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Summary

The objective of this thesis is to carry out an aeroelastic analysis of the DANAERO
wind turbine within a new project called MEXNEXT that aims to achieve greater
accuracy and precision in simulation methods.
To achieve this goal it was initially necessary to retrace the history of the wind en-
ergy, understanding the trend of bigger wind turbines and to understand which tools
are currently available for the aeroelastic analysis and how they can be improved.
A first conclusion based on the theoretical study was that of being able to improve
the coupling between structural response and aerodynamic loads by using a CFD
code (FLOWer [70]) instead of the BEM method.
Regarding the structural component of the simulation was decided to represents
the wind turbine through a 1D FEM model by using an open source code named
KRATOS MULTIPHYSICS [52] whose utilization and reliability represent an addi-
tional object of evaluation within this thesis.
Once the tools to be used were defined, the analysis of structural and geometrical
data of the wind turbine obtained from the project have been performed and the
conclusion was that for the generation of the FEM model a more appropriate and
accurate study of the received information is necessary.
In the next step the FEM code (Kratos [52]) has been validated by comparing its
results with the analytical one whereupon the frequencies of the tower and of the
blade were calculated through various combinations of meshes and structural prop-
erties with the aim of identifying which combination came close to the data provided
by the project.
At this point it was necessary to create or modify the CFD model of the wind tur-
bine.
The choice was to make first the aeroelastic simulation of the tower in order to
approach the coupling between the codes with a simple case.
The mesh of the tower was generated with POINTWISE [68] and, once the un-
steady CFD simulation was brought to convergence, the aerodynamic loads acting
on it were analysed and the consequent deformations were evaluated using the cor-
responding FEM model (ONE WAY COUPLING).
The next step was the aeroelastic analysis of the wind turbine that was carried out
considering two different and already developed models.
The first one is a 1/3 rotor model that considers a single blade (120 ° model) while
the second one is a complete and full rotor model (rotor, nacelle, tower).
For both of them the unsteady CFD simulations were performed and the resulting
aerodynamic loads were applied to the FEM model to evaluate and compare the
deformations (ONE WAY COUPLING).
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The second and more complex phase consists of a TWO WAY COUPLING study on
the 1/3 model in which the CFD and FEM code exchange forces and deformations
iteratively at every TIMESTEP until they reach a stable and stationary aerodynamic
and structural solution.
Subsequently various analyses and numerous comparisons were conducted over the
obtained results in terms of forces and displacements.
Furthermore, the aeroelastic stability of the turbine was investigated through a
comparison between the frequencies of the exciting forces acting on the blade and
the natural frequencies of the structure.
Finally, the power generation of the turbine under various working conditions was
calculated.

III



Sommario

L’obiettivo di questa tesi è svolgere un’analisi aeroelastica della turbina eolica del
progetto DANAERO all’interno di un nuovo progetto chiamato MEXNEXT che si
prefigge come obiettivi una maggiore accuratezza e precisione nei metodi di simu-
lazione.
Per raggiungere tale obiettivo è stato inizialmente necessario ripercorrere la sto-
ria dell’energia eolica, comprendere il trend di pale eoliche di dimensioni sempre
maggiori e capire quali strumenti sono attualmente disponibili per effettuare analisi
aeroelastiche e come possono essere migliorati.
Una prima conclusione basata sullo studio teorico è stata quella di poter migliorare
l’accoppiamento tra risposta strutturale e carichi aerodinamici utilizzando un codice
CFD (FLOWer [70]) al posto del metodo BEM.
Per quanto riguarda la componente strutturale della simulazione si è deciso di mod-
ellizzare la turbina eolica come FEM 1D attraverso un codice open source di nome
KRATOS MULTIPHYSICS [52] il cui impiego e la cui affidabilità costituiscono un
ulteriore oggetto di valutazione all’interno di questa tesi.
Una volta definiti gli strumenti che si andranno ad utilizzare, si sono analizzati i
dati strutturali e geometrici della turbina eolica ottenuti dal progetto concludendo
che per la generazione del modello FEM è necessaria una più approfondita analisi
delle informazioni.
Una volta validato il codice FEM (Kratos [52]) confrontando i suoi risultati con
risultati analitici, si sono calcolate le frequenze proprie della torre e della pala at-
traverso varie combinazioni di mesh e proprietà strutturali al fine di indentificare
quale più si avvicinasse ai dati forniti dal progetto.
Arrivati a questo punto è stato necessario creare parte del modello CFD della turbina
eolica.
La scelta è stata quella di effettuare come prima simulazione un’analisi aeroelastica
della sola torre di modo da prendere confidenza con i software per un caso semplice.
La mesh della torre è stata generata con POINTWISE [68] e, una volta portata
a convergenza la simulazione CFD instazionaria, si sono analizzati i carichi aerodi-
namici agenti su di essa e le conseguenti deformazioni tramite il modello FEM (ONE
WAY COUPLING).
Il passo successivo è stato l’analisi aeroelastica della turbina eolica che è stata svolta
considerando due modelli differenti già sviluppati.
Il primo è un modello ad 1/3 del rotore che considera una sola pala (modello a 120°)
mentre il secondo è un modello completo (rotore, navicella, torre).
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Per entrambi si sono svolte le simulazioni CFD instazionarie e si sono applicati i
carichi risultanti al modello FEM per valutare e comparare le deformazioni (ONE
WAY COUPLING).
La seconda e più complessa fase è stata svolta effettuando uno studio aeroelastico
TWO WAY COUPLING sul modello a 1/3 in cui iterativamente il codice CFD e
FEM si sono scambiati forze e deformazioni ad ogni TIMESTEP fino a raggiungere
una soluzione aerodinamica e strutturale stabile e stazionaria.
In seguito sono state condotte varie analisi e numerosi confronti tra i vari risultati
ottenuti in termini di forze e spostamenti.
Inoltre la stabilità aeroelastica della turbina è stata analizzata attraverso un con-
fronto tra le frequenze delle forze eccitanti la struttura e le frequenze proprie di
quest’ultima.
Infine è stata calcolata la generazione di potenza della turbina nelle varie condizioni
di utilizzo e per le diverse configurazioni simulate.
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Chapter 1

Introduction

1.1 Wind Energy

Renewable energy resources such as wind and solar have received great attention in
recent years due to the depletion of fossil fuel resources and the growing demand for
energy consumption.
Most renewable energy resources (such as wind and solar) are inexhaustible and
environmentally friendly compared to fossil fuel resources.
Among them, wind power is the most promising resource for renewable energy and
can provide a competitive solution to the global climate change and energy crisis.
For the previous reasons, wind energy is one of the technologies with the highest
amount of investments and the next dashboard provides an overview about that.

Figure 1.1: Global Trends in Renewable Energy Investments [1]
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Wind power is currently one of the fastest growing renewable energy industries and
from FIGURE 1.2 we can see that the cumulative capacity of global wind power has
dramatically increased over the past decades.

Figure 1.2: Global wind power cumulative installed capacity in gigawatts [2]

Wind power technology itself has also moved rapidly towards new dimensions with
the increase in wind power capacity due to the size of wind turbines getting larger
and larger.
This increment in the size of the rotor is possible due to the higher altitudes neces-
sary to catch the wind as faster as possible.
Another important reason for wind turbine size growth is the offshore location of
wind turbines at sea where there is more space available and of course the wind is
steadier and stronger.
Another considerable effect of increasing the size of wind turbines is that the main-
tenance cost for offshore located devices is lower than for more but smaller wind
turbines.
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Figure 1.3: Wind turbines size development [3]

Increasing the size of wind turbines does not only cut the maintenance costs but
lowers the cost of wind power per kWh and makes this energy resource more com-
petitive on the market.

Figure 1.4: Wind turbine prices [4]

The last point I would like to introduce is that the increasing size in wind rotor
has benefits from the economic and efficiency point of view but the trend to up-
scaling wind turbine results in larger, slender and flexible blades which could lead
to aerodynamic instabilities as we will see in the next sections.
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1.2 MEXNEXT Project

The International Energy Agency Wind Technology Collaboration Program (IEA
Wind TCP) is an international collaboration that shares information and research
activities to promote development and deployment of wind energy in member coun-
tries.
The IEA Wind TCP has been developing and deploying wind energy technology
through vigorous national programs and international cooperative efforts since its
founding in 1977.
Participants exchange the latest information about their current and future activi-
ties and participate in selected research tasks for IEA Wind TCP [5].
The IEA Wind Task MEXNEX(T) can be considered the successor of IEA Wind
Task XX and is a joint project in which 20 parties from 11 different countries coop-
erate.
Mexnext’s 1st phase (Mexnext-I) ran from 1 June 2008 to the end of 2011 for 3 year
and its main objective was to analyse measurements from the MEXICO project in
order to validate computational codes not only in terms of loads but also in terms
of underlying flow field.
In this MEXICO project, 9 European institutes conducted a wind tunnel experiment
on a rotor with a diameter of 4.5 m in the Large Low Speed Facility (LLF) of the
German Dutch Wind Facilities DNW [6].

Figure 1.5: Wind Tunnel measurements of the EU project MEXICO

In addition, a second set of measurements on the Mexico rotor in the same facility
was performed in Mexnext-II and these so-called ’ New Mexico ’ measurements were
found to be even more useful than the first database, leading to the third phase of
Mexnext running from 1 January 2015 to 31 December [5].
The main impact of the Mexnext-III project is the insights offered in the accuracy
of design models that allow for a more thorough evaluation of design calculations
with reduced uncertaintes [7].
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This thesis is involved in the fourth phase of Task 29 that started on January 1,
2018 and will end on December 31, 2020.
Although the basic goal of Phase IV appears similar to the goal of the previous
phases at first sight, i.e. improvement of aerodynamic models for wind turbine
design codes, the goal is now achieved through full-scale field measurements from
the Danish Danaero experiment on a 2MW turbine [5].
The fourth phase focuses on aeroelastic and turbulent inflow effects as we will discuss
in detail later.

Figure 1.6: NM 80 turbine at Tjæreborg Enge
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1.3 Wind Turbine Aeroelasticity

Aeroelasticity is the study of the interaction of aerodynamic, inertial, and elastic
forces and can be clearly illustrated by the Collar aeroelastic triangle as shown in
Fig. 1.7.

Figure 1.7: Collar aeroelastic triangle

Consider air passing over a wind rotor where the aerodynamic force on the blade
causes a small elastic deformation that changes the blade’s orientation in the air
stream, which changes the aerodynamic force on the blade in turn.
Inertia dynamics play a major role in the correlation of aerodynamic loads and
elastic deflections with the resulting accelerations.
This interactions either reach a new state of equilibrium or catastrophically diverge
resulting in structural failure.
Wind turbine designers use aeroelastic analyses to maximize the damping of the
system components and keeping the modal frequencies of the system components
separated in order to damp vibrations and to ensure safe structure with minimized
fatigue loads [8].
It is possible to classify aeroelasticity phenomena into static or dynamic problems.
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1.3.1 Steady Aeroelasticity

The study of steady aeroelasticity mainly focuses on the divergence, which occurs
when the torsional moment introduced by aerodynamic loads is higher than the
restoring moments due to structural stiffness [9].
We can examine the steady aeroelasticity through a divergence analysis with 1 DOF.
Let us consider a generic airfoil having a torsional spring placed at the shear centre
and for which c is the chord, xac is the aerodynamic centre, U is the free stream
velocity, α is the angle of attack, CLα is the lift coefficient, G is the shear modulus
of the considered material and k is the stiffness of the spring.

Figure 1.8: Airfoil with 1 DOF [10]

In order to get the divergence velocity, we first write the momentum equilibrium
equation around the spring axis:

Mac + L(x0 − xac)−W (x0 − xcg)− kθ = 0 (1.1)

We can define:
L = q∞SCLα(αR + θ) (1.2)

Mac = q∞ScCMac (1.3)

and by substituting equation (1.2) and (1.3) into (1.1) we get:

θ =
q∞ScCMac + q∞SCLααR(x0 − xac)−W (x0 − xcg)

k − q∞SCLα(x0 − xac)
(1.4)

We have divergence when the torsional angle θ tends to ∞ and this is true when
the denominator is equal to 0 and we get:

q∞ = qD =
k

SCLα(x0 − xac)
(1.5)
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k is the torsional stiffness of the spring that can be calculated from the geometrical
and material properties of the wing as follows:

k =
GJ

L
(1.6)

The divergence velocity is then:

VD =

√
2qD
ρ∞

(1.7)

We found out that there is a divergence velocity for a general wing.
Aircraft wings have experienced divergence in the past, but the divergence phe-
nomenon has not been observed for commercial wind turbines and is unlikely to
occur in the future.
This is mainly due to the fact that the torsional moments on wind turbine blades
are generally small and not high enough for the onset of divergence even when the
blade is pitching [11] .
In the static aeroelasticity analysis of wind turbine blades, aeroelastic models are
mainly used to calculate the steady-state blade tip deflection in order to determine
the blade tip clearance. The wind turbine’s blade tip clearance is a critical operating
parameter necessary to prevent a catastrophic failure caused by the blade striking
the tower and is therefore necessary to have a reliable aeroelastic model.

Figure 1.9: Blade tip deflection and clearance [11]
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1.3.2 Dynamic Aeroelasticity

In this section we are going to study the oscillatory effects of aeroelastic interactions
and the wind turbine blade aeroelastic instabilities such as flapwise and edgewise
instability, flutter instability and coupled rotor/tower instabilities.
Let’s first introduce the degrees of freedom(DOF) associated with the wind turbine.

Figure 1.10: Degrees of freedom of a wind turbine [12]
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1.3.3 Flapwise and edgewise instability

In modern wind turbine the flapwise motion has a positive dumping and then this
degree of freedom doesn’t suffer of instability except at very high wind speeds as
showed by the analysis of Petersen [13].
On the other side there is a relatively smaller, even negative aerodynamic damping
for edgewise modes and therefore is considered the most important instability prob-
lem for wind turbines [14].
Some commercial wind turbine blades have suffered from blade edgewise instability
because of the increasing size of the rotor.
Stiesdal reported edgewise vibrations on a 37 meter diameter rotor in 1994 [15].
The APX40 T blade, which was installed on a 600kW wind turbine with a 37m-
diameter rotor, is another example of the blades suffering from this instability prob-
lem [16].
As you can see from Fig. 1.11, violent oscillations of the edgewise DOF occur
between 35s and 55s and the instability was caused by the first edgewise mode’s
negative aerodynamic damping.

Figure 1.11: APX40T blade oscillations measured at 85% blade span [16]
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1.3.4 Flutter

Flutter is an instability two-dimensional vibrational problem where two degrees of
freedom (DOFs) coupled together and is a common issue in turbomachinery and
fixed-wing aircraft but it has never appeared in commercial wind turbines [17].
Flutter can be classified into the following three types based on the different com-
binations of any two blade DOFs:

� flap-pitch flutter also known as classic flutter is the flap-wise and torsional
blade motions coupling and is the most common one

� lag-pitch flutter involving edgewise and torsional blade motions coupling

� flap-lag flutter that combines flap-wise and edgewise blade movements

Starting from the figure below we can analyse a typical flap-pitch flutter.

