
POLITECNICO DI TORINO

Corso di Laurea
in Ingegneria Matematica

Tesi di Laurea

Hardy type inequalities on graphs

Relatori Candidato
prof. Elvise Berchio Federico Santagati
prof. Maria Vallarino
firma dei relatori firma del candidato

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Anno Accademico 2018-2019



Contents

1 Introduction 1

2 Graphs and combinatorial Laplacian 3
2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Combinatorial Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Unbounded operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Bottom of the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Green function on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Classical Hardy inequalities 23
3.1 Discrete Hardy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Continuous Hardy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 The supersolution construction of Hardy weights 35
4.1 Continuous setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Discrete setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Hardy inequalities on some particular graphs . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Hardy inequalities on N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Hardy inequalities on Tq+1 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Hardy inequalities on TP,D . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Improved Poincaré inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii





Chapter 1

Introduction

The subject of this thesis is the analysis of Hardy type inequalities on graphs. A graph is a pair
Γ = (V,E) where V denotes the set of vertices and E the set of edges. If (x, y) ∈ E we say that
x and y are neighbours and we write x ∼ y. In this work we always consider infinite, locally
finite connected graphs with the usual discrete metric. This means that V is countably infinite,
every vertex has a finite number of neighbours and for every x, y ∈ V with x /= y a path from x
to y exists.
Given a graph Γ = (V,E) and a nonnegative operator P defined on the set C(V ) = {f : V → R},
for Hardy type inequality on Γ we roughly mean a functional inequality of the form P ≥ CW
involving a positive weight functionW which has to be taken as "large" as possible and a (possibly
optimal) positive constant C.

In 1921 Landau proved that
∞Ø

n=1
|ϕ(n) − ϕ(n− 1)|2 ≥ 1

4

∞Ø
n=1

|ϕ(n)|2

n2 ,

for all finitely supported ϕ : N → R such that ϕ(0) = 0.
This inequality was stated before by Hardy, so it is known as discrete Hardy inequality. It repre-
sents the simplest example of Hardy inequality on a graph. Since then, Hardy type inequalities
have been of great interest to mathematicians in various contexts. In Chapter 3 of the thesis,
following [7], we present a historical excursus about the development of the Hardy inequality
during the 1920s in both its discrete and continuous settings, showing classical proofs based on
elementary calculus inequalities.

Aiming to study Hardy inequalities on more general graphs, we recall that the combinatorial
Laplacian on Γ is a linear operator which acts on functions f : V → R as follows

∆f(x) =
Ø
y∼x

3
f(x) − f(y)

4
.

It is known that ∆ is a symmetric and nonnegative operator and it is a ü2 bounded operator on
a graph Γ if and only if Γ has bounded vertex degree. Moreover, as shown in [10], in general ∆
is essentially self-adjoint and

é∆f, fêü2 = 1
2
Ø

x,y∈V
x∼y

3
f(x) − f(y)

42

1



1 – Introduction

holds true for all functions f in C0(V ).
In our study of Hardy weights a crucial role is played by the Green function associated to ∆ on
a graph Γ = (V,E) which is defined as follows

G(x, y) =
∞Ø

n=0
pn(x, y),

where x, y ∈ V and pn(x, y) are the elements of the n-th power of the transition matrix. One
of its main properties is the following: when we fix a vertex o ∈ V the one variable function
x → Go(x) := G(x, o) is harmonic outside o. In Chapter 2 of the thesis we illustrate the explicit
construction of the Green function on two particular classes of graphs: the homogeneous trees and
the bi-regular trees. The first one, denoted by Tq+1, has the property that all the vertices have
q+1 neighbours. In the second one, denoted by TP,D, a vertex has either P or D neighbours if its
distance from a reference vertex is, respectively, even or odd. We compute the Green functions
by making use of certain geometric properties of these trees.

