
Politecnico di Torino
DIPARTIMENTO DI SCIENZE MATEMATICHE

Corso di Laurea Magistrale in Ingegneria Matematica

Tesi di Laurea Magistrale

Proactive customer care solution

for telecommunication companies

by exploiting Amazon Web Services

Relatore:

Prof.ssa Tania Cerquitelli

Correlatore:

Prof. Marco Brambilla

Tutor Aziendale:

Dott.ssa Cristina Bartoloni

Candidato:

Valerio Volpe
Matricola 251313

Anno Accademico 2018-2019

Summary

This work represents a project developed in collaboration with Accenture
S.p.A. The activity, started with a curricular internship in February 2019,
continued as an extracurricular experience until August 2019.
The idea is to combine machine learning techniques and Amazon Web Ser-
vices, the cloud computing platform provided by Amazon, to tackle the proac-
tive customer care problem for telecommunication companies.
The contributions of this thesis regard both the tool and the solution pro-
posed. On one side it confirms that using Amazon cloud computing platform
guarantees flexibility and scalability to the project and allows companies to
save on operating costs, run the infrastructure more efficiently and resize
resources based on business needs. Therefore, it could assist businesses in
facing modern challenges.
On the other side it confirms machine learning capability to assist telecom-
munication companies in tackling new challenges. Indeed, current adopted
solutions consist in a simple KPIs monitoring to identify and address near
real time devices issues with algorithms able to trigger specific alarms when
a fixed threshold is exceeded. This work wants to carry out activities in
background, using analytic tools and machine learning techniques to iden-
tify factors which are causing current problems or which are likely to cause
future problems. Thanks to very powerful classification methods, the idea is
to create algorithms able to drive insights, understand correlations and rec-
ognize symptoms potentially leading to customer calls. Solution could bring
benefits to Telco companies such as prevent trouble tickets opening, reduce
the churn rate and improve the overall customer experience.
Solution is organized in few steps. In a first phase, data are extracted,
cleaned and explored in order to extract only meaningful information. In
a second phase, a feature selection is performed in order to improve learn-
ing performance and to guarantee a better model interpretability. Then a
binary classification model is considered to predict if a problem will occur
on a specific line, in terms of probability, and then a multiclass classification
algorithm is trained to identify the specific type of issue. Moreover, the latter

2

is applied to an observation even if the former did not suggest any problem,
since the scope is to always give an explanation of a trouble. The developed
pipeline is able to detect issue event with a precision of more than 80% and to
satisfactorily classify the different types of problem with a weighted precision
of 80%. The model is kept up-to-date through a retraining phase and two
different solutions are explored: the first one involves Apache Airflow plat-
form, the other one is focus on the drift concept and it represents a cheaper
but a bit more difficult approach, since it considers data distribution over
the time.
Chapter 9 provides basis for a possible deployment into production, by iden-
tifying actors who are and will be involved in the future.

Acknowledgements

Il lavoro di tesi svolto rappresenta la conclusione di un’esperienza iniziata 5
anni fa, che mi ha portato a crescere e maturare moltissimo. Quando arrivai
nella città di Torino a 19 anni e cominciai una vita indipendente dai miei
genitori in una città a me allora sconosciuta, non poche erano le mie paure
e i miei dubbi. Con gli anni si sono trasformati in forza e consapevolezza,
anche se so che ho ancora molto da imparare.
In primo luogo vorrei ringraziare la professoressa Cerquitelli, relatrice univer-
sitaria, che è stata la persona che mi ha fatto appassionare per la prima volta
a tematiche di data analytics, e il professor Brambilla Marco, correlatore del
Politecnico di Milano, che ha accettato di supportarmi nel mio percorso di
tesi. I loro consigli e suggerimenti sono stati essenziali per la realizzazione di
questo lavoro.
Riconoscenza va poi ad Accenture e in particolare al team che mi ha accolto
e mi ha offerto la possibilità di imparare molto e di affacciarmi per la prima
volta al mondo del lavoro. Ringrazio tutti i membri del team che nel massimo
delle loro possibilità mi hanno dedicato parte del loro tempo che so essere
molto prezioso. Non si sono mai rifiutati di aiutarmi, suggerirmi e spiegarmi
e in questo devo ringraziare, in particolar modo, Alberto e Alessandro, i due
“massimi esperti di tutto”, come mi piaceva chiamarli.
Il mio percorso accademico non si è limitato a seguire 5 anni di corsi, ma
mi ha portato a fare moltissime esperienze diverse, anche all’estero. Devo
ringraziare la mia famiglia che in tutti questi spostamenti ha sempre rappre-
sentato il mio punto di forza nonostante tutte le difficoltà. Mi hanno sempre
incoraggiato e spinto a non fermarmi mai e a cogliere tutte le opportunità. É
anche grazie al loro costante supporto che ho scelto di iniziare a studiare al
Politecnico di Torino. Vorrei anche ringraziare mio nonno per i suoi semplici
ma importantissimi consigli.
Un altro grande ringraziamento va a Carola che in questi 5 anni mi ha sempre
assistito in ogni mia scelta e mi ha spinto a non perdere nessuna occasione.
É anche grazie a lei che ho intrapreso alcuni percorsi che si sono rivelati poi
molto utili per la mia crescita personale. Anche la sua famiglia mi ha sempre

4

accolto quasi come un figlio fin dall’inizio rappresentando una sicurezza nei
miei primi periodi a Torino.
Poi ringrazio i miei amici storici, Gian e Lollo, che ci sono sempre stati fin
dall’asilo, e quelli un po’ meno storici Ale, Suren, Matte, Teo, Raffa che
nonostante la lontananza so che ci saranno sempre. Anche se ormai ci vedi-
amo non più di una volta al mese il nostro legame rimane molto forte.
Inoltre ringrazio i ragazzi del Collegio Einaudi che mi hanno regalato un
quarto anno splendido, fatto di risate, cene, pranzi e feste tutti insieme.
Sono stati momenti molto belli e unici sotto molti aspetti. Siete tantissimi
e anche se non vi nomino singolarmente sappiate che passare solamente un
anno con voi è stato un grande dispiacere.
Ringrazio gli amici di Torino con cui ho esplorato la città, in particolare An-
dre, Angy e Julien, e la compagnia della Svizzera, Diego, Ste, Giorgia, Giulio
e Leo con i quali ho condiviso le mie due esperienze a Losanna. Mi ricordo
le super carbonare organizzate all’ultimo e i pranzi in caffetteria che hanno
decisamente allegerito la pesantezza del semestre.
Ringrazio il team “Abajour’ dell’ASP con cui ho condiviso le interminabili
ore di lavoro nelle 4 settimane organizzate, ma sopratutto le super mangiate
con la mitica sfida del double lunch.
Infine ringrazio il Politecnico per tutte le opportunità che mi ha dato e tutte
le persone che mi ha permesso di conoscere. Confesso che all’inizio non ero
sicuro fosse la scelta giusta, ma tornando indietro ripeterei l’esperienza 1000
volte.
Ultima, ma non ultima, ringrazio la città di Torino di cui mi sono innamorato
e che ha rappresentato la mia seconda casa. Torino mi ha colpito perchè
sa essere grande città senza fartelo pesare troppo con le corse al parco del
Valentino, la Mole Antonelliana che si erge sulla città, Superga che la guarda
dall’alto come a volerla proteggere e molti altri scorci unici che questa città
è in grado di regalare. Occuperà sempre uno spazio nei miei ricordi più belli.

Contents

Summary 1

Acknowledgements 3

List of Figures 7

List of Tables 9

1 A new industrial revolution 10
1.1 Industry 4.0 . 10
1.2 Big data . 13
1.3 Cloud computing . 16

2 Amazon Web Services: a new cloud computing frontier 20
2.1 Discovering the tool . 20
2.2 The competitors . 22
2.3 The infrastructure . 24
2.4 AWS Glue . 27
2.5 AWS SageMaker . 28

3 Introduction to proactive care 34
3.1 Digital scenario . 34
3.2 Business case . 36
3.3 Use cases and architecture . 39

4 Algorithms background 43
4.1 Decision trees . 43
4.2 Random Forest . 48
4.3 Extreme Gradient Boosting 50

Contents 6

5 Implementation: dataset presentation and exploration 57
5.1 Data extraction . 57
5.2 Data preparation . 58
5.3 Model pipeline . 62
5.4 Features selection . 65

6 Implementation: algorithms development 70
6.1 First step: binary classification 70
6.2 Second step: multiclass classification 81

7 Experiments 83
7.1 Binary classification . 83
7.2 Multiclass classification . 89
7.3 Results . 91

8 Model retraining 95
8.1 Apache Airflow . 95
8.2 Drift evaluation . 102
8.3 Retraining based on drift . 104

9 Model architecture and deployment 107

10 Conclusions 112

List of Figures

1.1 Big data: example of data available on the internet. 14

2.1 Magic quadrant for cloud infrastructure as a service. 21
2.2 Amazon SageMaker basic architecture. 32

3.1 Proactive care and homes’ devices interaction. 38
3.2 WAN issue detection. 39
3.3 WLAN issue detection. 40
3.4 CPE status. 40

4.1 Decision Tree: default stopping criterion (top) and more ad-
ditional conditions to stop (bottom). 46

4.2 Bias and Variance concepts graphical representation 47
4.3 Underfitting and overfitting concepts graphical representation 48
4.4 Bias and Variance trade-off . 48
4.5 Example of tree ensemble model. Final output is obtained by

summing the score in each tree 51
4.6 Tree structure with default directions. 55

5.1 Creation of the target variable. 59
5.2 Plot of an example of aggregate KPI distribution. 59
5.3 Pie chart representing a ticket arguments distribution over 3

months. 60
5.4 Stacked bar chart representing ticket arguments distribution

over 3 months. 61
5.5 Comparison between train and test size. 61
5.6 Compute mean function to the original data distribution. . . . 62
5.7 Concept of irrelevant, redundant, and noisy features. (a) Rel-

evant feature. (b) Irrelevant feature. (c) Redundant feature.
(d) Noisy feature. 66

5.8 Random forest features importance for the binary model. . . . 68
5.9 Correlation between target variable and some numerical features. 69

List of Figures 8

5.10 Correlation between target variable and some categorical fea-
tures. 69

6.1 AWS Glue Preprocessing: example of running script 72
6.2 AWS Glue Preprocessing: example of failed script 72
6.3 AWS Glue Preprocessing: log inspection 74
6.4 AWS Glue Preprocessing: how to monitor the status 74
6.5 SageMaker: visualize hyperparameter tuning job results 77
6.6 SageMaker: inspection pipeline model configuration 80
6.7 SageMaker: visualize endpoint configuration and performances 80

7.1 Binary classification: extraction of decision tree tuning job. . . 85
7.2 Binary classification: extraction of random forest tuning job. . 87
7.3 Binary classification: extraction of XGBoost tuning job. 88
7.4 Binary classification: trade off between positive class precision

and recall in the general call recognition model. 90
7.5 Multiclass classification: extraction of random forest tuning job. 91
7.6 Multiclass classification: extraction of XGBoost tuning job. . . 91
7.7 Multiclass classification: confusion matrix, on the left normal-

ized by class total predictions, on the right not normalized. . . 92

8.1 Airflow list of DAGs . 98
8.2 Airflow tree visualization . 98
8.3 Airflow graph visualization . 99
8.4 Airflow variable view . 99
8.5 Airflow Gantt chart . 100
8.6 Airflow task duration . 100
8.7 Airflow code view . 101
8.8 Airflow task instance menu . 101
8.9 Airflow email alert . 102
8.10 Covariate drift with values computed hourly for the drift of 7

hours before the current time. 105

9.1 Architecture of the final binary and multiclass classification
solution . 107

9.2 New observation prediction . 111

List of Tables

5.1 Call/ No Call binary prediction model. 64
5.2 Issues multiclass prediction model. 65

6.1 Spark configuration. 71

7.1 AWS Glue Preprocessing and Data Preparation: summarize
the computational parameters. 83

7.2 Binary classification: example of decision tree tuning job. . . . 86
7.3 Binary classification: example of random forest tuning job. . . 87
7.4 Binary classification: example of XGBoost tuning job. 89
7.5 Binary classification: summarize the training details. 90
7.6 Multiclass classification: summarize the training details. . . . 92
7.7 AWS Model Creation: summarize the computational param-

eters to create the pipeline model from the trained algorithms. 93
7.8 AWS Prediction: summarize the endpoint creation and batch

transform job computational parameters. 93
7.9 Cost analysis: summarize the fixed cost details. 93
7.10 Cost analysis: summarize the costs to keep the endpoint ready

for real time inference. 94

8.1 Cost analysis: summarize the costs to keep the periodic re-
training active. 102

8.2 Cost analysis: summary of the model retraining costs. 102
8.3 Drift analysis: comparison between solution with and without

drift consideration for 1 month time window. 106

Chapter 1

A new industrial revolution

In recent years information and communication technology (ICT) sector has
emerged as one of the fastest growing area on the world stage. It had un-
doubted positive effect on the industrial productivity: the production costs
were drastically reduced, efficient client-focused solutions were adopted to
serve customers with quality and speed. All these changes need a new indus-
trial model which integrates, in addition to technological development, also
the increasing demand for customized solutions: this new model is called
Industry 4.0.

1.1 Industry 4.0

This term was used for the first time in Germany in 2011, more specifically
during the Hannover Messe, one of the world’s largest trade fairs. During the
event a working group announced a project for the development of the Ger-
man manufacturing sector, the “Zukunftsprojekt Industrie 4.0’, which should
have brought the country’s industry back to a leading role in the world, and
the German government inserted it in the wider High-Tech Strategy 2020
Action Plan [44]. Subsequently, this model inspired numerous European ini-
tiatives and the term Industry 4.0 spread internationally [29].
Impacting on a lot of different production sectors, it combines state-of-the-
art technologies with the web to obtain more adaptable and cooperative
solutions. Santos, Charna-Santos and Lima (2018) defines the interaction
between production structures and intelligent devices (able to connect to
the network), as the future intelligent factories which will have flexibility to
tackle current companies challenges with customized solutions and reduced
product life cycles [18].

Industry 4.0 11

Term 4.0 refers to a further step in improving production techniques after
the three equally significant past revolutions (leading to the current state),
each linked to the introduction of a specific technology [9] :

• Industry 1.0 in the 18th century, characterized by the introduction
of production machinery able to leverage the water and steam power;
machines took away the dirty, dangerous work with a positive effect on
the production, which becomes faster.

• Industry 2.0 in the 19th century, characterized by the introduction of
mass production and new work techniques such as labour division; in
parallel electrical energy and oil were introduced in the industry. Again,
some dangerous parts of the work were moved from human to machine.

• Industry 3.0 in the 20th century, characterized by the further automate
production thanks to the introduction of electronic and IT systems.
Machines took away the dull work with an industrialization of services
and of clerical work.

• Industry 4.0 is the one in progress, characterized by interconnected
products and processes through the use of cyber-physical systems, such
as advanced software, cloud, robotics etc. Machines take away decisions
since they are able to make faster and more reliable choices than hu-
mans.

This new revolution shows some innovative high-tech proposals, such as [15]:

• internet of things, which allows each product to exchange data with
internet network. Information could be captured and channelled where
more value could be produced, while smart connected products en-
able new industrial solutions thanks to a strictly collaboration with
the physical world around them. All these steps require new challenges
in designing products and services, in order to make possible to collect
large quantity of knowledge from different sources and near real-time
data;

• cloud computing, which provides a more flexible and accessible way
for companies and people to exploit storage capacity, processing power,
software applications and scalability;

• big data, which represent the large amounts of data available today
and the basis for a new learning frontier which helps decision-makers
and operations optimization. The key point is the large quantity of
application domains, from the predictive maintenance to customer pro-
filing to image recognition;

Industry 4.0 12

• artificial intelligence, which represents the intelligence demonstrated
by machines. Indeed, based on the analysis of collected data, automatic
algorithms could generate, by themselves, rules which programmers
cannot specify;

• automation robotics, since collaborative robots could emulate hu-
mans behaviours in factories, working alongside them. They play an
important role in a lot of applications such as assembly, healthcare,
logistics and monitoring;

• additive manufacturing, by exploiting the technology’s exceptional
skill to be not sensitive to quantity and complexity, it gives company
an advantage in terms of production volume, time and costs.

Industry 4.0 represents the mass customization, the increased speed, the bet-
ter quality, and the improved productivity in manufacturing which society
needs to be prepared to meet the challenges of globalization. In this way
there could be the possibility to elaborate individual projects giving targeted
solutions to the acquired customers and allowing companies to be competitive
on the global market. World’s industrial economy to face this exceptional
challenge requires a new production model, which for instance, means a con-
tinuous monitoring of activities (thanks to intelligent devices) to find out
immediately a possible failure.

Santos, Charna-Santos and Lima (2018) [18] report some outcomes of In-
dustry 4.0’s revolution, summarizing its main aspects:

• mass customization, defines in [50] as the process of delivering wide-
market goods and services created as close as possible to the needs of
the customers. It is a marketing and manufacturing technique which
exploits the capability of being extremely flexible, ad hoc designed for
clients and associated with low unit costs ;

• greater flexibility, making easier for companies to react to changes
in the global market more rapidly;

• quality control, defines in [51] as the process used by a business in
order to improve product quality and to reduce possible troubles;

• new innovative business models and services significantly change the
value chain interaction which describes the full range of activities
needed to create a product;

Big data 13

• optimized decision making, thanks to “smart” products and devices
able to connect to the network and to update their status, it is possible
to find out almost in real time what the sensors reveal, and analyse the
data to monitor the situation.

Finally, in this innovative context the strict collaboration between industries
and service providers initiated a new type of sale: sell the solution rather than
the product. The difference in some cases could be very difficult to find but
a simple example is reported here to help reader understand which could be
a possible explanation. Consider a client who provides truck rental services
to industrial and construction customers; in this case it is not selling just a
“rental truck”, but a solution supporting companies to face their problems
related to goods transport [8].

1.2 Big data

The vast majority of people use smartphone every day to surf the internet
and spend time on social networks. And every time it happens, a large
amount of data is generated. Large companies such as Google, Amazon or
Netflix, for example, use data collected to satisfy customers’ needs, sell prod-
ucts or make suggestions. Every minute a large quantity of information is
produced, at a rate which was unthinkable only few years ago. All these data
taken individually are meaningless and generate only confusion, but if they
are organized and divided according to specific rules, they show an incredible
power. In this context people start talking about Big Data [31].

Taylor-Sakyi (2016) [23] argues that the foundation of big data is based
on three interacting concepts:

• technology, combining optimal usage of computational resources and
really accurate algorithms to analyse and combine large data sets;

• analysis, the opportunity to use network and the Internet of Things
for Big Data generation, noticing patterns in the data and focusing on
the most important ones;

• mythology, the idea that a large quantity of data generates a knowl-
edge which helps companies to draw conclusions.

Big Data refers not only to a collection of data which is huge in size and
grows exponentially with time, but as Baralis (2015) correctly underlines, it
is much more: it refers to data with a different scale and complexity which

Big data 14

lead to develop new architectures, techniques, algorithms and analytics to
integrate them and extract their hidden value [1]. Therefore, traditional
data management tools are not suitable for an efficient storage and process
of these structured, semi-structured and unstructured data, which oblige
to develop new data analysis techniques and algorithms in order to exploit
their potentialities in the most effective manner. Indeed, big data purpose
is to analyse the huge amount of data available to extract information in a
reasonable time and with limited resources.

Figure 1.1: Big data: example of data available on the internet.

More specifically, big data could be characterized using 5Vs [13]:

• volume: in the world the amount of data generated doubles every 12-
18 months, moving probably from petabytes (1015 byte) to zettabytes
(1021 byte) in the coming years and making the volume a critical factor
in big data analytics (Figure 1.1).

• velocity: data must be managed, processed and analysed faster. A
huge amount of information is obtained, even in real time due to the
increasing internet speed, and it needs to be quickly analysed.

Big data 15

• variety: there are different forms of data, such as texts, numbers,
maps, audio, video, e-mails and so on. The majority are unstructured,
opposed to the traditional databases organized in diagrams and rigid
tables.

• value: the main purpose of the data analysis is to derive business value.

• veracity: refers to the quality of the data intended as correctness and
reliability. For instance, not all online contents are reliable or data
could contain noise and abnormalities.

