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Summary

Network games are useful in modeling strategic interactions over interconnected sys-
tems. When the individual decisions are binary, agents might prefer one action over
the other according to the number of neighbors that are choosing it. For instance,
in the spread of innovations and beliefs, the utility of an agent choosing a certain
action increases with the number of neighbors taking the same action. On the other
hand, in games that model dispersion of crowds or division of work, the utility of an
agent decreases with the number of neighbors playing the same action. Special cases
of the two situations above are modeled as network coordination games and network
anti-coordination games, respectively. Thanks to their wide use and the simplicity
of their definition, such games have been largely studied in the literature and many
results have been proved.

This thesis studies heterogeneous network games where both coordinating and
anti-coordinating agents are present. Specifically, the aim of the thesis is to find
analytical conditions for the existence of Nash equilibria in the general case where
coordinating and anti-coordinating agents have heterogeneous thresholds and inter-
act in the same network.

We first show that the network coordination game, as well as the network anti-
coordination game, maintain their well-known potential property even if the players
have different incentives in choosing an action over the other. As far as we know,
this result is not known in the literature. Furthermore, we present a formulation
of the heterogeneous network coordination game in terms of a network coordination
game with stubborn players and we show that these two formulations are equivalent.
The same method can be applied for the anti-coordination case. We also exhibit a
complete characterization of the Nash equilibria of the heterogeneous network anti-
coordination game over the complete graph. The analysis is done in terms of the
cumulative distribution function of thresholds and generalizes the ideas of the linear-
threshold model introduced by Granovetter in 1978 to the case of anti-coordinating
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agents.
The main contribution of the thesis is to provide a sufficient condition on the

network structure for the existence of Nash equilibria in a mixed coordination anti-
coordination game. Specifically, the condition is based on the idea of cohesiveness
introduced by Morris in 1997: a subset of the node set is q-cohesive if for any agent
in the subset the sum of the weights of the edges pointing to other nodes in the
subset is at least a fraction q of the total degree. In the work, we proved that if
the subset of the coordinating agents is sufficiently cohesive then the existence of at
least one Nash equilibrium is guaranteed over any possible network.
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Introduction

Social interactions influence many decisions of our lives. For instance, when an
individual has to choose which product to buy or who to vote for, he might decide
according to the opinions of his friends and acquaintances. Network game theory
gives essential tools to model and study the interactions of agents who are connected
through a network and act according to the behavior of those around them [3]. In the
theory, games are defined on graphs: each player adopts a strategy and his outcome
depends on both his choice and the actions taken by his neighbors.

This work focuses on two opposite situations that are prominent and widely used
in the applications. More specifically, when an innovation is launched on the market,
people have higher incentives in adopting the new technology if a large number of
friends adopts it too. On the other hand, if a resource is shared, agents might be
interested in taking other solutions than those adopted by the people around them.
These two relevant examples are referred as games of strategic complements and
strategic substitutes respectively [2],[7]. The main assumption is that the payoffs of
the players when choosing an action versus another can either increase or decrease
according to the set of the neighbors taking the same action. In particular, in a game
of strategic complements, the motivation of a player to adopt a strategy (or more
generally a "higher" strategy) increases with the number of neighbors adopting the
(higher) strategy. Conversely, in games of strategic substitutes players have opposite
incentives.

In the thesis, we concentrate on games having binary action set, which are called
binary network games. Specifically, coordinating agents prefer an action if enough
neighbors are playing it, while anti-coordinating agents do not want too many friends
to take the same action as them. Furthermore, every player is equipped with a
personal threshold that captures his incentive in taking one action over the other
with no external influences. We remark that the two cases are canonical examples
of games with strategic complements and strategic substitutes, respectively.
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Network coordination and anti-coordination games have been largely studied in
the literature. The focus is usually on whether players will reach equilibrium states
where they are all satisfied. Nash equilibria are indeed action configurations where
every agent has no incentives in changing unilaterally his strategy. Furthermore,
one can be interested in predicting which states are they likely to attain and how
fast they will get there, depending on the definition of the dynamics, the network
structure and the initial condition.

A big challenge in the analysis of strategic interactions over interconnected sys-
tems is the inherent complexity of social networks and in general it is not easy to
draw conclusions without focusing on specific graph structures. Nevertheless, games
of strategic complements and strategic substitutes satisfy some important mono-
tonicity properties that allowed to achieve many results, especially in the case where
all the players have the same behavior and the only form of heterogeneity is given
by the network structure.

Indeed, it is well-known that, in the homogeneous symmetric case where all the
players have the same threshold and the graph is undirected, both the network coor-
dination game and the network anti-coordination game satisfy the potential property
introduced by Monderer and Shapley in 1996 [9]. A strategic game is potential if
it is possible to express in one single global function the incentive of all the players
to change their actions. This is a very strong property: it not only does guarantee
the existence of at least one Nash equilibrium, but it is sufficient to prove that the
best response dynamics converges to the set of Nash equilibria with probability one
in finite time regardless of the topology and the initial condition. Even though a
subset of the Nash equilibria can be found by maximizing the potential property, a
complete characterization of the Nash equilibria is often computationally unfeasible
and hard to find, especially for the anti-coordination case.

Games with coordinating agents, in particular, well-behave in many situations.
For instance, a consensus configuration is always a Nash equilibria regardless of the
network structure. Morris [11] provided a full characterization of the Nash equilibria
in the network coordination game. This characterization is based on the idea of
cohesiveness and permits to find sufficient and necessary conditions for contagion.
In simple words, if the interactions among players are binary, a subset of the vertex
set is q-cohesive if for any player in the subset it holds that at least a fraction q of
his neighbors belongs to the subset. As we shall see, this concept is fundamental in
this thesis. Many other results have been accomplished in terms of the convergence
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of network dynamics and how the behavior of the system depends on the network
structure in the symmetric case [4],[8],[10].

The analysis of the games with heterogeneous thresholds is more delicate. This
problem was firstly addressed by Granovetter in [6] by proposing a linear-threshold
model to study a fully-connected population of coordinating agents. In the model, the
dynamics is completely described in terms of the threshold cumulative distribution
function. Similar results can be generalized for configuration models [13].

We recall that the existence of Nash equilibria is not an issue for games with
coordinating agents since the consensus is always an equilibrium state. On the other
hand, the existence of Nash equilibria is not in principle guaranteed for the anti-
coordination case and in general the characteristics of the equilibrium configurations
are not trivial. Ming Cao et al [12] proved in 2016 that anti-coordinating agents, as
well as coordinating agents, tend to reach satisfactory situations also with hetero-
geneous thresholds. In fact, they showed that a Nash equilibrium is almost surely
reached through an asynchronous or partially synchronous best-response dynamics on
every network topology and with any distribution of thresholds. They conclude the
paper by pointing out that, while complexity of the network structure and population
heterogeneity are not sufficient to cause nonconvergence issues, a possible source of
irregular behaviors is given by mixture of coordinating and anti-coordinating agents.

The aim of the thesis is to investigate the existence of Nash equilibria in the
general case of heterogeneous coordinating and anti-coordinating agents interacting
over the same network.

In the first chapter, we provide the background definitions that underlie the case
studies of the thesis. We start by recalling the basic elements of graph theory and
game theory. Then, we explain how the two theories are combined in network games.
Furthermore, we give the definition of potential games and we highlight some of the
properties that they share.

In the second chapter, we introduce network coordination games with heteroge-
neous thresholds and we make some relevant observations. In particular, we show
that the network coordination game preserves the potential property also when the
pairwise interactions are not symmetric. Furthermore, we provide a formulation of
the game in terms of a network coordination games with stubborn players.

In the third chapter, we define the network game with anti-coordinating agents
and we make similar considerations as the ones of the previous chapter. Specifically,
we prove that the anti-coordination game with heterogeneous thresholds is a potential
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game and we provide an analogous way to rewrite the game in terms of an anti-
coordination game with stubborn players. Thanks to the potential property, the
existence of at least one Nash equilibrium is guaranteed over any possible network.
In this chapter, we also provide a complete characterization of the Nash equilibria
of the game when the population is fully-connected. In this particular topology,
the game can be studied in terms of the cumulative distribution function of the
thresholds, in a similar way to the linear-threshold model.

In the fourth chapter, we finally give the definition of the mixed coordination anti-
coordination game where heterogeneous coordinating and anti-coordinating agents
interact over the same network. We begin the analysis by observing that it is enough
to introduce one edge between a coordinating and anti-coordinating agent to lose
the potential property. Thereafter, we recall the definition of alpha-cohesiveness and
we apply it to our case. For instance let us assume that coordinating players have
homogeneous thresholds q. We observe that if the set of the coordinating agent is
q-cohesive, then they are in equilibrium in a consensus configuration regardless of the
actions of the players outside the subset. According to this observation, we prove
that the existence of at least one Nash equilibrium is guaranteed when the set of
coordinating agent is sufficiently cohesive. We conclude the chapter by investigating
the existence of Nash equilibria in some simple graph structures where the previous
condition is not satisfied.

In the last chapter, we draw the conclusions and we discuss some future research
directions.
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Chapter 1

Network games

The aim of this chapter is to provide the background definitions that are needed to
understand the following sections.

In particular, we present the basic elements of graph theory, which is fundamental
for networks analysis, and game theory, which is used to model strategic interactions
among rational agents. As we shall see in the last section, the two theories can be
combined in network game theory, which aims to model situations where adaptive
players interact over interconnected systems.

Furthermore, we introduce the concept of potential games, which is crucial for
the aim of the thesis. In fact, potential games share important properties and one of
the main purposes of the thesis is to investigate how they change when the potential
game is perturbed and, in particular, when two different potential games are mixed
together.

1.1 Graphs

Graph theory, a discrete mathematics sub-branch, is a strong tool for the study of
complex systems such as networks. In this section, we present the basic elements of
the theory and we give some relevant examples.

The interconnection among elements in a network is represented through graphs,
mathematical structures that model pairwise relations between units.

Definition 1. A (directed weighted) graph is a triple

G = (V, E ,W )
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1 – Network games

where V is the countable set of nodes (or vertices), E ⊆ V × V is the set of edges or
links and W ∈ RV×V+ is the weight matrix, such that Wij > 0 if and only if (i, j) ∈ E ,
namely if (i, j) is an edge.

In other words, the main aspects of the network are captured in three features:

1. The set of vertices V is composed of the units that constitute the network.
Nodes in a graph may represent people or objects, economic individuals or
biological entities, geographical points or elements in a mains.

2. The set of links E tells us if there exists a direct connection between two
elements of the network. Specifically, a link is an ordered pair (i, j), i, j ∈ V
and its presence represents the existence of an ordered relation between node
i and node j. For example, if nodes are rational individuals, it may mean that
node i influences node j or conversely that node i gets influenced by node j.
On the other hand, if we are dealing with a transport network, it can indicate
a direct way from i to j. A link (i, i) from a node to itself is called self-loop.

3. It may occur that distinct edges have non-identical meaning in the network.
The weight matrix W associates a positive scalar Wij to each edge (i, j) and
it is used to diversify the links. This quantity may measure how strong is
the influence of one node over another or, in the case of network flows, the
conductance or the capacity of the edge.

The size of the graph is given by the number of vertices in V and it is denoted by
n = |V|. The set V is typically, but not always, finite. If n <∞, we can relabel the
nodes of the graph and identify V with the set {1,2, . . . , n}. In this way, we obtain
Wij ∈ Rn×n.

Observation 1. More generally, we identify two graphs when they are isomorphic,
that is when we can obtain one graph from the other through a relabeling of the
nodes. Formally, two graphs G(i) = (V(i), E(i),W (i)) for i = 1,2 are called isomorphic
if there exists a bijection f : V(1) → V(2) such that:

1. (i, j) ∈ E(1) if and only if (f(i), f(j)) ∈ E(2)

2. W (1)
ij = W

(2)
f(i)f(j) for all i, j ∈ V

(1).

6



1.1 – Graphs

1.1.1 Types of graphs

In the theory, different types of graphs are defined according to the weight matrix
W . Specifically, a graph G = (V, E ,W ) is called

• unweighted if W ∈ {0,1}V×V , namely if Wij = 1 for all (i, j) ∈ E and Wij = 0

for every (i, j) /∈ E . Note that the weight matrix can be entirely obtained
from the set of the edges. Therefore, an unweighted graph is often denoted as
G = (V, E). In this case, the weight matrix is called adjancency matrix.

• undirected if W = W ′ is symmetric, that is if Wij = Wji for all i, j ∈ V. This
is the same as asking that if (i, j) ∈ E then (j, i) ∈ E too and, more specifically,
the two links must have the same weight. Therefore, the two directed links
(i, j) and (j, i) can be represented by one undirected link {i, j}. This notation
is often used to emphasize the fact that the order does not matter.

• simple if it is undirected, unweighted and contains no self-loops, that isWii = 0

for all i ∈ V.

Unless it is explicitly said or evident from the context, when we mention a graph
we intend the more general definition of a directed weighted graph. Note that this
definition is still not the most general. For instance, it does not consider multigraphs,
which are graphs where it is allowed to have more than one link between two vertices.

Consider a graph G = (V, E ,W ). A graph H = (U ,F , Z) such that U ⊆ V, F ⊆ E
and Zij ≤ Wij for i, j ∈ U is called subgraph of G.There are two types of subgraphs
that are particularly relevant in the theory:

• Given U ⊆ V, the subgraph of G induced by U is given by G[U ] = (U ,F ,W|U×U )

where

F = {(i, j) ∈ E : i, j ∈ U}

In words, given a subset of the nodes, the induced subgraph is obtain by re-
moving all the links that involve nodes which do not belong to the given subset,
namely nodes in V \ U .

• Given F ⊆ E , the spanning subgraph is a graph H = (V,F , Z) having

Zij =

Wij if (i, j) ∈ F

0 if (i, j) /∈ F
i, j ∈ V

7



1 – Network games

In this case, we start from a subset of the edges: we keep the same set of nodes
and we obtain the subgraph by removing the links that are not in the given
subset.

1.1.2 Neighborhood and degree

Given a graph G = (V, E ,W ), we introduce the following notation that will be useful
in the next sections. The out-neighborhood of node i ∈ V is defined as

Ni = {j ∈ V | (i, j) ∈ E}

and its elements are called out-neighbors. Similarly, the set of the in-neighbors of
node i ∈ V, namely its in-neighborhood, is given by

N−i = {j ∈ V | (j, i) ∈ E}

Furthermore, we define the out-degree and the in-degree of node i ∈ V, respectively,
as

wi =
∑
j∈V

Wij and w−i =
∑
j∈V

Wji

If the graph is undirected, Ni = N−i and wi = w−i , namely the out-neighborhood
and in-neighborhood coincide, as well as the out-degree and the in-degree. In this
case, we naturally refer to Ni as the neighborhood of node i ∈ V, and to wi as its
degree. In the matter of directed graphs, the term degree is sometimes used in place
of out-degree.

We can obtain a compact notation for the out-degree and in-degree of the nodes
by defining

w := 1W and w− := W ′1

We refer to w and w−, respectively, as the out-degree and the in-degree vectors of
the graph. Following the same idea, the total degree of the graph is given by 1′W1,
while

w =
1

n
1
′W1, n = |V|

is the average degree. If w = w′, the graph is called balanced since all its nodes are
so (wi = w−i for all i ∈ V). Furthermore, a graph is regular if w = w′ = w1.

Notice that, if the graph is simple, the total degree is an even number (hand-
shaking lemma). This comes straightforward from the fact that the total degree

8



1.1 – Graphs

corresponds to the number of edges of the graph, which is even, namely

1
′W1 =

∑
i∈V

∑
j∈V

Wij =
∑

(i,j)∈E

1 = |E|

In a simple graph, the number of edges is even since we are counting each undirected
edge {i, j} twice: one as (i, j) and one as (j, i).

