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Abstract

CubeSats are becoming an important reality in space exploration both in
academia and industry. The increasing capabilities of this kind of system enable
new kind of missions able to fulfill more diverse mission goals. Despite their
reduced complexity, spacecraft operations do not scale down with the size. Hence,
training future spacecraft operators via CubeSat operations would be an important
method to increase the effectiveness of future operations with already trained
experts.

To tackle these issues, the thesis presents Cubesat Control Centre (C3) is an
innovative ground segment to support Cubesat Operations directly from
Politecnico di Torino. It is composed by a ground station and a control centre
operated by students and non-professional operators.

Control Centre’s software for the unpacking of telemetries data and the
scheduling of operations are implemented by Python. The aim of this software is
to provide an interface that can read automatically telemetries data and using
scheduled protocols for sending telecommands. The process is monitored by
several consistency checks which identify the correct acquisition of the package,
identify the type of package, extract the data and convert them into an engineering
language.

The main component of this process is a database that helps software and
consistency checks to perform their tasks. The operator can see an interface where
the following are displayed: type of arriving packet, check of correct acquisition
and validation of packets, binary code from satellite, engineering value of arriving
data. From the interface the operator can also select the mission protocols to use
for the mission, can simulate the command to send and sends command directly to
satellite when it is in visibility.

C3 is one of the one of the first academic control centres in Italy using the
ESA CCSDS’s standards and it is a useful facility for educational and research
purposes. Control Centre is divided into three areas: Flight Operation: Where
CubeSats receives telecommands, sends telemetries and where the team evaluate

follow up operations; Payload Data Ground Segment: where the management of



payload data happens; User Segment: where consumer could request a series of
products by means of a formal request.

By providing to primary mission fast delivery information and high-quality
data, sending scheduled commands and assisting in managing requests from
stakeholders, C3’s control centre is a valid resource and cheap support for
operation, enabling great learning opportunities and effacement operations with an

open source vison to support CubeSat community.



CONTENTS

L0100 1 (=T | PP PPPPPPPTPPOPP 5
[y o) B 7= {0 P UPTPPPP 7
LISt Of TaBIES..c. ettt st sttt 10
ADDIEVIATIONS ...ttt b e e saee e 11
S [ {4 oo [¥ ot i o] o RO T ST PSR PPOPRRPRRP 13
D I o[-l O 3 o o =Y ot AP 15
2.1 Design Approach: Functional Analysis ......c.cccovvcieeiirciieeiicieee e 15
2.2 Design Approach: State ANalySiS.......coieeieciiieiecieee et 21
2.3 Design Approach: Risk Analysis and Management .........cccoceeeeciieeeecieeeeens 23
2.4 Design Approach: Baseline Proposal.........cceeeivcieieiiciiieiiciieeeeccieeeceiieee e 27
3. The Control CeNntre DESISN ....cuiccuieeeiciiiieecitte e ertee et sree e st e e e s ree e e s sabee e s e sareeas 31
3.1 Control Centre ArchiteCture........uooviiieiieereeeeeceee e 32
3.2 Control Centre CCSDS Standards OVErVIEW ..........ccocueevieeneeneeneensieesieeieenne 37
3.2.1 CCSDS Overview: Telemetry Construction..........cccueeeeeiveeeeciiieeeecieeeeevneee s 38
3.2.2 CCSDS Overview: Telecommand Construction ........ccecceeevvveeeieeeiieenieeennenn. 43
3.2.3 CCSDS Overview: Image Compression Construction ........ccccceeeeeevrrienveeeennn. 45
3.2.4 CCSDS Overview: Mission Planning & Scheduling..........ccccoecveveviiieeeciineennn. 50
4. Software Philosophy & Archit@CIUIE........ccccueiieiiiieeeciee e e 52
4.1 Python Multithreading APProach ........cccoccveeiieciiii i 53
4.2 SAT SIM Overview: Software Architecture ........ccccoeceeveenenicniiescceeeee 56
4.3 SAT SIM Overview: Telemetry Branch ......cccccvveeiiiiieeinieee e, 57
4.4 SAT SIM Overview: Telecommand Branch .........ccccceveeneenicniinicnieeseeeee 62
4.5 SAT SIM Overview: Images Management Branch.........ccccceeeecieeeieciiee e, 65
4.6 SAT SIM Overview: Interface OVErVIEW ........coceevieeieeneenieniceiceee e 67
5. Test & Validation ....ccoueeiiiiieieieeeee e 79
5.1 Objectives & REQUIFEMENTS ....cccccuvieieiciiiieecieee e et e e ecrreeeesree e e e sareeeesaveeeeas 80
5.2 TESE SESSIONS ..t 82
5.2.1 Test Session: DebUEEING ProCeSS ....cuuiiicccciieiieee e eccieeee e e e e e 84
5.2.2 Test Session: Software Profiling........cccoeecveeiiciie e, 85
5.2.3 Test Session: TM/TC Nominal Profile (Tc-001).......ccccvvverevieeiceeeieee e 89
5.2.4 Test Session: TM/TC Error Profile (TC-002) .......cooueevvveeevrereiieeeciieeeeeeeeree e 91
5.2.5 Test Session: Image Profile (TC-003) ....ccccueeieiiiieeieciiee et e 95



5.2.6 Test Session: Scheduler Test (TC-004) .....ccooueeeiiiiiiiiiieeeeeeeeeeecireeeee e eeeeinees 98

5.3 RESUILS .ttt ettt s e 101
6. CONCIUSIONS ettt ettt ettt ettt e e st e e bt e s abe e sbe e e sabeesabeeeneeesaneeesnnes 104
RETEIENCES. ...ttt sttt et e s bt e e sbe e e bt e e sab e e sabeeesareenn 106
F Y] 0= o Vo L U 107



LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

A traditional CubeSat Mission Architecture, adapted from [2]

First Level of the Functional Tree
Product Tree (First Level)

RF System Block Diagram

Tracking System Block Diagram
Control Centre System Block Diagram

Risk Analysis Flowchart

Risk Index and Magnitude Scheme (Before Risk Reduction Action)

Index and Magnitude Scheme (After Risk Reduction Action)
Trade-Off Analysis Results

Cost Budget Diagram for Line

Cost Budget for Discipline

C3 Control Centre Architecture

Control Centre Acquisitions

Processing System Architecture

Control Centre sharing blocks

Overview of the Communication Protocol Core

TM Structure

CCSDS TM Packet Data System

Global Packet Structure

Source Packet Format [5]

TC Structure

TC Packet Format [8]

Structure Overview of the Decoding Process

CLTU Starting Sequence Pattern according to [7]
Functional Block Diagram [10]

Image Compression Model: Encoder and Decoder
Block and Group structure of DWT transformed data
Structure of an Image Packet

Bit Plane Encoder [10]

Example of Federated Planning for a Science Mission [15]
Planning Information Flow

Example of how Python can figure out the type at run-time

14
17
18
19
20
20
24
25
26
28
29
30
32
33
34
36
37
38
38
39
39
43
43
44
45
46
46
48
48
49
50
50
53



Figure 34:

Different stages of a process [11]

54

Figure 35: Comparison between process with 1 thread (left) and process with multiple
thread (right) [11]

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44.

Thread complete life cycle
SAT SIM Architecture

Example of SAT SIM Databases
SAT SIM - TM Branch

TM Gen Module

Packet Gen Module

TM Queue Gen Module

GS SIM Extraction Module

GS SIM Control Loop Module

Figure 45:SAT SIM - TC Branch

Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:

TC Gen Module
SAT SIM Extraction Module

New TM Gen after the command execution

TC Display module

IMG SIM Branch

IMAGE_SIM Module

Image Display Module

SAT SIM Interface architecture
SAT SIM Login/Register Interface
SAT SIM Login Interface

SAT SIM Registration Interface
SAT SIM main interface

SAT SIM TM Interface

Queue of the incoming packets
SAT SIM TM Display interface
SAT SIM TM Packet Visualization
Packet Archive

Display of a specific TM packet
TC Interface

TC Manage Interface

TC Packet Generation Module Interface

Correct execution of the command

54
55
56
57
58
58
59
60
60
61
62
63
63
64
64
65
66
67
68
68
69
69
70
70
71
71
72
72
73
73
74
74
75



Figure 68: Command Structure 75

Figure 69: Scheduler Interface Command Choose 77
Figure 70: Command detail window 77
Figure 71: Scheduler Queue Interface 77
Figure 72: Example of a schedule execution 78
Figure 73: The V-model of the V&V process 81
Figure 74: Test evaluation flowchart 82
Figure 75: The Debugging Process 84
Figure 76: cProfiler output of SAT SIM main 85
Figure 77: cProfiler output of the Interface main 86
Figure 78: Call graph of the SAT SIM main 87
Figure 79: Call graph of Interface main 88
Figure 80: Tc Nominal TM generation flowchart 89
Figure 81: Tc-001 Nominal TM packets 90
Figure 82: Tc-001 Nominal TC interface 91
Figure 83: Tc-002 Error TM generation flowchart 91
Figure 84: Tc-002 Error TM packets 92
Figure 85: Alert Notification 93
Figure 86: Detail of the incoming message 93
Figure 87: TC packets generation 94
Figure 88: New Tm correction acquired 94
Figure 89: Incorrect Packet Acquisition 95
Figure 90:Tc-003 Image management flowchart 95
Figure 91: Tc-003 Image compression Interface 96
Figure 92: Tc-003 Frame Extraction 96
Figure 93: Tc-003 Images Display 97
Figure 94: Tc-004 Schedule test flowchart 98
Figure 95: Tc-004 Recognition and display of the pre-set commands 98
Figure 96: Tc-004 Generation of the Schedule queue 99
Figure 97: Tc-004 Schedule queue executed correctly 99
Figure 98: Tc-004 warning message for command with same priority number 100
Figure 99: Tc-006 Register Interface 102
Figure 100: Tc-006 Registration Success 102
Figure 101: Tc-006 Login Interface 103
Figure 102: Tc-006 Login Success 103



Figure 103: SAT SIM Call Graph (1) 107
Figure 104: SAT SIM Call Graph (2) 108
Figure 105. SAT SIM Call Graph (3) 109
Figure 106: Interface Call Graph (1) 110
Figure 107: Interface Call Graph (2) 111
Figure 108: Interface Call Graph (3) 112
Figure 109: Interface Call Graph (4) 113
Figure 110: Interface Call Graph (5) 114
Figure 111: Interface Call Graph (6) 115
LIST OF TABLES

Table 1: Mission Requirements 16
Table 2: Mission Planning 21
Table 3: Phase-Scenario Description 23
Table 4: Risk Magnitude and Proposed Action for Individual Risk according to [4] 26
Table 5: C3 Cost Budget for Line and Cost Budget for Discipline 29
Table 6: C3 Mass Budget 30
Table 7: Control Centre mission requirements 31
Table 8: Advantages and Disadvantages of using threads 55
Table 9: Software Requirements 80
Table 10: Test Classification 83
Table 11: Test Cases Results 101

10



ABBREVIATIONS

ADCS: Attitude Determination and Control System
AOSTF: Advanced Orbiting System Transfer Frame
APID: Application Process ID

BATT: Batteries

BPE: Bit Plane Encoder

C3: CubeSat Control Centre

CADU: Channel Access Data Unit

CAM: Navigation camera

CCSDS: Consultative Committee for Space Data System
CLTU: Communication Link Transmission Unit
COTS: Commercial Off-the-Shelf component

DCT: Discrete Cosine Transform

DSP: Digital Signal Processor

DWT: Discrete Wavelet Transform

ECSS: European Cooperation for Space Standardization
EPS: Electrical Power System

FMECA: Failure Modes, Effects and Criticality Analysis
GS: Ground Station

HYPER: Hyperspectral

IDC: Image Data Compression

IMG PKT: Image Packet

KISS: Keep It Simple, Stupid

OBC: On-board Computer

PAY: Payload

PROP: Propulsion System

RF: Radio Frequency System

RW: Reaction Wheels

S\c: Spacecraft bus

SAT SIM: Satellite Simulator

SCHED: Scheduler

SE: System Engineering

11



TC PKT: Telecommand Packet

TCS: Thermal Control System

TCTF: Telecommand Transfer Frame
THR: Thrusters

TM PKT: Telemetry Packet

V&V: Validation and Verification process

12



1. INTRODUCTION

Communication between ground stations and CubeSats is a complicated
endeavour. There are standardizations that have been set in place by
organizations, like Consultative Committee for Space Data System (CCSDS), or
the European Cooperation for Space Standardization (ECSS), to resolve this
issue and to simplify the construction of communication systems and to promote
their interoperability and uniformities.

The CCSDS is an organization with the aim to define and maintain
standards for data systems and to provide communication between them in space.
These standards cover a large number of fields for a specialized implementation to
fit the need of the project. The ECSS is another organization that takes the
implementation deriving from CCSDS recommendations and define the
requirements that user must to follow. These requirements are used by space
organization as a way to simplify the collaboration between them and
organizations and companies in other countries. The ECCS takes some of CCSDS
standards and consolidates them into more rigid requirements,[1].

According to these rules and recommendations, the thesis presents the
CubeSat Control Centre (C3), an innovative ground segment to support Cubesat
Operations directly from Politecnico di Torino following the CCSDS standards.

The major aim of this work of thesis is to develop a control centre to support
CubeSat operations focused on CCSDS packet utilization for Telemetry
acquisitions and Telecommand generation.

A ground system has two main purposes: to support space segment
(spacecraft bus and payloads) and to transmit missions data derived from on-
board computer to the mission stakeholders. The same concept is applied to both
large and small satellites, such as CubeSats. Then, what are the real needs and the
real benefits in developing a Ground Control Centre totally focused on CubeSats?
A first answer could be to reduce the costs, but even is important, the expenses
related to ground station operations are not the main concern. The most important
benefit in developing a CubeSat control centre is the exploitation of university

facilities and the national autonomy.
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In this perspective, the C3 project was created to offer students and non-
professional operators a facility where is possible to manage and control CubeSat
missions in complete freedom. Being free to explore different design possibilities
allows to extrapolate the better project according to the national infrastructure and
needs.

The first step to know the system of interest is to identify the conventional
ground station operations taking into account that the ground station is a part of
the space mission architecture. Figure 1 shows a typical mission architecture
adapted to a CubeSat mission. The architecture is the same for small and large
satellites, the only main difference is that the mission control, ground segment and
communication control architecture could join into a single segment.

To achieve the main functions (send telecommand, receive telemetry, track
the CubeSats and process their data) having only one ground station is generally
enough, but the project design must follow special requirements and

characteristics to work effectively like a ground segment.

N University Mission

S LEO ORBIT

FISSION \ ""/
"‘@ / CUBESAT

—% Secondary-Load

Figure 1: A traditional CubeSat Mission Architecture, adapted from [2]

For the design project of the ground segment is necessary to analyze the
space segment parameters to support them and to derive some functional

requirements.
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2. THE C3 PROJECT

The objectives pursued by the team on the C3 project are the following:

e To have a Control Centre at Politecnico di Torino for the
communication between the space segment, ground operators and
users

e The CubeSat Control Centre (C3) aims to support CubeSats mission
operations with capabilities and performance beyond traditional
radio amateur C3s, but at a lower cost than professionally driven
ground segment (control centre and ground station)

e (3 is the mission, spacecraft bus and payload control centre of the
SROC mission and manages its payload while interfacing with other

stations/centres involved in the Space Rider Mission.