The big data analysis and its subsequent extrapolation of hidden information
are called big data analitycs. This is carried out in a lot of sectors, such
as business one, where companies change their operational approach showing
an interest in analysing the purchasing behaviour of consumers, in studying
marketing campaigns, in improving customer satisfaction and so on: they
are all systems which use knowledge obtained from big data to increase com-
panies’ profit margins. On the other side, all these positive aspects required
users to tackle the 5Vs challenges explained before. For this reason busi-
nesses and researchers who increase their attention on big data, abandon the
old analytical techniques.

A common traditional model to store sets of data which could be queried
for other applications is the relational database management systems
(RDBMS) [45], a collection of data, containing meaningful information, which
is managed by a database management system (DBMS), i.e. a software sys-
tem able to work with collection of large, persistent and structured data
which guarantees integrity and security [46]. RDBMS is a type of DBMS
based on a table structure with a unique identifier and with functions able
to keep data privacy, accuracy, reliability and consistency [17]. In this case
information returned to decision makers are obtained combining two or more
database tables, for instance with a join condition. However, this approach
does not suit the industry 4.0 necessity as big data analytics does. The
incredible amount of unstructured data coming from mobile devices (social
media), Web and Internet of Things combined with the necessity of making
information almost instantly available obliges companies to change analytical
processes moving to big data analytics, suitable for current business require-
ments [23].

In order to help reader better understand which could be the big data po-
tentiality, some relevant examples are presented below.

Cloud computing 16

United Parcel Service (UPS) [23], the American multinational package deliv-
ery and supply chain management company, is one of the pioneer in exploit-
ing big data analytics power. In 2009 they started a project of monitoring
their trucks technical information such as speed, location and direction, by
installing 46 000 sensors able to gather data and transmit them to a data
center where they are analysed each night. A combination of fuel-efficiency
sensors and GPS data led company to a significant reduction in fuel con-
sumption and routes duration.
American retailer Target Corporation [6], one of the largest retailers in the
United States, wanted to figure out if a specific customer was a pregnant
woman. Indeed, the big problem they faced was that the majority of con-
sumers usually bought different items in specific stores and they went to
Target retailers only when they were looking for generic products (new socks
or six-month supply of toilet paper). However, Target offered also many
other items from milk to electronics and for this reason one of the marketers’
aims was to convince shoppers to buy also other Target’s products. Since it
resulted to be hard change consumers’ shopping habits, the marketing de-
partment idea was to focus on one of the life period when routines fall apart:
around the birth of a child. The main problem was related to time: since birth
records were public, families almost instantaneously received a lot of offers
and advertisements from a lot of companies. To beat the competition and
gain new customers, the idea was to reach women with specially designed ads
in their second trimester, when most future mothers start acquiring whatever
they need, like prenatal vitamins and maternity clothing. For this reason An-
drew Pole [23], a Target data analyst, created a pregnancy-predictive model,
where each customer is labelled with a pregnancy prediction score. In par-
ticular, Pole and his team assign a unique id number to each shopper and,
collecting its purchased products, previous payments methods (such as credit
cards, cash etc.) and interaction (such as clicking links in sent e-mails etc.),
they managed to perform a proper set of analysis to find a pattern useful
for the company. The proposed model allowed marketers to come up with
appropriate proposals (for instance sending SMS messages with links taking
customers to a mobile coupon), which represented an important competitive
advantage for the first years of model application to customers.

1.3 Cloud computing

Cloud computing is one of the today’s world emerging technologies, which
becomes a crucial element in a lot of companies’ current innovation strategies
to optimize technology usage and to improve business effectiveness. Adop-

Cloud computing 17

tion of this new tool is motivated by market requirements, where a level
of flexibility is required in order to be able to react quickly to changes in
business demands, and it allows companies to abandon traditional methods
and to be more competitive. Cloud computing has registered an increased
and always positive interest on the market, motivated by the some unique
properties it could guarantee: flexibility, costs reduction, agility and
scalability [24].
As Ting Si Xue and Tiong Wee Xin (2016) [24] underline, there is no an
unique cloud computing concept definition, but in their study they report
two possible descriptions: the first one defines cloud as virtualized computer
resources, while the second one defines it as a pool to store computational
resources.
Reader should imagine cloud as four layers infrastructure, which represents
an end to end service, from cloud computing providers until the final user
who exploits its advantages for the specific task. In particular these layers
are:

• fabric layer, which is composed by provider’s physical resources;

• unified resource layer, where physical devices are been combined
together to operate as virtualised resources for the users;

• platform layer to reduce the burden of deploying applications directly
into virtual machine container;

• application layer, which represents the environment where all the
applications live and can be executed to complete a task. The great
advantage is that no particular operational ability or device are re-
quired to interact with the applications, whose availability is always
guaranteed (unless technical issues). Users have also the possibility
to deploy directly to the cloud without having to tackle resources or
system issues, since providers automatically manage and control these
crucial technical elements.

Cloud computing interacts with final user by providing him three main types
of services [19]:

• Software as a Service (SaaS): it represents cloud computing service
offering the software owned and promoted by providers which individ-
uals or companies could rent and access via Internet. Differently from
the past, where people needed to install software on their devices with
high costs, SaaS providers run it on their data centres using their re-
sources and then they rent it or sell a type of subscription. The main

Cloud computing 18

point is that SaaS license is less expensive than a permanent software
license and furthermore SaaS allows users to have a constantly updated
version of the software. For the reasons before, customers are increas-
ingly convinced to adopt this solution which guarantees less costs and
better information migration. IT department of a company could re-
ally appreciate the possibility to satisfy organization’s business goals
without having troubles with resources maintenance or updates. Some
examples of Software as a Service are Google Docs and Microsoft Office
365.

• Platform as a Service (PaaS): it represents cloud computing ser-
vice offering a development environment to individuals or companies
to create and keep their applications. For instance, users could rent
cloud computing infrastructure or buy a type of subscription for their
applications. On the other side PaaS providers could propose a low
cost and customized computing based solutions, avoiding individuals
to face with problems such as number of processing units or quantity of
memory required for storage. Some examples of Platform as a Service
are Amazon Web Services, Google App Engine. The difference between
SaaS and PaaS is that on the former users could only host the com-
pleted applications, while on the latter users could also develop step by
step the applications.

• Infrastructure as a Service (IaaS): it represents cloud computing
service offering the infrastructure to run the applications, for instance a
virtual machine or an operating system. The great advantage comes in
the capability of the providers to allocate resources quickly according
to customer’s requirements, guaranteeing an on-demand scalability of
the infrastructure. Basically, the users task is to configure and use the
provided infrastructure, while the vendors task is to focus on its avail-
ability and performance. An examples of Infrastructure as a Service is
Amazon EC2.

The increasing adoption of the cloud solution is strongly motivated by its
unique benefits, which allowed it to gain a relevant role in keeping companies
competitive on the market [47]:

• flexibility: employees both in and out of office could access files simply
connecting to it with a web-enabled device such as smartphones or
notebooks;

• scalability: users could easily upscale or downscale resources on re-
quest;

Cloud computing 19

• cost reduction: companies could purchase only needed resources, pay-
ing only the ones exploited;

• automatic software/hardware upgrades: cloud vendors manage
required software and hardware maintenance, such as security updates,
allowing to keep employees, IT staff, and resources free for other tasks.

On the other side cloud computing brings also some challenges which must
be taken into account [24]:

• data stealing: in parallel with the increasing number of Internet users,
also number of probing attacks increases. International Data Corpora-
tion (IDC) in one of its surveys underlines that security is the most
difficult and important challenge in cloud;

• data privacy: it is crucial to understand how to protect the privacy
of personal and clients’ data.

Moreover, Ting Si Xue and Tiong Wee Xin (2016) [24] in their article also
classify cloud in four possible categories, each one offering a different solu-
tion to users. Each type has unique properties in terms of adaptability to
customers’ needs:

• public cloud service: with a medium level of efficiency and costs
it gives access to anyone provided with an Internet connection and,
for this reason, some of the crucial problems of this type of cloud are
related to security and privacy. Photo, email and storage services are
examples of public cloud;

• private cloud service: less risky and more secure and reliable type
of cloud, thanks to a check on trusted identity. It is used by companies
to store and manage sensitive data;

• community cloud service: similar to a private cloud but with lower
setup costs since resources and also costs are shared between members
of the organization. Clearly, each user of the community could access
to the information stored. An examples of this type of cloud is the
university cloud shared with all the students for research intent;

• hybrid cloud service: combination of two or more previous type of
cloud services. The incredible advantage is that it keeps the benefits
of both private and public cloud, such as a good security level, since it
is possible to store sensitive data in a private area. Hybrid clouds are
for instance the ones used for backup purposes.

Chapter 2

Amazon Web Services: a new
cloud computing frontier

Amazon Web Services, also called AWS, [14] is a platform offering a
class of cloud computing services, launched for the first time in 2006 by
Amazon.com to manage its online retail operations. It could be considered
as a pioneer in the pay-as-you-go cloud computing field, built and designed
to satisfy the main needs of companies which show an interest in innovating
and reinforcing their IT department and equipment.

2.1 Discovering the tool

AWS [14] represents an offer able to include each type of cloud solution (IaaS,
PaaS and SaaS) and to solve the most challenging issues. AWS environment
seems to have no boundaries, with new functionalities and products added
continuously and highly scalable, fast, reliable and accessible services through
a common interface: the same Amazon company included those services in
its infrastructure to better manage the website. Jeff Bar, Amazon president
and CEO, said: “one thing that I love is the customer-driven innovation cy-
cle” [42] and this philosophy is probably the main AWS characteristic since
its origin.
Surely one of the best web services on the market, analyst firm Gartner
in the 2019 edition of the annual Infrastructure-as-a-service magic quadrant
confirms its superiority with respect to competitors. In particular, the choice
is based on the execution ability and completeness of vision and AWS results
to be the highest in both criteria [25]. Results are reported in Figure 2.1.

Since the main Amazon goal is to become even more customer-oriented, inside

Discovering the tool 21

Figure 2.1: Magic quadrant for cloud infrastructure as a service.

its cloud platform users can build any type of infrastructure without worry-
ing about technical and economic constraints and feeling safety about data
loss. Its intuitive usage, with the possibility to manage all services through
a user-friendly interface, also accessible via mobile, results to be very helpful
for developers. The really immediate console allows users to easily monitor
all the resources and it simplifies the solution design in the cloud by quickly
identifying the required resources to realize it. Online tutorials and courses
are freely available on the web platform to make users more confident about
Amazon services.

As explained before AWS is a pay-as-you-go service, in the sense that it
provides on-demand resources and user pays only for ones he uses. However,
a full cost analysis results to be quite complex due to the fact costs strongly
depend on the characteristics of the resources used and they are generally
weighted on the hourly usage of physical resources. In order to give reader
a general idea, as an example, one hour of Amazon EC2 service (better ex-
plained later) costs in dollars approximately 2.5 cents for “Linux small” EC2
instance and 3.4 cents for Windows “small” equivalents. Price doubles for
Linux “medium” EC2 instance, moves to 5 cents per hour, and increases for
Windows “medium”, to 6.8 cents per hour. It quadruples for “large” (10 and
12 cents), until reaching Linux $5.136 and Windows $9.552 per hour for the

The competitors 22

most powerful EC2 instance [20].
The model-types defined before (small, medium, large and so on) refer to a
well-defined range of available resources, whose distinction is based on:

• number of virtual CPUs, where a virtual CPU represents a portion or
share of a physical CPU that is assigned to a virtual machine (VM). The
CPU, central processing unit, is the operating heart of any device (PC,
laptop, smartphone); also called as “processor” or “microprocessor”,
it is the part of the device which coordinates the activity of the other
processing units;

• amount of available RAM, where the random-access memory (RAM)
is a memory space where the device can store and retrieve data in a
very short time;

• available disk space for storage, i.e. the amount of disk space inside
the physical host dedicated to the specific instance to run.

The base price option (the account default one) includes a fixed number of
free hours of usage and bandwidth occupation. Any additional use, above
the established threshold is paid as an extra. For this reason it is good to
immediately frame project’s needs, in order to understand required resources
and to avoid extra-costs. Due to the wide range of AWS products, it is
impossible to analyse all costs; however, the idea is quite the same for all
the others: there exists one or more usage models to be chosen carefully
according to the fundamental needs since any memory, cpu or disk excess is
paid extra based on a well-defined price list.

2.2 The competitors

Talking about cloud computing and Amazon Web Services the comparison
with the two other big competitors, Microsoft Azure and Google Cloud
Platform (GCP), comes naturally. In 2006 Amazon launched AWS, the
first cloud computing platform in the market. Ten years later, it was able
to offer 70 different types of services in 14 distinct regions [32]. Four years
later (2010) Microsoft launched Windows Azure (the name was changed in
Microsoft Azure). The Redmond Corporation’s platform in 2016 had a rich
offer of 67 services in 30 distinct regions [33]. Finally, in 2011, Google de-
cided to launch Cloud Platform (GCP), an infrastructure designed to orig-
inally support YouTube and the well-known search engine. GCP in 2016
offered 50 services and 6 data centers globally [34]. Nowadays, AWS is the
company which provides the broader set of services, reaching 140 different

The competitors 23

solutions. Regarding the Machine Learning field, which is the most relevant
in this study, AWS offers solutions for database, machine learning, robotics,
storage, cost management and so on [35]. According to the official docu-
mentation, machine learning available services are SageMaker, to build ,
train and deploy models at scale, Comprehend to investigate insights and
relationships in texts, Forecast to increase forecast accuracy using machine
learning, Rekognition to analyze image and video, Polly to turn text into
lifelike speech, a lot of Deep Learning services and so on.
On the other side, Google offers its Cloud Platfom, which allows users to
create machine learning models considering different areas. For instance,
Google Cloud Machine Learning Engine helps users to simplify the
creation of models and it is completely integrated with other Google plat-
form products. Thanks to the tools provided, including the Google Cloud
APIs, it is possible to investigate different solutions such as Video Analysis
to analyze videos, Image Analysis, to classify images into different categories
and to detect objects or faces, Voice Recognition to convert audio into text,
and so on [16].
Finally Microsoft Azure proposes Azure Machine Learning Studio (or
Azure ML) to orchestrate models testing and training and their execution on
Azure. Equipped with a set of algorithms which cover the main domains of
machine learning (classification, clustering, regression), Azure ML can also
host third-party modules [30].

Clearly, it is not so easy to choose between the three competitors because
choice depends mainly on company priorities. For this reason, only a brief
overview of positive and negative aspects is reported:

• The huge amount of services made available by Amazon and the ex-
tremely enterprise-friendly visualization it offers to users represent prob-
ably company strongest advantages. Carey, S. (2019) [4] underlines also
its openness and flexibility with an incredible partner ecosystem. For
instance, the main public transport company in British capital has ex-
ploited AWS potentialities to manage the peak of users for its online
official website. On the other side, a negative aspect could be its enor-
mous list of offers. Carey also argues that even if it is true that it could
represent an attractive aspect for companies, it results to be hard to
have a full view of the entire set of services, making AWS out to be a
difficult vendor to manage.

• Microsoft Azure has the great advantage that Microsoft services are
already strongly integrated in a lot of companies infrastructures, mak-
ing easier to help them in adopting cloud computing. On the other

The infrastructure 24

side, in recent years he had to face some failures making the service
unavailable for users to the point that Leong L., Gartner analyst, [7]
recommends assuming disaster recovery capabilities away from Azure,
especially regarding the crucial applications (even if also AWS had
similar problem in 2017 with S3 service). Moreover, clients usually
complain about Azure technical support and the available documenta-
tion. Finally, from partners’ point of view Microsoft platform results
to be more restrictive than the Amazon one.

• Google has a good level of experience with cloud-native industries and it
covers a key role in the open-source world, but it had a lot of problems in
emerging due to the presence of leader companies Microsoft Azure and
Amazon. It adopted a go-to-market strategy, taking control of small
and strategic projects but without ever representing a cloud partner.
It still needs to increase its partnerships, supporting for instance new
activities and processes, if it wants to become more competitive with
the other two giants. This seems to be the direction taken by new
Google Cloud CEO Thomas Kurian which wants to spend a lot of efforts
in its machine learning tools, combined both company’s experience in
artificial intelligent and the popular framework TensorFlow [4].

To summarize, Carey concludes that AWS is still at the top regarding number
of functionalities offered and level of the service. The incredible number of
tools, combined with the user-friendly approach adopted, makes AWS the
favourite cloud solution for the big companies. Moreover, its infrastructure
grows continuously providing economies of scale which manage to reduce
costs. Meanwhile, Microsoft tries to exploit companies which already adopted
its solutions in terms of technologies, to reduce the gap with Amazon: for
this reason it is investing a lot in the Azure service. Finally, Google, which
does not actually represent a valid alternative, thanks to the Kurian’s policy
in the future could be the number one AWS competitor.

2.3 The infrastructure

As already mentioned before, Amazon AWS is a container of heterogeneous
products. The incredible number of services made available by Amazon and
the innovation that this multinational company is able to offer every month,
make impossible to treat all tools in a properly detailed way. Thus, in the
following, it was decided to present an intelligent overview of the services,
with a brief description for each of them, which tries to give a logical struc-
ture in presenting them. A block diagram representation can be very useful

The infrastructure 25

for understanding how different services are structured and how they can
interact each other.

The AWS basic infrastructure [36], which represents the first diagram
block, is divided into regions, availability zones and edge locations. It is im-
portant for the reader to understand the difference, because this information
allows reader to realize how Amazon manages to provide reliability against
servers or data centers failures, without interrupting the offer. Regions are
independent sets of resources, geographically isolated one from the others
and spread around the world and they guarantee the correct level of privacy
and compliance (user must notice that not all services are always available
in all regions). The number of available regions is 8 plus 1 dedicated only
to government agencies, and user must choose one of them, usually the clos-
est to him (for instance Ireland in case of an Italian user). Furthermore,
resources price could change from one place to another.
Inside a region, there are the Availability Zones, which are independent areas
not sharing any failure points, connected each other through a low latency
network. They can be considered as backup systems, able to manage faults.
Indeed, users could develop their applications on different Zones and in this
way if one of them has a failure, applications remain online.
Finally, Edge Locations are supporting services to distribute content and ap-
plications to national users with reduced latency.

Above the basic infrastructure, as second block, there are networking ser-
vices [14], such as Amazon Virtual Private Cloud (VPC), which helps
company to expand the IT infrastructure without worrying about compu-
tational and application issues. Amazon VPC can easily run services on
Amazon’s virtual servers, which are accessible only by network and company
accounts.

Above the networking services, there are three building blocks, namely the
ones related to computation, database and storage.
Computation includes: [37]

• Amazon Elastic Compute Cloud (EC2), considered as AWS’s heart,
it is the Web service designed to provide computing and data process-
ing capabilities as virtual servers called instances, in a scalable cloud
environment. It is suitable for developers or companies which do not or
cannot get the physical infrastructure required to their own application
or cannot be able to manage sudden computational loads. In this way,
they do not have to buy physical resources with large costs, but they

The infrastructure 26

only have to interact with an user-friendly interface, allowing them to
quickly increase or decrease the required distributed computational ca-
pacity with new cloud servers. It is an elastic service, in the sense that
it guarantees an instantaneous scalability and a pay-as-you-go model
where only used resources are paid. The elasticity allows users to select
more than one hundred virtual servers simultaneously and to configure
also the most suitable hardware, selecting the number of virtual CPU,
RAM capacity, storage size.

• Amazon Auto Scaling, to automatically configure the scalability of
EC2 solution. Monitor specific metrics published on Cloud Watch AWS
service it is possible to change number of cloud servers, in order to keep
high performances. There exists also the possibility to define a series
of alarms which trigger automatic resources scaling.

• Lambda, to run code without dealing with servers managing. Payment
depends only on the amount of time code runs and no extra costs are
charged for its maintenance. User has only to upload the code and
Lambda takes care of recovering required resources. It is also possible
to automatically trigger this function directly from a web or mobile
application or by other services such as Amazon S3. In particular,
some characteristics relevant for this study are:

– the possibility to trigger a Lambda when a file is uploaded to one
Amazon container or modified.

– the possibility to use Lambda to transform data and save the
result in a data repository.

– the possibility to configure particular expressions to run a Lambda
function at a certain time or at regular intervals.

The base price option (the default one) includes 1 million free requests
per month and the price for the next 1 million is $0.20.