The core of the present thesis is Chapter 4, where we discuss an alternative approach with
respect to those outlined in Chapter 3 to derive Hardy inequalities: the supersolution method.
Following [1], we show that given a positive superharmonic functions u, the Hardy type inequality

1
2
Ø

x,y∈V
x∼y

3
ϕ(x) − ϕ(y)

42
≥
Ø
x∈V

∆u(x)
u(x) ϕ2(x) (1.1)

holds for all finitely supported functions ϕ on V . Subsequently, we apply this technique in Tq+1
and in TP,D. More precisely, we determine radial positive superharmonic functions on these trees
which yield relevant Hardy inequalities.
Recently, a refinement of the supersolution method has been developed in [6], where the notion
of optimal weight is introduced. In particular, if a weight W is optimal for the operator P , then
the Hardy inequality fails for every W̃ > W .
We note that the Hardy weights derived from (1.1) need not to be optimal. The abovementioned
theory developed in [6] is based on the use of positive H-superharmonic functions to derive
optimal weights for Schrödinger operators, where for a Schrödinger operator on V we mean an
operator of the form H = ∆ +Q, with Q given potential.

In Section 4.3 we adapt to our context the general results of [6] to derive optimal Hardy weights
for ∆ in Tq+1. This is achieved by constructing suitable radialH-superharmonic functions among
which the square root of the Green function is a particular case. It is worth mentioning that, as a
by-product of our results, in Section 4.4 we obtain a new family of improved Poincaré inequalities
of the form

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Λqϕ
2(x) +

Ø
x∈Tq+1

R(x)ϕ2(x) ∀ϕ ∈ C0(Tq+1).

Here Λq > 0 is the bottom of the Laplacian ü2 spectrum on Tq+1 and R ≥ 0 are various optimal
reminder terms, corresponding to the weights discussed before in the Hardy type inequality.
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Chapter 2

Graphs and combinatorial
Laplacian

In this chapter we firstly introduce some preliminary notions about graph theory and we define
the functional spaces which are needed in the later discussion; secondly, we provide some basic
properties concerning unbounded operators on Hilbert spaces, to then analyse the combinatorial
Laplacian on graphs and the bottom of its ü2 spectrum. Finally, we discuss the fundamentals of
Markov chains theory and random walk on graphs. We refer to [8] for the unbounded operators
section, to [10] for the properties of the Laplacian and to [9] for the results about Markov chains.

2.1 Basic notions
In this section we introduce the notion of graph, the standard metric on it and the functional

spaces on a graph which we shall use later on. We finally give some interesting examples of
graphs which will be the object of our investigation.

Definition 2.1.1. A graph Γ is a pair Γ = (V,E) where V denotes the set of vertices (also called
nodes) and E the set of edges.

If (x, y) ∈ E we say that x and y are neighbours or adjacent and we write x ∼ y, while
[x, y] denotes the oriented edge directed from x to y. We use the notation m(x) to indicate the
degree of x, that is the number of edges that are attached to x.
In this thesis we focus on infinite, locally finite graphs. It means that V is infinite and m(x) < ∞
for all x ∈ V .
We define a path in Γ a sequence of k ≥ 2 vertices v1, v2, ..., vk such that consecutive vertices in
this sequence are adjacent. A closed path is a path where the first and last vertex coincide (v1
= vk). A simple path is a path where the vertices are all distinct one from another. A cycle is
a closed path with no repeated vertices except for the first and the last one (that coincide) and
no repeated edges.
We say that a graph Γ is connected if ∀ v, w ∈ V with v /= w, a path from v to w exists. If the
graph is connected, we can define a metric on Γ, ρ(x, y), that denotes the number of the edges
in the shortest path connecting the vertices x and y. In such case we call geodesic path a path
from x to y of length ρ(x, y). When we fix a vertex o ∈ V , we denote |x| = ρ(x, o) for all x ∈ V .

Definition 2.1.2. A tree is a connected graph with no cycles.

3



2 – Graphs and combinatorial Laplacian

Now we define two considerable examples of trees which are needed in the later discussion.

