Manage Interface: from this module the operator

can change the not acceptable parameters and can check if the new

chosen parameter is acceptable or not through the Acquire button

that call the consistency check methods to control the different data.

74

Figure 65: TC Manage Interface

• TC Packet Generation Module: through the TC PKT GEN the

operator generates the TC packets according to the CCSDS

standards examined in the section 3.2.2. At this moment the packet

is only a dictionary where the keys are the CCSDS packet fields and

the values are the new parameters generated by the operator. Instead,

with the Send button, the TC packet is converted into a binary string

and sent to the extraction module of the SAT SIM thread. As proof

of the correct sending, messages of information are displayed to the

operator on the interface.

Figure 66: TC Packet Generation Module Interface

When the packet is sent to the extraction module, the S\c executes the

command sent, updates the telemetry and generates a new TM packet as proof of

the correct command execution.

75

Figure 67: Correct execution of the command

The STK button allows the operator to call a new STK scenario to simulate

access and different actions before effectively sending them to the satellite. Whit

the STK software the operator can also simulate the track of satellite before

update the TLE date in the real tracking system of the C3.

The last part of the software is the capability of schedule different type of

pre-set commands ordered by the operator and executed by the SAT SIM thread.

The schedule part consists into receive in input a command with a specific

structure shown in Figure 68.

Figure 68: Command Structure

The command structure in input is a dictionary that has the follow keys:

• Command_name_dict: name of the dictionary that indicates the

name of the command.

76

• Display name: is the name of the command displayed on the

interface.

• Description: is a brief description of what the command does.

• Resources: are the sequence of resource involved in the execution

of the command.

• Priority: is a number that establish the priority with which the

command must be execute. The scheduler, in fact, will execute the

command with the highest priority (priority = 1) and then in

sequence all the others.

In this part, 8 type of commands are pre-set in the scheduler. The commands

are the following:

• Pings: is the simple request to the satellite to ping a signal.

• Error: is the command to evidence an error.

• Connect: is the command to points antennas and starts broadcasting

carrier signal to establish RF lock with the spacecraft.

• Safe Mode: is the command to switch the spacecraft in its safe mode

state.

• Detumbling: is the command to star all the sequences for the

execution of the spacecraft detumbling mode.

• Offline: is the command to turn off all the systems.

• Nominal: is the command to set all the systems in their operative

mode (all the systems operate in their nominal mode).

• Acquire Event: is the command to acquire a specific event with the

payload.

From the interface the operator can choose what kind of command want to

select for the schedule. Each command is associate with a tab where there are all

the details of the chosen command and the possibility to assign a priority number

to it. After assigned the priority to the command, the operator can add the

command to the schedule queue that are waiting to be executed.

77

Figure 69: Scheduler Interface Command Choose

When the operator chooses the command to schedule, he can see all the

details relative to that specific command as shown in Figure 70.

Figure 70: Command detail window

From the window shown in Figure 6, is possible to see the following fields:

• Schedule ID: is the ID generate for the command to add to the

schedule queue.

• Command Name

• Description: Description of the command to choose.

• Resources: the resources involved in that specific command.

• Priority: the operator can assign a priority number to the command.

This number will be read by the scheduler that will execute all the

schedule queue sorted by priority number.

Through the ADD to Sched Queue button the operator can add the command

to the queue and choose another command to schedule in the same way.

Figure 71: Scheduler Queue Interface

78

Through the Execute Schedule button, the entire schedule will be execute

starting from the command with the highest priority (1) and then in sequence all

the other commands.

Figure 72: Example of a schedule execution

In conclusion, all the SAT SIM software provides the possibility to manage

TM and TC and Images packets following the CCSDS standards and then to

simulate a schedule of commands for the correct execution and monitoring of the

spacecraft operations.

In the next session it will be described all the test sessions used to validate

and verify the entire software and its interface.

79

5. TEST & VALIDATION

The software testing life cycle typically includes different phases like:

Planning, Analysis, Design, Construction, Testing Cycles, Final testing and

implementation and Post implementation. Each phase is described with the

respective activities as follows [14]:

• Planning: includes the high-level test plan, the quality goals plan,

problem identification and classification, acceptance criteria,

measurement criteria and the reporting procedures.

• Analysis: involves activities that develop test cycles, identify test

case, plan the test cycles required for the project and review of

documentation.