Figure 1.12: Flap-pitch flutter example [11]

As you can see from Fig. 1.12, as air velocity increases, the pitch mode frequency
gets closer to the flap mode, resulting in one combined mode at a certain critical
wind velocity (flutter velocity).
One of the modes (the pitch mode in this example) usually has zero net damping at
flutter speed.
If the wind speed is higher than the flutter speed, the net damping, which is the sum
of structural damping and aerodynamic damping, becomes negative and unstable
oscillations happen and lead to structural failure.
With larger wind turbines, there is concern that flutter could emerge because the
torsional frequency decreases with increased structural flexibility.
For example, Vatne [18] analysed a 10 MW wind turbine of about 140m diameter
rotor and found out that the flutter speed is near double the max operational speed.
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1.3.5 Whirl flutter

It is well known that classic whirl flutter occurs on tilt rotors [19], conventional
turboprop aircraft and helicopters.
It is an instability that results in a whirling rotor plane in the combined yaw and
tilt direction.
Depending on the direction of this whirling motion in respect to the rotor rotation,
this whirl mode is called a forward whirl or backward whirl.
Whirl flutter may start quickly and, as the above mentioned flutter, has a critical
velocity above which there will be instability.
At the flutter velocity limit, the aerodynamic and structural damping take out of
the system the exact same amount of energy as the yaw moment due to the pitch
and pitch moment being put into the system due to yaw.
It was found that this instability is very unlikely to occur on wind turbines, the
shaft or tower-top rigidity had to be reduced to such a degree before the instability
occurred, that it is unlikely to become an issue with any of the current wind tur-
bines or larger upscaled turbines [20]. However, for wind turbines there is a known
instability issue that involves the rotor’s whirling motion.
A clear description of the mechanism behind the instability is given by Petersen
[21], who found two different types of whirl motion, the so-called local blade whirl
and the global rotor whirl.
The local blade whirl is a consequence of the dynamic effects of unsymmetrical edge-
wise modes of the blades( see Fig.1.13) and the resulting in-plane force due to inertia
is not equal to zero.

Figure 1.13: Anti-symmetric lead-lag mode for a two bladed turbine

The so-called global rotor whirl modes involves tower, nacelle and shaft and results
in a dynamics combination of the tilt and yaw movements, including parts due to
the bending flexibility of the shaft.
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Figure 1.14: Whirl motion of a wind turbine with the rotor centre moving along an
ellipse

1.3.6 Coupled rotor/tower instabilities

Aeroelastic analysis of a single turbine blade is typically insufficient as it is possi-
ble to couple the vibrations of other system components such as tower or nacelle
through the structural connections with blade vibrations.
A famous example of this instability occurred in the 1980s on the KEWT prototype
where the first tower torsion mode and lead/lag mode were coupled when the rotor’s
angular velocity was half the first tower torsion mode frequency [22].
Furthermore a second instability issue happen when the angular velocity was half
the frequency of the second tower bending mode [22].
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1.4 Aeroelastic models

As described in the previous sections, changes in the design of wind turbine blades
due to the growth in size may result in other aeroelastic instabilities that have not yet
been recognized and is therefore very important to develop a wind-turbine-specific
aeroelastic model.
An aeroelastic model should include an aerodynamic component for calculating aero-
dynamic loads and a structural component for determining structural dynamic re-
sponses.
To better understand the capacity and the characteristics of the state of the art in
aeroelastic modelling of wind rotor, a comprehensive review of the aerodynamic and
structural components of it has been proposed below.
Let’s start the analysis with an overview of the different components of the analysed
model.

Figure 1.15: . Components of the aeroelastic modelling of wind turbine blades [23]

1.4.1 Aerodynamic models

In the aero-elastic modelling of wind turbine blades, four types of aerodynamic
models were used:

� Blade element momentum theory combines the ”theory of blade ele-
ments” in order to calculate local forces on a propeller or wind turbine blade
and the ”theory of momentum” in order to alleviate some of the difficulties in
calculating induced rotor velocities [24].
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The blade momentum theory introduces axial induction factor a and angular
induction factor a′ to respectively calculate the induced velocity in the axial
and tangential directions, as shown schematically in Fig. 1.16.
The induced velocity affects the angle of attack of the blade and therefore
influences the aerodynamic loads calculated by the above mentioned blade
element theory [23].

Figure 1.16: Diagram of the blade momentum theory

The classical BEM model has several limitations that are usually found in
wind turbine applications but overcome by introducing empirical corrections
borrowed from helicopter applications or based on experience with wind tur-
bines. Those limitations are linked to the introduction of a tip loss correction
factor, a turbulent wake state correction factor, a dynamic and unsteady in-
flow model and a dynamic stall model.
The BEM model has been validated with experimental data [25] and is simple,
efficient and fast when reliable airfoil aerodynamic data are available.

� Vortex model has also found applications in the aeroelastic models of wind
turbine blades to better model the wake dynamics of wind turbine rotors.
For this model, the lifting lines or surfaces represent the trailing and shed
vorticity in the wake that can be calculated using either the prescribed wake
method or the free wake method.
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Figure 1.17: Structure of the free-wake modelling of a blade [26]

In the first one, it is assumed that the wake shedding from the blade is rigid
and is described using semi-empirical formulations and is computational time
savings but at the same time limits its application to steady incoming flow
[26].
Otherwise, in the second mentioned method, the wake can be varied freely
both in time and space and is therefore applied to wind turbine blades to
study the unsteady flow and wakes of blades [27].

Figure 1.18: Wake of a two-bladed wind turbine rotor using the vortex model [28]

Compared to the BEM model, the vortex model requires more computational
resources but its implementation and reliability is limited because viscous ef-
fects are ignored and the simulations tends to diverge due to the intrinsic
singularities of the vortex panels.
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� Actuator type model has been developed in various form which can be clas-
sified based on the representation of the blade, namely: actuator disc model,
actuator line model and actuator surface model.
The actuator disc model was the first one developed by Rankine [29] and
Froude [30]. The before mentioned model is derived from the 1D momentum
theory and ended up in the BEM model and in its general form can be nu-
merically combined with the Euler or Navier-Stokes equations.
Analysing a simple case of a uniformly charged actuator disk, the force acting
on the disk is determined by the thrust coefficient and reference wind speed
while for a non-uniformly charged actuator disk, the force acting on the disk
varies along the radial position but remains constant over the annulus.
More accurate model have been developed by Sørensen and Shen [31] who
extended the non-uniformly loaded actuator disc method to the actuator line
approach, in which a line with distributed loads is used to represent the blade
forces.

Figure 1.19: Illustration of wind through the actuator disk swept area [32]

In conclusion, the actuator type models discussed above should be credited for
a better insight into the 3D and the wake dynamics, but they are more time-
consuming (Navier-Stokes equations) and the results are not more accurate
than the BEM model.
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� 3D CFD model has received considerable attention in recent years with the
advancement of computing resources.
The CFD method solves the governing fluid flow equations at thousands of
positions on and around the rotor blade in an iterative process resulting in
aerodynamic loads on the body and allows visualization of the flow field.

Figure 1.20: Full model wind turbine vortex surfaces

The main structure of thermo-fluid examinations is governed by equations
based on the conservation law of the physical properties of the fluid.
CFD’s mathematical fundamentals are the Navier-Stokes equations that gov-
ern fluid behaviour and are derived from the conservation laws of momentum,
energy, and continuity.
Since the relative wind speed for wind turbine blades is much lower than the
speed of sound speed we can consider the air incompressible for our case study
and the before mentioned governing equations can be written in the convective
form as follows [33]:

∇ · u = 0 (1.8)

∂u

∂t
+ (u · ∇)u = −∇P + ν∇2u (1.9)
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The 3D blade geometry needs to be accurately described in a digitized format
through a CAD software for CFD modelling of wind turbine blades.
Wind turbine blade’s have a complex geometry and is therefore quite compli-
cated to generate a suitable and accurate mesh.
Typical mesh types are three:

– structured mesh has high resolution, easy convergence and low mem-
ory usage but had instead difficulties to describe properly complicated
geometries

– unstructured mesh instead can describe accurately complex geometries
but are more time and computational consuming

– hybrid mesh is a combination of the two above and uses a structured
mesh for important regions, such as boundary layers, while unstructured
mesh is used elsewhere.
Thanks to his flexibility, hybrid mesh has been widely used in the current
CFD modelling of wind turbine blades [34].

Figure 1.21: CFD mesh typology

It is possible to achieve the discretion of NS equations through three typical
methods of discretion:

– FVM (method of finite volume) is the common method used in CFD
modelling, as it has solution speed and memory usage advantages.

– (FEM (method of finite-element) is much more stable compared to
FVM, but it consumes more memory and has slower solution times [35]

– FDM (method of finite-difference) is easy to implement but limited
to simple grids and for this reasons is used by only a few specialised codes

A turbulence model based on RANS (Reynolds Averaged NS equations) is re-
quired to apply NS equations to solve practical engineering problems on wind
turbine blades.
RANS equations are time-averaged equations used to describe turbulent flows
of fluid flow motion based on the Reynolds decomposition by decomposing an
instant quantity into its time-averaged and fluctuating quantities [36].
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Models of turbulence can be classified on the basis of computational costs,
which corresponds to the range of scales modelled versus resolved.
When the majority of turbulent scales are modelled, the computational cost
is very low, but the trade off comes in the form of reduced accuracy.
Different RANS-based turbulence models were used for wind turbine applica-
tions, such as SST model, k − ε model, k − ω model and Spalart-Allmaras
model.
We will deeply analyse later the turbulence model used for the CFD analysis
run for this thesis and the Task 29 project.
CFD has been widely used for wind turbine aerodynamic and aeroelastic anal-
ysis since the computational resources of the current clusters has increased
exponentially over the last decade.

BEM
model

VORTEX
model

Actuator type
model

CFD
model

Accuracy *** *** *** ****

Computational speed **** *** ** *

Airfoil aerodynamic
data required?

Yes Yes Yes No

Viscous effects
included?

Yes No Yes Yes

Table 1.1: Comparison of aerodynamic models

1.4.2 Structural models

To calculate a wind turbine’s aeroelasticity response, it is necessary to include the
structural model to determine the displacements and the consequently temporal
variation of the loads in the different components.
Structural models used in aeroelastic modelling of wind turbine blades can be
roughly categorized into two groups:

� 3D FEM model uses 3D composite shell elements to describe composite layer
characteristics throughout shell thickness of wind turbine blades.
Wind turbine blades are objects with a complex structure, typically consisting
of many layers of fiber-reinforced composite material with the required shear
webs, root fixtures and tapering cross sections.
The above mentioned constructions complexity requires a 3D FEM model to
examining the internal stresses distribution and coupled with CFD to perform
aeroelastic modelling of wind turbine blades provide accurate results but is
computationally expensive and is therefore rarely used [37].
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Figure 1.22: 3D FEM model of a wind turbine composite blade [38]

� 1D beam model is used to model efficiently wind turbine blades and com-
ponents since they have one of their dimensions significantly larger than the
other two.
The beam axis is defined along the largest dimension and it is considered that
a cross section perpendicular to this axis varies along the beam span and char-
acterised the blades with their local structural properties.

Figure 1.23: Beam model of wind turbine blade

A lot of beam models have been developed over the years but the most used
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and important are:

– Euler-Bernoulli beam model known as the classic beam model deals
with slender beams that are subject to extended, torsional and bending
loads but ignore the shear deformation [39].

– Timoshenko beam model was developed by Timoshenko in the early
20th century, takes account of shear deformation effects, making it more
suitable for describing the behaviour of thick and short beams than the
Eulero-Bernoulli model [40].

Figure 1.24: Timoshenko beam (blue) compared with Euler-Bernoulli beam (red)

– GEBT (geometrically exact beam theory) is a non lineal model
where the deformed beam geometry (i.e. the displacements and rotations
of the beam reference line) is represented exactly.
In fact both the Euler-Bernoulli and Timoshenko beam models contain
the assumption of small deflections that is not exact for current wind
rotor blades with large deflections.

Figure 1.25: Nonlinear kinematics of the geometrically exact beam [41]

22



CHAPTER 1. INTRODUCTION

Three types of discretionary methods are often used to discrete the blade into
a series of 1D beam elements:

– Modal approach describes the deflection shape of the flexible bodies,
such as the blade and tower, as a linear combination of a set of mode
shapes and is a way to reduce the number of DOFs and thus reducing
the size of matrices and accelerating the computations per time step.

Figure 1.26: Structure of the modal analysis

However the modal approach is computationally efficient, it has at the
same time some limitations due to the type and number of DOFs allowed
in the structure.
For example, FLEX5 [42], which is a widely used aeroelastic analysis
model based on the modal approach, uses only the initial three or four
eigenmodes for the blade and the torsional eigenmodes, which are impor-
tant for flutter analysis, are generally not available.
Another major limitation of the modal approach is due to its linear as-
sumption because a linear combination of the provided mode shapes de-
scribes the deflection shape of the flexible components and therefore the
model is not capable of handling the flexible blade’s large deflections.
In conclusion is important to underline how the modal approach deserves
a finite element based pre-processor the first to obtain the mode shapes
of the blade.

– MBD (multi-body dynamics) is a method for studying the dynamic
behaviour of interconnected rigid or flexible bodies that can have trans-
lational and rotational displacements.
These bodies are interconnected by force elements (such as springs) or
kinematic constraints (such as joints) and structural dynamics can be as-
sessed using motion equations, usually derived from Lagrange’s equations
or Newton-Euler equations [43].
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Figure 1.27: An example of wind turbine MBD configurations

Compared to the modal approach, the MBD method benefits from high
modelling flexibility, requiring more computational resources, but it al-
lows the modelling of an increased number of DOFs.

– 1D FEM method is widely used in the aeroelasticity of wind turbines
because it allows a more comprehensive and accurate deformation de-
scription by analysing an assembly of finite elements connected by nodes.

Figure 1.28: Beam finite element of wind turbine blade

Compared to other discretization methods, the 1D FEM requires more
computational resources but is, thanks to his flexibility and accuracy, the
most used and will be implemented in this thesis.
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Modal
approach

MBD 1D FEM

Accuracy * ** ***

Computational speed *** ** *

Number of DOFs * ** ***

Prescribed modal
shapes required?

Yes No No

Table 1.2: Comparison of discretisation methods

1.5 State of the Art

In this section we will announce and discuss the different aeroelastic models devel-
oped over the years by academic research teams or by the industry for the analysis
of wind turbine aeroelasticity response.
Let’s start with the first ever wind turbine aeroelastic models developed within the
European Non-Nuclear Energy project JOULE III, STALLVIB [44].
This code was designed to predict dynamic loads and investigate problems of edge-
wise instability.
After this first attempt a lot of codes were developed and are listed ad described in
more detail below:

� ADAMS/WT (Automatic Dynamic Analysis of Mechanical Systems
– Wind Turbine) was developed by Mechanical Dynamics Inc. (MDI) with
the help of National Renewable Energy Laboratory (NREL)[44].

