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Introduction

The present thesis is mainly focused on the Hille-Yosida theorem, which is a very powerful tool
in solving evolution partial differential equations.
This work is meant to be a sort of connection between the mathematical theory of partial
differential equations and its applications to physics and engineering, being the conclusion of a
Master Degree in Mathematical Engineering at Politecnico di Torino. The treated topics can
be well related to mechanics, thermodynamics and in general in all applied sciences which make
full use such kind of problems. Some of the first definitions and theorems will be just cited and
theorems will not be proved, but relevant references are present when needed.
The first chapter will be devoted to the preliminary knowledge about functional analysis, and in
particular concerning the theory of linear operators, focusing on the unbounded ones and their
properties which will be useful in the following pages.
The main theoretical topic of this thesis will be presented in the second chapter, in which
the Hille-Yosida theorem will be treated, together with some mentions about regularity of the
solutions and the case of self-adjoint operators, which are often found, for instance, in quantum
mechanics. A mention of the Cauchy-Lipschitz-Picard theorem is added at the beginning, being
it a very relevant and classic result about the solutions of ordinary differential equations.
In the third chapter, some of the most relevant equations from different fields of applications will
be derived and then solved by means of the results achieved in the previous pages. In particular,
the heat equation, the wave equation and the linearized equations of coupled sound and heat flow
will be analyzed and the existence of a unique solution of this kind of problems will be proved .
The fourth and final chapter contains some results of recent studies about the so-called Hille-
Yosida operators and the related Cauchy problems. This last chapter will refer mainly to a
scientific article [1], and it is dedicated to the proof of the existence of different types of solutions
taking advantage of the properties of the Hille-Yosida operators.
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Chapter 1

Linear operators

Dealing with phisics, engineering, economy, finance or any other field requiring a certain math-
ematical background means to deal with functions, which represent basically relations between
sets of objects. A function can represent for instance the evolution of the speed of a car in time,
the oscillations of the financial value of bonds or many other things, and it comes into play, from
a more general point of view, when it is necessary to describe the variation of a certain quantity
with respect to another one.
When it comes to functional analysis, and even more when dealing with partial differential equa-
tions, the concept of function has to be generalized a bit. The idea of operator is indeed an
extension of the one of function. An operator is an application between sets, which in turn can
be normed, Banach, Hilbert and similar (an operator can easily be a "function of functions").
The theory of operators deals with these mathematical objects, trying to classify them according
to their properties, which may vary depending on the sets they are defined on, the dimension of
the "environment" spaces and so on. Many properties turn out to be very useful when it comes
to differential equations, and provide effective tools to proove the existence and uniqueness of
the solutions of problems coming from different fields of mathematics.
Although this chapter is not meant to be a thorough dissertation concerning the theory of op-
erators, it is presented in order to give some hints about the most relevant aspects that have to
be considered when trying to study evolution problems.

1.1 Linear operators
Here we are going to provide the basic definitions which are necessary to understand the following
chapters. We start from the definition of linear operator (see [2]):
Definition 1.1.1. Let X and Y be two Banach spaces. An unbounded linear operator from X
to Y is a linear application A : D(A) ⊂ X → Y defined on a subspace D(A) ⊂ X, with values in
Y . D(A) is the domain of A.
Moreover, A is said to be bounded (or continuous) if there exists a constant c ≥ 0 such that

ëAuëY ≤ c ëuëX ∀u ∈ D(A)

If the operator takes values in a scalar field, it is called functional.
Definition 1.1.2. Let X be a normed space on R. We define the dual space of X (denoted with
X Í) as the vector space:

X Í = {f : X → R : f linear and bounded}.
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1 – Linear operators

A simple but effective example of functional is the so-called integral function. Given, for
instance, f ∈ C([0,1]) and x0 ∈ [0,1], it is given by:

F (x) =
Ú x

x0

f(t)dt

which means that it gives, for all x ∈ [0,1] the value of the area (with sign) under the graph of
f . Other important definitions:

• Graph of A: G(A) =
t

u∈D(A)(u, Au) ⊂ X × Y

• Range of A: R(A) =
t

u∈D(A) Au ⊂ Y

• Kernel of A: N(A) = {u ∈ D(A) : Au = 0} ⊂ X

Definition 1.1.3. An operator A is said to be closed if G(A) is closed in X × Y .

Definition 1.1.4. We define L(X, Y ) as:

L(X, Y ) = {A : X → Y, A linear and continuous}.

Definition 1.1.5. The norm of an operator is defined by:

ëAëL(X ,Y) = sup
u /=0

ëAuë
ëuë

To clarify the equivalence between boundedness and continuity of an operator, a classical result
is the following one (see for instance [3]):

Theorem 1.1.1. Let X and Y be normed spaces, A : X → Y a linear operator. The following
are equivalent:

• (1) ∃c > 0 such that
ëAxëY ≤ c ëxëX ∀x ∈ X

• (2) ∃c > 0 such that
ëAxëY ≤ c ∀x ∈ X, ëxëX ≤ 1

• (3) A is uniformly continuous

• (4) A is continuous

• (5) A is continuous at 0

Proof. The implications (3) =⇒ (4),(4) =⇒ (5) and (5) =⇒ (1) are obvious.
(1) =⇒ (2). Given x ∈ X, ëxëX ≤ 1 we have:

ëAxëY ≤ c ëxëX ≤ c.

(2) =⇒ (1). Take x ∈ X, x /= 0. This means that
... x

ëxëX

...
X

≤ 1, therefore:

(2) =⇒
....A

3
x

ëxëX

4....
Y

≤ c.

4



1.2 – Linear operators on Hilbert spaces

Therefore
1

ëxëX

ëA(x)ëY ≤ c

ëA(x)ëY ≤ c ëxëX .

If x = 0, then ëA(0)ëY = 0 ≤ c ë0ëX . Finally we proove that (1) and (2) are equivalent.
(1) =⇒ (3). Since A is a linear application,

ëAx − AyëY = ëA(x − y)ëY ≤ c ëx − yëX ∀x, y ∈ X.

Let Ô > 0 and let δ = Ô
c . Then when x, y ∈ X and ëx − yëX < δ

ëAx − AyëY ≤ c ëx − yëX < c
Ô

c
= Ô

therefore A is uniformly continuous.
(5) =⇒ (1). A is continuous in 0, that means:

∃δ > 0 : if Ô = 1, ëx − 0ëX < δ =⇒ ëAx − A0ëY ≤ 1.

Thus, let x ∈ X, x /= 0, then:....δ

2
x

ëxëX

....
X

= δ

2 < δ =⇒
....A

3
δ

2
x

ëxëX

4....
Y

< 1

δ

2
1

ëxëX

ëAxëY < 1

ëAxëY <
δ

2 ëxëX

which means that A is bounded with c = δ
2 . If x = 0, A0 = 0 and the boundedness is immediate.

Definition 1.1.6. Let X,Y be normed spaces. We define the vector space

B(X, Y ) := {A : X → Y linear, bounded}.

Definition 1.1.7. Let X, Y be normed spaces. A ∈ B(X, Y ) is said to be invertible if ∃S ∈
B(Y, X) such that S ◦ A = IX , A ◦ S = IY .
S = A−1 is called inverse of A.

There are several invertibility criteria, but we are not going to treat these topics in this
dissertation, for a detailed study see [3].

1.2 Linear operators on Hilbert spaces
When dealing with Hilbert spaces, the scalar product structure allows us to define a new type
of "inverse" operator, that is the adjoint.

Theorem 1.2.1. Let H, K be Hilbert spaces and let A ∈ B(H, K). Then ∃!A∗ ∈ B(K, H) such
that

(Ax, y)K = (x, A∗y)H ∀x ∈ H, ∀y ∈ K.

A∗ is called the adjoint operator of A.
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1 – Linear operators

Definition 1.2.1. Let H be an Hilbert space, A ∈ B(H). A is said to be self-adjoint if A∗ = A.
Now we are going to present a crucial theorem of Functional Analysis, very important when

dealing with weak formulation of evolution problems. This theorem gives a result about existence
and uniqueness of solutions of problems of the type:

a(u, v) = F (v)

where a : H ×H → R is a bilinear, symmetric, continuous and coercive form, whereas F : H → R
is a linear form.
Theorem 1.2.2 (Lax-Milgram). Let H be a Hilbert space, φ : H ×H → R a bilinear, symmetric,
continuous and coercive form. Then ∀f ∈ H Í ∃!y ∈ H such that

f(x) = φ(x, y) ∀x ∈ H.

Proof. The bilinear form φ : H × H → R is a scalar product on H. Indeed, linearity is verified,
then:

• φ(x, y) = φ(y, x) true by hypothesis

• Thanks to coercivity, φ(x, x) ≥ m ëxë2 with m > 0

=⇒ φ(x, x) ≥ 0 =⇒ φ(x, x) = 0 =⇒ 0 ≥ m ëxë2 =⇒ x = 0.

The new scalar product induces a norm, which is in turn equivalent with the original norm
ëxë =

ð
(x, x). The new norm is:

ëxëφ :=
ð

φ(x, x)
Now, thanks to continuity and coercivity:

m ëxë2 ≤ ëxëφ = φ(x, x, ) ≤ c ëxë2

√
m ëxë ≤ ëxëφ ≤

√
c ëxë .

Given f : H → R linear and continuous,

|f(x)| ≤ ëfëHÍ ëxë ≤ ëfëHÍ
1√
m

ëxëφ ∀x ∈ H

which means that f is bounded aso with the new norm. This finally means that (H, ë·ëφ) is a
Hilbert space and f belongs to its dual space. We can apply Riesz-Frechèt to the new space:

∃!y ∈ H such that f(x) = φ(x, y) ∀x ∈ H.

Remark 1.2.1. We stress out the fact that these theorem is actually a generalization of Riesz-
Frechèt theorem, which is applied to scalar products that are a particular case of bilinear forms.
Indeed, if φ = (·, ·), Lax-Milgram is immediately verified.
Definition 1.2.2. Let H be a Hilbert space on the complex field C, A ∈ B(H). We define the
spectrum of A as:

σ(A) = {λ ∈ C : A − λI is not invertible}.

On the other hand we define the resolvent of A as:

ρ(A) = Cr σ(A) = {λ ∈ C : A − λI is invertible}.
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1.3 – Unbounded operators

1.3 Unbounded operators
In this section we are going to introduce operators which are not necessarily bounded (or con-
tinuous), thus we will refer to them as linear maps between Hilbert spaces with no additional
properties involved. As an example of unbounded operator we take the following from [3].
Let P be the linear subspace of CC[0,1] consisting of all polynomial functions. If A : P → P is
the linear transformation defined by

T (p) = pÍ,

where pÍ is the derivative of p, then T is not continuous.
To prove this, we need to negate the definition of boundedness.
To do this, we consider the sequence:

pn(t) = tn.

We notice that:
ëpnë = sup{|pn(t)| : t ∈ [0,1]} = 1

whereas
ëTpnë = ëpÍ

në = sup{|pÍ
n(t)| : t ∈ [0,1]} = sup{|ntn−1| : t ∈ [0,1]} = n.

Therefore there does not exist c ≥ 0 such that ëTpë ≤ c ëpë for all p ∈ P.
Now we are going to introduce very important definitions taken from [2].
Let H be a Hilbert space.

Definition 1.3.1. Let A : D(A) ⊂ H → H be a linear unbounded operator. A is said to be
monotone if

(Av, v) ≥ 0 ∀v ∈ D(A).

Moreover, A is said to be maximal monotone if R(I + A) = H which means

∀f ∈ H ∃u ∈ D(A) : u + Au = f.

Monotone operators are also referred to as "positive", because their definition is substantially
a generalization of the one of monotonically increasing functions. Indeed, taking u, v ∈ H we
have:

(A(u − v), u − v) = (Au − Av, u − v) ≥ 0.

The same applies if we consider a linear f : R → R. Here, the writing:

f(y − x)(y − x) = [f(y) − f(x)](y − x) ≥ 0 ∀x, y ∈ R

means that the function is monotonically increasing.

Theorem 1.3.1. Let A be a maximal monotone operator. Then:

(a) D(A) is dense in H

(b) A is closed

(c) for all λ > 0, (I + λA) is bijective on H, (I + λA)−1 is a bounded operator and..(I + λA)−1..
L(H) ≤ 1.

7



1 – Linear operators

Proof. (a) Let f ∈ H such that (f, v) = 0 ∀v ∈ D(A). There exists v0 ∈ D(A) such that
v0 + Av0 = f . It holds:

0 = (f, v0) = ëv0ë2 + (Av0, v0) ≥ ëv0ë2
.

Thus, v0 = 0 and therefore f = 0.

(b) We have that ∀f ∈ H there exists a unique u ∈ D(A) such that u + Au = f . Indeed, if u
is another solution, then it holds:

(u − u) + A(u − u) = 0.

Taking the scalar product with (u − u), the fact that A is monotone leads to u − u = 0.
On the other hand it holds:

ëuë ≤ ëuë2 + (Au, u) = (f, u) ≤ ëfë ëuë =⇒ ëuë ≤ ëfë

and therefore the operator f → u indicated by (I + A)−1 is linear and bounded with..(I + A)−1..
L(H) ≤ 1.

To verify that A is closed, let {un} be a sequence such that un ∈ D(A) ∀n, un −→ u and
Aun −→ f . It holds un + Aun −→ u + f therefore

un = (I + A)−1(un + Aun) −→ (I + A)−1(u + f).

Therefore u = (I + A)−1(u + f), that is u ∈ D(A) and u + Au = u + f .

(c) Suppose that there exists λ0 > 0 such that R(I + λ0A) = H. We want to prove that
∀λ > λ0

2 it holds R(I + λA) = H. Like in (b), we have that:

∀f ∈ H ∃! u ∈ D(A) : u + λ0Au = f,

and the operator f → u indicated by (I + A)−1 is bounded with
..(I + λ0A)−1

..
L(H) ≤ 1.

Let’s try to solve
u + λAu = f with λ > 0, (1.1)

which can be written as:

u = (I + λ0A)−1
5

λ0

λ
f +

3
1 − λ0

λ

4
u

6
.

Therefore if
--1 − λ0

λ

-- < 1, that is λ > λ0
2 , then (1.1) admits a solution thanks to the Banach

fixed point theorem (see appendix A). A is maximal monotone, therefore I +A is surjective.
Due to the previous passages, I + λA is surjective for λ > 1

2 , therefore by recurrence it
holds that I + λA is surjective for all λ > 0.

Definition 1.3.2. Let A be a maximal monotone operator. We set, for all λ > 0,

Jλ = (I + λA)−1

and
Aλ = 1

λ
(I − Jλ).

Jλ is the resolvent operator of A (ëJλëL(H) ≤ 1), whereas Aλ is the Yosida regularized of A.

8



1.3 – Unbounded operators

Remark 1.3.1. We notice that {Aλ}λ>0 is a family of bounded operators that approximate A
for λ → 0.

Now we will list some important properties of monotone operators and their approximants,
which will be very useful in the following chapters.

Theorem 1.3.2. Let A be a monotone operator. It holds:

(a)
Aλv = A(Jλv) ∀v ∈ H and ∀λ > 0

(b)
Aλv = Jλ(Av) ∀v ∈ D(A) and ∀λ > 0

(c)
ëAλvë ≤ ëAvë ∀v ∈ D(A) and ∀λ > 0

(d)
lim
λ→0

Jλv = v ∀v ∈ H

(e)
lim
λ→0

Aλv = Av ∀v ∈ D(A)

(f)
(Aλv, v) ≥ 0 ∀v ∈ H and ∀λ > 0

(g)
ëAλvë ≤ 1

λ
ëvë ∀v ∈ H and ∀λ > 0.

Proof. (a) It is equivalent to
v = Jλv + λA(Jλv)

and this follows from the definition of Jλ.

(b) It holds
Av = 1

λ
[(1 + λA)v − v] = 1

λ
(1 + λA)(v − Jλv)

and therefore
JλAv = 1

λ
(v − Jλv) = Aλv.

(c) It follows from the previous point, since ëJλë ≤ 1.

(d) Let v ∈ D(A), then

ë(I − Jλv)ë = ëv − Jλvë = λ ëAλvë ≤ λ ëAvë λ→0−−−→ 0.

Thus limλ→0 Jλv = v.
Now let v ∈ H and Ô > 0. Since D(A) = H, there exists v1 ∈ D(A) such that ëv − v1ë < Ô.
It holds:

ëJλv − vë ≤ ëJλv − Jλv1ë + ëJλv1 − v1ë + ëv1 − vë

9



1 – Linear operators

≤ 2 ëv − v1ë + ëJλv1 − v1ë ≤ 2Ô + ëJλv1 − v1ë

where the second term goes to 0 as λ → 0. Therefore we have

lim sup
λ→0

ëJλv − vë ≤ 2Ô ∀Ô > 0,

and finally
lim
λ→0

ëJλv − vë = 0.

(e) Thanks to (b) and (d) we have:

ëAλv − Avë = ëJλ(Av) − Avë λ→0−−−→ 0.

(f) We have:
(Aλv, v) = (Aλv, v − Jλv) + (Aλv, Jλv)

= λ ëAλvë2 + (A(Jλv), Jλv) ≥ 0.

(g) It follows from the previous point, namely:

λ ëAλvë2 ≤ (Aλv, v) ≤ ëAλvë ëvë

therefore
ëAλvë ≤ 1

λ
ëvë .