1.1.3 Reachability

Reachability is a fundamental concept in graph theory. In fact, determining if a
graph or a subgraph is connected or disconnected is important to investigate the
strength of the connections among elements in the network.

Consider a graph G = (V, E ,W ). We recall that a walk from a vertex i to a vertex
j is a sequence of nodes γ = (γ0, γ1, . . . , γl), where l is the length of the walk, such
that γ0 = i, γl = j and (γk, γk+1) ∈ E for k = 0, . . . , l− 1. In other words, in a walk
every two consecutive nodes are linked by an edge.

Definition 2. A node j is reachable from a node i if there exists a walk from node
i to node j.

A walk such that γ0 = γl is called a circuit. A path is a walk with no repeated
nodes, except eventually γ0 = γl, namely where each transition node appears at
most once (γi /= γj for any i, j ∈ {0, . . . , l − 1}). If γ0 = γl and l ≥ 3, the path is
called a cycle. We remark that self-loops (i, i) ∈ E and walks such as (i, j, i), with
(i, j), (j, i) ∈ E , are circuits but not cycles (l < 3).

Definition 3. A graph G is called circuit-free if it does not contain any circuit,
acyclic if it has no cycles.

Given a graph G = (V, E ,W ), the distance between a node i and a node j is
defined as the length of the shortest path from i to j if j is reachable from i, while
it is set to infinity otherwise. In formulas,

dist(i, j) =


min γ=(γ0,...,γl)

s.t. γ path
l if j is reachable from i

+∞ otherwise

The diameter of a graph G is the maximum distance between two nodes of the graph,
namely

diam(G) = max
i,j∈V

dist(i, j)

9



1 – Network games

Definition 4. A graph G = (V, E ,W ) is strongly connected if, for any i, j ∈ V, node
j is reachable from node i, which is the same as asking diam(G) <∞.

A connected component (or shortly component) of a graph G = (V, E ,W ) is an
induced subgraph G′ = G[V ′] such that

1. G′ is strongly connected

2. i ∈ V ′, (i, j) ∈ E implies j ∈ V ′

In other words, a component is a maximal connected subgraph. With the term
maximal, we mean that we cannot find a bigger subset of nodes such that the induced
subgraph is connected and contains the component.

Note that, if we identify the component with its vertex set, connected components
form a partition of the nodes set of the graph. The component of a node i ∈ V is the
component that contains i. The component with the maximum number of nodes is
called largest connected component of the graph.

1.1.4 Examples of graphs

In this unit, we present three important families of graphs and we give some relevant
examples. As we shall see in the next chapters, those examples are very useful in the
applications. Indeed, they represent a fundamental first step in the analysis of the
behavior of the more complicated real networks. Their simplicity usually permits
rigorous and general results. Furthermore, they represent extreme cases and they
can be used to underline the main characteristics of the network and study their
effects.

Regular graphs

Recall that in a regular graph all nodes have the same degree. A regular graph where
nodes have degree equal to k is called a k-regular graph or regular graph of degree
k.

Let n ∈ N. Some examples of regular graphs are:

• The ring graph, which is a 2-regular simple graph, namely a simple graph where
each node has degree equal to 2. Such a graph may appear as a circle where
each vertex communicates with the preceding node and next one. The ring
graph with n nodes is denote by Cn.

10



1.1 – Graphs

• The complete graph, which is a regular graph of degree k = n − 1, namely
each node has degree n − 1. In other words, the complete graph is a simple
graph where each vertex is linked to all the other vertices of the graphs. As
a consequence, the graph has

(
n
2

)
undirected edges, which is the maximum

number of links in a simple graph. The complete graph with n nodes is denoted
with Kn and it is used to model fully connected networks.

Consider two complete graphs with n1 and n2 nodes respectively. The barbell
graph is the simple graph obtained by adding one link between a node in the first
graph and a node in the second graph. In the applications, it may represent the
extreme case of two fully connected groups which communicate just over one link,
namely two very closed communities that are not completely isolated.

Bipartite graphs

A graph G = (V, E ,W ) is called bipartite if there exists a partition V = V1 ∪V2 such
that Wij = 0 for all i, j ∈ V1 and Wij = 0 for all i, j ∈ V2. Namely, a graph is
bipartite if we can divide the nodes set in 2 subsets such that the subgraphs induced
by the subsets have only isolated nodes, that is there are no edges between nodes in
the same subset.
The following proposition gives a characterization of bipartite graphs.

Proposition 1. A graph is bipartite if and only if it contains no cycles of odd length.

Let us introduce an important subfamily of bipartite graphs.

Definition 5. A tree is a connected acyclic simple graph.

Graphs in this family have many interesting properties. For instance, note that all
trees are bipartite. Indeed, trees are special cases of Proposition 1 since they contain
no cycles at all.

Moreover, it is possible to prove that a connected simple graph G = (V, E) with
n nodes and m undirected edges is a tree if and only if m = n− 1.

Consider n ∈ N. Two examples of trees with n nodes are:

• The line graph, which is denoted by Ln. A line graph is a ring graph with one
removed link, namely Ln = ({1, . . . , n} , E) such that
E = {(i, i+ 1), (i+ 1, i), i = 1, . . . , n− 1}.

11



1 – Network games

• The star graph, where all nodes but one have degree one. As a consequence,
the remaining node has degree n− 1. A star graph with n nodes is denoted by
Sn.

A leaf is a node with degree one. In a line graph, there are 2 leaves, while a star
graph has n − 1 leaves. In general, the number of leaves of a tree is least 2 and at
most n− 1.

Random graphs

Previously, we gave examples of deterministic graphs. In this last part, we explore
some techniques for generating random graphs, which are graphs drawn from given
probability distributions. In this way, we can study a wider spectrum of networks,
which still preserve some common characteristics that vary according to the chosen
probability distribution.

A well-known family of random graphs is such of Erdös-Renyi random graphs
[5],[1]. This class of graphs is vastly used in the applications for the simplicity of
their definition,.

Definition 6. The Erdös-Renyi random graph G(n, p), with n ∈ N and p ∈ [0,1],
is a random graph with vertex set V = {1,2, . . . , n} where each edge {i, j} ∈ E is
present independently with probability p.

In other words, we start with an empty graph with vertex set V = {1, . . . , n} and
perform

(
n
2

)
Bernoulli experiments inserting edges independently with probability p.

Observation 2. The properties of those random graphs have been largely studied
and many results in terms of degree distribution and connectivity have been achieved,
although they are not strictly necessary for the scope of the thesis. We just show a
straightforward result on the expected number of edges, which is twice the number
of undirected edges that is by definition a binomial random variable, namely

E[|E|] = 2

(
n

2

)
p = 2

n(n− 1)p

2
= n(n− 1)p

As a consequence, the expected average degree is E[w] = E[|E| /n] = (n− 1)p. This
fact should be considered when choosing the parameters p and n.

Let us point out that Erdös-Renyi random graphs can be also defined by setting
the number of undirected edges of the graph, instead of giving the probability of an
edge to appear.
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1.2 – Games

Definition 7. The uniform random graph G(n,m), with n ∈ N = {1,2, . . . } and
0 ≤ m ≤

(
n
2

)
, is a random graph with n vertices and m edges where the m edges

are drawn uniformly random from the set of all possible edges. Equivalently, we can
define Gn,m as the family of all labeled graphs with vertex set V = {1,2, . . . , n} and
exactly m edges and assign to each graph G ∈ Gn,m the probability

P(G) =

((n
2

)
m

)−1
.

In this case, we start with an empty graph with vertex set V = {1, . . . , n} and
insert m edges in such a way that all possible

((n2)
m

)
choices are equally likely.

In general, G(n, p) and G(n,m) should behave in a similar way for n large if m
is close to the expected number of edges in G(n, p), namely if m ≈ n2p

2 . Again, some
rigorous results have been proved in the matter of the relations between the two.

1.2 Games

In this section, we introduce the basic concepts of classical game theory, a branch of
mathematics that provides tools to study competitive situations.

In a game, rational individuals, which are called players, interact strategically
with the aim of maximizing an outcome that depends on both their action and the
choices of the other players.

Definition 8. A (strategic form) game is a triple

U = (V,A, {ui}i∈V)

where V is the finite set of players, A is the set of actions and {ui}i∈V is the set of
the utility functions (a.k.a. reward or payoff functions). For each player i ∈ V, the
function

ui : AV → R

returns the outcome ui(x) of player i when an action configuration (or profile) x ∈ AV

is chosen by the players, namely when every participant j ∈ V plays action xj ∈ A.
The set X = AV of all the possible action profiles is called configuration space.

In words, given the set of participants that play in the game and the family of
the actions that they are allowed to choose, the strategic interest of the players is
quantify through the utility functions, which define how the profit of each player
varies according to his action and the choices of the rest of the participants.

13



1 – Network games

Remark 1. Note that the definition mentions a unique action set A that is the same
for all the players. A more general definition with multiple Ai, i ∈ V, can be found
in literature. Since in the thesis we focus on games where all the players have the
same action set, we decided to give a more compact definition. Moreover, in the case
studies the action set is finite but it can also be continuous, for instance the set of
real numbers.

Observation 3. We denote by

x−i = x |V\{i}

the vector obtained by removing from a configuration x ∈ AV the action of player
i ∈ V. In this way, we can emphasize the fact that the outcome of player i depends,
on one side, on the action that he rationally chooses and, on the other, on what the
other participants, who play autonomously and with individual aims, decide to do.
Therefore, with a slight abuse of notation, we often write

ui(xi, x−i) = ui(x) (1.1)

A fundamental fact in game theory is that players are assumed to be rational,
namely each individual chooses the action and the strategy with the aim of maximiz-
ing his reward, which varies according to the action configuration of all the players.
Therefore, it is reasonable to introduce the idea of best response.

Definition 9. The best response (BR) function of player i ∈ V is defined as the
set-valued function

Bi(x−i) = argmaxxi∈A ui(xi, x−i)

In simple words, assuming that player i ∈ V is aware of the actions of the rest of
the players, the best response function returns the best alternatives for player i in
the given situation, namely the action, or the actions, that maximizes the utility
according to the choices of the other participants. Note that Bi(x−i) can be empty
if A is not finite.

We conclude this section by giving a formal definition of the fundamental concept of
Nash equilibrium.

Definition 10. A (pure strategy) Nash equilibrium (NE) for the game (V,A, {ui}i∈V)

is an action configuration x∗ ∈ X such that

x∗i ∈ Bi(x∗−i), i ∈ V (1.2)

14
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The main idea behind the definition is that, in a Nash equilibrium, no player
has any incentive of changing unilaterally his action. Indeed, for any agent i ∈ V,
the chosen action x∗i belongs to the best response and therefore it is one of the best
alternatives in the current profile. In fact, the utility that the player gets is the best
possible given the present choices of the other players. Note that other configurations
where one, more than one or even all the players have higher outcomes might exist,
but they are not reachable unless more than one player changes his action.

We remark that the existence of a Nash equilibrium is in general not guaranteed,
as well as its uniqueness. In the thesis, we denote as N the set of Nash equilibria of
a game, which can be empty or include more than one element.

1.2.1 Potential games

We conclude this section by giving the definition of a special class of games that have
remarkable behaviors.

Definition 11. A game (V,A, {ui}i∈V) is a potential game if there exists a function
Φ : X → R, which is called potential function of the game, such that for any player
i ∈ V and any x−i ∈ AV\{i} it holds that

ui(yi, x−i)− ui(xi, x−i) = Φ(yi, x−i)− Φ(xi, x−i) (1.3)

for all xi, yi ∈ A.

In words, the variation of the utility incurred by the player i when she switches
the action from xi to yi, and the rest of the agents keep playing x−i, is equal to the
corresponding variation of the potential function.

We remark that the potential function is not indexed: it is the same one for all
the players of the game. Here stands the strength of this property. The meaning
of finding a potential function is that it is possible to express in one single global
function the incentive of all the players to change their action.

One of the most important properties of potential games is that the existence of
at least one Nash equilibrium is guaranteed. As stated in the following proposition,
a nonempty subset of the Nash equilibria can be found by maximizing the potential
function.

Proposition 2. Consider a finite potential game (V,A, {ui}i∈V) with potential func-
tion Φ(x). Then, the game admits at least one Nash equilibrium and, in particular,
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the set N of the Nash equilibria contains the set

X ∗ := argmaxx∈X Φ(x)

of global maximizers of the potential function.

For the sake of completeness, we specify that the results hold also when the
function Φ satisfies a slightly weaker condition than the one in equation (1.3), which
is

sign(ui(yi, x−i)− ui(xi, x−i)) = sign(Φ(yi, x−i)− Φ(xi, x−i))

In this case, the Φ is called ordinal potential function and the game is referred as
ordinal potential game.

1.3 Games on graphs

This section is dedicated to the definition of games on networks. The set players of
a network game coincide with the set of the nodes of a given graph and, specifically,
each agent plays a two-player game with every neighbor. Therefore, we start by
describing the properties of two-player games. This simple class of games is useful
in the applications and underlies the definition of network games. Then, we give the
formal definition of a network game and we make the first observations. In particular,
there is a special way to construct a network game that leads for sure to a potential
game.

1.3.1 Two-player games

Games having only two players are the simplest example of games. Given the action
set A, two-player games are defined by just two utility functions ui(r, s), i = 1,2,
where we denote as r the action played by agent i, while s is the action chosen by
his opponent.

Let us consider the special case where the two utility functions coincide. In this
instance, the game is called a symmetric two-player game and we can define a unique
function ϕ : AV → R such that

ϕ(r, s) = u1(r, s) = u2(r, s), r, s ∈ A (1.4)

which gives the utility of a player choosing action r when the opponent picks action
s.
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IfA is finite, the game can be summarized in a payoff matrix. Each row represents
a possible action for player 1, while columns correspond the actions of player 2.
According to it, each entry contains the comma-separated payoffs of player 1 and 2

given that the first agent plays action r while the second one chooses action s. In
formulas, in the (r− s)-entry, we find, in order, u1(r, s) and u2(r, s). In the case of a
symmetric two-player game, the previous values coincide, by definition, with ϕ(r, s)

and ϕ(s, r).
The payoff matrix is particularly simple when there are just two possible choices

of actions, as shown in Figure 1.1. Two-player games having |A| = 2 are usually
called 2× 2-games.

-1 +1
-1 a,a d,c
+1 c,d b,b

Figure 1.1. Payoff matrix of a 2× 2-game, having A = {−1,+1}.

Note that every 2 × 2 game with payoff matrix as in Figure 1.1 is potential. In
particular, the potential function is given by

Φ(−1,−1) = a− c, Φ(+1,+1) = b− d, Φ(−1,+1) = Φ(+1,−1) = 0 (1.5)

The next two examples are special cases of 2× 2 symmetric games and therefore
they admit the potential function in (1.5).

Example 1 (Coordination game). Let us consider the 2 × 2-game in Figure 1.1
having A = {−1,+1}. The game is called coordination game if

a > c and b > d

In fact, note that under this assumption

B1(+1) = B2(+1) = +1, B1(−1) = B2(−1) = −1

In words, in a coordination game, the best response of a player is to copy the action
of the other player, namely both players want to coordinate themselves with the
opponent.

A straightforward consequence is that the Nash equilibria of the game are (+1,+1)

and (−1,−1), which are the two possible action configurations where the players pick
the same action.