� FAST (Fatigue, Aerodynamics, Structures, and Turbulence) has been
designed by National Renewable Energy Laboratory (NREL) to analyse both
two- and three-bladed horizontal-axis wind turbines [45] and has been certifi-
cated by Germanisher Lloyd [45].

� FLEX5 has been created by the Fluid Mechanics Department at the Technical
University of Denmark (DTU) and is capable of simulating wind turbines with
different configurations [42].

� GAST (General Aerodynamic and Structural Prediction Tool for
Wind Turbines) is a code designed by the National Technical University of
Athens that implement also a module to generate turbulent wind fields and a
post-processing module to perform fatigue analysis [46]

� GH-Bladed is an integrated and validated commercial software package cre-
ated by Garrad Hassan (GH) Ltd and based on a windows interface (GUI)
[47].
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� HAWC2 (Horizontal Axis Wind Turbine Code 2nd generation) has
been developed by Technical University of Denmark (DTU) for horizontal axis
in time domain [48]

� PHATAS (Program for Horizontal Axis Wind Turbine Analysis Sim-
ulation) was developed by ECN (Energy research Centre of the Netherlands)
to predict the dynamic behaviour and the corresponding loads on horizontal
axis wind turbines [49]

� CFD-CSD based programs where the aerodynamic part uses a CFD solver
like FLOWer [50], ©2019 ANSYS Fluent or ©STAR-CCM + to
obtain the aerodynamic blade loads based on the time-accurate solution of the
unsteady Reynolds-averaged Navier-Stokes equations.
On the other side the structural part is based on a CSD solver like Carat++
[51], Kratos Multiphysics [52] or©SIMPACK and is used to calculate
the blade deformations

Program
name

Structural
blade
model

Structural
discretization

method

Aerodynamic
model

Blade
cross-sectional

properties
necessary?

ADAMS/WT 1D beam MBD BEM Yes

FAST 1D beam MA BEM Yes

FLEX5 1D beam MA BEM Yes

GAST 1D beam 1D FEM
Free wake

panel
Yes

GH-Bladed 1D beam MA BEM Yes

HAWC2 1D beam MBD BEM Yes

PHATAS 1D beam 1D FEM BEM Yes

CFD-CSD
based

programs
3D beam 3D FEM CFD Yes

Table 1.3: Overview of wind turbine aeroelastic models
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1.6 Goal of this thesis

Analysing the state of the art in aeroelastic modelling of wind turbine is at a first
sight clear how most commercial codes are based on the BEM model concerning the
aerodynamic part and on the 1D FEM beam model regarding the structural part.
The BEM model, as seen before, has been developed over years and has some correc-
tion factors that make it more accurate and performing towards unsteady behaviour
of the flow.
However a CFD analysis can describe better the unsteady behaviour and the wake
flow and allow flow visualization around and behind the wind rotor.
Regarding the structural part, most of the 1D FEM beam based models are linear
models based on assumption of small blade deflections and do not take account of
large deflection effects on modelling responses and loads.
The goal of this thesis is to create the structural model of the DANAERO wind
turbine rotor in terms of 1D FEM and consistent to the beam model available for
the aeroelastic tool HAWC2.
Starting from an already available CFD model of the same turbine, the struc-
tural model will be created using the open-source Finite Element based software
KRATOS.
Before performing FSI simulations, the influence of the number of 1D elements, the
interpolation between the structural properties, and the importance of the different
structural parameters on the resulting eigenfrequencies of the model will be deeply
analysed and documented.
The differences of the structural modelling approaches in the aeroelastic answer will
identify limitations, advantages and disadvantages in the different cases.
The CFD solver that will be used for the FSI simulations is URANS solver FLOWer.
In order to perform the simulations, a maximum timestep analysis needs to be car-
ried out and maybe some changes in the meshes will be necessary, using the com-
mercial software Pointwise.
At the end, all results of the work will be documented.

� Creation of a 1D FEM model of the wind turbine rotor

� Investigation of influence of the structural parameters on the eigenfrequencies

� Performance of FSI simulations with Kratos Multiphysics

� Documentation of the work
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Chapter 2

Baseline turbine configuration

2.1 Introduction

This chapter describes the configuration of the wind turbine to an extent in order
to be able to perform aeroelastic calculations with the provided model of the NM80
turbine structure based on the work done in the EU STABCON project in 2004 [53]
for the aeroelastic models developed for HAWC and HAWC2 code.
Here are the details of the baseline turbine configuration used in the investigations
and we will focus first on the aerodynamic and structural properties of the blades
and secondly on the tower and support structure.
Although the CAD model of the entire wind turbine is present for the CFD mod-
elling, the geometrical properties are important in order to change reference system
and to create the 1D FEM model for the structural analysis.
A lot of attention will be given on the reference system in which the difference struc-
tural properties of the wind turbine are given and it will be explained how to change
them from one system to the other.

Figure 2.1: Reference systems for the entire wind turbine [48]
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2.2 Blades structure

In order to understand the different values that will be given in this section, it is
important to introduce first the blade reference system which is set at the blade half
chord and is rotated at a twist angle θz related to main body coordinates set at the
blade root (XB − YB).

Figure 2.2: Illustration of c2 coordinate system related to main body coordinates
[48]

Another important detail is that the blade half chord coordinates include the twist
angle but exclude the hub-blade substructure.

Xc2 [m] Yc2 [m] Zc2 [m] θz [◦]

Table 2.1: Blade half chord coordinates related to main body coordinates

The position of the mid chord of the blade itself is not sufficient because the struc-
tural properties are related to the elastic center of every single section of the beam
model.
More geometrical properties are therefore necessary and the next table provides the
position of the elastic center (EA), the center of mass (CG) and the shear center
(SC) with respect to the half-chord reference frame.
While shear and gravitational centres are simply translated, the elastic center and
principal bending axis are not only translated but also rotated in relation to the
mid-chord reference frame by a pitch angle θs as depicted in the next figure.
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Figure 2.3: Schematics of the elastic reference frame [48]

Z [m] XCG [m] YCG [m] XSC [m] YSC [m] XEA [m] YEA [m] θs [◦]

Table 2.2: CG, SC, EA positions related to c2 reference frame

2.2.1 Aerodynamic properties

In this section the list of the aerodynamic properties of the blade will be shortly
presented without listing them for copyright reasons.

Z [m] Chord [m]
Relative

thickness [%]
Airfoil type

Table 2.3: Blade aerodynamic properties

2.2.2 Structural properties

After we have discussed the geometrical properties of the blade and its representa-
tive centres and axis, let’s analyse which structural properties we got from the EU
STABCON project and how we can get from those information the values we need
to implement the 1D FEM model.
First of all it’s important to underline that in order to perform our FEM analysis,
the structural properties have to be set around the principal bending and torsional
axis positioned at the SHEAR CENTER while the values we got are referred to the
axis placed at the elastic center.
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In the following items there will be explained the single steps that where undertaken
to achieve the values referred to the SHEAR CENTER:

� the starting point of the procedure are the available data:

Z [m]
m

[kg/m]
Area
[m2]

E
[N/m2]

G
[N/m2]

IxCE
[m4]

IyCE
[m4]

IPCE
[m4]

Table 2.4: Starting blade structural properties

� the next step consist in rotating the principal bending and torsional axis of
the ELASTIC CENTER to the orientation of our mid-chord reference system
which are the same for our 1D FEM model (see Figure 2.4).
This is done by the next set of equations:

Ix′ =
Ix + Iy

2
+
Ix − Iy

2
cos(2θ)− Ixysin(2θ) (2.1)

Iy′ =
Ix + Iy

2
− Ix − Iy

2
cos(2θ) + Ixysin(2θ) (2.2)

in which θ = θs+θz and the last term of both equations containing the product
of inertia of area (Ixy) can be considered zero because Ixy is not provided
in the data set and its value is zero in case of the presence of at least one
axis of symmetry in the geometry. For our case study the airfoil is slightly
cambered but in first approximation to simplify the problem can be considered
symmetrical.

� once the reference system is rotated it is possible to translate it first to the
center of mass and then to the shear center using the ”Parallel axis theorem”:

I = Icm + Ad2 (2.3)

where d represents the distance between the new axis and the parallel axis
that passes across the center of mass.
For our case study the first set of equations are:

Ix
CG

= Ix
CEROT

− A(yCE − yCG)2 (2.4)

Iy
CG

= Iy
CEROT

− A(xCE − xCG)2 (2.5)

Ip
CG

= Ip
CE
− A

(√
(xCE − xCG)2 + (yCE − yCG)2

)2
(2.6)

There are some things to notice, the first one is that in this case we start
from a different point and move back to the center of mass and the second one
is that the distances between axis set on the same points are different from
direction to direction.
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� the last translation using the ”Parallel axis theorem” is the one of the reference
system from the center of mass to the SHEAR CENTER:

Ix
SH

= Ix
CG

+ A(ySH − yCG)2 (2.7)

Iy
SH

= Iy
CG

+ A(xSH − xCG)2 (2.8)

Ip
SH

= Ip
CG

+ A
(√

(xSH − xCG)2 + (ySH − yCG)2
)2

(2.9)

Compared to the previous set of equation, this time we moved from the center
of mass out and therefore there is a sum of the second term considering the
distance.

� the last step is focused on the Young’s modulus and shear modulus and their
relationship. Under the assumption of isotropic and linear elastic material, we
can define the Poisson’s ratio as follows:

ν =
E

2G
− 1 (2.10)

In the data set we have both the Young’s and the shear modulus and is there-
fore possible to calculate the Poisson’s ratio for every single piece of our blade.

Z [m] Poisson
IxSC
[m4]

IySC
[m4]

IPSC
[m4]

Table 2.5: Calculated blade structural properties at the SHEAR CENTER

We have now calculated the structural properties at the SHEAR CENTER and we
know the SHEAR CENTER position related to the mid-chord (c2) reference frame.
However the mid-chord reference frame, as depicted in figure 2.5, changes its position
along the blade span with respect to the main body coordinates set at the blade
root. In the 1D FEM analysis our reference frame is set at the blade root and is
therefore necessary to calculate the SHEAR CENTER position referred to this one
as following:

xSCmain body = xc2 + xSC (2.11)

ySCmain body = yc2 + ySC (2.12)

Z [m] xSCmain body [m] ySCmain body [m]

Table 2.6: SHEAR CENTER position in the main body coordinate system
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2.3 Tower and support structure

In this thesis not only the static and dynamic behaviour of the blade will be inves-
tigated but also the tower will be analysed.
The tower is composed bottom up by the foundation, the tower part and the nacelle
element.
In this chapter the properties of the whole tower will be presented but it is impor-
tant to take into account that for the next CFD modelling the nacelle element will
be partly unconsidered.
The next table reports some general dimensions of the wind turbine tower got from
the project.

Hub height [m]
Tower height [m]

Tower bottom radius [m]
Tower top radius [m]

Table 2.7: Overall dimensions of the tower

The geometrical and structural properties will be presented and differently than the
blade there are here less calculations to do because the tower has an axisymmetric
shape and therefore shear, elastic and mass centres overlap each other and are placed
at the origin of the axis along the tower height.
As before, at this stage we consider an isotropic and linear elastic material and the
Poisson’s ratio si calculated.

Z [m]
m

[kg/m]
Area
[m2]

E
[N/m2]

G
[N/m2]

ν
IxCE
[m4]

IyCE
[m4]

IPCE
[m4]

Table 2.8: Tower geometrical and structural properties

This chapter includes all the properties needed for the structural analysis of the
blade and the tower.
In this thesis the whole structure of the wind turbine will not be investigated and
therefore components like the hub and the drive-train are not discussed and their
properties not analysed and reported.
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Chapter 3

Structural modelling

3.1 Introduction

Let’s get into the core of the thesis with the first of the element necessary for the
aeroelstic analysis.
In this chapter the utilised FEM code ”Kratos-Multiphysics” is going to be first
discussed in detail, afterwards the theoretical background and the characteristic of
the structural model are introduced and at the end a verification of the software is
done based on the comparison with analytical results.

3.2 Kratos Multiphysics

3.2.1 Introduction

Kratos was developed by CIMNE (Centre Internacional de Mètodes Numèrics a
l’Enginyeria) in Barcellona and is designed as an Open-Source framework for imple-
menting numerical methods for the solution of engineering problems, is written in
C++ and its design is focused on modularity as well as on performance [54].
This framework was created for the development of multidisciplinary programs for
finite elements and therefore provides several tools for easy deployment of finite-
element applications and a common platform for easy interaction between them
[55].
The kernel and application approach and a layers based design are used to reduce
the possible conflicts arising between developers of different fields and with different
programming knowledge.
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3.2.2 Users

Kratos, due to its multidisciplinary nature, provides a variety of algorithms that can
be implemented in different engineering areas and is therefore widely used [56].
The main categories of users are:

� Finite Element Developers: who are considered to be more FEM expert from
a physical and mathematical point of view and who will not be involved in
advanced programming concepts.

� Application Developers: who are less interested in finite element programming
and their programming knowledge may vary from very expert to higher than
basic.
Developers of optimization programs or design tools are the typical users of
this kind.

� Package Users Engineers: who use Kratos and its applications to model and
solve their problem without getting involved in internal programming of this
package.
This kind of users like a flexible external interface (GUI) in order to build up
the problem and visualize the solutions.

In this thesis Kratos is used in a way between developers and engineers because to
solve our core problem is necessary to implement and modify some specific settings.

3.2.3 Properties

There is here a list of why and where is Kratos useful:

� MULTI-PHYSICS: Kratos allows the combination of different analysis (ther-
mal, fluid dynamic, structural) with optimising methods in one global software
package with just one user interface and with customising opportunities.

� FINITE ELEMENT METHOD (FEM) based: Kratos is FEM based and there-
fore allows the treatment of most engineering and applied science problem
governed by Partial Differential Equations (PDE) in a powerful, flexible and
versatile way.

� OPEN SOURCE: the main code and program structure is available and dis-
tributed without any restriction, but with the possibilities to develop new
parts of the code on an open or close basis.

� FREE: because the software is devoted mainly to developers, researchers and
students, because you have the freedom to modify and distribute it and, there-
fore, is the best way to share knowledge and built a robust numerical methods
laboratory.
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� OBJECT ORIENTED DESIGN: from the computational point of view, the
modular design, hierarchy and abstraction of the object oriented philosophy
fits to the generality, flexibility and reusability required for the current and
future challenges in numerical methods.
This methodology consists in splitting a problem into multiple individual ob-
jects and defining their interactions through a common interface which for this
software reproduces the concepts of the finite element structure [52].