Since now we are dealing with unbounded operators, some details about the self-adjoint case
have to be clarified. In particular, we have to introduce an additional definition. Being H a
Hilbert space, we can identify H with its dual space and consider A∗ as an unbounded operator
on H.

Definition 1.3.3. Let A : D(A) ⊂ H → H a linear unbounded operator with D(A) = H. We
say that A is symmetric if

(Au, v) = (u, Av) ∀u, v ∈ D(A),

instead we say that A is self-adjoint if
A∗ = A

and this implies D(A∗) = D(A).

It is evident that if A is self-adjoint, then it is also symmetric. On the other hand, if A is
symmetric, it can happen that A /= A∗, as the following example (taken from [4]) shows.

Example 1. Let H = L2 = L2(0,1). We define operators T1, T2 and T3 as follows:

• D(T1) consists of all absolutely continuous functions f on [0,1] with derivative f Í ∈ L2,

• D(T2) = D(T1) ∩ {f : f(0) = f(1)},

• D(T3) = D(T1) ∩ {f : f(0) = f(1) = 0}.

10



1.3 – Unbounded operators

These are dense in L2. We define

Tkf = if Í ∀f ∈ D(Tk), k = 1,2,3

and claim that
T ∗

1 = T3, T ∗
2 = T2, T ∗

3 = T1.

We have that T3 ⊂ T2 ⊂ T1, therefore T2 is a self-adjoint extension of the symmetric (but
not self-adjoint) operator T3 and that the extension T1 of T2 is not symmetric. Notice that

(Tkf, g) =
Ú 1

0
(if Í)g =

Ú 1

0
f(igÍ) = (f, Tmg)

if f ∈ D(Tk), g ∈ D(Tm) and m + k = 4, since then f(1)g(1) = f(0)g(0). This means that
Tm ⊂ T ∗

k , namely:
T1 ⊂ T ∗

3 , T2 ⊂ T ∗
2 , T3 ⊂ T ∗

1 .

Now take g ∈ D(T ∗
k ) and φ = T ∗

k g. Let Φ(x) =
s x

0 φ. We have, for f ∈ D(Tk),Ú 1

0
if Íg = (Tkf, g) = (f, φ) = f(1)Φ(1) −

Ú 1

0
f ÍΦ.

When k = 1,2, D(Tk) contains nonzero constants, so the last equation implies Φ(1) = 0. When
k = 3, f(1) = 0. In each of these cases it yields:

ig − Φ ∈ R(Tk)⊥.

We have R(T1) = L2, therefore ig = Φ if k = 1, and since Φ(1) = 0 in that case, g ∈ D(T3).
Thus T ∗

1 ⊂ T3.
If k = 2,3, R(Tk) consists of all u ∈ L2 such that

s 1
0 u = 0. Therefore

R(T2) = R(T3) = Y ⊥,

where Y is the one-dimensional subspace of L2 that contains the constants.
Hence ig − Φ is constant, therefore g is absolutely continuous and gÍ ∈ L2, that is g ∈ D(T1).
Thus T ∗

3 ⊂ T2.
If k = 2, then Φ(1) = 0, therefore g(0) = g(1), which means g ∈ D(T2), thus T ∗

2 ⊂ T2 and this
completes the proof of the claim.
The following result shows that, in case the operator A is maximal monotone, then A is symmetric
if and only if A is self-adjoint.

Theorem 1.3.3. Let A be a maximal monotone and symmetric operator. Then A is self-adjoint.

Proof. Let J1 = (I + A)−1 and let’s prove that J1 is self-adjoint. Since J1 ∈ L(H), it is sufficient
to prove that

(J1u, v) = (u, J1v) ∀u, v ∈ H.

We set u1 = J1u, v1 = J1v so that

u1 + Au1 = J1u + AJ1u = J1(I + A)u = u,

v1 + Av1 = J1v + AJ1v = J1(I + A)v = v.

11



1 – Linear operators

We now take the scalar products:

(u1, v1) + (Au1, v1) = (u, v1)

(u1, v1) + (u1, Av1) = (u1, v)

and then take the difference, which thanks to the fact that A is symmetric leads to:

(u1, v) = (u, v1)

meaning that J1 is self-adjoint. Now let u ∈ D(A∗) and f = u + A∗u. Given v ∈ D(A), it holds:

(f, v) = (u + A∗u, v) = (u, v) + (A∗u, v) = (u, v) + (u, Av) = (u, v + Av).

We define w := v + Av = (I + A)v, thus v = J1w and:

(f, J1w) = (u, w) ∀w ∈ H.

Finally, since J1 is self-adjoint, we get u = J1f and therefore u ∈ D(A). This means that
D(A∗) = D(A), that is A is self-adjoint.

12



Chapter 2

Evolution problems

The following chapter will be devoted mainly to a crucial theorem when dealing with evolution
problems, and it takes advantage of the theory of operators, presented in the previous chapter.
Before that, first of all it is important to recall the main result concerning the solution of systems
of ordinary differential equations, which is hardly extendable to systems of partial differential
equations, but still remains the reference one when dealing with Cauchy (initial value) problems.
We stress out the fact that the variables are named x and t just to have a sort of "physical"
reference, in order to give a meaning to the name of "evolution problems". Obviously it could be
possible to include the t variable in a sort of n + 1 dimensional space, but this way of presenting
the equations is more intuitive.
The variable x will in some way refer to the "spatial" coordinates of a certain space Ω ⊂ Rn where
n is the dimension of the space (tipically 2 or 3) and t will refer to the time variable. Thus,
the solutions of these problems will have to respect some regularity requirements, typically with
respect to time. Hence, for example, the writing "u ∈ C([0, +∞[, H)" means that u : [0, +∞[→ H
is continuous. We’ll say that "u is continuous in t, and ∀t ≥ 0 it takes values in H". Another
example is "u ∈ L2([0, T [, H)", that means:

u : [0, T [−→ H , t −→ u(t) is measurable and
Ú T

0
ëu(t)ë2

Hdt < +∞.

2.1 The Cauchy-Lipschitz-Picard theorem
The following is a classical theorem, very useful when dealing with ordinary differential equations,
but practically useless to solve partial differential ones. It is based on an extended concept of
Lipschitzianity for applications between Banach spaces.
We recall that, given (X, dX) and (Y, dY ) metric spaces, a function f : X −→ Y is called a
Lipschitz continuous function if the distance (in Y ) between the images of any two points in X
does not exceed a certain value, quantified by the Lipschitz constant.
In symbols, this means that:

∃K > 0 : dY (f(x1), f(x2)) ≤ KdX(x1, x2) ∀x1, x2 ∈ X

From a graphical point of view it is possible to visualize very effectively this condition if we
consider f : R −→ R. In this case, the definition of Lipschitzianity involves the first derivative,
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2 – Evolution problems

stating that the latter is bounded by the Lipschitz constant; therefore, for a Lipschitz continuous
function, for all the values in the domain there exists a double cone, whose vertex lies on the
graph of the function, so that the latter always stays outside of it.

Figure 2.1: A Lipschitz continuous function ([5])

With the help of the first (and more general) definition it is possible to move to the next theorem.
Theorem 2.1.1 (Cauchy,Lipshitz,Picard). Let E be a Banach space and F : E −→ E be an
application such that

ëFu − FvëE ≤ L ëu − vëE ∀u, v ∈ E (L ≥ 0).1

Then ∀u0 ∈ E ∃u ∈ C1([0, ∞[, E) unique such that
du

dt
= Fu on [0, ∞[

u(0) = u0 (initial datum).
(2.1)

Proof. The solution of problem 2.1 is such that:

u(t) = u(0) +
Ú t

0
F (u(s))ds. (2.2)

Let k ∈ R (it will be specified later), we introduce:

X =
;

u ∈ C([0, ∞[; E) : sup
t≥0

e−kt ëu(t)ëE < ∞
<

According to its definition, space X presents some important properties, which we are going to
prove as in [6].

1Being E a Banach space, the norm of the difference between two vectors is the distance bewtween them,
induced by the norm ë.ëE .

14



2.1 – The Cauchy-Lipschitz-Picard theorem

• X is a Banach space with respect to the norm

ëuëX = sup
t≥0

e−kt ëu(t)ëE

To verify this statement, we are going to verify the definition of completeness, therefore we start
from a Cauchy sequence in X. Let {un} ⊂ X be a Cauchy sequence, which means that:

∀Ô > 0 ∃NÔ : ∀m, n > NÔ ëun − umëX < Ô.

By definition, fix t ≥ 0

∃N = NÔ,t,k : ∀m, n > NÔ,t,k ëun − umëX < Ôe−tk

which is:
sup
s≥0

e−sk ëun(s) − um(s)ëE < Ôe−tk.

By eliminating the sup symbol and taking any value of t ≥ 0, we can simplify the exponential
term and get:

ëun(t) − um(t)ëE < Ô, ∀t ≥ 0

meaning that {un(t)} is a Cauchy sequence in E, which is a Banach space. In turn, this means
that un(t) converges to a certain element in E, and we shall call it:

u(t) := lim
n→∞

un(t).

Now we have to prove that u ∈ X. First, we verify that u ∈ C([0, ∞[; E). To do this, we observe
that:

∃N1 : ∀n > N1 ëu(t) − un(t)ëE <
Ô

3
and, since {un(t0)} −→ u(t0) as well,

∃N2 : ∀n > N2 ëu(t0) − un(t0)ëE <
Ô

3

and finally, since un is continuous,

∀Ô > 0 ∃δ > 0 : ëun(t) − un(t0)ëE <
Ô

3 for |t − t0| < δ.

By taking n ≥ max{N1, N2} and |t − t0| < δ:

ëu(t) − u(t0)ëE ≤ ëu(t) − un(t)ëE + ëun(t) − un(t0)ëE + ëun(t0) − u(t0)ëE ≤ Ô.

Taking Ô > 0 large enough, we have ëu(t) − un(t)ëE < Ô and since {un} ∈ X it holds supt≥0 e−tk ëun(t)ëE ≤
∞. The latter means that:

∃M > 0 : e−tk ëun(t)ëE < M, ∀t ≥ 0

and therefore:
ëun(t)ëE < Metk ∀t ≥ 0.

Now:
ëu(t)ëE ≤ ëu(t) − un(t)ëE + ëun(t)ëE ≤ Ô + Metk < Metk ∀Ô > 0.

15



2 – Evolution problems

Thus, due to the arbitrary choice of t, it yelds:

∃M > 0 : sup
t≥0

e−tk ëu(t)ëE < M

and this means that u ∈ X. Now there’s left to show that ëun(t) − u(t)ëX −→ 0.
We restart from the Cauchy sequence in X:

∀Ô > 0 ∃NÔ > 0 : ∀m, n > NÔ ëun − umëX < Ô

therefore:
ëun(t) − um(t)ëE < Ôetk, ∀t ≥ 0.

Taking the limit for m −→ 0 and sup on the left hand side, we get finally:

ëun − uëX < Ô ∀Ô > 0

which means:
ëun − uëX −→ 0

and X is Banach with its defined norm.

• ∀u ∈ X the function
(φu)(t) = u0 +

Ú t

0
F (u(s))ds

belongs to X.

Again, to prove this statement we have to verify that both φu ∈ C([0, +∞[, E) and supt≥0 e−tk ë(φu)(t)ëE <
∞. We start from the latter, using the triangle inequality in the definition of φu:

ë(φu)(t)ëE ≤ ëu0ëE +
Ú t

0
ëF (u(s)) − F (u(0))ëE ds +

Ú t

0
ëF (u0)ëE ds

and thanks to the Lipschitzianity of F:

ë(φu)(t)ëE ≤ ëu0ëE + L

Ú t

0
ëu(s) − u0ëE ds + t ëF (u0)ëE

≤ ëu0ëE + Lt ëu0ëE + L

Ú t

0
ëu(s)ëE ds + t ëF (u0)ëE (2.3)

and this last inequality will be the reference one. We need other passages in order to obtain
some inequalities, namely:

L

Ú t

0
ëu(s)ëE ds ≤ L

Ú t

0
esk ëuëX ds ≤ L ëuëX

etk − 1
k

therefore:
e−tkL

Ú t

0
ëu(s)ëE ds ≤ L ëuëX

1 − e−tk

k
≤ L

k
ëuëX .

leading to:

L

Ú t

0
ëu(s)ëE ds ≤ L

k
ëuëX . (2.4)
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2.1 – The Cauchy-Lipschitz-Picard theorem

The second inequality is:
e−tk ëu0ëE ≤ ëu0ëE . (2.5)

Moreover, since e−tk < 1/tk, it holds:

e−tkLt ëu0ë ≤ L

k
ëu0ëE (2.6)

and
e−tkt ëF (u0)ëE ≤ 1

k
ëu0ëE . (2.7)

Finally, we multiply equation (2.3) by e−tk and substitute (2.4), (2.5), (2.6), (2.7) in it, obtaining:

e−tk ë(φu)(t)ëE ≤ ëu0ëE + L

k
ëu0ëE + L

k
ëuëX + 1

k
ëF (u0)ëE ∀t ≥ 0

which finally means exactly:
sup
t≥0

e−tk ë(φu)(t)ëE < ∞.

To prove that φu ∈ C([0, +∞[, E), we observe that t −→
s t

0 F (u(s))ds is continuous and there-
fore:

lim
t→t0

ë(φu)(t) − (φu)(t0)ëE = lim
t→t0

....Ú t

0
F (u(s))ds −

Ú t0

0
F (u(s))ds

....
E

= 0 ∀t0 ≥ 0

so we finally proved that φu ∈ X.

• φ is a Lipschitz continuous function in X:

ëφu − φvëX ≤ L

k
ëu − vëX , ∀u, v ∈ X.

We have just to write down the X norm. Let u, v ∈ X, then:

ëφu − φvëX = sup
t≥0

e−tk

....Ú t

0
(F (u(s)) − F (v(s)))ds

....
E

≤ sup
t≥0

e−tkL

Ú t

0
ëu(s) − v(s)ëE ds

≤ sup
t≥0

e−tkL

Ú t

0
esk ëu − vëX ds ≤ sup

t≥0
e−tkL ëu − vëX

etk − 1
k

and finally, as expected:
ëφu − φvëX ≤ L

k
ëu − vëX .

We are ready to conclude the proof of the theorem. From the last property of space X it is easy
to notice that if k < L, φ admits a fixed point (see appendix A), which is solution of (2.2). Thus,
the existence of a solution is proved.
About the uniqueness of the solution, let u and u be two solutions of (2.1). We define

h(t) = ëu(t) − u(t)ëE

and it holds thanks to (2.2):

h(t) =
Ú t

0
ëF (u(s)) − F (u(s))ëE ds ≤ L

Ú t

0
h(s)ds ∀t ≥ 0

therefore, using Gronwall lemma, we obtain h ≡ 0.
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2 – Evolution problems

We observe that this theorem has been much studied, and it is possible to demonstrate that
the lipschitzianity of F is in general not necessary for the existence of the solution of a Cauchy
problem, whereas it comes strongly into play when dealing with uniqueness. Various examples
of this phenomenon could be brought here, we give just a hint of what could happen in case that
condition is not respected.
For instance, consider the Cauchy problem:

dy

dt
(t) = 3

2
3
ð

y(t) in R

y(1) = 0.

The problem can be easily solved by separation of variables when t /= 0, while in that point the
field F (y) = 3

2
3
√

y does not respect the lipschitzianity condition anymore. The solutions of the
problem are (if k ≥ 1):

yk(t) =
I

0 if t < k

±
ð

(t − k)3 if t ≥ k.

This means that, once fixed the parameter k, the solution is unique on the interval [−∞, k], but
once the graph reaches point t = k, the curve branches out in infinite other solutions, in a way
similar to the bristles of a brush (indeed, this phenomenon is referred to as the "Peano’s brush",
or "Peano’s mustache").

Figure 2.2: Solutions of problem 2.1 with k ∈ N, k ≥ 1 ("Peano’s mustache").

2.2 The Hille-Yosida theorem
The next theorem, despite its quite long and technical demonstration, turns out to be a very
useful tool and allows to assess the existence and uniqueness of the solution of certain types of
evolution problems.
Theorem 2.2.1 (Hille-Yosida). Let A be a maximal monotone operator in a Hilbert space H.
Then, for every u0 ∈ D(A) there exists a unique function

u ∈ C1([0, +∞[; H) ∩ C([0, +∞[; D(A))
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2.2 – The Hille-Yosida theorem

satisfying 
du

dt
+ Au = 0 in [0, +∞[

u(0) = u0.
(2.8)

Moreover it holds

ëu(t)ë ≤ ëu0ë and

....du

dt

.... (t) = ëAu(t)ë ≤ ëAu0ë ∀t ≥ 0.

Proof. It will be presented in six steps. First of all we will discuss about the uniqueness of the
solution, then the remaining five steps will be dealing with the existence and the two inequalities.
Step 1.
Let u and u be two solutions of (2.8). Then, by taking the scalar product (in H) of the difference
between the two equations and the difference between the solutions, it yields:3

d

dt
(u − u), u − u

4
= −(A(u − u), u − u) ≤ 0

where the last inequality holds because A is maximal monotone.
It is useful to recall that, if f ∈ C1([0, +∞[, H), then:

|f |2 ∈ C1([0, +∞[,R) and d

dt
|f |2 = 2

3
df

dt
, f

4
.

Therefore:
1
2

d

dt
|u(t) − u(t)|2 = −(A(u − u), u − u) ≤ 0.