Storage includes: [38]

• Amazon Simple Storage Service (S3), the AWS storage service de-
signed to guarantee reliability and durability. Data are organized in
an unlimited number of objects, each one no more than 5 TB. Those
ones are organized in larger containers, called buckets. The infor-
mation contained in a bucket can be accessed wherever and whenever

AWS Glue 27

user wants, and each element could be encrypted with either Amazon
S3-managed keys or AWS KMS-managed keys. Accesses could be mon-
itored by setting a series of permissions and each operation on objects
or buckets is recorded in specific logs and notifications are sent for the
most important events.

Database [39] includes a set of solutions which could be defined as exam-
ples of DaaS, Database as a Service. Using this approach, users can avoid
problems linked to databases configuration and systems management:

• Amazon DynamoDB, born from Amazon e-commerce experience in
working with NoSQL databases. It is able to overcome classical rela-
tional limitations and to avoid dimensional obstacles. To ensure data
reliability, replication on different Availability Zones is performed to
manage possible faults.

Above the presented services, as a fourth block, there are all the other prod-
ucts. For this study the most relevant are analytics (in particular AWS Glue
Service) and machine learning (in particular AWS Amazon SageMaker)

2.4 AWS Glue

AWS Glue is a serverless, fully managed and cloud optimized service to ex-
tract, transform and load data (or ETL). It allows user to organize, locate,
move and transform all datasets across the business to put them to use. One
of the hardest parts in an analytics or data warehousing project is setting up
and maintaining a reliable ETL process. Glue helps users to better under-
stand the data, it suggests a possible transformation and it generates an ETL
code, avoiding any waste of time in hand coding the solution. It is provided
with a flexible scheduler which can run the job on a scale out smart platform,
automatically provisioning resources required to complete it. Glue includes
a data catalog, which is basically a central metadata repository, an ETL en-
gine, which can auto generate Python code and a flexible scheduler, which
handles job monitoring and retries. Another important point is the ability
to automate heavy lifting involved with discovering, categorizing, cleaning,
enriching and moving data: less heavy lifting means more time for analysis.
Glue makes this step in a simple, cost-effective, but also reliable way.

Glue is different from other ETL products in three important ways. First,
Glue automatically discovers data and files, determines the schema and builds
centralized metadata catalog for later querying and analysis. It provides an

AWS SageMaker 28

automatic schema inference for semi-structured and structured data and an
out-of-the-box integration with a lot of other AWS services. Second, Glue
generates an ETL code, to perform data extraction, transformation and load-
ing, which is just Python language and it is entirely customizable, reusable
and portable. Indeed, it can be edit using any integrated development envi-
ronment or notebook and share with other users using Github. Third, it is
serverless, in the sense that there are no resources to manage and user only
pays for the ones the jobs consume to run. User does not have to configure
servers or manage their life cycle.

Focusing on how Glue suggests transformations and generates ETL code
to convert data, after logging into the Glue management console, user can
automatically generate a Scala or Python script based on the typology of the
source and target data. Glue proposes a starting script (default option) but
gives also the possibility to import an existing pyspark script. To allow the
service to create a default solution, user must pick data source, stored in a
S3 bucket, and then configure data target. In order to set up it, he can select
an existing table in the Glue data catalog or he can ask to the service to
create a new one by specifying S3 target location and output format. Then,
it is possible to specify column mapping from source to target (default is
copy). In this way the job is created and a script is proposed with the corre-
sponding diagram to help visualize it. After its creation, user can run it, by
optionally pass runtime parameters and the service automatically provides
resources required to complete it. Finally, user can inspect logs or schema
table and, once the job is completed, also the statistics on rows could be read
and written. AWS Glue makes also easy to attach triggers to start job on a
schedule or on completion of other activities or to invoke it on-demand from
other services like AWS Lambda.

2.5 AWS SageMaker

In the 4.0 industry context, a large volume of discussion is around artificial
intelligence and machine learning. Main themes are related to:

• image recognition, to identify the subject in a photo;

• object detection, tracking and navigation for autonomous vehicles;

• speech recognition, which is developed for solutions like Amazon Alexa;

• algorithmic trading strategy performance improvement;

AWS SageMaker 29

• sentiment analysis, useful for targeted advertisements.

Amazon SageMaker is an AWS managed machine learning solution which
allows users to define, train and deploy machine learning and deep learn-
ing models to tackle previous presented challenges, removing most of the
heavy lifting on which for years data scientists spent a lot of time. Its main
console is divided into four parts which represent SageMaker features: the
first consists in managing Jupyter Notebooks which are open-source web
applications to write Python or other programming languages code and pro-
viding a lot of examples to look at. The second one consists in setting up
and managing training clusters, in the sense that user can spin up and run
instances to train machine learning algorithms with one click or one line of
code (inside a notebook), by simply calling the SageMaker API and its fit
method. This process spins up a number of servers (decided by the user),
trains the machine learning model and stores the results. At the end it shuts
the server down and user only pays per second the execution time. Then,
once the job is ended the corresponding model can be created and host in
SageMaker (third step) and in the fourth step it can be deployed behind an
endpoint to make future predictions. The real-time endpoint is auto scal-
able and it allows monitoring and debugging using other AWS services such
as CloudWatch. Indeed, it produces both metrics and logs, making users
able to monitor situation inside the instances that host the API endpoint.
It could be either privately accessible within VPC, Amazon Virtual Private
Cloud, or publicly hosted, giving the flexibility in terms of how API endpoint
has to be deployed but still keeping the benefits of auto-scaling and moni-
toring.
All these four steps should be combined and linked together to obtain an
end to end solution go from beginning to production, but they can also be
used independently. For instance, user could only use the notebook part if
the scope is just data discovering or he could use the deployment part if he
comes with a pre-trained model and the only need is to host and deploy it.
Indeed, SageMaker gives the option of using or not using any of its features
and for instance if user is not interesting in using SageMaker notebooks he
can still take advantage of the model training and endpoint deployment. The
possibility to pick and choose the favourite solution for the specific work-flow
comes from the fact that this service is not a work-flow for machine learning
but only a set of tools which allow users to create their pipeline for the spe-
cific job.

Focusing on notebook instances, to create a new element it is enough to
give it a name and select one of the available instance types (associated to a

AWS SageMaker 30

number of virtual CPU, amount of RAM and available disk space for stor-
age). Some examples are the t2 medium for small datasets and p2 which
is equipped with a GPU and it guarantees more power for larger and more
demanding datasets. Once created, familiar Jupyter environment and plenty
of examples written by AWS experts are available. It is also essential to
remember that data must be always stored in a S3 bucket, so before using
a notebook user must be sure to have a S3 bucket which lives in the same
region as the notebook instance.
As explained before working with SageMaker means not building everything
and for instance user may benefit from built-in SageMaker algorithms. In-
deed, AWS data scientists provide an implementation of them, leaving user
only the task of bringing its own data and use them to train and deploy the
model. 17 different algorithms are provided, which include:

• K-means clustering, unsupervised algorithm to identify a fixed number
of clusters of different dimension within data;

• PCA or principal component analysis, unsupervised algorithm to re-
duce the dimensionality (number of features) within a dataset, but still
keeping relevant information;

• Amazon SageMaker NTM (Neural Topic Model), unsupervised learning
algorithm to organize a corpus of documents into topics;

• Linear Learner, supervised learning algorithms to solve either classi-
fication or regression problems performing both linear regression and
logistic regression;

• XGBoost (open-source implementation of the gradient boosted trees),
supervised learning algorithm to accurately predict a target variable by
combining simpler and weaker models;

• Image classification, supervised learning algorithm to detect subjects
or to identify objects inside an image;

• DeepAR, forecasting algorithm for one-dimensional time series which
exploits neural networks. Predictions are based on combination of sev-
eral time series, because the idea is that when they move together
algorithm can learn across them, trying to better predict next hours,
days or weeks situation;

• K-nearest neighbors, index-based algorithm, to identify similarities be-
tween items. It classifies observations potentially very similar, tagging
them with the same identifier.

AWS SageMaker 31

If none of the previous solutions works for the considered use case, one option
is that user implements its own algorithm and it can still be supported inside
SageMaker as long as specific conventions are followed. It consists in creat-
ing a docker file and a source code, and insert all into a docker repository
provided with SageMaker access. In this way, the AWS service can execute
docker container, fire the code and train the model without user having to
manage all the heavy lifting.
Third option is to use SageMaker frameworks, including TensorFlow or Py-
Torch or Scikit Learn. This option helps users in training algorithms pro-
posed in the previous libraries and not already built-in. In other words even
if it is possible to use a Scikit Learn algorithm as an “own algorithm”, Sage-
Maker framework simplifies the training, since user does not have to write
its own docker file, but he has to simply specify the scikit file and follow a
specific convention for how the file will be retrieved by SageMaker.
There is also the possibility to integrate spark workloads into the pipeline as
a part of an overall ETL process; in this way user can gain the benefits of an
existing spark pipeline (for instance the one generated by AWS Glue) and
SageMaker at the same time.
Next aspect is the one-click training mentioned earlier. It is one click or one
API call to the SageMaker interface that executes the training for a par-
ticular machine learning model. The very important point of this step is
SageMaker’s ability to perform an automatic hyper-parameter tuning.
Final step consists in deploying the model into production with a fully man-
aged hosting provided with the auto scaling option. User has only to specify
minimum and maximum number of instances and their types and then ser-
vice, based on those instructions, hosts the model and gives metrics and logs.
An important SageMaker feature is the possibility to build multiple models
in the same endpoint, allowing to shift traffic from one model to another or
to compare their performances.

Giving a more general context, as explained before SageMaker notebook of-
fers the possibility to analyse raw data and to create prepared data sets that
can be used for the initial training. However, this is not the best solution,
because after having identified a proper preparation routine, user should go
back and start an ETL process using other tools like AWS Glue. On the
other side, during the exploration phases where the main point consists in
trying to identify what is relevant to the business case or to the machine
learning problem, usually a lot of iterations are performed, looking maybe
at smaller subsets of data: in Figure 2.2 it is possible to see this raw data
pre-analysis; indeed, SageMaker is more designed for ad hoc analysis and
data preparation for an initial test to investigate if the training is going to

AWS SageMaker 32

Figure 2.2: Amazon SageMaker basic architecture.

be successful or not. Once user identified a production state which is going
to use the same features for millions of rows, using other tools such as AWS
Glue is better.
Another relevant point which needs a deeper presentation comes from the
fact that the training phase does not happen only once but the necessity
of a parameters optimization makes it an iterative process. The hyperpa-
rameters optimization, HPO in Figure 2.2, represents an essential part in
every machine learning workload. SageMaker offers different possibilities to
tune the algorithm parameters. The first approach SageMaker gives user
the possibility to follow is a full grid search which means that each possi-
ble combination is inspected, becoming very computational expensive. With
only two different parameters there is a loop inside of a loop, and if number
of parameters increases a lot this approach will become not feasible. For this
reason it turns out that rather than doing a strict grid search according to
different documents and articles [3] a better solution could be a random
search, where the system randomly guesses the following parameters com-
bination. Finally there is also a third process where each choice is learned
from the past: the idea is that at each time and at each step the train-
ing system can learn from the parameters chosen and try to make a better
guess based on previous experience. Inside SageMaker there exists an imple-
mentation of the Bayesian optimization strategy which allows to realize
the process. To perform the hyperparameters tuning user has to specify a
range of values he wants to test and the chosen method to decide the next
parameters configuration (such as Bayesian optimization strategy) and the
system at each iteration chooses values within those ranges. User can also

AWS SageMaker 33

customize the regular expression used to scan the logs and to identify the
metrics used to compare the solutions obtained. Finally it is possible to set
also the number of total and parallel jobs being run. Moreover, from the
hyperparameter console it is possible to see the best training job and the
corresponding parameters value. For data scientist this is a relief because
it provides an automated mechanism which takes away a lot of the heavy
lifting that comes from the optimal parameters research.
The final relevant point is about endpoints. When the training is run user
only pays per second for the training job execution but when an endpoint is
running user pays for the possibility to make real-time predictions, i.e. there
is a maintenance cost. For this reason a good choice if user does not want
to make prediction on a regular minute-by-minute basis, is a batch transfor-
mation job with the same model. By choosing number and type of instances
and giving to it a set of input data, the system will run predictions and store
the output in S3.

Chapter 3

Introduction to proactive care

The context of predictive maintenance becomes a priority for a lot of
technological companies. This is the case of phones service providers, which
need to constantly monitor fixed networks. Proactive care allows firms to
anticipate possible issues and to reduce maintenance costs and churn rate.

3.1 Digital scenario

For years, the approach adopted by telecommunications companies (Telco) to
address and solve network devices problems encountered in their customers’
homes has been a reactive care one. An effort to solve a certain issue took
place only after it occurred, i.e. when a consumer explained the problem
to the customer care service, which took care of capturing the message and
activating the resolution actions. The analytics contribution was already in-
corporated into a reactive care solution, but its adoption was restricted to
detail more the analysis of both problems and related responses, trying to
provide a better user experience in case of a future similar contact. Basically,
the enormous amount of data generated was used only when there was an ac-
tive interaction between the customer and the telecommunication company.
However, with the possibility of collecting more and more technical data both
from the network and from the devices in the customers’ homes, many Telco
companies are shifting their interests towards an approach where data ana-
lytics plays a major role in solving a problem. As well as a more data driven
concept, new technology trends should completely transform the way Telco
design, size and operate moving to a better customer centrity approach
(customer segmentation with differentiated value propositions and quality of
service perceived) moving from a traditional bottom-up service monitoring
approach to a digital view of the service. Accenture Global Consumer Pulse

Digital scenario 35

Research (2017) reports some critical points about customers loyalty, show-
ing the extremely crucial role of the “quality” concept. Basing on the tested
population:

• 64% of surveyed globally switched providers (referred to all industries)
due to poor customer service.

• up to +80% switching could be avoided through a better service.

• 2 out of 3 of consumers extremely frustrated when a company delivers
something different than they promise up front.

Accenture Global Consumer Pulse Research confirms quality of the offered
services is more significant than price, indeed:

• more than 60% customers are not able to sacrifice quality for low price.
In fact, some of them are even willing to pay for them.

• more than 50% customers consider quality as one of the most important
criteria when conducting business with companies.

Machine learning and artificial intelligence could help developing a digital
transformation, addressing a 100% of the customer lifetime value, by provid-
ing both a methodology for dealing with the complexity of digital business
scenarios and working with large and constantly updated datasets due to the
introduction of new market factors.
This research could explain why Telco’s interests move from a reactive care
approach to a proactive care one, making possible to use information gained
to identify and address near real time devices issues. The customer could be
alerted that a certain problem has been fixed, or the latter may be fixed
through background processes without involving him. This task could be
performed by monitoring the status using deterministic KPIs and algorithms
able to trigger specific alarms when a fixed threshold is exceeded (digital
monitoring). However, the aim of this collaboration is to make one step
more reaching a state of digital prediction: activities are carried out in
background, using analytic tools and machine learning algorithms to identify
factors which are causing current problems or which are likely to cause future
problems. Thanks to very powerful regression and classification methods, the
idea is to create algorithms able to drive insights, understand correlations and
recognize symptoms (trends) potentially leading to customer calls. The dif-
ference between prediction and deterministic monitoring is that the former
based its approach on finding path leading to a status deterioration, while the
latter hypothesizes that if some monitored KPIs exceeded a fixed threshold

Business case 36

a deterioration is happening; however, in both cases the customer should not
perceive the problem. Finally, preventive actions to mitigate impacts on the
end user could be performed, i.e. before problem occurs. Basically, a series
of checks is performed in background, using analytics to anticipate potential
problems and to prevent consumers to contact customer care service.

3.2 Business case

The first step aims to identify the project’s stakeholders inside the client’s
company:

1. Customer care support: business dictionary defines the customer
support as set of services help customers in making cost effective, but
also correct use of a product [48]. Therefore, customer care service
focuses his activity on consumer’s experience, without any technical
knowledge, by using a reactive care approach to support him. Try
to understand customer’s observations and give him an instantaneous
feedback is the basis of a valuable customer care assistance and a good
service ensures a customer comfort feeling, in the sense that capital
and time spent in a product or in a service have been fully repaid.
The developing tool could be helpful for this figure, both reducing the
number of consumer complaints by dealing with a problem before it
arose and providing the operator with a tool able to give a possible issue
explanation (reactive approach), making customer feel more satisfied.
Moreover, the average handling time and the repeated call rate could
be reduce. To increase end user’s feeling of comfort, it appears to
be essential to provide him a sense of global understanding where the
company he chose is able to understand problems occurring.

2. Technical customer support: business dictionary defines the techni-
cal support as user-friendly assistance for customers which have tech-
nical problems with electronic devices [49]. Therefore, the technical
support service focuses his activity on solving a technical problem or
incident in the quickest and most convenient way possible. It is essen-
tial for the technical support operator to determine what did not (will
not) work properly and to restore the initial situation as soon as pos-
sible: if the customer does not (or will not) contact customer support
again, the technical activity is considered to be successfully completed.
The developing tool could help the technical figure in identifying the
potential future problem by allowing him to provide a quick solution
to the problem (proactive approach).

Business case 37

3. Assurance team: client’s assurance engineering team could be con-
sidered as the main driver of this approach, since they show an interest
in supervising the customer care service, trying to improve user expe-
rience: they commissioned this tool, they are the ones who will check
solution’s performance and they could be considered as promoters of
this new type of solution (proactive one). The developing tool could
be helpful for this figure to better understand the customer care world
as a means of maximizing user’s satisfaction.

Before presenting the proposed solution, it could be useful to focus deeply
on how data are integrated: a proactive monitoring of the line implies re-
trieving a large set of parameters from customers’ devices and homes
(customers’ CPEs) and enriched it with other source of data coming from
network systems. In telecommunications field, a customer-premises equip-
ment or customer-provided equipment, CPE, refers to devices, such as tele-
phones, routers and in general to any terminal equipment located in user’s
premises, which allow customers to access communications service providers’
services [52]. Data are elaborated to obtain quality performance indicators,
QPI, and key performance indicators, KPI, which could be compared with
meaningful thresholds, allowing users to constantly monitor network perfor-
mances and proactively identify troubles on the line (related to CPE health,
WAN issue, WLAN issue). When an indicator exceeds a cut-off level, an
alarm is captured and the customer care operator can proactively perform a
network optimization action to avoid customer complaint and do not let him
notice the situation. Moving from a proactive monitor to a predictive mon-
itor means that the large set of parameters retrieved before is used to train
predictive models. Once the algorithm is trained, it can be run over a new
sample of preprocessed data to label each customer’s line with a risk score,
reporting the probability of observing in the considered line a particular type
of issue (e.g. unstable line, slow connection): this approach makes easier to
identify customer at highest risk of issue (for a specific issue category). The
interaction is reported in Figure 3.1.
The first crucial step consists in defining datasets by collecting and analyz-
ing data through analytics and machine learning from various sources: those
information should make data analyst capable to identify the possible issue
that caused the customer claim. Some macro issue categories are identified
to classify processed data according to the use cases which will be defined
in the next section and then create predictive models to identify customers
at highest risk. In the future it could be interesting mapping each identified
macro issue category with a list of actions, based on past similar experi-
ences and customer care service’s capabilities, which could be performed to

Business case 38

Figure 3.1: Proactive care and homes’ devices interaction.

mitigate or fix the issue. Each use cases will be characterized by different and
specific performance and quality indicators, allowing to optimize algorithm
results (risk scores) by considering a target group and a control group.
Starting from exploiting the large quantity of data available and discover-
ing huge data potential, to monitor service quality as perceived by end user
and to support customer care operators moving from manual troubleshoot-
ing to an automatic recovery process, the idea is to identify customers at
highest risk of issue in near real time and to prevent future calls and trouble
ticket openings. The highlighted approach could hold some benefits for Telco
companies:

• face proactively customer claims;

• prevent trouble tickets opening;

• reduce operational expenses or OpEx and the average handle
time or AHT, which represents the average duration of a single trans-
action, generally computed from the customer’s call to complain until
the end of the tasks performed to solve that issue;

• reduce the churn rate, i.e. the number of individuals who abandon
the service in a given period;

• build long-term relationships with customers;

• improve first call resolution and the overall customer experience.