• Design: in this design phase the activities included are revision tests

based on software changes, revision and addition of new test cases

based on software changes, finalization of the test cycles (number of

test case per cycle) and finalization of the test plan.

• Coding: complete all plans from test cycle to the automated testing

and fix the bugs (bug reporting, verification, and revision/addition of

the test cases).

• Verification: this phase includes the execution of all test cases

(automated and manual), updating estimates for test cases and test

plans, document test cycles, regression testing, and updating

accordingly.

• Validation: activities in this phase are review of the test cases to

evaluate other cases to be automated, clean up the automated test

cases and variables and review process of integrating results from

automated testing in with results from manual testing.

In the next sections it will be reported, for the SAT SIM software, all the

test cases classification and tracking according to the test objectives and

requirements.

80

5.1 OBJECTIVES & REQUIREMENTS

The objectives of this last part of the master thesis work are to evaluate the

software performances, to verify the software and to validate it with test cases. In

particular, in this section all the procedures included in the verification of the

software requirements and all the test cases used to validate the software will be

explained.

The Verification process checks if the software is conformed to its

specification and requirements (in general this phase answer to the question “Are

we building the product in the right way?”). Some of the requirements for the

software are shown in Table 9.

REQ ID Text

REQ-1 C3 shall recognize the TM packets

REQ-2 C3 shall acquire the TM packets

REQ-3 C3 shall save the TM packets

REQ-4 C3 shall recognize the TC packets

REQ-5 C3 shall built the TC packets

REQ-6 C3 shall save the TC packets

REQ-7 C3 shall recognize the Image packets

REQ-8 C3 shall acquire the Image packets

REQ-9 C3 shall save the Image packets

REQ-10 C3 shall share information with the mission stakeholders

REQ-11 C3 shall share images with public

REQ-12 C3 shall display the acquired information

REQ-13 C3 shall guarantee the existence of an interface between operator and PC

REQ-14 C3 shall be developed according to ECSS standards

REQ-15 C3 shall be compliant to CCSDS standard

REQ-16 C3's control centre shall be implemented in Python

REQ-17 C3 Scheduler shall recognize a specific structure for pre-set commands

REQ-18
C3 Scheduler shall generate a unique ID for the pre-set commands each time

a schedule is created

REQ-19 C3 Scheduler shall provide an interface to display the commands information

REQ-20 C3 Scheduler shall generate a queue sort by the command’s priority

REQ-21
C3 Scheduler shall provide an interface to display the correct execution of the

schedule

Table 9: Software Requirements

81

The Validation process, instead, checks if the software does what the user

really requires; this goes beyond checking that the software meets its

specification, but this phase requires that the software is able to achieve the

mission objectives and the needs of the mission stakeholders [14]. The whole life-

cycle process of the Verification and Validation (V&V process) must be applied

at each stage of the software process and has two principal objectives:

• The discovery of defects in a system.

• The assessment of whether or not the system is usable in an

operational situation.

Figure 73: The V-model of the V&V process

The V&V process establishes a degree of confidence that the software is fit

for purpose; this does not mean that it is completely free of defects and the degree

of confidence depends upon several different factors as the test typology used to

validate the software and the experience of who tests the code.

To achieve the objectives of the V&V process, in the next sections all the

tests conducted, and the respective results will be described.

82

5.2 TEST SESSIONS

The test sessions have the main purpose of locating the defects of the

software. Each test should be repeatable, but there are some exceptions in case the

software changes the test environment without the possibility to restore it or in

case there are some indeterministic elements (non-controllable inputs) in the code.

To take a test it is useful to consider the following points:

• It is important to know the expected behaviour to compare with the

observed behaviour from the code.

• During all the test it is important to have an Oracle that knows the

expected results for each test case. It is possible to have a human

Oracle, the operator follows the software specification and compare

the expected results with the real results, or an Automatic Oracle that

is generated by the software specification. It is possible that this

oracle could be the same software but developed by other operators

or a previous version of the same software. In this test session the

oracle is the operator that compares the expected results with the real

results.

Figure 74: Test evaluation flowchart

Test Cases

Software to
Test Oracle

Results
Comparison

Test Results

83

To establish if a test is ended and if it is successful, it is important to create

the pass criteria for each test, which establish if the test is passed by the software

or if the test is failed by the software. The number of the tests that can occur in

validating the software depends from time available for each test, coverage (test

all the macro areas of the code) and from statistics criteria (if the last test cases are

passed it is possible to end the validation process).