Thus, the function t → |u(t) − u(t)| is decreasing on [0, +∞[.
Since |u(0) − u(0)| = 0 because the initial datum is unique, it follows:

|u(t) − u(t)| = 0 ∀t ≥ 0.

The latter, together with the fact that the same function is decreasing, means that u(t) =
u(t) ∀t ≥ 0.
The following part of this demonstration will use the results concerning maximal monotone
operators, namely the ones about the sequence of bounded operators Aλ (Yosida approximants)
that approximate the unbounded operator A when λ → 0. We observe that, thanks to Cauchy-
Lipshitz-Picard Theorem 2.1, we know that there exists a unique solution of the problem:

duλ

dt
+ Aλuλ = 0 in [0, +∞[

uλ(0) = u0 ∈ D(A).
(2.9)

Moreover, it will be useful to recall this:

Lemma 2.2.2. Let ϕ ∈ C1([0, +∞[; H) a function satisfying

dϕ

dt
+ Aλϕ = 0 in [0, +∞[. (2.10)

Then the functions t −→ ëϕ(t)ë and t −→
... dϕ

dt (t)
... = ëAλϕ(t)ë are decreasing on [0, +∞[.
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2 – Evolution problems

Proof. We take the scalar product of (2.10) with ϕ and get:3
dϕ

dt
, ϕ

4
+ (Aλϕ, ϕ) = 0.

Thanks to theorem 1.3.2, we know that (Aλϕ, ϕ) ≥ 0, therefore

1
2

d

dt
|ϕ|2 ≤ 0

namely ||ϕ(t)|| is a decreasing function.
Finally, being Aλ a bounded operator, (2.10) gives that ϕ ∈ C∞ and

d

dt

3
dϕ

dt

4
+ Aλ

3
dϕ

dt

4
= 0.

and with the same argument as before, we get that || dϕ
dt (t)|| is a decreasing function as well.

Step 2.
Due to the previous lemma, starting from (2.9), it holds:....duλ

dt
(t)

.... = ëAλuλ(t)ë ≤ ëAu0ë ∀t ≥ 0, ∀λ > 0. (2.11)

Step 3.
We are going to prove that ∀t ≥ 0, uλ converges (uniformly in t, for λ → 0) to a limit, we shall
call it u(t), on every limited interval [0, T ]. Let λ,µ be real positive numbers. The following
relation holds:

duλ

dt
− duµ

dt
+ Aλuλ − Aµuµ = 0.

We now take the scalar product of the latter with uλ − uµ, and get:3
duλ

dt
− duµ

dt
, uλ − uµ

4
+ (Aλuλ − Aµuµ, uλ − uµ) = 0

that is:
1
2

d

dt
ëuλ − uµë2 + (Aλuλ − Aµuµ, uλ − uµ) = 0. (2.12)

Thanks to the properties of the Yosida Regularized (Aλ) and of the Resolvent (Jλ) as defined in
the previous chapter, it is possible to derive the following inequality:

(Aλuλ − Aµuµ, uλ − uµ) = (Aλuλ − Aµuµ, uλ − Jλuλ + Jλuλ − Jµuµ + Jµuµ − uµ)
= (Aλuλ − Aµuµ, λAλuλ − µAµuµ) + (A(Jλuλ − Jµuµ), Jλuλ − Jµuµ)
≥ (Aλuλ − Aµuµ, λAλuλ − µAµuµ)

namely:
(Aλuλ − Aµuµ, uλ − uµ) ≥ (Aλuλ − Aµuµ, λAλuλ − µAµuµ). (2.13)

From (2.12) and (2.13) it follows:

1
2

d

dt
ëuλ − uµë2 + (Aλuλ − Aµuµ, λAλuλ − µAµuµ) ≤ 0
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2.2 – The Hille-Yosida theorem

and expanding, due to the Cauchy-Schwarz inequality:

1
2

d

dt
ëuλ − uµë2 + λ ëAλuλë2 − λ ëAµuµë ëAλuλë − µ ëAλuλë ëAµuµë − µ ëAµuµë2 ≤ 0.

Finally we use (2.11):
1
2

d

dt
ëuλ − uµë2 ≤ 2(λ + µ) ëAu0ë2

and integrating:
ëuλ(t) − uµ(t)ë ≤

ð
(λ + µ)t ëAu0ë .

This last result shows that ∀t ≥ 0 , the sequence uλ is a Cauchy sequence. Being H a Hilbert
space by definition, it is complete and the sequence is therefore converging towards a limit, we
shall call it u(t). Taking the limit for µ −→ 0, we get:

ëuλ(t) − u(t)ë ≤ 2
√

λt ëAu0ë (2.14)

meaning that the convergence is uniform 2 in t on every limited interval [0, T ], and u ∈ C([0, +∞[, H).
Step 4.
With this step we’re going to obtain the same convergence results of step 3, but related to the
first derivative with respect to time. If u0 ∈ D(A2)3, then it is possible to prove that duλ

dt con-
verges for λ −→ 0, ∀t ≥ 0 uniformly on every bounded interval [0, T ]. Indeed, let vλ = duλ

dt so
that vλ verifies (2.8). Following the same procedure of step 3 we get:

1
2

d

dt
ëvλ − vµë2 ≤ (ëAλvλë + ëAµvµë)(λ ëAλvλë + µ ëAµvµë). (2.15)

Due to the lemma, ëvλ(t)ë is decreasing, which means:

ëAλvλë ≤ ëAλvλ(0)ë =
....Aλ

duλ

dt
(0)

.... = ëAλAλuλ(0)ë = ëAλAλu0ë , (2.16)

and analogously:
ëAµvµë ≤ ëAµvµ(0)ë = ëAµAµu0ë (2.17)

Now we use some properties that were presented in the previous chapter, namely theorem 1.3.2,
therefore since Au0 ∈ D(A) we can write:

AλAλu0 = JλAJλAu0 = JλJλAAu0 = J2
λA2u0,

therefore, since ëJλë ≤ 1,

ëAλAλu0ë ≤
..A2u0

.. , ëAµAµu0ë ≤
..A2u0

.. . (2.18)

Taking the two expressions in (2.18) an substituting in (2.15), we get:

1
2

d

dt
ëvλ − vµë2 ≤ 2(λ + µ)

..A2u0
..2

.

2With "uniform convergence" we mean the convergence in the "uniform" (or "sup") norm ëfë∞ =
sup {|f(x)| : x ∈ D(f)}

3Here the symbol A2 means A ◦ A, therefore u0 ∈ D(A2) means that both u0 and Au0 belong to D(A). The
definition is well-posed, since the range of A sill lies inside H.
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By integration, it is immediate to state that vλ(t) is converging for λ −→ 0 , ∀t ≥ 0 uniformly
in t on every bounded interval, and this is the convergence of the first derivative of u(t) that we
expected.
Step 5.
We proved that a solution of (2.8) exists with the more restrictive hypotheses of step 4, that is
u0 ∈ D(A2). The convergence results on both uλ(t) and duλ

dt guarantee that u ∈ C1([0, +∞[, H)
and duλ

dt −→ du
dt for λ −→ 0, uniformly on [0, T ]. Let’s write (2.9) in the form:

duλ

dt
(t) + A(Jλuλ(t)) = 0. (2.19)

We observe that:

ëJλuλ(t) − u(t)ë ≤ ëJλuλ(t) − Jλu(t)ë + ëJλu(t) − u(t)ë

≤ ëJλë ëuλ(t) − u(t)ë + ëJλu(t) − u(t)ë −→ 0

the latter going to 0 because of the properties of the operator Jλ as λ −→ 0, and this means
that:

Jλuλ(t) −→ u(t).

Therefore, since A is a closed operator, from (2.19) we deduce that u(t) ∈ D(A) and it holds:

du

dt
(t) + Au(t) = 0.

We know that u ∈ C1([0, +∞[; H), therefore t −→ Au(t) is continuous on [0, +∞[ (in H)
and consequently u ∈ C([0, +∞[, D(A)). We finally got a solution of (2.8) satisfying ëu(t)ë ≤
ëu0ë ∀t ≥ 0 and

du

dt
(t) ≤ ëAu0ë .

Before going on with the last step, it is necessary to prove that D(A2) is dense in D(A).

Lemma 2.2.3. D(A2) is dense in D(A).

Proof. We remark that D(A) is a normed space with the graph norm ëvë + ëAvë, therefore it
will be necessary to obtain convergence of sequences of both v and Av in D(A).
Let u0 = Jλu0, so that u0 ∈ D(A) and u0 + λAu0 = u0. This in turn means that Au0 ∈ D(A),
that is u0 ∈ D(A2).
Thanks to the properties of operators Jλ and Aλ, it holds:

Au0 = AJλu0 = Aλu0 = JλAu0

and consequently
lim
λ→0

ëu0 − u0ë = lim
λ→0

ëJλu0 − u0ë = 0

lim
λ→0

ëAu0 − u0ë = lim
λ→0

ëJλAu0 − Au0ë = 0

which proves the thesis.
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2.2 – The Hille-Yosida theorem

Step 6.
Let u0 ∈ D(A). Thanks to lemma 2.2.3 there exists a sequence (u0n) ∈ D(A2) such that
u0n −→ u and Au0 −→ Au0. From step 5 we know about the existence of a solution for the
problem: 

dun

dt
+ Aun = 0 in [0, +∞[

un(0) = u0n.
(2.20)

Moreover it holds:

ëun(t) − um(t)ë ≤ ëu0n − u0më −→ 0 for m, n −→ ∞....dun

dt
(t) − dum

dt
(t)

.... ≤ ëAu0n − Au0më −→ 0 for m, n −→ ∞

with u ∈ C1([0, +∞[, H). Taking the limit in (2.20), thanks to the fact that A is closed, it follows
that u ∈ C([0, +∞[, D(A)) and that u satisfies (2.8).

The great importance of this last result is that it allows to define an entire class of problems
according to the related operator A. In fact, let t ≥ 0 and SA(t) : D(A) −→ D(A) such that it
takes the initial datum u0 and associates to it u(t), i.e. the solution of (2.8) already obtained.
Since ëSA(t)u0ë ≤ ëu0ë, the application SA(t) can be extended by continuity and density to a
linear and continuous operator from H in itself. The following properties can be easily prooved:

• ∀t ≥ 0, SA(t) : H −→ H is a linear and continuous operator and
ëSA(t)ëL(H) ≤ 1

• I
SA(t1 + t2) = SA(t1) ◦ SA(t2) ∀t1 ≥ 0, ∀t2 ≥ 0
SA(0) = I

• limt→0 ëSA(t)u0 − u0ë = 0 ∀u0 ∈ H.

The family of operators S(t) in L(H), defined for all values of the parameter t ≥ 0 and satis-
fying the tre already mentioned properties is by definition a continuous contractions semigroup.
Conversely, it can be prooved that given a continuous contractions semigroup, there exists one
and only one maximal monotone operator A such that S(t) = SA(t) ∀t ≥ 0. Therefore, there is
a one-to-one correspondence between maximal monotone operators and continuous contractions
semigroups. This turns out to be the starting point of the theory of semigroups, since each
semigroup corresponds to a maximal monotone operator, and in turn to an evolution problem of
the type (2.8) and its solution.
In addition it is obvious that, once solved problem (2.8), it is possible to solve problems like the
following: 

du

dt
+ Au + λu = 0 in [0, +∞[, λ ∈ R

u(0) = u0

just by substituting:
v(t) = eλtu(t).

Then v(t) satisfies: 
dv

dt
+ Av = 0 in [0, +∞[

v(0) = u0.
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2.3 Hille-Yosida: regularity of the solutions
It is possible, by adding more hypotheses to the theorem, to obtain solutions which are more
regular in the variable t. Referring to the way the proof of Hille-Yosida theorem was presented,
we define by recurrence the space:

D(Ak) = {v ∈ D(Ak−1); Av ∈ D(Ak−1)}, k integer ≥ 2.

In other words, u ∈ D(Ak) means that u, Au, A2u, . . . , Ak−1u ∈ D(A).

Lemma 2.3.1. D(Ak) is a Hilbert space with respect to the scalar product:

(u, v)D(Ak) =
kØ

j=0
(Aju, Ajv),

and the corresponding norm is:

ëuëD(Ak) =
3 kØ

j=0
(Aju, Aju)

41/2
=

3 kØ
j=0

..Aju
..2

41/2

Proof. Since (u, v)D(Ak) is a finite sum of scalar products, it is a scalar product itself. Thus,
it will be sufficient to proove the completeness of the space. Let {un} ∈ D(Ak) be a Cauchy
sequence. That is, ∀Ô > 0 ∃NÔ > 0 : ∀m, n > NÔ,

ëun − umëD(Ak) < Ô

meaning that: 3 kØ
j=o

..Aj(un − um)
..2

41/2
< Ô

ëun − umë2 + ëAun − Aumë2 + · · · +
..Akun − Akum

..2
< Ô2 ∀m, n > NÔ

ëun − umë2
< Ô2

ëun − umë < Ô.

We prooved that {un} is also a Cauchy sequence in H, which is a Hilbert space and in particular
complete. Therefore, un converges to a limit, say u0, in H, as well as Aun A2un,...,Akun that
converge respectively to some limits, say u1, u2,...,uk. Since A is maximal monotone, it is also a
closed operator. The fact that {un} ⊂ D(Ak) implies that {un} ⊂ D(Aj) for j = 0, . . . , k. Now
{un} ⊂ D(A), un → u0 ∈ H, Aun → u1 ∈ H. Since A is closed, this means that u0 ∈ D(A) and
u1 = Au0. Again, {un} ⊂ D(A2) and we saw that Aun → Au0. Also, A(Aun) = A2un → u2
and since A is closed, it follows that Au0 ∈ D(A) and u1 = Au0.
Repeating this argument in an inductive way it is evident that uj = Aju0 and Aju0 ∈ D(A) for
j = 0, . . . , k. This in turn implies that u0 ∈ D(Ak) and the Cauchy sequence {un} converges to
u0 in D(Ak), hence D(Ak) is complete with the norm induced by the scalar product above.

The space already defined allows to classify the solutions of the evolution problem according
to the exponent k of the space D(Ak) to which they belong. In other words, the higher the
exponent, the more regular the solution will be in time.
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2.3 – Hille-Yosida: regularity of the solutions

Theorem 2.3.2. Let u0 ∈ D(Ak), with k ≥ 2.Then the solution of problem 2.8 satisfies:

u ∈ Ck−j([0, +∞[, D(Aj)) for j = 0,1, . . . , k.

Proof. Let’s begin with k = 2. Let H1 = D(A) be the Hilbert space equipped with the already
defined scalar product (u, v)D(A). The operator A1 : D(A1) ⊂ H1 → H1 defined asI

D(A1) = D(A2)
A1u = Au for u ∈ D(A1)

(2.21)

which is basically A, but restricted to D(A2) ⊂ D(A), is maximal monotone in H1, being A
maximal monotone.
Hence it is possible to apply Theorem 2.2.1 to A1 in the space H1, meaning that it exists a
function

u ∈ C1([0, ∞[; H1) ∩ C([0, ∞[; D(A1))

that means
u ∈ C1([0, ∞[; D(A)) ∩ C([0, ∞[; D(A2))

such that 
du

dt
+ A1u = 0 on [0, +∞[

u(0) = u0.

There is only left to prove that u ∈ C2([0, +∞[; H), being H = D(A0). We know that A is
a linear operator from H1 to H, and u ∈ C1([0, ∞[; H1), therefore thanks to linearity we get
Au ∈ C1([0, +∞[; H) and

d

dt
(Au) = A

3
du

dt

4
.

Due to equation 2.8,
du

dt
= −Au with Au ∈ C1([0, +∞[; H)

and therefore du
dt ∈ C1([0, +∞[; H), that is u ∈ C2([0, +∞[; H) and

d

dt

3
du

dt

4
+ A

3
du

dt

4
= 0 on [0, +∞[. (2.22)

Now let k ≥ 3. We will use an induction argument: let’s say the theorem is valid until order k−1
and let u0 ∈ D(Ak). We have already prooved that u ∈ C2([0, +∞[; H)∩C1([0, +∞[, D(A)) and
that (2.22) is satisfied. Let v = du

dt , then it holds:

v ∈ C1([0, +∞[; H) ∩ C([0, +∞[, D(A)),
dv

dt
+ Av = 0 on [0, +∞[

v(0) = −Au0.

Now, since v0 ∈ D(Ak−1) we know, thanks to the recurrence hypothesis, that

v ∈ Ck−1−j([0, +∞[, D(Aj)) for j = 0,1, . . . , k − 1,
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which means that if considering u, the order has to be increased by 1 because v = du
dt :

u ∈ Ck−j([0, +∞[, D(Aj)) for j = 0,1, . . . , k − 1.

The only order left to check is j = k itself, so we apply (2.3) with j = k − 1 and get:

v = du

dt
∈ C([0, +∞[; D(Ak−1))

and since by (2.8) we have that du
dt = −Au we have that

Au ∈ C([0, +∞[; D(Ak−1))

which means that
u ∈ C([0, +∞[; D(Ak))

and the theorem is proved.

2.4 The self-adjoint case
An additional condition imposed to operator A allows to obtain an existence and uniqueness
result for problem 2.8, but with less restrictive hypotheses on the initial datum. In particular,
this is the case when A is self-adjoint. We recall that, being A maximal monotone, it is sufficient
for it to be symmetric in order to be self-adjoint too (see chapter 1). This specific case is very
common when dealing with partial differential equations derived from engineering models [7].