17



1 – Network games

Note that the two Nash equilibria of the game may be not equally satisfactory for
the players. In particular, if a > b (respectively b > a), the configuration (−1,−1)

(respectively (+1,+1)) is called payoff dominant.

Example 2 (Anti-coordination game). The anti-coordination game is again a special
case of a 2× 2-game like the one in Figure 1.1, but, conversely to the previous case,
we need

a < c and b < d

This condition implies

B1(+1) = B2(+1) = −1, B1(−1) = B2(−1) = +1

which means that, in this case, the best response of a player is to choose the opposite
action of the other player, namely both players want to differentiate themselves from
the opponent.

In the anti-coordination game, the two Nash equilibria are given by (+1,−1) and
(−1,+1). Yet again, the two Nash equilibria may give different outcomes to the
players.

Example 3 (Discoordination game). Differently from the two previous examples,
the payoff matrix of the discoordination game is

-1 +1
-1 a,b c,d
+1 c,d a,b

In particular, the entries must be such that

a > c and d > b

An important observation is that the discoordination game is not symmetric since
utility functions of the two players do not coincide. In particular, player 1 goes for
a configuration where they match, while player 2 prefers an outcome where they
play opposite actions. A consequence is that discoordination games admit no Nash
equilibria.

1.3.2 Network games

The main idea in the definition of a network game is that players are identified with
nodes of a graph and, therefore, interactions among them are defined according to
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the graph structure. Indeed, in a network game, the utility of a player depends on
his choice and on the action configuration of the out-neighborhood. Note that any
game can be seen as a network game over the complete graph. Let us give the formal
definition.

Definition 12. A triple (V,A, {ui}i∈V) is a network game over the graph G =

(V, E ,W ) (or shortly a G-game) if, given any player i ∈ V, the utility function
ui : AV → R satisfies

ui(x) = ui(y)

for all x, y ∈ AV such that xj = yj , for every j ∈ Ni ∪ {i}.

Above, we provided the most general definition of a network game. Indeed, the
only request is that payoffs do not change according to the actions of players which
are not in the out-neighborhood.

We now give a slightly more restrictive definition which also requires that every
pair of neighbors plays a two-player game. This definition is more specific since the
utility functions are defined as the weighted sum of the payoffs received from every
two-player game.

Let G = (V, E ,W ) be undirected and with no self-loops. For any two neighbors
i, j ∈ V we consider a two-player game having utilities ϕ(i,j)(a, b) : A×A → R and
ϕ(j,i)(a, b) : A × A → R. Recall that ϕ(i,j)(a, b) is the payoff of player i when he
plays action a and his opponent plays action b. In this instance, the network game
(V,A, {ui}i∈V) over G has utilities

ui(x) =
∑
j

Wijϕ
(i,j)(xi, xj) (1.6)

The payoff functions ϕ(i,j) and ϕ(j,i), {i, j} ∈ E , are called interaction utilities.
The graph is assumed to be undirected for simplicity: in this way, we can say

that each couple of neighbors play a two-player game. The definition can be easily
generalized to the case of directed graphs by defining an interaction utility for each
directed edge (i, j).

Recall that, in the previous chapter, we provide the definition of potential games,
a class of games that share important properties. In particular, we point out that
if a game has a potential function, then the set of the Nash equilibria is non-empty
and contains all the action configurations that maximize the potential function.
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The following proposition identifies a type of network games for which it is always
possible to find a potential function. In fact, if the underlying two-player game is
symmetric, then if the graph is undirected the property transfers to the network
game and the the potential can be found as a function of the two-player potential
function.

Proposition 3. Consider an undirected G = (V, E ,W ) and assume that for every
edge {i, j}, and therefore for every two neighbors i and j, the interaction utility is
such that ϕ(i,j)(a, b) = ϕ(j,i)(a, b), which means the two-player game is symmetric.
In addition assume that every two-player game has a potential function φ{i,j}. Then,
the network game (V,A, {ui}i∈V) having the utilities in (1.6) is also a potential game
with potential

Φ(x) =
1

2

∑
i,j∈V

Wijφ
i,j(xi, xj) (1.7)

As we shall see, both the network coordination game and the network anti-
coordination game satisfy the hypothesis of the theorem and thus they are potential
games. This fact implies that they always admit Nash equilibria. However, even
though the potential function is a useful tool to look for equilibria, it is sometimes
problematic to determine an explicit characterization of all the Nash equilibria of
the game. This is usually due to the computational issues arising with complex
large-scale networks.
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Chapter 2

Heterogeneous network
coordination game

In the thesis, we consider examples of network games having binary action set, which
are called binary network games. Therefore, from now on we consider A = {−1,+1},
which is the action set of the game.

Recall that in a network game, agents are influenced by people around them. In
this chapter, we present a formal way to model a game where agents have coordinat-
ing incentives. In general, a coordinating agent prefers an action if enough neighbors
are playing it. Furthermore, we introduce a form of heterogeneity among the agents.
Indeed, every agent is equipped with a value which represent their personal incentive
in preferring an action over the other which does not depend on the people around
them.

In the first section, we introduce the definition of heterogeneous network coor-
dination game and we make the first basic observations. In the literature, network
coordination games have been widely studied and a lot of results have been achieved
regarding their static properties and dynamics behaviors. This fact is not true for
the heterogeneous case, whose behavior is less known. In the second section, we show
that the heterogeneous network coordination game is a potential game. We conclude
the chapter by presenting an equivalent formulation of the game in terms a network
coordination game with stubborn players.
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2 – Heterogeneous network coordination game

2.1 The heterogeneous network coordination game

Let us consider an undirected weighted graph G = (V, E ,W ) and a set of given
node weights {αi}i∈V , αi ∈ R. We define the heterogeneous network coordination
game with action set A = {−1,+1} as a network game (V,A, {ui}i∈V) with utilities
{ui}i∈V : AV → R

ui(xi, x−i) =
∑
j∈V

Wijxixj − αixi, i ∈ V (2.1)

Note that, according to equation (2.1), the payoff of an agent increases as the
weighted sum of the neighbors choosing the same action gets larger, while it de-
creases with the rising of the weighted sum of the neighbors playing the opposite
one. Therefore, this game models coordination interests, since agents have a positive
incentive in choosing the same action of a neighbor and a disadvantage in picking
the opposite one. Namely, the underlying assumption is that agents are interested
in adopting a strategy when they interact with other agents who adopt it too.

Furthermore, we introduce a node weight αi that represents the personal interest
of a player in choosing an action over the other. For instance, let us consider the
coming of a new technology on the market. If we denote with −1 the old strategy
and with +1 the new one, the threshold αi determines how many friends have to
adopt the innovation before agent i adopts it too. Observe that if αi > 0 it means
that, when the weighted sum of the neighbors playing +1 coincides with the weighted
sum of the neighbors playing conversely, the preferable action for player i is −1. In
the literature, in this case action −1 is called risk-dominant. On the other hand, if
αi < 0, it conveys that agent i would pick action +1 with no external influences. If
αi = 0 the two actions are called risk-neutral.

Given an agent i ∈ V and any choice of actions x−i ∈ AV\{i}, we have that
+1 ∈ Bi(x−i), which means by definition that ui(+1, x−i) ≥ ui(−1, x−i), if and only
if ∑

j∈V
Wijxj − αi ≥ −

∑
j∈V

Wijxj + αi

From which we obtain ∑
j∈V

Wijxj ≥ αi
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Therefore, the best response function for an agent i ∈ V is given by:

Bi(x−i) =


{+1} if

∑
j∈VWijxj > αi

{−1} if
∑

j∈VWijxj < αi

{±1} if
∑

j∈VWijxj = αi

(2.2)

The meaning of the value αi is more evident in this formulation of the game.
Recalling that w = W1 denotes the degree vector, we observe that, if αi > wi,
then Bi(x−i) = {−1} for any possible choice of actions x−i ∈ AV\{i}. Similarly, if
αi < −wi, then Bi(x−i) = {+1} for any action configuration. We will call stubborn
agents the players having αi > wi or αi < −wi, as their best response function is
constantly equal to {−1} or {+1}, respectively, independently of the actions of the
other players. In words, stubborn players are not influenced by the choices of the
agents around them.

Observation 4. If there are no stubborn players, the two consensus configurations,
namely 1 and −1, are Nash equilibria in any graph and for any set of node weights.
This is a relevant property which is peculiar to the coordination game and does not
hold, for instance, for the anti-coordination game.

Note that it is possible, and sometimes useful, to rewrite the conditions of the
best response in terms of the degree wi, which is a given quantity. This permits to
find an equivalent definition of the game where the best response depends explicitly
only on the total weight of neighbors picking action +1. Therefore, given x ∈ X , let
us define the quantities

w+
i (x) =

∑
j∈V

xj=+1

Wij w−i (x) =
∑
j∈V

xj=−1

Wij (2.3)

which allow us to write

Bi(x−i) =


{+1} if w+

i (x)− w−i (x) > αi

{−1} if w+
i (x)− w−i (x) < αi

{±1} if w+
i (x)− w−i (x) = αi

Recalling that w+
i (x) + w−i (x) = wi, we find that

w+
i (x)− (wi − w−i (x)) > αi ⇔ w+

i (x) >
wi + αi

2
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and therefore

w+
i (x) >

(
1

2
+

αi

2wi

)
wi

If we introduce the quantity

ri :=
1

2
+

αi

2wi
(2.4)

the best response in (2.2) turns into

Bi(x−i) =


{+1} if w+

i (x) > riwi

{−1} if w+
i (x) < riwi

{±1} if w+
i (x) = riwi

(2.5)

We remark that the two notations are completely equivalent. In fact, the quantities ri
can be uniquely computed from αi through equation (2.4) as well as αi = (2ri−1)wi.

Note that the quantities ri represent thresholds. In fact, note that, if the graph
is unweighted, the best response function becomes

Bi(x−i) =


{+1} if |{j ∈ Ni | xj = +1}| > ri |Ni|

{−1} if |{j ∈ Ni | xj = +1}| < ri |Ni|

{±1} if |{j ∈ Ni | xj = +1}| = ri |Ni|

(2.6)

where Ni denotes the neighborhood of node i. In this case, thresholds ri capture the
incentive of the agent in preferring one action over the other in terms of the fraction
of (+1)-neighbors needed in order for the player to prefer action +1.

Furthermore, observe that (−1)-stubborn players, who have by definition αi > wi,
have threshold ri > 1. This is consistent with what we said before. In fact if, for
a given player, the fraction of neighbors required to play action +1 in order to
coordinate with them is more than 1, then the player will always prefer action −1.
Similarly, if αi < −wi, the threshold ri becomes negative and therefore he is evidently
a (+1)-stubborn player.

Let us make one last observation about thresholds. In the beginning of the
section, we said that action −1 is risk-dominant if αi > 0. Note that this is the same
as asking ri > 1

2 .

Example 4 (Network coordination game). Let us consider the case where ri = r

for all players. This means that the only form of heterogeneity among the players is
given by the network structure. In this instance, the best response function becomes
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Bi(x−i) =


{+1} if w+

i (x) > rwi

{−1} if w+
i (x) < rwi

{±1} if w+
i (x) = rwi

(2.7)

In the literature, this game is called network coordination game and it is defined as a
binary network game where every pair of neighbors plays the same given coordination
game. Recall that a coordination game is a 2×2-players symmetric game with payoff
matrix as in Figure 1.1 having entries a > c and b > d.

For instance, let us consider an unweighted graph and a threshold r = 1
2 , which is

the risk-neutral case. Note that this corresponds to the case of α = 0 and therefore
the utilities are simply given by ui(x) =

∑
j∈V Wijxixj for any i ∈ V. If the graph

is undirected, the best response function becomes

Bi(x−i) =


{+1} if |{j ∈ Ni | xj = +1}| > |Ni|

2

{−1} if |{j ∈ Ni | xj = +1}| < |Ni|
2

{±1} if |{j ∈ Ni | xj = +1}| = |Ni|
2

(2.8)

which means that the purpose of every player is to copy the action chosen by the
majority of the neighbors. This special example of network coordination game is
called majority game. Another way to define the majority game is to start from the
payoff matrix in Figure 3.1 from which we obtain, since the graph is unweighted,

-1 +1
-1 1,1 -1,-1
+1 -1,-1 1,1

Figure 2.1. Payoff matrix majority game.

that the utility functions are given by

ui(x) :=
∑
j∈V

Wijϕ(xi, xj) =
∑
j∈V

Wijxixj = |{j ∈ Ni | xj = xi}|− |{j ∈ Ni | xj /= xi}|

for all i ∈ V.
We recall that the two consensus configurations are Nash equilibria of the game.

Furthermore, it is possible to give a general characterization of all the Nash equilibria
of the network coordination game by introducing the concept of cohesiveness of a
subset. Specifically, a subset S of the vertex set V is called q-cohesive is for any
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i ∈ S the total weight of the out-links towards nodes that belong to the subset S is
at least a fraction q of the out-degree of the node. In formulas, S ⊆ V is q-cohesive
if ∑

j∈SWij

wi
≥ q (2.9)

for any i ∈ S.
Note that if all the players in a r-cohesive subset of the nodes play action +1

then action +1 is their best response regardless of the strategies adopted by the rest
of the players. Similarly, players in a (1 − r)-cohesive subset are in equilibrium if
they all play action −1.

Therefore, it is not difficult to prove that the set of all the Nash equilibria of a
network coordination game with threshold r is given by

N =
{
1S − 1V\S | S is r-cohesive and V \ S is (1− r)-cohesive

}
We anticipate that the idea of cohesiveness is fundamental for the results achieved
in the thesis.

Finally, we recall that coordination games are 2× 2 symmetric potential games.
Therefore, if the graph is undirected, the network coordination game with threshold
r satisfies the hypothesis of Proposition 3 and, therefore, it is a potential game with
potential function given by (1.7). For instance, let us consider again a network
game where every pair of neighbors plays the two-player symmetric game in Figure
3.1, which leads to a network coordination game with threshold r = 1

2 . Note that
φ{i,j}(x, y) = φ(x, y) for any i, j ∈ V, x, y ∈ A where

φ(+1,+1) = φ(−1,−1) = 1, φ(−1,+1) = φ(+1,−1) = −1

Therefore, the potential function of the game is

Φ(x) =
1

2

∑
i,j∈V

Wijxixj (2.10)

In words, the potential of the game is given by the total weight of the edges where
neighbors play the same action minus the total weight of the edges where neighbors
play different actions. If the graph is unweighted, as in the majority game, it coincides
with the difference between the number of links connecting agents picking identical
actions and the number of links connecting players picking opposite actions.
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2.2 The potential property

The potential property of the network coordination game over undirected graphs is
well known in the literature. In fact, as we observed before, the game satisfies the
hypothesis of Proposition 3, which also provides a simple tool to find the potential
function. Note that the main assumption of the proposition is that the underlying
two-player games are symmetric. This fact is not true for the heterogeneous case
where we introduced a form of distinction among the incentives of the players. In
this section, we show that the potential property still holds with the addiction of
heterogeneous thresholds.