Figure 3.1: Main classes defined in Kratos

� MULTI-LAYERED-DESIGN: in which each object only interacts with other
objects in its layer or in a more basic layer.
Layering reduces the dependency inside the program while helping the the
maintenance of the code and providing developers a better understand of the
code [52].
The layering is created in a way so that each user has to work in the minimum
number of layers as possible reducing the amount of code to be known by each
user.
The layers are summarised in the following figure.
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Figure 3.2: Multi-layer nature of Kratos

3.2.4 Input files

Problems in Kratos are generally described by a certain number of files which con-
tains the information needed from the solver to produce results.
Differently than other software, Kratos doesn’t deserve a graphical interface to be
set up and the input files are readable by a simple text editor and can be created
just by typing names and numbers.
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A Kratos case consists of three different types of files:

The project parameters file

This Kratos file is commonly referred to as ”ProjectParameters.json,” is responsible
for simulation settings and contains four main blocks:

� problem data: general settings for the Kratos run

� solver settings: that contain the most important information regarding the
analysis

– ”solver type”: static/quasi static/dynamic/eigenvalues

– ”analysis type”: linear/non linear

– ”time stepping”

– ”convergence criterion”

– ”linear solver settings”

� processes: to apply boundary conditions, forces, moments, gravitational and
cetrifugal loads

� output processes: settings for the output file as binary or for post-processing
software

The Model part file

The ”ModelPart” file with extension ”.mdpa” contains the model information in
Kratos specific syntax.
Through this file the Modelpart is created which is the basis for generating the
geometry, submodels for specific materials, boundary conditions or forces and to
generate the mesh.

� Geometry is created by defining the nodes and their position in the tree di-
mensional space. The syntax looks like [56]:

Begin Nodes
// id X Y Z
End Nodes

� Elements are necessary for the mesh generation, for the FEM analysis and
for defining specific material properties on different elements of the structure.
At this stage the type of element used for the FEM analysis is specified.
For our simulations we will use corotational linear/non linear beam element in
3 dimensions and with 2 nodes (CrLinearBeamElement3D2N/CrBeamElement3D2N).
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Elements are created by defining the extreme points of them using the nodes
defined before.

Begin Elements element type // element name
// id prop id node1 node2
End Elements

� ElementalData is therefore necessary to define the reference system for every
element created for the mesh.
This is important in order to assign a reference system in which loads and
moments can be computed but also material properties can be assigned.

Begin ElementalData elemental data name
id [dimensions] (x, y, z)
End ElementalData

� conditions are necessary for applying loads and moments

Begin Conditions
//id type node
End Conditions

� SubModelPart are, as the name tell, subpart of the model that enable the
user to customise components of the model through specific materials proper-
ties, forces, moments and boundary conditions.

Begin SubModelPart submodel name
Begin SubModelPartNodes
// id node
End SubModelPartNodes
Begin SubModelPartElements
// id element
End SubModelPartElements
Begin SubModelPartConditions
End SubModelPartConditions
End SubModelPart

The Material part file

Before running the simulation, for a structural analysis the material properties can
be set at the beginning of the ”ModelPart” file or in a separated .mpda file [56].
Different properties can be set in accordance with the desired constitutive law and
there is also the opportunity to set variable properties for variable elements.
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The following properties of the beam have to be defined for our case of interest:

� Density

� Young modulus

� Poisson ratio

� Cross sectional area

� I22: Bending inertia along the flapwise direction

� I33: Bending inertia along the edgewise direction

� Torsional inertia

The Kratos python script

This file is generally named ”MainKratos.py”, is responsable for loading the required
Kratos applications, calling the main Kratos functionalities and user settings and,
at the end, running the simulation [56].

3.2.5 Graphical User Interface (GUI)

As mentioned before, Kratos Multiphysics can be used through the software ”GiD”
which enables pre and post-processing by an easier and at a first sight more clear
graphical interface. All the above mentioned input files are created automatically
from GiD after the user has set up the structural simulation trough the structural
GUI depicted in the image below.

Figure 3.3: GiD software for Kratos structural application [56]

40



CHAPTER 3. STRUCTURAL MODELLING

3.3 Beam element 3D2N

In this section we are going to analyse in detail the element used for the FEM anal-
ysis, its properties from different point of views and the governing equations that
we are going to implement and solve in our simulation.
Let’s start saying that we will treat every component of the wind turbine as a beam
structure.
In this thesis the tower and the blade will be structurally studied as beam since their
axial extension is predominant when compared to any other dimension orthogonal
to it [57].
The cross-section of the beam is identified by intersecting the structure with planes
that are orthogonal to its axis, whereas geometry, displacements, strains and stresses
are referred to an orthonormal coordinate frame of reference [57].
For our case study we will describe the structures through a corotational linear/non
linear beam element 3D2N under the assumption of small displacements.
This element uses a corotational reference frame, has 2 nodes placed in 3 dimensions,
can account geometrical linearities or non linearities and has 3 degrees of freedom
for each node as shown in figure below.

Figure 3.4: 3D 2 nodes beam element

3.4 Corotational formulation

The formulation of the corotational beam considers a beam element with reference
to the local coordinate system based on elements [58]. Using this approach, any
frame structure arbitrarily displaced and rotated at the global level can be solved
by decomposing the movement of its beam elements into its corresponding rigid
body and pure deformation motions [58].
The global displacements of the end nodes are removed from the motion of the beam
referred to its local reference frame and therefore only local strain producing defor-
mation are taken into account.
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Figure 3.5: A schematic representation of the corotational concept

A foating coordinate system F follows the deformed element, so the overall gross
movement into the deformed state CD can be viewed as the superposition of a large
rigid body movement from the reference configuration C0 to the so-called floating
or shadow configuration CS, plus a local deformation from CS to CD.

3.5 The Euler–Bernoulli theory

The Eulero-Bernoulli model (Euler, 1744) (EBBT) represents a classical beam the-
ory and is a reference model for describing the mechanism of a slender homogeneous
beam under bending [57].

3.5.1 Assumptions, kinematics and deformations

The EBBT model is based on the following assumptions:

1. the cross-section is rigid on its plane

2. the cross-section rotates around a neutral surface remaining plane

3. the cross-section remains perpendicular to the neutral surface during deforma-
tion
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A consequence of the hypothesis is that Poisson contractions in the transverse di-
rection due to axial strains are ignored.
The cross-section deformed position is described uniquely by those vectors:

w =

wxwy
wz

 , θ =

θxθy
θz

 (3.1)

Under the assumption of small displacement components, wx, wy, wz are small com-
pared to the beam length l and therefore the rotational components can be rewritten
as:

sinθ ≈ tanθ ≈ θ (3.2)

At this stage let’s look at a material point on the cross-section with the referen-
tial coordinates (x, y, z) that achieves a displacement vector u = u(x, y, z) with the
ux, uy, uz components.


ux(x, y, z) = wx(x) + zθy(x)− yθz(x)

uy(x, y, z) = wy(x)− zθx(x)

uz(x, y, z) = wz(x) + yθx(x)

(3.3)

Figure 3.6: Deformation components in the bending beam theory

For simplicity let’s analyse only one bending direction and assume that θx = 0
disregarding for the moment the twist of the beam.
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Figure 3.7: Bending of a beam according to the kinematic hypotheses of Euler –
Bernoulli [57]

The in-plane displacements uy and uz depend only on the axial coordinate x accord-
ing to the first hypothesis: 

εyy =
∂uy
∂y

= 0

εzz =
∂uz
∂z

= 0

γyz =
∂uz
∂y

+
∂uy
∂z

= 0

(3.4)

The second hypothesis imposes that the axial displacement ux is linear versus the
in-plane coordinates [57] and therefore the whole displacement field looks like:

ux(x, y, z) = wx(x) + zθy(x)− yθz(x)

uy(x, y, z) = wy(x)

uz(x, y, z) = wz(x)

(3.5)

The last hypothesis allows us to disregard shear deformations γxy = γxz = 0 and
through the above listed equations the angles of rotation can be obtained as functions
of the in-plane displacement derivatives:

γxy =
∂uy
∂x

+
∂ux
∂y

=
∂wy
∂x
− θz = 0

γxz =
∂ux
∂z

+
∂uz
∂x

=
∂wx
∂z

+ θy = 0
(3.6)
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The end displacement field according to the Eulero-Bernoulli theory is:
ux(x, y, z) = wx(x)− z∂wx

∂z
(x)− y∂wy

∂x
(x)

uy(x, y, z) = wy(x)

uz(x, y, z) = wz(x)

(3.7)

3.6 The St.Venant torsion

In 1885 St. Venant gave the first correct beam torsion analysis for a homogeneous
linear-elastic bar.
The underlying hypothesis was that ∂θx

∂
is constant, making the warping identical

in all cross-sections.
The axial strain εxx from torsion disappears and in all sections the distribution of
the shear strains γxy and γxz is the same [58].

Figure 3.8: Deformation component in the torsional beam theory

For a uniform cross-sectional beam:

θx =
ML

GIz
(3.8)

where:

� T is the applied torque

� L is the beam length

� G is the Modulus of rigidity (shear modulus) of the material

� Iz is the torsional constant

45



CHAPTER 3. STRUCTURAL MODELLING

3.7 Constitutive relations

As state before, for our structural analysis we are going to consider an isotropic
linear elastic material that is directly related to the Hooke’s law.
There is therefore a relationship between stress and strain components:

σ = [C]ε (3.9)

where for isotropic materials the form of the matrix [C] looks like [57] :

[C] =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (3.10)

where

C11 = C22 = C33 =
E(1− ν)

(1 + ν)(1− 2ν)

C12 = C13 = C23 =
νE

(1 + ν)(1− 2ν)

C44 = C55 = C66 = G =
E

2(1 + ν)

(3.11)

At this stage it is very important to analyse what is going to do the FEM model
with the structural properties we give them.
Starting from the Young modulus and the Poisson’s ration, the FEM code calculates
the Shear modulus G with the before written equation.
The Poisson’s ratio is necessary only for the previously calculation because in the
simulation itself the cross section is supposed to be rigid and therefore in this case
ν is considered as 0.
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3.8 FEM formulation

The FEM method was born around 1956 in the aeronautical sector because there
was the necessity to have more accurate structural analysis and results for very
complex shapes and geometries.
At the beginning the FEM method was rarely used because of its computational
effort but as the technology goes further this method became very powerful.
The basic idea behind this method is to get an approximated solution by splitting
and describing a complex problem and geometry in a easier way.
There are sever ways to get the finite element method:

Figure 3.9: Methods for approximate global solutions

In this case we start from a variational formulation and after applying the Rayleigh-
Ritz method based on the stationary of the total potential energy we get the discrete
formulation on which the FEM method is based.

3.8.1 Basic Concepts of FEM Discretization

Typically, the finite element method solves differential equation-governed problems
with appropriate boundary conditions.
In effect the FEM method solves the set of differential equations

A(u) = 0 in Ω (3.12)

subjected to the boundary conditions

B(u) = 0 in Γ (3.13)
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where A and B are matrices of differential operators defined over the analysis do-
main Ω and its boundary Γ and u(x, t) is the vector of problem unknowns which
may depend on the space dimension and the time [59].

The FEM solution is found by approximating the unknown polynomial expansions
defined within each element that discretize the analysis domain Γ, i.e.

u ≈ uh =
N∑
i=1

Niui (3.14)

where N is the number of nodes in the mesh, Ni is the shape functions matrix and
ui are the approximate values of u at each node.
The shape functions must be linearly independent between each other and have to
satisfy the geometrical boundary conditions applied to the structure.

The next step si to find the matrix system of equation.
This is obtained by substituting the expressions of strain and stresses in the energy
equation of elastic deformation:

UP =
1

2

∫
V

σT ε dV (3.15)

The strains can be calculated starting from the displacements and deriving them
and are therefore dependent from the derivates of the shape functions N

′
i and the

approximate node values u.
ε = ε(N

′

i , u) (3.16)

The stresses can be calculated starting from the strains and applying the Hooke’s
law and will be also dependent from Ni and u.

σ = σ(N
′

i , u) (3.17)

Now that we have described our energy equation (Eq.3.15) we have to take into
account the work done by external forces VP in order to get the total potential
energy.

ΠP = UP + UP (3.18)

At the end by using the before mentioned principle of the stationary total potential
energy is possible to get N equation in the N unknowns.

∂ΠP

∂ui
= 0 (3.19)

The resulting discrete equation system (for the static case) can be written as:

[K] {u} = {f} (3.20)

where [K] is the stiffness matrix, {u} are the approximate nodal displacements and
{f} the equivalent nodal force vector [59].
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3.9 Stiffness Matrix

In the previous page we introduced the stiffness matrix [K] which is of basic impor-
tance in solving a structural static analysis with the FEM method.
We will first explain through a simple example how the stiffness matrix can be ob-
tained inside the above described process and then the stiffness matrix for the 3D
beam element will be calculated.

3.9.1 Stiffness matrix of a cantilever beam under constant
axial load

The case under exams can be described through this picture:

Figure 3.10: Cantilever beam under constant axial load

Let’s start from the elastic energy deformation:

UP =
1

2

∫
V

σT ε dV (3.21)

Since the stress and strains are only in one direction we can write:

UP =
1

2

∫
V

σxεx dV =
1

2

∫
V

E εxεx dV =
1

2

∫ L

0

E A (u,x)
2 dx (3.22)

Applying the FEM discretization the displacement’s derivative can be rewritten as:

u,x = {u}T {N,x} = {N,x}T {u} (3.23)

(u,x)
2 = u,xu,x = {u}T {N,x} {N,x}T {u} (3.24)

Substituting into equation 3.22 we get:

UP =
1

2
{u}T

(∫ L

0

E A {N,x} {N,x}T dx
)
{u} =

1

2
{u}T [K] {u} (3.25)

In conclusion the stiffness matrix is calculated as:

[K] =

∫ L

0

E A {N,x} {N,x}T dx −→ Kij =

∫ L

0

E A Ni,xNj,x dx (3.26)
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3.9.2 Stiffness matrix for the 3D beam element

We have seen before how to get the stiffness matrix for an easier case than a 3D
beam element. The process to get [K] for bending loads and torsional moment looks
similar and the resulting stiffness matrix are going to be reported in this section.
Starting from the assumption of small strains we can consider a linear problem and
therefore for a 3D beam element the stiffness matrix will be a linear combination of
every single effect of the applied loads. As seen in Figure 3.4 the beam element has
6 degrees of freedom for each node and is composed by 2 nodes and because of this
the general stiffness matrix will be a 12x12.
Let’s sum up the stiffness matrices for every single load conditions in the general
one.

� Axial load bar element: the stiffness matrix looks like:

[K]e =
EA

L/2

[
1 −1
−1 1

]
(3.27)

and is placed at this coordinates inside the 3D beam element stiffness matrix:

Axial bar 3D beam

K11 K11

K12 K17

K21 K71

K22 K77

Table 3.1: Position of axial bar stiffness elements inside 3D beam element matrix

� Torsional load bar element: the stiffness matrix looks like:

[K]e =
GJT
L

[
1 −1
−1 1

]
(3.28)

and is placed at this coordinates inside the 3D beam element stiffness matrix:

Torsional
bar

3D beam

K11 K44

K12 K4 10

K21 K10 4

K22 K10 10

Table 3.2: Position of torsional bar stiffness elements inside 3D beam element matrix
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� Bending beam element: the stiffness matrix looks like:

[K]e =
EI33
L3


12 6L(e) −12 6L(e)

6L(e) 4L(e)2 −6L(e) 2L(e)2

−12 −6L(e) 12 −6L(e)

6L(e) 2L(e)2 −6L(e) 4L(e)2

 (3.29)

and is placed at this coordinates inside the 3D beam element stiffness matrix:

Torsional
bar

3D beam

K11 K2 2

K12 K2 6

K13 K2 8

K14 K2 12

K21 K6 2

K22 K6 6

K23 K6 8

K24 K6 12

K31 K8 2

K32 K8 6

K33 K8 8

K34 K8 12

K41 K12 2

K42 K12 6

K43 K12 8

K44 K12 12

Table 3.3: Position of beam stiffness elements inside 3D beam element matrix

The other bending direction is also implemented inside the 3D beam general
matrix in a similar way as stated before.