2.1 DESIGN APPROACH: FUNCTIONAL ANALYSIS

According to the system engineering approach, the project followed a list of
process steps that helped to better understand the real needs of the design.

The first step of the System Engineering analysis consists basically of the
need statement. Once they are established, the identification of stakeholders and
requirements definition is conducted through iterative processes and generation of
goal and mission objectives. This stage is concluded by generating the concept of
operations, which shows the system behavior into their operational work.

The second step is related to the requirement analysis where the
stakeholders’ needs are converted into requirements and they are analyzed
qualitatively and quantitatively to achieve the better design of the project.

In the last steps, the functional analysis and the life cycle analysis are
conducted to conceptualize all the systems behaviors and their functions, and to
evaluate the operating environment in order to specify all the systems in more
details. At the end, the result of this analysis is the project baseline proposal in
which all the systems are assigned to their physical components.

The result of the mission needs led the team to the first requirements

analysis. In this phase the C3’s requirements identify the functions, physical
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characteristics or quality factors that limit the needs of the product or process for
which a solution is pursued. Therefore, Table 1 shows some of the mission
requirements identified for the C3 project according to the division indicated in
the ECSS standards [3].

~ MISSIONREQUIREMENTS

ID Requirement Text
C3-MIS--1 C3 shall support Cubesats mission operations from ground when they are in LEO orbit
C3-MIS--2 C3 shall guarantee the management of the operations for PoliTO/Cubesat Team missions
C3-MIS--3 C3 shall be located at Politecnico di Torino in TBD location
C3-MIS--4 C3 shall manage mission data from CubeSats payload
C3-MIS--7 C3 shall manage CubeSats housekeeping data
C3-MIS--8 C3 shall manage telecommands to CubeSats
C3-MIS--9 C3 shall guarantee the managment of the planning activities on the CubeSats
C3-MIS--10 C3 shall be operated by students and non-professional operators
C3-MIS--11 C3 shall cost less than 30K
C3-MIS--12 C3 shall implement at least E2 level of autonomy
C3-MIS--13 C3 shall be designed manufactured, integrated and tested in 35 months from the KOM
C3-MIS--14 C3 shall be flexible with respect to the protocols, the frequency bands, the type of signals
C3-MIS--15 C3 shall operate in UHF,VHF, S-band and X-band
C3-MIS--16 C3 shall manage data,voice, image and video
C3-MIS--17 C3 shall satisfy applicable emission regulations (ITU, Ministry of Communications, ...)

Table 1: Mission Requirements

To fill the different categories of requirements a functional analysis is
mandatory to better identify the correct functions of the project and to understand
what kind of systems could achieve those functions.

For the ground station, the blocks describe its main function with shallow
details. However, it is important to say that at this stage of the system
development, the entire operation of the planned C3 is already covered.

According to the functional tree shown in Figure 2, it is possible to build the
operational mode and state diagrams for the station, where the states are the
operating levels of the systems characterizing the ground segment and the modes
are the functions that run the system under these levels (e.g. operative status and
data acquisition mode). This kind of analysis increases system knowledge. This is
helpful for a better assignment of functions to physical components for the

creation of the product tree.
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TTITIT

Figure 2: First Level of the Functional Tree

The functional tree, in particular the last level, made it possible to identify
the subsystems that make up the ground segment. These elements, as seen in the
product tree in Figure 3, determine the characteristics of the system of interest and

therefore, the better architectural solution for the ground station (Figures 4-6).
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Figure 3: Product Tree (First Level)

18



Ground Segment

Communication System

RF Subsystem

Passive Measurement RF Front-end C

Component

Active Measurement

Component L L

I'X-Band RX Band I's-Band RX Band|
Filter Filter

Antenna Component

Baseband Processing

S/X-Band Parobolic|
Server

S/X Waveguide|
IVHF Antenna UHF Antenna
Antenna

Feed

Control Subsystem

Disk Array Disk Array
Antenna Heading
Pads

Passive M ‘

I Spectrum | Server(Pc/CPU) Server(Pc/CPU)

_ Analyzer _ |

Liquid Cooler

Active Measurement
Component

} Vector Network |

Analyzer

Figure 4: RF System Block Diagram



TRACKING SYSTEM

ORBIT DETERMINATION UNIT ROTATOR & SENSOR UNIT
| 1
}AZ POSITION SENSOR}

-

T

ORBIT DETERMINATION COMPUTER}

I

‘ 1
L 1 |
|

GROUND DATA UNIT

CONTROL | | 1
COMPUTER | | AZ/EL CONTROL BOX |

INTERFACE -

Figure 5: Tracking System Block Diagram

Data Managing System

Internet Interfaces

Mechanical Interfaces Decoder

=
=]
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2.2 DESIGN APPROACH: STATE ANALYSIS

The operative modes of the ground segment are also identified, during the
design process, to better estimate the project mission plan and all the scenarios in
which the station will operate. During this analysis, as seen in Table 2, four
phases are identified; each phase is characterized by scenarios that describe in

detail the phase, and each scenario is described by objectives, constraints, and

Phase Scenario

1)Visibility On Real time operation

duration.

Setup - Preparation for the satellite
visibility

Post processing activity

Checkout communication channel
(internal and with other ground
station)

2)Visibility Off Post processing analysis

Check of off nominal events

Mission planning activity
Post processing data sharing

Check out
3)LEOP Telemetry Link
Command Link
4)Safe Mode Safe scenario

Table 2: Mission Planning

Four macro operative mode have been identified:

e Visibility On represents the phase in which the satellite is in
visibility of the ground station and real-time operations are carried
out such as receiving telemetry by the satellite and sending remote
control from the station.

e Visibility Off is the phase in which the satellite is not in visibility of
the ground station. This phase includes the preparation of the
subsystems for the next passage of the satellite, communication with
other stations involved in the mission for the exchange of

information, and post-processing activities.
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LEOP (Launch and Early Orbit Phase): this phase is one of the
most critical phases of a mission. Spacecraft operations engineers
take control of the satellite after it separates from the launch vehicle
up to the time when the satellite is safely positioned in its final orbit.
During this period, the operators works 24 hours a day to activate,
monitor and control the various subsystem of the satellite, including
the deployment of any satellite appendages (antennas, solar array,
reflector, etc.), and undertake critical orbit and attitude control
manoeuvres.

Safe Mode: represents the security status of the ground segment in
the presence of the catastrophic, critical or off-nominal events. It is
the ability of the ground station, in the presence of a failure, to

secure operators and all subsystem and to correctly protect the data.

Each phase is characterized by different scenarios and each of them, as seen

in Table 3, is described by:

General Description: a description of the scenario.

Initial Condition: a description of the condition for the start of the
scenario.

Final Condition: a description of the condition for the end of the
scenario.

Environment: a description of the environment in which the
scenario is executed.

Top Level Objectives: a list of the high level objectives
characterizing the scenario.

Required I/F with other systems: a description of all the interfaces
required for the correct execution of the scenario.

Duration: duration of the scenario

Constraints: a list of all the constraints and requirements that
describe the scenario.

Potential Off-Nominal Events: a description of the possible off-

nominal events related to that specific scenario.
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Real time operation

Characteristics Description

Uplink and Downlink operations in satellite
visibility

General description

Initial Conditions Satellite comes in visibility

Final Conditions Satellite comes out visibility

Environment Earth eviroment

Establish communication link
Up/Down link operations
Track satellite passage

To reduce space loss

Top Level Objectives

Communication system I/F Tracking system
(Move the Antenna)

Communication system I/F Control Centre
Tracking System I/F Control Centre

Riquired I/F with other systems

Duration 8/10 min (LEO Orbit)

All operation must have a duration less than

Constraints .
10 minutes

Loss of communication link

SeEEl Gt s Down/Up link operation failure

Table 3: Phase-Scenario Description

The identification of the operative mode and the relative operational
requirements will allow to establish the schedule generation for the telecommand
(TC) to communicate with CubeSats even when these are not in visibility of the

ground station.

2.3 DESIGN APPROACH: RISK ANALYSIS AND MANAGEMENT

During the design process and mission analysis the risk analysis and
management is essential because it allows to identify which are the several
possible failures during the mission, in order to prevent them. Although it is
almost not possible to avoid a risk, one of the aims of the study is to try to limit
any possible damage in order to complete successfully the mission. Therefore, the
study has been conducted in reference to the possible failures of the C3’s system.
Furthermore, this allows to compare them and to highlight which risks would lead
to compromise the mission’s feasibility or the achievement of mission aim. A
study of catastrophic hazards has therefore been carried out; it has enabled the

identification of possible project corrections.
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The risk analysis is based on Failure Modes, Effects and Criticality

Analysis (FMECA) that is probably the most widely used and the most effective

design reliability analysis method. It is a bottom-up analysis of all possible ways

in which a component may fail, considering every failure mode one by one. This

analysis is performed according to the following steps:

Identify each possible component in the system;

Determine all possible failures for the component;

Determine all the credible causes for each failure;

Determine the worst effect on the system considering every mission
phase;

Determine severity and likelihood of each failure;

Determine criticality of each failure (criticality matrix);

System Project

4

Risk Risk
Identification Description

l

Risk
Decomposition

v v

Causes Effects

Risk
Classification

Risk
Acceptable? . -
| 1

Figure 7: Risk Analysis Flowchart
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The fundamental actions performed could be summarised in the following
way: Risk Identification, Risk Decomposition, Risk Classification and Risk
Reduction.

During the Risk Identification, any risk that may arise is identified and
divided into categories lifetime, schedule, costs and component.

In the Risk Decomposition, each risk has therefore been divided into cause
and effect to know which are the failures that could lead to the worst
consequences. An inductive method is used so that, from the causes of the
possible failures, it has been possible to move on to the effects.

The Risk Classification is the most fundamental part of the risk analysis. It
consists of a classification and assessment of risks by assigning to each one its
probability of occurrence and its severity of consequences which are respectively
the frequency of its occurrence and the importance of the consequences of an
event on the mission purpose. The likelihood and severity index, established by

[4], has been assigned to every risk.

gty —

[COM-01; COM-06; COM-38;
(COM-39; COM-40; COM-41;
[com-42;

LT-06; SCH-03; SCH-08; COS-
02; COM-05;

LT-07; LT-09; COM-04; COM-08;

\SCH-01; SCH-07; SCH-09; COS- (COM-09; COM-14; COM-18;

03; com-07 COM-22; COM-23; COM-24;
COM-25; COM-35; COM-36;

SCH-02; SCH-05; COS-01;

COM-10; COM-15; COM-21;
COM-26; COM-27; COM-28;
COM-29; COM-30; COM-31;
COM-32; COM-33;

Figure 8: Risk Index and Magnitude Scheme (Before Risk Reduction Action)
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Risk magnitude Proposed actions

Unacceptable risk: implement new team process or change
baseline — seek project management attention at appropriate
high management level as defined in the risk management plan.

Unacceptable risk: see above.

Medium risk Unacceptable risk: aggressively manage, consider alternative
team process or baseline — seek attention at appropriate
management level as defined in the risk management plan.

Low risk Acceptable risk: control, monitor — seek responsible work
package management attention.

- Acceptable risk: see above.

Table 4: Risk Magnitude and Proposed Action for Individual Risk according to [4]

The actions proposed to mitigate the risks are Accept, Watch, Mitigate and
Research: they give the risk a trend that allows it to be downgraded according to
the standards [4]. Accept is a partially preventive action that consists in accepting
a problem that cannot be solved in any way. Watch is a partially reactive action
which foresees the system monitoring and the research solutions for issues that
could arise and have not been otherwise prevented. Mitigate is a preventive
action that provides corrective strategies in order to improve mission project and
prevent any possible problem. Research is a reactive action that gives possible

solutions, even if the problem has not been estimated.

Negligeble(1) ignific Major (3) Critical (4) Catastrophic (5)

LT-03; LT-06; SCH-03; SCH- |COM-01; COM-06; COM-38;
LT-01; SCH-06;COM-02;  |08; COS-02; COM-05; COM- |COM-39; COM-40; COM-41;
20; com-42;

LT-07; SCH-02; SCH-05; COS-
01: Con-23: com-24 conp. |SCH-01 SCH-07; SCH-09; €OS- _|LT-09; COM-04; COM-08; COM-
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Figure 9: Index and Magnitude Scheme (After Risk Reduction Action)

The risk analysis made it possible to identify the redundancies to be
implemented and to arrive at a new physical architecture.
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2.4 DESIGN APPROACH: BASELINE PROPOSAL

Three possible proposals of ground architectures are carried out to achieve

the better configuration according to requirements and mission objectives. All the

designs follow the KISS (Keep It Simple, Stupid) approach in order to work best

if systems are kept simple rather than made complicated; therefore, simplicity is a

key goal in design, and unnecessary complexity will be avoided. The three

proposals are the following:

Compact Architecture: S-band and VHF/UHF-band together on the
same rotator. X-band on a different rotator.

Large Architecture: S-band, X-band, VHF/UHF-band on three
different rotators.

Compact Single Feed Architecture: S-band and X-band on the
same rotator. VHF/UHF-band on a different rotator.

In the definition of the system, a trade-off study consists of comparing the

characteristics of each system element (figures of merit) for each candidate

proposal architecture to determine the best solution that could better balances the

choose criteria. For the three proposal the figures of merit are the following:

Cost: In order to satisfy all requirements with a budget of about 30
k€, COTS components are considered to try to find, adapt and
acquire items already available on the market while minimizing
custom-made designs. This philosophy is a great incentive for the
project because using these components could may increase the
complexity of the ground station but with a lower cost.

Radio Frequency (RF) Performance: It refers to parameters like
full duplex operation, bandwidth, losses, gain, link budget,
efficiency, error rate and other specific RF attributes.

Tracking Performance: It refers to parameters like angular
resolution, rotating speed, vertical load, breaking and turning torque.
Ground Station Performance: It refers to global parameters like
number of satellites with which the station can communicate at the

same time, and the quality of the visibility window.
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Architectural Reliability: It aim is to minimize the probability of
failures and their severity and criticality to achieve high reliability.
To achieve this important goal, possible solutions could be fewer
components, redundant components (whenever possible), low
complexity components, components protection and distributing the
capabilities of the architecture to lower criticality of faults (separate
rotators for example).

Footprint: In order to install the antennas on a roof, this figure of
merit is fundamental for the trade-off analysis.

Mass

RF Flexibility: It refers to the ability of the ground station to operate
at various microwave frequencies without sacrificing much
performance, and it refers to the capability to move to other
frequency while replacing the minimum number of components.
Tracking Flexibility: It refers to the high resolution of rotators to
move to higher frequencies, which require high pointing accuracy.
Simplicity: the ability of the design project to remain in the KISS
approach.

Trade results

3,5
Simplicity = Reliability

Compact
Large

s Compact Single Feed

Flexibility % - Performance

Footprint

Figure 10: Trade-Off Analysis Results
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As seen in Figure 10, the best proposal for the project is the Compact
Architecture with S-band and VHF/UHF-band on the same rotator and the X-
band on a different rotator.

In conclusion the Compact Architecture proposal present the follow

characterizes as show in Tables 5-6.