First of all, let us recall one more time the utilities of the heterogeneous network
coordination game, which are defined in (2.1). In order to avoid confusion with the
next chapter, from now on, we will denote the payoffs of coordinating agents as

uci (xi, x−i) :=
∑
j∈V

Wijxixj − αixi

Proposition 4. The heterogeneous network coordination game with node weights
{αi}i∈V defined over an undirected graph G = (V, E ,W ) is a potential game with
potential function given by

Φc(x) =
1

2

∑
i,j∈V

Wijxixj −
∑
i∈V

αixi (2.11)

Proof. Consider any player i ∈ V and any configuration x−i ∈ AV\{i}. Let us first
observe that

Φc(+1, x−i) =
1

2

∑
k,j∈V
k,j /=i

Wkjxkxj +
∑
j∈V

Wijxj −
∑
k∈V
k /=i

αkxk − αi

Φc(−1, x−i) =
1

2

∑
k,j∈V
k,j /=i

Wkjxkxj −
∑
j∈V

Wijxj −
∑
k∈V
k /=i

αkxk + αi

Therefore, if we compute the difference in the utilities, we obtain

uci (+1, x−i)− uci (−1, x−i) =
∑
j∈V

Wijxj − αi − (−
∑
j∈V

Wijxj + αi) =

= 2
∑
j∈V

Wijxj − 2αi =

= Φc(+1, x−i)− Φc(−1, x−i)
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which means that Φc is a potential function for the heterogeneous network coordi-
nation game.

As we already know, the potential property guarantees the existence of at least
one Nash equilibrium, which is a maximum point of the potential function. This fact
is not too surprising for the network coordination game since we already observed
that the two consensus configurations 1 and −1 are Nash equilibria in any given
setting with no stubborn players. In general, an explicit characterization of all the
Nash equilibria is not easy to find, although we observe that, if the network is a
complete graph and the thresholds are such that there are no stubborn players, the
two actions profiles 1 and −1 are the only Nash equilibria of the game.

2.3 The network coordination game with stubborn agents

The purpose of this section is to show that the heterogeneous network coordination
game defined above is equivalent to a network coordination game with stubborn
agents.

Consider a network coordination game with threshold r = 1
2 for all i ∈ V over

an undirected graph G = (V, E). For simplicity, we assume r = 1
2 , although we

remark that the following observations hold true with slight modifications for any
given threshold α ∈ R.

Recall that the network coordination game is potential. In particular, the utilities
of the agents are given by

ui(x) =
∑
j∈V

Wijxixj , i ∈ V

We now change the behavior of some agents in order to introduce stubborn agents
in the game, which are agents that always prefer a given action regardless of the
choices of their neighbors. In particular, let us introduce (+1)-stubborn agents by
forcing a subset V+ ⊂ V of the agents to play action +1. Furthermore, let us assume
that a subset V− ⊂ V of the agents always prefer action −1. We remark that this is
possible only if V− ∩ V+ = ∅.

At this point, we denote the set of the remaining nodes as Ṽ, namely Ṽ :=
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V \ (V+ ∪ V−). Let us now consider the payoff of a player i ∈ Ṽ. We find that

ui(x) =
∑
j∈V

Wijxixj =
∑
j∈Ṽ

Wijxixj +
∑
j∈V+

Wijxi −
∑
j∈V−

Wijxi =

=
∑
j∈Ṽ

Wijxixj +

∑
j∈V+

Wij −
∑
j∈V−

Wij

xi =

=
∑
j∈Ṽ

Wijxixj − αixi

where we denoted

αi :=
∑
j∈V−

Wij −
∑
j∈V+

Wij (2.12)

This means that the network coordination game with stubborns over a graph G =

(V, E ,W ) can rewritten as a heterogeneous network coordination game with node
weights αi over the induced subgraph G[Ṽ] = (Ṽ, Ẽ ,W|Ṽ×Ṽ) where Ẽ =

{
{i, j} ∈ E : i, j ∈ Ṽ

}
.

Let us now focus on the opposite formulation of the problem. Specifically, given
a graph G̃ = (Ṽ, Ẽ , W̃ ), we consider the heterogeneous network coordination game
with node weights αi ∈ R, i ∈ Ṽ, and we want to see if we can write it in the form
of a network coordination game with stubborn agents.

Therefore, let us consider a network coordination game defined over the same
graph where all the agents have threshold r = 1

2 . Furthermore, let us introduce
n = |Ṽ| new agents in the game. In particular, we provide any agent i ∈ Ṽ having
node weight αi > 0 with a (−1)-stubborn neighbor and we set the weight of the
interaction as the threshold αi. Similarly, we add a (+1)-stubborn neighbor to the
remaining agents having αi < 0. In this second case, we set the weight of the
interaction as −αi.

Formally, let us suppose Ṽ = {1, . . . , n}. We consider an enlarged vertex set
V = Ṽ ∪ V+ ∪ V−, where V+ and V− are such that V+ ∪ V− = {n+ 1, . . . , 2n} and
represents the set of the stubborn agents which, by definition, always prefer action
+1 or −1 regardless of the rest of the players. We define the new matrix of the
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weights W ∈ R2n×2n as

Wij =



W̃ij if i, j ∈ Ṽ

αi if i ∈ Ṽ, j = n+ i, αi > 0

−αi if i ∈ Ṽ, j = n+ i, αi < 0

0 otherwise

(2.13)

Note that, if we desire an undirected graph, we need to set Wij = |αj | for j ∈ Ṽ and
i = j + n. We mention it to be consistent with the previous sections but it is not
strictly necessary for our purpose since we suppose that players in V+ are stubborn
agents.

Let us now consider the payoff of an agent i ∈ Ṽ in this new formulation of the
game. We have that

ui(x) =
∑
i∈V

Wijxixj =
∑
i∈Ṽ

Wijxixj +
∑
i∈V+

Wijxixj +
∑
i∈V−

Wijxixj =

=
∑
i∈Ṽ

Wijxixj +
∑
i∈V+

Wijxi −
∑
i∈V−

Wijxi =
∑
i∈Ṽ

Wijxixj − αixi

In words, we defined a network coordination game with stubborn players where ev-
ery agents in Ṽ is actually playing a heterogeneous network coordination game with
node weights {αi}i∈Ṽ .

In conclusion, we have proved that the heterogeneous network coordination game
is equivalent to a network coordination game with stubborn agents. This is inter-
esting for many reasons. For instance, the fact that we can study the heterogeneous
case as a potential game with stubborn players justify the evidence that the potential
property still holds in the non-homogeneous case. This remark is explained in the
following observation.

Observation 5. We recall that the potential function of a network coordination
game with threshold r = 1

2 is given by

Φ(x) =
1

2

∑
i,j∈V

Wijxixj

Let us consider the network coordination game with stubborn players derived from
the thresholds network coordination game having node weights {αi}i∈Ṽ . If we con-
sider the potential function of the network coordination game without stubborn play-
ers and we force to +1 the actions of the players that always prefer action +1, we
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automatically obtain the potential function of the game with stubborns. In formulas

Φ(x) =
1

2

∑
i,j∈V

Wijxixj =
1

2

∑
i,j∈Ṽ

Wijxixj +
1

2

∑
i,j∈V+

Wijxixj =

=
1

2

∑
i,j∈Ṽ

Wijxixj +
∑
i∈V

αixi = Φc(x)

Furthermore, the observation is useful because it gives a tool to study coordina-
tion games with stubborn agents from a more general point of view. This idea is
fundamental in the results of the next chapters.
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Chapter 3

Heterogeneous network
anti-coordination game

In this chapter, we wish to model the opposite situation of the previous section.
Indeed, in our assumption, agents have two possible types of interaction with their
neighbors. Recall that coordinating agents prefer an action if enough neighbors are
playing it. On the other hand, the utility of anti-coordinating agents in taking an
action decreases with the number of neighbors taking the same action.

Since in the previous section we talked about heterogeneous network coordina-
tion games, we now move our attention to heterogeneous network anti-coordination
games.

In the first section, we give the formal definition of the game. We remark that,
even though the definition of the game is apparently similar to the previous case,
networks with anti-coordinating agents present quite different behaviors than the
previous ones. For instance, consensus configurations are not Nash equilibria in this
case and the existence of equilibria is in general not trivial.

On the other hand, some observations that are similar to the previous case can be
made also for the anti-coordination case. In fact, in the second section, we show that
the heterogeneous network anti-coordination game, as well as the previous example,
is a potential game. Therefore, the existence of Nash equilibria is guaranteed over any
possible undirected network. Furthermore, we present an analogous way to rewrite
the heterogeneous network anti-coordination game as a network anti-coordination
game with stubborn agents.

Differently from the previous section, we conclude the chapter by giving a full
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description of the Nash equilibria of the heterogeneous anti-coordination game in the
special case of a complete graph. The analysis is done by taking some ideas from
the linear-threshold model [6] that addresses games with coordinating agents.

3.1 The heterogeneous network anti-coordination game

Conversely to the previous chapter, we now wish to model the case of anti-coordinating
agents.

Let us consider again an undirected weighted graph G = (V, E ,W ) and a set
of node weights {αi}i∈V , αi ∈ R. The heterogeneous network anti-coordination
game with action set A = {−1,+1} is a network game (V,A, {ui}i∈V) with util-
ities {ui}i∈V : AV → R

ui(xi, x−i) = −
∑
j∈V

Wijxixj + αixi, i ∈ V (3.1)

Note that, in this case, the payoff of an agent goes down as the weighted sum of
the neighbors playing the same action gets larger. Therefore, agents have a negative
interest in choosing the same action of a neighbor and an incentive in picking the
opposite one. In the anti-coordination game, in fact, we are assuming that players are
not in principle interested in taking strategies that are chosen by too many neighbors.

In this case, the node weight αi has the opposite meaning of the previous one.
Indeed, if αi > 0 then action +1 is the risk-dominant action for player i, while action
−1 becomes risk-dominant if αi < 0. As before, if αi = 0, then the two actions are
risk-neutral.

Let us consider an agent i ∈ V and any choice of actions x−i ∈ AV\{i}. In the
heterogeneous network anti-coordination game, we have that +1 ∈ Bi(x−i) if

−
∑
j∈V

Wijxj + αi ≥ +
∑
j∈V

Wijxj − αi

which is the same as asking ∑
j∈V

Wijxj ≤ αi

Therefore, as predictable, the best response function of an agent in the heterogeneous
network anti-coordination game takes the opposite form of the one in (2.2), namely

Bi(x−i) =


{+1} if

∑
j∈VWijxj < αi

{−1} if
∑

j∈VWijxj > αi

{±1} if
∑

j∈VWijxj = αi

(3.2)
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3.1 – The heterogeneous network anti-coordination game

for any agent i ∈ V. Note that, in the heterogeneous network anti-coordination game,
players with αi > wi are (+1)-stubborn players while they always prefer action −1

if αi < −wi.

Observation 6. Even though the game looks similar to the heterogeneous network
coordination game, the two strategic interactions present quite different behaviors.
For instance, we recall that the heterogeneous network coordination game admits
two configuration that are always Nash equilibria regardless of the node weights and
the network structure. This is not true for anti-coordinating agents and in general
it is not straightforward to prove that Nash equilibria exist. In the next section, we
will show that the existence of at least one Nash equilibrium is guaranteed when the
graph is undirected.

If we follow the same method of the previous section, we can express the best
response function in terms of the weighted sum of neighbors playing action +1,
namely

Bi(x−i) =


{+1} if w+

i (x) < riwi

{−1} if w+
i (x) > riwi

{±1} if w+
i (x) = riwi

(3.3)

where ri is again given by equation (2.4).

Furthermore, if the graph is unweighted, the best response function turns into

Bi(x−i) =


{+1} if |{j ∈ Ni | xj = +1}| < ri |Ni|

{−1} if |{j ∈ Ni | xj = +1}| > ri |Ni|

{±1} if |{j ∈ Ni | xj = +1}| = ri |Ni|

(3.4)

where Ni denotes the neighborhood of node i. As in the previous case, thresholds ri
capture the interest of the player in choosing one action over the other in terms of
the fraction of neighbors playing action +1.

Additionally, note that (+1)-stubborn players, who have αi > wi, have now
threshold ri > 1. Similarly, if αi < −wi, the threshold ri becomes negative, which
means that the player always prefers action −1.

Example 5 (Network anti-coordination game). Similarly to the previous example,
let us consider the case where ri = r for all i ∈ V. In this instance, the best response
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function becomes

Bi(x−i) =


{+1} if w+

i (x) < rwi

{−1} if w+
i (x) > rwi

{±1} if w+
i (x) = rwi

(3.5)

Clearly, this game is called network anti-coordination game and, as before, it can
be defined starting from a two-player anti-coordination game, which is a symmetric
game with payoff matrix as in Figure 1.1 having entries a < c and b < d.

The minority game, in particular, is defined according to a 2×2-game with payoff
matrix in Figure 3.1. If we consider an unweighted graph and we assume that every

-1 +1
-1 -1,-1 1,1
+1 1,1 -1,-1

Figure 3.1. Payoff matrix minority game.

pair of neighbors plays the previous two-player symmetric game, we find the utilities

ui(x) :=
∑
j∈V

Wijϕ(xi, xj) =
∑
j∈V

Wij(−xixj) = |{j ∈ Ni | xj /= xi}|−|{j ∈ Ni | xj = xi}|

for all i ∈ V. Therefore the best response is given by

Bi(x−i) =


{+1} if |{j ∈ Ni | xj = +1}| < |Ni|

2

{−1} if |{j ∈ Ni | xj = +1}| > |Ni|
2

{±1} if |{j ∈ Ni | xj = +1}| = |Ni|
2

(3.6)

Note that the minority game is a network anti-coordination game with threshold
r = 1

2 , which means α = 0. In fact, the goal of the agents is to pick the opposite
action of the majority of the neighbors. For this reason, the game is called minority
game since agents opt for the action chosen by the minority.

We remark that also anti-coordination games are 2×2 symmetric potential games
and therefore we can use again Proposition 3 to prove that the network coordination
game with homogeneous thresholds over an undirected graph is a potential game.

For instance, the potential function of the coordination game with threshold
r = 1

2 , namely α = 0, is given by

Φ(x) = −1

2

∑
i,j∈V

Wijxixj (3.7)
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In contrast with the coordination case, this time links connecting agents playing
opposite actions give a positive contribution to the potential function, while links
connecting agents picking identical actions remove energy from the game.

3.2 The potential property

Recall that network anti-coordination games, as well as network coordination games,
satisfy the hypothesis of Proposition 3 and therefore it is well-known that they are
examples of potential games. Furthermore, the proposition also provides an explicit
definition of the potential function. On the other hand, when thresholds are het-
erogeneous the hypothesis of the proposition are not anymore satisfied since the
underlying two-player games are not symmetric. In this section, we show that the
potential property is preserved with the addiction of heterogeneous thresholds.

Let us recall the utilities of the heterogeneous network anti-coordination game,
which are defined in (3.1). We will denote the payoffs of anti-coordinating agents as

uai (xi, x−i) := −
∑
j∈V

Wijxixj + αixi

Note that, by definition, uai (x) = −uci (x), where we recall that uci denotes the utility
function of a coordinating agent defined according to (2.1)

Proposition 5. The heterogeneous network anti-coordination game with node weights
{αi}i∈V defined over an undirected graph G = (V, E ,W ) is a potential game with
potential function given by

Φa(x) = −Φc(x) = −1

2

∑
i,j∈V

Wijxixj +
∑
i∈V

αixi (3.8)

where Φc is defined according to (2.11).

Proof. The proof for the anti-coordination case is analogous to the proof of Proposi-
tion 4. In particular, we can observe that for any i ∈ V and any x, y ∈ X such that
x−i = y−i it holds

uai (y)− uai (x) = uci (x)− uci (y) =

= Φc(x)− Φc(y) = Φa(y)− Φa(x)

where Φa(x) := −Φc(x).
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Proposition 4 combined with Proposition 2 allows us to state that the set of the
Nash equilibria is nonempty also for the heterogeneous network anti-coordination
game defined over any undirected graph. This fact is particularly interesting for the
anti-coordination game since the existence of Nash equilibria is not evident as in the
coordination case. Anyway, an explicit characterization of all the Nash equilibria is
often not easy to find. In the last section we will provide an explicit characterization
of all the Nash equilibria of the game with anti-coordinating agents, which is more
interesting, when it is defined over the complete graph.