In the next page is presented the stiffness matrix for a 3D beam element.
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[K] =



EA
L

0 0 0 0 0 −EA
L

0 0 0 0 0
0 12EI33

L3 0 0 0 6EI33
L2 0 −12EI33

L3 0 0 0 6EI33
L2

0 0 12EI22
L3 0 6EI22

L2 0 0 0 −12EI22
L3 0 6EI22

L2 0
0 0 0 GJT

L
0 0 0 0 0 −GJT

L
0 0

0 0 6EI22
L2 0 4EI22

L
0 0 0 −6EI22

L2 0 2EI22
L

0
0 6EI33

L2 0 0 0 4EI33
L

0 −6EI33
L2 0 0 0 2EI33

L

−EA
L

0 0 0 0 0 EA
L

0 0 0 0 0
0 −12EI33

L3 0 0 0 −6EI33
L2 0 12EI33

L3 0 0 0 −6EI33
L2

0 0 −12EI22
L3 0 −6EI22

L2 0 0 0 12EI22
L3 0 −6EI22

L2 0
0 0 0 −GJT

L
0 0 0 0 0 GJT

L
0 0

0 0 6EI22
L2 0 2EI22

L
0 0 0 −6EI22

L2 0 4EI22
L

0
0 6EI33

L2 0 0 0 2EI33
L

0 −6EI33
L2 0 0 0 4EI33

L


(3.30)

We have calculated the stiffness matrix [K] for the 3D beam element that will be
implemented in the static case for achieving the final displacement and in the dy-
namic case as part of the partial differential equation that is going to be solved, as
we will see in the sext section.

3.10 Geometric Non-Linearity

Until now we have considered small strain and a linear static analysis where a linear
relation holds between applied forces and displacements and where the equations of
equilibrium are formulated in the undeformed state and are not updated with the
deformation.
This applies in practice to structural issues where stresses stay within the linear
elastic range of the material used and for those problems the stiffness matrix of the
model is constant and the solving process is brief compared to a non-linear analysis
on the same model [60].
If displacements, rotations, or strains become sufficiently big, consideration must be
given to geometric non-linearity that take into account the difference between the
original length and the deformed length of the elements.
Geometrical non-linearities are considered into the simulation by representing the
strains through the Green-Lagrange strain tensor.

For example the normal strain can be written as [61]:

εxx =
∂ux
∂x

+
1

2

(
∂ux
∂x

)2

+
1

2

(
∂uy
∂x

)2

+
1

2

(
∂uz
∂x

)2

(3.31)
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while the shear strain can be calculated by [61]:

εxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

+
∂ux
∂x

∂ux
∂y

+
∂uy
∂x

∂uy
∂y

+
∂uz
∂x

∂uz
∂y

)
(3.32)

In case of the non-linear analysis the following properties of the simulation changes:

� the stiffness matrix is not constant and has to be calculated multiple times
in the course of the non linear analysis

� the principle of superposition is possible in the linear analysis and not
possible in the non linear analysis

� non linear analysis is solved by Newton-Raphson technique and needs nu-
merous iterations in each increment to achieve a converged outcome

3.11 Equations of motion

The equation of motion for a system can be derived from the classical mechanics
(Newtonian mechanics) or using the energy based Lagrangian mechanics.
For a system with dumping and with more degrees of freedom the resulting partial
differential equation is:

[M ]ẍ(t) + [C]ẋ(t) + [K]x(t) = L(t) (3.33)

where [M ] is the mass matrix, [C] is the dumping matrix, [K] is the stiffness ma-
trix, x are the degrees of freedom such as displacements and rotations and L are the
external forces and moments.
While the mass and stiffness matrix depends from the geometrical and structural
properties of the system, the dumping matrix needs to be calculated following a
particular scheme that will be explained in the next section.

3.11.1 Rayleigh damping method

Introduction

Damping plays a significant role in the dynamic analysis of structures but is at the
same time difficult to calculate.
For the analysis we are going to carry out in this thesis, we will consider only the
structural damping inside the [C] matrix since the aerodynamic damping is implic-
itly introduced by the CFD computed forces.
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However, the most efficient way to treat damping within the context of structural
analysis is to treat the damping value as an equal Rayleigh damping in the form of:

[C] = α[M ] + β[K] (3.34)

where [M ] is above mentioned mass matrix and [K] is the stiffness matrix.

This method is based on the assumption that the mass participation in structural
damping decreases with increase in modes (frequency) while the stiffness matrix
influence is linearly proportional to the frequency [62].
The basic equation of the Rayleigh damping method and its plot can give us a better
understanding.

ζi =
α

2ωi
+
βωi
2

(3.35)

Figure 3.11: Example of Rayleigh damping method solution

Computation of coefficients for the tower

The next step will be to calculate the Rayleigh damping coefficients for our cases.
For the tower we do not have any damping ratios from the input data and therefore
we have to assume that the significant dynamic response of the system will die down
within first four modes with damping ratios varying between 2% to 10%.
The damping rations for the second and third frequencies can be computed through:

ζi =
ζ4 − ζ1
ω4 − ω1

(ωi − ω1) + ζ1 (3.36)

and the resulting data are listed in the next page:

54



CHAPTER 3. STRUCTURAL MODELLING

Mode ω [Hz]
Damping
ratio [%]

1 0.654 2
2 4.480 3.3
3 12.516 6.6
4 24.249 10

Table 3.4: Computed damping ratios for the tower

In the end what is needed in order to perform the structural analysis are the coeffi-
cients that are estimated using the first and the last mode data as following:

β =
2ζ1ω1 − 2ζmωm

ω2
1 − ω2

m

= 0.008209298 (3.37)

α = 2ζ1ω1 − βω2
1 = 0.022637865 (3.38)

Computation of coefficients for the blade

For the blade of the wind turbine the procedure is a little bit different since the first
three modal damping ratios are given.
In this case we performed a best fit analysis of the given values [62].

Mode Name ω [Hz]
Damping
ratio [%]

1 1st flap 1.01 1.53
2 1st edge 1.91 1.75
3 2nd flap 2.96 1.68

Table 3.5: Given damping ratios for the blade

In this approach we estimated first the coefficients using the values from mode 1
and 2:

β =
2ζ1ω1 − 2ζ2ω2

ω2
1 − ω2

2

= 0.013677321 (3.39)

α = 2ζ1ω1 − βω2
1 = 0.016953765 (3.40)
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and then using modal data 1 and 3:

β =
2ζ1ω1 − 2ζ3ω3

ω2
1 − ω2

3

= 0.021873144 (3.41)

α = 2ζ1ω1 − βω2
1 = 0.008854873 (3.42)

Now the last step is to plot and compare the resulting damping ratio curves with
the given log.Decrement values and select the one which best fit them.

Figure 3.12: Rayleigh damping solutions for the blade

From the plot we can conclude that the curve based on the coefficients calculated
from the 1st and 3rd modes better fits the given values.

3.11.2 Numerical Integration for Structural Dynamics

In order to solve the structural dynamic problem described in equation 3.33 is neces-
sary to find a stable method to get the solution from the finite element discretization
of the partial differential equation that govern our problem.
In other words we need to find a way to get x(t) and ẋ(t) at any point in time in
order to solve the accelerations ẍ(t) in terms of the displacements, velocities, and
the applied forces.
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There are generally two classes of numerical integration methods :

� explicit methods where displacements and velocities at ti+1 can be deter-
mined in closed form from displacements, velocities, accelerations and external
forces at the time step ti

� implicit methods where displacements and velocities at ti+1 depend from
displacements, velocities, accelerations and external forces at the time step ti
and also ti+1

In this dissertation we will use an implicit scheme because of its flexibility and sta-
bility and two methods are going to be presented.

The Newmark method

The Newmark method is here presented with the three equations that allow to
determine the displacement vector by solving the system of equations while comple-
mentary computations are carried out to determine velocity and acceleration vector
[63]. 

xi+1 = xi + hẋi + h2
[(

1
2
− β

)
ẍi + βẍi+1

]
ẋi+1 = ẋi + h(1− γ)ẍi + hγẍi+1

[M ]ẍi+1 + [C]ẋi+1 + [K]xi+1 = Li+1

(3.43)

The Bossak method

The Bossak method is an extension of the before explained method where the ac-
celeration ẍ is taken prior the time step ti+1 [64].
In all cases, the method can replace the Newmark method successfully.

xi+1 = xi + hẋi + h2
[(

1
2
− β

)
ẍi + βẍi+1

]
ẋi+1 = ẋi + h(1− γ)ẍi + hγẍi+1

[M ](1− αB)ẍi+1 + [M ](αB)ẍi + [C]ẋi+1 + [K]xi+1 = Li+1

(3.44)

This is the method we are going to use in our dynamic analysis because is charac-
teristic of a good damping in high frequencies range and less sensible to the wrong
choice than other methods [64].
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3.12 Verification

Right now we have deeply described our structural model in each of its properties.
The last step before moving on to the aerodynamic model is to ensure that the FEM
code is actually implementing the structural model we have described and that it is
consistent with the well known analytical solutions.
In this section 3 different structural responses are going to be validated.

3.12.1 Bending static

Let us consider a cantilever, rectangular cross-section beam with the following prop-
erties, made of an isotropic material and loaded at the center point of the free tip
(x=L) by a force Fy.

Property Value

base length 0.2 m
height length 0.1 m

Young modulus (E) 7.00 E+10 Pa
I1 1.67 E-05 m4

length 10 m
ρ 7850 kg/m3

Fy 1000 N

Table 3.6: Beam properties and loads for static bending analysis

The aim of the validation is to calculate the analytical vertical free tip displacement
(v) of the free end of the beam via the integration of the equation:

∂2v

∂x2
=
M(x)

EI1
−→ v1|x=L =

Fy
EI1

(
Lx2

2
− x3

6

)
= 0.285714 m (3.45)

and compare it with the displacement (v) computed trough the FEM analysis with
different meshes and with linear and non linear methods.
This first table report the FEM results for the linear analysis where only the vertical
displacement has been taken into account because, as stated before, in geometrical
linearity the beam itself doesn’t stretch along its span axis.

The last column outline the relative error of the FEM compared to the analyti-
cal solution calculated through:

εrel =

(
v1|x=L − vFEM |x=L

v1|x=L

)
(3.46)
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MESH
[elements]

v
FEM

[m] εrel[%]

1 0.285144 -0.20
10 0.285144 -0.20
100 0.285144 -0.20
1000 0.285144 -0.20

Table 3.7: Static bending results for linear analysis

We can see that the number of nodes doesn’t affect the resulting tip displacement
because the exact/analytical theory is the same that has been implemented inside
the FEM code.
Moreover the obtained results agree with the analytical ones with very small relative
errors.

Let’s take a look at the non linear analysis data by giving particular attention to
the displacements in both directions since we expect that the beam deflects but also
compress itself.

MESH
[elements]

v
FEM

[m] εrel [%] w
FEM

[m]

1 / / /
10 0.284906 -0.28 -0.00486132
100 0.284906 -0.28 -0.00487133
1000 0.284906 -0.28 -0.00487133

Table 3.8: Static bending results for non-linear analysis

For this second step of analysis we have some different results as expected.
First of all for this kind of computations is not possible to have only one element
mesh because geometrical non-linearities cannot be described.
Secondly we can see how the vertical displacement is lower than expected by a very
tiny percentage and the beam, due to non-linear behaviour, compress itself a little
bit.
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3.12.2 Bending modes

After have ensured that the beam deflect as expected under a given and known load,
in this chapter we want to test if the bending modes or eigenfrequencies of a given
beam corresponds to the one calculated in trusted and analytical ways.

Let us consider for this purpose a cantilever, rectangular cross-section beam with
the following properties and made of an isotropic material.

Property Value

base length 0.56 m
height length 0.2 m

Young modulus (E) 7.00 E+10 Pa
I1 3,73E-04 m4

I2 2,93E-03 m4

length 10 m
ρ 2700 kg/m3

Table 3.9: Beam properties for bending modes analysis

For this purpose we have used the results given by [65] and have compared them
with the one given by the FEM code by a mesh of 100 elements.

Bending mode Theory [Hz] FEM [Hz] εrel [%]

1 1.645 1.63768 0.44
2 10.3039 10.2632 0.39
3 28.8664 28.8664 0
4 56.5661 56.3133 0.45
5 93.509 93.0898 0.45

Table 3.10: Eigenfrequencies for linear analysis

Also per the eigenfrequencies estimate we can conclude that the FEM code is con-
sistent.

60



CHAPTER 3. STRUCTURAL MODELLING

3.12.3 Torsional static

The last section in this chapter is also the last comparison between the Kratos code
and analytical results in order to verify the accuracy and reliability of the used FEM
tool.

In order to do that an isotropic cantilever, rectangular cross-sectional beam is used
whose characteristics are:

Property Value

base length 0.2 m
height length 0.1 m

Young modulus (E) 7.00 E+10 Pa
Shear modulus (G) 2.713 E+10 Pa

J 0.01 m4

length 2 m
ρ 7850 kg/m3

Mt 10 Nm

Table 3.11: Beam properties for torsional static analysis

The theory give as a formulation in order to calculate the torsional angle along the
span:

φ =
MtL

JG
−→ φ|x=L = 7, 3714◦ (3.47)

The FEM code gave as result : φ|x=L
FEM

= 7, 3714◦

We can conclude that the code is also validated for the torsion of the beam.
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Chapter 4

Aerodynamic modelling

In this chapter we will analyse the second fundamental simulation tool in order to
perform our aeroelastic analysis, the CFD solver.
After introducing the Navier-Stokes equations for fluid dynamics, we will analyse
how those are averaged for the unsteady flow (URANS) by the utilised CFD solver
FLOwer and which settings our computational model is going to have.

4.1 Conservation Laws

Balancing fluxes over a control volume provides us with conservation laws for the
mass, momentum and energy of the lump of fluid that is at time t surrounded by
this control volume.
For notation convenience, the dynamic viscosity coefficient µ has been extracted
from the second order shear stress tensor ¯̄τ , which holds all throughout this text
[66].



∂ρ

∂t
+ divρ(~V − ~Vb) = 0

∂ρ~V

∂t
+ div

(
ρ~V × (~V − ~Vb) + p ¯̄I − µ¯̄τ

)
+ ~ω × ρ~V = ~0

∂ρE

∂t
+ div

(
ρH × (~V − ~Vb)− µ¯̄τ · ~V −K

−−→
grad T

)
= 0

(4.1)

The specific internal energy e, when augmented by the pressure over the density,
gives the specific enthalpy h. When added to the specific kinetic energy, these two
become respectively specific total energy E and specific total enthalpy H [66].