Cost Budget Cost Budget
X-Line (€) 14620,94 Support (€) 3600
S-Line (€) 8014,303 RF (€) 18581,27
VHF/UHF-Line (€)] 5910,03 Tracking (€) 6364
Total (€) | 28545,27

Table 5: C3 Cost Budget for Line and Cost Budget for Discipline

Line Cost Distribution

€8.014,30
€5.910,03
€- €2.000,00 €4.000,00 €6.000,00 €£8.000,00 €10.000,00£12.000,00€14.000,00 €16.000,00
Cost Budget C3
X-Band Line €14.620,94
W S-Band Line €8.014,30
m VHF/UHF Band Line €5.910,03

Figure 11: Cost Budget Diagram for Line
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Discipline Cost Repartition

6.364,00 €
18.581,27
€

- £ 6.000,00€ 12.000,00€ 18.000,00€ 24.000,00€
Cost Budget C3
Accessories & Shipping 3.600€
M Tracking 6.364,00€
M Radio Frequency 18.581,27 €

Figure 12: Cost Budget for Discipline
As seen in Table 5 the total cost of the CubeSat Control Centre (C3) is about
29 k€ according to the mission requirement that limit the total cost of the ground

segment to 30 k€.

Mass Budget
X-Line (Kg) 83
VHF/UHF-Line + S-Line (kg) 124
Total (Kg) | 207

Table 6: C3 Mass Budget

According to Table 6, the total weight of the station (antennas and rotators)
is less than 210 Kg. This number is important to respect the security standard for
the future installation on a roof.

In conclusion the total consumption of the station in Watt is less than 2 kW.
These characteristics are important for the management of the project, but also for
the developing of the control centre that has the aim to manage and control the

entire station and to communicate with the satellites.
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3. THE CONTROL CENTRE DESIGN

The objective of this thesis is to develop a full software to manage

telemetries from CubeSats and telecommands from ground, that non-professional

operators and students could use without issues. This software will be integrated

in the C3’s control centre environment and will be the core of the design

architecture. In this section the design of control centre functional architecture

will be described in detail, as well as the details of CCSDS standards that helped

to uniform the software to the European requirements. The mission objectives that

led to the actual architecture are shown in Table 7.

ID Requirement Text
C3-MIS--1 C3 shall support Cubesats mission operations from ground
when they are in LEO orbit
C3-MIS--2 C3 shall guarantee the management of the operations for
PoliTO/Cubesat Team missions
C3-MISs--4 C3 shall manage mission data from CubeSats payload
C3-MIS--7 C3 shall manage CubeSats housekeeping data
C3-MIS--8 C3 shall manage telecommands to CubeSats
C3-MIS--9 C3 shall guarantee the managment of the planning
activities on the CubeSats
C3 shall be operated by students and non-professional
C3-MIS--10 P y s professi
operators

Table 7: Control Centre mission requirements

To achieve these requirements, at the beginning, a functional analysis was

conducted, and the thesis subsequently focused on the software implementation

that will be discuss in Chapter 4.

31



3.1 CONTROL CENTRE ARCHITECTURE

Figure 13 shows the global architecture of the control centre, in particular

the input to processor and all the interface required by the software.

Control Centre

Data Managing System

RF
Telemetry
Acquisition

——
Payload

Acquisition |

/Command r\_l_.

Tracking

/Command

Figure 13: C3 Control Centre Architecture

The first step for the design of the C3 Control Centre is the definition of the

inputs (S\c telemetry and ground station subsystems telemetry) and outputs (S\c

telecommand and information sharing with mission users). The three main inputs

that were identified, shown in Figure 14, in details, are:

RF Telemetry Acquisition: this block concerns all the telemetry
from the radiofrequency subsystems like the antenna status, SDR
signals and other hardware telemetry. In this environment the control
centre could be able to interface itself with the software that manage
the RF functions to control them or only to manage them.

Payload and S\c Acquisition: this block concerns all the telemetry
(TM) packets sent from the satellite to ground, black line (input),
and all the telecommand (TC) packets sent from the ground to the
satellite, red line (output). In the input phase, TM packet from the
satellite are acquired and checked for a correct acquisition, therefore
the useful data, contained within the packets, are extracted,
converted and brought to the attention of the operators for the post

processing activities. In the output phase, commands from ground
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are organized in TC packets and then they are sent to the satellite
when it is in visibility of the ground station, or like a schedule
organization when the satellite is not in visibility. The satellite
acquires the TC packets and executes the command and returns to
ground another TM packet as result of the correct execution of the
command.

e Tracking Acquisition: this block concerns all the telemetry from
the tracking subsystems like the antenna rotators, TLE software and
other hardware telemetry. In this environment the control centre
could be able to interface itself with the software that manage the

tracking functions to control them or only to manage them.

Control Centre

Data Managing System

RF
T elemetry 1Tocessi
Acquisition

Payload
Acquisition
/Commmanid

Tracking
Acquisition
/Commmanid

Figure 14: Control Centre Acquisitions
After the acquisitions, the analysis and the processing phase are the major
aim of the Processing Systems that is a computer composed by different blocks
whit different function as shown in Figure 13. In other terms the main objectives
of the processing systems are:
e Check the correct acquisition of the TM and TC packets.
e In input, identify the correct useful data (metadata) in the T™M

packets, and correctly extract that metadata.
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In input, convert the extracted metadata in engineering language and
display that information to the operators for the post-processing
activities.

In output, identify the correct command, put them in TC packets and
send them to the satellite and monitor the correct execution of the
command by the S\c.

Save and track all actions and activities of the operators.

Display and share the information with the major mission

stakeholders or with the public.

To perform these objectives in Figure 15, the blocks that compose the

processing system are shown.

7] PROCESSOR

Processing System

—

Figure 15: Processing System Architecture

Figure 15 shows in detail:

Control Software Block: The principal aim of this block is to
acquire the packets and control them for a correct acquisition. This
block is the first step for packet filtering: in this way the correctly
acquired packets pass thought the data extraction phase, while those
that present errors or incorrect acquisition are discarded and
requested again by the satellite.

CPU/Processor Block: This block is the core of the control centre.
Its major aims are to extract metadata, convert them and perform all
the processing and post processing activities of all ground segment.
Memory Block: This block has the function of archiving all the

packets and metadata that arriving to the ground station. The
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memory block also has the objective of tracking all the activities and
actions performed by operators.

Database Block: This block helps the processor unit to extract
metadata from TM packets and to convert them into engineering
language. In the control centre software, the database is composed
by roots and dictionaries in which are expressed the TM/TC packets
structures for packets construction and packets extraction,
conversion methods, packet rows and packets check loops to control
the correct acquisition of the packets, the correct extraction of the
metadata, the correct conversion and the control of the conversion
value.

Simulator Block: This block is fundamental in the command
construction phase. This environment can simulate the execution of
the command and to display the correct result of this execution. It is
able to simulate the spacecraft OBC, housekeeping and science
telemetry and merge them to generate a realistic simulated data
stream. The command packet is sent in input to the simulation
environment and it is tested for the correct execution and to be
secure that the command create by the operators is correct. Once the
TC packet passed the simulation, it is ready to be sent to the real S\c.
Operators: This block represents the operators working on the
platform interface. It is important to say that the station is managed
by non-professional operators and by students, so a training period

for the operators is mandatory in the design process.

In conclusion, in Figure 16, the last part of the control centre architecture is

shown. In this part the following block are considered:

Monitors Block: This block has the function of displaying
telemetries and telecommands to the operators through an interface
and monitors.

Server Block: This block represents the archive where the operators

can save all the information about the mission (telemetries, images).

35



This is an open archive where the major mission stakeholders can
take the access and use the information saved.

Users Block: This block represents the major mission stakeholders
that can require to the operators or to the servers of the ground

segment information about a specific mission.

Figure 16: Control Centre sharing blocks
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3.2 CONTROL CENTRE CCSDS STANDARDS OVERVIEW

The Consultative Committee for Space Data Systems (CCSDS) is an
organisation officially established by the management of member space agencies.
The committee meets periodically to address data systems problems that are
common to all participants, and to formulate some technical solutions to these
problems. Insofar as participation in the CCSDS is completely voluntary, the
result of Committee actions are termed recommendations and are not considered
binding on any Agency [5].

At the start of this master thesis there was a period of information gathering.
This entailed a prolonged study of recommendation documents from CCSDS and
ECSS. These documents covered information about how the TM packets, TC
packets and image packets (IMG) are to be structured, about how to encode and
decode the communications to ensure error-free transmission and how to
determine when data has been lost. From all standards and recommendations, a
rough idea of a structure of the packets, transfer protocol and their implementation
could be formed. In Figure 17 a description of all the communication protocol

according to the CCSDS standards is shown.

TME
: Télemery
CPU : CADU
: Packer = Framer Sender -
Test Report :Modem
CLew :
: Hardware :
GPIO cmd :
+ CPDU :
Telécommand
. Higher Lower . CLTU
CPU. Procedures FARM-1 % procedures [*| Receiver T
TCD

Figure 17: Overview of the Communication Protocol Core

In Figure 17, it is possible to see the different modules, depicted as squares,

which make up the core of communications. Each module fills a specific function
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in the communication with the ground station. The top row encodes the telemetry
and the bottom row decodes telecommands. In the next section, it is described in
detail how telemetry branch, telecommand branch and image branch are

structured and how they are encoded and decoded.

3.2.1 CCSDS OVERVIEW: TELEMETRY CONSTRUCTION

According to [5], TM is constructed as shown in Figure 18 with the Space
Packet placed inside an Advanced Orbiting System Transfer Frame (AOSTF)
which is in turn inside a Channel Access Data Unit (CADU). The telemetry

construction process is from the inside out.

Channel Access Data Unit

Advanced Orbiting System Transfer Frame

Telemetry Space Packet

Figure 18: TM Structure

In specific terms, Figure 19 describes data structures used to transfer

metadata from on board systems to ground systems.

ON-BOARD ON-BOARD SPACE-GROUND GROUND ' GROUND
DATA SOURCES DATA SYSTEM LINK "| DATA SYSTEM DATA SINKS

r

h 4

Figure 19: CCSDS TM Packet Data System

The aim of the packet telemetry concept is to permit multiple application
process running in on-board sources to create units of data as best suits each data
source, and then to allow the on-board systems to transmit these data over a
space-to-ground communication channel in a way that enables the ground systems
to receive the data with efficiency and reliability and provide them to the

operators. To achieve these functions, the CCSDS Recommendation defines
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different structure such as: Source Packets, and Source Packets from various
Application Processes (APIDs).

Source Packet (PKT), which is also termed packet, is a data structure
generated by an on-board APID in a way that is responsive to the needs of that
process. It could be generated at fixed or variable intervals and may be fixed or
variable length. The packet structure is composed by a header that identifies the
source and the characteristics of the incoming packet and identifies the APID that
controls the internal data content of the packet. Each packet is defined by a fixed
frame called header, at the beginning of the packet, and a tail, at the end of the
packet. The useful field of the packet contains the telemetries generated on-board

and it is characterized by parameters of variable length.

Header Parameterl Tail
Header Parameterl Parameter2 Tail

Header Paraml Parameter2 Parameter3 Tail

Figure 20: Global Packet Structure

The Packet will encapsulate all the information and the data application
which are to be transmitted from a specific APID in space to one o several
channels on the ground. As aforementioned, the source packet will consist in two
major fields, positioned contiguously, in the following sequence: PKT Primary

Header (mandatory) and PKT Data Field (mandatory).

l[: PACKET PRIMARY HEADER * PACKET DATA FIELD —i}
VERSI PACKET SEQUENCE PACKET PACKET SOURCE DATA (v
NO. PACKET IDENTIFICATION CONTROL DATA | sEconpamry
LENGTH HEADER (+)
TYPE | PCKT.| APPLICATION | GROUPING SOURCE
INDI- | SEC. PROCESS FLAGS SEQUENCE
CATOR| HDR. IDENTIFIER COUNT
FLAG
May
Contain:
01 - first Pekt. No. of - S/C Time
00 - cont. Pokt. octets = Packet
10 10 - last Pekt. of Packet Format
Sec.Hdr. of Group Data Info
present, Field - Ancillary
000 o else 0 11+ no Grouping minus 1 Data
— 3 .Bdts—+ 1 Bﬂ'+? sn+— 11 Bits —»&— 2 Bits 4+*N Bits —| variable —+7v.mgb.le R —
w— 2 Octets 2 Octets ———w4—2 Ocl. 1 to 65536 Octefs———————™

Figure 21: Source Packet Format [5]
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As shown in Figure 21, the packet will consist of a least 7 and at most

65542 octets.

The PKT Primary Header is mandatory and will consist of the four fixed

fields positioned contiguously, in the following order:

Version Number (3 bits length)

Packet Identification (13 bits)

Packet Sequence Control (16 bits)
Packet Data Length (16 bits)

Each field contains a different information.

VERSION NUMBER: will be contained within the bits 0-2 of the

PKT Primary Header, and will identify the data unit as a source

packet and shall be set to “000”

PKT IDENTIFICATION FIELD: will be contained within the bits
3-15 of the PKT primary Header. It is divided into three sub-fields:

TYPE INDICATOR (1 bit): it will identify the type of
packet. Because the CCSDS TC packet uses a similar
structure, the type indicator distinguishes between telemetry
and telecommand data units. For TM packet will be set to
“0”, instead for TC packet will be set to “7”.

PACKET SECONDARY HEADER FLAG (1 bit): it will
indicate the presence or the absence of the PKT Secondary
Header within this packet. It will be set to “/” if a PKT
Secondary Header is present, it will be set to “0” if a PKT
Secondary Header is not present. This flag will be static with
respect to the APID throughout a mission phase.

APID (11 bits): it will be different for different application
processes on the same transmission channel. The Application
Process defines the context of the data field and control all
the useful data of the packet for the correct construction on-

board and the correct extraction on ground.
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e PKT SEQUENCE CONTROL FIELD: it will be contained within
bits 16-31 of the PKT Primary Header. It is divided into two sub-
groups as follows:

— GROUPING FLAGS (2 bits): expresses the segmentation of
the packet groups. It will be set to “07 ” for the first packet of
the group, to “00” for a continuing packet of the group and
to “10” for a last packet of the group. If there is no
segmentation, it will be set to “77”. All packets belonging to
a specific group of packets will be identified by a unique
APID.

— SOURCE SEQUENCE COUNT (14 bits): it will provide
the sequential binary count of each packet generated by an
APID. The purpose of this field is to order a specific packet
with other packets generated by the same APID, even though
their natural order may have been disturbed during the
transmission to the operators on the ground. This field is
normally associated to a Time Code [6] (its insertion is,
however, not mandatory) to provide unambiguous ordering.

e PKT DATA LENGTH FIELD: it will be contained within bits 32-
47 of the PKT Primary Header. This 16 bit field will contain a
binary number equal to the number of the octets in the PKT Data
Field minus 1. The value contained in this field may be variable and
it is in the range of 0 to 65535, corresponding to 1 to 65536 octets.