A cooperative bottom up collaboration is adopted with iterative cycles, strictly
linked to the client’s needs, to give more flexibility to project changes. For
this reason the project team performs a series of cycles where each iteration
is evaluated and required changes are determined to better adapt solution
to customer’s expectations. Effectiveness of the system will be evaluated by

Use cases and architecture 39

picking a representative customers sample, splitting it in two subgroups and
comparing a chosen indicator (e.g. tickets per customer) between them over
a predefined period of time: in particular, some of them will compose the
control group, where they will receive no suggestions, the others will compose
the target group, where they will be exposed to ticket opening probability. It
is required that both control and target group should be and remain statis-
tically coherent (achieved through a stratified segmentation) where the only
difference between the two groups should be the actions applied, avoiding
other external interactions.

3.3 Use cases and architecture

Focusing deeply on the use cases implemented, the figures below show schemat-
ically the interaction between Telco and customer domains. On the left there
is a telecommunication tower sending a signal to customers’ homes: a direct
collaboration with the client allows to define three possible use cases:

• WAN issue detection (Figure 3.2); the wide area network (WAN)
consists of a set of connected computer over a large area [54]. Combin-
ing data and parameters from customers’ CPEs and network systems
with the related customer calls and trouble tickets history, the aim is
to proactively identify issues on the WAN. Indeed, thanks to a continu-
ous evaluation of connection performances, the idea is to predict some
common issues on the network area, such as unstable line or slow
connection. When a specific problem is identified, or likely to occur,
based on predictive algorithms, recovery actions could be performed to
avoid customers complains.

Figure 3.2: WAN issue detection.

• WLAN issue detection (Figure 3.3); the wireless LAN (WLAN)
allows to connect some devices to create a local area network (LAN)

Use cases and architecture 40

inside a small zone, such as a home or a school [55]. Parameters are re-
trieved from the customers’ CPEs, gathering information on customers
wireless local network and service configurations to identify possible
issues, such as problems with Wi-Fi connection. Once a specific
problem is identified or likely to occur, based on predictive algorithms,
recovery actions could be performed to avoid customers complains and
to optimize local network performances.

Figure 3.3: WLAN issue detection.

• CPE status (Figure 3.4); more technical parameters are retrieved from
the CPE to analyse the device health status. Again, once a specific
problem is identified or likely to occur, based on predictive algorithms,
recovery actions could be performed to avoid customers complains.

Figure 3.4: CPE status.

Therefore, while digital monitoring means to detect one of the previous faults
in near real time to avoid customers dissatisfaction, digital prediction
means to detect the problem before it happens to prevent effects on the
customers (which implies no customers complains). In digital monitoring
alarm is raised in near real time as soon as the KPIs register the issue, in
digital prediction alarm is raised as soon as the probability, computed us-
ing predictive algorithms, of a particular issue to happen in the next chosen

Use cases and architecture 41

hours, exceeds a predefined threshold.
Before moving to the analytics part it could be interest to focus on the proac-
tive care architecture; gathering data directly from the customers’ homes is
at the same time very powerful, offering insights and information on how
the quality of the service is perceived from the customers, but also complex
and difficult to obtain. For this reason, this project required a strict col-
laboration with another internal team, the operations support system team.
They developed a tool, CEM Platform (Customer Experience Management),
already tested and adopted by the client, which is able to collect data and
integrate information from heterogeneous data to monitor customers’ devices
parameters. In particular they collect some parameters such as:

• reason for the complaint: which contains the reason motivated cus-
tomer calls to the operator;

• ticket troubles : which contains the information about a ticket opened
by a customer care agent;

• CPE data : which registers the technical parameters obtained from
the customers’ home devices and representing the largest amount of
data;

• disconnections : which contains the number of daily CPE disconnec-
tions. This information became available only later on, so it is retrieved
separately from the others;

Data collected can be divided into two different parts, depending on the dif-
ferent original source: front-end cpe data , coming for instance from modems
and wireless routers and back end data, such as network element data, net-
work inventory data, customer calls and ticket troubles. In telecommunica-
tion, the front can be considered as a device or service, i.e. the user visible
part allows interaction (user interface), while the back is the infrastructure
that supports provision of service, i.e. the part which allows the actual func-
tioning of these interactions. Data are collected in two ways: via real-time
data flows (for data coming from the CPEs and network) and via batch in-
gestions (for more static data, such as ticketing information) and stored in
a Hadoop file system. A service performs an initial mapping and valid and
invalid raw data and mapped data are stored in a data lake. Finally, trouble
ticket data and network status at the time of ticket opening are collected
and stored for model training; after that machine learning models are de-
veloped in Python using machine learning libraries provided by Spark ML
and other sources (this part will be examined in detail in next sections).

Use cases and architecture 42

Furthermore, the models are maintained by an automated pipeline, which
is used to retrieve and transform fresh data. Models are able to produce a
score for each input sample, meaning that when a customer calls to highlight
that a problem arises, the operator has the possibility to visualize all his
details: indeed, the Accenture operation support system already developed
a dashboard where data retrieved from consumers’ devices and network are
graphically visualized. The model scoring is added to the previous dash-
board, in the sense that when an operator receives a call, he could see the
current situation combined with the model prediction and he could make an
inference on the occurred problem. Results are also stored in a repository,
where a csv file contains all the model scores, allowing technical support
system to operate some background corrective actions.

Chapter 4

Algorithms background

Before moving to the training step, this chapter proposes a brief introduc-
tion on the algorithms which will be used to generate the predictive model.
Thanks to this presentation, reader will be able to understand the design
choice made in this project: after some initial tests, only tree algorithms
appeared to have enough good results.

4.1 Decision trees

The main idea behind these approaches consists in dividing the predictor
space (which is the set of distinct values the features can assume) into dis-
tinct sub-regions and once a new observation is retrieved, it is assigned to a
specific region and the predictive value is simply the mean or the median of
the training samples belonging to the considered zone. Regions are created
by defining splitting rules applied to the original predictor space and they can
be easily summarized in a tree, for this reason those algorithms are called
decision tree. They are very interpretable and simple, but unfortunately
they do not show competitive results, for this reason usually more trees are
combined together to produce one single prediction, making the solution less
interpretable but more accurate: different aggregation type generates differ-
ent models, in particular two will be inspected in next steps random forest
(maybe the most popular one) and gradient boosting. Both regression
and classification tasks could be solved by trees, but since the main project’s
goal is the predictive maintenance, this section focuses only on classifica-
tion trees where the prediction is a qualitative variable. Two are the main
steps to build a tree [11]:

• divide the predictor space into K non-overlapping and distinct sub-
regions called R1, R2, ..., RK ;

Decision trees 44

• once a specific sample is assigned to a certain region, the most common
training set class, contained in it, is considered the new observation’s
label;

To better understand the second step move to a practical example: suppose
after the splitting phase two regions are created, R1 and R2, and that the
most common class in R1 is call, while the most common class in R2 is
no − call event. This means that if a new sample x is assigned to R1 call
event will be predicted, if x is assigned to R2 no−call event will be predicted.
Focusing now on the regions creation, to divide the initial space only high-
dimensional rectangles are used, since they are extremely easy to interpret.
Basically, during the training phase, a set of partition is considered: each
one selects a specific feature and moves samples with that feature less than
a threshold to the left branch and the others to the right branch. Then for
each branch a new split could be considered and other two branches could
be created and so on until no more steps are required (it depends on the
algorithm configuration) [11]. Regions obtained once a branch is no more
separated are called terminal nodes or leaves of the tree; clearly trees are
created in a upside down approach, putting leaves at the bottom of the
tree and configuring a structure of internal points, called internal nodes, and
lines connecting them, called branches. The high-dimensional rectangles for a
classification task are created to minimize the classification error rate, which
is the fraction of the training set does not belong to the most popular class:

E = 1−max
k

(p̂mk) (4.1)

where p̂mk is the ratio of training set assigned to the m-th region and belong-
ing to the k-th class. This metric is not able to manage over-fitting related
to tree growing. For this reason two other metrics are also defined: the first
one is the Gini index,

G =
K∑
k=1

p̂mk(1− p̂mk) (4.2)

which measures the total variance across classes. It represents the node
purity and it takes small values when the considered node contains majority
of samples belonging to a single class, i.e. when p̂mk is close to 1 or 0. The
other considered metric is cross-entropy,

D = −
K∑
k=1

p̂mklog(p̂mk) (4.3)

Decision trees 45

Again this metric is related to node purity, in the sense that it takes small
values when p̂mk is close to 1 or 0, and it is numerically similar to gini index.
Obviously, since it is impossible to consider each single partition to find the
best possible tree due to the limited computational resources, a top-down
greedy approach is adopted where recursive binary splits are performed. It
is a top-down approach since the algorithm starts from the tree root and
ends when leaf nodes are created and it is a greedy approach since a specific
division is made to minimize a metric but without looking at the previous
partition, i.e. without computing a global minimization. Only binary splits
are considered, each time a single feature Xj and a cut-point s are chosen
such that the two subsequent regions {X|Xj < s} and {X|Xj ≥ s} will be
associated with the minimum possible value of the considered metric (error
rate or gini index or cross-entropy). This process is repeated but considering
only one of the two resulting sub-regions and not the entire features space and
so on until a stopping criterion is reached (an example of stopping criterion
could be the minimum number of samples in each region): at the end of the
fitting tree phase, in each created region R1, R2,..., RK the predicted value
corresponds to the most common class. Obviously, tree algorithms could
produce accurate results during the training phase, but they can overfit on
the test set. For this reason, it is better to create a less complex model with a
limited number of splits, leading to lower variance and better interpretation
at the cost of a little bias: the idea is to continue branching as long as a
stopping criterion is met [11]. Examples are provided in Figure 4.1.

Decision trees show some advantages and disadvantages, in particular they
could be graphically displayed and easily explained to people; they are more
similar to human behavior (divide the space into boxes) and they can handle
qualitative features, but on the other side their performances are not as well
as other predictive models such as logistic regression. For this reason more
advanced techniques have been developed, such as bagging and random
forest.

To understand reasons behind the approach used by these new classifica-
tion methods, reader must be made aware of bias-variance trade-off. It is
strictly linked with prediction errors and it allows to create a more accurate
model able to avoid overfitting and underfitting issues. Bias could be
defined as the gap between model excepted prediction and the corresponding
true value [22]. Biased models do not adapt themselves to the training data
and produce an error in both training and testing phase. Variance could
be defined as the variability of model prediction when only a single point is
considered [22]. Models with an high variance extremely adapt themselves to

Decision trees 46

Figure 4.1: Decision Tree: default stopping criterion (top) and more addi-
tional conditions to stop (bottom).

the training set, producing a small error in training phase but a large one in
the testing phase. To consolidate the concept, a regression practical example
is required. Setting Y the quantity to predict and X the set of covariates,
assume there exists a relationship such as:

Y = f(X) + e (4.4)

where e represents the error term, 0-mean normally distributed. A model
f̂(X) of f(X) is built, producing in any point x the expected squared error:

Err(x) = E
[
(Y − f̂(x))2

]
(4.5)

which can be decomposed as:

Err(x) =
(
E[f̂(x)]− f(x)

)2
+ E

[(
f̂(x)− E[f̂(x)]

)2]
+ σ2

e (4.6)

Decision trees 47

and representing as:

Err(x) = Bias2 + V ariance+ Irriducible error (4.7)

where the first term is the bias error, the second one is the variance error
component and the last one is the irreducible error, which takes into account
the data noise and it cannot be removed no matter how good the created
model is. In the Figure 4.2, top left model is an example of low variance and

Figure 4.2: Bias and Variance concepts graphical representation

high bias since predictions are not spread in the domain but shifted from the
target variable mean, while the bottom right is an example of high variance
and low bias since predictions mean is equal to the target mean, but they
are too much spread in the domain. The former represents the underfitting
episode, the latter the overfitting one. Finally, the top right represents a
wrong model, i.e. a model not suitable for the considered data, while the top
left the ideal one, quite impossible to reach.
In supervised learning, underfitting happens when a model is unable to
capture the underlying pattern of the data, for instance due to the lacking
amount of observations to build it or a too simple algorithm, while the over-
fitting happens when a model captures the data noise pattern, for instance
due to a lot of noisy datasets or very complex algorithms [22] (Figure 4.3).
To conclude, a too simple model with few parameters probably is not able to
well understand data pattern and it tends to have high bias and low variance,
while a too complex model with a lot of parameters probably is extremely
adapted to training data, producing high variance and low bias. The diffi-
cult step consists in finding the correct trade-off between underfitting and

Random Forest 48

Figure 4.3: Underfitting and overfitting concepts graphical representation

overfitting to minimize the total error in Equation 4.7, finding an optimal
balance of bias and variance to avoid the two negative options (Figure 4.4).

Figure 4.4: Bias and Variance trade-off

4.2 Random Forest

Back to the original presentation, one of the most critical part of decision
trees algorithms is their high variance, in the sense that when applied to two
input datasets, the output could be very different. On the other side a proce-
dure with low variance caused the model’s output to be quite the same, not
strictly dependent from the input dataset. Since user wants to avoid both sit-
uations and, unfortunately, the previous algorithms belong to the first class,
bootstrap aggregation or bagging technique is explored. It helps user
to reduce the statistical learning method variance and it is frequently used
for those types of solutions. Starting from a set of N independent samples

Random Forest 49

X1, ..., XN , characterized by a σ2 variance, samples’ mean X̄ has a variance
of σ2/N [12]. The bagging approach consists in choosing many training sets
1, 2, ..., K and used each one to build a model f̂1(x), f̂2(x), ..., f̂K(x). Each
f̂k(x) gives an output and the average (quantitative target) or the majority
vote approach (qualitative target) is adopted to obtain the final prediction
and a single low-variance statistical learning model is obtained:

f̂avg(x) =
1

K

K∑
k=1

f̂k(x) (quantitative target) (4.8)

In the categorical case the final prediction consists in the most common class
among the K outputs. However, having access to multiple training sets is
not always feasible and for this reason the idea is bootstrap, namely consider
multiple samples of the (single) initial dataset. Using the k th subsample
obtained, the f̂ ∗k (x) is trained and it produces an output which is combined
with all the others:

f̂bag(x) =
1

K

K∑
k=1

f̂ ∗k (x) (quantitative target) (4.9)

This is the bagging approach [12].

Random forests represent an improvement over bagged trees, able to decor-
relate the created trees. To understand why this could be important, suppose
there exists a feature whose importance is way higher than the other pre-
dictors; most of the bagged trees will involve in the first split this most
important feature. Therefore, the f̂ ∗k (x)s are quite similar one to each other
(correlated) causing the variance to not decrease as much as the trees would
be uncorrelated: bagging approach shows a small improvement over a single
tree.
For this reason, at each step only a random sub-sample of M features from
the entire set of predictors P is considered and the feature involved in the
split is searched inside the sub-sample. Each time M different random pre-
dictors are considered, where usually M '

√
P , i.e. the total considered

variables at each step is roughly the square root of the initial set of features.
Basically, in each split the random forest algorithm cannot consider the ma-
jority of the variables and, coming back to the practical example before, on
average the (P −M)/(P) of the total separations do not take into account
the most relevant feature, decorrelating the trees.
To conclude, bagging and random forest only differ from the number of fea-
tures considered at each split, only a sub-set versus the entire set: indeed, a

Extreme Gradient Boosting 50

random forest with M = P is a bagging. Small values of M could be helpful
when the set of initial features contain a lot of correlated variables [12].

4.3 Extreme Gradient Boosting

Extreme Gradient Boosting or XGBoost [5] could be considered an-
other alternative to decision trees. It is a scalable machine learning system
for tree boosting and it showed incredible results in a lot of machine learning
competitions such as the Kaggle ones. The great advantages of this recent
algorithm is the scalability, which makes it able to run faster than other clas-
sical solutions if built on a single machine and also able to scale up to billions
of parallel resources in case of distributed or memory-limited conditions. In
particular, new innovative approaches are examined, such as:

• the capability to handle sparse data;

• the weighted quantile sketch approach making the split finding less com-
putational intensive;

• an innovative sparsity-aware approach to deal with null and missing
values.

First step consists in presenting the supervised learning algorithm gradient
tree boosting: assuming that the input data are composed by n examples,
each defined in Rd, i.e. d is the number of features. Defining D = {(xi, yi)}
where xi ∈ Rd and yi ∈ R, a tree ensemble model combines K (trees) predic-
tions to obtain the final value:

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F (4.10)

where F = {f(X) = wq(x)} is the CART, the set of classification and
regression trees. Then, defining T as the number of leaves in the tree,
a function mapping each observation to one leaf index could be created
q : Rd → T,w ∈ RT . So fk is associated to a single tree structure, inde-
pendent from the others, and with leaf weights w. An example is provided
in Figure 4.5 where the aim is to identify whether someone could appreciate
a new computer game. Each family member is assigned to a leaf and it is
labelled with the corresponding leaf score. The reader could be a bit con-
fused by this approach, expecting a categorical value instead of a continuous

Extreme Gradient Boosting 51

Figure 4.5: Example of tree ensemble model. Final output is obtained by
summing the score in each tree

one, but the CART is different from decision trees where leaves only contain
categorical prediction; a score is assigned to each leaf, giving user a deeper
information going beyond the classification. Reader could ask which is the
difference between random forest model and boosted trees. Actually, they
are quite similar since both based their own approach on tree ensembles. The
difference comes from the training phase: in the xgboost algorithm the set
of fks are obtained by minimizing the regularized objective function:

L(φ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

(γT +
1

2
λ||w||2) (4.11)

where l is a differentiable convex loss function, measuring the difference be-
tween the true values yi and the predicted ones ŷi, and Ω is a penalization
term depends on the model complexity (useful to avoid over-fitting issue).

To train the model a required step consists in identifying functions fk con-
taining the tree structure and leaf scores. Clearly, it is much more difficult
than traditional optimization methods in an Euclidean space, which simply
consider the gradient and set it to zero. Instead of learning all the parame-
ters in one single step, an iterative approach is adopted: adding at each step
ft which most improves the model according to Equation (4.11). Letting ŷ

(t)
i

the prediction at the iteration t−th of the i−th observation, a typical schema

Extreme Gradient Boosting 52

could be showed:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi)

(4.12)

and the objective function becomes:

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xt)) +

t∑
k=1

Ω(fk)

=
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xt)) + Ω(ft) + const.

(4.13)

In order to solve the previous equation, a second order approximation could
be performed; recalling that for a generic two variables function f(x, y) whose
first and second partials exist at the point (x0, y0), the second order approx-
imation around (x0, y0) is:

f(x, y) ' f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)+

+
fxx(x0, y0)

2
(x− x0)2 +

fyy(x0, y0)

2
(y − y0)2+

+ fxy(x0, y0)(x− x0)(y − y0)

(4.14)

The obtained relationship around (yi, ŷ
(t−1)
i) is:

L(t) '
n∑

i=1

[
l(yi, ŷ

(t−1)
i) + gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) (4.15)

where gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i) and hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i) represent the first and

second order loss function gradient (all other partial derivatives are equal to
0). Removing constant terms the equation to be minimized becomes:

L̄(t) =
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) (4.16)

Extreme Gradient Boosting 53

Then, after defining Ik as the set of observations contained in the leaf k, i.e.
Ik = {j|q(xj) = k}, Equation (4.16) could be written as

L̄(t) =
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ γT +

1

2
λ

T∑
k=1

w2
k

=
T∑

k=1

(∑
i∈Ik

[
giwk +

1

2
hiw

2
k

])
+ γT +

1

2
λ

T∑
k=1

w2
k

=
T∑

k=1

[
(
∑
i∈Ik

gi)wk +
1

2
w2

k(
∑
i∈Ik

hi) +
1

2
λw2

k

]
+ γT

=
T∑

k=1

[
(
∑
i∈Ik

gi)wk +
1

2
(
∑
i∈Ik

hi + λ)w2
k

]
+ γT

(4.17)

and fixing the algorithm structure q, solving for w∗k to find the function’s
minimum (convex function), the point obtained is:

w∗k = −
∑

i∈Ik gi∑
i∈Ik hi + λ

(4.18)

and the corresponding value is:

L̄(t)(q) = −1

2

T∑
k=1

(
∑

i∈Ik gi)
2∑

i∈Ik hi + λ
+ γT (4.19)

This L̄(t)’s role is similar to the impurity random forest’s score and it can be
used to select the best possible split: basically it tries to capture the goodness
of a tree structure q. Considering IL and IR as the set of observations in the
left and right nodes created after the split and considering I = IL ∪ IR the
loss reduction is:

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (4.20)

and it can be used to choose the best split among all the possibilities.