It is not possible to evaluate the ideal number of the test cases, but each of

them is described by the following parameters:

• Effectiveness: it is the rate between the number of bugs found and

the number of bugs to find.

• Efficiency: it is the rate between the number of tests able to find

bugs and number of total tests.

To keep track of the results, each test is characterized by different

identification field as shown in Table 10.

Table 10: Test Classification

From Table 10 it is possible to see:

• Test Case ID: this is the identification code of each test conducted.

The ID is simple and structured as in the example: TC-001 (the ID

code of the first test case).

• Test Case Description: this is a description of the objectives of the

test case and how the test case is conducted.

• Input Data/ Requirements: this field describes the type of inputs

for each test case (if there are input) and which requirements the test

case would need to verify and test.

• Expected Result: this field describes the expected result (if there is

any) for each test case.

• Pass/Fail: these are the results of the test. (P = pass, F = fail).

Test Case ID
Test Case

Description

Input Data/

Requirements

Expected

Result
Pass/Fail

84

5.2.1 TEST SESSION: DEBUGGING PROCESS

The Debugging process is concerned with locating and repairing the errors

discovered in the code. Debugging involves:

• To formulate a hypothesis about program behaviour.

• To test these hypotheses to find the system error.

There is no simple process for debugging and it often involves looking for

patterns in test outputs with defect and using a programmer’s skill to locate the

error. The Debugging process includes the location and repairing of errors like

syntax errors (usually caught by the compiler which locates the error occurred in

and the type of error), and semantic errors (logical error) which occurred when the

software produces incorrect output on some input. These errors are harder to

detect since the compiler may not able to indicate where and what the problem is.

Once errors are located and fixed, it is necessary to re-test the program to

make sure that the fix operation has not introduced new problems. Experience

could help the programmer to reduce the introduction of new errors in the

debugging process.

Figure 75: The Debugging Process

85

5.2.2 TEST SESSION: SOFTWARE PROFILING

One of the first tests performed after the physiological debugging phase is

the tracking of software performances. Testing the software's performance means

monitoring the execution times of the various classes and the entire software and

track the entire software path to control the presence of errors.

In Python it is possible to monitor all these characteristics using its profiler.

A profiler is a program that describes the run time performance of a code,

providing a variety of statistics and graphs. The profiler provides also a series of

report generation tools to allow users to rapidly examine the results of a profile

operation.

The Python profiler library used to profile the SAT SIM software is

cProfile. It is a C extension with reasonable overhead that makes it suitable for

profiling long-running programs.

The module cProfile.run() receives in input the function to profile and

returns as output a series of statistics that describe the function in all its

performances. As first profile in this test session, the SAT SIM main is profiled as

shown in Figure 76.

Figure 76: cProfiler output of SAT SIM main

The first line indicates that 10983 calls were monitored and, of those calls,

6625 were primitive. The term primitive indicate that these calls were not induced

via recursion. The next line Ordered by: standard name, indicates that the text

string in the far right column was used to sort the output. The other columns

include:

86

• ncalls: number of calls.

• tottime: total time spent in the given function (and excluding time

made in call to sub-functions).

• percall: the tottime divided by ncalls.

• cumtime: total time spent in this and all subfunctions (from

invocation till exit).

• percall: the cumtime divided by primitive calls.

• filename:lineno(function): provide the respective data of each

function.

It is possible to find two numbers in the first column like 43/3; that means

that the second number is the number of primitive calls and the first is the actual

number of calls. When the function does not recurse, these two values are the

same, and only the single number is printed.

In the same way the interface code is profiled, and the outputs are shown in

Figure 77.

Figure 77: cProfiler output of the Interface main

To visualize the actual calls and the connection between the classes the

profiler provides some library to automatically generate a graph of all

connections. The Python library used to generate graphs is pycallgraph. It is a

library created to visual profiling tool for Python application. Its major function is

to track the name of every function called, the time take within each function,

number of calls and other statistics.

In the Figure 78-79 the profiling graph of the SAT SIM main and the

Interface main are shown (for reason of clarity and space only a part of the graph

is reported, for the detail of the graph see the Appendix).

87

Figure 78: Call graph of the SAT SIM main

From the profiling table and from the graph is possible to see that the

execution time of the code is about 5.040 seconds and it is possible to monitor all

the connection in the code.