The PKT Data Field follows, without gap, the PKT Primary Header. This
field is mandatory, and it is divided in two field with a variable length, positioned
contiguously, as follows:

e PKT SECONDARY HEADER: follows, without gap, the PKT
DATA LENGTH FIELD and it is mandatory if there is not Data
Field, otherwise it is optional. In any case the presence or the
absence of the PKT Secondary Header will be signalled by the PKT
SECONDARY HEADER FLAG. If present, the PKT
SECONDARY HEADER DATA FIELD, consists of an integral
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number of octets. This field contains the CCSDS time codes formats
defined in [6]. In this field is defined the time of packet construction
and transmission according to the CCSDS recommendation. The
time code defined in [6] generally consists of an optional P-Field
(Preamble Field) which identifies the time code choice and its
characteristics like period, epoch, length and resolution, and a
mandatory T-Field (Time Field). The time code selected must be
static for a given APID throughout all mission phases. All the field
associated to the PKT Secondary Header depending on what time
code is selected for the packet construction.

e SOURCE DATA FIELD: If this field is present, it will follow,
without gap, the PKT Secondary Header. This field is mandatory in
the case of absence of PKT Secondary Header, otherwise it is
optional. The field contains the source data (metadata) from a
specific APID and the length of this field may be variable: it will

contain an integral number of octets.

All the fields described are fundamental for a correct construction of the
packets. When the packets are constructed, they are ready to be sent to the ground
through a space-to-ground channel. This channel allows to transfer these packets
to the ground and, in addition this aim, consents to control and check the correct
construction (and on the ground the correct extraction) of the packets using
several consistency checks like CRC (Cyclic Redundancy Check) loops or other
consistency checks to monitor the correct acquisition of the bits in space and on
the ground. It is important to say that, on the ground, the extraction process uses
the same packet structures to make simple the metadata research, the metadata

extraction and the metadata conversion.
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3.2.2 CCSDS OVERVIEW: TELECOMMAND CONSTRUCTION

According to [7]-[9], TC construction is shown in Figure 22 with the Space

Packet placed inside a Telecommand Transfer Frame (TCTF) which is in turn

inside a Communication Link Transmission Unit (CLTU). Telecommands are

decoded from the outside in.

Communication Link Transmission Unit

Telecommand Transfer Frame

Telecommand Space Packet

Figure 22: TC Structure

The Space Packet is the common standard for the structure of packets that

are sent as telemetry or telecommand. The structure for TM and TC packets is

almost identical, but there are some differences. The structure of the TC packets is

shown in Figure 23.

Packet Header (48 Bits)

Packet Data Field (Variable)

Data Field Packet
Packet Sequence Packet Header | Application Error
Packet ID Control Length | (Optional) Data Spare Control
(see Note 1) (see Note 2)
Version Data Applica-
Nur;hor Type | Field tion Sequence | Sequence
(=0) ~ | (=1) | Header | Process Flags Count
= Flag D
3 1 1 11 2 14
16 16 16 Variable Variable | Variable 16

Figure 23: TC Packet Format [8]

The TC decoding process can be split into three main parts shown in Figure

24. The first part is the channel coding and synchronization (the receiver) and the

second part is the TC data link protocol which in-turn can be split into the lower

procedures. Each part is coded and tested separately before being integrated into

one cohesive piece of code.
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Transfer Frames
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Figure 24: Structure Overview of the Decoding Process

The standard data structures are the Acquisition Sequence, CLTU, and the

Idle Sequence. They are used to provide synchronization of the symbol stream

and are described below.

Acquisition Sequence: it is a data structure forming an introduction
which provides for initial symbol synchronization within the
incoming stream of detected symbols. The length of the Acquisition
Sequence will be selected according to the mission telecommand
link performance requirements, but the preferred minimum length is
16 octets. The length is not necessary to be an integral multiple of
octets. The pattern will be alternating “ones” and ‘“zeros”, starting
with either a “one” or a “zero”.

CLTU: it contains the data symbol that are to be transmitted to the
S\c. Each code block within the CLTU provides at least 2 data
transitions. The CLTU as delivered to the physical layer must have a
random component to guarantee sufficiently frequent transitions for

adequate symbol synchronization [7].
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1110101110010000

! !

BITO BIT 15

Figure 25: CLTU Starting Sequence Pattern according to [7]

e Idle Sequence: it is the data structure which provides for
maintenance of symbol synchronization in the absence of CLTUs.
The bit pattern is a sequence of alternating “/” and “0”. The length

of the idle sequence is an unconstrained number of bits.

3.2.3 CCSDS OVERVIEW: IMAGE COMPRESSION CONSTRUCTION

The CCSDS organization has recommended an image data compression and
construction standard: CCSDS 122.0-B-2 [10], to be used on-board space data
systems. This recommendation describes the algorithm implementation of the
CCSDS image data compression standard (IDC) on “Digital Signal Processor”
(DSP) platform. The algorithm is applied to two-dimensional digital grey scale
image data from imaging payload devices and uses two-dimensional “Discrete
Wavelet Transform” (DWT) followed by progressive “Bit Plane Encoder” (BPE)
to generate the compressed encoded bit stream.

Image data compression is an important element in the on-board space data
systems. It enables to reduce the amount of image data, in order to reduce the on-
board memory and the downlink transmission bandwidth requirements for space
missions. Imaging payloads of space data systems belong to one of the following
two categories:

e CCD Arrays: generate frames of images.

e  Sensors: acquire a line or strip of an image at a time.

An image compression scheme has generally two functional modules. The
de-correlation of data is performed by some mathematical transform whereas the
transformed data is processed by an encoder which performs the quantization and

encoding to produce compressed image. Similarly, the [10] uses two functional
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modules i.e. the discrete wavelet transform (DWT) and the bit plane encoder

(BPE) modules. It can perform both lossy and lossless compression and has very

low complexity so that it can be implemented with minimum power and

processing resources requirements.

2D Grey Scale
Digital Image —»

Data

2D Discrete
Wavelet
Transform

Transformed
Data

_ | Progressive Bit

| Plane Encoder

Figure 26: Functional Block Diagram [10]

— Qutput

Encoded Data

As aforementioned, image compression system consists of the following

two main blocks:

e Encoder: Figure 27 shows the basic building blocks of a source

encoder. Mapper module maps the input image pixels performing

the de-correlation using transform. The quantize block limits the

accuracy of the mapper output values. This is the step where major

compression takes place.

e Decoder: The decoder performs the reverse function of that of the

encoder. However, quantization is generally irreversible hence the

quantization block is excluded from the decoder as shown in Figure

27.
Source
Symbol
Image Mapper = Quantlzer - EI'IY[:Dder
Data fi{x,y)
Compressed
Image Data
Reconstructed Inverse Symbol !I_Sture Oi:%
'"'agﬁg: E}atﬂ Mapper Decoder |* ransmit)

Figure 27: Image Compression Model: Encoder and Decoder

According to the CCSDS standards, the algorithm works on the two

dimensional digital image data i.e. grey scale images from panchromatic single

channel image sensors in space imaging systems. The de-correlation module

consists of discrete wavelet transform which is followed by the progressive BPE
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(Bit Plane Encoder) module. The BPE produces encoded output bit-stream in the
form of a single segment or a series of segments. Each segment has a segment
header which is followed by the encoded data.

All the processing steps are based on the DCT (Discrete Cosine Transform).
Source image samples are grouped into 8x8 blocks, shifted from unsigned integers
to signed integers and input to the DCT. The following equation is the idealized
mathematical definition of the 8x8 DCT:

Qx+Durx cos 2y+vr
16 16

Flu,v)= %C(u)C(v) > > f(x y)*cos

x=0 y=0

The DCT takes such a signal as its input and decomposes of the 64 unique
two-dimensional “spatial frequencies” which comprise the input signal’s
“spectrum”. The output of the DCT is the set of 64 basis-signal amplitudes (DCT
coefficients) whose values can be regarded as the relative amount of the 2D
spatial frequencies contained in the 64-pint input signal. The DCT coefficients are
divided into “DC coefficient” and “AC coefficients”. DC coefficient is the
coefficient with zero frequency in both dimensions, and AC coefficients are
remaining 63 coefficients with non-zero frequencies. The DCT step can
concentrate most of the signal in the lower spatial frequencies. In other words,
most of the spatial frequencies have zero or near-zero amplitude and need not be
encoded.

The BPE encodes the bit planes starting from most significant bit plane to

the least significant bit plane.
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Figure 28: Block and Group structure of DWT transformed data
Within a single coded segment (or image packet), the segment header is
coded first. After the quantized DC coefficients are coded, the AC coefficient bit
depths are implemented and then the bit planes of the DWT coefficient block are

coded as shown in Figure 29.

Segment Header
Initial coding of DC coefficients
AC coefficients bit depths
Encoded bit plane b = bitDepthAC =1
Encoded bit plane b = bitDepthAC — 2

Encoded bit planeb = 0

Figure 29: Structure of an Image Packet

In details, there are:

e Segment Header: it consists of the follow four parts:
— Part I: (3 or 4 bytes - Compulsory)
— Part II: (5 bytes — Optional)
— Part III: (3 bytes — Optional)
— PartIV: (8 bytes — Optional)

¢ Initial Coding of DC coefficient: it is performed into two stages:
— Coding quantized DC coefficients
— Coding additional bit planes of DC coefficients
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Stages of Bit Plane Encoding: each bit plane is encoded in multiple

stages from 0 to 4 as shown in Figure 30. Stage 0 coding for each

block is the most significant bit of each DC coefficient. Stage 1

encodes the bit planes containing magnitudes of parent coefficients

in a segment. Stage 2 encodes children coefficients and Stage 3

encodes bit planes containing magnitudes of grand-children

coefficients in a segment. Stage 4, in conclusion, encodes the

remaining bits of each AC coefficient.
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Figure 30: Bit Plane Encoder [10]
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3.2.4 CCSDS OVERVIEW: MISSION PLANNING & SCHEDULING

Mission planning and Scheduling are integral parts of Mission Operations
and closely related to the other aspects of the overall monitoring and control space
missions. In some space mission, in particular for CubeSat missions, the planning
may be centralized in a single function. The distribution of functions over
different entities depends by a number of factors such as the availability of
facilities with unique capabilities, the existence of groups of experts with specific

knowledge and availability of planning experts [15].

A el

" : a - by
Space System Mission Operations Science Planner
i &g o~ P =t N éﬁ \
i Flight Dynamics E Science Planning Science Planner
; o~ b -
Ground Stations | Ground Stations | | Science Planner
Mission Control Segment Science Ground Segment

Figure 31: Example of Federated Planning for a Science Mission [15]
According to the recommendation plan a space mission requires the
collaboration of different elements that have a flow of information at different
levels. For example, the output of a planning function could be the input for a new

planning function at the same level or in a lower level as show in Figure 32.

Planning Planning | ...

Requests Plan Requests Plan
. > /. N
Planning 4 . L 4 . Plan
» Planning » Planning .
User " P " Execution
Feedback Feedback Feedback

Figure 32: Planning Information Flow
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As shown in Figure 32, a Planning flow has the following steps:

e Planning User: a generic function that is responsible for submitting
request to the planning function and control. It also receives
feedbacks on the status of Planning Requests, the generated plans,
and the status of the planning process. It is not a Planning function
itself, but it is a user of Planning data and service. In the specific
case of SAT SIM software, the user plan is the operator that generate
the schedule.

e Planning: this is the function responsible for performing Mission
Planning. The output of the Planning function is the plan that is
retrieved by the Planning Users and distributed to Plan Execution
functions.

e Plan Execution: this is the function responsible for executing a Plan
(or part of one). It is possible to have multiple plan execution
functions distributed between space and ground segments. It is not a
Planning function itself, but it does support a common model of the
plan in its interface with Planning [15].

In conclusion, the generation and the execution of a mission plan is a
monitored process from the start to the end of its protocols and it provide an

important and autonomous way for the execution of all the phases of a mission.
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4. SOFTWARE PHILOSOPHY & ARCHITECTURE

The thesis follows the Python Multithreading Approach. In this section the
overview of the code philosophy and the software architecture will be explained
in detail.

Python is a computer programming language designed for readability and
functionality. One of Python’s design goals is that the aims of the code are easily
understood because of the very clear syntax of the language. The Python language
has a specific form (syntax) and semantics which are able to express computations
and data manipulations which can be performed by a computer. Python’s
implementation was started in 1989 by Guido van Rossum at CWI (Centrum
Wiskunde & Informatica, research institute in the Netherlands) as an update and a
successor to the ABC programming language.

Python is an interpreted language, meaning a programming language whose
programs are not directly executed by the host CPU but rather executed (or as said
“Interpreted”) by a program known as an interpreter. The source code of a Python
program is partially compiled to a bytecode form of a Python “process virtual
machine” language. This is one of the major distinctions with the C codes which
are compiled to CPU-machine code before the run-time.

Another characteristic of Python is that it is “dynamically typed”, that
means that most of its type checking is performed at run-time as opposed to at
compile-time. Other dynamically typed languages are JavaScript, Ruby and
Objective-C.

The data which a Python program deals must be described precisely. The
description of variables is referred to as the data type. In the case of Python, the
fact that it is dynamically typed means that the interpreter will figure out what
type a variable is at run-time, so the programmer doesn’t have to declare variable
types himself. Python is “strongly typed”’, meaning that it will raise a run-time
type error when the programmer has violated the Python syntax rule as to how
types can be used together in a statement. Of course, all these facts do not mean

that the programmer can be neglecting and hoping Python to figure out things.
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>>> a = 2012
>>> type(a)
<type "int’':>

Figure 33: Example of how Python can figure out the type at run-time

4.1 PYTHON MULTITHREADING APPROACH

To better explain the processes occurring in the master thesis architecture, it
is important to have an overview about the Python’s concurrency, multiprocessing
and multithreading philosophy.

The concurrency, in Python, is the occurrence of two o more events at the
same time. In terms of programming language, concurrency is the overlapping of
two tasks in execution. With concurrent programming, the performance of
software systems can be improved because it can concurrently deal with the
requests rather than waiting for a previous one to be completed.

Thread is a small unit of execution that can be performed in an operating
system. It is not itself a program but runs within a program; it means that threads
are not independent from one other. Each thread shares code section, data section,
etc. with other threads. A thread has the following components:

— Program counter which consist of the address of the next executable
instruction.

— Stack.

— Set of registers.

— Unique ID thread.

Instead, multithreading is the ability of the CPU to manage and control the
use of operating systems by executing multiple threads concurrently. The main
concept of the multithreading philosophy is to achieve parallelism by dividing a
process into multiple threads [11].

A process is defined as an entity, which represents the basic unit of the code
implemented in the system. In other words, the programmer writes his program
and when he executes it, it becomes a process that performs all the tasks in the
program. During the process execution, the code passes through the stages shown

in Figure 34.

53



Figure 34: Different stages of a process [11]

A process can only have a thread (primary thread) or multiple threads where

each of them have their own set of registers, program counter and stack as shown

in Figure 35.
[ = I I P i 1_ ey I I Register | l Register I | Register I
I Counter I I_ Counter J I_ Counter I
l Stack ] I Stack I I Stack I
| Code ] [ oata | [ rites |
E 1 |
i I Code | i
H []
| |
i i f i
Single Thread 5 E
First Thread Second Thread Third Thread
Single Process P with single thread Single Process P with three threads

Figure 35: Comparison between process with 1 thread (left) and process with multiple thread

(right) [11]

Typically, a thread can exist in five different states:

New Thread: a new thread begins its life cycle in the new state. At
this stage, it has not yet started, and it has not been allocated any
resources (it is only an instance of an object).

Runnable: the thread is started, and it is waiting to run. At this time,
the thread has all the resources but still task scheduler has not
scheduled it to run.