3.3 The network anti-coordination game with stubborn

agents

In the previous chapter, we observed that the network heterogeneous coordination
game can be considered a network coordination game with stubborn agents and
viceversa. The purpose of this section is to prove that the same fact holds true also
for the anti-coordination case.

Let us consider a network anti-coordination game with threshold r = 1
2 for all

i ∈ V over an undirected graph G = (V, E). In this case αi = 0 for all the agents and
the utilities of the agents are given by

ui(x) = −
∑
j∈V

Wijxixj , i ∈ V

As before, we introduce some stubborn agents in the game. In particular, we
consider two disjoint subsets V+,V− ⊂ V, V− ∩ V+ = ∅ and we force the actions of
the players in the subsets to +1 and −1 respectively. If we denote again the set of
the remaining nodes as Ṽ, we can observe that the payoff of a player i ∈ Ṽ is given
by

ui(x) = −
∑
j∈V

Wijxixj = −
∑
j∈Ṽ

Wijxixj −

∑
j∈V+

Wij −
∑
j∈V−

Wij

xi =

= −
∑
j∈Ṽ

Wijxixj + αixi

where we denoted
αi :=

∑
j∈V−

Wij −
∑
j∈V+

Wij
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as in equation (2.12). Therefore, the network anti-coordination game over a graph
G = (V, E ,W ) with threshold r = 1

2 , i ∈ Ṽ, and stubborn players V+ and V− can
be rewritten as a heterogeneous network anti-coordination game with node weights in
(2.12) over the induced subgraph G[Ṽ] = (Ṽ, Ẽ ,W|Ṽ×Ṽ) where Ẽ =

{
{i, j} ∈ E : i, j ∈ Ṽ

}
.

Let us now consider the opposite formulation of the problem, which is to check
if we can write the heterogeneous network anti-coordination game in the form of a
network anti-coordination game with stubborn players.

In this instance, we can apply exactly the same method used for the case of the
coordination game, namely we consider the network anti-coordination game with
threshold r = 1

2 over the same graph and we provide any player with a new (+1)-
stubborn neighbor or a new (−1)-stubborn neighbor depending on the sign of the
node weight. Furthermore, we set the weight of the interaction as the the absolute
value of the node weight.

Formally, given a set of node weights {αi}i∈V , αi ∈ R and an undirected weighted
graph G̃ = (Ṽ, Ẽ , W̃ ) having Ṽ = {1, . . . , n}, we consider an enlarged vertex set
V = Ṽ ∪ {n+ 1, . . . , 2n}, where agents in V+ ∪ V− := {n+ 1, . . . , 2n} are either
(+1)-stubborn agents or (−1)-stubborn agents. Furthermore, we define the new
matrix of the weights W ∈ R2n×2n as in (2.13). If we consider the payoff of a player
i ∈ Ṽ, we find that

ui(x) = −
∑
i∈V

Wijxixj = −
∑
i∈Ṽ

Wijxixj −
∑
i∈V+

Wijxi +
∑
i∈V−

Wijxi =

= −
∑
i∈Ṽ

Wijxixj + αixi

Therefore, we defined a network anti-coordination game with stubborn agents where
non-stubborn agents are actually playing a heterogeneous network anti-coordination
game with their neighbors.

In conclusion, we showed that the heterogeneous network anti-coordination game
is equivalent to a network anti-coordination game with stubborn agents, which is
interesting for the same reasons that we pointed out in the previous chapter.

Indeed, recalling that the heterogeneous network anti-coordination game is a
potential game, note that its potential function can be derived from the potential
function of the network anti-coordination game. Specifically, the potential function
can be found with the same idea of the coordination case. First, we find the equivalent
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formulation of the game in terms of a classical network anti-coordination game with
(+1)-stubborn players. We can do it using the method proposed above. Then, we
take the potential of the game with homogeneous thresholds and we force to +1 the
actions of a subset of the players. In this way, we find a potential function for the
game with heterogeneous thresholds, which exactly the one given in Proposition 5.

Furthermore, we will use the observations of this section in the next chapter when
we end up studying a network anti-coordination game with stubborn players.

3.4 The heterogeneous anti-coordination game over the

complete graph

Let us now consider the special case of the heterogeneous network anti-coordination
game on a fully connected population. We recall that, in a complete graph, every
node is linked, through unweighted and undirected edges, to all the other nodes.
This means that, if the network game is defined over the complete graph, the neigh-
borhood of a player includes all the other participants of the game. In formulas,
Ni = {i ∈ V \ {i}} and, therefore, |Ni| = n− 1 for all i ∈ V. According to what we
just observed, if G = Kn, n > 1, the best response function is given by:

Bi(x−i) =


{+1} if |{j ∈ V \ {i} | xj = +1}| < ri(n− 1)

{−1} if | {j ∈ V \ {i} | xj = +1} | > ri(n− 1)

{±1} if | {j ∈ V \ {i} | xj = +1} | = ri(n− 1)

(3.9)

Example 6. As an example, we define a network anti-coordination game over a
complete graph with n = 19 players having heterogeneous thresholds r1 = r2 = r3 =

0.1, r4 = r5 = r6 = 0.2, r7 = 0.25, r8 = r9 = 0.3, r10 = 0.35, r11 = r12 = 0.5,
r13 = r14 = r15 = 0.6, r16 = 0.8, r17 = r18 = 0.85, r19 = 0.9.

Since the game is potential, we already know that there exists at least one Nash
equilibrium. Anyway, we still have many open questions. For instance, we do not
know how this equilibrium is defined and if it is unique. We recall that a Nash
equilibrium is an action configuration such that xi ∈ Bi(x−i) for any player i ∈ V.

We start by introducing the following notation. Given an action configuration x,
we denote as V+(x) the set of the players that choose action +1, namely V+(x) =

{i ∈ V | xi = +1}, and as n+(x) its cardinality, namely n+(x) = |V+(x)|. Similarly,
we define V−(x) = {i ∈ V | xi = −1} and n−(x) = |V−(x)|.
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Figure 3.2. Threshold histogram

Those quantities are relevant in the case of a complete graph since the number of
neighbors playing action +1, which is a fundamental quantity of the best response,
is strongly related to the number of agents playing action +1 in the entire action
configuration. This is obviously due to the fact that the neighborhood of a player
coincides with the set of all the other participants of the game. Indeed, note that

xi = +1 ⇒ |{j ∈ V \ {i} | xj = +1}| = |{j ∈ V | xj = +1}| − 1 = n+(x)− 1

xi = −1 ⇒ |{j ∈ V \ {i} | xj = +1}| = |{j ∈ V | xj = +1}| = n+(x)

for any profile x ∈ AV . Therefore, according to the best response in (3.9), the
conditions for x ∈ AV to be a Nash equilibrium of the game are:

xi = +1 ⇒ n+(x)− 1 ≤ ri(n− 1)

xi = −1 ⇒ n+(x) ≥ ri(n− 1)

At this point, we introduce the quantity

z̃(x) :=
{j ∈ V | xj = +1}

n− 1
=
n+(x)

n− 1
(3.10)

which is very close to the fraction of agents playing action +1, denoted in the Linear
Threshold Model as z(x) = n+(x)

n . The difference in the normalization is due to the
fact that neighborhoods have dimension n− 1 in the complete graph.

Going back to our problem, a straightforward substitution in the previous re-
quirements leads to the following condition

x ∈ N ⇔

z̃(x)− 1
n−1 ≤ ri i ∈ V+(x)

z̃(x) ≥ ri i ∈ V−(x)
(3.11)
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where we remark that N is the set of all the Nash equilibria of the game.

The form of the system on the right of (3.11) motivates the definition of a threshold
cumulative distribution function which returns the (re-normalized) fraction of the
players having threshold less or equal than a given value. Let us recall that, in the
Linear Threshold Model, the cumulative distribution function (CDF) of thresholds
is defined as

F (z) =
1

n
|{j ∈ V | rj ≤ z}| z ≥ 0 (3.12)

The cumulative distribution is, by definition, non-decreasing, piece-wise constant and
continuous to the right with possible discontinuities occurring at points rj , j ∈ V.

Note that, in our case, we are interested in a re-normalized threshold cumulative
distribution function F̃ : R+ →

{
0, 1

n−1 , . . . ,
n

n−1

}
such that

F̃ (z) =
1

n− 1
|{i ∈ V | ri ≤ z}| , z ≥ 0 (3.13)

In particular, we are looking for its complementary S̃ : R+ →
{
− 1

n−1 ,0,
1

n−1 , . . . , 1
}

defined as

S̃(z) = 1− F̃ (z) =
1

n− 1
|{i ∈ V | ri > z}| , s ≥ 0 (3.14)

which returns the (re-normalized) fraction of players having threshold greater than
a given value.

Even though we defined both the functions with a slightly different normalization,
when there is no reason for misunderstanding we might refer to F̃ as threshold
cumulative distribution function, or shortly threshold CDF, and to S̃ as threshold
complementary cumulative distribution function (CCDF). Figure 3.4 provides an
example of the classical threshold CDF and CCDF for the thresholds in Example 6.

Now that we introduced the needed notation, let us consider a Nash equilibrium
x∗ ∈ AV . We recall the first requirement in (3.11), which is z̃(x∗) − 1

n−1 ≤ ri,
∀i ∈ V+(x∗). Note that this condition permits to find an upper bound for the
fraction of agents playing action +1. In fact, the number of players choosing +1

in the Nash equilibrium is definitely less than the total number of players having
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3.4 – The heterogeneous anti-coordination game over the complete graph

Figure 3.3. The threshold cumulative distribution function (left) and the threshold
complementary cumulative distribution function (right) for Example 6.

threshold greater or equal than z̃(x∗)− 1
n−1 . In formulas, it holds that

z̃(x∗) =
1

n− 1

∣∣V+(x∗)
∣∣ ≤ 1

n− 1
|{j ∈ V | rj ≥ z̃(x∗)− 1/(n− 1)}| ≤

≤ 1

n− 1
|{j ∈ V | rj > z̃(x∗)− (1 + ε)/(n− 1)}| =

= 1− F̃ (z̃(x∗)− (1 + ε)/(n− 1))

for any ε > 0. Note that we introduced the constant ε > 0 with the aim of writing the
condition in terms of a strict inequality. In this way, we can use the given definition
of complementary CDF. Similarly, the second condition in (3.11), which requires
that z̃(x∗) ≥ ri for all players i ∈ V−(x∗), can be used to find a lower bound again
for the quantity z̃∗(x). Indeed, we have that

1− z̃(x∗) =
1

n− 1

∣∣V−(x∗)
∣∣ ≤ 1

n− 1
|{i ∈ V | ri ≤ z̃(x∗)}| =

= F̃ (z̃(x∗))

If we combine the two, we find a necessary condition for x ∈ AV to be a Nash
equilibrium.

Proposition 6. Let x∗ ∈ AV be a Nash equilibrium of the network anti-coordination
game with thresholds {ri}i∈V , ri ∈ R over Kn, n > 0. Consider any ε > 0, then

1− F̃ (z̃(x∗)− (1 + ε)/(n− 1)) ≥ z̃(x∗) ≥ 1− F̃ (z̃(x∗)) (3.15)
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3 – Heterogeneous network anti-coordination game

where z̃ : AV →
{

0, 1
n−1 , . . . , 1,

n
n−1

}
and F̃ : R+ →

{
0, 1

n−1 , . . . , 1,
n

n−1

}
are defined

as in (3.10) and (3.13).

In the next lines, we will show that, if x is defined in the proper way, the condition
is also sufficient.

To begin with, let us suppose that we can find a (n− 1)-normalized fraction that
satisfies (6), namely z∗ ∈

{
0, 1

n−1 , . . . , 1,
n

n−1

}
such that

1− F̃ (z∗ − (1 + ε)/(n− 1)) ≥ z∗ ≥ 1− F̃ (z∗) (3.16)

for any ε > 0. To lighten the notation, we define

z1 :=
1

n− 1
|{j ∈ V | rj > z∗}| = 1− F̃ (z∗)

z2 := 1− 1

n− 1

∣∣∣∣{j ∈ V | rj < z∗ − 1

n− 1

}∣∣∣∣ =
1

n− 1

∣∣∣∣{j ∈ V | rj ≥ z∗ − 1

n− 1

}∣∣∣∣
= 1− F̃ (z∗ − (1 + ε)/(n− 1))

(3.17)

for ε > 0, sufficiently small. In words, (n − 1)z1 is the number of players having
threshold greater than the given fraction z∗, while the value (n− 1)z2 represents the
number of players having threshold greater or equal to z∗ − 1

n−1 . By hypothesis,
z1 ≤ z∗ ≤ z2.

At this point, we aim to construct a Nash equilibrium x having z̃(x) = z∗. Note
that, if we want to satisfy the conditions in (3.11), we need that all the agents having
threshold greater than z∗ play action +1 and all the agents having threshold less than
z∗ − 1

n−1 pick action −1. Therefore, let us consider x ∈ AV such that xj = −1 if
rj < z∗ − 1

n−1 and xj = +1 if rj > z∗. By definition of z1 and z2, the number of
players that choose action +1 in x is at least (n−1)z1 and at most (n−1)z2, namely
z1 ≤ z̃(x) ≤ z2. Taking this into account, we observe that it is always possible to set
the "free" actions of x, which are the actions of the players having threshold between
z∗ − 1

n and z∗, in such a way that z̃(x) = z∗.

Proposition 7. Consider n > 0 and a set of thresholds {ri}i∈V , ri ∈ R.
Let z∗ ∈

{
0, 1

n−1 , . . . , 1,
n

n−1

}
be such that (3.16) is satisfied for any ε > 0 and

consider x ∈ AV having xi = −1 if ri < z∗− 1
n−1 and xi = +1 if ri > z∗ that is such

that z̃(x) = z∗.
Any action configuration with the previous structure is a Nash equilibrium of the
anti-coordination game with thresholds {ri}i∈V over Kn. Moreover, these are the
only possible Nash equilibria having z̃(x) = z∗.
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3.4 – The heterogeneous anti-coordination game over the complete graph

Proof. Note that, by construction of x, there are exactly (n−1)z∗ players that choose
action +1 in the action configuration, namely n+(x) = (n− 1)z∗.
Consider i ∈ V+(x). We can trivially observe that the condition xi = −1 if ri <
z∗− 1

n−1 implies that if i ∈ V+(x), namely xi = +1, then ri ≥ z∗− 1
n−1 . This means

that
|{j ∈ V \ {i} | xj = +1}|

n− 1
=
z∗(n− 1)− 1

n− 1
= z∗ − 1

n− 1
≤ ri

and thus {+1} ∈ Bi(x−i) for i ∈ V+(x).
Similarly, if i ∈ V−(x) it holds that ri ≤ z∗ and therefore

|{j ∈ V \ {i} | xj = +1}|
n− 1

=
z∗(n− 1)

n− 1
= z∗ ≥ ri

Namely, {−1} ∈ Bi(x−i) for i ∈ V−(x).
To conclude the proof, we trivially observe that, if z̃(x) = z∗, {+1} /∈ Bi(x−i) for
i ∈ V such that ri < z∗ − 1

n−1 and {−1} /∈ Bi(x−i) for i ∈ V such that ri > z∗ and
this proves the last statement.

Proposition 6 and 7 give, respectively, a necessary and a sufficient condition for
the existence of a Nash equilibrium. We sum up the two results in the following
proposition.