In addition to the regularization term, there are also two other possibili-
ties to avoid overfitting: the first one is the shrinkage, which similarly to
the learning rate in stochastic optimization it decreases single trees’ weight
in order to leave the possibility for future trees to improve the model, and
the other one is the column sub-sampling, which selects only a sub-sample

Extreme Gradient Boosting 54

of columns to fit the model [5].

One of the tree-based algorithms most critical problem is to find which is
the best split to be performed in a specific step. Since an exact greedy
algorithm where each possible solution is evaluated seems to be inefficient,
especially if data do not fit entirely into memory, a significantly lighter so-
lution is explored, called weighted quantile sketch. It is an approximate
split finding algorithm, which could be divided into two step:

• choose only a subset of the possible splitting points;

• consider each features split, aggregate the statistics and according to
them find the best solution.

More in detail, the first uses quantiles to determine the candidate points.
For instance assume there exists only 1000 possible split points, called {x1, ..., x1000},
a proper approximate approach could be consider only the 100-quantiles split
points {x100, x200, ..., x900} which reduces the computational cost. Theoreti-
cally, XGBoost approach is the following: supposeXk = {x1,k, x2,k, x3,k, ..., xnk}
is the set of all observations k-th feature, define a rank function rk : R →
[0,+∞) as

rk(z) =
1∑
x∈Xk

h
∑

x∈Xk,x<z

h (4.21)

which expresses the percentage of observation whose k-feature value is smaller
than z.
Starting from the defined function, the set of splitting points {sk,1, sk,2, sk,3..., sk,l}
could be found such that

|rk(sk,j)− rk(sk,j+1)| < ε , sk,1 = min
i
xi,k , sk,l = max

i
xi,k (4.22)

The role of ε parameter is allowing the algorithm to consider only quantiles.
Basically, there will be 1/ε points, i.e. if ε = 0.1 more or less 10 splits will be
consider. Then, since having a lot of continuous points already well classified
makes useless to divide them, the main point is to consider very difficult to
learn dataset parts. In order to reach the goal weighted quantiles are used,
where hi is the weight of i-th observation. Equation (4.16) can written as:

n∑
i=1

1

2
hi
[
ft(xi)− (−gi/hi)

]2
+ Ω(ft) + constant (4.23)

Extreme Gradient Boosting 55

where −gi/hi is the label and hi is the weight. Indeed

n∑
i=1

1

2
hi
[
ft(xi)− (−gi/hi)

]2
+ Ω(ft) + constant

=
n∑

i=1

1

2
hi
[
f 2
t (xi) + 2

ft(xi)gi
hi

+ (gi/hi)
2
]

+ Ω(ft) + constant

=
n∑

i=1

[1
2
hif

2
t (xi) + ft(xi)gi +

g2i
2hi

]
+ Ω(ft) + constant

(4.24)

and the third term in the square brackets is constant since both gi and hi
are determined by the previous iteration t− 1.
The second step consists in selecting the best solution according to the statis-
tics obtained; there are two algorithm variants depending on when the sk,js
are chosen:

• global variant, where all splitting points are proposed during the initial
phase of tree building and they are used for each tree level;

• local variant, where the splitting points are changed after each split.

The former requires less proposal steps but more points to obtain a satisfac-
tory result, the latter refines the choice after each new separation and it is
more suitable for deep trees [5].

Figure 4.6: Tree structure with default directions.

Another important algorithm component is called sparsity-aware split find-
ing. Since in a lot of classification/regression problems the data matrix X is
sparse, XGBoost developers configure for each of the created node a default
direction (Figure 4.6). The sparsity-aware ability is essential since sparse
matrices are not so rare and they could be generated by:

Extreme Gradient Boosting 56

• missing values;

• output of a specific preprocessing step, such as one-hot encoding;

This approach allows to classify an observation even if the value of splitting
feature is missing, by configuring the best default branch determined from
the data. To be more clear consider a node with 100 observations and a fea-
ture which registers if the user has already rented a car. The idea is to create
two new branches, one for the positive answer (Yes) and one for the negative
(No). Assume input data could be classified into three distinct group: group
A composed by 35 users who have already rented a car, group B composed by
55 users who have never rented a car and the group C where this information
is not available and it is only composed by 10 users. The algorithm divides
easily the two groups A, B and to understand how to classify the group C,
it tries the combination A+C (Yes), B (No) and A (Yes), B+C (No), then
it computes the value to be assigned to the generated leaves using all the
training data. Next, the loss is computed in both cases and the solution
chosen is the one able to minimize the error [5].

Finally XGBoost shows also other interesting characteristics more related
to the system design, such as column block for parallel learning, cache-aware
access and blocks for out-of-core computation. However, this part is outside
the scope of this thesis and it is not deepened, but further information is
available on the official algorithm presentation.

Chapter 5

Implementation: dataset
presentation and exploration

The previous introduction has been useful to describe the project’s back-
ground, the ideas that inspired it, the concepts and the design that drove it
since first meetings. The reader had the possibility to understand the im-
portance of a strict collaboration between two internal teams and to have
a general idea of how data are collected from private homes. Now it could
be interesting to focus more on the analytics part, by considering the en-
tire artificial intelligence flow until the model results. First of all a periodic
data extraction is performed, bringing up-to-date information from CEM
Platform to analytics cloud, then data are processed, algorithms tested and
models trained. The final step consists in deploying and running the model
by distributing machine learning models and computing real time scoring.
More efforts will be spent presenting each single step, allowing reader to bet-
ter understand the entire pipeline.

5.1 Data extraction

Periodic data extraction is composed by:

1. Data extraction , from CEM - events pipeline to CEM – post processors
file systems : when a new set of data is retrieved, it is exported as a
zipped CSV file in a directory on the file system of each post processor
node.

2. Data push, from CEM – post processors file systems to AWS analytics
cloud – data loader server : on each post processor node a scheduled

Data preparation 58

python script will scan periodically the output directory and push the
files on the data loader server into AWS analytics cloud.

3. Data Extraction/Push, from CEM - MongoDB to AWS analytics cloud
– data loader server : a scheduled python script, will export metadata
(static) into files from MongoDB database, then it will push these files
into AWS analytics cloud (data loader server).

4. Data Push, from AWS analytics cloud – data loader server to AWS
analytics cloud – S3 storage : a dedicated script will move the files
loaded on the data loader server into the S3 storage to make them
available for future analysis.

Once data are stored in a S3 bucket, they can be easily examined by down-
loading them. Briefly the input data consists in:

• parquet files containing reasons for a specific complaint in a timestamp
for a single CPE;

• parquet files containing ticket technical information after been opened
by an operator;

• parquet files containing anagraphic information about a single CPE
and a single line;

• csv files containing raw measures, i.e. all the technical parameters
retrieved from customers’ CPEs each 15 minutes.

5.2 Data preparation

All previous datasets are joined in a consistent way, combining raw measures
with ticket troubles and anagraphic information. While it is quite easy to
combine raw measures with anagraphic information, it appears to be not so
easy to understand how to link a ticket opening to a raw measure related
to same CPE technical parameters. Knowing that a certain consumer calls
to report a problem, when does that problem truly appear or begin? This
has been one of the most difficult part during the project planning, since it
requires to take into consideration customers behaviour: some of them can
contact immediately the customer service, others could wait hoping that the
issue will be solved in few hours. It could happen that a problem occurring
in the morning is perceived from the customer only when he will be back
home in the evening after working day or an issue in the weekend maybe it

Data preparation 59

will not be captured until Sunday night. Those are only some of the possible
scenarios, but make the readers aware of the complexity of this phase. At
the end, always in a strict collaboration with the client, the final project
choice has been to consider a time window of 36 hours before. A graphical
representation of the choice is reported in Figure 5.1

Figure 5.1: Creation of the target variable.

Then, a graphical examination of the data to find unusual observations far
from the mass of data is performed (Figure 5.2). It appeared that some
observations, called outliers, showed some unusual KPIs values: to avoid
leading to wrong conclusions they are removed.

Figure 5.2: Plot of an example of aggregate KPI distribution.

Then, efforts moved to a special type of features : the derived ones. In
particular, there are some data reporting the result of an aggregation made

Data preparation 60

with a specific time window. In order to standardise out dataset and to
keep more control on the aggregation time window, those features have been
eliminated to be computed manually from the initial raw measures in the
next step. After that, new key indicators are introduced and others are
customized for our task (for instance the line of the age is changed in new
and old customers basing on a predefined threshold). Then, a more detailed
focus on the target variable is needed: ticket argument, which represents
for each single customer’s call the reason behind it. Obviously, since we
perform a left joined between the raw measures, whose granularity is 15
minutes, and the ticket opening on the unique CPE’s id, the field related to
ticket argument is often a null value since no call occurs. Then, according to
the client’s needs we decide to restrict our analysis only to a subset of the
entire ticket arguments; the considered use cases are:

• call received;

– wi-fi issue;

– unstable line;

– slow line;

• no call received;

Figure 5.3 and 5.4 display how ticket reasons are distributed over a prede-
fined period. While the former is an aggregate view, the latter shows more
in detail the daily distribution.

Figure 5.3: Pie chart representing a ticket arguments distribution over 3
months.

Clearly, the dataset is unbalanced since the number of customers that do
not call is higher than the customers that call; for this reason the idea is to
perform a stratified sampling creating a dataset by keeping 10% of the not
null target variable (with respect to the null target variable) and a constant

Data preparation 61

Figure 5.4: Stacked bar chart representing ticket arguments distribution over
3 months.

Figure 5.5: Comparison between train and test size.

percentage of some predefined features (this step is completed in a strict col-
laboration with the client).
Next step consists in creating the derived features by aggregating them con-
sidering different time windows (e.g. 2h , 12h, 24h, 1 week) and computing
the average, standard deviation, the maximum and the minimum value. This
approach is motivated by two different reasons:

• features augmentation : increasing the number of available features
in order to maximize the performances;

• reduce data variability : related mainly to mean computation, mak-
ing new feature distribution a more gaussian-like one.

Finally we manage missing values in data, distinguishing between three types:

• missing raws: an entire raw measure is populated with null values (this
means that a station is not sending information) and it is removed from
dataset;

Model pipeline 62

Figure 5.6: Compute mean function to the original data distribution.

• missing values: only some features are populated with null (this implies
a temporary local problem) and they are imputed using the mean value
for numerical features and the most common one for the categorical
features;

• missing derived: only derived features are populated with null (this can
happen after a router restart) and they are imputed using the mean
value.

At the end of this part we obtain a large dataset, ready to be trained, with
more than 700 columns and 1 million rows : for this reason Apache Spark
unified analytics engine for large-scale data processing is used, exploiting the
machine learning algorithms already developed in its libraries.

5.3 Model pipeline

Before presenting the proposed solution it could be important to underline
the idea which guides it. The client showed an interest in anticipating the
line troubles before they happen and he requested a model which has as
main goal to be very precise. In particular it would like to be sure that if
the trained model predicts a customer call, there will be truly a problem on
the line. In other words, he is interesting in a model with high level of call
precision. In a classification binary task, it is possible to identify two distinct
classes: the positive class (in this case it is the call event) and the negative
class (in this case it is the no call event). Then, a true positive (TP) is an
outcome where the model correctly predicts the positive class and, similarly,
a true negative (TN) is an outcome where the model correctly predicts the
negative class. On the other side, a false positive (FP) is an outcome where
the model incorrectly predicts the positive class while a false negative (FN)
is an outcome where the model incorrectly predicts the negative class. Using

Model pipeline 63

these 4 different values it is possible to compute some metrics to evaluate
classification performances. In particular [56]:

• accuracy, which represents the fraction of correctly predicted samples
with respect to the entire dataset. This is useful when the dataset is
balanced, i.e. number of positive and negative labels are quite similar
and when a false positive is as serious as a false negative one.

accuracy =
TP + TN

TP + FP + FN + TN
(5.1)

• precision, which represents the fraction of correctly predicted positive
samples with respect to the entire positive predictions made. This is
useful when incorrectly predict the positive class must be avoided.

precision =
TP

TP + FP
(5.2)

• recall, which represents the fraction of correctly predicted positive
samples with respect to the number of positive samples. This is useful
when incorrectly predict the negative class must be avoided.

recall =
TP

TP + FN
(5.3)

• F1 score, which represents the weighted average of precision and recall
able to consider both false positives and negatives. It results to be
usually more useful than accuracy, especially when the two classes are
unbalanced.

F1 score = 2 ∗ recall ∗ precision
recall + precision

(5.4)

Another important element in the analysis will be the confusion matrix,
an NxN table that summarizes the quality of a classification model. One axis
of confusion matrix represents the true label while the other one the model
predictions and N is the number of classes.

The most important metric for this project is the precision of the positive
class. However, also another metric which represents how well the model
recalls the class, is taking into account. Basically, there is also an interest in
knowing how many customers calls the model is able to capture.
To perform a solution which fully satisfies the client, the pipeline is splitting
in two main steps by considering different target variable values. First of all
we consider a binary classification model, where we want to predict if a
call will occur or not, by creating the following objective variable:

Model pipeline 64

data = data.withColumn('target',

when((col('tick_arg').isNull()),0).otherwise(1))

In this way we are able to give an instantaeous feedback to the client, making
him aware whether there will be a customer call in the future: at the end of
this step we have a binary classification trained algorithm. Since the client
is also interested in knowing where the problem will occur, a second step
is performed. After filtering the initial dataset to consider only not null
ticket arguments, a multiclass target variable is created using the following
objective variable:

data = data.where(col('tick_arg').isNotNull())

.withColumn('target',when(col('tick_arg') == 'WIFI', 0)

.when(col('tick_arg') == 'CONNESSIONE LENTA', 1)

.when(col('tick_arg') == 'CONNESSIONE INSTABILE', 2))

At the end of this second step we have a multiclass classification trained
algorithm, able to identify a specific issue. Therefore, thanks to the two
considered steps we are now able to predict both if a problem/call will occur
and give an explanation of the reason behind it. Then the model output
changes moving from a simple prediction (call/no call and type of issue)
to a probability that a certain event will happen. In particular, when a
new sample becomes available, it is sent to the model pipeline producing the
following output:

• the first step produces as output the probability of a future call event,
with the schema reported in Table 5.1:

Sample Probability of call Call/No Call prediction

Sample1 0.8 Call

Table 5.1: Call/ No Call binary prediction model.

• the second step produces as output the probability of each considered
issue (wifi, unstable line, slow line), with the schema reported in Table
5.2:

To conclude, the last design choice made consists in providing the second step
probability also for the sample whose prediction is no call: in this way the
client has always the possibility to completely monitor the situation, giving
him a large quantity of information.

Features selection 65

Sample Probability of call Wifi Unstable Line Slow Line

Sample1 0.8 0.5 0.3 0.2

Table 5.2: Issues multiclass prediction model.

5.4 Features selection

From the big data theoretical chapter, reader has already understood that
during the last few years data dimensionality grew exponentially. This rep-
resents a tricky aspect for machine learning algorithms which have to face
problems such as the curse of dimensionality, the large amount of stor-
age space required and an high computational cost. Therefore, the interest
in techniques able to select only relevant information increases continually,
making these approaches quite general and suitable for a lot of fields. Di-
mensionality reduction represents feature selection main goal, allowing to
improve learning performance, i.e. an higher learning accuracy, a lower com-
putational cost and a better model interpretability; the key concept consists
in removing irrelevant, redundant and noisy information [26]:

• irrelevant features : they do not help distinguish observations belong-
ing to different clusters, in case of unsupervised learning, or different
classes, in case of supervised learning. It is important to remove them,
because they cannot improve algorithm ability and they can confuse
the training model and cause computation inefficiency. Figure 5.7a
and 5.7b show the difference between a relevant feature and an irrele-
vant one: in the first f1 helps to correctly identify and classify the two
classes, while in the second f2 is irrelevant to distinguish class 1 from
class 2;

• redundant features : individually they could provide useful infor-
mation, but due to the presence of another feature, they become re-
dundant, i.e. after removing them the learning performance does not
change. Figure 5.7c helps to explain this concept, indeed f6 is useful to
classify the two classes, but when f1 is considered before, the previous
one does not provide new information and it becomes redundant;

• noisy features : generally they provide relevant information, but since
they introduce also a noise in data processing they are rarely consid-
ered relevant for analysis. Figure 5.7d underlines how feature f4 can
distinguish only some data points, introducing a confusion in learn-
ing model by putting together elements belonging to different classes.

Features selection 66

Figure 5.7: Concept of irrelevant, redundant, and noisy features. (a) Relevant
feature. (b) Irrelevant feature. (c) Redundant feature. (d) Noisy feature.

However, it is essential to remember that sometimes two noisy features,
once combined, could improve learning performances.

Dealing with high dimensional data is become a common situation in a lot
of fields, such as data mining and machine learning, where the amount of
information uncontrollably grew during the last few years. The increasing
amount of data dimensionality obliged data scientist to deal with new com-
plex problems. Some examples are overfitting due to the limited number
of training samples, the curse of dimensionality due to the elevate number
of dimensions, the existence of irrelevant, redundant and noisy features and
finally the large amount of time and memory required. Techniques to reduce
data dimensionality could be divided into feature extraction and feature
selection, both able to improve model building and to decrease storage space
needed to process data. Feature extraction consists in mapping the original
space into a low-dimensional one through a combination of starting features,
but the new generated variables loose their physical meaning, making the

Features selection 67

solution less understandable. On the other side feature selection consists
in considering only some of the starting features and it keeps the original
dimension meaning, making this second approach better for readability and
interpretability [26].

Back to the project, after removing some irrelevant features from the analy-
sis (such as the ones with too much missing values), the project decision is
to perform two different features selection, one for each classification task.
The next lines will expose the general approach used in both cases, since it
is almost the same (except for the target variable type).
Working on the project case, the initial set of features is divided in numer-
ical and categorical ones using the following python code:

def divide_features(sub_sample):

categorical_features = []

numerical_features = []

for i in range(len(sub_sample.columns)):

type_ = sub_sample.dtypes[i][0]

if sub_sample.dtypes[i][1] == 'string':

categorical_features.append(type_)

else:

if sub_sample.dtypes[i][0] != 'target':

numerical_features.append(type_)

return numerical_features, categorical_features

Then two different types of features selection are performed: supervised and
unsupervised ones. For the numerical features:

1. supervised features selection based its approach on the supervised
learning algorithms: in particular, random forest and logistic re-
gression algorithms are implemented. By keeping the default param-
eters, two models are trained using the initial dataset producing a list
of the models most important features, where the features importance
is retrieved from the features importances method of random forest or
coefficients method of logistic regression. Between the two algorithms
only one is selected, the most performing one (according to the preci-
sion metric, as explained before), use the following python code:

def best_values(accuracy_list,coef_list):

best_accuracy = 0

for i in range(len(accuracy_list)):

if accuracy_list[i] >= best_accuracy :

Features selection 68

best_importance = coef_list[i]

best_accuracy = accuracy_list[i]

return best_importance,best_accuracy

Only the best features are selected (level of importance > specific
threshold): this selection is motivated by a graphical inspection: it
is clear that there exists a sort of elbow in the plot, pointing out that
below a fixed threshold all the other features could be considered as
useless to the analysis (Figure 5.8).

Figure 5.8: Random forest features importance for the binary model.

2. unsupervised features selection based its approach on the Spearman
correlation: in the first step the most correlated features are removed
in order to avoid redundant information (correlation > 0.9), then cor-
relation between target variable and all other features is computed and
only the most correlated ones are kept. Correlation is inspected in the
Figure 5.9.

For the categorical features:

1. unsupervised features selection based its approach on the Spearman
correlation: in the first step the most correlated features are removed
in order to avoid redundant information (correlation > 0.9), then cor-
relation between target variable and all other features is computed. We
can see the correlation in the Figure 5.10. However since the number
of categorical features is not so high, the final decision was to ignore
the Spearman correlation output;

Features selection 69

Figure 5.9: Correlation between target variable and some numerical features.

2. checks if the categorical feature contains at least two distinct values,
otherwise it is useless for the analysis.

Figure 5.10: Correlation between target variable and some categorical fea-
tures.

At the end the script combines the two lists and store the results on S3 to
be used for future analysis.