H = E +
p

ρ
= h+

V 2

2
= e+

p

ρ
+
V 2

2
(4.2)
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4.2 CFD solver FLOWer

4.2.1 Introduction

The fluid dynamic simulations are carried out by employing the block-structured
CFD solver,FLOWer [50], from the German Aerospace Center (DLR).
The FLOWer code solves the compressible, three-dimensional Reynolds-Averaged
Navier-Stokes equations (URANS) and in the recent years has been continuously
developed at the Institute of Aerodynamics and Gas Dynamics (IAG) - University
of Stuttgart for wind turbine applications [67].

4.2.2 Grid generation and motion

In order to perform a CFD case study is necessary to know and create the geometry
of the analysed body and to generate the grid domain through which the flow passes.
For this thesis the software named Pointwise and an academic tool were used for
the purposes.
Another important aspect that will be described in this section is how the different
grids (MULTIGRID) are matched together (CHIMERA) and how they can move
with respect to the others using this method.

Pointwise

As mentioned before, Pointwise was the choice for computational fluid dynamics
meshing.
This software enables to cover all aspects of preprocessing from importing or creating
the model to flow solver export [68].
By generating the structured mesh, a lot of parameters and levels of control are
available and the program is also capable of creating simple geometries like cylinders
and block.
Later will be described in detail the settings parameters for the mesh for every single
part of the wind turbine.

4.2.3 Background generator

Starting from the local mesh around the wind turbine component, a background
grid is generated through this academic code by giving a few detail of the expected
result.
The program needs the 3D dimensions of the background block, the smallest cell
size and a coarsening level for the mesh .
Using this tool permits to save time and at the same time have a very detailed and
efficient mesh around the body.
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Chimera

The Chimera-technique has been introduced by Benek et al. in 1983 [69].The idea
of the Chimera-technique is to use overlapping grids to discretize the computational
domain as the next example of a 2D airfoil shows.

Figure 4.1: Overlapping grid system for 2D airfoil

In the left picture of Figure 4.1 is shown how the grid around the airfoil is embedded
into another grid.
Grids around solid bodies are often called ‘component grids’ or ‘near field grids’.
The component grids may be embedded into other component grids, or into a back-
ground grid, which is only used to cover the outer areas of the computational domain.
In Figure 4.1, left, some points of the background grid fall inside the airfoil. These
points can not be discretized and are therefore blanked and excluded from the flow
calculation.
In order to establish intergrid communication during the solution process, the grid
points at the grid boundaries and close to blanked points are updated with interpo-
lated flow data from an overlaying grid, see Figure 4.1, right.

The Chimera technique has two major advantages for grid generation:

� grids associated with moving bodies move with the bodies without stretching
or distorting the grids.

� the grid generation for complex geometries is simplified. This is achieved
by breaking down the geometry into simple shaped components, for which
individual grids can easily be created.
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4.2.4 Spatial discretization scheme

The approximation of the governing equations follows the method of lines, which
decouples the discretization in space and time. The spatial discretization is based on
a finite volume method which subdivides the flow field into a set of non-overlapping
hexahedral cells. The equations of change are applied on each cell in integral form,
which ensures the treatment of the equations in conservative form [70].
Through the application of the integral form of the Navier-Stokes equations, a dis-
crete flux balance is obtained for each control volume, which can be used to approx-
imately determine the change of flow quantities with respect to time in particular
points.
In FLOWer the cell-vertex and the node-centered approaches are realized, in which
the flow variables are associated with the vertices of the cell [70]. The spatial dis-
cretization leads to an ordinary differential equation for the rate of change of the
conservative variables in each grid point:

∂

∂t
~Wi,j,k = − 1

Vi,j,k

(
~R c
i,j,k − ~R v

i,j,k

)
(4.3)

where ~R c
i,j,k and ~R v

i,j,k represent the approximation of the inviscid and viscous net
flux of mass, momentum and energy for a particular control volume arrangement
with volume surrounding the grid node (i,j,k).
In the simulation computed for this thesis the second order Jameson-Schmidt-Turkel
(JST) [71] scheme is implemented while for the background of the full model simu-
lation a WENO scheme according to Shu [72] with a fifth order spacial accuracy is
used.

4.2.5 Time integration scheme

FLOWer is able to compute steady as unsteady simulations. While for the steady
one the hypothetical time step has an infinite value, for unsteady computations a
time integration scheme is therefore necessary.
The algorithms for computing unsteady flows are of two main types, explicit and
implicit.
In FLOWer you have the choice between two explicit and one implicit scheme [70].
Explicit methods are subjected to severe stability restrictions through the CFL con-
dition and to guarantee stability to the method a very small time step could be
necessary.

An implicit discretization of the problem helps to bypass the time step limitation of
explicit schemes. Jameson has developed a very efficient multigrid-driven implicit
approach for the solution of the unsteady Euler equations [73] called

”
the dual-

timestepping method“.
Using central differences in space and an implicit multistep discretization in time, a
large set of simultaneous non-linear equations is formed and marched to steady-state
in pseudo-time through a multigrid algorithm within each physical time step.
Following Jameson, the DLR multi-block code FLOWer has been extended to the
solution of unsteady viscous flows [73].
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If we discretize the time derivative term with a backwards difference second order
accurate operator [70], we obtain (drop the i,j,k subscripts for clarity) :

3 ~W n+1

2∆t
− 2 ~W n

∆t
+

~W n−1

2∆t
+ ~P ( ~W n+1) = 0 (4.4)

This equation for ~W n+1 is non-linear due to the presence of the term ~P ( ~W n+1) and
cannot be solved directly.
For an iterative solution, Jameson modifies eq. (4.4) in a very skilful manner by
integrating the modified equation in a fictitious pseudo time:

d

dτ
~W + ~P

τ

( ~W ) = 0 (4.5)

with the altered residual

~P
τ

( ~W v) =
3 ~W v

2∆t
− 2 ~W n

∆t
+

~W n−1

2∆t
+ ~P ( ~W v) (4.6)

The integration of the system of eq. (4.4) for each physical time step can be carried
out using the same techniques as for the steady case. Performing a number of
subiterations (counter v), a pseudo steady state is reached:

τ → ∞ ⇒ d

dτ
~W → 0, ~W v → ~W n+1 (4.7)

Figure 4.2: Computational methods
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4.2.6 Turbulence model

In this subsection we deal with specific details of the Reynolds-averaged Navier-
Stokes system of equations and with turbulence models
Simulating the genuine viscous turbulent flow still resorts to expensive DNS tech-
niques.
Instead, the (statistical) Reynolds averaging is applied to the original Navier-Stokes
system of equations (4.1).
Let us denote by < · > this averaging operator applied to a quantity ϕ:

< ϕ > (~x, t) = lim
N→∞

1

N

N∑
i=1

ϕi(~x, t) =
1

T

∫ t+T/2

t−T/2
ϕi(~x, τ)dτ (4.8)

all quantities meet the ergodicity assumption which means that a statistical average
can only be equal to a time average when the integration time interval T is supposed
to be large enough with respect to the turbulence time scales and small enough with
respect to the macroscopic time scales of the flow [66].
Signals are then decomposed into their mean component < ϕ > and their fluctuation
part ϕ′:

ϕ =< ϕ > +ϕ′ (4.9)

By substituting the decomposition into the initial Navier-Stokes equations we get a
more complex partial differential equation system.

For the sake of clarity, the average notations are from now on left out in order to
recover the same symbols as reported at the beginning of this chapter, that is: all
latin and greek characters refer to mean flow quantities with the exception of k, ¯̄τR
and ~qt.
However, this time, both the total energy and the total enthalpy not only include
the mean flow kinetic energy V 2/2 but also the turbulence kinetic energy k (by the
way well deserving being termed total energy and total enthalpy) [66]:

E∗ = e+
1

2
V 2 + k and H∗ = h+

1

2
V 2 + k (4.10)

The final system of equations, from which turbulence modelling is further developed
reads: 

∂ρ

∂t
+ divρ~V = 0

∂ρ~V

∂t
+ div

(
ρ~V × ~V + p ¯̄I) = div(µ¯̄τ + ¯̄τR

)
∂ρE∗

∂t
+ divρ~V

(
E∗ + p

ρ

)
= div((µ¯̄τ + ¯̄τR) · ~V − ~q − ~qt)

(4.11)

It is now a matter of modelling ¯̄τR and ~qt.
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Boussinesq’s Assumption

Higher order turbulence models are based on transport equations for each of the
Reynolds correlations (the entries of ¯̄τR) that are solved simultaneously to the mean
flow equations, at the price of an increased model complexity and of much larger
computation times.
This is bypassed thanks to lower order approaches that make use of the Boussinesq’s
assumption [66]. This one relates the turbulence new terms ¯̄τR and ~qt to the gradients
of the mean flow, by means of relations similar to their “laminar” counterparts for
¯̄τ and ~q: 

¯̄τ = −2

3
µ div~V ¯̄I + µ

( ¯̄
grad ~V + t ¯̄

grad ~V
)

~q = −µt cp
Pr

−−→
grad T

(4.12)

induce with the help of an eddy viscosity coefficient µt and of a turbulence Prandtl
number Prt: 

¯̄τ = −2

3
µ div~V ¯̄I + µ

( ¯̄
grad ~V + t ¯̄

grad ~V
)

~q = −µt cp
Pr

−−→
grad T

(4.13)

The system to be solved reads in the end:



∂ρ

∂t
+ divρ~V = 0

∂ρ~V

∂t
+ div

(
ρ~V × ~V + p ¯̄I − (µ+ µt)¯̄τ

)
= ~0

∂ρE

∂t
+ div

(
ρ~V H − (µ+ µt)¯̄τ ~V − cp

(
µ

Pr
+

µt
Prt

)
−−→
grad T

)
= 0

(4.14)

where E∗ ≡ E and the turbulence Prandtl number is always set to Prt = 0.9 since
we only address turbulence.

Now turbulence models help evaluate k and µt.
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k − ω Type Models

For the the k − ω Type Models, 2-transport equation models set the eddy viscosity
to:

µt = Cµ
ρk

ω
(4.15)

where the function of the flow Cµ has no dimension and [ω] = T−1.

Two transport equations are provided for the turbulence kinetic energy k and for ω:
∂ρk

∂t
+ div

(
ρk~V −

(
µ+

µt
σk

)
−−→
grad k

)
= Sk

∂ρω

∂t
+ div

(
ρω~V −

(
µ+

µt
σω

)
−−→
grad ω

)
= Sω

(4.16)

where the numerical constants of the diffusion terms σk and σω stand without di-
mensions and are usually identical for all models [66]. The source terms Sk and Sω
are again split into production and destruction terms according to:

Sk = Pk −Dk [Sk] = ML−1T−3

Sω = Pω −Dω [Sω] = ML−3T−2
(4.17)

and the production/destruction pairs read:
Pk = µtS −

2

3
ρk div ~V

Dk = βk ρkω

(4.18)


Pω = βω1Pk

ω

k

Dω = βω2 ρω
2

(4.19)

The strain rate invariant is hereby denoted by S and carries the dimensions of
the square of a velocity space derivative, that is [S] = T−2. Also, the additional
functions of the flow
βk, βω1 and βω2 are dimensionless.
The various k−ω type models implemented in FLOWer differ only in the definition
of the coefficients:

Cµ, βk, βω1 and βω2 (4.20)

In this thesis the turbulent closure of the URANS equations is provided by the
before explained eddy viscosity two-equation shear stress transport (SST), k − ω
model because is known for improved prediction of flows with strong adverse pressure
gradients and separation.
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Chapter 5

Aeroelastic model

5.1 Introduction

In this chapter the main and most important part of this thesis is described where
the settings and the results of the aeroelastic study are presented and discussed.
We will first focus on how the structural properties, structural mesh and reference
section of the tower and blade are selected.
Afterwards we will introduce the mesh and solver settings for the CFD analysis and
at the end the solutions of the one way and two way coupling.

5.2 One way coupling tower

5.2.1 Analysis of structural data and interpolation scheme

Before setting up the fluid dynamic simulation is important to know on which section
of the tower our CFD code needs to compute forces and which structural properties
do have the element of the FEM analysis, starting from the nodal values.
In order to do that we got from the data project the first 4 bending eigenfrequencies.
Therefore we have calculate with different structural data interpolation methods our
modal shape frequencies and we have compared them with the original ones in order
to find out which one is the closest.
The question is now which property we assign to the element having two different
values at its nodes.

Three different methods have been used for this purpose:

� backward scheme where the property of the second node is taken:

Figure 5.1: Backward scheme node
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� forward scheme where the property of the first node is taken:

Figure 5.2: Forward scheme node

� central different scheme where the mean value of the nodes is taken:

felementi =
fnodei + fnodei+1

2
(5.1)

The material and structural properties of the tower looks like:

Figure 5.3: Starting properties of the tower

It is important do underline how these 3 methods have been applied only to the cen-
tral part of the tower while for the basement and the nacelle respectively a forward
scheme and a backward scheme have been used in order to preserve their mass and
stiffness.
In the previous chapter has been stated that the tower has axis symmetrical prop-
erties and for this reasons only bending modes in one direction will be reported in
the next table.
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The last column of the results in the next table shows the mean relative error for
every applied method estimated through:

εrel =
4∑
i=1

(
f
FEMi

− f
REFERENCEi

f
REFERENCEi

)
(5.2)

Method
1st mode

[Hz]
2nd mode

[Hz]
3rd mode

[Hz]
4th mode

[Hz]
εrel[%]

WINSENT a b c d /
centered a1 b1 c1 d1 3.81
backward a2 b2 c2 d2 2.00
forward a3 b3 c3 d3 2.17

Table 5.1: Eigenfrequencies TOWER analysis

We can conclude that the backward scheme is the more accurate for our goals and
moreover the structural properties will be set into the FEM code according to this
result.

5.2.2 Tower CFD model

In order to perform the CFD analysis the computational domain needs to be divided
according to a volume mesh.
The CFD code build up the domain putting together many blocks, the tower mesh
block and the background mesh block.