Corollary 1. Consider n > 0, n ∈ N and a set of thresholds {ri}i∈V , ri ∈ R.
Let F̃ : R+ → [0, n

n−1 ] be defined as in (3.13). The network anti-coordination game
with thresholds {ri}i∈V admits at least one Nash equilibrium over Kn if and only if
∃z∗ ∈

{
0, 1

n−1 , . . . ,1,
n

n−1

}
such that

1− F̃ (z∗ − (1 + ε)/(n− 1)) ≥ z∗ ≥ 1− F̃ (z∗)

for any ε > 0.

In other words, we are looking for a fraction z such that at least z(n− 1) players
have threshold greater or equal to z− 1

n−1 and at most z(n−1) players have threshold

greater than z. If we find such a z ∈
{

0, 1
n−1 , . . . , 1,

n
n−1

}
, for what we observed in

Proposition 7, we find a Nash equilibrium by setting to +1 the actions of the players
having threshold greater than z, to −1 the actions of the players having threshold
less than z− 1

n−1 and by adjusting the remaining actions in such a way that z̃(x) = z.

Observation 7. Note that if we find a fixed point of the complementary CDF then
the inequalities are automatically satisfied. Formally, consider z∗ ∈

{
0, 1

n−1 , . . . , 1,
n

n−1

}
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3 – Heterogeneous network anti-coordination game

such that z∗ = 1− F̃ (z∗), then z∗ satisfies (3.16). Indeed

1− F̃ (z∗ − (1 + ε)/(n− 1)
(1)

≥ 1− F̃ (z∗) = z∗

where (1) holds since the 1− F̃ (z) is a non-increasing function.

Figure 3.4. Let us consider the set of thresholds in Example 6. If we write
the inequality in (3.16) we find a solution for z∗ = 8

18 . In particular, it holds
z∗ = 1 − F̃ (z∗). The figure below shows the Nash equilibrium than can be
found from the solution z∗.

Proposition 8. Consider n > 0, n ∈ N and a set of thresholds {ri}i∈V , ri ∈ R.
Consider a network anti-coordination game with thresholds {ri}i∈V over Kn. If we
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3.4 – The heterogeneous anti-coordination game over the complete graph

let F̃ : R+ → [0, n
n−1 ] be defined as in (3.13), then ∃z∗ ∈

{
0, 1

n−1 , . . . , 1,
n

n−1

}
such

that (3.16) is satisfied for any ε > 0.

Remark 2. Note the heterogeneous anti-coordination game is potential and there-
fore we already know that the existence of at least one Nash equilibrium is guaran-
teed. Therefore, the proof of the statement is not necessary since we proved that
equation 3.16 is satisfied if and only if the Nash equilibrium exists. Anyway, it is still
interesting to check the existence of a solution. In fact, the proof gives a method to
find the fraction z∗ and provides some hints for the exploration of the set of all the
Nash equilibria of the game.

Remark 3. In the proof, we ignore the extreme case where F̃ (0) ≥ 1, namely we
will assume F̃ (0) < 1, that is 1 − F̃ (0) > 0. This assumption avoids some tedious
technical lines. Moreover, the case is not particularly interesting since it represents
a game where all the players (or all the players but one) are {−1}-stubborns.

Proof. If we find a fraction z∗ that satisfies (3.16) then the conclusion comes straight-
forward from Proposition 7.
We let z∗ ∈

{
1

n−1 , . . . , 1,
n

n−1

}
be such that z∗ − 1

n−1 < 1 − F̃ (z∗ − 1
n−1) and

z∗ ≥ 1 − F̃ (z∗), namely we consider the first fraction z∗ for which the bisector is
over (or equal to) the function 1− F̃ (z).
Such a z∗ always exists since we assumed 0 < 1− F̃ (0). Indeed, if we suppose that
z < 1−F̃ (z), ∀z ∈

{
0, 1

n−1 , . . . ,1
}
, then the condition is satisfied for z∗ = 1−F̃ ( n

n−1)

since n
n−1 > 1 ≥ 1− F̃ ( n

n−1).
Note that z∗− 1

n−1 < 1− F̃ (z∗− 1
n−1), and thus z∗ < 1− F̃ (z∗− 1

n−1) + 1
n−1 , implies

z∗ ≤ 1− F̃ (z∗ − 1
n−1). In particular, this is true since Im F̃ =

{
0, 1

n−1 , . . . , 1,
n

n−1

}
.

Now that we observed that z∗ ≤ 1− F̃ (z∗ − 1
n−1), the thesis comes straightforward.

Indeed,

1− F̃ (z∗ − (1 + ε)/(n− 1)) ≥ 1− F̃ (z∗ − 1/(n− 1)) ≥ z∗ ≥ 1− F (z∗)

Observation 8. In the proof, we considered z∗ ∈
{

1
n−1 , . . . , 1,

n
n−1

}
such that z∗−

1
n−1 < 1 − F̃ (z∗ − 1

n−1) and z∗ ≥ 1 − F̃ (z∗) and we proved that this is a possible
solution for the inequality (3.16). Note that if it holds

z∗ < 1− F̃ (z∗ − ε)
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3 – Heterogeneous network anti-coordination game

for any ε > 0, then z∗∗ = z∗ + 1
n−1 satisfies (3.16) too.

There are at most 2 possible z ∈
{

0, 1
n−1 , . . . , 1,

n
n−1

}
satisfying (3.16). Indeed,

such a z∗ is unique because of the opposite monotone behaviors of the bisector and
1− F̃ (z).

Proof. On one side, 1− F̃ (z∗ − ε) > z∗ implies 1− F̃ (z∗ − ε) ≥ z∗ + 1
n−1 because of

the discrete co-domain of F̃ (z). On the other hand

z∗ +
1

n− 1
> z∗ ≥ 1− F̃ (z∗)

(1)

≥ 1− F̃ (z∗ +
1

n− 1
)

where (1) holds since the complementary cumulative function is non-increasing.

Recall that, from Proposition 7, given z∗ ∈
{

0, 1
n−1 , . . . , 1,

n
n−1

}
such that (3.16)

is satisfied for any ε > 0, the set{
x ∈ AV : xi = −1 if ri < z∗ − 1

n− 1
, xi = +1 if ri > z∗, z̃(x) = z∗

}
contains all the possible Nash equilibria having z̃(x) = z∗.
On the other hand, from Proposition 6, we know that if x∗ ∈ AV is a Nash equilib-
rium, then z = z̃(x∗) must satisfy (3.16).
Therefore, if we let Z be the set of all the z that satisfy the condition in (3.16) for
every ε > 0, then the set N of the Nash equilibria of the game is given by

N =

{
x ∈ AV : xi = −1 if ri < z∗ − 1

n− 1
, xi = +1 if ri > z∗, z̃(x) = z∗, z∗ ∈ Z

}
Given z∗ ∈ Z, let us define z1 and z2 as in (3.17). Any Nash equilibrium x ∈ AV such
that z̃(x) = z∗ has z1(n−1)+(n−z2(n−1)) fixed actions. In order to have z̃(x) = z∗,
there must be (z∗ − z1)(n− 1) more agents that picked action +1: those players are
chosen among the remaining n−z1(n−1)− (n−z2(n−1)) = (z2−z1)(n−1) players
whose actions are not fixed.
In other words, the dimension of the setN is given by the sum of all the possible ways
of choosing (z − z1)(n− 1) players (that will play action +1) out of (z2 − z1)(n− 1)

agents for any z ∈ Z.

Corollary 2. Consider the game in Proposition 8. Ur admits exactly∑
z∈Z

(
(z2 − z1)(n− 1)

(z − z1)(n− 1)

)
(3.18)

Nash equilibria. Note that, for Observation 8, |Z| = 1 or |Z| = 2.
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3.4 – The heterogeneous anti-coordination game over the complete graph

If |Z| = 1 and z∗ = z1 = 1− F (z∗) or z∗ = z2 = 1− F (z∗ − (1 + ε)/(n− 1)), Ur
admits exactly one Nash equilibrium. In this case, indeed, there is just one possible
choice for the set of the agents playing action +1. This condition is satisfied, in
particular, if the thresholds are sufficiently heterogeneous.

Figure 3.5. Let us consider the pure minority game with n = 19 and n = 20. Since
the minority game over an undirected graph without self-loops is a potential game,
we already know that there exists at least one Nash equilibrium. In particular, we
find that z∗ =

bn2 c
n−1 is a solution of the inequality in (3.16). Note that, in the first

case where n = 19, z∗∗ = 10
18 also satisfies the condition.
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3 – Heterogeneous network anti-coordination game

Another approach for Nash equilibria

It is interesting to observe that the same results can be found using a slightly different
approach.

Observation 9. Let x ∈ AV be an action configuration and i+min(x) = argmini∈V+(x) ri.
It holds that:

{+1} ∈ Bi(x−i), ∀i ∈ V+(x) ⇔ {+1} ∈ Bi+min(x)(x−i+min(x))

This means that players in V+(x) are in equilibrium if and only if the player with
the minimum threshold ri is in equilibrium.

Proof. The right implication is trivial since i+min ∈ V+(x) by definition.
On the other hand, if {+1} ∈ Bi+min(x)(x−i+min(x)), we have that for i ∈ V+(x)

n+(x)− 1 ≤ ri+min(x)(n− 1) ≤ ri(n− 1)

where the second inequality holds by definition of i+min(x).

Observation 10. Similarly, given x ∈ AV , if we denote i−max(x) = argmaxi∈V−(x) ri,
we have that:

{−1} ∈ Bi(x−i), ∀i ∈ V−(x) ⇔ {−1} ∈ Bi−max(x)(x−i−max(x))

Namely, players in V−(x) are in equilibrium if and only if the player with the maxi-
mum threshold ri is in equilibrium.

Proof. Again, the right implication is trivial, while the other one holds since

n+(x) ≥ ri−max(n− 1) ≥ ri(n− 1)

for i ∈ V−.

The two observations allow us to rewrite the conditions for x to be a Nash
equilibrium in the following way:n+(x)− 1 ≤ ri+min(x)(n− 1)

n+(x) ≥ ri−max(x)(n− 1)
⇔


n+(x)−1

n−1 ≤ ri+min(x)
n+(x)
n−1 ≥ ri−max(x)

(3.19)

Namely, the condition for x ∈ AV to be an equilibrium is

ri−max(x) ≤ z̃(x) ≤ ri+min(x) +
1

n− 1
(3.20)
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3.4 – The heterogeneous anti-coordination game over the complete graph

Observation 11. Let {ri}i∈{1,...,n} be an ordered sequence such that 0 ≤ r1 ≤ · · · ≤
rn ≤ 1 and let k be the minimum k ∈ {0, . . . , n− 1} such that k

n−1 ≥ rn−k. Since
k is the minimum k for the condition to hold, we have that k−1

n−1 ≤ rn−k+1. The
action configuration xk ∈ AV with xki = −1, for i ∈ {1, . . . , n− k} and xki = +1, for
i ∈ {n− k + 1, . . . , n} is a Nash equilibrium for the minority game with thresholds
{ri}i∈{1,...,n} over Kn.

Observation 11 suggests an algorithm to find a Nash equilibrium that has linear
complexity if {ri}i∈V is already ordered. Indeed, once we have an ordered sequence
of thresholds (we can obtain it in time O(n log(n))), we can find k ∈ {0, . . . , n− 1},
and thus the equilibrium, with at most n iterations in a very simple way: we start
from k = 0 and we check the condition k

n−1 ≥ rn−k until it is satisfied.
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Chapter 4

Networks with coordinating and
anti-coordinating agents

We begin this chapter with the definition of the heterogeneous mixed coordination
anti-coordination game, which is the most general case studied in the thesis. Our first
observation is that it is enough to introduce one edge between a coordinating and
an anti-coordinating agent in order to lose the potential property. For instance, the
discoordination game, defined as one coordinating agent and one anti-coordinating
agent linked by a simple edge, is a famous example of a game of this class that does
not admit Nash equilibria.

In the second section, we prove the main result of the thesis, which is to provide a
sufficient condition for the existence of Nash equilibria. We recall that the condition
is based on the idea of cohesiveness introduced by Morris in 1997 [11]. In particular,
we show that if the subset of the coordinating agent is sufficiently cohesive then the
existence of at least one Nash equilibrium is guaranteed.

We conclude the chapter by studying some cases of mixed coordination anti-
coordination games where the previous hypothesis is not satisfied. In particular, we
focus on two simple examples having homogeneous thresholds: the complete graph
and a simple graph with one anti-coordinating agent. For these instances, we provide
a complete analysis that remark that the condition is sufficient but not necessary.
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4 – Networks with coordinating and anti-coordinating agents

4.1 Definition of the game and preliminary observations

Let us consider an undirected weighted graph G = (V, E ,W ) and a given partition
of the vertex set Vc ∪ Va = V, Vc ∩ Va = ∅. We define the heterogeneous mixed
coordination anti-coordination game with node weights {αi}i∈V , αi ∈ R, as a binary
network game with action set A = {−1,+1} and utilities {ui}i∈V : AV → R such
that

ui(xi, x−i) :=


∑

j∈VWijxixj − αixi if i ∈ Vc

−
∑

j∈VWijxixj + αixi if i ∈ Va
(4.1)

In other words, in a mixed coordination anti-coordination game, a given subset
of the participants plays with coordination incentives with their neighbors, while the
rest of the players follows the anti-coordination rule. Therefore, nodes in Vc ⊆ V are
called coordinating agents while nodes in Va = V \ Vc are called anti-coordinating
agents. Observe that, if we introduce the quantity

δi =

+1 if i ∈ Vc

−1 if i ∈ Va
(4.2)

we can write the utility of any player i ∈ V in the compact form

ui(xi, x−i) = δi

∑
j∈V

Wijxixj − αixi

 (4.3)

Note that this is a very general formulation of the game where we allow coordinating
and anti-coordinating agents to interact over the same network with heterogeneous
thresholds. In other words, we are modeling a situation where diversified players
interact with different interests over an interconnected system.

Therefore, both the heterogeneous network coordination game and the heteroge-
neous network anti-coordination game are special cases of the previous game having
respectively Vc = ∅ and Va = ∅.

Consistently with the definition, the best-response function of a coordinating
agent coincides with the BR of the heterogeneous network coordination game given
in (2.2). On the other hand, in the case of an anti-coordinating agent, it is equal to
the BR of a participant of the anti-coordination version of the game which can be
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found in (3.2). In formulas,

Bi(x−i) =


{+1} if

∑
j∈VWijxj > αi

{−1} if
∑

j∈VWijxj < αi

{±1} if
∑

j∈VWijxj = αi

i ∈ Vc

Bi(x−i) =


{+1} if

∑
j∈VWijxj < αi

{−1} if
∑

j∈VWijxj > αi

{±1} if
∑

j∈VWijxj = αi

i ∈ Va

We recall that, according to (2.5) and (3.3), the best response function above can be
rewritten in the form

Bi(x−i) =


{+1} if w+

i (x) > riwi

{−1} if w+
i (x) < riwi

{±1} if w+
i (x) = riwi

i ∈ Vc

Bi(x−i) =


{+1} if w+

i (x) < riwi

{−1} if w+
i (x) > riwi

{±1} if w+
i (x) = riwi

i ∈ Va

where we recall that w+
i (x) is given by (2.3) and the thresholds ri are defined ac-

cording to (2.4).

In the previous chapter, we proved that the heterogeneous network coordination
and the heterogeneous anti-coordination games are potential games, which implies
that they always admit at least one Nash equilibrium. As we shall see, this is not
true for the mixed coordination anti-coordination game.