Chapter 6

Implementation: algorithms
development

6.1 First step: binary classification

The choice of using Apache Spark defines the solution’s starting point, con-
sists in running a Spark Session. In particular spark − 2.4.1 − bin −
hadoop2.7.tar is downloaded and uploaded to a specific folder and then the
environmental variable SPARK HOME is set to the folder’s path: this al-
lows user to keep control on the Spark version. Used Spark configuration is
created in the code below and reported in the Table 6.1.

import os

import boto3

os.environ["SPARK_HOME"] = "spark_home"

from pyspark import SparkContext, SparkConf

from pyspark.sql import SparkSession

import sagemaker

from sagemaker import get_execution_role

import sagemaker_pyspark

Configure Spark to use the SageMaker Spark dependency jars

jars = sagemaker_pyspark.classpath_jars()

classpath = ":".join(sagemaker_pyspark.classpath_jars() +

First step: binary classification 71

['other packages'])

spark = SparkSession.builder\

.config("spark.driver.extraClassPath", classpath)\

.master("local[*]")\

.getOrCreate()

region='considered_region'

spark._jsc.hadoopConfiguration()

.set("fs.s3.awsAccessKeyId", access_key)

spark._jsc.hadoopConfiguration()

.set("fs.s3.awsSecretAccessKey", secret_key)

spark._jsc.hadoopConfiguration()

.set('fs.s3.endpoint', 's3.{}.amazonaws.com'.format(region))

Spark Context
Spark Version Master AppName
v2.4.1 local[*] pyspark-shell

Table 6.1: Spark configuration.

The dataset is retrieved from S3 and after selecting only the features to be
kept (this information is registered in S3) an AWS Glue process is run:
the first step consists in calling Glue APIs using the role linked to the AWS
user account. This is possible from the AWS dashboard, searching for the
configured roles and adding AWS Glue as an additional trusted entity. Data
preprocessing applied is composed by the following steps [53]:

• reading from S3 the selected features;

• StringIndexer, which transforms a string format column of labels to
a integer format column of indices, whose value is in [0, numLabels);

• OneHotEncoderEstimator, which transforms, according to the of-
ficial documentation, a categorical feature to a binary vector which
testifies the presence of a specific feature value between all the exist-
ing values. OneHotEncoderEstimator could be applied also to multiple
columns, applying the previous approach to each single input column
and it gives also user the possibility to set handleInvalid parameter to

First step: binary classification 72

decide how to tackle invalid input: for instance “keep” to assign to
them an extra categorical index or “error” to force an error;

• VectorAssembler, which collapses a set of specified columns into one
single vector column. VectorAssembler works for numerical, vector and
boolean type columns, concatenating them using the defined order for
each row.

• StandardScaler, which normalizes each feature to have zero mean
and/or unit standard deviation. According to the parameters withMean
and withStd’s value, it subtracts the mean from each feature (zero
mean) or it scales data dividing each feature by its standard deviation
(unit Std).

Figure 6.1: AWS Glue Preprocessing: example of running script

Figure 6.2: AWS Glue Preprocessing: example of failed script

First step: binary classification 73

In this step we used the AWS Glue possibility to work with a customized
pyspark script to perform an ETL process. Situation can be easily monitored
by Glue dashboard (as reported from Figure 6.1 to Figure 6.4). Finally post-
processed dataset is split in 80−20 train and test set and on S3 the following
objects are uploaded:

• csv files containing the training set;

• csv files containing the test set;

• the serialized model so that it can be used with SageMaker for inference
later;

Apache Spark is best suited batch processing workloads, but in order to use
the Spark ML preprocessing trained for future inference, the MLeap library
is required to serialize it, by using the SerializeToBundle() method: in this
way it is possible to exploit SageMaker SparkML service to make future real-
time or batch inference. In order to make this functionality available in the
preprocessing phase, it needs to pass MLeap dependencies to Glue. As the
majority of Spark packages, MLeap is implemented as a Scala package with
a front-end wrapper written in Python and for this reason it could be used
from PySpark [57].
Next step consists in setting both the transformed dataset output location
and the MLeap serialized model location: getResolvedOptions method of
AWS Glue library helps to reach this goal. Then, Glue client is configured
using Boto3 python library and the create job Glue API is invoked to ini-
tialize a Glue job. After passing the code location and the dependencies
location, the API creates an immutable execution based on job parameters
set before. Once the Glue job has succeeded, data into S3 are trasformed in
csv format and they can be used for training [57].

Three algorithms are adopted during the training phase, two use the scikit-
learn customized library and the third one is a SageMaker built-in algorithm.
With Scikit-learn Estimators, it is possible to train and deploy Scikit-learn
models on SageMaker in a two-step process [58]:

• prepare a Scikit-learn script to run on SageMaker;

• run this script on SageMaker via a SKLearn Estimator.

The first should be a file uploaded in a different source file than the notebook
used to train the algorithm via SKLearn Estimator. First step is to create
a .py Scikit-learn training script composed by a main function, where data

First step: binary classification 74

Figure 6.3: AWS Glue Preprocessing: log inspection

Figure 6.4: AWS Glue Preprocessing: how to monitor the status

are retrieved from S3 and algorithm hyperparameters are set. Then, the
fit method is invoked and the relative model is trained: finally a score is
computed on the test set. In addition to the main function which must
contain the previous defined steps, also others must be defined inside the .py
script. One is the model fn function which is required to load the model.
The model fn schema is [58]:

def model_fn(model_dir):

and it returns an object.
Then, SageMaker could serve the model. Model serving represents the set
of steps which return answer to an inference request, received by SageMaker
InvokeEndpoint API calls. The SageMaker Scikit-learn model server man-
ages input requests into three steps: input processing, prediction and output

First step: binary classification 75

processing, by defining those functions inside the .py script. Each step in-
vokes a python function, whose input and output values are explained in the
following chain [58]:

Deserialize the Invoke request body into an object we can

perform prediction on

input_object = input_fn(request_body, request_content_type)

Perform prediction on the deserialized object, with the

loaded model

prediction = predict_fn(input_object, model)

Serialize the prediction result into the desired response

content type

output = output_fn(prediction, response_content_type)

Next step consists in running the created Scikit-learn training script on
SageMaker by configuring a SKLearn Estimator and calling the .py file using
the fit method of the SKLearn Estimator. The following code represents an
example of training phase, with some input hyperparameters and “train” and
“test” channels. According to the official documentation SKLearn Estimator
runs the .py script in a customized execution environment, as a part of a
SageMaker Training Job. This environment is basically an Amazon built-in
Docker container which runs the .py file specified in the entry point SKLearn
Estimator parameter:

from sagemaker.sklearn.estimator import SKLearn

algorithm = 'algorithm chosen'

output_mod = 'output location of the model'

train_input = 'input location of the training data'

validation_input = 'input location of the test data'

hyperparameters= {

'n_estimators': 10,

'max_depth': 5

},

script_path = 'path location of the py file'

sklearn = SKLearn(

base_job_name = 'name of the job',

entry_point=script_path,

train_instance_type="ml.m5.large",

train_instance_count= 1,

train_max_run= 86400,

First step: binary classification 76

train_volume_size= 30,

role=role,

sagemaker_session=sagemaker_session,

hyperparameters=hyperparameters,

output_path= output_mod)

This code can be used for each Scikit-learn algorithms.
It is well-known that an algorithm has a lot of hyperparameters and using
only predefined values of them will make the model less powerful. For this
reason it is essential to consider an hyperparameters tuning and Ama-
zon SageMaker gives users a class to perform this task and also to deploy the
originated model. The operator should only create the HyperparameterTuner
object by setting the objective metric name, the hyperparameter ranges and
the metric definitions. Hyperparameter ranges could be a continuous, integer
or categorical one; it should be passed as a dictionary with keys the hyper-
parameters names and values the parameters range. The metric definitions
is a list of dictionary, each representing a metric and containing Name for
the name of the metric, and Regex for the regular expression used to extract
the value of the metric. This parameter must be set only for hyperparameter
tuning jobs not considering an Amazon built-in algorithm [58].

from sagemaker.tuner import HyperparameterTuner,

IntegerParameter,

CategoricalParameter

Configure HyperparameterTuner

my_tuner = HyperparameterTuner(

previously-configured Estimator object

estimator= sklearn,

objective_metric_name='test-score',

hyperparameter_ranges=

{'n_estimators': IntegerParameter(6, 15),

'max_depth': IntegerParameter(3, 7)},

metric_definitions=[

{'Name': 'test-score',

'Regex': 'Test score: (.*?);'}

],

max_jobs=12, # REMOVE

max_parallel_jobs=2,

tags=tags_list)

Then, the fit method is invoked to start the tuning job and once terminated

First step: binary classification 77

it is possible to create a model from the trained algorithm, using as hyper-
parameters the best configuration found (according to the chosen metric).

Figure 6.5: SageMaker: visualize hyperparameter tuning job results

from sagemaker.estimator import Estimator

my_tuner.fit({

'train': train_input,

'test': validation_input

},logs=True)

my_tuner.wait()

tuner_estimator = Estimator.attach(my_tuner.best_training_job())

training_algorithm = tuner_estimator.create_model()

Since the project’s scope consists also in finding and testing AWS Sage-
Maker’s built-in algorithm, also the xboost algorithm is considered.
The approach is quite similar, however there is no need to create an exter-
nal py script: it is enough to retrieve the XGBoost built-in algorithm image
where the algorithm is developed.

from sagemaker.amazon.amazon_estimator import get_image_uri

training_image = get_image_uri(sagemaker_session.boto_region_name,

'XGBoost', repo_version="latest")

Again an Estimator object is created; this time there is no need to have a
SKLearn Estimator but a standard one, with the following python code:

First step: binary classification 78

algorithm = 'XGBoost'

output_mod = 'output location of the model'

train_input = 'input location of the training data'

validation_input = 'input location of the test data'

xgb_model = sagemaker.estimator.Estimator(training_image,

role,

train_instance_count=1,

train_instance_type='ml.m5.large',

train_volume_size = 20,

train_max_run = 3600,

input_mode= 'File',

output_path=output_mod,

sagemaker_session=sagemaker_session)

Finally, as before an hyperparameters tuning job is created and the best pa-
rameters configuration is used to create the model.

Once the two models are created (preprocessing + training job), they can be
easily deployed in SageMaker to create an inference pipeline. Deploying a
model in SageMaker requires two components [57]:

• docker image, i.e. a file to execute code in a Docker container;

• model artifacts residing in S3.

For the AWS Glue preprocessing phase, SageMaker team already provides
a docker image. In order to correctly configure the container it is essential
to pass the schema of input data whose prediction is requested. Instead
of repeating the same action over and over, SageMaker allows to pass the
schema during the model definition via an environment variable. Later it
will show how it is possible to overwrite it for a single request.

import json

schema = {

'input' :

[{'name':column,"type": "double"}

for column in numerical_features

]+

[{'name':column,"type": "string"}

for column in categorical_features

],

'output':

First step: binary classification 79

{

'name': 'predictors',

'type': 'double',

'struct': 'vector'

}

}

schema_json = json.dumps(schema)

Next step consists in creating a SageMaker PipelineModel with SparkML
and the Training Algorithm. Both containers are deployed behind a single
API endpoint in the specified order for real time predictions, but the same
pipeline could be used also for a batch transform job.

from sagemaker.model import Model

from sagemaker.pipeline import PipelineModel

from sagemaker.sparkml.model import SparkMLModel

sparkml_data = 'location of the preprocessing model'

passing the schema defined above by using an environment

variable that sagemaker-sparkml-serving understands

sparkml_model = SparkMLModel(

model_data=sparkml_data,

env={'SAGEMAKER_SPARKML_SCHEMA' : schema_json})

timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime())

model_name = 'prefix-' + timestamp_prefix

sm_model = PipelineModel(

name=model_name,

role=role,

models=[sparkml_model, training_algorithm])

containers = sm_model.pipeline_container_def(

instance_type = 'ml.m5.large')

sagemaker_session.create_model(model_name, role, containers)

In particular, the created model is deployed with the deploy() method to
start an inference endpoint to make real time predictions: after that some
requests could be sent to the endpoint to obtain predictions.

endpoint_name = 'prefix' + timestamp_prefix

sm_model.deploy(

initial_instance_count=1,

First step: binary classification 80

Figure 6.6: SageMaker: inspection pipeline model configuration

instance_type='ml.m5.large',

endpoint_name=endpoint_name)

#sm_client = boto_session.client('sagemaker')

#sm_client.delete_endpoint(EndpointName=endpoint_name)

Figure 6.7: SageMaker: visualize endpoint configuration and performances

It is possible to invoke the created endpoint with a valid sample that Sage-
Maker could recognize. Input sample could be passed in three different ways
[57]:

• pass it as a valid CSV string, using as input schema the one passed
before via environmental variable. Since it is in a CSV format, each
input data column must be a basic datatype (such as string, int or
double).

Second step: multiclass classification 81

• pass it as a valid JSON string, using again as input schema the one
passed before via environmental variable. Since it is in a JSON format,
each input data column could be a basic datatype but also a Spark
Vector or Array, assuming that the corresponding entry in the schema
corresponds to the correct value in the input sample.

• pass the request in JSON format, composed by the schema and the
data, to overwrite the possible existing schema passed before via envi-
ronmental variable.

As explained before also SageMaker Batch Transform supports Pipeline model
to perform a batch transform job to make predictions on a new set of data
(batch prediction is similar to the real time one with the only difference that
the former is performed on a set, the latter on one observation at a time).
Batch Transform requires data in CSV or JSON format. In the first case for
instance it is a CSV file similar to the training one, of course without the
target field.

from sagemaker.content_types import CONTENT_TYPE_CSV

transformer = sm_model.transformer(

This was the model created using PipelineModel

and it contains feature processing and Decision tree

instance_count = 1,

instance_type = 'ml.m5.large',

output_path = output_batch,

accept = CONTENT_TYPE_CSV

)

transformer.transform(data = batch_input_loc,

job_name = job_name,

content_type = CONTENT_TYPE_CSV,

split_type = 'Line')

transformer.wait()

After transform job has completed, it is possible to inspect the results by
downloading the output data from S3. For each file f in the input data,
we have a corresponding file f.out containing the predicted labels from each
input row. Results are similiar to one reported in Table 5.1.

6.2 Second step: multiclass classification

The second step of the pipeline consists in a multiclass classification algorithm
to identify which could be the specific issue. In this regard, firstly, I would

Second step: multiclass classification 82

like to make a brief comment: the process is roughly the same of the binary
classification and only few small differences can be highlighted during the
target generation and algorithm training. In particular, the new variable can
assume three distinct values, according to our use cases:

sub_sample_wifi = raw_data_stratified

.filter(raw_data_stratified.target == 0)

sub_sample_slow = raw_data_stratified

.filter(raw_data_stratified.target == 1)

sub_sample_unstable = raw_data_stratified

.filter(raw_data_stratified.target == 2)

Regarding the training phase the algorithm is quite the same, however the
metrics computation is slightly different; in fact the concept of precision ex-
plained before needed a multiclass adaptation.
First of all, the previous inspection of issues distribution showed that the
considered target is unbalanced. Since there is a multilabel target, the preci-
sion is computed for each label finding its average weighted by support (the
number of true instances for each label). This allows user to take into ac-
count label imbalance. The remaining part of the script is almost the same,
so it would be redundant to present it again. Example of output is reported
in Table 5.2.

Chapter 7

Experiments

Once the entire pipeline has been developed, performances could be summa-
rized. Clearly, two different sets of results will be showed, one for the binary
classification and one for the multiclass classification algorithm.

7.1 Binary classification

The powerful of the SageMaker automatic hyperparameter tuning job is
adopted, in the sense that a range (grid) of values and a maximum num-
ber of jobs are specified and SageMaker tries to understand which could be
the most promising hyperparameter combination; in this way not all values
are tested but only the most relevant ones [40]. Due to the limited amount of
time and resources, the entire pipeline has been tested on a small subset of
20 000 observations and splitting it in 80−20 train & test. The Jupyter Note-
book used to retrieve the following results is provided with a ml.t2.medium
instance type, i.e. with 2 vCPU and 4 Mem (GB).

Type Data Preparation Features Selection Glue Preprocessing

- Time Time Time DPUs used

Binary 40 Min 120 Min 8 Min 2

Multiclass 45 Min 120 Min 9 Min 2

Table 7.1: AWS Glue Preprocessing and Data Preparation: summarize the
computational parameters.

Binary classification 84

After the data preparation phase, the AWS Glue Preprocessing is run to
transform original data to the train and test datasets. More technical details
about the job are provided in Table 7.1. In particular, DPU is defined as
a data processing unit required to the ETL job and equipped with 4 vCPU
and 16 GB of memory.
For the binary classification, as already explained before, the most interest-
ing metric is the precision of the positive class (CALL). The optimization
process is composed by two steps:

• algorithm parameters tuning, maximizing the number of true positive
over the entire positive predictions. As threshold to decide if a specific
test sample belongs to the positive or negative class the used value is
0.5, i.e. it is assign to the class it is more likely to belong (probability
> threshold = 0.5);

• since the model output consists in a probability, it is possible to change
dynamically threshold’s value to reach the required trade-off between
positive class precision and recall (probability > threshold).

This approach comes from the design choice of keeping more control on the
threshold, allowing to change its value on-the-fly if model performances, con-
stantly monitored, fall under a specific value. For this reason the reader must
interpret the first step only as a discovery one to become more confident
about algorithm behaviour and metric possible values range. The second
step is the crucial one, since it is possible to balance model’s positive class
precision and recall by considering different threshold’s values. As already
explained before, three are the considered algorithms [59]:

• decision tree. The parameters considered for tuning jobs are:

– the criterion used to measure the quality of a split, where con-
sidered values are the Gini index and cross-entropy.

– the maximum depth of the tree. If user does not specify any
value, new splits are considered until leaves contain observations
with the same label or a number of observations less than a fixed
threshold (next parameter);

– the minimum number of samples which must be contained in
each leaf node. A new partition is performed if and only if the
two branches generated contain at least this minimum number of
observations; the default value is 1.

From what concerns Figure 7.1, on the top Gini split criterion is used,
on the left the minimum number of observations in each leaf is not

Binary classification 85

set (default = 1), while on the right the maximum depth is not set
(default = None). A similar approach is used on the bottom, but the
split criterion considered is entropy. From this figure and Table 7.2
(where the token “-” means that the considered parameter is not set.)
it is possible to inspect the algorithm behaviour, with respect to the
precision metric, when a specific parameter varies. In particular, the
maximum tree depth seems to have no effect on the precision metric
(not considering extreme values); clearly while the minimum number
of samples contained in leaf nodes increases the model precision goes
down since positive class is less predicted. Finally, changing the split
criterion from Gini to entropy, the precision metric does not change so
much.

Figure 7.1: Binary classification: extraction of decision tree tuning job.

• random forest. The parameters considered for tuning jobs are:

– the number of trees in the forest;

– the criterion used to measure the quality of a split in each tree,
where considered values are the Gini index and cross-entropy.

– the maximum depth of each tree is not set and the minimum
number of samples in each leaf is set to the previous optimal
value;

Binary classification 86

Attempt Criterion Max depth Minimum leaf Precision

1 gini - 4 0.58

2 gini - 23 0.40

3 gini - 56 0.31

4 gini 5 - 0.46

5 gini 14 - 0.545

6 gini 19 - 0.545

7 entropy - 10 0.67

8 entropy - 30 0.67

9 entropy - 45 0.45

10 entropy 7 - 0.57

11 entropy 14 - 0.57

12 entropy 19 - 0.57

Table 7.2: Binary classification: example of decision tree tuning job.

For what concerns Figure 7.2, by keeping the optimal decision tree
configuration, the number of estimators is changed to inspect preci-
sion metric reaction using Gini index (left) and entropy (right) split
criterion. For what concerns Table 7.3, the other previous single tree
parameters not considered in the table are set to the best configuration
found before.
From the previous Figure and Table it is possible to inspect the algo-
rithm behaviour, with respect to the precision metric, when the number
of trees in the forest changes. Random forest shows better results than
decision tree, which is a consistent result according to the literature
presented before. The interesting part consists now in comparing the
obtained results with the XGBoost algorithm, which could be consider
as an alternative solution having the great advantage of being an Ama-
zon built-in algorithm and for this reason easier to insert inside the
pipeline.

• XGBoost. According to the official documentation the hyperparame-
ters having the most relevant effect on the XGBoost objective metrics
are [41]:

Binary classification 87

Figure 7.2: Binary classification: extraction of random forest tuning job.