Theorem 2.4.1. Let A be a maximal monotone and self-adjoint operator. Then, for all u0 ∈ H
it exists a unique function

u ∈ C([0, +∞[; H) ∩ C1([0, +∞[; H) ∩ C([0, +∞[; D(A))

such that 
du

dt
+ Au = 0 in ]0, +∞[

u(0) = u0

Morover, it holds:

ëu(t)ë ≤ ëu0ë and
....du

dt
(t)

.... ≤ ëAu(t)ë ≤ 1
t

ëu0ë ∀t > 0 (2.23)

As anticipated, we can notice that now u0 has not necessarily to belong to D(A), and the
conclusion is weaker than the one in 2.2.1, since here du

dt (t) might even "explode" when t −→ 0.

Proof. As concerning the uniqueness of the solution, we proceed just as we did for theorem 2.2.1.
Actually there is no difference with the previously described procedure, since the coincidence
between two solutions of the problem is given by the fact that A is monotone.
To prove the existence, we will follow two main steps. The first will use a restricted hypothesis
on u0, then the second will use the results obtained in the previous pages.
Step 1.
Let u0 ∈ D(A2) and let u be the solution of (2.8), given by Theorem 2.2.1. We already know
that J1, as defined in the previous chapter, is self-adjoint. Moreover, being the scalar product
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2.4 – The self-adjoint case

homogeneus with respect to scalars, Jλ is symmetric as well and therefore self-adjoint, because
it is a bounded operator. We claim that Aλ is self-adjoint, indeed:

(Aλu, v) =
3

1
λ

(I − Jλ)u, v

4
= 1

λ
(u, v) − 1

λ
(Jλu, v) =

3
u,

1
λ

(v − Jλv)
4

= (u, Aλv).

We now use the approximation used to prove theorem 2.2.1, namely:
duλ

dt
+ Aλuλ = 0 in [0. + ∞[

uλ(0) = u0

(2.24)

We multiply by uλ and integrate on [0, T ], getting:3
duλ

dt
, uλ

4
+ (Aλuλ, uλ) = 0

1
2 ëuλ(T )ë2 +

Ú T

0
(Aλuλ, uλ)dt = 1

2 ëu0ë2
. (2.25)

Starting again from (2.24), we multiply it by t duλ
dt (t) and integrate on [0, T ], thus:

t

3
duλ

dt
,

duλ

dt

4
+ (Aλuλ, t

duλ

dt
) = 0

Ú T

0

....duλ

dt
(t)

....2
tdt +

Ú T

0

3
Aλuλ(t), duλ

dt
(t)

4
tdt = 0. (2.26)

Morevover, since A∗
λ = Aλ, it holds:

d

dt
(Aλuλ, uλ) =

3
Aλ

duλ

dt
, uλ

4
+

3
Aλuλ,

duλ

dt

4
= 2

3
Aλuλ,

duλ

dt

4
.

Therefore we take the second term of (2.26):Ú T

0
(Aλuλ(t), duλ

dt
(t))tdt = 1

2

Ú T

0

d

dt
(Aλuλ, uλ)tdt

and integrate by parts:

1
2

Ú T

0

d

dt
(Aλuλ, uλ)tdt = 1

2(Aλuλ(T ), uλ(T ))T − 1
2

Ú T

0
(Aλuλ, uλ)dt. (2.27)

Thanks to lemma 2.2.2 we know that t → duλ
dt (t) is decreasing, therefore:Ú T

0

....duλ

dt
(t)

....2
tdt ≥

....duλ

dt
(T )

....2
T 2

2 (2.28)

Now we take (2.28) and (2.27) and substitute in (2.26), getting:....duλ

dt
(T )

....2
T 2

2 + 1
2(Aλuλ(T ), uλ(T ))T − 1

2

Ú T

0
(Aλuλ, uλ)dt ≤ 0
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thus: Ú T

0
(Aλuλ, uλ)dt ≥

....duλ

dt
(T )

....2
T 2 + (Aλuλ(T ), uλ(T ))T

and substituting this last into (2.25):

1
2 ëuλ(T )ë2 +

....duλ

dt
(T )

....2
T 2 + (Aλuλ(T ), uλ(T ))T ≤ 1

2 ëu0ë2

we simplify the non negative terms, which yields to:....duλ

dt
(T )

....2
≤ 1

T 2 ëu0ë2

which means that: ....duλ

dt
(T )

.... ≤ 1
T

ëu0ë ∀T > 0. (2.29)

Now, in step 5 of the proof of theorem 2.2.1 we got that:

duλ

dt
−→ du

dt
as λ −→ 0

therefore (2.23) is prooved.
Step 2.
Now we extend the result to the hypotheses of the theorem. Therefore, let u0 ∈ H and {uo} in
D(A) be a sequence, such that u0n −→ u0. Let un be the solution of the problem:

dun

dt
+ Aun = 0 in [0, +∞[

un(0) = u0n

Thanks to theorem 2.2.1 and to the result of the previous step, it holds:

ëun(t) − um(t)ë ≤ ëu0n − u0më ∀m, n ∀t ≥ 0

and ....dun

dt
(t) − dum

dt
(t)

.... ≤ 1
t

ëu0n − u0më ∀m, n t > 0.

Thus, both un(t) and dun
dt (t) uniformly converge to the limits u(t) and du

dt (t), the former on
[0, +∞[ and the latter on [δ, +∞[ with δ > 0. Therefore:

u ∈ C([0, +∞[; H) ∩ C1(]0, +∞[; H).

Being A maximal monotone, it is also closed. This means that u(t) ∈ D(A) and verifies:

du

dt
+ Au = 0 in ]0, +∞[

which prooves the theorem.
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Chapter 3

Some applications

In this chapter we are going to use all the existence and uniqueness results of the previous
chapters in order to solve some of the most relevant and famous evolution problems.
As already anticipated, a large amount of phenomena in nature can be modelled with partial
differential equations, and the first part of this chapter will be devoted to the deduction, starting
from some basic assumptions, of equations that come from physics or engineering. Then, each
problem will be reformulated in order to be able to apply in a correct way the Hille-Yosida
theorem. This will be enough to state whether there is a solution for a problem or not and, if it
exists, whether it is the only one.
In this chapter we will extensively make use of integration by parts and Green formulas in Rn

(see appendix B for a short summary).

3.1 Partial differential equations arising from physics

3.1.1 Diffusion equation: heat conduction

When dealing with thermodynamics, the main quantities which come into play are basically
scalar fields like temperature, pressure and density of the considered substance. It is known
from physics that heat is a form of energy which can be exchanged among gases, fluids and
rigid bodies. The mechanisms of this exchange are generally classified into three categories:
conduction, convection and radiation. We are now interested in deriving a mathematical model
able to describe the conduction of heat in a rigid body, and we are going to follow the procedure
described in [8].
Partial differential equations that govern fluid mechanics, thermodynamics, mechanics of the
continua and other fields of physics are generally descending from balance laws. This is true
also for the heat equation, which basically comes out from the balance of energy of a system.
Therefore, we’re going to separately define each quantity that plays a role, and then put them
togethyer to derive the model.
Specifically, we will use the conservation law that states that the rate of variation of internal
energy in an arbitrary unit volume V is equal to the net heat flux through the boundaries, plus
the contribution of an external heat source (if present). To this aim, first of all let r be the
rate of heat per unit mass that comes from outside the rigid body, and let’s say the body has a
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3 – Some applications

constant density ρ. If e = e(þx, t)1 is the internal energy per unit mass, the total energy in V is:Ú
V

ρedþx

and, assuming the differentiation under the integral sign to be allowed, its rate of variation is:

d

dt

Ú
V

ρedþx =
Ú

V

ρ
∂e

∂t
dþx.

Now let’s introduce the heat flux vector þq. It contains information about the direction of the
flux and its intensity (in terms of speed) per unit surface it passes through. Therefore, if dσ is
the unit element of the boundary ∂V with (external) unit normal vector n̂, the entering heat
flux through ∂V is given by:

−
Ú

∂V

þqn̂dσ = −
Ú

V

divþqdþx

and the equality is given by the Gauss theorem (or divergence theorem, see appendix B). The
contribution of the external source is instead:Ú

V

ρrdþx.

Thus, we are now able to write down the full energy balance law, which is:Ú
V

ρ
∂e

∂t
= −

Ú
V

divþqdþx +
Ú

V

ρrdþx.

Since this equation has to be satisfied for any arbitrary volume V , the integrand function has to
be null, and this yields:

ρ
∂e

∂t
= −divþq + ρr (3.1)

which is the fundamental law of heat conduction. It is necessary, however, to define both þq and
e in a more explicit way, so as to derive a single scalar equation in the unknown T , which is
the temperature of the rigid body. This goal is usually reached with the help of constitutive
equations, in this case meaning the Fourier’s law and the proportionality of the internal energy
of the system with respect to its absolute temperature. Fourier’s law states that:

þq = −k∇T

where k > 0 is the thermal conductivity of the body, and the minus sign represents the fact that
the heat flows in the opposite direction of the temperature gradients.
Instead, the second constitutive law is:

e = cvT

where cv is the specific heat at constant volume of the material. Both cv and k in most of
the applications can be considered to be constant, since their variations are usually negligible.
Finally, with these additions, (3.1) becomes:

∂T

∂t
= k

cvρ
∆T + r

cv
(3.2)

1Here þx refers to a generic point in space, therefore it is a vector of Rn, with n = 1,2 or 3.
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3.1 – Partial differential equations arising from physics

which is the diffusion equations with the coefficients D = k/(cvρ) and f = r/cv. We observe
that, if we define A = −∆, the equation in this form is the non homogeneous version of equation
(2.8), the latter being valid once no external heat sources are considered.2

3.1.2 Wave equation: oscillations of a string
Another common example of evolution problem is given by the wave equation, generally coming
out when dealing with mechanics or electromagnetism. The usual deduction of the equation
(found in [8]), in the mono-dimensional case, concerns the study of the transversal vibrations of
a string, the latter satisfying the following requirements:

• Oscillations are small, in a way that these are much smaller than the string length

• Vibration is considered to be vertical

• The displacement of a single point can be considered to be depending on time and on the
position along the string

• The string is perfectly flexible, meaning that it does not resist bending

• Friction is negligible.

Then, to derive the model it is necessary again to refer to balance laws. In particular, now we will
consider the conservation3 of mass and the balance of linear momentum. We define ρ0 = ρ0(x)
and ρ = ρ(x, t) as the linear mass density respectively at rest and at time t. Then we consider
the string element ∆s corresponding to the interval [x, x + ∆x] (figure 3.1). The conservation of

Figure 3.1: String segment with tensions at the extrema([8]).

mass states that:
ρ0(x)∆x = ρ(x, t)∆s (3.3)

2This means that the system is isolated only from a thermal point of view. In case also no external mass
sources were present, then the system is said to be isolated in its very physical meaning.

3It is "conservation" rather than "balance" of mass, because the latter does not present source terms in its
balance law.
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whereas to derive the balance of momentum it is necessary to balance the forces. For the
horizontal component, since the motion is assumed to be vertical, it holds:

τ(x + ∆x, t) cos α(x + ∆x, t) − τ(x, t) cos α(x, t) = 0.

We now divide by ∆x and take the limit:

lim
∆x→0

5
τ(x + ∆x, t) cos α(x + ∆x, t) − τ(x, t) cos α(x, t)

∆x

6
= 0

which is:
∂

∂x
[τ(x, t) cos α(x, t)] = 0

meaning that:
τ(x, t) cos α(x, t) = τ0(t) ≥ 0. (3.4)

To make the full balance, we need to take into account all the forces which play a role in the
system. To do this, we consider f(x, t) as the resultant, per unit mass, of all external forces,
being them either concentrated loads or distributed loads. Therefore, on a single string element
acts a force equal to:

ρ(x, t)f(x, t)∆s = ρ0(x)f(x, t)∆x

As concerning the vertical component of the tension, it holds:

τv(x, t) = τ(x, t) sin α(x, t) = τ0 tan α(x, t) = τ0(x, t)ux(x, t)

being ux the tangent, point by point, of angle α(x, t). Therefore, the vertical component of the
tension is:

τv(x + ∆x, t) − τv(x, t) = τ0(t)[ux(x + ∆x, t) − ux(x, t)].
Now it is sufficient to write down Newton’s second law, being utt the acceleration of the points
of the string. Therefore, by considering all the forces:

ρ0(x)∆xutt = τ0(t)[ux(x + ∆x, t) − ux(x, t)] + ρ0(x)f(x, t)∆x

which is:
utt = τ0(t)

ρ0(x)

5
ux(x + ∆x, t) − ux(x, t)

∆x

6
+ f(x, t)

and for ∆x −→ 0 we get:
utt − c2uxx = f (3.5)

which is the mono-dimensional wave equation, where:

c(x, t) =

ó
τ0(t)
ρ0(x)

is the wave propagation speed. In particular, the latter is constant when both τ0(t) and ρ0(x)
are constant, meaning that the string is perfectly elastic and homogeneous.
Again, if no external forces are present (f = 0) we are back to the homogeneous evolution
problem, which can be approached with theorem 2.2.1 once defined the operator A = −c2 ∂2

∂x2
4.

4In Rn the equation assumes the same form, except for the operator, which becomes A = −c2∆
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3.1 – Partial differential equations arising from physics

3.1.3 Wave equation: free axial vibrations of rectilinear rods
When it comes to applied mechanics and vibration mechanics, a lot of systems are modeled in a
discrete way, i.e. they are treated as they were constituted by a finite number of points or rigid
bodies. In the majority of cases this approach is more than sufficient to describe the behaviour
of mechanisms or structures, even if it is evidently a simplification.
A different approach consists in modeling the structures as distributed parameters systems, and
this leads to partial differential equations. Here we present an interesting example of equation
describing the axial vibrations of a rod5, as it is deduced in [7].
Let’s consider a constant cross-section rod clamped to an end, made by linear, elastic and isotropic
material and let’s suppose each section behaves as a rigid body. We are going to describe the
axial displacement of each cross-section as a function u of the axial coordinate x and of time t.
According to figure 3.2, section S1 starting from position x will move towards position x + u,
while section S2 will move from x + dx to x + dx + u + ∂u

∂x dx.

Figure 3.2: The clamped rod subjected to axial vibrations ([7])

Now let µ be the mass per unit length (linear mass density) of the rod. We balance the forces
6 acting on a rod element, namely the two axial reactions due to the motion plus the inertia,
the latter being proportional to the linear mass density and to the second derivative of the
displacement with respect to time (Newton’s law, figure 3.3).
Thus, we get with the dynamic balance:

N + ∂N

∂x
dx − N − µdx

∂2u

∂t2 = 0

which is:
∂N

∂x
= µ

∂2u

∂t2 .

5Typically, in mechanics, "rods", "shafts", and "beams" are classified according to the way they are loaded. So,
respectively, they undergo axial, torsional and flexural vibrations.

6This approach to derive the equations of motion of a system is called "Newtonian approach", and it is opposite
to the Lagrangian, or "energetic" one, which has its origins in the calculus of variations ([9]).
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Figure 3.3: External forces on a single rod element due to axial vibrations. ([7])

Now, we want an equation in the unknown u, therefore we need, as in the previously described
heat equation, constitutive equations expressing N in terms of u or its derivatives. In particular,
being:

Ô = ∂u

∂x

we hark back to Hooke’s law, which states that7:

σ = EÔ

where E is the Young modulus of the considered material, which describes its behaviour in the
linear range, and this in turn leads to:

N = AE
∂u

∂x
.

Taking the first derivative, supposing both A and E are constant:

∂N

∂x
= AE

∂2u

∂x2

which gives, if substituted in the balance equation:

AE
∂2u

∂x2 = µ
∂2u

∂t2 . (3.6)

The deduced one is already a wave equation, but defining ρ = µ/a and c =
ð

E/ρ we get:

∂2u

∂t2 = c2 ∂2u

∂x2 (3.7)

where c is the speed at which the waves are propagated along the rod.
We observe that the heat equation, as it was deduced, represents a diffusion phenomenon, thus
only the first derivative of the unknown quantity with respect to time appears. Instead, when
dealing with mechanics, due to Newton’s law the derivatives of the quantity with respect to time
are present up to the second order and the wave equation is obtained. This is just an example
of how the mathematical description of a phenomenon is strongly affected by its physical origin.

7Here σ = N/A is the axial force per unit area, also called "normal stress".
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These two examples of partial differential equations (heat and wave equation) cover a large variety
of physical models. It is worthy to outline that, in case stationary8 processes are considered, the
derivatives with respect to time can be neglected from the equations. Thus, starting from (3.5),
we get:

∆u = f

which is the Poisson equation, that is the stationary part of the problem. This equation is
obtained both from the heat equation and from the wave one, and in case, respectively, no
external heat source or external load are considered, we obtain the Laplace equation:

∆u = 0.

These equations, with suitable boundary and initial conditions, have been deeply studied and
there are many results concerning existence and uniqueness of the solutions under certain as-
sumptions.
Besides the physical interpretation of the problems, partial differential equations are usually
classified into elliptic, parabolic and hyperbolic ones. The heat equation is the classical example
of parabolic problem, whereas the wave equation is a hyperbolic one. To examine in depth the
mathematical aspects of this classification, see [10].