88

As last profile, the call graph of the Interface main is shown below (for

reason of clarity and space only a part, for example purpose, of the graph is

reported, for the detail of the graph see the Appendix):

Figure 79: Call graph of Interface main

The graph of the Interface main is only indicative of what and which are the

functions called in the code, the execution time depends by the operator that use

the interface.

89

5.2.3 TEST SESSION: TM/TC NOMINAL PROFILE (TC-001)

The test sessions of the SAT SIM software consist into establishing different

test cases (Tc) in which the operator can compare the expected result with the

actual outputs generate by the code. It is important to say that each Tc is aimed at

verification of the requirements expressed in the section 5.1.

The first test case execute is the generation of a telemetry nominal profile.

This test consists into verifying if the SAT SIM thread is able to generate

telemetry in the acceptable range (nominal range) and if it is able to packetize

them and sent them to the GS SIM thread. In addition, the test has the purpose to

establish if the GS SIM can recognize the packet, extract the useful data and

convert them into an engineering language. In conclusion, if the interface is able

to display the correct TM generated and if it is able to recognize the nominal

profile, the test is considered as passed.

Figure 80: Tc Nominal TM generation flowchart

The first step of the test case is to generate the nominal TM profile and

packets; in this phase the SAT SIM Thread is under test.

The second step of the test it to receive correctly the packets, extract the

useful parameters from them and check the correct execution after the extraction,

in this phase the GS SIM Thread is under test.

The last step is to test the interface. From the interface it is possible to check

if the previous two phases are ended correctly and if the test is passed.

Generation of
TM nominal

packets

Extraction and
Conversion of the

TM nominal packets

Display of the
nominal TM

SAT SIM
Thread Test

GS SIM
Thread Test

Interface
Thread Test

90

Figure 81: Tc-001 Nominal TM packets

In this test session, as shown in Figure 81, all the packets are correctly

generated, sent and received (the green list indicates the correct acquisition of the

packets). The extraction of the packets parameters has happened correctly, and all

the consistency checks return a positive result indicated by the green cells in all

systems pages. The test is conduced on about 150 nominal packets generated to

have a substantial number of data on which make statistical considerations.

As proof of validation it is possible to check that from the telecommand

(TC) interface it is not useful to generate TC packets to change the parameters that

are already correct (in the TC interface there are all green cells, so the operator

does not change the parameters).

91

Figure 82: Tc-001 Nominal TC interface

In conclusion, based on the tests carried out, and based on the data

collected, it is possible to say that the Tc-001 reflects the expected results and

verifies the relative requirements. Ultimately, the test has passed.

5.2.4 TEST SESSION: TM/TC ERROR PROFILE (TC-002)

The second test case execute is the generation of a telemetry error profile.

This test consists into verifying that the SAT SIM thread is able to generate

telemetry in the not acceptable range (error range) and if it is able to packetize

them and sent them to the GS SIM thread. In addition, the test has the purpose to

establish if the GS SIM can recognize the packet, extract the useful data and

convert them into an engineering language. In conclusion, if the interface is able

to display the error TM generated, send error to the operator’s mobile and if it is

able to recognize the error profile, the test is considered as passed.

Figure 83: Tc-002 Error TM generation flowchart

Generation of
TM error
packets

Extraction and
Conversion of the
TM error packets

Display of the
error TM

SAT SIM
Thread Test

GS SIM
Thread Test

Interface
Thread Test

Interface on the
operator s mobile

92

The last step is to test the interface. From the interface it is possible to check

if the previous two phases are ended correctly and if the test is passed.

Figure 84: Tc-002 Error TM packets

In this test session, as shown in Figure 84, all the packets are correctly

generated, sent and received (the green list indicates the correct acquisition of the

packets). The extraction of the packets parameters has happened correctly, and all

the consistency checks return a result indicated by the colors of cells in all

systems pages. The test is conduced on about 150 nominal packets generated to

have a substantial number of data on which make statistical considerations.

All the alert messages and the warning messages are correctly sent to the

operator’s mobile. From the smartphone the operator receives an alert notification

as shown in Figure 83. This notification provides the general information about

the type of packet and the type of message incoming to the GS SIM.

93

Figure 85: Alert Notification

The operator can click on the notifications and see the relative details of the

incoming message, as shown in Figure 86.

Figure 86: Detail of the incoming message

94

The Python library used to connect the operator’s smartphone to the code is

notifyRun. This library consent to connect a smartphone to a server and then

through a line command send string as message directly to the registered

smartphone.