Attempt Criterion Number estimators Precision

1 gini 6 0.60

2 gini 17 0.76

3 gini 27 0.73

4 entropy 6 0.40

5 entropy 18 0.79

6 entropy 28 0.73

Table 7.3: Binary classification: example of random forest tuning job.

– the weights L1 regularization term, which makes the algorithm
more or less conservative;

– the minimum sum of instance weight needed in a child. If tree
partition creates a leaf where the sum of instance weight becomes
less than the threshold, no other partitions are performed. If this
value increases, algorithm becomes more conservative;

– the subsample ratio of the training instance, useful to avoid
overfitting. The default value is 0.5 in the sense that only half of
the total observations is randomly considered to build trees.

– the step size shrinkage used in each boosting step. This param-
eter shrinks the feature weights inducing the boosting process to
be more conservative and trying to avoid overfitting;

– the number of rounds (iterations) in the training phase.

– colsample bylevel and colsample bytree, which oblige the al-
gorithm to consider only a subsample of columns for a single split

Binary classification 88

or an entire tree, are not set since a features selection has already
performed.

Figure 7.3: Binary classification: extraction of XGBoost tuning job.

For what concerns Figure 7.3, from the top left to the bottom right the pa-
rameters inspected to test the model precision are the L1 regularization, the
minimum sum of instance weight, the subsample fraction, the step size and
the number of rounds. From this Figure and Table 7.4 it is possible to inspect
the algorithm behavior, with respect to the precision metric, when a specific
parameter varies. Some parameters show a monotone behavior, such as the
ratio of the training set used to fit the model and the step size shrinkage,
while others are characterized by a less controllable trend. The performances
are quite similar to the random forest algorithm, but since it is a SageMaker
built-in solution, at the end, XGBoost algorithm is adopted for the binary
first classification.
Table 7.5 helps to summarize the technical details about the training phase.
XGBoost required more powerful instances than Random Forest and Decision
Tree, but differently from the others the former can distribute the training
on more than one single instance.

Once completed this preliminary choice, it comes the solution’s crucial step
where the required trade-off between precision and accuracy has to be found.
After selecting XGBoost model with the best configuration found before, L1
regularization = 0, minimum sum of instance weight = 10, subsample ratio =
1, step size = 0.2, number of rounds = 10, the threshold’s value is varied to
analyze precision and recall behavior. The inspection of Figure 7.4 confirms
the conventional output, according to the literature. When the threshold is

Multiclass classification 89

Attempt L1 Child weight Subsample Step Rounds Precision

1 0.0 8 0.7 0.2 10 0.79

2 0.4 8 0.7 0.2 10 0.67

3 0.8 8 0.7 0.2 10 0.77

4 0 6 0.7 0.2 10 0.67

5 0 10 0.7 0.2 10 0.79

6 0 18 0.7 0.2 10 0.71

7 0 10 0.6 0.2 10 0.71

8 0 10 0.8 0.2 10 0.77

9 0 10 1 0.2 10 0.8

10 0 10 1 0.2 10 0.8

11 0 10 1 0.3 10 0.75

12 0 10 1 0.5 10 0.69

13 0 10 1 0.2 4 0.76

14 0 10 1 0.2 10 0.8

15 0 10 1 0.2 20 0.77

Table 7.4: Binary classification: example of XGBoost tuning job.

small, near 0, the positive class is quite always predicted, which implies a
small precision (due to the high number of false positives) and an high recall
(due to the absence or small number of false negatives). While threshold
increases, the recall falls quickly and the precision grows, since the positive
class is less predicted; the extremely rapid process of change of those metrics
depends on the unbalanced dataset, which causing the positive class to be
harder to be expected: the final choice is to set 0.55 as threshold’s value.

7.2 Multiclass classification

For the multiclass classification step the most interest metric is the weighted
precision, based on the number of true instances for each label. The optimiza-
tion process is composed by the same two sub-steps, this time considering a
multiclass classification problem instead of a binary one. Only random for-

Multiclass classification 90

Algorithm Time Tr vCPU Mem (GB) Num Inst Distr Train

Decision Tree 19 Min 2 8 1 7

Random Forest 30 Min 2 8 1 7

XGBoost 19 Min 4 16 2 3

Table 7.5: Binary classification: summarize the training details.

Figure 7.4: Binary classification: trade off between positive class precision
and recall in the general call recognition model.

est and XGBoost have been analyzed since they showed better performances
with respect to the decision tree.
Figure 7.5 (the number of estimator is changed to inspect precision met-
ric reaction using Gini index (left) and entropy (right) split criterion) shows
how the former makes random forest performances more stable than entropy,
Figure 7.6 (from the top left to the bottom the parameters inspected to test
the model precision are the L1 regularization, the minimum sum of instance
weight, the subsample fraction, the step size and the number of rounds) in-
stead shows how the XGBoost parameters do not affect model’s capability
to predict the single type of issue, confirmed by the precision whose value is
always around 63%. For the multiclass classification step, the random forest
performances seem to be superior with respect to the XGBoost algorithm
and, by manually inspected the single class predictions, the problem seems
to be caused by the algorithm inability to recognize the slow line use-case.
Therefore, once the random forest model is selected with the configura-
tion Number of trees = 30 and Criterion = gini, the confusion matrix is
reported in Figure 7.7 to better understand model performances using the

Results 91

Figure 7.5: Multiclass classification: extraction of random forest tuning job.

Figure 7.6: Multiclass classification: extraction of XGBoost tuning job.

default threshold (each observation is assigned to the class it is more likely
to belong): all the three different types of issue result to be well classified,
even if the Wi-Fi issue use-case is the most common one, ten times more
frequent than the others. For this reason, since probability calibration for
3-class classification is not so intuitive, the default threshold is kept.
Table 7.6 helps to summarize the technical details about the multiclass train-
ing phase.

7.3 Results

To summarize, at the end the developed pipeline is able to detect call event
with a precision of more than 80% and, even if the recall metric is not so
high, it allows the client to anticipate a small subset of problems before hap-
pening. The model is also able to satisfactorily classify the different types
of problem (Wifi, Unstable line and Slow line) with a weighted precision of

Results 92

Figure 7.7: Multiclass classification: confusion matrix, on the left normalized
by class total predictions, on the right not normalized.

Algorithm Time Tr vCPU Mem (GB) Num Inst Distr Train

Random Forest 33 Min 2 8 1 7

XGBoost 21 Min 4 16 2 3

Table 7.6: Multiclass classification: summarize the training details.

80%, convincing client to be able to detect line problems. The results ob-
tained confirm that the solution has been correctly realized and it could be
submitted to the production environment.
Therefore, the pipeline model is created (Table 7.7 for more details) and it
could be deployed to an inference endpoint for real time predictions or it
could be used for a batch transform job to make inferences on an entire set
of new observations (Table 7.8 where for both real time and batch predic-
tions the same type and number of instances are used, but user could specify
different parameters configurations): for the transform job the fresh set of
data considered in this case is composed by 100 observations (the table does
not take into account endpoint keeping efforts).

Finally, a brief comment about cost analysis must be done: remembering
that Amazon Web Services are on-demand services, the cost is restricted
to the time where resources are required. Table 7.9 summarizes the fixed
cost, from the initialization, considering the pre-processing step, until the
deploying phase but not considering the one to keep the endpoint ready to
real time inference. It is important to remember that cost related on tuning

Results 93

Type Model creation

- Time

Binary < 1 Min

Multiclass < 1 Min

Table 7.7: AWS Model Creation: summarize the computational parameters
to create the pipeline model from the trained algorithms.

Type Prediction

- Parameters Endpoint Creat Batch Pred

- vCPU Mem (GB) Num Inst Time Time

Binary 4 16 2 12 Min 28 Min

Multiclass 4 16 2 15 Min 32 Min

Table 7.8: AWS Prediction: summarize the endpoint creation and batch
transform job computational parameters.

job depends on the maximum number of jobs the user decides to execute to
optimize model performances. Table 7.10, instead, shows cost to keep the
endpoint running which depends on the resources assigned to it during the
creation phase (in this case 4 vCPU and 16 GB of memory)

Type Glue Prep. Tuning Model Batch Notebook

- Cost Cost Cost Cost Cost

Binary $ 0.6 $ 7 $ 0.3 $ 0.4 $ 47

Multiclass $ 0.67 $ 8.6 $ 0.4 $ 0.5 $ 49

Table 7.9: Cost analysis: summarize the fixed cost details.

Results 94

Type Endpoint

- Cost/Time

Binary 0.60 $/h

Multiclass 0.60 $/h

Table 7.10: Cost analysis: summarize the costs to keep the endpoint ready
for real time inference.

Chapter 8

Model retraining

Remembering that after having trained a model, it is possible to obtain ac-
curate predictions only if the test dataset has a distribution similar to the set
used to train the considered model. However, it can be expected that data
distribution changes over time, drifting from one configuration to another:
for this reason model deployment is not a static approach but a continuous
process. It is essential to continuously check most recent data and consid-
ering a model retraining if distribution changes a lot from the initial one
[21]. Two different approaches are explored: the first one is the simpler and
current adopted strategy of training the model periodically, daily, weekly or
monthly depending on the task, the second one consists in a deeper drift
evaluation to optimize model retraining and reduce costs. The first approach
is reported in section 8.1 where Apache Airflow is adopted, while the other
sections present the second approach.
Obviously, the model retraining has some limitations, such as the impossi-
bility to inspect manually the trade-off between precision and recall to set
the ideal threshold in the binary case. Theoretically, user could inspect re-
trained model prediction on a test set to avoid this issue. Anyway, even if
the threshold is not set to the optimal value, the model is able to guarantee
good performance both in the binary and multiclass classification step.

8.1 Apache Airflow

Basically, the idea is to retrain the model in Amazon ML based on the new
training data: to perform this task Apache Airflow is adopted. From
the official documentation the tool is defined as a platform to schedule and
monitor workflows [43]. Airflow’s basic concept is the directed acyclic graph
(DAG), i.e. a graph without any cycles and composed by a finite number of

Apache Airflow 96

vertices and edges , where each edge connects two vertices in a single direction
and it does not exist a path to come back to the first vertex (otherwise a
cycle is created).
DAG vertices are called operators : an operator represents a particular task
which needs to be carried out. Different operators are suitable for different
tasks, in fact according to the official documentation there are some different
predefined types available [21]:

• BashOperator allows to execute a bash command;

• PythonOperator allows to call a python function;

• SimpleHttpOperator to send an HTTP request;

• A list of SqlOperators allow to execute some of the most common SQL
commands.

On the website it is possible to inspect which are the key capabilities of
Apache Airflow:

• dynamic: Airflow operations can be written in python language, al-
lowing for a more dynamic pipeline creation;

• extensible: it is possible to create customized and ad−hoc operators
and import new libraries to generate the required level of abstraction
for the developing solution;

• elegant: Airflow pipelines are lean, explicit and easily to understand.
Thanks to user interface it is easy to visualize pipelines running and
workflows monitoring;

• scalable: Airflow has provided with an architecture based on modules
and with an efficient message queue helping system in managing an
elevate number of operators, without any upper bounds.

Airflow pipeline is simply a Python script aims to create an Airflow DAG
object. After defining a dictionary of default parameters values which can be
shared between all the operators, a DAG object is created to nest the tasks
into. A dag id is defined representing the unique identifier for the DAG:
the previous dictionary defines the default arguments. Generate project’s
tasks implies create operators by calling the relative constructor method:
the task id attribute represents the task identifier and it must be unique.
To associate each task to the previous configured DAG, it is enough to set
the task argument dag to the DAG’s id. Notice it is possible to assign as

Apache Airflow 97

parameters to the operator’s constructor a mix of specific arguments and
arguments common to all operators, inherited from BaseOperator [43].

Before presenting the set of task developed for the predictive maintenance
project, it is important to understand that the tasks run in a different con-
text from the context of the main script. A specific operator runs totally
independent from each other, which implies that it is impossible for them to
exchange information by default: to perform this task there exists a more
advanced feature called XCom. Airflow needs to know how to connect to the
environment: the Amazon Web Services connection type enables the AWS
integration. The authentication may be performed using any of the boto3
python library options.

The tasks created are the following ones:

• PythonOperator which starts the pipeline printing a message of
starting;

• PythonOperator which deletes all the objects related to the old so-
lution to be retrained;

• PythonOperator which deletes the old endpoint to avoid useless
costs;

• BashOperator which performs data preprocessing, such that missing
data imputation;

• AWSGlueJobOperator, a customized operator created to perform
an AWS Glue job;

• BranchPythonOperator, a customized operator to branch the pro-
cess based on a parameter value, retrieving from a configuration file;
two different paths are available: training job or hyperparameter tuning
job;

• PythonOperator after connecting via boto3 to AWS SageMaker, it
starts a training job;

• PythonOperator after connecting via boto3 to AWS SageMaker, it
starts a hyperparameter tuning job;

• PythonOperator after connecting via boto3 to AWS SageMaker, it
creates the entire pipeline and deploys it;

Apache Airflow 98

• PythonOperator which ends the pipeline printing a message of end-
ing;

The Airflow user interface could be used to easily control the data pipeline:
a brief overview of some Airflow UI available tools are shown below.

The home page (Figure 8.1) shows the list of available DAGs in the envi-
ronment, allowing to quickly check exactly tasks status: succeeded, failed,
running, skipped, up for retry, queued, etc. Right panels help user to interact
with the pipeline by triggering a DAG, showing details and finally refreshing
and deleting a DAG.

Figure 8.1: Airflow list of DAGs

Focusing on a single DAG some different graphical views are available in
Airflow: a tree representation (Figure 8.2) which spans across time. If the
process is late or an error occurs, tree view allows to rapidly control tasks
status and identify the blocking or failed ones. However if a DAG with a lot
of tasks is considered, maybe the tree could appear a bit cryptic.

Figure 8.2: Airflow tree visualization

Apache Airflow 99

Another possible graphical representation is the graph view (Figure 8.3),
which is probably the most intuitive one. It allows user to easily visualize
DAG’s path and tasks current status.

Figure 8.3: Airflow graph visualization

In the variable section (Figure 8.4) user has the possibility to edit the key-
value pair of a variable which will be used in the pipeline. There is also the
possibility to hidden a variable value if it is confidential.

Figure 8.4: Airflow variable view

Airflow provides also user with the possibility to monitor tasks duration
and overlap, thank to a Gantt chart (Figure 8.5). Using this chart the user
could identify bottlenecks, i.e. where the large amount of time is spent for
each DAG run.

Apache Airflow 100

Figure 8.5: Airflow Gantt chart

There is also the chance to consider tasks duration in the previous N runs
(Figure 8.6). This view allows to discover outliers and check where and how
much time the specific DAG required during latest runs.

Figure 8.6: Airflow task duration

A code view is available (Figure 8.7), avoiding user to have to check manually
on the source code if some unusual behaviours happen.

From all the previous pages (tree page, graph page, gantt chart, . . .), there
is the possibility to explore the task instance, clicking on it, to access to the
more detailed context menu (Figure 8.8) useful to execute some operations.

Finally Airflow gives the possibility to send email alerts when some jobs

Apache Airflow 101

Figure 8.7: Airflow code view

Figure 8.8: Airflow task instance menu

fail (Figure 8.9). Typically, user can request emails by setting parameter
email on failure to True in the operators definition or in the default argu-
ments dictionary. It is also possible to create a customized email to include
additional information in the content by importing the send email function
from Airflow: to use the customized one, it is enough to invoke it on failure
callback in the operator parameter. An example is reported in Figure 8.9.
A brief comment about cost analysis: comparing with the previous chapter
no large modifications occur; the only difference consists in an EC2 instance
configured to provide the required compute capacity in the cloud instead of
a Notebook instance (also Notebook Instance uses an EC2 instance, but its
cost is masked into the Notebook cost.). The type used to generate the re-
training algorithm is the t2.small provided with 1 vCPU and 2 GB. Table

Drift evaluation 102

Figure 8.9: Airflow email alert

8.1 summarizes the costs to keep the retraining active. Table 8.2 summarizes

vCPU GB Cost/Time

1 2 0.03 $/h

Table 8.1: Cost analysis: summarize the costs to keep the periodic retraining
active.

Task Frequency Total Time Total Cost

Feature selection Monthly 120 Min $ 5

Binary endpoint Daily 60 Min $ 8.6

Multiclass endpoint Daily 60 Min $ 10.4

Table 8.2: Cost analysis: summary of the model retraining costs.

the resulting costs.

8.2 Drift evaluation

Drift is a crucial element in machine learning models, since there is no guaran-
tee that accurate predictions will be obtained if distribution is non-stationary,
i.e. it changes over the time. This change is defined as concept drift. It
concerns data streams, namely sets of data characterized by a time stamp

Drift evaluation 103

which introduces an order between samples.
It is possible to characterize the stream with a joint distribution over ran-
dom variables X = {X1, X2, ..., Xn} and Y . In particular y ∈ Y represents
a class label , while xi ∈ Xi represents an attribute value. The probability
distribution at fixed time t can be expressed as Pt(X, Y), but since it is quite
hard to identify an instantaneous probability, a distribution over a time in-
terval is more suitable for the task: probability over the interval [a, b] can be
expressed as P[a,b](X, Y). The concept of drift comes when in two different
intervals distribution changes, in the sense that

P[a,b](X, Y) 6= P[c,d](X, Y) (8.1)

Literature [28] introduces a probabilistic interpretation of concept using
the prior class probabilities, i.e. P (Y), combined with the class conditional
probabilities, i.e. P (X|Y). However, since P (Y) and P (X|Y) are uniquely
associated with the joint distribution, i.e. P (X, Y), it is possible to define
concept as:

Concept = P (X, Y) (8.2)

At time t it is expressed as:

Conceptt = Pt(X, Y) (8.3)

and at time period [a, b] as:

Concept[a,b] = P[a,b](X, Y) (8.4)

Starting from these concepts it is possible to define a function, called con-
cept drift mapping task, which maps input sample data from two or more
distributions into a value describing the drift in data generation process.
One of the most difficult task consists in quantifying the concept drift and
giving a concrete expression to the mapping function. Bartlett et al. (2000)
[2] introduce the drift rate, but according to Webb et al. (2015) [27] they
reduce this complex concept to a too simple function f : X → Y . For this
reason they provide different approaches to quantify drift which consider
probabilistic relationships between X and Y values. They introduce a way to
measure the time difference, called drift magnitude: however, it is impossi-
ble to find an unique function which correctly predicts it since its expression
changes according to the domain it is applied to. For this reason a generic
distance function d(t,t+ u) is considered, which quantifies the concepts gap
between times t+ u and t.

Retraining based on drift 104

Some examples of distance measures which could be used in this case are
Kullback-Leibler Divergence, Hellinger Distance and Total Variation Dis-
tance. In this work the latter is used, whose general expression is [28]:

σt,u(Z) =
1

2

∑
z∈Z

|Pt(z)− Pu(z)| (8.5)

where Z is a generic vector of random variables. The choice comes from the
fact that this measure is less complex and more efficient to compute than the
others. In any case, the considered approach could be easily applied to other
metrics.

Another crucial step consists in estimating the probability expressed before
and the necessity of dealing with variance obliges user to select enough large
sets of observations. For this reason, it is not often possible to obtain esti-
mates in a instant of time, but is essential to consider an interval, such as
one day or one week. Using the maximum likelihood estimation it is possi-
ble to estimate the joint probability P (X, Y), by computing the class P (Y)
and covariate P (X) distribution and also the two conditional probabilities
P (X|Y) and P (Y |X), which could highlight different drift aspects. The ne-
cessity of analysing all those quantities comes from the fact that there could
be a change in a class frequency P (Y), or in a covariate frequency P (X) or
in the relationships between them, respectively P (X|Y) and P (Y |X), and
the scope of the drift evaluation is to capture all of them. The first two
cases which represent the covariate drift and the class drift simply just
come down to the Equation 8.5, while for the conditional drift a weighted
average of each single dimension is performed: in particular the conditional
marginal covariate drift (P (X|Y)) is expressed as [28]:

σ
X|Y
t,u =

∑
y∈Y

[
Pt(y) + Pu(y)

2

1

2

∑
x∈X

|Pt(y|x)− Pu(y|x)|
]

(8.6)

while the conditional class drift (P (Y |X)) as:

σ
Y |X
t,u =

∑
x∈X

[
Pt(x) + Pu(x)

2

1

2

∑
y∈Y

|Pt(x|y)− Pu(x|y)|
]

(8.7)

8.3 Retraining based on drift

Since the previous technique is designed for discrete variables, it is not possi-
ble to apply it directly to available features: indeed, as presented in chapters

Retraining based on drift 105

5 and 6, some of them contain continuous values. It is true that solutions to
evaluate the total variation distance in case of continuous variables exist, but
these approaches require very strong assumptions about the initial distribu-
tion, such as be normally distributed, which are not satisfied by the collected
data. First of all, only the most 5 revelant features are selected according to
the selection performed in section 5.4 and graphically represented in Figures
5.8, 5.9 and 5.10: in particular 3 are numerical and 2 are categorical. Each
feature belonging to the first case is discretized according to its value in 10
large categories, which are simply intervals of two values.
Another crucial point comes when drift magnitude has to be quantified. Some
authors, instead of considering the conditional, covariate or class drift differ-
ently one from the others, propose an unique combined expression. However,
in this study this approach is avoided since Webb et al. (2015) [27] prove that
when dimensionality increases this representative number becomes close to
1 due to the single small differences accumulation, making trickier to under-
stand the reasons behind the drift. Moreover, using only one value does not
allow to describe in detail the type of change and this results to be essential
in a world where drift is not uniform (for instance technological evolution
could affect only some features but not the others).