3.2 Heat equation
In this section, we are going to apply mainly the Hille-Yosida theorem in order to get results
about existence, uniqueness and regularity of the solutions of the heat equation. First of all, it
is necessary to define the domain, which is a bounded subset Ω ⊂ Rn, being Γ its boundary.
The idea is to impose equation (3.2) on this domain defining the unknown function u as its
temperature point by point, and imposing boundary conditions which can be:

• Dirichlet boundary conditions: the value of the unknown u is imposed on Γ, meaning that
we suppose to know the exact value of the temperature of the body on its boundaries. This
could be the case in which the body is in contact with a fixed temperature heat source, or
thermostat.

• Neumann boundary conditions: here, instead of the value of u, it is imposed the value of
the normal derivative of u on Γ, which represents the heat flux exiting from Ω.

• Robin boundary conditions: this is the mixed case, i.e. we impose a value of the temperature
at the boundary plus a certain amount of heat flux.

All these b.c. (boundary conditions) can be homogeneous or not, depending on whether the
assumed value for u (or ∂u

∂n ) is null or not.
Then, since we are interested in an evolution problem, we need to define an interval for the
variable t, which is ]0, +∞[. Therefore, the global domain will be a cilynder9 Q, defined as:

Q = Ω×]0, +∞[

8For instance, in fluid dynamics a stationary process could be a flux in a pipe, where the velocity profiles do
not change in time.

9We stress out the fact that if Ω ⊂ R2, Q is effectively a 3-dimensional cylinder, whereas if n > 2, it is a
n + 1-dimensional one, but the meaning of the equation remains unchanged.
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and with lateral boundary:
Σ = Γ×]0, +∞[.

Finally initial conditions are imposed, meaning that we are supposed to know the initial value
of the temperature of the body.
We are going to use also the following:

Lemma 3.2.1. For all f ∈ L2(Ω), there exists a unique weak solution u ∈ H1(Ω) of the equation

−∆u + u = f in Ω

with any of the previously presented boundary conditions.

Proof. To proof this lemma it is sufficient to apply Lax-Milgram Theorem 1.2.2 defining suitable
Hilbert spaces and bilinear forms. In particular, for the problem:I

−∆u + u = f in Ω
u = 0 on Γ = ∂Ω

(3.8)

we use H = H1
0 (Ω). Given ϕ ∈ H1

0 (Ω), we multiply (3.8) by ϕ and integrate on Ω, obtaining:Ú
Ω

∇u∇ϕ +
Ú

Ω
uϕ =

Ú
Ω

fϕ ∀ϕ ∈ H1
0 (Ω).

The latter always has a unique solution, given by Lax-Milgram theorem with the bilinear form:

a(u, ϕ) =
Ú

Ω
∇u∇ϕ +

Ú
Ω

uϕ

and the linear form:
Φ(ϕ) =

Ú
Ω

fϕ.

Instead, when considering the problem:
−∆u + u = f in Ω
∂u

∂n
= 0 on Γ

it is sufficient to consider the Hilbert space H1(Ω) and the same forms as before.

Another result concerning regularity of problem (3.8) is the following:

Theorem 3.2.2 (Regularity for Dirichlet problem). Let Ω be an open set, of class C2, with
bounded Γ, or Ω = RN

+
10. Let f ∈ L2(Ω) and let u ∈ H1

0 (Ω) satisfying:Ú
Ω

∇u∇ϕ +
Ú

Ω
uϕ =

Ú
Ω

fϕ ∀ϕ ∈ H1
0 (Ω).

Then u ∈ H2(Ω) and ∃C = C(Ω) such that ëuëH2 ≤ C ëfëL2 . Moreover, if Ω is Cm+2 and if
f ∈ Hm(Ω), then

u ∈ Hm+2(Ω) with ëuëHm+2(Ω) ≤ c ëfëHm(Ω)

in particular, if m > N/2, then u ∈ C2(Ω). Finally, if Ω is C∞ and if f ∈ C∞(Ω), then
u ∈ C∞(Ω)

10Here with Rn
+ we mean Rn−1 × [0, +∞[, where the last dimension could reasonably represent time.
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3.2 – Heat equation

The theorem states that a certain regularity of the solution is achieved when Dirichlet bound-
ary conditions are considered. Instead of proving it, we just give a short and simple example in
the monodimensional case of problem (3.8).
Let Ω = [0,1], f ∈ L2(0,1) and u ∈ H1

0 (0,1).Thus, the weak formulation of (3.8) is:

u ∈ H1
0 (0,1) :

Ú 1

0
uÍvÍ +

Ú 1

0
uv =

Ú 1

0
fv ∀v ∈ H1

0 (0,1).

Since we are considering the monodimensional case, the solution u is also continuous on (0,1)
and the boundary conditions are satisfied in a classical way. It is possible to write the same
problem in the following form:

u ∈ H1
0 (0,1) :

Ú 1

0
uÍvÍ =

Ú 1

0
(f − u)v ∀v ∈ H1

0 (0,1)

Being u ∈ H1
0 (0,1), its first derivative is still in L2(0,1), meaning that it can be derived (in

general as a distribution), therefore the last equation says that:

−(uÍÍ, v)L2(0,1) = (f − u, v)L2(0,1) ∀v ∈ D(0,1)11

and this leads to:
uÍÍ = u − f in DÍ(0,1)

where the right hand side belongs to L2(0,1). This in turn implies that the second derivative of
u is in L2(0,1), therefore u ∈ H2(0,1) ⊂ C1([0,1]). Moreover, if f ∈ C([0,1]), then u ∈ C2([0,1])
and it is also a classical solution. For a complete proof of the theorem, including the continuous
dependence of the solution from data, see [2].
Now it comes to the resolution of the heat equation by means of the tools we presented.

Theorem 3.2.3. Let u0 ∈ L2(Ω). Then there exists a unique function u(x, t) : Ω× [0, +∞[−→ R
satisfying: 

∂u

∂t
− ∆u = 0 in Ω

u = 0 on Γ
u(x,0) = u0(x) in Ω

(3.9)

and
u ∈ C([0, +∞[, L2(Ω)) ∩ C(]0, +∞[; H2(Ω) ∩ H1

0 (Ω)) (3.10)

u ∈ C1(]0, +∞[; L2(Ω)). (3.11)

Moreover
u ∈ C∞(Ω × [Ô, +∞[) ∀Ô > 0.

Finally u ∈ L2((0, +∞), H1
0 (Ω)) and it holds:

1
2 ëu(t)ë2

L2(Ω) +
Ú T

0
ë∇u(t)ë2

L2(Ω) dt = 1
2 ëu0ë2

L2(Ω) ∀T > 0. (3.12)

11We recall that D(Ω) = {φ ∈ C∞(Ω) : suppφ = K ⊂ Ω compact}, whereas DÍ(Ω) is its dual space, i.e. the set
of all linear and bounded functionals on D(Ω).
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Proof. In order to apply Hille-Yosida Theorem, we consider the Hilbert space L2(Ω), and define
the unbounded operator A : D(A) ⊂ H −→ H with D(A) = H2(Ω) ∩ H1

0 (Ω) and Au = −∆u.
Now, it is sufficient to verify the hypotheses of the theorem.

• A is monotone:
(Au, u)L2(Ω) =

Ú
Ω

(−∆u)u =
Ú

Ω
|∇u|2 ≥ 0

• A is maximal monotone. Indeed, thanks to lemma 3.2.1,

∀f ∈ L2(Ω), ∃! u ∈ H2(Ω) ∩ H1
0 (Ω) solution of

u − ∆u = f

or, in other words, R(A + I) = H = L2(Ω).

• A is self-adjoint. Since it is maximal monotone, it is sufficient to verify its simmetry, that
is:

(Au, v)L2(Ω) =
Ú

Ω
(−∆u)v =

Ú
Ω

∇u∇v

and
(u, Av)L2(Ω) =

Ú
Ω

u(−∆v) =
Ú

Ω
∇u∇v

From theorem 3.2.2 it comes that D(Al) ⊂ H2l(Ω) with continuous embedding, specifically:

D(Al) = {u ∈ H2l(Ω) : u = ∆u = . . . = ∆l−1u = 0 on Γ}.

Thanks to theorem 2.4.1 we know that

u ∈ Ck(]0, +∞[, D(Al)) ∀k, ∀l

therefore
u ∈ Ck(]0, +∞[, H2l(Ω)) ∀k, ∀l

and finally this means that:

u ∈ Ck(]0, +∞[, Ck(Ω)) ∀k, ∀l

where the last equation comes from the Sobolev embedding theorems (see [2]).
To prove 3.12, we consider the function

ϕ(t) = 1
2 ëu(t)ë2

L2(Ω)

which, thanks to (3.11) is C1 on ]0, +∞[ and:

ϕÍ(t) =
3

u(t), du

dt
(t)

4
L2(Ω)

= (u, ∆u)L2(Ω) = −
Ú

Ω
|∇u|2 = − ë∇u(t)ë2

L2(Ω) .

Letting 0 < Ô < T < ∞ it holds:

ϕ(T ) − ϕ(Ô) =
Ú T

Ô

ϕÍ(t)dt = −
Ú T

Ô

ë∇u(t)ë2
L2(Ω) dt.

The last expression becomes (3.12) as Ô −→ 0, so that ϕ(Ô) −→ 1
2 ëu0ë2

L2(Ω).
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3.2 – Heat equation

We remark that the heat equation has a strong regularizing effect, i.e.:

u ∈ C∞(Ω × [Ô, +∞[) ∀Ô > 0,

even if u0 is only an L2 function.
Unlike in the previous chapter, as a consequence of additional hypotheses on the initial datum
u0, the solution becomes more regular only in a neighbourhood of t = 0, whereas in t = 0 it
can still be discontinuous. To show these properties, we consider three different cases, each one
respecting the hypotheses of the Hille-Yosida theorem.

Theorem 3.2.4. Let u0 ∈ H1
0 (Ω), then the solution of (3.9) satisfies

u ∈ C([0, +∞[; H1
0 (Ω)) ∩ L2((0, +∞); H2(Ω))

and
∂u

∂t
∈ L2((0, +∞); L2(Ω)).

Moreover it holds Ú T

0

....∂u

∂t
(t)

....2

L2(Ω)
dt + 1

2 ë∇u(T )ë2
L2(Ω) = 1

2 ë∇u0ë2
L2(Ω) .

Proof. In this case the Hilbert space we consider is H1 = H1
0 (Ω) with the scalar product:

(u, v)H1 =
Ú

Ω
∇u∇v +

Ú
Ω

uv.

The unbouded operator is A1 : D(A1) ⊂ H1 −→ H1 defined asI
D(A1) = {u ∈ H3(Ω) ∩ H1

0 (Ω) : ∆u ∈ H1
0 (Ω)}

A1u = −∆u.

Let’s verify the properties of operator A1:

• A1 is monotone:
(A1u, u)H1 =

Ú
Ω

∇(−∆u)∇u +
Ú

Ω
(−∆u)u

=
Ú

Ω
∆u∆u +

Ú
Ω

|∇u|2 =
Ú

Ω
|∆u|2 +

Ú
Ω

|∇u|2 ≥ 0

• A1 is maximal monotone: thanks to lemma 3.2.1, ∀f ∈ H1(Ω) it exists a unique u ∈
H3(Ω) ∩ H1

0 (Ω) solution of u − ∆u = f . If f ∈ H1
0 (Ω), then

∆u ∈ H1
0 (Ω)

therefore
u ∈ D(A1).

• A1 is symmetric and therefore self-adjoint:

(u, A1v)H1 =
Ú

Ω
∇u∇(−∆v) +

Ú
Ω

u(−∆v) =
Ú

Ω
∆u∆v +

Ú
Ω

∇u∇v

(A1u, v)H1 =
Ú

Ω
∇(−∆u)∇v +

Ú
(−∆u)v =

Ú
Ω

∆v∆u +
Ú

Ω
∇u∇v.
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Then, thanks to theorem 2.4.1, when u0 ∈ H1
0 (Ω) we have that u ∈ C([0, +∞[, H1

0 (Ω)). Again,
to prove Theorem 3.2.4 we consider the function

ϕ(t) = 1
2 ë∇u(t)ë2

L2(Ω)

which is C∞ on ]0, ∞[ and satisfies:

ϕÍ(t) =
3

∇u(t), ∇du

dt
(t)

4
L2(Ω)

=
3

− ∆u(t), du

dt
(t)

4
L2(Ω)

= −
....du

dt
(t)

....2

L2(Ω)

the last passage being justified by the heat equation itself. When 0 < Ô < T < ∞, it holds:

ϕ(T ) − ϕ(Ô) = −
Ú T

Ô

....du

dt
(t)

....2

L2(Ω)
dt

that is:
ϕ(T ) − ϕ(Ô) +

Ú T

Ô

....du

dt
(t)

....2

L2(Ω)
dt = 0.

As before, it is sufficient to send Ô −→ 0.

Theorem 3.2.5. Let u0 ∈ H2(Ω) ∩ H1
0 (Ω), then it holds

u ∈ C([0, +∞[, H2(Ω) ∩ L2(Ω)) ∩ L2((0, +∞), H3(Ω))

and
∂u

∂t
∈ L2((0, +∞), H1(Ω)).

Proof. We now consider the Hilbert space H2 = H2(Ω) ∩ H1
0 (Ω) with the scalar product

(u, v)H2 = (∆u, ∆v)L2(Ω) + (u, v)L2(Ω).

The unbouded operator is A2 : D(A2) ⊂ H2 −→ H2 defined as:I
D(A2) = {u ∈ H4(Ω) : u ∈ H1

0 (Ω) and ∆u ∈ H1
0 (Ω)}

A2u = −∆u

which is maximal monotone and self adjoint in H2.
We can apply theorem 2.4.1 to A2 in H2.
Now we consider the function:

ϕ(t) = 1
2 ë∆u(t)ë2

L2(Ω)

which is C∞ on ]0, ∞[ and it holds:

ϕÍ(t) =
3

∆u(t), ∆du

dt
(t)

4
L2(Ω)

= (∆u(t), ∆2u(t))L2(Ω) = − ë∇∆u(t)ë2
L2(Ω) .

Given 0 < Ô < T < ∞, we integrate and get:

1
2 ë∆u(T )ë2

L2(Ω) − 1
2 ë∆u(Ô)ë2

L2(Ω) = −
Ú T

Ô

ë∇∆u(t)ë2
L2(Ω) dt

that is:
1
2 ë∆u(T )ë2

L2(Ω) − 1
2 ë∆u(Ô)ë2

L2(Ω) +
Ú T

Ô

ë∇∆u(t)ë2
L2(Ω) dt = 0.

Considering the limit for Ô −→ 0, it turns out that u ∈ L2(0, ∞, H3(Ω)) and, thanks to the heat
equation itself, du

dt ∈ L2((0, +∞), H1(Ω)).
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3.3 – Wave equation

3.3 Wave equation
This section is devoted to the solution of the wave equation with Ω ⊂ Rn, which is a generalization
of the ones previously deduced starting from physical considerations. Again, the Hille-Yosida
theorem turns out to be very effective when dealing with this kind of problems.
Let Ω ⊂ Rn be an open set and let Γ be its boundary. Like in the previous section, we define:

Q = Ω×]0, ∞[

and
Σ = Γ×]0, ∞[.

Now we are ready to state and proof the following:

Theorem 3.3.1. Let u0 ∈ H2(Ω) ∩ H1
0 (Ω) and v0 ∈ H1

0 (Ω). Then there exists a unique solution
of the problem 

∂2u

∂t2 − ∆u = 0 in Q

u = 0 on Γ
u(x,0) = u0(x) in Ω
∂u

∂t
(x,0) = v0(x) in Ω

(3.13)

with

u ∈ C([0, ∞[; H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, ∞[; H1

0 (Ω)) ∩ C2([0, ∞[; L2(Ω)).

Moreover it holds ∀t ≥ 0....∂u

∂t
(t)

....2

L2(Ω)
+ ë∇u(t)ë2

L2(Ω) = ëv0ë2
L2(Ω) + ë∇u0ë2

L2(Ω) . (3.14)

We observe that (3.14) represents the conservation of mechanical energy if, for example, the
unknown u(x, t) represents the position of a massive particle.

Proof. To proof this theorem we need first of all to bring back the problem to a first order one,
in order to be able to properly apply the Hille-Yosida theory. To do this, we rewrite (3.13) in
the following way: 

v = ∂u

∂t
in Q

∂v

∂t
− ∆u = 0 in Q

(3.15)

and defining U =
3

u
v

4
the problem becomes:

dU

dt
+ AU = 0

with
AU =

3
0 −I

−∆ 0

4
U =

3
0 −I

−∆ 0

4 3
u
v

4
=

3
−v

Deltau

4
. (3.16)
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3 – Some applications

Now we consider the Hilbert space H = H1
0 (Ω) × L2(Ω) equipped with the scalar product

(U1, U2)H =
Ú

Ω
∇u1∇u2 +

Ú
Ω

u1u2 +
Ú

Ω
v1v2

where we considered
U1 =

3
u1
v1

4
, U2 =

3
u2
v2

4
with u1, u2 ∈ H1

0 (Ω) and v1, v2 ∈ L2(Ω) so that U1, U2 ∈ H. The unbounded operator is defined
like in (3.16), and its domain is:

D(A) = (H2(Ω) ∩ H1
0 (Ω)) ∩ H1

0 (Ω)

Now we verify that the operator A + I is maximal monotone.