Running: the thread makes progress and executes the task, which
are running in the task scheduler. At this moment, the thread can go
to either the dead state or the non-runnable/waiting state.
Non-running/waiting: the thread is paused because it is waiting for
the response of some I/O request or waiting for the completion of the

execution of other thread.
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e Dead: the thread enters the terminated state when it completes its
task (the thread is terminated).

The complete thread life cycle is shown in Figure 36.

10 Complete,
resume

Non-
Runnable/Waiting

Waiting for VO,
suspend, block
on VO

Figure 36: Thread complete life cycle

In conclusion, in table 8 an overview of advantages and disadvantage of

using threads is shown.

Advantages Disadvantage
Thread library contains code for creating and destroying threads, for |In a typical operating system,
passing message and data between threads, for scheduling thread most system call are blocking

execution and for saving and restoring thread contexts.

Multithreading application
Thread can run on any operating system cannot take advantage of

multiprocessing

Scheduling can be application specificin the thread
Threads are fast to create and manage

Table 8: Advantages and Disadvantages of using threads
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4.2 SAT SIM OVERVIEW: SOFTWARE ARCHITECTURE

Figure 37 shows the global architecture of the SAT SIM library.

IMAGE_ SIM
1 e i
— * IMG_LIST() Im:
* ADCS_RW_PACKET() + Check_ADCS_RW) ring() il Acquisition
* ADCS_THR_PACKET() + Check_ADCS_THRO — L] Decq)
« EPS_BATT_PACKET(} » Check_EPS_BATT() Logs Archive 1 « noat_bing) E\ )
« EPS_BUS PACKET() * Check EPS_BUS() * decimal_converter() " — A
* TCS_CDH_PACKET() * Check_TCS_CDH() - -
« TCS_EPS_PACKET() * Check_TCS_EPS()
+ PROP_THR_PACKET() + Check_PROP_THR() N
« PROP_PR_PACKET() * Check_PROP_PRI) T
« DBC_CRU_PACKET() « Check_CBC_CPU[)
= DBC_WATCHDOG_PACKET() = Check_OBC_
« PAY HYPER PACKET() . c...c(m]v:g‘glnu
 PAY_CAMERA_PACKET() « Check_PAY_CAMERA(
Mobile
— Alerts

TM Queue Gen

= TM_Fiowt()

Extraction Module

« eracton() k<

Figure 37: SAT SIM Architecture

In this architecture the main software blocks are shown, and for each block

all the methods selected to achieve the blocks’ functions are highlighted.

From the global overview it is possible to see two main threads SAT SIM

and GS SIM.

SAT SIM Thread: this thread (Satellite Simulator) has the main
function of generating telemetries, pack them and send the CCSDS
standard packets to the GS SIM thread. The SAT SIM thread has
also the aim of receiving telecommands from the GS SIM thread,
recognizing them and executing the telecommand and, in
conclusion, sending new telemetry as proof of the correct execution
of sent telecommand.

GS SIM Thread: this thread (Ground Station Simulator) has the
main function of receiving telemetries, recognizing them and
extracting the useful data from packets. The GS SIM has also the
aim of generating telecommand packets and sending them to the
SAT SIM thread. In the GS SIM there is also an additional branch to

manage the images from the satellite. The main function of this
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branch is to receive the images, recognize them and to display
images to the operators.

In the next section, the details of the branches will be examined to better
explain all the methods that compose the software architecture of the master thesis
work.

It is important to say that all the architecture uses different databases to store

data and to read the structure of the packets to build them.

TM Archive

.

Figure 38: Example of SAT SIM Databases

4.3 SAT SIM OVERVIEW: TELEMETRY BRANCH

In the previous section it was explained the main block of the SAT SIM
architecture. In this section, the telemetry branch will be analyzed. The objectives
that led to the construction of this branch are the following:

e To simulate a CubeSat architecture to generate realistic telemetries.

e To generate packets with the CCSDS standards.

e To generate packet strings to send to the GS SIM.

e To take track of all the action done during the generation of
telemetries.

In Figure 39 the TM branch is shown with the detail of all the methods and
database that led to the CCSDS packets generation.
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SAT SIM Architecture
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Figure 39: SAT SIM - TM Branch

The generation of telemetry is dedicated to the Python class SAT SIM. This
thread is organized into different module with different functions (methods). The

TM Gen module has the purpose to simulate the CubeSat architecture and to

generate realistic telemetries.

SAT SIM Architecture

SAT SIM E

T™ Gen

= TM_map()

= gen_fileJ SON()
« Get_TM_file() €

P

TM Archive

.

Figure 40: TM Gen Module

In TM Gen has different methods, as follows:

e TM_map (): is the method that generates the telemetry when it is

called. The telemetry is generated in form of dictionary and the
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gen_fileJSON() method saves it in the TM Archive. In the archive,
there are the telemetries generated saved in form of
“Sat Telemetry date and time of generation.json” (i.e.
“Sat_Telemetry 2019 06 01-22 33 18 .json”). The structure of the
TM dictionary is taken from the 7M/Packet Archive, where the
structure of dictionaries that the thread needs are saved.
o gen_fileJSON (): this method saves the generated telemetries in the
TM Archive in form of JSON file when it is called. These files are
dictionaries that, when they are called in the software, make it easy
to unpack data and search different fields faster.
e Get_TM. file (): this method takes the saved files from the TM
Archive and read them to generate new packets. The TM dictionary
structure is created as object in the code, and, when a TM profile is
generated, this structure is filled and saved as json file in the archive.
The output of this module is the TM dictionary where there are the useful
data to packetize according to the CCSDS standards. This dictionary is the input
for the Packet Gen module.
The Packet Gen module has the aim to use the telemetries data, divide them

for the different subsystems, and to generate the CCSDS packet.

Packet Gen

« ADCS_RW_PACKETY()
» ADCS_THR_PACKET()
» EPS_BATT_PACKETY()
« EPS_BUS_PACKET()
« TCS_CDH_PACKETY()
; » TCS_EPS_PACKET()
Archive » PROP_THR_PACKET()
» PROP_PR_PACKET()
+ OBC_CPU_PACKET()
» OBC_WATCHDOG_PACKETY()

» PAY_HYPER_PACKET()

@ = PAY CAMERA_PACKET()
1

Figure 41: Packet Gen Module

TM/Packet Dicts

The methods in this module according to the specific on-board system, take
the useful data and generate the packets according to the standards specified in the
section 3.2.1. To build the packets this module uses the packet structures saved in
the TM/Packet Dicts Archive where there are all the dictionary structures, divided
by sub-systems, to fill to build a packet. The output of this module is, for each
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system, a binary string that represents all the packet fields. These strings are the

input to the TM Queue Gen module as shown in Figure 42.

= wa e a gy

» PAY CAMERA_PACKET()

Packets Sent f
Archive TM Queue Gen |

1

» TM_Flow()

Figure 42: TM Queue Gen Module

The TM Queue Gen module has the main purpose of generating a sequence
of strings that represent the incoming packets from the satellite. The TM_Flow ()
method generates the queue, saves it in the Packet Sent Archive in the form of
“TM Queue 2019 07 12-21 25 48.txt” and, in conclusion, sends it to the GS
SIM thread for the ground station packet extraction.

GS sIm {l

h

Extraction Module | /—'__\

« extraction()

Y

Iy G5 Packet Dicts
Archive

Conversions \-\—//
+ split_string() /—\

s ConBinDec()

GS Extractions
Archive

Figure 43: GS SIM Extraction Module

The TM Queue generated is sent to the GS SIM thread’s extraction module.
The method extraction () receives in input the telemetry queue and the packets
dictionary structure from the GS Packet Dicts Archive and extracts the useful data
from the packets. These data are saved in the GS Extractions Archive in form of
dictionary divided by on-board system (for example ADCS RW.json is the ground
extraction related to the reaction wheels), and then they are sent to the Control

Loop module.
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Figure 44: GS SIM Control Loop Module

The Control Loop module receives in input the extracted data and check if
it is acceptable or if it is not acceptable. According to [1], the criteria used to
evaluate the data are the following:

e Checked: the data is acceptable.

e Alarm: the data is not acceptable and not tolerable.

e Tolerance: the data is not acceptable, but it is tolerable.
e OOL: the data is out of the prefixed limits.

The results of the Control Loop module are saved in the Logs Archive and,
if it happened, a message of alert is sent to the operator’s mobile. This is an
important skill for the control centre because in this way the operator can check
the incoming telemetries directly from his mobile phone and he is not forced to be

constantly present in the control center office.
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4.4 SAT SIM OVERVIEW: TELECOMMAND BRANCH

The telecommand generation has a path similar to the telemetry generation.

The process starts from the GS SIM thread that generate the TC packets and send

them to the SAT SIM thread that extract the command from the packet and

execute it. The architecture of the TC branch is shown in Figure 45.
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Figure 45:SAT SIM - TC Branch

The generation of telecommand is dedicated to the Python class GS SIM.

This thread is organized into different module with different functions (methods).

The TC Gen module has the purpose to generate the command packet for each

on-board system; from the TC interface, the operator can manage the on-board

equipment parameters and generate the packets to send to the SAT SIM extraction

module
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Figure 46: TC Gen Module

The TC Gen module has different modules:

run (): this method starts the thread, calls all the method in the
Python class and generates the interface for the generation of the
telecommand.

Acquire_button (): for each on-board system, this method has the
aim to check that all the parameters changed by the operator are
correct and able to be sent to the satellite. The criteria to establish if
the input parameter is acceptable are the same exposed in the section
4.3.

Gen_TC_Packet (): for each on-board system, this method
generates the packets according the CCSDS standards expressed in
the section 3.2.2. To build the packets, this method refers to the
packet dictionary structures saved in the 7C Packet Dicts Archive.
Sent PKT Button (): this method generates the packet string for
each on-board system and send it to the SAT SIM extraction

Extraction Module

« extraction()

module.

TC Extractions
Archive

—

Figure 47: SAT SIM Extraction Module
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The SAT SIM extraction module has objectives similar to the GS SIM
extraction module. This method receives in input the packet strings and extracts
all the packet fields from the strings. When the data is extracted, the extraction
module executes the command updating the on-board equipment parameters and
saving the data in the TC Extractions Archive. The useful data (in this case the
command to execute) is sent to the GS SIM TM Queue Gen to generate new
telemetry as proof of the correct execution of the command; from this point on,
the path is the same path of the TM branch. In the case that the command is not

executed, a message of error is sent to the operator to warn him on the incorrect

TM Queue Gen
« TM_Flow()

Fy

event happened.

Packets Sent
Archive

—

Extraction Module |

TC Extractions
Archive

—

+ extraction()

|

Figure 48: New TM Gen after the command execution

In conclusion, all the TC logs and data are sent to the TC Display module.

Display Module |

« Display_Command()

Figure 49: TC Display module

The Display_ Command () module has the purpose of displaying the
commands sent and all the messages of correct/incorrect command execution,
correct/incorrect command sending and the new telemetry as proof of the correct

command execution.
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4.5 SAT SIM OVERVIEW: IMAGES MANAGEMENT BRANCH

The control centre also presents the possibility to manage the incoming
images sent from a payload camera. To achieve these functions, it was considered

an image branch in the SAT SIM architecture called /MG SIM (Image Simulator).

SAT SIM Architecture

GS SIM E

Sentinel
Database

]

Y
IMAGE_SIM |

« runi)
* Frame_Extraction()

Image
Processing

]

F

Image Display Module |
* window() Acquisition
« Histogram

1

L

Figure 50: IMG SIM Branch

To simulate the payload camera, the SAT SIM software refers to a dataset
of images takes from the Sentinel Hub a database of multispectral images. The
master thesis work takes in exams some spectral bands and image of Turin city
[12]. This database is the input to the IMAGE_SIM module as shown in Figure
51.
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Figure 51: IMAGE SIM Module

The IMAGE_SIM module has different methods:

run (): this method starts the IMAGE SIM thread and receive in
input the files in the Sentinel Database. This function takes the files
and compresses them into the CCSDS packets according the
standards presented in the section 3.2.3. These packets are saved in
the  Image  Processing  Archive in  form of files
“Acquisition_ 2019 08 23-19 14 26 Il.txt” and sent to the method
Frame_ Extraction ().

Frame_ Extraction (): this method receives in input the image
packets and extracts the useful data from them. When the extraction
is ended, the frame extracted is decompressed and converted in the

effective images and sent to the Image Display module.
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Figure 52: Image Display Module

The converted images coming from the IMAGE SIM module are saved in
the Image Acquisition Archive in form of file “Acquisition 2019 08 23-
17 30 27 18jpg” and then they are sent to the Image Display module. This
module has the following methods:

e IMG_LIST (): this method displays to the operator all the incoming
image packets.

e window (): this method allows the operator to display and share the
incoming images.

e Histogram (): this method provides the operator with the first post-
processing operations. This function generates the RGB diagram for
each incoming image and display the diagrams to the operator.

In conclusion, this branch is developed starting from the TC branch where,
from the TC interface, the operator can require the sending of images from the S/c

and display them.

4.6 SAT SIM OVERVIEW: INTERFACE OVERVIEW

The SAT SIM architecture is connected to an interface to allow the operator
a simple use of the code to manage telemetry and commands. Python provide
different tools to create interface for several applications like wxPython, PyQt and
kivy. To achieve the functions of the control centre, the interface library used for
the SAT SIM Interface is Tkinter (Tk Interface) [13].

Tkinter is Python’s standard cross-platform package for creating graphical
user interfaces (GUIs). It provides access to an underlying Tcl interpreter with the

Tk toolkit, with itself is a cross-platform, multilanguage graphical user interface
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library [13]. Tkinter gives the ability to create windows with widgets (graphical
component on the screen) in them.

The SAT SIM Interface architecture is divided into different modules, each
of which is linked to a branch of the software shown in the previous sections of

chapter 4.

SAT SIM Interface Architacture

Log In Modul > Main Enter Interface

h 4 h 4

Y
TM Interface TC Interface STK Interface
A

¥
TM Extraction TC Gen IMG
Interface Interface Interface

Figure 53: SAT SIM Interface architecture

As shown in Figure 53, the first module of the interface is the Log in
Module. In this module the operator can register himself as operator or log in into

the software with his credentials (name and password).

f Account Login - O X

Operator Login or Register

N

Login

Register

Figure 54: SAT SIM Login/Register Interface
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lf Login — O X
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L Username *

Password *
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Figure 55: SAT SIM Login Interface

@ Register - O X

N Please enter details below
Username *

Password *

Register

Figure 56: SAT SIM Registration Interface

After the Log-in phase, the operator can access the Main Enter Interface
module. This is the high level interface of the SAT SIM software and from it the
operator can access the TM branch or the TC branch or the STK simulations

branch.
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Figure 57: SAT SIM main interface

Through the TM Viewer button, the operator can access the TM branch. The
interface shows the results of the telemetry extractions of the incoming packets as

shown in Figure 58.
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ADCS Packet EPS Packet ICSPacket PROPULSION Packet QBC Packet PAYLOAD Packet
A "

THR PKT

Figure 58: SAT SIM TM Interface
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From the TM interface it is possible to see the following modules:
e Incoming Packets: the queue of the incoming packets (in green

correct acquisition of the packet, red incorrect acquisition)

§ sarsim

File Help

Figure 59: Queue of the incoming packets

e Telemetry Display: The TM information are displayed and divided
by on-board system (ADCS, EPS, TCS, OBC, PROPULSION and
PAYLOAD). In this section there is also the displaying of the
consistency check where it is shown if the parameters are acceptable
or not acceptable. In addition, in this section are shown the packet

type, the time of packet sent and the packet parameters.