This skill provides the operator the possibility to monitor the TM packets

incoming into the ground station even being away from the control center. It is

important to emphasize that the operator can only monitor the situation in

revenue, for any action the presence within the control center is necessary.

To resolve the alert the operator must generate TC packets to correct the

parameters through different protocols and acquire new telemetry.

Figure 87: TC packets generation

Figure 88: New Tm correction acquired

During the test, the software's ability to control the correct acquisition of

packets was also tested. After several tests, it was possible to see that if the packet

length exceeds the length indicated by the CCSDS standards (65536 octets

relative to the data field), the packet is automatically discarded, and an error is

shown on the interface indicating the number of the discarded packet.

95

Figure 89: Incorrect Packet Acquisition

In conclusion, based on the tests carried out, and based on the data collected

it is possible to say that the Tc-002 reflects the expected results and verifies the

relative requirements. Ultimately, the test is passed.

5.2.5 TEST SESSION: IMAGE PROFILE (TC-003)

The third test case execute is the management of the image profiles. This

test consists into verify that the software is able to manage the images. In

particular, the test controls that the software can take images from a dataset,

compress them into images packets and send them to the GS SIM that extracts and

converts the images and displays them to the operator. The test was conducted on

about 24 images of Turin in different spectral bands [12]. In conclusion, if the

interface is able to display the images, and their relative RGB diagram, and the

software is able to save these images, the test is considered as passed.

Figure 90:Tc-003 Image management flowchart

Acquisition of
the Imges from

Dataset

Compression of the
Imges into packets

Display of the
Images

IMAGE SIM
Thread Test

GS SIM
Thread Test

Interface
Thread Test

Extraction and
conversion of the

Images

96

From the interface is possible to control all the phases of the test. The first

phase is the acquisition of the image and the compression of the images. From the

TC Viewer through the button Acquire Image is possible to require the

compression of the images from the dataset into packets and sent them to the GS

SIM for the extraction phase.

Figure 91: Tc-003 Image compression Interface

After the compression phase, the packets are sent to the GS SIM to be

extracted and to display the images.

Figure 92: Tc-003 Frame Extraction

If the acquisition phase ends correctly, it is possible to display the acquired

images and monitor the relative RGB graph.

97

Figure 93: Tc-003 Images Display

From the Image list on the left of Figure 84, is possible to select which

image and relative RGB graph the operator wants to display. As said in the

section 5.2.4, if the length of the packets does not respect the recommended

CCSDS length [10], the packet is automatically discarded, and an error is shown

on the interface indicating the number of the discarded packet. During the test

session, based on 24 images takes from the dataset, no error has occurred so the

CCSDS compression expressed in the recommendations [10] is respected.

In conclusion, based on the tests carried out, and based on the data collected

it is possible to say that the Tc-003 reflects the expected results and verifies the

relative requirements. Ultimately, the test is passed.

98

5.2.6 TEST SESSION: SCHEDULER TEST (TC-004)

The fourth test case execute is the test of the SAT SIM Scheduler. This test

consists into verifying that the scheduler thread is able to recognize the pre-set

command, add them to a scheduler queue and execute them according to the

priority number associated by the operator. In particular, the test control the

correct acquisition of the command structures, generates the schedule correctly

and sends them to the SAT SIM thread that executes all the scheduled commands

follow the priority number order.

Figure 94: Tc-004 Schedule test flowchart

From the interface it is possible to control all the phases of the test. The first

phase is the recognition of the command structure. It means that the interface

could be able to display all the command and all the relative information about a

specific command chosen by the operator.

Figure 95: Tc-004 Recognition and display of the pre-set commands

Recognition of
the command

structures

Generation of the
Scheduler Queue

Correctly
execution of
the Schedule

Schedule
Thread Test

SAT SIM
Thread Test

Interface
Thread Test

Sending of the
Scheduler Queue

99

As shown in Figure 95, each command window presents an unique ID,

generated every time the operator wants to create a new schedule, for the addition

into the scheduler queue, the name of the command, a brief description, the

resources involved into command execution and the priority where the operator

can set the priority number.

Through the command windows the operator can set the priority number to

all the commands that he wants to schedule. To establish a correct priority number

the theory of space operations and the operator experience could help to schedule

correctly the commands.