• A + I is monotone. Indeed, given U =
3

u
v

4
∈ D(A):

(AU, U)H + (U, U)H = −
Ú

Ω
∇v∇u −

Ú
Ω

uv +
Ú

Ω
(−∆u)v +

Ú
Ω

u2 +
Ú

Ω
|∇u|2 +

Ú
Ω

v2

The first term cancels out with the third one, due to the second Green’s identity, thus:

−
Ú

Ω
uv +

Ú
Ω

u2 +
Ú

Ω
v2 +

Ú
Ω

|∇u|2 ≥ 0.

The inequality is immediately verified by evaluating the discriminant of the quadratic
equation:

−ab + a2 + b2 + c ≥ 0 , with c ≥ 0.

• A + I is maximal monotone. It is sufficient to prove that A + 2I is surjective. Given
F =

3
f
g

4
∈ H, the system that has to be considered is:

I
−v + 2u = f in Ω
−∆u + 2v = g in Ω

with U =
3

u
v

4
∈ D(A), i.e. u ∈ H2(Ω) ∩ H1

0 (Ω) and v ∈ H1
0 (Ω). We multiply by 2 the

first equation, then sum with the second one and get:

−∆u + 4u = 2f + g.

The latter, due to lemma 3.2.1, has a unique solution u. Then v is obtained by difference:
v = 2u − f .

Now we can apply Hille-Yosida theorem, and therefore we can state that the problem:
dU

dt
+ AU = 0 in [0, +∞[

U(0) = U0

(3.17)
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3.4 – Coupled sound and heat flow

has the unique solution

U ∈ C1([0, +∞[, H) ∩ C([0, +∞[, D(A)).

To prove the conservation of energy, we multiply the wave equation by ∂u
∂t and integrate on Ω.

We get: Ú
Ω

∂2u

∂t2
∂u

∂t
dx = 1

2
∂

∂t

Ú
Ω

....∂u

∂t
(x, t)

....2

H

dx

and Ú
Ω

(−∆u)∂u

∂t
dx =

Ú
Ω

∇u
∂

∂t
(∇u)dx = 1

2
∂

∂t

Ú
Ω

|∇u|2dx.

Finally, integrating on [0, t], we get (3.14).

3.4 Coupled sound and heat flow
In this section we are going to make use of the Hille-Yosida Theorem when dealing with equa-
tions deriving from fluid-dynamics. In particular, when considering infinitesimal motions of a
compressible fluid, energy can be transfered not only thanks to the motion of the fluid itself, but
also due to thermal conduction. The system we are going to consider comes out from the lin-
earized equations for conservation of mass, momentum and energy of the fluid, i.e. the linearized
Navier-Stokes equations.
Let Ω ⊂ Rn be a fixed domain, with Γ = ∂Ω bounded and smooth. The linearized equations, as
formulated in [11] are: 

∂w

∂t
= cdivþu

∂u

∂t
= c∇w − c∇e

∂e

∂t
= σ∆e − (γ − 1)c∇ · þu

where c is the isothermal sound speed, γ > 1 is the ratio of specific heats and σ > 0 is the
thermal conductivity. We assume e = w = 0 on Γ, ∀t ≥ 0. By taking the divergence of the
second equation, like in [6], we get a system composed by two equations only. If we consider a
more general problem and we add proper initial conditions we get:

∂2w

∂t2 = c2∆w − c2∆e + m2w in Ω × (0, ∞),

∂e

∂t
= σ∆e − (γ − 1)∂w

∂t
in Ω × (0, ∞),

e = w = 0 on Γ × [0, ∞),

w(x,0) = w0(x), ∂w

∂t
(x,0) = v0(x), e(x,0) = e0(x) on Ω

(3.18)

with σ > 0, γ > 1, c > 0 and m ∈ R.
Now we can apply the Hille-Yosida Theorem, like in [12]. First, we will state the following

Theorem 3.4.1 (Existence and uniqueness). Suppose w0, e0 ∈ H2(Ω)∩H1
0 (Ω) and v0 ∈ H1

0 (Ω).
Then there exists a unique solution (w, e) of (3.18) satisfying:

w ∈ C([0, ∞); H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, ∞); H1

0 (Ω)) ∩ C2([0, ∞); L2(Ω)),
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e ∈ C([0, ∞); H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, ∞); H1

0 (Ω)) ∩ C2([0, ∞); L2(Ω)).

Furthermore, for some α > 0 the following estimates hold:

ëw(t)ë2
H1(Ω) + 1

c2 ëv(t)ë2
L2(Ω) + 1

γ − 1 ëe(t)ë2
H1(Ω)

≤ e2αt

3
ëw0ë2

H1(Ω) + 1
c2 ëv0ë2

L2(Ω) + 1
γ − 1 ëe0ë2

H1(Ω)

4
∀t ≥ 0,

(3.19)

ëv(t)ë2
H1(Ω) + 1

c2

..c2∆w(t) + m2w(t) − c2∆e(t))
..2

L2(Ω)

+ 1
γ − 1 ë(γ − 1)v(t) − σ∆e(t)ë2

H1(Ω)

≤ e2αt

3
ëv0ë2

H1(Ω) + 1
c2

..c2∆w0 + m2w0 − c2∆e0
..2

L2(Ω)

+ 1
γ − 1 ë(γ − 1)v0 + σ∆e0ë2

H1(Ω)

4
∀t ≥ 0.

(3.20)

Proof. To prove the theorem, we have to write the system as a system of first order equations,
so as to able to identify a suitable operator A, that is:

∂w

∂t
= v

∂v

∂t
= c2∆w + m2w − c2∆e

∂e

∂t
= σ∆e − (γ − 1)v.

(3.21)

We now define a new variable:

U =

w
v
e


thanks to which we can write the system above as:

dU

dt
+ AU = 0 on (0, +∞)

U(0) = U0

(3.22)

where the operator A : D(A) ⊂ H −→ H is defined as follows:

A =

 0 −I 0
−(c2∆ + m2I) 0 c2∆

0 (γ − 1)I −σ∆


with

D(A) = (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) × (H2(Ω) ∩ H1
0 (Ω))

and
H = H1

0 (Ω) × L2(Ω) × H1
0 (Ω).
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3.4 – Coupled sound and heat flow

The space H is a Hilbert space with scalar product: if Ui =

wi

vi

ei

 then we get

(U1, U2) =
Ú

Ω
∇w1 · ∇w2 +

Ú
Ω

w1w2 + 1
c2

Ú
Ω

v1v2 + 1
γ − 1

Ú
Ω

∇e1 · ∇e2 + 1
γ − 1

Ú
Ω

e1e2

= (w1, w2)H1(Ω) + 1
c2 (v1, v2)L2(Ω) + 1

γ − 1(e1, e2)H1(Ω)

and induced norm:

ëUë2
H = ëwë2

H1(Ω) + 1
c2 ëvë2

L2(Ω) + 1
γ − 1 ëeë2

H1(Ω) .

Now that the space is correctly defined, it is sufficient to verify the hypotheses of the Hille-Yosida
Theorem in order to show the existence and uniqueness of problem (3.22), i.e. of (3.18).

• A + αI is a monotone operator for any positive constant

α > max
;

|m|,
3

1
2 + m2

2c2

4
, c2

3
1
2 + m2

2c2

4
,

γ − 1
2

<
.

Indeed, we have:

(AU, U) =
Ú

Ω
∇(−v) · ∇w +

Ú
Ω

−vw + 1
c2

Ú
Ω

(−c2∆w − m2w + c2∆e)v

+ 1
γ − 1

Ú
Ω

∇((γ − 1)v − σ∆e) · ∇e + 1
γ − 1

Ú
Ω

((γ − 1)v − σ∆e)e

=
Ú

Ω
v∆w −

Ú
Ω

vw + 1
c2

Ú
Ω

(−c2∆w − m2w + c2∆e)v

− 1
γ − 1

Ú
Ω

((γ − 1)v − σ∆e)∆e + 1
γ − 1

Ú
Ω

((γ − 1)v − σ∆e)e

= −
3

1 + m2

c2

4 Ú
Ω

vw + σ

γ − 1

Ú
Ω

|∆e|2 +
Ú

Ω
ve + σ

γ − 1

Ú
Ω

e∆e

= −
3

1 + m2

c2

4 Ú
Ω

vw + σ

γ − 1

Ú
Ω

|∆e|2 +
Ú

Ω
ve + σ

γ − 1

Ú
Ω

|∇e|2

≥ −
3

1 + m2

c2

4 Ú
Ω

vw +
Ú

Ω
ve.

and since
vw ≤ |v||w| ≤ v2 + w2

2 and ve ≥ −|v||e| ≥ −v2 + e2

2
we get:

(AU, U) ≥ −
3

1
2 + m2

2c2

4 Ú
Ω

(v2 + w2) − 1
2

Ú
Ω

(v2 + e2)

= −
3

1 + m2

2c2

4 Ú
Ω

v2 −
3

1
2 + m2

2c2

4 Ú
Ω

w2 − 1
2

Ú
Ω

e2.

Since now
α > max

;
|m|,

3
1
2 + m2

2c2

4
, c2

3
1
2 + m2

2c2

4
,

γ − 1
2

<
,
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we get:

((A + αI)U, U) ≥ −
3

1 + m2

2c2

4 Ú
Ω

v2 −
3

1
2 + m2

2c2

4 Ú
Ω

w2 − 1
2

Ú
Ω

e2

+α

3 Ú
Ω

|∇w|2 +
Ú

Ω
w2 + 1

c2

Ú
Ω

v2 + 1
γ − 1

Ú
Ω

|∇e|2 + 1
γ − 1

Ú
Ω

e2
4

=
5
α −

3
1
2 + m2

2c2

46 Ú
Ω

w2 +
5

α

c2 −
3

1 + m2

2c2

46 Ú
Ω

v2 +
5

α

γ − 1 − 1
2

6 Ú
Ω

e2 ≥ 0

and therefore the first property of A is prooved.

• For a positive constant β > |m|, R(A + βI) = H, i.e.

∀ F ∈ H ∃ U ∈ D(A) : (A + βI)U = F.

As a proof, we take a generic F =

f
g
h

 and search for U =

w
v
e

 ∈ D(A) such that:


−v + βw = f

−c2∆w − m2w + c2∆e + βv = g

(γ − 1)v − σ∆e + βe = h.

We state v = βw − f , obtaining:
−∆w +

3
β2 − m2

c2

4
w + ∆e = βf

c2 + g

c2

−∆e + β

σ
e + β(γ − 1)

σ
w = γ − 1

σ
f + h

σ
.

(3.23)

We now want to make use of lemma 3.2.1, therefore we try to express 3.23 in the form
−∆φ + kφ = p, where φ is a linear combination of w and e. Then, thanks to the lemma,
we have a unique solution of the system and the property of A is proved.
We set

γ1 = β2 − m2

c2 , γ2 = β

σ
, γ3 = β(γ − 1)

σ
, f1 = β

c2 f + g

c2 , f2 = γ − 1
σ

f + h

σ

and (3.23) becomes: I
−∆w + γ1w + ∆e = f1

−∆e + γ2e + γ3w = f2.
(3.24)

We sum the second equation with the first multiplied by a and it yields:

− ∆(aw + (1 − a)e) + [(aγ1 + γ3)w + γ2e] = af1 + f2. (3.25)

We search now for two positive constants a and k such that:

φ = aw + (1 − a)e and kφ = (aγ1 + γ3)w + γ2e.
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Actually these constants exists, and are given by:

a1 = −(γ2 + γ3 − γ1) +
ð

(γ2 + γ3 − γ1)2 + 4γ1γ3

2γ1

a2 = −(γ2 + γ3 − γ1) −
ð

(γ2 + γ3 − γ1)2 + 4γ1γ3

2γ1

k1 = a1γ1 + γ3

a1

k2 = a2γ1 + γ3

a2

(for the detailed derivation, see [6]).
Therefore, thanks to Lemma 3.2.1, equations

−∆φ1 + k1φ1 = a1f1 + f2

−∆φ2 + k2φ2 = a2f1 + f2

have unique solutions. In addition, thanks to (3.25), also a1w+(1−a1)e and a2w+(1−a2)e
satisfy those equations, and due to uniqueness it holds:

φ1 = a1w + (1 − a1)e

φ2 = a2w + (1 − a2)e

leading to:

w = (1 − a2)φ1 − (1 − a1)φ2

(1 − a2)a1 − (1 − a1)a2

e = a2φ1 − a1φ2

(1 − a1)a2 − (1 − a2)a1
.

(3.26)

Thus, w, e ∈ H2(Ω)∩H1
0 (Ω) and v = βw−f so that U =

w
v
e

 ∈ D(A) with (A+βI)U = F .

Thanks to the previous considerations we are now able to define the problem:
dV

dt
+ A1v = 0 on [0, +∞),

V (0) = U(0) ∈ D(A1) = D(A)
(3.27)

where A1 = A + αI.
If the constant α respects the above conditions that make operator A1 maximal monotone, then
we can apply Hille-Yosida Theorem and state that (3.27) has a unique solution

V ∈ C1([0, +∞); H) ∩ C([0, +∞); D(A)).

To derive the estimates (3.19) and (3.20) , we need to recall what was proved during the proof
of Theorem 2.2.1 in chapter 2, namely:
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Remark 3.4.1. If w satisfies
dw

dt
+ Aλw = 0

than t −→ |w(t)| is non-increasing, and moreover it holds:

d

dt

3
dw

dt

4
+ Aλ

3
dw

dt

4
= 0

d

dt

3
dw

dt
+ αw

4
+ Aλ

3
dw

dt
+ αw

4
= 0

with t −→ | dw
dt (t) + αw(t)| non-increasing as well.

If we follow the proof of Theorem 2.2.1, we get:

ë−Au(t) + αu(t)ë ≤ ë−Au0 + αu0ë

and thanks to the observation:
ëV (t)ë ≤ ëU0ë (3.28)

and
ë−A1V (t) + αV (t)ë ≤ ë−A1U0 + αU0ë

ëAV (t)ë ≤ ëAU0ë . (3.29)

We now take U(t) = eαtV (t), getting:

dU

dt
(t) = eαt

5
dV

dt
(t) + αV (t)

6
= eαt[−AV (t)]

= −AU(t)

which finally means that U(t) = eαtV (t) is the unique solution of the problem:
dU

dt
+ AU = 0 on [0, +∞),

U(0) = U0.

Finally, from 3.28 and 3.29 we get:

ëU(t)ë2 = e2αt ëV (t)ë2 ≤ e2αt ëU0ë2

ëAU(t)ë2 = e2αt ëAV (t)ë2 ≤ e2αt ëAU0ë2

which are (3.19) and (3.20) respectively.
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Chapter 4

Recent studies

This chapter will be devoted to the presentation of a new kind of proof of existence and uniqueness
of solutions for more general non-homogeneous Cauchy problems, together with new temporal
regularity results. The following is a recent study, found in [1], and requires only the fundamental
properties of the Yosida approximants, without involving neither Hille-Yosida Theorem nor the
semigroup theory (see [13]).
The main tools these results are based on are a Banach space X and a linear operator A : D(A) ⊂
X → X. We write A ∈ HY (M, ω) and say that A is a "Hille-Yosida operator" if there exist
M, ω ∈ R such that if λ > ω then (λ−A)−1 ∈ L(X) and ∀n ∈ N it holds ë(λ − ω)n(λ − A)−në ≤
M (see [14]).
With these assumptions, the following Cauchy problem has been much studied:I

uÍ(t) = Au(t) + f(t), t ∈ [0, T ]
u(0) = u0

(4.1)

(for a more detailed discussion, see the introduction of [1]).
First some new types of solutions are introduced, then the existence and uniqueness theorem is
presented, together with the consequence on other types of solutions

4.1 Different types of solutions
The following definitions are reported from [1] and are meant just to give the basis for the next
section. The first one was introduced in [15].

Definition 4.1.1 (Integral solution). Let f ∈ L1(0, T ; X) and u0 ∈ X. A function u ∈
C(0, T ; X) is called and integral solution of (4.1) if

s t

0 u(s)ds ∈ D(A),t ∈ [0, T ] and

u(t) = u0 + A

Ú t

0
u(s)ds +

Ú t

0
f(s)ds, t ∈ [0, T ]. (4.2)

Notice that, as a consequence, we deduce u(0) = u0.

By considering the limit of the solutions of problems approximating (4.1), other solutions are
defined, called Friedrichs solutions in [16],which in [17] are connected to a functional interpreta-
tion of (4.1).
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Definition 4.1.2 (Lp-solution). Let f ∈ Lp(0, t; X) and u0 ∈ X. A function u ∈ C(0, T ; X) is
called an Lp-solution of (4.1) if there exists {uk} such that

uk ∈ W 1,p(0, T ; X) ∩ Lp(0, T ; D(A)), k ∈ N, (4.3)

lim
k→∞

ëuÍ
k − Auk − fëLp(0,t;X) = 0, (4.4)

lim
k→∞

ëuk − uëLp(0,t;X) = 0, (4.5)

lim
k→∞

ëuk(0) − u0ë = 0. (4.6)

Remark 4.1.1. We stress out the fact that an Lp-solution is actually a continuous function
which is not a solution of (4.1), but is the limit of the solutions of the approximated problems in
Lp norm.