ADCS EPS TCS PROPULSION QOBC PAYLOAD
RW TM

Packet ID: TM_ADCS_RW
Subsystem: Reaction Wheel
TIME: 2019-07-28 18:49:30 Check Alarm Tolerance OOL
PAR1 Operative Mode: nominal
PAR2 Reaction Wheel Voltage [Volt: |0 =
PAR3 Reaction Wheel Speed [RPM: 7870 ' BT
PAR4 Reaction Wheel Current [Ampere]: |0 ' | =)

THR T™M
Packet ID: TM_ADCS_THR
Subsystem: Cold Thruster
TIME: 2019-07-28 18:49:30 Check Alarm Tolerance OOL
PAR1 Operative Mode: safe mode
PAR2 Cold Thruster Voltage [Volt: 4 _ [ —
PAR3 Cold Thruster Current [Ampere]: 0 -

Figure 60: SAT SIM TM Display interface
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Packet Visualization: on the TM interface, the operator can also
visualize the structure of the incoming packet divided by on-board

system. In this way the operator can check if the structure of the

CCSDS packet is respected.

-

ADCS Packet EPS Packet TCS Packet PROPULSION Packet OBC Pack

RW PKT

]

Figure 61: SAT SIM TM Packet Visualization

From the TM Interface is possible to access to the packet archive. Through

this ability is possible to check a specific packet sent in a specific data and time.

f Select file X
A | | « TMBranch > Packet_Archive v B | Cercain Packet_Archive p
QOrganizza v Nuova cartella gz =« [H 0
o Nome Ultima modifica Tipo Dimension
# Accesso rapido .
|=] TM Queque_2019_09_19-15_33_56.xt Documento di testo 2K
B Desktop * o
U TM Queque_2019_09_19-15_38_03.bet Documento di testo 2k
‘ Downicad | 53¢ m TM Queque_2019_09_18-17_22_44.txt Documento di testo 2K
=] Immagini o u TM Queque_2019_09_20-10_58_33.bt Documento di testo 2k
[£] Documenti  # |_] TM Queque_2019_09_20-11_00_23.txt Documento di testo 2K
Metodi  # [5] ™™ Queque_2019.09_20-11_30_00.6¢t Documento di testo 2k
& Google Drive # u TM Queque_2019_09_20-11_30_20.bct Documento di testo 2k
| S =] TM Queque_2019 09_20-11_33_38.bd Documento di testo 2k
mmagini -
: Il] TM Queque_2019_09_20-11_37_04.txt 19 11:37 Documento di testo 2K
Packet_Archive
[Z] T™M Queque_2019.09_20-11_41_21.6¢ 19 11:41 Documento di testo 2k
Stesura [5] T™ Queque_2019_09_20-11_46_20.0¢ 191146  Documento ditesto 2k
TM Branch [Z] T™ Queque_2019.09_20-11_48_02.6t 20/09/2019 11:48 Documento di testo Tkw
P W YRS i X >
Nome file: ‘TM Queque_2019_05_20-11_30_00.bxt VI i filles (".bdt) v
| Apri Annulla

Figure 62: Packet Archive

After that the operator chooses the packet to display, he can open it packet

and can display all the telemetry data sent in that specific data at that specific

time.
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# C/Users/Antonio/Google Drive/TESI/Sat Sim Library Consegna/TM Branch/Packet Archive/TM Queque_2019_09_20-11_30_00:txt

ADCS EPS TCS PROPULSION OBC PAYLOAD

RWTM
IPacket ID: TM_ADCS_RW
Subsystem: Reaction Wheel
TIME: 2019-09-20 11:30:00 Check Alarm Tolerance 0OL
PAR1 Operative Mode: \nominal | [
PAR2 Reaction Wheel Voltage [Voit: |5 [ ==
PAR3 Reaction Wheel Speed [RPM]: | 7523 e | -
PAR4 Reaction Wheel Current [Ampere]: 0 | [ |

THRTM

Packet ID: |[TM_ADCS_THR
Subsystem: |Cold Thruster
TIME: 12019-09-22 22:16:17 Check Alarm Tolerance OOL
PAR1 Operative Mode: [idie [
PAR2 Cold Thruster Voltage [Volt: |3 .
PAR3 Cold Thruster Current [Amperel:|0 | | ] _

--- ADCS is currently selected ---
ADCS Packet EPS Packet ICSPacket PROPULSION Packet OBC Packet PAYLOAD Packet

~ "

RW PKT THRPKT

Figure 63: Display of a specific TM packet
The interface for the generation of the command packet is similar to the TM

interface in which the operator can choose the parameters to change and generate

TC packets to sent to the satellite.

# saTsM
ADCS EPS OBC PAYLOAD

- a X
RWTM -
Packet ID: TM_ADCS_RW
Subsystem: Reaction Whee!
TIME: 2019-09-12 171520 Check Alarm Tolerance OOL TC RW PKT
PAR1 Operative Mode: online | | UL TE |
PAR2 Reaction Wheel Voltage [Voit: |14 | | Acquire
PAR3 Reaction Wheel Speed [RPM]: 2000
PAR4 Reaction Wheel Current [Ampere]: 0.2 v

[ |
L
THRTM
Packet ID; TM_ADCS_THR
Subsystem: Cold Thruster
ITIME: 2019-09-1217:15:20  Check Alarm Tolerance OOL TC PKT GEN | Send
PAR1 Operative Mode: online |
PAR2 Cold Thruster Voltage [Voltl: |4 | | Acquire
PAR3 Cold Thruster Current [Ampere]: 0 [ |

--- ADCS is currently selected ---

Figure 64: TC Interface

In detail, from Figure 64 it is possible to distinguish the following modules:
e Telecommand Manage Interface: from this module the operator
can change the not acceptable parameters and can check if the new
chosen parameter is acceptable or not through the Acquire button

that call the consistency check methods to control the different data.
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§ SAT S
ADCS EPS QBC PAYLOAD

RW TM
Packet ID: TM_ADCS_RW
Subsystem: Reaction Wheel
TIME: 2019-08-1217:1%20 Check Alarm Tolerance OOL
PAR1 Operative Mode: online | |
PAR2 Reaction Wheel Voltage [Voltl: 1.4 | ] Acquire
PAR3 Reaction Wheel Speed [RPM]: 3000 e
PAR4 Reaction Wheel Current [Ampere]: 0.2 | ]

Figure 65: TC Manage Interface

e TC Packet Generation Module: through the 7C PKT GEN the
operator generates the TC packets according to the CCSDS
standards examined in the section 3.2.2. At this moment the packet
is only a dictionary where the keys are the CCSDS packet fields and
the values are the new parameters generated by the operator. Instead,
with the Send button, the TC packet is converted into a binary string
and sent to the extraction module of the SAT SIM thread. As proof
of the correct sending, messages of information are displayed to the

operator on the interface.

TC PKT GEN Sem:ll TC RW PKT

Figure 66: TC Packet Generation Module Interface

When the packet is sent to the extraction module, the S\c executes the
command sent, updates the telemetry and generates a new TM packet as proof of

the correct command execution.
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RW TM
Packet ID: TM_ADCS_RW
Subsystem: Reaction Wheel
TIME: 2019-09-12 17:15:20 Check Alarm| Tolerance OOL
PAR1 Operative Mode: online ] ' '
PAR2 Reaction Wheel Voltage [Volt]: | 1.1875 ]
PAR3 Reaction Wheel Speed [RPM]: 3000 ]
PAR4 Reaction Wheel Current [Ampere]:|0.1875 ]

Figure 67: Correct execution of the command

The STK button allows the operator to call a new STK scenario to simulate
access and different actions before effectively sending them to the satellite. Whit
the STK software the operator can also simulate the track of satellite before
update the TLE date in the real tracking system of the C3.

The last part of the software is the capability of schedule different type of
pre-set commands ordered by the operator and executed by the SAT SIM thread.

The schedule part consists into receive in input a command with a specific
structure shown in Figure 68.

command_name_dict = {
"display _name":
"description”:
"resources’:
"priority":

Figure 68: Command Structure

The command structure in input is a dictionary that has the follow keys:
e Command name_dict: name of the dictionary that indicates the

name of the command.

75



Display name: is the name of the command displayed on the
interface.

Description: is a brief description of what the command does.
Resources: are the sequence of resource involved in the execution
of the command.

Priority: is a number that establish the priority with which the
command must be execute. The scheduler, in fact, will execute the
command with the highest priority (priority = 1) and then in

sequence all the others.

In this part, 8 type of commands are pre-set in the scheduler. The commands

are the following:

Pings: is the simple request to the satellite to ping a signal.

Error: is the command to evidence an error.

Connect: is the command to points antennas and starts broadcasting
carrier signal to establish RF lock with the spacecraft.

Safe Mode: is the command to switch the spacecraft in its safe mode
state.

Detumbling: is the command to star all the sequences for the
execution of the spacecraft detumbling mode.

Offline: is the command to turn off all the systems.

Nominal: is the command to set all the systems in their operative
mode (all the systems operate in their nominal mode).

Acquire Event: is the command to acquire a specific event with the

payload.

From the interface the operator can choose what kind of command want to

select for the schedule. Each command is associate with a tab where there are all

the details of the chosen command and the possibility to assign a priority number

to it. After assigned the priority to the command, the operator can add the

command to the schedule queue that are waiting to be executed.

76



§ sarsim

Ping

Ping

errar
detumbling
connect
safemode
offline

acquire_event

nominal

Figure 69: Scheduler Interface Command Choose

When the operator chooses the command to schedule, he can see all the

details relative to that specific command as shown in Figure 70.

ADD to Sched Cueue

# Scheduler: Ping — O x
Ping
Sched ID 1776
Command Name Ping
Description Ping
Resources Ready for Ping request
Priority 1

Figure 70: Command detail window

From the window shown in Figure 6, is possible to see the following fields:

Schedule ID: is the ID generate for the command to add to the

schedule queue.

Command Name

Description: Description of the command to choose.

Resources: the resources involved in that specific command.

Priority: the operator can assign a priority number to the command.

This number will be read by the scheduler that will execute all the

schedule queue sorted by priority number.

Through the ADD to Sched Queue button the operator can add the command

to the queue and choose another command to schedule in the same way.

7

Execute Schedule

Figure 71: Scheduler Queue Interface
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Through the Execute Schedule button, the entire schedule will be execute
starting from the command with the highest priority (1) and then in sequence all

the other commands.

# Execution of Schedule — O >

Figure 72: Example of a schedule execution

In conclusion, all the SAT SIM software provides the possibility to manage
TM and TC and Images packets following the CCSDS standards and then to
simulate a schedule of commands for the correct execution and monitoring of the
spacecraft operations.

In the next session it will be described all the test sessions used to validate

and verify the entire software and its interface.
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5. TEST & VALIDATION

The software testing life cycle typically includes different phases like:

Planning, Analysis, Design, Construction, Testing Cycles, Final testing and

implementation and Post implementation. Each phase is described with the

respective activities as follows [14]:

Planning: includes the high-level test plan, the quality goals plan,
problem identification and classification, acceptance criteria,
measurement criteria and the reporting procedures.

Analysis: involves activities that develop test cycles, identify test
case, plan the test cycles required for the project and review of
documentation.

Design: in this design phase the activities included are revision tests
based on software changes, revision and addition of new test cases
based on software changes, finalization of the test cycles (number of
test case per cycle) and finalization of the test plan.

Coding: complete all plans from test cycle to the automated testing
and fix the bugs (bug reporting, verification, and revision/addition of
the test cases).

Verification: this phase includes the execution of all test cases
(automated and manual), updating estimates for test cases and test
plans, document test cycles, regression testing, and updating
accordingly.

Validation: activities in this phase are review of the test cases to
evaluate other cases to be automated, clean up the automated test
cases and variables and review process of integrating results from

automated testing in with results from manual testing.

In the next sections it will be reported, for the SAT SIM software, all the

test cases classification and tracking according to the test objectives and

requirements.
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5.1 OBJECTIVES & REQUIREMENTS

The objectives of this last part of the master thesis work are to evaluate the

software performances, to verify the software and to validate it with test cases. In

particular, in this section all the procedures included in the verification of the

software requirements and all the test cases used to validate the software will be

explained.

The Verification process checks if the software is conformed to its

specification and requirements (in general this phase answer to the question “Are

we building the product in the right way?”). Some of the requirements for the

software are shown in Table 9.

REQID Text

REQ-1 C3 shall recognize the TM packets

REQ-2 C3 shall acquire the TM packets

REQ-3 C3 shall save the TM packets

REQ-4 C3 shall recognize the TC packets

REQ-5 C3 shall built the TC packets

REQ-6 C3 shall save the TC packets

REQ-7 C3 shall recognize the Image packets

REQ-8 C3 shall acquire the Image packets

REQ-9 C3 shall save the Image packets

REQ-10 C3 shall share information with the mission stakeholders

REQ-11 C3 shall share images with public

REQ-12 C3 shall display the acquired information

REQ-13 C3 shall guarantee the existence of an interface between operator and PC
REQ-14 C3 shall be developed according to ECSS standards

REQ-15 C3 shall be compliant to CCSDS standard

REQ-16 C3's control centre shall be implemented in Python

REQ-17 C3 Scheduler shall recognize a specific structure for pre-set commands
REQ-18 C3 Scheduler shall generate a unique /Q for the pre-set commands each time

a schedule is created

REQ-19 | C3 Scheduler shall provide an interface to display the commands information
REQ-20 C3 Scheduler shall generate a queue sort by the command’s priority
REQ-21 C3 Scheduler shall provide an interfg;: ;Zgisplay the correct execution of the

Table 9: Software Requirements
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The Validation process, instead, checks if the software does what the user
really requires; this goes beyond checking that the software meets its
specification, but this phase requires that the software is able to achieve the
mission objectives and the needs of the mission stakeholders [14]. The whole life-
cycle process of the Verification and Validation (V&V process) must be applied
at each stage of the software process and has two principal objectives:

e The discovery of defects in a system.

e The assessment of whether or not the system is usable in an

operational situation.

User requirements ‘

//—’—:alidation

System regmts specification ‘ ‘

Walidation system test ‘

/—‘u‘alidation

Computer system specn ‘ | Integd computer system test‘

Verification

Software design | l Computer system integration I

Software coding l——{ Software test ‘
‘\Veriﬂcation

Figure 73: The V-model of the V&V process

The V&V process establishes a degree of confidence that the software is fit
for purpose; this does not mean that it is completely free of defects and the degree
of confidence depends upon several different factors as the test typology used to
validate the software and the experience of who tests the code.

To achieve the objectives of the V&V process, in the next sections all the

tests conducted, and the respective results will be described.
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5.2 TEST SESSIONS

The test sessions have the main purpose of locating the defects of the
software. Each test should be repeatable, but there are some exceptions in case the
software changes the test environment without the possibility to restore it or in
case there are some indeterministic elements (non-controllable inputs) in the code.