Example 7 (Discoordination game). Let us consider a very simple case, namely a
two-player game with Vc = {1} and Va = {2} over a line graph where both players
have node weights α = 0. Note that this is exactly the same as considering the
discoordination game defined in Example 3, since one agent aims to coordinate with
the other while the other wants the opposite outcome.

We recall that the game admits no Nash equilibria. In fact, if the players are
coordinating which means that x = (+1,+1) or x = (−1,−1) then player 2 is not in
equilibrium, namely +1 /∈ B2(+1) and −1 /∈ B2(−1). On the other hand, if they are
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4 – Networks with coordinating and anti-coordinating agents

in a profile with opposite actions then agent 1 is not anymore in equilibrium since
−1 /∈ Bi(+1) as well as +1 /∈ Bi(−1). Remind that this game models the matching
pennies game.

The fact that the set of the Nash equilibria of the discoordination game is empty,
as well as the one of the star graph with one anti-coordinating agent in the mid-
dle, implies that the game is not a potential game. Therefore, the mixed coordi-
nation anti-coordination game is in general not a potential game. The following
proposition proves that the game is never a potential game when coordinating and
anti-coordinating agents coexist.

Proposition 9. Consider an undirected graph G = (V, E ,W ), a partition of the node
set Vc∪Va = V and a set of node weights {αi}i∈V , αi ∈ R. If Vc and Va are such that
Vc /= ∅ and Va /= ∅, the heterogeneous mixed coordination anti-coordination game
over G is not a potential game.

Remark 4. The following proof is based on Corollary 2.9 of [9]. In our notation,
it states that a strategic form game (V,A, {ui}i∈V) is a potential game if and only
if for every two players i, j ∈ V, every action configuration x−{i,j} ∈ AV\{i,j} and
every two possible actions of player i, which are xi, yi ∈ A, and of player j, namely
xj , yj ∈ A, it holds

ui(B)− ui(A) + uj(C)− uj(B) + ui(D)− ui(C) + uj(A)− uj(D) = 0

where

A = (xi, xj , x−{i,j}) B = (yi, xj , x−{i,j}) C = (yi, yj , x−{i,j}) D = (xi, yj , x−{i,j})

Note that, since in our case the action set is binary, it is enough to very the condition
for xi = yi = +1, xj = yj = −1. In the proof, we will show that the property does
not hold when we pick a coordinating agent and an anti-coordinating agent.

Proof. Consider a coordinating agent ic ∈ Vc and an anti-coordinating agent ia ∈
Va such that Wia,ic /= 0 which means they interact in the game. Let x−{ic,ia} ∈
AV\{ic,ia}. Note that

uic(xic = +1, xia = +1, x−{ic,ia}) =
∑
j∈V
j /=ia

Wicjxj +Wicia − αic

uic(xic = −1, xia = +1, x−{ic,ia}) = −
∑
j∈V
j /=ia

Wicjxj −Wicia + αic
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Therefore

∆(+1,+1)→(−1,+1) : = uic(xic = +1, xia = +1, x−{ic,ia})− uic(xic = −1, xia = +1, x−{ic,ia}) =

= 2
∑
j∈V
j /=ia

Wiajxj + 2Wicia − 2αic

On the other hand, if we change the action of the anti-coordinating player ia, we
have

uic(xic = −1, xia = +1, x−{ic,ia}) = −
∑
j∈V
j /=ic

Wiajxj +Wicia + αia

uic(xic = −1, xia = −1, x−{ic,ia}) =
∑
j∈V
j /=ic

Wiajxj −Wicia − αia

from which we obtain

∆(−1,+1)→(−1,−1) := −2
∑
j∈V
j /=ic

Wicjxj + 2Wicia + 2αia

Similarly, we find

∆(−1,−1)→(+1,−1) := −2
∑
j∈V
j /=ia

Wiajxj + 2Wicia + 2αic

and

∆(−1,+1)→(+1,+1) := −2
∑
j∈V
j /=ic

Wicjxj + 2Wicia − 2αia

In conclusion, if we sum all the quantities

∆(+1,+1)→(−1,+1)+∆(−1,+1)→(−1,−1)+∆(−1,−1)→(+1,−1)+∆(+1,−1)→(+1,+1) = 8Wiaic /= 0

where the last inequality holds since Wia,ic /= 0. Therefore, we have proved that
the game is not a potential game if there are at least two coordinating and anti-
coordinating agents.

Proposition 9 states that it is enough to introduce one anti-coordinating (resp.
coordinating) player in a pure network coordination (resp. anti-coordination) game
to lose the potential property. We remark that, even though the potential property
is lost, there still can exist Nash equilibria. In the next section, a sufficient condition
for the existence of Nash equilibria is provided.

We conclude the section by introducing a relevant example of mixed coordination
anti-coordination game that will be recalled in the next sections.

57



4 – Networks with coordinating and anti-coordinating agents

Example 8 (Mixed majority-minority game). Let us consider the special case where
the graph G = (V, E) is unweighted. Furthermore let us assume homogeneous thresh-
olds ri = 1

2 for all i ∈ V. In this case, the utility in (4.3) becomes

ui(xi, x−i) = δi
∑
j∈Ni

xixj = δi(|{i ∈ Ni | xi = xj}| − |{i ∈ Ni | xi /= xj}|) (4.4)

where δi is given by (4.2). We call this game mixed majority-minority game since
coordinating and anti-coordinating agents are playing respectively a majority game
and a minority game with their neighbors. Therefore, in this instance, we introduce
the notations

Vmaj := Vc Vmin := Va

The best response function of the mixed majority-minority game is given by

Bi(x−i) =


{+1} if |{j ∈ Ni | xj = +1}| > |Ni|

2

{−1} if |{j ∈ Ni | xj = +1}| < |Ni|
2

{±1} if |{j ∈ Ni | xj = +1}| = |Ni|
2

i ∈ Vmaj

Bi(x−i) =


{+1} if |{j ∈ Ni | xj = +1}| < |Ni|

2

{−1} if |{j ∈ Ni | xj = +1}| > |Ni|
2

{±1} if |{j ∈ Ni | xj = +1}| = |Ni|
2

i ∈ Vmin

4.2 Cohesiveness and diffusivity

We are about to begin the main section of the thesis where we derive a sufficient
condition for the existence of Nash equilibria in the heterogeneous mixed coordina-
tion anti-coordination game. In particular, we will prove that if the set Vc of the
coordinating agents is sufficiently cohesive, then the set of the Nash equilibria of the
game is surely nonempty.

Even though we have already introduced the idea of cohesiveness in the previous
chapter, specifically in (2.9), let us recall the definition of this important property.
Furthermore, we present the definition of the opposite concept, which we will call
diffusivity.

Consider an undirected weighted graph G = (V, E ,W ) and a threshold 0 ≤ q ≤ 1,
q ∈ R. A subset of the vertex set S ⊆ V is called

• q-cohesive with respect to the graph G if for any i ∈ S it holds∑
j∈SWij

wi
≥ q
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4.2 – Cohesiveness and diffusivity

• q-diffusive with respect to the graph G if for any i ∈ S it holds∑
j∈SWij

wi
≤ q

Note that, if the graph is unweighted, then the set S is q-cohesive if for any i ∈ S it
holds

|Ni ∩ S|
|Ni|

≥ q

and q-diffusive if
|Ni ∩ S|
|Ni|

≤ q

for any i ∈ S.
In other words, in the unweighted case, a subset S is q-cohesive if each node in

S has at least a fraction q of its neighbors in S. Conversely, S is q-diffusive if each
node in S has at most a fraction q of its neighbors in S.

Observe that if a set is q-cohesive then it is also q′-cohesive for any q′ ≤ q.
Similarly, a q-diffusive subset is also q′-diffusive for any q′ ≥ q.

Now, let us go back to the heterogeneous mixed coordination anti-coordination
game. Consider an undirected graph G = (V, E ,W ), a partition of the vertex set
Vc∪Va = V and a set of node weights {αi}i∈V . We recall that, according to equation
(2.4), thresholds can be written in the form

ri :=
1

2
+

αi

2wi

which permit to study the best response function in terms of the fraction of neighbors
playing action +1. We introduce the following notations

rcmax := max
i∈Vc

ri rcmin := min
i∈Vc

ri ramax := max
i∈Va

ri ramin := min
i∈Va

ri (4.5)

Proposition 10. Let us consider a mixed coordination anti-coordination game with
node weights {αi}i∈V , αi ∈ R. If Vc is rcmax-cohesive and Va is (1− ramax)-diffusive,
then the set N of its Nash equilibria is non-empty and contains the action configu-
ration

x∗i =

+1 if i ∈ Vc

−1 if i ∈ Va
(4.6)

Proof. Let us consider any i ∈ Vc. We have that

w+
i (x∗) =

∑
j∈V

x∗j=+1

Wij =
∑
j∈Vc

Wij

(1)

≥ rcmaxwi ≥ riwi
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4 – Networks with coordinating and anti-coordinating agents

where (1) comes straightforward from the definition of a rcmax-cohesive subset. This
means that +1 ∈ Bi(x∗−i) for all i ∈ Vc.
On the other hand, if we consider i ∈ Va, it holds

w+
i (x∗) = wi − w−i (x∗) = wi −

∑
j∈Va

Wij

≥ wi − (1− rcmax)wi = rcmaxwi ≥ riwi

and thus −1 ∈ Bi(x∗−i), i ∈ Va. In conclusion, we have shown that x∗i ∈ Bi(x∗−i) for
every i ∈ V.

Note that also if Va is (1 − rcmin)-cohesive and Va is ramin-diffusive the set N of
the Nash equilibria is non-empty. In this case, a possible Nash equilibrium is given
by

x∗∗i =

−1 if i ∈ Vc

+1 if i ∈ Va

Proposition 10 points out a sufficient condition for the existence of at least one
Nash equilibrium.

Example 9. Consider the mixed majority-minority game over G = Kn. Observe
that, since ri = 1

2 for all i ∈ V, we have

rcmax = 1− rcmin =
1

2

Let Vmin ∪ Vmaj = V, Vmin ∩ Vmaj = ∅, be such that |Vmin| ≤ |Vmaj | − 1. In this
instance, the subset Vmaj ⊆ V is 1

2 -cohesive. In fact, given i ∈ Vmaj ,

|Ni ∩ Vmaj |
|Ni|

=
|Vmaj | − 1

|Vmin|+ |Vmaj | − 1
≥ |Vmaj | − 1

|Vmaj | − 1 + |Vmaj | − 1
=

1

2

Moreover, Vmin is 1
2 -diffusive. Indeed

|Vmin| − 1

|Vmaj |+ |Vmin| − 1
≤ |Vmin| − 1

|Vmin|+ 1 + |Vmin| − 1
<
|Vmin|

2 |Vmin|
=

1

2

for all i ∈ Vmin. Therefore, the mixed majority-minority game over a complete graph
having |Vmin| < |Vmaj | admits the Nash equilibrium x∗ defined in (4.6).

This condition is simple and intuitive but stronger than needed. We can move
forward thanks to the following simple observation which is strongly related to the
previous statement.
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4.2 – Cohesiveness and diffusivity

Observation 12. Consider a mixed coordination anti-coordination game with het-
erogeneous thresholds such that Vc is a rcmax-cohesive subset of V. Let x ∈ AV be an
action configuration having xi = +1 for all i ∈ Vc. Then for any i ∈ Vc it holds that

xi ∈ Bi(x−i)

irrespective of the actions xj , j ∈ Va chosen by the remaining players. Note that the
same observation holds true if the set of the coordinating players Vc is (1 − rcmin)-
cohesive and we set all their actions to −1.

In other words, if the set of the coordinating agents is rcmax-cohesive, then the
coordinating players are "in equilibrium" if they all play the same action, regardless
of the choices of the anti-coordinating players.

According to this consideration, we can change the point of view on the problem.
Specifically, consider an undirected graph G = (V, E ,W ), a subset of the vertex set
Va ⊆ V and a set of given node weights αi ∈ R, i ∈ V. If we assume that Va is a
rcmax-cohesive subset of the nodes, we can focus on a heterogeneous network anti-
coordination game with node weights αi ∈ R, i ∈ Vc having a set Va of (+1)-stubborn
players. Trivially, if this game admits a Nash equilibrium, then the mixed coordina-
tion anti-coordination game over G, having the same thresholds and Vc coordinating
players, also admits a Nash equilibrium, which can be directly derived from the other
one. If we look at the mixed coordination anti-coordination game in this new terms,
we can make further statements since we already studied this problem in the previous
section. Indeed, following the same procedure, we can rewrite the utility of an agent
i ∈ Va as

ui(xi, x−i) = −
∑
j∈V

Wijxixj + αixi =

= −
∑
j∈Va

Wijxixj −
∑
j∈Vc

Wijxi + αixi =

= −
∑
j∈Va

Wijxixj +

αi −
∑
j∈Vc

Wij

xi =

= −
∑
j∈Va

Wijxixj + α̃ixi

where we denoted
α̃i := αi −

∑
j∈Vc

Wij (4.7)
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4 – Networks with coordinating and anti-coordinating agents

Therefore, we have found that, if the set of coordinating agents is rcmax-cohesive,
we can investigate the existence of Nash equilibria by studying a network anti-
coordination game defined over the induced subgraph G[Va] = (Va, Ea,W|Va×Va)

where Ea = {{i, j} ∈ E : i, j ∈ Va} with node weights α̃i, i ∈ Va given in (4.7). We
know from the previous chapter that this game is potential and it has potential func-
tion given by (3.8), which means that the existence of at least one Nash equilibrium
is guaranteed.

We remark that a similar method can be applied when the set of the coordinating
agents is (1− rcmin)-cohesive.

Theorem 11. Consider an undirected weighted graph G = (V, E ,W ), a partition of
the vertex set Vc ∪ Va = V and a set of node weights {αi}i∈V , αi ∈ R. Assume that
Vc is either

• rcmax-cohesive or

• (1− rcmin)-cohesive

where rcmax and rcmin are defined according to (4.5). Then, the mixed coordination
anti-coordination game over G having node weights αi,i ∈ V admits at least one Nash
equilibrium.

For instance, let us suppose that Vc is rcmax-cohesive. Such equilibrium can be
found in the following way. Let us denote as Ga = G[Va] the subgraph induced by
Va and as Va = V1 ∪ V2 ∪ · · · ∪ VK the partition in connected components of Ga.
For each component j ∈ {1, . . . ,K}, we define the anti-coordination game with node
weights α̃i given in (4.7) and we find a Nash equilibrium of the game. We know that
this is always possible since the game with only anti-coordinating agents is potential.
Given the Nash equilibria x1, . . . , xK of the previous games, the Nash equilibrium of
the mixed coordination anti-coordination game with node weights αi, i ∈ V is given
by x∗ ∈ AV such that

x∗i =



+1 if i ∈ Vc

x0i if i ∈ V0

. . .

xKi if i ∈ VK

(4.8)

If the set of the coordinating agents is (1−rcmin)-cohesive, a similar procedure can
be applied. The only difference is that coordinating agents become (−1)-stubborn
players and therefore the definition of α̃i slightly changes.

62



4.3 – Non-cohesive examples

Example 10. Let us consider a mixed coordination anti-coordination game with
homogeneous threshold r = 1

2 over a simple graph G = (V, E). Let us suppose
that the set of the coordinating agents is such that the subgraph induced by Vc is
complete. Then, if |Vc| > |Va|, the existence of at least one Nash equilibrium is
guaranteed by Proposition 11.

For instance, suppose that we have a fully connected population of coordinating
agents and we introduce some anti-coordinating agents in order to destabilize it. The
previous proposition affirms that the existence of at least one Nash equilibrium is
guaranteed until we introduce as many anti-coordinating players as the number of
coordinating agents already existing in the network.