Definition 4.1.3 (C-solution). Let f ∈ C(0, t; X) and u0 ∈ X. A function u ∈ C(0, T ; X) is
called an C-solution of (4.1) if there exists {uk} such that

uk ∈ C1(0, T ; X) ∩ C(0, T ; D(A)), k ∈ N, (4.7)

lim
k→∞

ëuÍ
k − Auk − fëC(0,t;X) = 0, (4.8)

lim
k→∞

ëuk − uëC(0,t;X) = 0, (4.9)

lim
k→∞

ëuk(0) − u0ë = 0. (4.10)

We deduce u(0) = u0.

Definition 4.1.4 (Strict solution in C). Let f : [0, T ] → X and u0 ∈ X. A function u ∈
C1(0, T ; X) ∩ C(0, T ; D(A)) is called a strict solution in C of (4.1) if (4.1) holds for every
t ∈ [0, T ] and u(0) = u0. If such a solution exists then f ∈ C(0, T ; X) and u0 ∈ D(A).

Definition 4.1.5 (Strict solution in Lp). Let f : [0, T ] → X and u0 ∈ X. A function u ∈
W 1,p(0, T ; X) ∩ Lp(0, T ; D(A)) is called a strict solution in Lp of (4.1) if (4.1) holds for every
t ∈]0, T [ a.e. and u(0) = u0. If such a solution exists then f ∈ Lp(0, T ; X).

It is possible to deduce, from the previous definitions, that the more restrictive is the strict
C solution, followed in turn by the C-solution, the strict Lpsolution and the Lp-solution, being
the latter the weakest in terms of integrability conditions. In particular, it is possible to prove
(see [sinestrari]) that a solution of each type is an integral solution, and an integral solution is
Lp or C-solution if f ∈ Lp(0, T ; X) or f ∈ C(0, T ; X).
To proceed further we need also another lemma, concerning a correspondence between integral
and strict solutions.

Lemma 4.1.1. Let f ∈ L1(0, T ; X) and u0 ∈ D(A). If u is an integral solution of problem (4.1)
then v(t) :=

s t

0 u(s)ds, t ∈ [0, T ] is a strict solution in C of the problemvÍ(t) = Av(t) + u0 +
Ú t

0
f(s)ds, t ∈ [0, T ]

v(0) = 0.

Conversely if v is a strict solution in C of problem (4.1.1) then u := vÍ is an integral solution of
problem (4.1).
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4.2 Uniqueness and temporal regularity
Referring to [15sinestrari], we now list some properties of the Yosida approximants of a Hille-
Yosida operator A : D(A) ⊂ X → X of type (M, ω), and these will be useful to deduce a
uniqueness theorem for the solutions of (4.1).

Theorem 4.2.1. Given A ∈ HY (M, ω) the following properties hold:

(a) limλ→∞ λ(λ − A)−1x = x if x ∈ D(A).

(b) Setting for n > ω, An := nA(n − A)−1 we have limn→∞ Anx = Ax if x ∈ D(A) and
Ax ∈ D(A).

(c)
..eAnt

.. ≤ Me
nωt
n−ω for t ≥ 0 and n > ω and

..eAnt
.. ≤ Me2|ω|t for t ≥ 0 and n > 2ω.

(d) eAntx ∈ D(A) for n > ω, t ≥ 0 and x ∈ X.

(e) Given λ > ω there exists nλ ∈ N such that nλ > ω and (λ − An)−1 ∈ L(X) for n > nλ. In
addition limn→∞

..(λ − An)−1 − (λ − A)−1
.. = 0.

(f) There exists T (t)x := limn→∞ eAntx uniformly for x ∈ K a compact set of D(A) and
t ∈ [0, T ].

(g) Given λ > ω, we have T (t)(λ − A)−1x = limn→∞ eAnt(λ − An)−1x uniformly for x ∈ H a
compact set of X and t ∈ [0, T ].

The next lemma will be the intermediate step necessary to get the uniqueness result.

Lemma 4.2.2. If u ∈ W 1,1(0, T ; X) and is such that u(t) ∈ D(A) for t ∈]0, T [ a.e. and

uÍ(t) = Au(t), for a.e. t ∈]0, T [, u(0) = 0 (4.11)

then u(t) = 0.

To prove it, we are going to follow [1].

Proof. Fix n > ω, t ∈]0, T ] and define φ : [0, t] → X as φ(s) = eAn(t−s)u(s), 0 ≤ s ≤ t.
We have φ ∈ W 1,1(0, t; X) and for a.e. t ∈]0, T [, thanks to (4.11), it holds:

φÍ(s) = −AneAn(t−s)u(s) + eAn(t−s)uÍ(s) = eAn(t−s)(A − An)u(s).

Moreover, since:

A − An = A − nA(n − A)−1 = −A[−I + n(n − A)−1] = −A(n − A)−1A

we get:
φÍ(s) = −eAn(t−s)A(n − A)−1Au(s)

hence
u(t) = φ(t) =

Ú t

0
φÍ(s)ds = −

Ú t

0
eAn(t−s)A(n − A)−1Au(s)ds.

We now take λ ∈ ρ(A), so that (λ − A)−1 is well defined, and n > 2ω. Thus, we get:

..(λ − A)−1u(t)
.. =

....Ú t

0
eAn(t−s)(λ − A)−1A(n − A)−1Au(s)ds

....
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=
....Ú t

0
eAn(t−s)[λ(λ − A)−1 − I](n − A)−1uÍ(s)ds

....
≤ Me2|ω|t ..λ(λ − A)−1 − I

.. M

n − ω
ëuÍëL1(0,T ;X)

n→∞−−−−→ 0.

Therefore, since λ ∈ ρ(A), u(t) = 0 ∀t ∈ [0, T ].

Now it comes to the uniqueness result:

Theorem 4.2.3. A solution of each type of problem (4.1) is unique when it exists.

Proof. We stated that a solution of each type is an integral solution, therefore it is sufficient to
prove its uniqueness. If u ∈ C(0, T ; X) satisfies (4.2) with u0 = 0 and f(t) ≡ 0 then φ(t) :=s t

0 u(s)ds, t ∈ [0, T ] is a strict solution in C of (4.11) and so φ ≡ 0, hence u ≡ 0.

The next theorem is the main result of [sinestrari] and it is about existence of a strict solution
in C of problem (4.1), together with its temporal regularity. The proof follows an approximation
procedure which is a generalization of the Hille-Yosida Theorem, and here it will be reported as
in [sinestrari].

Theorem 4.2.4. Given u0 ∈ D(A) and f ∈ W 1,1(0, T ; X) such that

u1 := Au0 + f(0) ∈ D(A) (4.12)

there exists a unique u strict solution in C of problem (4.1) and for t ∈ [0, T ] we have

ëu(t)ë ≤ Meωt

3
ëu0ë +

Ú t

0
e−ωs ëf(s)ë ds

4
, (4.13)

ëuÍ(t)ë ≤ Meωt

3
ëu1ë +

Ú t

0
e−ωs ëf Í(s)ë ds

4
, (4.14)

Proof. First of all, suppose f ∈ C2(0, T ; X). We fix λ > ω and for n > nλ we define

u0n := (λ − An)−1(λ − A)u0 = (λ − An)−1(λu0 − u1 + f(0)). (4.15)

We know that An ∈ L(X), therefore the problem

uÍ
n(t) = Anun(t) + f(t), t ∈ [0, T ]; un(0) = u0n (4.16)

has the unique solution

un(t) = eAntu0n +
Ú t

0
eAnsf(t − s)ds, t ∈ [0, T ]. (4.17)

We want to prove that {un} converges in C1(0, T ; X) to a solution of (4.1) verifying (4.13) and
(4.14).
It surely holds:

un(t) = u0n +
Ú t

0
uÍ

n(s)ds, t ∈ [0, T ]

and in addition we have, thanks to 4.2.1:

ëu0n − u0ë =
..(λ − An)−1(λ − A)u0 − u0

.. =
..[(λ − An)−1(λ − A) − I]u0

..
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≤
..(λ − An)−1(λ − A) − I

.. ëu0ë ≤ ë(λ − A)ë
..(λ − An)−1 − (λ − A)−1.. ëu0ë ,

therefore
lim

n→∞
u0n = u0.

Thus, thanks to the last two considerations, it will be sufficient to prove that {uÍ
n} converges in

C(0, T ; X).
We put (4.17) in (4.16) getting:

uÍ
n(t) = eAntAnu0n +

Ú t

0
AneAnsf(t − s)ds + f(t). (4.18)

We now consider the integral term and integrate by parts two times, obtaining:Ú t

0
AneAnsf(t − s)ds = eAntf(0) − f(t) +

Ú t

0
e(An−λ)seλsf Í(t − s)ds

= eAntf(0) − f(t) − eAnt(λ − An)−1f Í(0)

+(λ − An)−1f Í(t) +
Ú t

0
eAns(λ − An)−1[λf Í(t − s) − f ÍÍ(t − s)]ds,

therefore:

uÍ
n(t) = eAnt(Anu0n + f(0)) − eAnt(λ − An)−1f Í(0) + (λ − An)−1f Í(t)

+
Ú t

0
eAns(λ − An)−1[λf Í(t − s) − f ÍÍ(t − s)]ds.

(4.19)

We have:
Anu0n + f(0) = An(λ − An)−1(λ − A)u0 + f(0)
= −(λ − A)u0 + λ(λ − An)−1(λ − A)u0 + f(0)

= −λu0 + u1 + λ(λ − An)−1(λ − A)u0

= [λ(λ − An)−1(λ − A) − λ]u0 + u1

= λ[(λ − An)−1(λ − A) − I]u0 + u1

= λ(λ − A)[(λ − An)−1 − (λ − A)−1]u0 + u1,

and therefore, thanks to 4.2.1:
lim

n→∞
Anu0n + f(0) = u1.

From Theorem 4.2.1 (points (c),(e),(f)), we get:

lim
n→∞

eAnt(Anu0n + f(0)) = lim
n→∞

(Anu0n + f(0) − u1) + lim
n→∞

eAntu1 = T (t)u1,

lim
n→∞

eAnt(λ − An)−1f Í(0) = lim
n→∞

eAnt[(λ − An)−1 − (λ − A)−1]f Í(0)

+ lim
n→∞

eAnt(λ − A)−1f Í(0)

= T (t)(λ − A)−1f Í(0)
uniformly for t ∈ [0, T ]. Finally we have:

lim
n→∞

uÍ
n(t) = T (t)u1 − T (t)(λ − A)−1f Í(0) + (λ − A)−1f Í(t)

+
Ú t

0
T (s)(λ − A)−1[λf Í(t − s) − f ÍÍ(t − s)]ds
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meaning that {un} converges in C1(0, T ; X) to a function u. Still, it has to be proved that u is
a strict solution of problem (4.1).
We know that u(t) = limn→∞ un(t) and uÍ(t) = limn→∞ uÍ

n(t) = limn→∞ Anun(t) + f(t) uni-
formly for t ∈ [0, T ]. Therefore, given λ > ω:

lim
n→∞

(λ − An)un(t) = λu(t) − uÍ(t) + f(t). (4.20)

If n > nλ, it holds: ..un(t) + (λ − A)−1[uÍ(t) − λu(t) − f(t)]
..

≤
..(λ − An)−1.. ë(λ − An)un(t) + uÍ(t) − λu(t) − f(t)ë

+
..−(λ − An)−1 + (λ − A)−1.. ëuÍ(t) − λu(t) − f(t)ë .

and this means that, by taking the limit for n −→ ∞:

u(t) = −(λ − A)−1[uÍ(t) − λu(t) − f(t)].

Applying λ − A we deduce uÍ(t) = Au(t) + f(t) and since u(0) = limn→∞ un(0) = u0 this finally
means that u is a strict solution in C of problem (4.1).
Now, to get the estimates, we take (4.17) with n > ω, and thanks to 4.2.1 (c) we have:

ëun(t)ë ≤ M

3
e
ωn
n−ω ëu0në +

Ú t

0
e
ωn
n−ω ëf(t − s)ë ds

4
which gives (4.13) for n −→ ∞. If we, instead, take (4.18) and integrate by parts:

uÍ
n(t) = eAnt

3
Anu0n + f(0) +

Ú t

0
eAnsf Í(t − s)ds

4
and again taking the limit we get (4.14).
Now suppose f ∈ W 1,1(0, T ; X) and let {gn} ⊂ C1(0, T ; X) be a sequence approximating f Í,
that is:

lim
n−→∞

ëgn − f ÍëL1(0,T ;X) = 0.

Given n ∈ N, t ∈ [0, T ], we define:

fn(t) := f(0) +
Ú t

0
gn(s)ds.

We have that f ∈ C2(0, T ; X) and hold both the limits:

lim
n→∞

ëfn − fëC(0,T ;X) = 0 , lim
n→∞

ëf Í
n − f ÍëL1(0,T ;X) = 0. (4.21)

Since by hypothesis Au0 + fn(0) = u1 ∈ D(A), proceeding as the first part of the proof we can
deduce the existence of un strict solution in C of the problemI

uÍ
n(t) = Aun(t) + fn(t) t ∈ [0, T ]

un(0) = u0.
(4.22)

In addition, thanks to the temporal regularity inequalities, given m, n ∈ N:

ëuÍ
n(t) − um(t)ë ≤ Me|ω|t ëf Í

n − f Í
mëL1(0,T ;X)
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hence, thanks to (4.21), {uÍ
n} converges in C(0, T ; X).

Moreover, since un(0) = u0, n ∈ N it is possible to deduce the existence of u ∈ C1(0, T ; X) such
that u = limn→∞ un in C1(0, T ; X).
Since (4.22) implies limn→∞ Aun(t) = uÍ(t) − f(t) and A is closed, this means that u(t) ∈ D(A)
and Au(t) = uÍ(t) − f(t). Finally, given that u(0) = limn→∞ un(0) = u0, u is a strict solution in
C of problem (4.1).
Again, since {un} converges to u in C1(0, T ; X) and limn→∞ Anu0 + fn(0) = limn→∞ uÍ

n(0) =
Au0 + f(0) = u1, the same estimates for the solution u of (4.1) can be obtained by applying
(4.13) and (4.14) to (4.22).

4.3 Lp, C and integral solutions
Here we will report mainly three theorems concerning existence of other types of solutions,
which come as a consequence of Theorem 4.2.4. Essentially the idea is to use 4.2.4 to solve
approximations of the problems, and then to take the limit for n −→ ∞. All these results are
found in [1].
Theorem 4.3.1. Given u0 ∈ D(A) and f ∈ Lp(0, T ; X) there exists a unique Lp-solution u of
problem (4.1) and

ëu(t)ë ≤ Meωt

3
ëu0ë +

Ú t

0
e−ωs ëf(s)ë ds

4
, t ∈ [0, T ]. (4.23)

Proof. We define
u0n := n(n − A)−1u0, n ∈ N.

It holds u0n ∈ D(A), Au0n ∈ D(A) and, thanks to 4.2.1 (a),

lim
n→∞

u0n = u0. (4.24)

Moreover, we consider {fn} ⊆ C1(0, T ; X) such that

lim
n→∞

ëfn − fëLp(0,T ;X) = 0 (4.25)

Thanks to Theorem 4.2.4, there exists un strict solution in C of problemI
uÍ

n(t) = Aun(t) + fn(t), t ∈ [0, T ]
un(0) = u0n.

(4.26)

Taking m, n, ∈ N, t ∈ [0, T ] it holds the inequality:

ëun(t) − um(t)ë ≤ Me|ω|t
3

ëu0n − u0më +
Ú t

0
e−ωs ëfn(s) − fm(s)ë ds

4
(4.27)

therefore {un} converges in C(0, T ; X) to a function u ∈ C(0, T ; X). Additionally it holds, due
to (4.24) and (4.25):

lim
n→∞

ëuÍ
n − Aun − fëLp(0,T ;X) = lim

n→∞
ëfn − fëLp(0,T ;X) = 0.

lim
n→∞

ëun(0) − u0ë = lim
n→∞

ëu0n − u0ë = 0

and the latter completes the set of equalities which make u a Lp-solution of problem (4.1).
Estimate (4.23) is a consequence of the corresponding estimate applied to the approximated
problems.
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Theorem 4.3.2. Given u0 ∈ D(A) and f ∈ C(0, T ; X) there exists a unique C-solution u of
problem (4.1) and

ëu(t)ë ≤ Meωt

3
ëu0ë +

Ú t

0
e−ωs ëf(s)ë ds

4
, t ∈ [0, T ]. (4.28)

Proof. We fix λ ∈ ρ(A) and, for n > ω, define

u0n := n(n − A)−1[u0 − (λ − A)−1f(0)] + (λ − A)−1f(0).