To take a test it is useful to consider the following points:

e [t is important to know the expected behaviour to compare with the
observed behaviour from the code.

e During all the test it is important to have an Oracle that knows the
expected results for each test case. It is possible to have a human
Oracle, the operator follows the software specification and compare
the expected results with the real results, or an Automatic Oracle that
is generated by the software specification. It is possible that this
oracle could be the same software but developed by other operators
or a previous version of the same software. In this test session the
oracle is the operator that compares the expected results with the real

results.

Test Cases

Software to
Test

Results
Comparison

Test Results

Figure 74: Test evaluation flowchart
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To establish if a test is ended and if it is successful, it is important to create

the pass criteria for each test, which establish if the test is passed by the software

or if the test is failed by the software. The number of the tests that can occur in

validating the software depends from time available for each test, coverage (test

all the macro areas of the code) and from statistics criteria (if the last test cases are

passed it is possible to end the validation process).

It is not possible to evaluate the ideal number of the test cases, but each of

them is described by the following parameters:

Effectiveness: it is the rate between the number of bugs found and
the number of bugs to find.
Efficiency: it is the rate between the number of tests able to find

bugs and number of total tests.

To keep track of the results, each test is characterized by different

identification field as shown in Table 10.

Test Case |Input Data/ |Expected .
Test Case ID . . Pass/Fail
Description|Requirements|Result

Table 10: Test Classification

From Table 10 it is possible to see:

Test Case ID: this is the identification code of each test conducted.
The ID is simple and structured as in the example: 7C-001 (the 1D
code of the first test case).

Test Case Description: this is a description of the objectives of the
test case and how the test case is conducted.

Input Data/ Requirements: this field describes the type of inputs
for each test case (if there are input) and which requirements the test
case would need to verify and test.

Expected Result: this field describes the expected result (if there is
any) for each test case.

Pass/Fail: these are the results of the test. (P = pass, F = fail).
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5.2.1 TEST SESSION: DEBUGGING PROCESS

The Debugging process is concerned with locating and repairing the errors
discovered in the code. Debugging involves:

e To formulate a hypothesis about program behaviour.
e To test these hypotheses to find the system error.

There is no simple process for debugging and it often involves looking for
patterns in test outputs with defect and using a programmer’s skill to locate the
error. The Debugging process includes the location and repairing of errors like
syntax errors (usually caught by the compiler which locates the error occurred in
and the type of error), and semantic errors (logical error) which occurred when the
software produces incorrect output on some input. These errors are harder to
detect since the compiler may not able to indicate where and what the problem is.

Once errors are located and fixed, it is necessary to re-test the program to
make sure that the fix operation has not introduced new problems. Experience
could help the programmer to reduce the introduction of new errors in the

debugging process.

Test Test

B ke Specfication -~
Design
error repair

Figure 75: The Debugging Process
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5.2.2 TEST SESSION: SOFTWARE PROFILING

One of the first tests performed after the physiological debugging phase is
the tracking of software performances. Testing the software's performance means
monitoring the execution times of the various classes and the entire software and
track the entire software path to control the presence of errors.

In Python it is possible to monitor all these characteristics using its profiler.
A profiler is a program that describes the run time performance of a code,
providing a variety of statistics and graphs. The profiler provides also a series of
report generation tools to allow users to rapidly examine the results of a profile
operation.

The Python profiler library used to profile the SAT SIM software is
cProfile. It is a C extension with reasonable overhead that makes it suitable for
profiling long-running programs.

The module cProfile.run() receives in input the function to profile and
returns as output a series of statistics that describe the function in all its
performances. As first profile in this test session, the SAT SIM main is profiled as
shown in Figure 76.

10983 function calls (6625 primitive calls) in 5.846 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
0.000 (515 0%] .046 .046 <string>:1(<module>)

.000 .000 .000 .000 Thread GS SIM.py:59( init )
.000 (515 0%] .000 000 Thread SAT_SIM.py:163(decimal_converter)
.000 .000 .001 .00 Thread_SAT_SIM.py:168(float_bin)
.000 .000 .000 .000 Thread_SAT_SIM.py:191(TM_map)
.000 .000 .001 .001 Thread SAT_SIM.py:334(Get_TM_File)
.000 .000 .000 .000 Thread SAT_SIM.py:343(ADCS_RW_PACKET)
000 000 000 000 Thread_SAT_STM.py:392(ADCS_THR_PACKET)
.000 .000 .000 .000 Thread SAT STM.py:437(EPS_BATT_PACKET)
000 000 000 @00 Thread_SAT_STM.py:482(EPS_BUS_PACKET)

.008 .000 .008 .008 Thread SAT SIM.py:523(TCS_CDH _PACKET)
.008 000 .008 000 Thread SAT SIM.py:564(TCS_EPS_PACKET)

=
Ln
LA

=
=

%]
%]
%]
%]
%]
%]
a.
(%]
a.
%]
e

0000000080
000000083
00000008

Figure 76: cProfiler output of SAT SIM main

The first line indicates that 10983 calls were monitored and, of those calls,
6625 were primitive. The term primitive indicate that these calls were not induced
via recursion. The next line Ordered by: standard name, indicates that the text
string in the far right column was used to sort the output. The other columns

include:
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e ncalls: number of calls.

e tottime: total time spent in the given function (and excluding time
made in call to sub-functions).

e percall: the tottime divided by ncalls.

e cumtime: total time spent in this and all subfunctions (from
invocation till exit).

e percall: the cumtime divided by primitive calls.

o filename:lineno(function): provide the respective data of each
function.

It is possible to find two numbers in the first column like 43/3; that means
that the second number is the number of primitive calls and the first is the actual
number of calls. When the function does not recurse, these two values are the
same, and only the single number is printed.

In the same way the interface code is profiled, and the outputs are shown in

Figure 77.

87256 function calls (81246 primitive calls) in 55.677 seconds

lordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

49/7 0.000 0.000 0.078 8.011 <frozen importlib. bootstrap>:10e9(_handle fromlist)
16 oee 0.000 000 000 <frozen importlib. bootstrap>:103(release)
16 o0 0.000 o0 .000 <frozen importlib. bootstrap»:143(_ init )
16 . 000 0.000 000 eee <frozen importlib. bootstrap>:147( enter )
16 .000 0.000 o0 0@ <frozen importlib. bootstrap»:151(_ exit )
16 . 000 0.000 000 eee <frozen importlib. bootstrap>:157( get module lock)
16 .000 0.000 o0 0@ <frozen importlib. bootstrap>:176(cb)

31/6 oee 0.000 878 013 <frozen importlib. bootstrap>:211( call with frames removed)
109 o0 0.000 o0 0@ <frozen importlib. bootstrap»:222(_ verbose message)
16 . 000 0.000 000 eee <frozen importlib. bootstrap>:3e7( init )
16 .000 0.000 000 .000 <frozen importlib. bootstrap>:311(_ enter )

000D
0D
000D

Figure 77: cProfiler output of the Interface main

To visualize the actual calls and the connection between the classes the
profiler provides some library to automatically generate a graph of all
connections. The Python library used to generate graphs is pycallgraph. It is a
library created to visual profiling tool for Python application. Its major function is
to track the name of every function called, the time take within each function,
number of calls and other statistics.

In the Figure 78-79 the profiling graph of the SAT SIM main and the
Interface main are shown (for reason of clarity and space only a part of the graph

is reported, for the detail of the graph see the Appendix).
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Figure 78: Call graph of the SAT SIM main

From the profiling table and from the graph is possible to see that the

execution time of the code is about 5.040 seconds and it is possible to monitor all

the connection in the code.
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As last profile, the call graph of the Interface main is shown below (for
reason of clarity and space only a part, for example purpose, of the graph is

reported, for the detail of the graph see the Appendix):

- calls: 1
time: 0.000000s

Thread_SAT_SIM.SAT_SIM.TCS_CDH_PACKET

tirme: 0.000000=

._init__

AR

calls: 1
time: 0002023

£
3
5
=
3
2
5
=
£

wApplogin

call=s: 1
tirne: 0.004397s

TM_Interface.m:

sucess

wipplogin

calls; 1
time: 0.001000<=

TM_Interface.m

12que

Figure 79: Call graph of Interface main

The graph of the Interface main is only indicative of what and which are the
functions called in the code, the execution time depends by the operator that use

the interface.
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5.2.3 TEST SESSION: TM /TC NoMINAL PROFILE (Tc-001)

The test sessions of the SAT SIM software consist into establishing different
test cases (Tc) in which the operator can compare the expected result with the
actual outputs generate by the code. It is important to say that each Tc is aimed at
verification of the requirements expressed in the section 5.1.

The first test case execute is the generation of a telemetry nominal profile.
This test consists into verifying if the SAT SIM thread is able to generate
telemetry in the acceptable range (nominal range) and if it is able to packetize
them and sent them to the GS SIM thread. In addition, the test has the purpose to
establish if the GS SIM can recognize the packet, extract the useful data and
convert them into an engineering language. In conclusion, if the interface is able
to display the correct TM generated and if it is able to recognize the nominal

profile, the test is considered as passed.

Generation of Extraction and .
. . Display of the
TM nominal » Conversion of the > nominal TM
packets TM nominal packets
A A‘ A
S SO . R Levemne : S S .
i SAT SIM i :  GSSIM i i Interface i
{ Thread Test ! i Thread Test | { Thread Test !

Figure 80: Tc Nominal TM generation flowchart

The first step of the test case is to generate the nominal TM profile and
packets; in this phase the SAT SIM Thread is under test.

The second step of the test it to receive correctly the packets, extract the
useful parameters from them and check the correct execution after the extraction,
in this phase the GS SIM Thread is under test.

The last step is to test the interface. From the interface it is possible to check

if the previous two phases are ended correctly and if the test is passed.
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§ saTsIm

File  Help
Q) ADCS [EPS| ICS PROPULSION OBC PAYLOAD
BATT TM
Packet ID: TM_EPS BATT
Subsystem: Batteries
TIME: 2019-09-23 14:23:46 Check Alarm Tolerance OOL
PAR1 Operative Mode: online
PAR?2 Batteries Voltage [Volt]:| 2 -
PAR3 Status Charge [%]: 96 e [
BUS TM
Packet ID: TM_EPS_BUS
Subsystem: BUS
TIME: 2019-09-23 14:23:46 Check Alarm Tolerance OOL
PAR1 Bus 5v Voltage [Volt]: |0.9375 | ] [
PAR2 Bus 3.3v Voltage [Volt]:|0.125 [ [

--- EPS is currently selected ---

ADCS Packet EPS Packet TCSPacket PROPULSION Packet OBC Packet PAYLOAD Packet
A A

RW PKT THR PKT

Figure 81: Tc-001 Nominal TM packets

In this test session, as shown in Figure 81, all the packets are correctly
generated, sent and received (the green list indicates the correct acquisition of the
packets). The extraction of the packets parameters has happened correctly, and all
the consistency checks return a positive result indicated by the green cells in all
systems pages. The test is conduced on about 150 nominal packets generated to
have a substantial number of data on which make statistical considerations.

As proof of validation it is possible to check that from the telecommand
(TC) interface it is not useful to generate TC packets to change the parameters that
are already correct (in the TC interface there are all green cells, so the operator

does not change the parameters).
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ADCS EPS OBC payLOAD

CPUTM

Packet ID: TM_OBC_CPU
Subsystem: CcPU
TIME: 2019-09-23 14:23:46 Check Alarm Tolerance OOL
PAR1 Operative Mode: online - TC PKT GEN ﬂ
PAR2 Memory Storage [%]: 47.875 - Acquire
PAR3 Payload Bit Rate [bit per sec]: 1720000.1875 -
PAR4 AOCS Bit Rate [bit per sec]: 780044859375 I
PARS Housekeeping TM Bit Rate [bit per sec: |5523279.5625 [

WD T™
Packet ID: TM_OBC_WATCHDOG
Subsystem: Watchdog
TIME: 2019-09-23 142346 |Check/Alarm Tolerance OOL TC PKT GEN | send
PAR1 Operative Mode: Online
PAR2 Memory Storage [%]: |28.375 - Acquire

Figure 82: Tc-001 Nominal TC interface

In conclusion, based on the tests carried out, and based on the data
collected, it is possible to say that the Tc-001 reflects the expected results and

verifies the relative requirements. Ultimately, the test has passed.

5.2.4 TEST SESSION: TM /TC ERROR PROFILE (Tc-002)

The second test case execute is the generation of a telemetry error profile.
This test consists into verifying that the SAT SIM thread is able to generate
telemetry in the not acceptable range (error range) and if it is able to packetize
them and sent them to the GS SIM thread. In addition, the test has the purpose to
establish if the GS SIM can recognize the packet, extract the useful data and
convert them into an engineering language. In conclusion, if the interface is able
to display the error TM generated, send error to the operator’s mobile and if it is

able to recognize the error profile, the test is considered as passed.

Generation of Extract.lon and Interface on the Display of the
TM error Conversion of the operator’s mobile error TM
packets TM error packets P
3 T T
Fommemme- Loceoeens pomeeeee Loceoooees Fommemme- Loveoeeens
i SATSIM | ! GSSIM | | Interface
{ Thread Test | { Thread Test | i Thread Test |

Figure 83: Tc-002 Error TM generation flowchart
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The last step is to test the interface. From the interface it is possible to check

if the previous two phases are ended correctly and if the test is passed.

ADCS EPS TCS PROPULSION OBC PAYLOAD
TCSCPUTM
Packet ID: TM_TCS_CDH
Subsystem: CS&DH
TIME: 2019-09-23 17:13:24 Check| Alarm Tolerance OOL
PAR1 Operative Mode: failure | ] [
PAR2 CPU Tempearature [deg C]:| 57 [
TCSESPTM
Packet ID: TM_TCS_EPS
Subsystem: EPS
TIME: 2019-09-23 17:13:24 Check Alarm Tolerance OOL
PAR1 Operative Mode: failure
PAR2 EPS Tempearature [deg CJ: |68

--- TCS is currently selected ---

ADCS Packet EPSPacket ICSPacket PROPULSION Packet OBC Packet PAYLOAD Packet
A A

RW PKT THR PKT

Figure 84: Tc-002 Error TM packets

In this test session, as shown in Figure 84, all the packets are correctly
generated, sent and received (the green list indicates the correct acquisition of the
packets). The extraction of the packets parameters has happened correctly, and all
the consistency checks return a result indicated by the colors of cells in all
systems pages. The test is conduced on about 150 nominal packets generated to
have a substantial number of data on which make statistical considerations.

All the alert messages and the warning messages are correctly sent to the
operator’s mobile. From the smartphone the operator receives an alert notification
as shown in Figure 83. This notification provides the general information about

the type of packet and the type of message incoming to the GS SIM.
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& Chrome * notify.run » Adesso A

2019-09-23 17:13:24 N
TM_PAY_CAMERA AN\
Subsystem: CAMERA 2

Alert Message: PAYLOAD CAMERA Failure

Alert: Temperature Too Low (OOL)

IMPOSTAZIONI SITO

Figure 85: Alert Notification

The operator can click on the notifications and see the relative details of the

incoming message, as shown in Figure 86.
WINDR © .11 52% 1 17:1

2019-09-23 17:13:24 TM_PROP_THR
Subsystem: THRUSTER Alert Message:
Thruster Failure Thrust: OK

+ updates.push.services.mozilla.com: 201

« fcm.googleapis.com: 201

2019-09-23 17:13:24 TM_TCS_EPS
Subsystem: EPS Alert Message:
Temperature to EPS Failure Alert
Message: Temperature to High (OOL)

« updates.push.services.mozilla.com: 201

« fcm.googleapis.com: 201

2019-09-23 17:13:24 TM_TCS_CDH
Subsystem: C&DH Alert Message:

Temperature to C&H Failure Alert
Message: Temperature to High (OOL)

+ updates.push.services.mozilla.com: 201
" fcm.googleapis.com: 201

2019-09-23 17:13:24 TM_EPS_BUS
Subsystem: Bus Voltage to BUS: 0K
Warning: Voltage to BUS 3.3v Excede
(Tolerance)

Figure 86: Detail of the incoming message
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The Python library used to connect the operator’s smartphone to the code is
notifyRun. This library consent to connect a smartphone to a server and then
through a line command send string as message directly to the registered
smartphone.