Figure 96: Tc-004 Generation of the Schedule queue

Through the Execute Schedule button the Schedule thread generates a queue

sorted by priority number where the number 1 indicates the maximum priority and

then, in sequence, the other number indicates a lower level o priority. This queue

is sent to the SAT SIM thread that executes the command according to the priority

number established by the operator.

Figure 97: Tc-004 Schedule queue executed correctly

100

It is important to say that the operator cannot assign the same priority to

different commands because it is not possible for the spacecraft to execute two

different operations at the same time. For this reason, if the operator wants to

assign the same priority to different commands, the scheduler interface provides

him a warning message to alert the operator that this operation is incorrect, and

the schedule is destroyed.

Figure 98: Tc-004 warning message for command with same priority number

In conclusion, based on the tests carried out, and based on the data collected

it is possible to say that the Tc-004 reflects the expected results and verifies the

relative requirements. Ultimately, the test is passed.

101

5.3 RESULTS

All the tests performed are tracked in a table where is possible to monitor

the type of test case (Tc) performed, the requirements the test wants to verify, the

expected results and the result of the test (passed or failed). The Table 11 shows

the actual result of the test sessions.

Test Case ID
Test Case

Description
Input

Data/Requirements
Expected

Result
Pass/Fail

Tc-001

Generation of the
TM packet

describing the
nominal

condition

REQ-1; REQ-2; REQ-
3; REQ-10; REQ-12;

REQ-13

Positive end of
the generation

of nominal
packets

P

Tc-002

Generation of the
TM packet

describing the
error condition
and correct the
error with TC

packets

REQ-1; REQ-2; REQ-
3; REQ-4; REQ-5;
REQ-6; REQ-10;
REQ-12; REQ-13

Positive end of
the generation

of error
packets

P

Tc-003
Manage of the
Images packets

REQ-7; REQ-8; REQ-
9; REQ-10; REQ-11;

REQ-13

Positive end in
managing

images
packets

P

Tc-004

Test of the
correct functions

of the SAT SIM
Scheduler

REQ-17; REQ-18;
REQ-19; REQ-20;

REQ-21

Positive end in
test the

scheduler
operations

P

Tc-005

Inspection of the
code to verify the

design
requirements

REQ-14; REQ-15;
REQ-16

\ P

Tc-006
Test of the Login

interface
REQ-13

Login interface
that works

only with the
correct

credentials
registered

P

Table 11: Test Cases Results

From Table 11 it is possible to see the test cases performed in the test

sessions. The major tests are the test from Tc-001 to Tc-004 described in detail in

the previous sections.

The Tc-005 is an inspection test to verify the design requirements like the

implementation of the CCSDS standards. The test consists in inspecting the lines

102

of code and verifying that the software meets the design requirements expressed

in Table 10. At the end of the inspection the requirements are verified and the Tc-

005 is considered as passed.

The last test case, Tc-006 is a test to verify the initial interface of login. The

idea of the SAT SIM software is to have a Python library that the operator can use

on any computer that can handle the Python language. The operator can then use

this library through his credentials and access the software and use the incoming

telemetry data.

The test consists in verifying the correct registration of the operator and the

correct access to the software with the registered credentials.

Figure 99: Tc-006 Register Interface

Figure 100: Tc-006 Registration Success

After the registration the operator can access whit his credentials to the SAT

SIM software.

103

Figure 101: Tc-006 Login Interface

Figure 102: Tc-006 Login Success

In conclusion, based on the tests carried out, and based on the data collected

it is possible to say that the Tc-006 reflects the expected results and verifies the

relative requirements. Ultimately, the test has passed.

104

6. CONCLUSIONS

The completion of the project led to some reflections about the work that

has been done.

Standards and recommendations are fundamental guidelines when a project

is in its design phase. However, these references may require a very long study

due to their complexity and the numerous volumes dedicated to a specific area.

Therefore, the present work required, at beginning, a phase of organization

research and study of the necessary references that led to the selection of the

different macro-areas necessary to achieve the objectives of this thesis.

The aim of the present work is to provide to student and non-professional

operators a software to manage, control and study space packets and protocols

following the CCSDS standards. This thesis also has the purpose to provide a

control software for the C3 project in which the students can support CubeSats

operations and manage the entire ground station.

The first chapters of the thesis describe the context in which the software is

collocated. From the space operations world, in which the SAT SIM software

propose itself to train future spacecraft operators via CubeSat operations to

achieve an important method to increase the effectiveness of future operations

with already trained experts, to the C3 project, in which the SAT SIM software

will be the core of the control centre.