Since
Au0n = −n[u0 − (λ − A)−1f(0)]

−n2(n − A)−1[u0 − (λ − A)−1f(0)]
−f(0) + λ(λ − A)−1f(0)

this means that u0n ∈ D(A), Au0n + f(0) ∈ D(A) and

lim
n→∞

u0n = u0. (4.29)

Moreover, if {gn} ⊆ C1(0, T ; X) is such that limn→∞ ëgn − fëC(0,T ;X) = 0 then setting

fn(t) := gn(t) − gn(0) + f(0), n ∈ N, t ∈ [0, T ]

we have {fn} ⊆ C1(0, T ; X), fn(0) = f(0), Au0n + fn(0) ∈ D(A) and

lim
n→∞

ëfn − fëC(0,T ;X) = 0. (4.30)

Thanks to Theorem 4.2.4 there exists a unique un strict solution in C of problemI
uÍ

n(t) = Aun(t) + fn(t), t ∈ [0, T ]
un(0) = u0n

(4.31)

and given m, n ∈ N it holds:

ëun(t) − um(t)ë ≤ Me|ω|t
3

ëu0n − u0më +
Ú t

0
e−ωs ëfn(s) − fm(s)ë ds

4
therefore {un} converges in C(0, T ; X) to a function u ∈ C(0, T ; X).
Finally, thanks to (4.29) and (4.30):

lim
n→∞

ëuÍ
n − Aun − fëC(0,T ;X) = lim

n→∞
ëfn − fëC(0,T ;X) = 0

lim
n→∞

ëun(0) − u0ë = lim
n→∞

ëu0n − u0ë = 0

which means that u is a C-solution of problem (4.1). Again, (4.28) is a consequence of the
estimate applied to each approximated problem.

Theorem 4.3.3. If u0 ∈ D(A) and f ∈ L1(0, T ; X) then problem (4.1) has a unique integral
solution u verifying estimate (4.23). In addition, if f ∈ Lp(0, T ; X) or f ∈ C(0, T ; X) then u is
an Lp-solution or a C-solution.
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4.3 – Lp, C and integral solutions

Proof. Thanks to Theorem 4.3.1, (4.1) has a unique Lp-solution if f ∈ Lp(0, T ; X), which is an
integral solution as well. The same holds if f ∈ C(0, T ; X). In both cases (4.23) holds.
From another point of view, we can directly use Theorem 4.2.4 for the problemvÍ(t) = Av(t) + u0 +

Ú t

0
f(s)ds, t ∈ [0, T ]

v(0) = 0

whose strict solution in C satisfies

ëvÍ(t)ë ≤ Meωt

3
ëu0ë +

Ú t

0
ëf(s)ë ds

4
, t ∈ [0, T ].

Finally, thanks to 4.1.1, u := vÍ is the integral solution of (4.1).
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Appendix A

The fixed-point theorem

The following is a very important theorem that has been used in chapter 2. It concerns contrac-
tions, which are particular lipschitz-continuous functions on metric spaces. Before it, we have to
state some definitions.

Definition A.1. A metric space is a couple (X, d) such that X is a set and d : X × X → R is
such that:

• d(x, y) ≥ 0 ∀x, y ∈ X

• d(x, y) = d(y, x) ∀x, y ∈ X

• d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

• d(x, y) = 0 ⇐⇒ x = y.

The latter is a more general case than a normed space, since the function d is not necessarily
induced by a norm.

Definition A.2. Let X be a set. A sequence {xn} ⊂ X is called a Cauchy sequence if

∀Ô > 0 ∃NÔ : d(xn, xm) < Ô ∀n, m ≥ NÔ.

A sequence is said to be converging to x (or limn→∞ xn = x) if

lim
n→∞

d(xn, x) = 0.

Definition A.3. A metric space X is said to be complete if all its Cauchy sequences are
converging.

Theorem A.1 (fixed-point). Let X be a complete metric space, X /= 0 and let f : X → X be a
lipschitz-continuous function with constant c ∈ [0,1[1. Then there exists one and only one η ∈ X
such that f(η) = η.

1In this case f can be referred to as a contraction. Indeed, being d(f(x) − f(y)) ≤ cd(x, y) ∀x, y ∈ X, it
"shrinks" the distance between any couple of points of X.
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Proof. Let x0 ∈ X and {xh} the sequence defined as xh+1 = f(xh).
We want to prove, by induction, that

d(xh+1, xh) ≤ chd(x1, x0) ∀h ≥ 0. (A.1)

If h = 0, (A.1) is verified. Using the lipschitz-continuity of f and assuming (A.1) to be true for
a certain h > 0 we have:

d(xh+2, xh+1) = d(f(xh+1), f(xh)) ≤ cd(xh+1, xh) ≤ ch+1d(x1, x0),

therefore (A.1) is true fot h + 1, and by induction for all h > 0.
We want now to prove that ∀h ≥ 0 and ∀j ≥ 1 it holds:

d(xh+j , xh) ≤ ch

3 j−1Ø
i=0

ci

4
d(x1, x0). (A.2)

If j = 1, (A.2) is equivalent to (A.1) and therefore it is true. We assume it to be true for a
certain j ≥ 1, and take:

d(xh+j+1, xh) ≤ d(xh+j+1, xh+j) + d(xh+j , xh)

which thanks to (A.1) leads to:

d(xh+j+1, xh+j) + d(xh+j , xh) ≤ ch+jd(x1, x0) + ch

3 j−1Ø
i=0

ci

4
d(x1, x0) = ch

3 jØ
i=0

4
d(x1, x0).

Thus, (A.2) is valid for j + 1 and therefore by induction for all j ≥ 1.
We now observe that, since c ∈ [0,1[, we have:

j−1Ø
i=0

ci ≤ 1
1 − c

∀j ≥ 1

therefore, in particular it holds:

d(xh+j , xh) ≤ ch

1 − c
d(x1, x0).

We now want to prove that {xh} is a Cauchy sequence (and therefore converges, since X is
complete by hypothesis). Let Ô > 0 and h ∈ N such that

ch

1 − c
d(x1, x0) < Ô.

Let h, k > h with k > h, so that k = h + j. This leads to:

d(xk, xh) = d(xh+j , xh) ≤ ch

1 − c
d(x1, x0) ≤ ch

1 − c
d(x1, x0) < Ô,

which means that {xh} is a Cauchy sequence. Thus, there exists η > 0 such that

lim
h→∞

xh = η.
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Being {xh+1} a subsequence of {xh}, we have:

lim
h→∞

f(xh) = lim
h→∞

xh+1 = η,

and due to the continuity of f :
lim

h→∞
f(xh) = f(η),

which leads to f(η) = η because the limit is unique.
Finally, assuming the existence of another element σ ∈ X such that f(σ) = σ, this would mean
that:

d(η, σ) = d(f(η), f(σ)) ≤ cd(η, σ)

and therefore
(1 − c)d(η, σ) ≤ 0

which means that η = σ, and the theorem is proved.
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Appendix B

Integration by parts in Rn and
Green’s identities

The integration formulas in n dimensions can be derived in a straightforward way starting from
the divergence theorem, which we shall only state without proof.

Theorem B.1 (Divergence). Let Ω ⊂ Rn be an open and bounded set, with ∂Ω ∈ C1 and let
þF : Ω ⊂ Rn −→ Rn defined as

x −→ þF (x) = (F1(x), . . . , Fn(x))

be a vector field such that Fi ∈ C1(Ω) ∀i = 1, . . . , n. Then it holds:Ú
Ω

div( þF (x))dx =
Ú

∂Ω
þF · þndS (B.1)

where þn = þn(x) is the unitary normal vector pointing outwards of ∂Ω, and

div( þF (x)) =
nØ

i=1

∂

∂xi
(Fi(x))

is the divergence operator applied to þF .

The essential meaning of this theorem is that the divergence of a vector field can be interpreted
as an "infinitesimal flux", being the term on the right hand side the flux of þF through the boundary
∂Ω. It has many important applications, for instance consider the integral form of Gauss’s flux
theorem1 in R3, which states that: Ú

∂Ω
þE · þndS = 1

Ô0

Ú
Ω

ρdx

where þE is the electrostatic vector field ([V ]), ρ the density of electric charge per unit volume
([ C

m3 ]) and Ô0 the permittivity of free space ([ F
m ] = [ C

V m ]). The divergence theorem allows to

1It is essentially the first of the four Maxwell’s equations for electromagnetism.
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express the term on the left as a volume integral instead a surface one, leading to the local
formulation of the equation:

div þE = ρ

Ô0

Starting from this, we can demonstrate the following:

Corollary B.1.1 (Integration by parts in Rn). Under the same hypotheses of the divergence
theorem, let u, v ∈ C2(Ω). It Holds:Ú

Ω

∂u

∂xi
vdx = −

Ú
Ω

u
∂v

∂xi
dx +

Ú
∂Ω

uvnidS (B.2)

where ni is the i-th component of þn.

Proof. Let’s consider the vector field þF with all null entries but the i-th component, equal to uv.
þF ∈ C1(Ω), and its divergence is given by:

div þF (x) = ∂(uv)
∂xi

= ∂u

∂xi
v + u

∂v

∂xi

Thanks to (B.1) we get:Ú
Ω

div þF (x)dx =
Ú

Ω

3
∂u

∂xi
v + u

∂v

∂xi

4
dx =

Ú
∂Ω

þF · þndS =
Ú

∂Ω
uvnidS

We stress out the fact that the boundary term usually can be simplified due to the properties
of the solutions of the considered problems.

Theorem B.2 (Green’s identities). Under the hypotheses of the divergence theorem, consider
u, v, ∈ C1(Ω).Then the following three expressions hold:Ú

Ω
∆udx =

Ú
∂Ω

∂u

∂þn
dS, (B.3)

Ú
Ω

∇u∇vdx = −
Ú

Ω
∆vudx +

Ú
∂Ω

∂v

∂þn
udS, (B.4)Ú

Ω
(u∆v − v∆u)dx =

Ú
∂Ω

3
u

∂v

∂þn
− v

∂u

∂þn

4
dS. (B.5)

Proof. To get (B.3), we apply the divergence theorem to the field þF = ∇u, reminding that
∆u = div∇u: Ú

Ω
∆udx =

Ú
∂Ω

∇u · þndS =
Ú

∂Ω

∂u

∂þn
dS.

To get (B.4), we write (B.2) substituting v with ∂v
∂xi

:Ú
Ω

∂u

∂xi

∂v

∂xi
dx = −

Ú
Ω

u
∂2v

∂x2
i

dx +
Ú

∂Ω
u

∂v

∂xi
nidS

then sum:
nØ

i=1

Ú
Ω

∂u

∂xi

∂v

∂xi
dx = −

nØ
i=1

Ú
Ω

u
∂2v

∂x2
i

dx +
nØ

i=1

Ú
∂Ω

u
∂v

∂xi
nidS

66



B – Integration by parts in Rn and Green’s identities

and thanks to the linearity of the integral we get (B.4).
To get the last expression, we write (B.4) switching u and v:Ú

Ω
∇u∇vdx = −

Ú
Ω

v∆udx +
Ú

∂Ω
v

∂u

∂þn
dS

and subtract (B.2) from the latter, obtaining:

0 =
Ú

Ω
(∆uv − ∆vu)dx +

Ú
∂Ω

3
∂v

∂þn
u − ∂u

∂þn
v

4
dS.

Under the assumption that the domain Ω is bounded, the validity of the above formulas can
be proved also in Sobolev spaces like H1(Ω), making use of the embedding theorems that are
not treated in this dissertation. Roughly speaking, the idea is that the terms ∇u and ∆u "make
sense" if, respectively, u ∈ H1(Ω) or u ∈ H2(Ω). In this appendix, we just give a hint about
integration by parts in the mono-dimensional case, with u, w ∈ H1(I), with I = (a, b) ⊂ R.
Theorem B.3 (Integration by parts in H1(I)). Let I = (a, b) ⊂ R. Then it holds:Ú

I

wvÍ = w(b)v(b) − w(a)v(a) −
Ú

I

wÍv ∀w, v ∈ H1(I) (B.6)

Proof. We recall that, since H1(I) ⊂ C0(I), the term w(b)v(b) − w(a)v(a) is well defined. More-
over, the formula holds ∀φ ∈ D(Ī), the latter begin dense in H1(I). Thus, we shall extend the
result by density.
First of all, we know that given w, v ∈ H1(I), ∃wn, vn ∈ D(Ī) such that

vn −→ v and wn −→ w in H1(I)

It holds: Ú
I

wnvÍ
n = wn(b)vn(b) − wn(a)vn(a) −

Ú
I

wÍ
nvn.

Since the embedding H1(I) ⊂ C0(I) is continuous, this means that the convergence is uniform,
therefore:

wn(b)vn(b) −→ w(b)v(b) and wn(a)vn(a) −→ w(a)v(a) (B.7)
Now we evaluate:----Ú

I

wnvÍ
n −

Ú
I

wvÍ
---- ≤

----Ú
I

wnvÍ
n −

Ú
I

wnvÍ
---- +

----Ú
I

wnvÍ −
Ú

I

wvÍ
----

≤
Ú

I

|wn||vÍ
n − vÍ| +

Ú
I

|wn − w||vÍ|

≤ ëwnëL2(I) ëvÍ
n − vÍëL2(I) + ëvÍëL2(I) ëwn − wëL2(I) −→ 0.

Therefore it yields: Ú
I

wnvÍ
n −→

Ú
I

wvÍ (B.8)

and analogously as before, it follows: Ú
I

wÍ
nvn −→

Ú
I

wÍv. (B.9)

Finally (B.6) is prooved thanks to (B.7), (B.8), (B.9).
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Appendix C

The Galerkin method

When dealing with partial differential equations, the existence of a theorem which guarantees
existence and uniqueness of solutions has not to be taken for granted. Lax-Milgram or Hille-
Yosida Theorems can be really helpful in several circumstances, but in others it may be necessary
to search for a solution by means of approximation procedures, with a more numeric approach.
This is the case of the Galerkin method, whose idea is to "project" the considered problem,
which is in general set in an infinite dimensional space, on a finite dimensional subspace of the
latter, leading to a system of ordinary differential equations (that can be solved in an easier way
with numeric procedures). The main difference with the other approaches is that while the cited
theorems just confirm or not the existence and uniqueness of the solution, here we directly search
for it.
This fundamental idea allowed the arising of numerical schemes like the Finite Elements Method
or FEM, widely used in structural engineering 1, and the Finite Volumes Methods or FVM,
more utilized for thermo-fluid-dynamics and in general conservation laws2. A good reference for
this kind of topics is [18], here we are just going to give a hint, for completeness, about their
mathematical principle.
Let Ω ⊂ Rn be bounded. We consider the generic initial and boundary value parabolic problem:

∂u

∂t
(x, t) − ∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T )

u(x, t) = 0, x ∈ ∂Ω, t > 0
u(x,0) = g(x), x ∈ Ω

(C.1)

where f , g and u are considered to respect all the constraints in order give sense to the problem.
We want to write the weak formulation of the problem. To do this, we take v ∈ D(Ω) and take
the scalar product in L2(Ω):Ú

Ω

∂u

∂t
(x, t), v(x)dx −

Ú
Ω

∆u(x, t)v(x)dx =
Ú

Ω
f(x, t)v(x)dx, ∀v ∈ D(Ω)

Ú
Ω

∂u

∂t
(x, t), v(x)dx +

Ú
Ω

∇u(x, t)∇v(x)dx =
Ú

Ω
f(x, t)v(x)dx, ∀v ∈ D(Ω)

1Very often FEM is used to characterize mechanical structures in the frequency domain.
2For instance, to study and predict the velocity profile of a flux in a pipe, or to study its temperature field.
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which in turn is, since D(Ω) is dense in H1
0 (Ω):3

∂u

∂t
(x, t), v(x)

4
L2(Ω)

+ (u(x, t), v(x))H1
0 (Ω) = (f(x, t), v(x))L2(Ω), ∀v ∈ H1

0 (Ω).

Now let ϕ ∈ D(0, T ). By taking the scalar product in time and integrating by parts, we get the
weak formulation:

−
Ú T

0
(u(x, t), v(x))L2(Ω)

dϕ(t)
dt

dt +
Ú T

0
(u(x, t), v(x))H1

0 (Ω)ϕ(t)dt

=
Ú T

0
(f(x, t), v(x))L2(Ω)ϕ(t)dt, ∀v ∈ H1

0 Ω, ∀ϕ ∈ D(0, T ).

Now we want to explicitly determine the solution of the problem, or at least estimate it. We
consider {wk} as the Hilbert basis of L2(Ω) constituted by eigenfunctions of operator −∆ with
Dirichlet boundary conditions, i.e.:

(wk, wj)L2(Ω) =
I

1 if k = j

0 if k /= j

(wk, wj)H1
0 (Ω) =

I
λj if k = j

0 if k /= j

where λj is the eigenvalue of −∆ corresponding to the j-th eigenfunction. We set:

um(x, t) :=
mØ

k=1
ck(t)wk(x) , fm(x, t) :=

mØ
k=1

f̄k(t)wk(x)

with f̄k(t) = (f(x, t), wk)L2(Ω), m ∈ N.
The following step is to consider the approximated problem, i.e. the projection of (C.1) on
span{w1, . . . , wm}:3

∂um

∂t
(x, t), v(x)

4
L2(Ω)

+ (um(x, t), v(x))H1
0 (Ω) = (fm(x, t), v(x))L2(Ω) ∀v ∈ H1

0 (Ω)

which is:
mØ

k=1

∂ck

∂t
(t)(wk(x), v(x))L2(Ω) +

mØ
k=1

ck(t)(wk(x), v(x))H1
0 (Ω) =

mØ
k=1

f̄k(t)(wk(x), v(x))L2(Ω).

Now, by taking v = wj we get:

∂cj

∂t
(t) + λjcj(t) = f̄j(t) ∀j = 1, . . . , m. (C.2)

Therefore, (C.2) is a system of ordinary differential equations of the first order with the m un-
knowns c1, . . . , cm, which can be solved with a numerical procedure; instead, hyperbolic problems
lead to systems of the second order. The idea is that um is an approximation of the solution,
and

lim
m→∞

um = u

solves (C.1).
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