4.3 Non-cohesive examples

In the previous section, we observed that if the set of the coordinating players is
r−cohesive, where r = maxi∈Vc ri, then the existence of at least one Nash equilibrium
is guaranteed. Similarly, the set of Nash equilibria is nonempty if coordinating
agents form a 1−rcmin-cohesive subset. We conclude the chapter by investigating the
existence of Nash equilibria in some simple examples where the set of the coordinating
players is not cohesive enough.

4.3.1 The mixed majority-minority game over a complete graph

Consider a mixed majority-minority game over a complete graph Kn having Vmaj

majority players and Vmin minority players. If |Vmin| < |Vmaj |, we know from Exam-
ple 9 that the existence of at least one Nash equilibrium is guaranteed (Proposition
10). On the other hand, the subset Vmaj loses the 1

2 -cohesiveness property once the
number of minority players reaches the number of majority players. Let us focus on
this second case in which |Vmin| ≥ |Vmaj |.
Given an action configuration x∗ ∈ AV , we introduce the following notation

V+maj(x
∗) := {i ∈ Vmaj | x∗i = +1}

V−maj(x
∗) := {i ∈ Vmaj | x∗i = −1}

Similarly, we define V+min(x∗) and V−min(x∗). For simplicity, we denote as nmaj =

|Vmaj | the number of majority players and as nmin = |Vmin| the number of minority
players. Note that |V−maj(x

∗)| = |Vmaj | − |V+maj(x
∗)| = nmaj − |V+maj(x

∗)| and, anal-
ogously, V−min(x∗) = nmin − V+min(x∗).
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4 – Networks with coordinating and anti-coordinating agents

Let us suppose that x∗ ∈ AV is a Nash equilibrium. Without loss of generality, we
can assume V+maj(x

∗) /= ∅ and consider i ∈ V+maj(x
∗). We have that +1 ∈ Bi(x∗−i) if

and only if

n− 1

2
=
|Ni|

2
≤ |{i ∈ Ni | x∗i = +1}| = |V+maj(x

∗)| − 1 +
∣∣V+min(x∗)

∣∣ (4.9)

On the other hand, if V+maj(x
∗) /= Vmaj , we can consider i ∈ V−maj(x

∗). In this case,
we obtain the necessary condition

n− 1

2
≥ |V+maj(x

∗)|+
∣∣V+min(x∗)

∣∣
Combining the two, we obtain the system|V

+
maj(x

∗)|+
∣∣V+min(x∗)

∣∣ ≥ n+1
2

|V+maj(x
∗)|+

∣∣V+min(x∗)
∣∣ ≤ n−1

2

which has no solution. Therefore, we have found

V+maj(x
∗) = Vmaj (4.10)

In words, we proved that in a Nash equilibrium all majority players choose the same
action. In particular, in the current profile, all majority players choose action +1

since we assumed a configuration where at least one majority agent plays action +1.
According to this discovery, we can rewrite the condition in (4.9) in this way

n− 1

2
≤ |V+maj(x

∗)| − 1 +
∣∣V+min(x∗)

∣∣ = nmaj − 1 +
∣∣V+min(x∗)

∣∣
Thus, in this instance, a necessary condition for x∗ to be a Nash equilibrium is∣∣V+min(x∗)

∣∣ ≥ n− 2nmaj + 1

2

If we consider i ∈ V+min(x∗), we find the opposite condition

n− 1

2
≥ nmaj +

∣∣V+min(x∗)
∣∣− 1 ⇔

∣∣V+min(x∗)
∣∣ ≤ n− 2nmaj + 1

2

Observe that the last condition is never satisfied if nmaj > nmin, which implies
2nmaj > nmaj + nmin = n. This proves that if the majority of the agents plays a
majority game Nash equilibria are action configurations where all majority players
pick the same action, while the minority players choose the opposite one.
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4.3 – Non-cohesive examples

Let us go back to the case where most of the agents play the minority game. If we
combine the two previous conditions, we trivially find∣∣V+min(x∗)

∣∣ =
n− 2nmaj + 1

2
=
n+ 1

2
− nmaj (4.11)

Note that, since we are dealing with cardinalities, the number of minority players
choosing action +1 must be a natural number, namely

∣∣V+min(x∗)
∣∣ ∈ N. Therefore,

the equation in (4.11) makes senses if only if

1. n+1
2 ∈ N, which means that n must be an odd number

2. nmaj ≤ n+1
2 , which is satisfied under the assumption that nmaj ≤ nmin.

Finally, let us check the condition for the remaining players i ∈ V−min(x∗). They are
in equilibrium if

n− 1

2
≤ |V+maj(x

∗)|+
∣∣V+min(x∗)

∣∣ = nmaj +
n+ 1

2
− nmaj =

n+ 1

2

which is satisfied. Therefore, an action configuration satisfying the conditions in
(4.10) and (4.11) is a Nash equilibrium of the game if n is odd and nmaj ≤ nmin.
The two conditions are sufficient and necessary, which means that we have found all
the Nash equilibria of the game. Note that, since (4.11) is satisfied only if n is odd,
the even case admits no Nash equilibria.
The following proposition summarizes the results.

Proposition 12. Consider a mixed majority-minority game over Kn with nmaj =

|Vmaj | majority players and nmin = |Vmin| minority players. We distinct 3 possible
cases:

1. If nmaj > nmin, namely if the majority of the participants play the majority
game, the existence of at least one Nash equilibrium is guaranteed and in
particular

N =
{
x,−x ∈ AV s.t. V+maj(x) = Vmaj and V−min(x) = Vmin

}
Note that |N | = 2.

2. If nmaj ≤ nmin and n is odd, the set N of the Nash equilibria of the game is
still non-empty. Specifically

N =

{
x,−x ∈ AV s.t. V+maj(x) = Vmaj and

∣∣V−min(x)
∣∣ =

n+ 1

2
− nmaj

}
In this instance, |N | = 2

(
nmin

(n+1)/2−nmaj

)
.

3. If nmaj ≤ nmin and n is even, the game admits no Nash equilibria.
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4 – Networks with coordinating and anti-coordinating agents

4.3.2 The mixed majority-minority game with one anti-coordinating
agent

Let us consider the mixed majority-minority game on general simple graphs. In
particular, we focus on the simplest case where |Vmin| = 1. Without loss of generality,
we can assume Vmin = {0}. Let us denote the set of the leaves in the neighborhood
of the minority node as

F := {i ∈ N0 | |Ni| = 1} = {i ∈ V | Ni = {0}} (4.12)

where the second equality remarks that set F coincides with the set of the nodes in
the vertex set which are linked only to node 0. Note that Vmaj is 1

2 -cohesive if and
only if F = ∅.

Proposition 13. Consider a mixed majority-minority game over a simple graph
G = (V, E) where Vmin = {0}. Moreover, let F be defined as in (4.12).

1. If |F | ≤ |N0|
2 , then the set N of its Nash equilibria is non-empty and contains

the Nash equilibrium x∗ ∈ AV such that

x∗i =

+1 if i /∈ F ∪ {0}

−1 otherwise

As a straightforward consequence, x∗− = −x∗ is a Nash equilibrium too.

2. Otherwise, if |F | > |N0|
2 , the game admits no Nash equilibria.

Proof. In the first case where |F | ≤ |N0|
2 , we need to verify that x∗ is a Nash equi-

librium, that is x∗i ∈ Bi(x
∗
−i), ∀i ∈ V.

Consider a leaf i ∈ F . We have that −1 ∈ Bi(x∗−i) since∣∣∣{j ∈ Ni | x∗j = +1
}∣∣∣

|Ni|
=

∣∣∣{j ∈ {0} | x∗j = +1
}∣∣∣

1
= 0 ≤ 1

2

On the other hand, let us consider a majority player which is not a leaf, namely
i /∈ F ∪ {0}. In this instance, we have∣∣∣{j ∈ Ni | x∗j = +1

}∣∣∣
|Ni|

≥ |Ni| − 1

|Ni|
≥ 1

2
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4.3 – Non-cohesive examples

where the first inequality is true since F∩Ni = ∅, which implies
{
j ∈ Ni | x∗j = −1

}
⊆

{0}, while the second one holds since |Ni| > 1. Therefore, +1 ∈ Bi(x∗−i), ∀i /∈ F∪{0}.
Lastly, if i = 0,∣∣∣{j ∈ N0 | x∗j = +1

}∣∣∣
|N0|

=
|N0| − |F |
|N0|

= 1− |F |
|N0|

≥ 1− 1

2
=

1

2

which means −1 ∈ B0(x∗−0), as node 0 plays the minority game.
Now let us suppose |F | > |N0|

2 . Conversely to the previous case, this time we want
to prove that there are no action configurations which are Nash equilibria. We prove
it by contradiction.
Let us suppose that x∗ ∈ AV is a Nash equilibrium. Without loss of generality, we
can assume x∗0 = −1. Note that Bi(x∗−i) = {−1} for all i ∈ F . Indeed, if i ∈ F , then∣∣∣{j ∈ Ni | x∗j = +1

}∣∣∣
|Ni|

= |{j ∈ {0} | xj = +1}| = 0 ≤ 1

2

Since x∗ is Nash equilibrium, this means that x∗i = −1 for all i ∈ F . Therefore∣∣∣{j ∈ N0 | x∗j = +1
}∣∣∣

|N0|
≤ |N0| − |F |

|N0|
= 1− |F |

|N0|
≤ 1− 1

2
=

1

2

Given that node 0 plays the minority game, this last inequality means that
B0(x∗−0) = {+1}, which is a contradiction since we assumed x∗0 = −1.
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Chapter 5

Conclusions

In the thesis, we provided an overview of games with coordinating and anti-coordinating
agents. The motivation behind the interest in modeling these two opposite types of
interaction is given by the simplicity of their definition and their wide use in the ap-
plications. For instance, games with coordinating agents model the spread of social
behaviors, technological innovations or viral infections. On the other hand, results
on anti-coordinating agents can be applied in traffic congestion problems or division
of labor.

In particular, we focused on heterogeneous models where agents with opposite
interests and different preferences interact over the same network. In the applica-
tions, this game models heterogeneous populations of conforming and nonconforming
agents. We recall that network coordination games and network anti-coordination
games where all players have the same behavior have been largely studied in the
literature, while much less is known for the heterogeneous cases.

The first important observation of the thesis is that the potential property of
the homogeneous symmetric version of the games is preserved when players have the
same underling interests but heterogeneous priorities. Potential games share special
properties including the existence of Nash equilibria. More in general, this means
that population heterogeneity as long as irregular network structure cannot be a
cause of nonconvergence issues. A similar result was obtained by Cao et al [12] in
2016 although the authors do not explicitly discuss the potential property and the
deriving peculiarities.

We remark that the regular behavior of the heterogeneous network anti-coordination
game, in particular, is not trivial. Therefore, it is interesting to observe the aspect
of the Nash equilibria in the special case of the complete graph . Although we are
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dealing with a specific example, the characterization given at the end of Chapter 3 is
useful to picture the behavior of the game and permits to get an idea of its properties
in the general case. Moreover, the study is done according to the threshold cumula-
tive distribution function generalizing some ideas of the linear-threshold model [6].
As we shall see, this interpretation can be useful to study the dynamics of the game.

Furthermore, the reformulation of the games in terms of network coordination
and anti-coordination games with stubborn players highlights some interesting char-
acteristics of the games and permits to see the behavior of the players from a different
point of view. For instance, it is remarkable that if one consider the heterogeneous
case as a modification of the symmetric one given by the addiction of stubborn play-
ers, then the potential property mentioned above comes straightforward. Indeed, as
we pointed out in the thesis, the potential function of the game with stubborns can
be derived from the potential function of the homogeneous case by simply substitut-
ing in the general formula the actions of the stubborn players with one or minus one
respectively.

While games with only coordinating or anti-coordinating agents present a quite
regular behavior, we proved that it is enough to introduce one single interaction
between two players having opposite outcomes to lose the potential property. This
is actually the main problem addressed by the thesis. In fact, the main focus of the
work is on mixed network coordination anti-coordination games with heterogeneous
thresholds.

Given that mixture of coordinating and anti-coordinating agents do not in prin-
ciple admit Nash equilibria, we provided a sufficient condition for the existence of
equilibrium states which is based on the idea of cohesiveness of a subset introduced
by Morris [11].

In real applications, we can imagine cohesive subsets of coordinating agents as
closed groups of people that are highly connected and have similar thoughts and be-
haviors. In this case, it is harder to destabilize the system and many nonconformists
are needed in order to lose the property of the existence of at least one equilibrium
state. What we essentially proved is that if the hypothesis are satisfied, not just
the coordinating players are able to find an equilibrium, but also anti-coordinating
agents can be set in such a way that they have no interests in changing the actions. In
other words, when coordinating agents have no incentives in changing their strategy,
anti-coordinating agents adapt themselves to the situation.

The condition is relevant since it is general and includes many different network
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structures. On the other hand, it is far from being necessary. In the last part of the
thesis, we provided some simple examples of games that admit Nash equilibria even
if the set of the coordinating agents is not sufficiently cohesive.

In conclusion, the work points out some important characteristics of mixed net-
work coordination anti-coordination games with a special regard to the investigation
of the existence of Nash equilibria. More specifically, the thesis provides essential ob-
servations for the study of games with only coordinating or anti-coordinating agents
and moves a first step in the analysis of the mixed case.

Many questions remain unanswered, but the work highlights some promising
directions that can be taken.

For instance, once the game is defined, one can be interested in defining the
evolutionary dynamics of the game. In this way, it is possible to investigate the
convergence to Nash equilibria. The notion of best-response dynamics is the most
intuitive example of asynchronous dynamics. Each player is equipped with an inde-
pendent Poisson clock of rate 1: when it rings, he is allowed to update his strategy
according to the best response function. In potential games, the dynamics almost
surely converges to the set of Nash equilibria. Therefore, if we assume that in the
initial state all coordinating players are in a consensus configuration, then the best-
response dynamics of the mixed coordination anti-coordination game will converge
to a Nash equilibrium with probability one when the hypothesis of the theorem are
satisfied. It could be interesting to investigate the behavior of the system when
coordinating agents are not in a consensus configuration at the beginning of the
dynamics.

Furthermore, another possible dynamics that might occur on the network is the
synchronous best response dynamics where each player has a binary state and updates
it at discrete time instants according to his best response function. The difference
from the previous dynamics is that in this second case all players update their actions
at the same time. Let us focus on the anti-coordination game with heterogeneous
thresholds on a fully-connected population. The main idea behind the results of the
last section of Chapter 3 is to study the behavior of the game over the complete
graph in terms of a slightly modified threshold cumulative distribution function.
This interpretation of the game is relevant also when studying the synchronous best
response dynamics. Indeed, following similar steps, one can find that the dynamical
system satisfies a condition which is analogous to the one that we firstly introduced
in (3.15). In particular, under some assumptions, the condition becomes an equality
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and the dynamics can be studied as a simpler dynamical system that depends only
on the fraction of players playing action +1. A similar method was proposed to study
the linear-threshold model which addresses the coordination case. Therefore, when
the population are mixed, it might be possible to find a unique dynamical system
that represent the entire synchronous best response dynamics and depends only on
the fraction of players picking action +1.

Finally, recalling that the condition for the existence of Nash equilibria is suffi-
cient but not necessary, a challenging problem is to focus on the non-cohesive exam-
ples and try to identify more general conditions for the existence on Nash equilibria
of the game and eventually study the convergence to these other configurations ac-
cording to the definition of the dynamics.
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