The third chapter describes the standards used to support the generation of

the code. Mainly the CCSDS recommendation are used to the construction of the

TM, TC, IMG PKTs and for the operations scheduler philosophy.

The fourth chapter provides a complete overview of the SAT SIM library

architecture and describes all the main functions of the software with particular

focus on the data flow from a thread to another.

Last chapter is focused on all the test session performed to validate the

software and verify all its specifications and requirements. As said in the results

section 5.3, all the tests are passed, and the software is verified and validated.

It is important to say that even if the software is validated and verified, it

requires some future works to be completely integrate in the C3 control centre.

105

Some future steps identified for the next upgrade of the SAT SIM library

are:

• Integration of the software on different hardware. The first step

identified for the future is the test of communication between two

hardware. This test will need the implementation of the SAT SIM

thread and GS thread on different boards so to test the generation of

packets from the SAT SIM board, sending and extracting of the

packets from GS board.

• Automatization of specific procedures. This point will require the

study of automatic algorithms in order to automatize the command

and schedule procedures.

• Implementation of different missions and CubeSat architecture. In

this step will be upgrade the software to support multiple CubeSat

missions and operations in order to create a substantial database with

mission information and CubeSat architecture structures able to

support the software and the entire ground station.

• Integration of the SAT SIM software in the full control centre of C3

in order to integrate also the RF software and the Tracking software.

In conclusion, this work of thesis hopes to provide a useful starting point to

support the future implementations of the control centre software to support the

C3 project and the future CubeSat operations.

106

REFERENCES

[1] ECSS, “ECSS-E-ST-70-41C – Telemetry and telecommand packet
utilization,” Ecss-E-St-70-41C, no. April 2016.

[2] J. J. James, R. R. Wertz, and W. J. Larson, Wertz Mission Geometry; Orbit
and Constellation Design and Management, James R. Wertz Influence of
Psychological Factors on Product Development. 1999.

[3] ECSS, “ECSS-E-ST-10C – Space engineering requirements,” Interface, no.

March 2009.

[4] ECSS-M-ST-80C, “Space project management Risk management,” no.

July, p. 43, 2008.

[5] CCSDS 102.0-B5, “Packet Telemetry,” no. November, pp. 2000–2000,
2000.

[6] CCSDS 301.0-B-4, “TIME CODE FORMATS Recommendation for Space

Data System Standards,” no. November 2010.

[7] CCSDS 201.0-B-3, “Telecommand Part 1—Channel Service.” no. June

2000

[8] CCSDS 202.0-B-2, “Telecommand Part 2—Data Routing Service.” no.

November 1992.

[9] CCSDS 203.0-B-2, “Telecommand Part 3—Data Management Service.”

no. June 2001.

[10] CCSDS 122.0-B-2, “IMAGE DATA COMPRESSION Recommendation
for Space Data System Standards 122.0-B-2,” no. September 2017.

[11] L. Wall “About the Tutorial Copyright & Disclaimer,” p. 2, 2015.

[12] Sentinel Hub refer link: https://apps.sentinel-hub.com/eo-browser

[13] “Learning Tkinter,” Stack Overflow contributors, 1966.

[14] J. Jacobson and B. Johansson, “MID Software Work Package 2 Methods

for Validation and Testing of Software,” no. September 2004.

[15] CCSDS 529.0-G-1, “Mission Planning and Scheduling,” no. June 2018.

https://apps.sentinel-hub.com/eo-browser

107

APPENDIX

The profiling graph of the code is generated by a Python library called

pycallgraph. Pycallgraph is a Python module that creates call graph visualizations

for Python. It uses a debugging Python function called sys.set_trace() which

makes a callback every time the code enters or leaves a function. This consents to

Python to track the name of every function called, as well as which function

called which, the time taken within each function, number of calls, etc.

In the figures below the profiling of the SAT SIM code and the Interface is

shown. The description of the profiling sessions is described in the section 5.2.2.

Figure 103: SAT SIM Call Graph (1)

108

Figure 104: SAT SIM Call Graph (2)

109

Figure 105. SAT SIM Call Graph (3)

110

Figure 106: Interface Call Graph (1)

111

Figure 107: Interface Call Graph (2)

112

Figure 108: Interface Call Graph (3)

113

Figure 109: Interface Call Graph (4)

114

Figure 110: Interface Call Graph (5)

115

Figure 111: Interface Call Graph (6)