Mesh and boundary conditions

First of all the cylindrical surface of the tower has been created in POINTWISE
with those geometrical characteristics:

Tower bottom radius [m]
Tower top radius [m]

Tower height [m]

Table 5.2: Tower geometrical properties

In order to set the mesh parameters like y+ is necessary to decide the boundary
conditions of the simulation:
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Wind speed 6.1 m/s
Reference length
[top tower chord]

2.5 m

Density 1.231 kg/m3

Dynamic viscosity 1.789E-05 N · s/m2

Reynolds number 1.04E+06

y (y+ = 1) 5.62E-05 m

Table 5.3: Simulation settings for the tower

We are now able to set the O-type mesh topology parameters taking into account
to impose a wall distance lower than the one computed before.

y (y+ < 1) 2.9E-05 m

Growth rate 1.10

Horizontal distance
from the tower

11.15 m

Vertical distance from
the tower

11.15 m

Boundary condition
on the surface

non-slip wall

Number of cells 3870720

Table 5.4: Mesh settings for the tower

(a) Mesh tower top (b) y+ tower top

Figure 5.4: Top view O-type mesh topology and y+ values
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(a) Mesh tower side (b) y+ tower side

Figure 5.5: Side view O-type mesh topology and y+ values

Once we have defined the mesh around the tower it’s time to create the background
using the before mentioned tool and the next parameters:

Height of the domain 4 ·Rotor diameter
Width of the domain 8 ·Rotor diameter
Length of the domain 10 ·Rotor diameter

Minimum spacing (CHIMERA region) 0.25 m
Boundary condition on the ground EulerWall
Boundary condition on the outer

surface
Farfield

Number of cells 1515520

Table 5.5: Mesh settings for the tower-background
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Figure 5.6: Background mesh for tower simulation

The Chimera interpolation method was applied in the overlapping area between the
meshes.
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CFD settings

Once the computational domain is created, the next step is to set the solver.
In the previous chapter we have described the solver setting that are also valid for
this one with the only exception for the spatial discretization scheme:

CFD code FLOWer (IAG-DLR)

Equations URANS

Spatial discretization scheme for
the FULL MODEL background

WENO (5th order accurate)

Spatial discretization scheme for
other volumes

Jameson-Schmidt-Turkel (2nd order
accurate)

Time integration scheme
explicit hybrid 5-stage Runge-Kutta

(central discretization)
Turbulence model k − ω SST

Table 5.6: CFD solver settings

In order to perform the CFD simulation and obtain a converged solution the follow-
ing strategy has been used:

Figure 5.7: Solution strategy

The basic idea is to let converge the steady solution in order to have a basic and
starting configuration for the unsteady process which is necessary to be performed
in order to capture the unsteady effect of the flow around a tower of finite length
placed on one side on a flat plate.

Inside the unsteady simulation two parameters needs to be defined:

� physical timestep that represents the real time that experiences a flow par-
ticle inside the domain. In the first step the time value is the one required by
a fluid particle to travel from the upstream to downstream of the top of the
tower. In the second and last step the time is 1/3 of the previous one.

� Inner iterations represents the number of iteration that the code perform in
order to achieve a pseudo steady state for every single timestep.

One the set up of the code is ended and the simulation reaches a converged and
”steady” solution the results can be analysed.
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Results

First of all is necessary to ensure the convergence of the simulation by looking at
the residuals and the force coefficients.

Figure 5.8: Residuals

Figure 5.9: Lift coefficient values

77



CHAPTER 5. AEROELASTIC MODEL

Figure 5.10: Drag coefficient values

From Figure 5.10 is clearly to see how the switch between steady and unsteady
computation has increased the residuals due to the more complex flow to describe
but at the same time confirm the necessity to analyse in that way this case.
By looking at Figure 5.9 and Figure 5.10 we can conclude that the flow has an
unsteady behaviour along the lift direction (z-axis) and the drag direction (x-axis)
because the forces coefficients change in time and therefore is necessary to analyse
more in detail which phenomena occur.

Our investigation of the flow around a tower starts by looking at a simpler case
like a flow around a cylinder of infinite length.

The Reynolds number of our test case is 1.04E+06 and therefore we expect to have
a fully turbulent wake with the beginning of a vortex sheet.
In the literature some experimental analysis have been made over the years and one
interesting investigation on 3D wake structures for flow over a wall-mounted short
cylinder was performed.
In order to check and compare the fluid dynamic around the tower some CFD visu-
alization tools have been used.
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Figure 5.11: Regimes of fluid flow across a smooth tube [74]

Figure 5.12: 3D wake structures for flow over a wall-mounted short cylinder [75]

The pressure coefficients shows us the stagnation point on the front view and how
the flow accelerates on the sides of the tower while the rear view displays another
stagnation point and two blue zones where the air accelerate due to the tip vortices.
Also on the top of the top we can see two recirculation zones.
From the previous picture we can see not only the vortices that arises from the top
and the bottom of the tower but also the down wash and up wash effects.
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(a) Front view (b) Rear view

Figure 5.13: Pressure coefficient and flow visualization on the TOP of the TOWER

(a) TOP of the TOWER

(b) BOTTOM of the TOWER

Figure 5.14: Side view streamlines

On the other side from the top view by visualizing the streamlines at different height
(Figures 5.15) we can see how the vortices are not on the same side but switch from
one side to the other.
The last Figure (5.16) resume what explained until now and give a sight on the vor-
tex structure by catching the iso-surfaces of a certain values by using the Lambda2
method.
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(a) TOP tower section at z=25m (b) TOP tower section at z=35m

Figure 5.15: TOP tower section at z=35m

Figure 5.16: Vortex core structures detected by the lambda2 criterion

After have examined the fluid dynamic behaviour around the tower it’s time to
quantify the forces acting along it and at different sections.

Before presenting (next page) and commenting the results is important to under-
stand that the SECTIONAL LOADS represents a force per unit length along the
tower height and are therefore not sensitive to the distances between the sections of
the modelled beam.
The ”drag” (Fx) of the tower behave like the one of an infinite cylinder close to the
bottom and the values decrease moving towards the top because the cross section
shrink.
Close to the top the so called tip vortices increment the drag as they for example
do on the aircraft’s wings.
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Figure 5.17: Sectional loads along the tower

The force along the y-direction oscillates across the 0 value because the flow is un-
symmetrical due to the vortex shedding.
The forces along the height of the tower are close to zero and the moments reflect
the nature of the forces since they are computed starting from those one for local
reference system.

The SECTIONAL LOADS gave a great overview but can’t be easily implemented
into the FEM code for the structural analysis and the solution was to compute forces
and moments on sections along the tower that corresponds with the nodes of our
FEM model (INTEGRATED SECTIONAL LOADS).
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Figure 5.18: Integrated sectional loads along the tower

Rather than the SECTIONAL LOADS, the INTEGRATED SECTIONAL LOADS
are difficult to be interpreted because they represents the integrated value of forces
and moments across a section but depend on the distances between the nodes of our
beam model.
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Before moving to the structural response of the tower a last comment to the global
loads is necessary.

Fx 1.6929492e+03
Fy 1.1154125e+02
Fz 7.0796337e+02
Mx -5.5223034e+03
My 1.6929492e+03
Mz 2.2885258e-02

Table 5.7: Global tower loads

In order to validate the results of the CFD analysis in the literature can be found a
lot of experimental results for an infinite cylinder.

Figure 5.19: Variation of cylinder drag coefficient with Reynolds number [76]

The drag coefficient calculated from the line load of the tower is:

CD =
Fx

0.5 ρ V 2 · cREF
= 0.489 (5.3)

where cREF = 3.35m is the mean chord.

The crag coefficient is slightly bigger than the one from the theory because we
are dealing with a finite cylinder with a free tip.
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5.2.3 Structural response

Once we have the solution of the flow around the tower and moreover the forces and
the moments acting on it, we can go a step ahead and calculate the deformation on
the structure.
In order to do that the FEM model of the tower has been created with the feature
listed in the next section and the analysis with different configuration has been
made.

FEM settings

The FEM software used is the open source code KRATOS Multiphysics and the
simulation has been developed using this settings:

Code Kratos Multiphysics
Beam model Euler-Bernoulli

Beam element 3D2N
Nodes 31

Constitutive relation
Isotropic linear elastic

material
Structural data

interpolation scheme
backward

Analysis type linear static

Table 5.8: FEM settings for the TOWER

In order to check and guarantee convergence to the simulation a residual criterion
has been applied to the Newton-Raphson method.

Solver type non linear
Convergence criterion residual criterion
displacement relative

tolerance
0.0001

displacement absolute
tolerance

1e-9

residual relative tolerance 0.0001

residual absolute tolerance 1e-9

max iteration 100

Table 5.9: Convergence criterion settings for the TOWER
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Results

Since the tower itself needs to be very stiff, we expect small displacements and ro-
tations.
In the next table only the tip tower values for many configurations are presented
since the other results along the height of the tower are very small and less useful
for our goal.

Analysis
configuration

Results type x-axis y-axis z-axis

Aero + CG Tip displ. [m] 0.000437607 6.71107e-05 -0.000175189
Aero + CG Tip rot. [rad] -1.69648e-06 1.11331e-05 -2.55039e-12

Only aero Tip displ. [m] 0.000437609 6.71109e-05 7.83573e-08
Only aero Tip rot. [rad] -1.69649e-06 1.11332e-05 -2.55039e-12

Table 5.10: FEM results for the tower

As expected the values are very small and therefore no coupling simulation have
been made since the tower itself is no much sensitive to the aerodynamic loads at
this wind speed.
Comparing the results from the two cases (with and without gravitational forces)
we can see how the gravitational force only affect the displacement along the z-axis
since the tower is axis symmetric along this directions.
In more detail we can see how the z-displacement changes its sign and module and
that give us an idea of the mass and therefore the influence of the tower structure
on its structural behaviour.
The last observation regards the lateral forces and moments acting on the tower.
We expect that the tower doesn’t deform in the lateral direction and rotate along
the x-axis but due to the unsymmetrical behaviour of the turbulent flow and the
vortex shedding there are small forces and moments components.
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5.3 One way coupling blade

In the last chapter we have deeply studied the aerodynamic around a tower and in
this one we will definitely deal with the blade and the whole wind turbine.
We are going to study the aerodynamic around a single blade using a 120◦ model
and then the flow around the whole wind turbine with a full model.

5.3.1 Analysis of structural data

In the previous chapter we have defined our structural model comparing the eigen-
frequencies obtained from our FEM model with the one given by the project.
The same process has been performed for the blade but instead of comparing only
the different interpolation schemes, also the mesh sensitivity of the modal shapes
has been checked.

Three different meshes have been used and the basic idea is that the refined mesh
was created by halving the spacing between to coarse grid points.

Figure 5.20: Mesh refinement criterion

The mass and structural properties itself have been discretized by calculating the
mean value between the starting nodal values (linear interpolation):

felementi =
fnodei + fnodei+1

2
(5.4)

Before presenting the results is necessary to appoint that this process of refinement
is of the second order.
For the blade the first 3 bending modes have been calculated ( 2 flap wise and 1
edge wise).
In the next page’s table the total relative error calculated through equation 5.2 is
presented:
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Method Nodes εrelTOT [%]

backward 23 9.87
backward 45 6.72
backward 89 5.48

centered 23 5.42
centered 45 4.70
centered 89 4.52

forward 23 2.43
forward 45 3.05
forward 89 3.65

Table 5.11: Eigenfrequencies BLADE analysis

We can conclude that the forward method with 23 nodes (blue line )better repre-
sents the blade in the meaning of the total relative error.
For our FEM analysis the same method with 89 nodes (red line) has been used since
the better mesh the more accurate results are obtained.

5.3.2 Analysis conditions

Before describing the mesh settings for both CFD models is important to set the
test conditions under which our analysis are going to be carried out.
In order to analyse the aerodynamic and structural response of the blade under
different conditions, two set of inlet velocities and RPM are implemented.
The first combinations represents the wind turbine in a low power generation con-
dition:

Wind speed 6.1 m/s
RPM 12.3 rounds/minute

Blade tip velocity 50 m/s

Pitch angle -0.15◦

Tilt angle 5◦

Reference length [MAC] 2.02 m

Density 1.231 kg/m3

Dynamic viscosity 1.789E-05 N · s/m2

Reynolds number 8.48E+05

Table 5.12: First simulation settings for the turbine
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The second condition represents a mean power generation situation and permits also
a different analysis of the forces and moments acting on the wind turbine.

Wind speed 9 m/s
RPM 17.83 rounds/minute

Blade tip velocity 72.45 m/s

Pitch angle -1.2◦

Tilt angle 5◦

Reference length [MAC] 2.02 m

Density 1.231 kg/m3

Dynamic viscosity 1.789E-05 N · s/m2

Reynolds number 1.25E+06

Table 5.13: Second simulation settings for the turbine

Both settings will be applied on the 1/3 rotor model and on the full wind turbine
simulation with a TILT ANGLE = 5◦.

5.3.3 Single blade CFD model

Because of the 3-bladed rotor’s rotational periodicity, a rotor sector of 120 degrees
is considered for the first simulation.
Thus, only one blade and one-third of nacelle/hub are modelled where the full rotor
aerodynamics are taken into consideration by periodic constraints.

Figure 5.21: CFD computational domain [77]
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As for the tower, also here the overall structured grid is composed by many single
meshes that are overlapped using the CHIMERA technique.

Figure 5.22: 1/3 model CFD mesh [77]

For the mesh of the blade the following parameters have been set:

Direction Number of cells

Chord-wise 300
Span-wise 100

Boundary layer 35
y+ ≈ 1

Boundary condition
on the surface

No-Slip Wall

Number of cells 8814592

Table 5.14: Mesh settings for the Blade

For the HUB a mesh with 131072 cells have been created while for the background
these values have been taken:
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Height of the domain 10 ·Rotor diameter
Length of the domain 20 ·Rotor diameter

Minimum spacing
(CHIMERA region)

0.25 m

Growth rate 1.17

Boundary condition on the
surface

Far-field

Number of cells 16931840

Table 5.15: Mesh settings for the 1/3 model background

Figure 5.23: Blade mesh [77]

Figure 5.24: Airfoil mesh at different blade sections [77]
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5.3.4 Single blade CFD settings and results

The CFD settings are the same as the one used for the tower since we are trying to
capture as much details as possible from the flow region.
On the other hand, at this stage we have used the same strategy but with different
physical timestep.
The focus in this simulation is on the rotating blade of the wind turbine and because
of this the decision is to achieve at the end an accuracy of 1 as physical time.
For this reason the following strategy has been adopted to converge towards the
simulation:

Figure 5.25: Solution strategy for the simulation at rpm = 12.3

Figure 5.26: Solution strategy for the simulation at rpm = 17.83

Through this strategy a converged solution has been achieved with 24 revolutions:

Figure 5.27: Residuals for the simulation at rpm = 12.3
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The forces coefficients acting on the blade looks like:

Figure 5.28: Forces coefficients for the simulation at rpm = 12.3

Forces and moments acting on the blade in different directions and on different
sections will be investigated further when the results from different configurations
are going to be compared.
In order to understand how the flow passes around the blade some CFD analysis
tools have been used.