Figure 8.10: Covariate drift with values computed hourly for the drift of 7
hours before the current time.

In order to test the proposed solution, the binary model is again consid-
ered. Data are grouped in hourly sets and a time window of 1 month is
considered. Then, probabilities in Equations 8.5, 8.7 and 8.6 are computed
in order to estimate the covariate, class and conditional drift. An example,
taken from literature [28], is reported in Figure 8.10, where each point rep-

Retraining based on drift 106

resents an hour and shows the drift from the 7 hours period prior to the
considered time: it is an example of covariate drift, where each colour repre-
sents a different attribute.

Figure 8.10, which is similar to the real one obtained, shows that there is
only one sudden increase in covariate drift in the considered month. This
encourages the idea that retraining the model daily seems to be not so use-
ful, since in the considered month a drift in the covariate appears only once.
However, this is not the only type of change expressed before, so user should
also consider class and conditional drift.
In order to decide if and when a model retraining is required, a summarized
formula is considered. In particular this operation will be performed if and
only if

max

(
σt,u(X), σt,u(Y), σ

X|Y
t,u , σ

Y |X
t,u

)
> 0.6 (8.8)

Table 8.3 compares the results between current approach consisting in a
daily model retraining versus the presented proposal of basing the decision
on data drift. In particular it shows that if user is willing to slightly decrease
the monthly average accuracy, costs are dramatically reduced: this means
that the new methodology could lead to relevant practical advantages.

Type Monthly Accuracy Number of retraining Cost

Daily retraining 78% 30 $ 258

Drift evaluation 72% 4 $ 34.4

Table 8.3: Drift analysis: comparison between solution with and without
drift consideration for 1 month time window.

Chapter 9

Model architecture and
deployment

Although a continuous maintenance and monitoring is necessary, once pipeline
has been tested it is time to proceed with the ending phase. Although this
chapter seems to be marginal compared to all the others, it assumes a crucial
role since without a clear overview the entire project becomes unprofitable.
Therefore, the final step before releasing the solution in a production envi-
ronment consists in identifying which are the actors involved in the project
and which is their role. Before that, figure 9.1 summarizes the developed
program and helps in understanding the final solution. The figure shows

Figure 9.1: Architecture of the final binary and multiclass classification so-
lution

the solution implemented for both binary and multiclass problem, since two
distinct endpoints will be created at the end.

108

Back to the actors, three are the figures engaged: the data scientist de-
veloper, the operation employee and the client.
The data scientist has to:

• create a jupyter notebook web application;

• run a preprocessing pipeline on the input data;

• train or tune a model, evaluating performances on a test set provided
during training phase;

• create a pipeline model combining both preprocessing and trained al-
gorithm, and then save it.

Moreover, he develops also the entire workflow on Apache Airflow platform.
SageMaker allows to create notebook instances in a very intuitive way. De-
veloper needs to set only few parameters:

• name and type of notebook instance (CPU,GPU);

• existing or new IAM role with the necessary permissions to access Ama-
zon SageMaker and other resources.

Jupyter notebook server is already configured and SageMaker examples are
already available and ready being run.
AWS Glue asks only to:

• create a .py file composed by a data loading from an input S3 location
and a pipeline preprocessing which is applied to original data. Data
are transformed and uploaded together with the pipeline preprocessing
model;

• upload the .py and, if needed, other external dependencies on S3;

• create a glue job by setting: name of the job, .py file and other depen-
dencies location;

• start a glue job by setting: input and output data location and model
location.

SageMaker allows, also, to easily create a training or tuning job in few steps
and monitor it. An estimator is created based on the type of algorithm
chosen:

• built-in algorithm needs the built-in algorithm image;

109

• pre-built framework containers need a custom training script;

• own algorithm needs a custom container image.

Data scientist can create an Hyperparameter job by defining the algorithm,
the hyperparameter ranges and an evaluation metric receives as output the
best training job found. Jobs performances could be retrieved from the logs
if a test set is provided during the training phase: data scientist can specify
a customized metric or use the default one.
SageMaker can create and save a model from the previous training or tuning
job for a future deploy if performances are acceptable.
Then, the latter can be saved by setting the default EC2 instance type to
deploy the model to.
Finally Airflow has extensive support for Amazon Web Services to single
model train, tune, deploy and transform, allowing to monitor easily failed
tasks, tasks duration and providing a simple graphical interface.

Operation employee has to:

• access to AWS platform as global admin or platform operator;

• check if exists a new tuning job and the relative performance;

• if performances are not acceptable, he could run a new training or tun-
ing job with different hyperparameters using Airflow rich user interface;

• deploy the model, once the performances become acceptable.

Thanks to the workflow developed on Apache Airflow platform, operation
employee could easily:

• monitor the entire process;

• schedule an automatic model retraining;

• run a new hyperparameter tuning job or a new training job.

More in detail, operation user needs to log in to the platform using:

• Global Admin

• Platform Operator (if AWS managed policies AmazonSagemakerFul-
lAccess is attached)

SageMaker graphical user interface allows to check previous training and
tuning jobs and then deploy the previous model created:

110

• on the Amazon SageMaker console, there is a direct link to all hyper-
parameter tuning jobs;

• check if there exists a new hyperparameter tuning job (name tuning job+
timestamp);

• select the best training job obtained and check the test score.

If performances are not acceptable, Airflow gives the chance to run a new
training or tuning job, by triggering the entire workflow:

• on the Airflow main page, select the DAG related to the task and trigger
it using the link on the right;

• the rich user interface makes easy to monitor progress (to change hy-
perparameter values or run a training job instead of a tuning job a
configuration file must be changed);

• check new job performances as before.

When performances become acceptable, SageMaker allows to deploy the
model into an hosted environment:

• Amazon SageMaker shows all the models and mainly the last one cre-
ated from which a new endpoint can be configured;

• create a new endpoint configuration by choosing the name and the
model (operation user can change also instance number and type);

• create the final endpoint.

At the end of this process an endpoint is available, ready to be invoked to
make any predictions.

Client has only to make batch predictions by streaming data from and back
to S3 or real time predictions by invoking the created endpoint. The figure
below shows the process which a new observation undergoes to (the only dif-
ference comes in the input: one single element for real time prediction versus
a sample file for batch prediction).

111

Figure 9.2: New observation prediction

Chapter 10

Conclusions

The first part of this work consisted of exploring the web services provided by
Amazon.com, which gives users an extremely fully-functional, flexible tech-
nology infrastructure platform. It provides a pay-as-you-go service, where
low cost IT resources are available on request avoiding large investments in
hardware and in efforts to manage it. Therefore, people pay only for com-
putational power which actually use. The agility of spinning up resources
almost instantly, the elasticity of scaling up or down resources without any
constraint, the speed of deploying applications in different physical places
with few clicks and the cost saving make AWS the first choice for a lot of
businesses.
In particular Amazon SageMaker helps data scientist in building, training
and deploying machine learning models. It provides pre-built notebooks for
common problems and built-in, high-performance algorithms to start work-
ing on. A managed environment is available for one-click model training and
tuning and another environment for one-click model deployment in produc-
tion, with the possibility to scale resources automatically in order to reduce
costs as far as possible.
The advantages of the cloud solution have been applied to change the way
telecommunication companies interact with client issues. Indeed, instead of
simply monitoring devices status using deterministic KPIs and algorithms,
for the first time companies tried to move to a digital prediction scenario
where analytic tools and machine learning algorithms are used to identify
factors which are causing current problems or which are likely to cause future
problems. Three different use cases have been analysed, which are chosen
from the client as the most relevant ones: unstable line, slow line and Wi-Fi
connection issues. The main scope was to identify customers at high risk of
issue in near real time in order both to prevent future calls and when this is
not possible to improve first call resolution.

113

Some discussions concerned the solution to be proposed to the client, since
input data presented a lot of problems, as reported in Section 5.2. Indeed,
the preparation phase has required the majority of the efforts, also due to
the necessity of considering customers behaviours and the willingness to add
new derived features to the original ones. The solution proposed was split
into two step: a binary classification model to identify if an issue will occur
on the specific line and a multi-class classification model to understand the
type of problems. The idea of providing a probability of line failures in a
first phase and then in a second phase try to give an explanation of possible
reasons behind them, was highly appreciated by the client. Moreover, hav-
ing an issue explanation thorough the multi-class model even if the binary
model did not suggest a problem the line, was very useful for the client to
improve first call resolution. Three different algorithms have been tested for
the considered use cases: one is the Extreme Gradient Boosting, which is an
Amazon built-in algorithm for tree boosting. Since it is already implemented
inside Amazon SageMaker, it is quite easy to use but it was treated like a
black-box model. This is the reason why also decision tree and random for-
est were considered, thanks to ad-hoc structure available within SageMaker
environment to integrate Scikit-learn library. In the first phase the main goal
was to maximize model capability to be extremely precise in predicting a call
event, reducing as much as possible the false positive rate, while in the second
phase a weighted precision, based on the number of true instances for each
label (Wi-Fi issue is much more frequent than the others), was considered.
The pipeline presented to the client is able to detect the presence of an issue
with a precision of more than 80% and also to satisfactory classify different
types of problem with a weighted precision of 80%.
As reported in chapter 8, in order to keep predictions update a periodic re-
training was required. This work presented two different solution, the first
one using a tool called Apache Airflow and the second one by evaluating drift
in the data. The former provided an automatic daily retraining of the entire
pipeline (with the exception of features selection due to the large amount of
time required): this is an intuitive and easy solution but it is characterized by
high cost. This is the reason why this work introduced a technique based on
drift, which showed that retrain the model each day appeared unnecessary.
The second solution, even if it means reduce precision of the predictions, can
guarantee lower costs.
This work was proposed to the patron and it received a positive feedback to
the point that a deployment phase was demanded. Chapter 9 tried to meet
this requirement by identifying which actors were and will be involved in a
future possible release into production. Apart from the data scientist who
develops the solution, there is the operational employee who has to mon-

114

itor and keep the model functioning and the client who has to invoke the
endpoint created to obtain real time predictions. Clearly, it is not possible
to ask to client to directly interact with the endpoint, but an user-friendly
platform or dashboard should be implemented. An idea could be to integrate
this prediction inside the CEM platform already developed and deployed by
the operations support system team. A section could be reserved to display
customer’s characteristics, probability of having a line issue and possible ex-
planation for it.
Results obtained confirmed that using Amazon Web Services platform for
businesses represents an incredible advantage in terms of resources man-
agement and cost investment. It could help companies in developing their
solutions to face modern challenges as the one explored in this thesis. On
the other side this work confirmed also machine learning potentialities to
tackle new telecommunication companies initiatives as moving from digital
monitoring to digital prediction. For this reason according to this study, it
can be exploited for other future challenges which will receive attention from
companies.

Bibliography

[1] Baralis, Elena (2015) Big Data: Hype or Hallelujah?,
http://dbdmg.polito.it

[2] Bartlett, P., Ben-David, S., Kulkarni S. (2000) Learning changing con-
cepts by exploiting the structure of change. Machine Learning, 41(2): 153-
174, 2000.

[3] Bergstra, J., Bengio, Y. (2012) Random Search for Hyper-Parameter Op-
timization, Département d’Informatique et de recherche opérationnelle,
Universite de Montreal, Montréal, Canada

[4] Carey, Scott (2019) AWS vs Azure vs Google: What’s the best cloud plat-
form for enterprise?, UK Group Editor, Computerworld

[5] Chen, T., Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System

[6] Duhigg, Charles (2012) How Companies Learn Your Secrets, The New
York Times Magazine, https://www.nytimes.com

[7] CloudSoft (2018) Comparing AWS and Azure: 12 reasons to run Mi-
crosoft Workloads on AWS, a Cloudsoft Whitepaper, Cloudsoft Corpora-
tion

[8] Gruber, Steve (2016) 5 steps to selling the solution not the product, Ven-
ture Accelerator Partners

[9] Howard, Eric (2018) The Evolution of the Industrial Ages: Industry 1.0
to 4.0.

[10] Jackson, Brian (2019) Google Cloud vs AWS in 2019 (Comparing the
Giants), Kinsta, Premium Managed WordPress Hosting

[11] James, G., Witten, D., Hastie, T., Tibshirani, R. (2015) An Introduction
to Statistical Learning, with Applications in R, 8:303-314, Springer, New
York

Bibliography 116

[12] James, G., Witten, D., Hastie, T., Tibshirani, R. (2015) An Introduction
to Statistical Learning, with Applications in R, 8:316-321, Springer, New
York

[13] Maheshwari, Anil Big Data, McGraw-Hill Education, 2017

[14] Marko, K., Carty, D. (2017) Amazon Web Services (AWS), TechTarget

[15] Neirotti, Paolo (2019) The Fourth Industrial Revolution: Introduction
to the School, Politecnico di Torino, Department of Management and
Production Engineering, Alta Scuola Politecnica.

[16] Palevani, Zara (2017) Data that Knows Humans: Google Cloud APIs for
Face, Voice, and Video Detection, E-Nor - Google Marketing Platform
Consulting and Training, Google Certified Service & Sales Partners

[17] Rouse, Margaret (2018) RDBMS (relational database management sys-
tem), TechTarget

[18] Santos, B., Charrua-Santos, F., Lima, T.M. (2018) Industry 4.0: an
overview.

[19] Sether, Ayob (2016) Cloud Computing Benefits.

[20] Sharma, Hemant (2019) AWS Pricing – An Introduction to AWS Pric-
ing, Edureka

[21] Siddiqi, Adnan (2018) Getting started with Apache Airflow, Towards
Data Science

[22] Singh, S. (2018) Understanding the Bias-Variance Tradeoff, Towards
Data Science

[23] Taylor-Sakyi, Kevin (2016) Big Data: Understanding Big Data.

[24] Ting Si Xue, Colin & Tiong Wee Xin, Felicia (2016) Benefits and Chal-
lenges of the Adoption of Cloud Computing in Business, International
Journal on Cloud Computing: Services and Architecture.

[25] Tsidulko, Joseph (2019) AWS, Azure and Google top Gartner’s IaaS
magic quadrant, CRN Australia, Connecting the Australian Channel

[26] Wang, S., Tang, J. and Liu, H. (2016) Feature Selection, ResearchGate.

Bibliography 117

[27] Webb, G., Hyde, R., Cao, H., Nguyen, H., François P. (2015) Char-
acterizing Concept Drift. Data Mining and Knowledge Discovery. 30.
10.1007/s10618-015-0448-4.

[28] Webb, G., Lee, L., Goethals, B., Petitjean, F. (2018) Analyzing concept
drift and shift from sample data. Data Mining and Knowledge Discovery.
10.1007/s10618-018-0554-1.

Sitography

[29] Hannover Messe, https://www.hannovermesse.de/home,
last visit 05/03/2019

[30] Microsoft Azure, https://azure.microsoft.com,
last visit 05/03/2019

[31] OpenSource, https://opensource.com/resources/big-data,
last visit 17/04/2019

[32] Wikipedia https://en.wikipedia.org/wiki/Amazon Web Services,
last visit 21/05/2019

[33] Wikipedia https://en.wikipedia.org/wiki/Microsoft Azure,
last visit 21/05/2019

[34] Wikipedia https://en.wikipedia.org/wiki/Google Cloud Platform,
last visit 21/05/2019

[35] Amazon Web Services, https://aws.amazon.com/products,
last visit 23/05/2019

[36] The Linux Juggernaut, https://www.linuxnix.com/
amazon-aws-regions-vs-availability-zones-vs-edge-locations-vs-data-centers,
last visit 28/05/2019

[37] AWS Documentation, https://docs.aws.amazon.com/en us/

whitepapers/latest/aws-overview/compute-services.html,
last visit 02/06/2019

[38] AWS Documentation, https://docs.aws.amazon.com/en us/

whitepapers/latest/aws-overview/storage-services.html,
last visit 02/06/2019

Sitography 119

[39] AWS Documentation, https://docs.aws.amazon.com/en us/

whitepapers/latest/aws-overview/database.html,
last visit 02/06/2019

[40] AWS Documentation, https://docs.aws.amazon.com/en us/

sagemaker/latest/dg/automatic-model-tuning-how-it-works.html,
last visit 03/06/2019

[41] AWS Documentation,
https://docs.aws.amazon.com/en us/sagemaker/latest/dg/xgboost.html,
last visit 03/06/2019

[42] AWS News Blog, https://aws.amazon.com/en/blogs/aws/
enhanced-cloudfront-logs-now-with-query-strings,
last visit 14/06/2019

[43] Airflow, https://airflow.apache.org,
last visit 18/06/2019

[44] Wikipedia, https://it.wikipedia.org/wiki/Industria 4.0,
last visit 13/07/2019

[45] Wikipedia, https://en.wikipedia.org/wiki/Relational database#RDBMS,
last visit 13/07/2019

[46] Wikipedia,
https://en.wikipedia.org/wiki/Database#Database management system,
last visit 13/07/2019

[47] Radius Technology
https://radius.ie/10-advantages-of-cloud-computing-from-10-experts-2,
last visit 15/07/2019

[48] Business Dictionary,
http://www.businessdictionary.com/definition/customer-support.html,
last visit 28/07/2019

[49] Business Dictionary,
http://www.businessdictionary.com/definition/technical-support.html,
last visit 28/07/2019

[50] Investopedia, https://www.investopedia.com/terms/m/masscustomization.asp,
last visit 28/07/2019

Sitography 120

[51] Investopedia, https://www.investopedia.com/terms/q/quality-control.asp,
last visit 28/07/2019

[52] Wikipedia,
https://en.wikipedia.org/wiki/Customer-premises equipment,
last visit 03/08/2019

[53] Apache Spark,
https://spark.apache.org/docs/latest/ml-features.html,
last visit 05/08/2019

[54] Wikipedia,
https://en.wikipedia.org/wiki/Wide area network,
last visit 11/08/2019

[55] Wikipedia,
https://en.wikipedia.org/wiki/Wireless LAN,
last visit 11/08/2019

[56] Exilio, https://blog.exsilio.com/all/
accuracy-precision-recall-f1-score-interpretation-of-performance-measures,
last visit 29/08/2019

[57] Github, https://github.com/awslabs/amazon-sagemaker-examples,
last visit 29/08/2019

[58] SageMaker, https://sagemaker.readthedocs.io,
last visit 03/09/2019

[59] Scikit Learn, https://scikit-learn.org,
last visit 08/09/2019

	Summary
	Acknowledgements
	List of Figures
	List of Tables
	A new industrial revolution
	Industry 4.0
	Big data
	Cloud computing

	Amazon Web Services: a new cloud computing frontier
	Discovering the tool
	The competitors
	The infrastructure
	AWS Glue
	AWS SageMaker

	Introduction to proactive care
	Digital scenario
	Business case
	Use cases and architecture

	Algorithms background
	Decision trees
	Random Forest
	Extreme Gradient Boosting

	Implementation: dataset presentation and exploration
	Data extraction
	Data preparation
	Model pipeline
	Features selection

	Implementation: algorithms development
	First step: binary classification
	Second step: multiclass classification

	Experiments
	Binary classification
	Multiclass classification
	Results

	Model retraining
	Apache Airflow
	Drift evaluation
	Retraining based on drift

	Model architecture and deployment
	Conclusions