This skill provides the operator the possibility to monitor the TM packets
incoming into the ground station even being away from the control center. It is
important to emphasize that the operator can only monitor the situation in
revenue, for any action the presence within the control center is necessary.

To resolve the alert the operator must generate TC packets to correct the

parameters through different protocols and acquire new telemetry.

¢

ADCS EPS QBC PAYLOAD

| BATT TM
Packet ID: TM_EPS_BATT
Subsystem: Batteries
TIME: 2019-08-23 171224 Check Alarm Tolerance OOL TC PKT GEN | Send TG EATTPKE
PAR1 Operative Mode: online | |
PAR2 Batteries Voltage [Volt]:| 1.2 [ ] Acquire
PAR3 Status Charge [%]: 80 [ ]
v

Figure 87: TC packets generation

BATT TM
Packet ID: TM_EPS_BATT

Subsystem: Batteries

TIME: 2019-09-23 17:13:24 Check Alarm Tolerance OOL
PAR1 Operative Mode: online e

PAR2 Batteries Voltage [Volt]:|1.1875 e

PAR3 Status Charge [%]: 80 e

Figure 88: New Tm correction acquired

During the test, the software's ability to control the correct acquisition of
packets was also tested. After several tests, it was possible to see that if the packet
length exceeds the length indicated by the CCSDS standards (65536 octets
relative to the data field), the packet is automatically discarded, and an error is

shown on the interface indicating the number of the discarded packet.
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§ saTSIM
File Help
a ADCS EPS TCS PROPULSION OBC PAYLOAD
RWTM
Packet ID: TM_ADCS_RW
Subsystem: Reaction Wheel
TIME: 2019-09-18 14:27:27 Check Alarm Tolerance OOL
PAR1 Operative Mode: idle
PAR2 Reaction Wheel Voltage [Volt]: 1 - |
PAR3 Reaction Wheel Speed [RPM]: 6218 [ ]
PAR4 Reaction Wheel Current [Ampere]: |0 -
THRTM
Packet ID: TM_ADCS_THR
Subsystem: Cold Thruster
TIME: 2019-09-18 14:27:27 Check Alarm Tolerance OOL
PAR1 Operative Mode: online
PAR2 Cold Thruster Voltage [Volt]: 3 -
PAR3 Cold Thruster Current [Ampere]:| 0 -

Figure 89: Incorrect Packet Acquisition

In conclusion, based on the tests carried out, and based on the data collected
it is possible to say that the Tc-002 reflects the expected results and verifies the

relative requirements. Ultimately, the test is passed.

5.2.5 TEST SESSION: IMAGE PROFILE (Tc-003)

The third test case execute is the management of the image profiles. This
test consists into verify that the software is able to manage the images. In
particular, the test controls that the software can take images from a dataset,
compress them into images packets and send them to the GS SIM that extracts and
converts the images and displays them to the operator. The test was conducted on
about 24 images of Turin in different spectral bands [12]. In conclusion, if the
interface is able to display the images, and their relative RGB diagram, and the

software is able to save these images, the test is considered as passed.

Acquisition of Compression of the Extrac.t fon and Display of the
the Imges from Imses into packets » conversion of the Imases
Dataset g P Images g
T T T T
potoeeees Loceeeeeny prmemee- ‘ pooTeeees Loooeeeesy
{ IMAGE SIM | i GSSIM | i Interface !
E Thread Test | E Thread Test | i Thread Test E

Figure 90:Tc-003 Image management flowchart
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From the interface is possible to control all the phases of the test. The first
phase is the acquisition of the image and the compression of the images. From the
TC Viewer through the button Acquire Image is possible to require the
compression of the images from the dataset into packets and sent them to the GS

SIM for the extraction phase.

|r?:< — O *

Figure 91: Tc-003 Image compression Interface

After the compression phase, the packets are sent to the GS SIM to be

extracted and to display the images.

|
rf:\' - O pd

Figure 92: Tc-003 Frame Extraction

If the acquisition phase ends correctly, it is possible to display the acquired

images and monitor the relative RGB graph.
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Figure 93: Tc-003 Images Display

From the Image list on the left of Figure 84, is possible to select which
image and relative RGB graph the operator wants to display. As said in the
section 5.2.4, if the length of the packets does not respect the recommended
CCSDS length [10], the packet is automatically discarded, and an error is shown
on the interface indicating the number of the discarded packet. During the test
session, based on 24 images takes from the dataset, no error has occurred so the
CCSDS compression expressed in the recommendations [10] is respected.

In conclusion, based on the tests carried out, and based on the data collected
it is possible to say that the Tc-003 reflects the expected results and verifies the

relative requirements. Ultimately, the test is passed.
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5.2.6 TEST SESSION: SCHEDULER TEST (Tc-004)

The fourth test case execute is the test of the SAT SIM Scheduler. This test
consists into verifying that the scheduler thread is able to recognize the pre-set
command, add them to a scheduler queue and execute them according to the
priority number associated by the operator. In particular, the test control the
correct acquisition of the command structures, generates the schedule correctly
and sends them to the SAT SIM thread that executes all the scheduled commands

follow the priority number order.

Recognition of Generation of the Sending of the Corr?ctly
the command Scheduler Queue Scheduler Queue > execution of
structures the Schedule
Iy [y [ [y
poeeoeees ereeenes H poemeee foenmenns R e,
! Schedule | i SATSIM | | Interface |
i Thread Test | i Thread Test ! i Thread Test ;

Figure 94: Tc-004 Schedule test flowchart

From the interface it is possible to control all the phases of the test. The first
phase is the recognition of the command structure. It means that the interface
could be able to display all the command and all the relative information about a

specific command chosen by the operator.

/ m
acquire_event —
¢ ¢
Ping connect
Sched 1D 1222 Sched ID 1235
Command Name Ping Command Name connect

Description Ping
Resources Ready for Ping request
Priority 1

Points antennas and starts broadcasting carrier signal to establish RF lock with the spacecraft.
[ANTENNA DEPLOYED} {BEACON INITIALIZIATION]} {RF LINK ACQUIRED}

Description
Resources
Priority 3

ADD to Sched Queue

ADD to Sched Queue

¢

acquire_event
Sched ID
Command Name
Description

1747
acquire_event
Acquisition of the event with Payload

Resources
Priority
ADD to Sched Queue |

{EVENT ACQUISITION} {{ANTENNA DEPLOYED} {BEACON INITIALIZIATION} {RF LINK ACQUIRED}} {PAYLOAD DATA ACQUISITION}

Figure 95: Tc-004 Recognition and display of the pre-set commands
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As shown in Figure 95, each command window presents an unique ID,
generated every time the operator wants to create a new schedule, for the addition
into the scheduler queue, the name of the command, a brief description, the
resources involved into command execution and the priority where the operator
can set the priority number.

Through the command windows the operator can set the priority number to
all the commands that he wants to schedule. To establish a correct priority number
the theory of space operations and the operator experience could help to schedule

correctly the commands.

Execute Schedule

Figure 96: Tc-004 Generation of the Schedule queue

Through the Execute Schedule button the Schedule thread generates a queue
sorted by priority number where the number 1 indicates the maximum priority and
then, in sequence, the other number indicates a lower level o priority. This queue
is sent to the SAT SIM thread that executes the command according to the priority

number established by the operator.

Figure 97: Tc-004 Schedule queue executed correctly
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It is important to say that the operator cannot assign the same priority to
different commands because it is not possible for the spacecraft to execute two
different operations at the same time. For this reason, if the operator wants to
assign the same priority to different commands, the scheduler interface provides
him a warning message to alert the operator that this operation is incorrect, and
the schedule is destroyed.

/ X

|No command with same priority, add new priority to schedule

Figure 98: Tc-004 warning message for command with same priority number

In conclusion, based on the tests carried out, and based on the data collected
it is possible to say that the Tc-004 reflects the expected results and verifies the

relative requirements. Ultimately, the test is passed.
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5.3 RESULTS

All the tests performed are tracked in a table where is possible to monitor
the type of test case (Tc) performed, the requirements the test wants to verify, the
expected results and the result of the test (passed or failed). The Table 11 shows

the actual result of the test sessions.

Test Case Input Expected .
T ID P Fail
est Case Description Data/Requirements Result ass/Fai
Generation of the Positive end of
TM packet REQ-1; REQ-2; REQ- the seneration
Tc-001 describingthe | 3; REQ-10; REQ-12; gener p
. of nominal
nominal REQ-13 ackets
condition P
Generation of the
deTS'\C/'riE?rfketLe REQ-1; REQ-2; REQ- | Positive end of
Tc-002 error congition 3; REQ-4; REQ-5; | the generation P
and correct the REQ-6; REQ-10; of error
error with TC REQ-12; REQ-13 packets
packets
Manage of the | hbe/; REQ-8; REQ- Poriz\:mz ei:d ;
Tc-003 8 9; REQ-10; REQ-11; 1anaging p
Images packets images
REQ-13
packets
cortect functons | REQI7;REQU18; | PO
Tc-004 REQ-19; REQ-20; P
of the SAT SIM scheduler
REQ-21 .
Scheduler operations
Inspection of the
code to verify the REQ-14; REQ-15;
Tc-005 design REQ-16 \ P
requirements
Login interface
that works
Te-006 Test' of the Login REQ-13 only with the p
interface correct
credentials
registered

Table 11: Test Cases Results

From Table 11 it is possible to see the test cases performed in the test
sessions. The major tests are the test from Tc-001 to Tc-004 described in detail in
the previous sections.

The Tc-005 is an inspection test to verify the design requirements like the

implementation of the CCSDS standards. The test consists in inspecting the lines
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of code and verifying that the software meets the design requirements expressed
in Table 10. At the end of the inspection the requirements are verified and the Tc-
005 is considered as passed.

The last test case, Tc-006 is a test to verify the initial interface of login. The
idea of the SAT SIM software is to have a Python library that the operator can use
on any computer that can handle the Python language. The operator can then use
this library through his credentials and access the software and use the incoming
telemetry data.

The test consists in verifying the correct registration of the operator and the

correct access to the software with the registered credentials.

f Register - O x

Please enter details below

Username *
Operator__01

Password *

*ktt**—1

Register

Figure 99: Tc-006 Register Interface

Registration Success

Figure 100: Tc-006 Registration Success

After the registration the operator can access whit his credentials to the SAT

SIM software.
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# Login — O x

Please enter details below to login

Username *
Operator_01

Password *

x*xa—a—x1

Legin

Figure 101: Tc-006 Login Interface

f Success - | X

Login Success

o

s

Figure 102: Tc-006 Login Success

In conclusion, based on the tests carried out, and based on the data collected
it is possible to say that the Tc-006 reflects the expected results and verifies the

relative requirements. Ultimately, the test has passed.
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6. CONCLUSIONS

The completion of the project led to some reflections about the work that
has been done.

Standards and recommendations are fundamental guidelines when a project
is in its design phase. However, these references may require a very long study
due to their complexity and the numerous volumes dedicated to a specific area.
Therefore, the present work required, at beginning, a phase of organization
research and study of the necessary references that led to the selection of the
different macro-areas necessary to achieve the objectives of this thesis.

The aim of the present work is to provide to student and non-professional
operators a software to manage, control and study space packets and protocols
following the CCSDS standards. This thesis also has the purpose to provide a
control software for the C3 project in which the students can support CubeSats
operations and manage the entire ground station.

The first chapters of the thesis describe the context in which the software is
collocated. From the space operations world, in which the SAT SIM software
propose itself to train future spacecraft operators via CubeSat operations to
achieve an important method to increase the effectiveness of future operations
with already trained experts, to the C3 project, in which the SAT SIM software
will be the core of the control centre.

The third chapter describes the standards used to support the generation of
the code. Mainly the CCSDS recommendation are used to the construction of the
TM, TC, IMG PKTs and for the operations scheduler philosophy.

The fourth chapter provides a complete overview of the SAT SIM library
architecture and describes all the main functions of the software with particular
focus on the data flow from a thread to another.

Last chapter is focused on all the test session performed to validate the
software and verify all its specifications and requirements. As said in the results
section 5.3, all the tests are passed, and the software is verified and validated.

It is important to say that even if the software is validated and verified, it

requires some future works to be completely integrate in the C3 control centre.

104



are:

Some future steps identified for the next upgrade of the SAT SIM library

Integration of the software on different hardware. The first step
identified for the future is the test of communication between two
hardware. This test will need the implementation of the SAT SIM
thread and GS thread on different boards so to test the generation of
packets from the SAT SIM board, sending and extracting of the
packets from GS board.

Automatization of specific procedures. This point will require the
study of automatic algorithms in order to automatize the command
and schedule procedures.

Implementation of different missions and CubeSat architecture. In
this step will be upgrade the software to support multiple CubeSat
missions and operations in order to create a substantial database with
mission information and CubeSat architecture structures able to
support the software and the entire ground station.

Integration of the SAT SIM software in the full control centre of C3

in order to integrate also the RF software and the Tracking software.

In conclusion, this work of thesis hopes to provide a useful starting point to

support the future implementations of the control centre software to support the

C3 project and the future CubeSat operations.
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APPENDIX

The profiling graph of the code is generated by a Python library called
pycallgraph. Pycallgraph is a Python module that creates call graph visualizations
for Python. It uses a debugging Python function called sys.set trace() which
makes a callback every time the code enters or leaves a function. This consents to
Python to track the name of every function called, as well as which function
called which, the time taken within each function, number of calls, etc.

In the figures below the profiling of the SAT SIM code and the Interface is

shown. The description of the profiling sessions is described in the section 5.2.2.

Thread_GS_SIM
time: 0,000000s

Thread_55_SIM.85_SIM._init.

calls: 1

Thread_SAT_SIM.SAT_SIMPAV_CAMERA_PACKET
time: 0,000338s

Thread_SAT_SIMSAT_SIM.PAY_HYPER_PACKET
calls: 1
time: 0,001000s

calls: 1

time: 0,0000005

Thread SAT SIM.SAT SIMfloat bin
calls:

Thread_SAT_SIM.SAT_SIM.OBC_WATCHDOG_PACKET

Figure 103: SAT SIM Call Graph (1)
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Figure 104: SAT SIM Call Graph (2)
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Figure 105. SAT SIM Call Graph (3)
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Figure 106: Interface Call Graph (1)
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Figure 107: Interface Call Graph (2)
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Figure 108: Interface Call Graph (3)
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Figure 109: Interface Call Graph (4)
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Figure 110: Interface Call Graph (35)
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Figure 111: Interface Call Graph (6)
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