Figure 5.29: Pressure coefficients contour and streamlines over the blade

From the pressure coefficients we can see how the flow accelerates on the suction
side mostly on the half of the blade closer to the tip due to the rotational velocity
component.
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By looking the streamlines on the suction surface is interesting to see how the flow
close to the root follows different paths before joining the main direction.
Another observation is that along the leading and trailing edge the streamlines are
directed towards the outside of the rotor because of the centrifugal forces.
The last image that is worth to see is the one reporting the vortex core regions
around the blade:

Figure 5.30: Vortex core structures around the blade

From the main and the top view we can recognise the vortex generated by the tip
of the blade. This kind of vortices start on a diagonal direction and became per-
pendicular to the flow direction along the wake.
The tip vortices also dissipate their energy along the make dividing themself in
smaller one that increase the overall size of the vortex region.
On the left side of the top a focus on the inner part of the blade is made.
This is done because some smaller turbulent structures are also generated in the
zone and explain what we have seen before on the root region from the streamlines
plot.
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5.3.5 Full wind turbine CFD model

In order to better understand the interaction between the tower and the blade and
between the blades, a full CFD model have been developed [77].
This full model permits to consider also the ground effect and the tilt angle and is
a composition of the mesh of the tower and the one from the 1/3 model repeated
for each of the tree blades.
It was necessary to connect this parts through the nacelle that has been modelled
as a cylinder and whose mesh looks like:

Figure 5.31: Full model wind turbine, nacelle and hub mesh

Another important aspect of the CFD model is the new background whose properties
are:

Height of the domain 12 ·Rotor diameter
Length of the domain 24 ·Rotor diameter
Width of the domain 24 ·Rotor diameter

Minimum spacing
(CHIMERA region)

0.25 m

Growth rate 1.17

Boundary condition on the
surface

Far-field

Number of cells 58894336

Table 5.16: Mesh settings for the full model background

Let’s give a closer look at some CFD results.
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5.3.6 Full wind turbine CFD settings and results

For this kind of simulation the same CFD settings and solution strategy has been
used because for the future aeroelastic analysis the coupling between FEM and CFD
code will happen every single degree during the revolution.

Figure 5.32: Full model wind turbine vortex surfaces

As we did for the 1/3 model, we have analysed the flow around the whole wind
turbine through the lambda2 criterion.
By thinking about what it was discovered in the simulations of every single element
of the wind turbine, we can imagine that the result could be a superposition of the
different flow fields.
From the image above the different turbulent structures are not easy to recognise.
The tip vortex generated by the blades are present until a certain length after the
turbine while the vortex shedding from the tower mixed itself with other structures
since its birth.
In the end the result is a complex flow filed governed by the vorticity generated from
the rotor and the wake of the tower.
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5.3.7 CFD results comparison

As before mentioned this subsection has the aim to allow not only the analysis of
the load on the blade itself but also to set them side by side in order to better
understand relations and differences.
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Figure 5.33: Sectional loads along the x-axis from different simulations
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Figure 5.34: Sectional loads along the y-axis from different simulations
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First of all we just look at the shapes of the curves inside the plots.
Along the x-direction (flow direction), Fx represents the force that deform the blade
against the pre-bend and is not responsible for the power generations.
Fx increases quite linearly from the root until a point where close to the tip the
flow restore the same pressure between the sides of the blade.
Instead, Fy is the force that produce power since it acts in the edge-wise directions.
This force has a maximum in the center of the blade where the most of the power is
generated while on the root the flow is slow, turbulent and arrange itself in vortex
structures.

By comparing the forces from two different configurations (V=6.1 m/s and V=9
m/s) of the wind turbine is clear to see the difference between the loads.
On the other side by relating the 1/3 model with the full model on the same con-
figurations (V=6.1 m/s) small differences can bee seen.
The full model presents forces that are generally higher close to the root and lower
in the vicinity of the tip.
This can be addressed to the tilt angle, the presence of the tower and the ground
effect.
Generally we expect to get less power from the full model rather than from the
single blade model because Fy far from the root is smaller then the one from the
1/3 model.
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Figure 5.35: Sectional loads along the z-axis from different simulations

The forces along the span of the blade Fz are small compared to the others and are
therefore not reported and only close to the tip the vortex sheets play an important
role and increase significantly the loads.
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Figure 5.36: Sectional moments around the z-axis from different simulations

The moment around the z-axis is positive along the span and forces the angle of
attack of the blade to a smaller value then the starting one.
In this case there is a big difference not only between different configurations but
on the second half of the blade the full model shows lower moments then the 1/3
model because of the effect of the other blades and of the tower.
Before moving to the structural analysis the power generated by each configuration
in different simulations are presented:

CFD model Configuration Power [MW]

1/3 model V = 6, 1m/s 0.3
Full model V = 6, 1m/s 0.29
1/3 model V = 9m/s 1

Table 5.17: Power generation for each simulation

5.3.8 Structural response (1/3 model)

As done previously for the tower, we are going to apply the CFD computed loads
on the FEM beam model of the blade.
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FEM settings

Let’s start with a description of the settings in Kratos.

Code Kratos Multiphysics
Beam model Euler-Bernoulli

Beam element 3D2N
Nodes 89

Constitutive relation
Isotropic linear elastic

material
Structural data

interpolation scheme
forward

Analysis type linear static

Table 5.18: FEM settings for the TOWER

The converge criterion for the non linear solver are the same used for the tower
structure analysis.

Results

The displacements of the blade have been computed for both boundary conditions
and with many combinations between aerodynamic loads (FLOWer), gravitational
forces (GF) and centrifugal forces (CF).
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Figure 5.37: Normalized flap-wise displacement of the blade for V=6.1 m/s

We can see that in the flapwise direction when the blade is at Azimuth = 0◦ the
aerodynamic loads have a huge impact deforming the tip of about 4, 5% of the ra-
dius.
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It is important to underline that in those graphs the blue line (STARTING GE-
OMETRY) represents a reference line from which the relative displacements are
computed and not the actual geometry of the blade. On the other side it is neces-
sary to remember that the blade has a pre bend on the flap-wise direction.
The GF doesn’t make a great difference while the effect of the centrifugal force is
that it acts against the pre-bend.
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Figure 5.38: Normalized edge-wise displacement of the blade for V=6.1 m/s

Along the edgewise direction only the aerodynamic loads deform the blade in an
important way while the other components don’t make that much difference.
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Figure 5.39: Normalized flap-wise displacement of the blade for V=9 m/s
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Figure 5.40: Normalized edge-wise displacement of the blade for V=9 m/s

For the second step of boundary conditions, in both directions the blade deforms
more.
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5.4 Two way coupling (1/3 model)

The last and the most important part of this chapter regards the TWO WAY COU-
PLING where an apposite software has been used in order to iteratively connect the
CFD code (FLOWer) with the FEM code (Kratos).

5.4.1 Settings

The purpose of the two way coupling is to exchange loads and deformations between
the codes in order to perform an analysis where in the CFD code the shape of the
blade is at every TIME STEP the one obtained at the end of the previous structural
dynamic computation.
On the other side the FEM code calculates the deformations at every TIME STEP
with the actualised and modified loads on the structure.
The software needed for this exchange operations is EMPIRE and the data transfer
happens every 1◦ during the revolution for a total of 3 revolutions.

Figure 5.41: FLOWer-Empire-Kratos explicit coupling

For FLOWer the settings remain the same as for the previous simulations while for
Kratos here the following changes have been made:

Analysis type linear dynamic

Damping method Rayleigh

Numerical method implicit

Table 5.19: FEM settings for TWO WAY coupling of the blade
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5.4.2 Results

The aim of this section is to evaluate the mutual influence between structural de-
formation and aerodynamic behaviour around the blade.
In order to do that the before explained aeroelastic study has been performed and
the explicit coupled simulation has been stopped when the tip displacement, the
forces and the residuals doesn’t change in time (TIME STEP).
We have seen that after 3 revolutions both simulation have reached convergence.
We will first start this results analysis by looking at the tip displacement of the
blade in time.
We have performed two analysis for each boundary condition, one taking into ac-
count all the forces and another only with the aerodynamic loads.
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Figure 5.42: Normalized flap-wise tip displacement/coupled analysis at V=6.1 m/s
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Figure 5.43: Normalized edge-wise tip displacement/coupled analysis at V=6.1 m/s
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In both direction it can been stated that after the first revolution both configura-
tions achieve a steady state.
In the case where all forces are considered there is for the flap and edgewise motion
an oscillating behaviour due to the periodical change of the direction of the gravi-
tational force relative to the blade.
In the flapwise motion the difference between the displacements of the two curves
is generated by the centrifugal force that can’t be neglected for our purposes.
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Figure 5.44: Normalized flap-wise tip displacement/coupled analysis at V=9 m/s
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Figure 5.45: Normalized edge-wise tip displacement/coupled analysis at V=9 m/s

The same behaviour can be seen for the case of a faster inflow condition.
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The second stage of the coupled analysis is to compare the deformation of the blade
between the one way and the two way coupling.
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Figure 5.46: Comparison of flap-wise displacement along the span for V=6.1 m/s
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Figure 5.47: Comparison of edge-wise displacement along the span for V=6.1 m/s

In both plots a big difference between one way and two way coupling can be seen.
The same amplified behaviour is characteristic also for the other boundary condition.
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Figure 5.48: Comparison of flap-wise displacement along the span for V=9 m/s
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Figure 5.49: Comparison of edge-wise displacement along the span for V=9 m/s

It is now interesting to investigate why there is this difference among the two cou-
pling methods.
We will focus on the slow velocity case but the following results are also valid for
the other test case.
A deep insight in how the forces changes in time while the structure is deforming
can give a first answer to the question.
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Figure 5.50: Sectional loads in the flap-wise direction in time
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Figure 5.51: Sectional loads in the edgewise direction in time

The graphs give a very interesting information about how the forces change during
the 3 revolutions.
At the beginning the blade is moving with the same direction of the wind speed and
therefore Fx is smaller and also Fy is smaller along the span because the angle of
attack decreases. After a while the situation changes in the opposite direction and
only after the first revolution the forces find a steady state.
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Now is important to know if there is a difference between the mean value of the last
revolution in the case of the rigid or flexible blade (one way or two way coupling).
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Figure 5.52: Mean values of the forces in the flap-wise direction along the span
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Figure 5.53: Mean values of the forces in the edge-wise direction along the span

Both forces are slightly bigger for the two way coupling and that give us a first
reason for having in a state steady bigger deflections for the flexible blade.
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Another important detail in order to justify the difference between the study cases
is the length of the beam and how it changes while the blade deforms.
Actually there are 3 effects that changes the length of the blade:

� pre-bend: the blade is deforming against the pre-bend and therefore when the
absolute value of this angle is smaller than the beginning one the beam model
stretch itself along the span-wise direction This geometrical effect is taken
into account in our linear structural analysis because the pre-bend changes
the normal direction to the surface along which the blade deforms.

� Centrifugal force acts along the span-wise direction and as a consequence
stretch the blade with positive displacement values

� Aerodynamic force has also an influence and is present along the z-axis in
our reference frame (span-wise direction)

Figure 5.54: Linear analysis - blade tip displacements comparison

The figure 5.55 give us some confirmation and important information.
The first one is that, as mentioned before, the structural linear analysis has displaced
the tip of the blade along the normal direction to the surface and therefore the length
of the blade has increased linearly for both simulated configurations.
The second one is that the loads acting on our beam model have had a small influence
on the changes in the length of the beam and the geometrical effect dominates.
The last and most important comment is that for the two way coupling big forces
act on a big surface having as consequence a large deformation.

109



CHAPTER 5. AEROELASTIC MODEL

At the end of this thesis was possible to run a dynamic non linear simulation
of the 1/3 model of the blade at the LOW SPEED boundary condition and by con-
sidering only the aerodynamic loads.
The results are presented in the next figure and allow to do important considerations.

Figure 5.55: Linear/non linear analysis - blade tip displacements comparison

On the flap-wise direction the non linear analysis give smaller displacement due to
the increased values in the stiffness matrix.
A lower flap-wise deformation for the non linear analysis is also the consequence of
a smaller increase in the length of the blade when compared with the linear one.
In fact by considering the geometrical non linearities we have taken into account the
change in the length of the beam in the z-axis due to the pre-bend.

Thereafter we can compare the effect of the pre-bend computed by the non linear
simulation with the one calculated analytically:

Reference
position

Non linear
simulation [m]

Analytical
analysis [m]

Relative
difference [%]

Blade tip 0.0573 0.055 4.2

Table 5.20: z-axis displacement comparison due to the pre bend

There is a very small relative difference between the results and we can conclude
that the geometrical non linear simulation has produced accurate results and allows
to include in our analysis the change in the shape and length of the beam caused
by the pre bend.
On the other side the results proposed in Table 5.20 suggest that for the deformation
along the span of the blade the geometrical effect dominates above the loads.
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FFT analysis

In order to prove the stability of the wind turbine an FFT (Fast Fourier Trans-
formation) has been made on the forces in the flap- and edge-wise direction.
This analysis permits to discover if there is a coupling between the eigenfrequencies
of the blade and the forces acting on it.
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Figure 5.56: FFT analysis along the flap-wise direction
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Figure 5.57: FFT analysis along the edge-wise direction

The excitation frequencies are below the eigenfrequencies (orange dashed line) and
therefore the blade is stable under an aeroelastic point of view in both configurations.
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Generated power

The last thing we are going to analyse is also the most relevant for a wind turbine,
the generated power. As mentioned before the wind rotor is rotated through the
force in the y-direction, the span-wise one. As we have seen before, the force in
the case of the flexible blade is greater than the rigid one so for both boundary
conditions we expect more power generated in the two way coupling.

0 50 100 150 200 250 300 350 400
Azimuth [°]

0.304

0.306

0.308

0.31

0.312

0.314

0.316

Po
w

er
 [M

W
]

FLEXIBLE BLADE
FLEXIBLE BLADE mean
RIGID BLADE
RIGID BLADE mean

Figure 5.58: Power generation comparison for V=6.1 m/s
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Figure 5.59: Power generation comparison for V=9 m/s

As expected for both cases there is a little increment in the power generation for
the flexible blade in the order of the 5/10 kW .
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Chapter 6

Conclusions and Outlook

The main goals of this thesis have been fulfilled.
The first obtained result was to get in touch with the open source FEM based code
Kratos Multi-physics, validate it and set it up in order to give reasonable and com-
parable results for the one way and two way coupling.
Kratos has allowed also to run a structural dynamic analysis with the possibility to
choose many integration methods and a structural damping matrix.
In the end was possible to run and achieve convergence for all structural simulation.
Another important aspect of this work was to analyse how the data received from the
project could be interpolated and adapted to many grid points in order to achieve
closer eigenfrequencies to the given one and therefore comparable results in the next
steps. Moving to the aeroelastic results, it has been stated that the tower can be
modelled as a rigid body since its deformation are in the order of the mm while for
the blade a one way coupling methodology is not sufficient.
From the flexible blade analysis (two way coupling) very interesting results has been
found because the deformation of the blade changes significantly the loads around
it and its surface.
In the end for the CFD analysis considering a flexible blade, bigger forces has been
computed along the body and as a consequence more power generated than the rigid
case (one way).
By looking at the behaviour of the displacement of the blade tip during the revo-
lutions and the FFT analysis for the acting forces, we can conclude that this wind
rotor model is stable from an aeroelastic point of view.

For all the static and dynamic FEM analysis only geometrical linearities has been
taken into account but in the end was possible to run a non-linear simulation where
smaller flap-wise displacements has been found due to the change in the stiffness
matrix and the decrease in the length of the beam.
On the other side an Euler-Bernoulli beam model has been implemented while by
computing the shear area through a dedicated software, the Timoshenko model could
give more accurate results.
The last outlook regards the possibility to run a two way coupling for the entire
wind turbine with 3 flexible blades and see how the blade influence each other, the
effect of the tower, the ground and the tilt angle.
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