Definition 2.1.3. A homogeneous tree is a tree, such that all vertices have the same degree.

We will denote Tq+1 the homogeneous tree in which m(x) = q + 1 for all x ∈ V .

Figure 2.1. Homogeneous tree for q = 2.

Definition 2.1.4. A bi-regular tree is a tree, such that the vertex degrees are constant in each
of two bipartite classes: the vertices at even or at odd distance, respectively, from a reference
node.

We write TP,D for a bi-regular tree with m(x) =
I
P if |x| is even,
D if |x| is odd,

where |x| = ρ(x, o)

and o ∈ TP,D is the reference node.

Figure 2.2. Bi-regular tree for P = 3, D = 5.

4



2.2 – Combinatorial Laplacian

We call f a function on a graph Γ if it is a mapping f : V → R. The set of all functions is
denoted by C(V ), while C0(V ) is the set of all functions finitely supported in V . These functions
are automatically continuous because the discrete topology is induced by the metric ρ.
Finally, we define the space of square summable functions, ü2(V ) that is

ü2(V ) = {f ∈ C(V ) such that
Ø
x∈V

f(x)2 < +∞}.

This is a Hilbert space with the inner product

éf, gê =
Ø
x∈V

f(x)g(x),

and the induced norm ëfë2 = éf, fê. Similarly we denote with ü2(Ẽ) the space of all square
summable functions on oriented edges that satisfy the relation

ψ[x, y] = −ψ[y, x]

with the inner product
éφ, ψê =

Ø
[x,y]∈Ẽ

φ[x, y]ψ[x, y],

where Ẽ denotes the set of all oriented edges of Γ.
The function d, with domain C(V ) and range in the space of function on Ẽ, defined as
df [x, y] = f(y) − f(x) is called coboundary function.

2.2 Combinatorial Laplacian
The combinatorial Laplacian plays a crucial role in this thesis because, as shown later in

Chapter 4, there are different techniques which involve such operator in order to derive Hardy
weights on graphs.
Consider a graph Γ = (V,E).

Definition 2.2.1. The combinatorial Laplacian is the map that acts on C(V ) by the formula

∆f(x) :=
Ø
y∼x

3
f(x) − f(y)

4
= m(x)f(x) −

Ø
y∼x

f(y) for all x ∈ V . (2.1)

Notice that by (2.1) the Laplacian is bounded on ü2 if and only if m is bounded on V . Indeed,
the following holds

Theorem 2.2.1. The combinatorial Laplacian is a bounded operator in ü2(V ) if and only if there
exists M ∈ N such that m(x) ≤ M for all x ∈ V .

Proof. We first assume that ∆ is a bounded operator on ü2(V ). By contradiction, if m would
not be bounded, there would be a sequence {xn} ⊂ V such that supn m(xn) = +∞.
Define

δz(x) =
I

1 if x = z,
0 otherwise.

5



2 – Graphs and combinatorial Laplacian

It is clear that ëδzë = 1 for all z ∈ V and ∆δz(x) = m(x)δz(x) −
q

y∼x δz(y). Thus

∆δz(x) =


m(z) if x = z

−1 if x ∼ z

0 otherwise.

Hence
ë∆δxn

ë =
ð
m(xn)2 +m(xn).

This would imply that the combinatorial Laplacian is not a bounded operator, which contradicts
our assumption.
Assume now that maxx m(x) = M . By a direct computation

ë∆fë2 =
Ø
x∈V

3
m(x)f(x) −

Ø
y∼x

f(y)
42

≤ 2
Ø
x∈V

A1
(m(x)f(x)

22
+
1Ø

y∼x

f(y)
22
B

≤ 2M2ëfë2 + 2
Ø
x∈V

AØ
y

χx(y)f(y)
B2

where χx(y) =
I

1 if y ∼ x

0 otherwise.
Using Cauchy-Schwarz’s inequality, it follows thatAØ

y

χx(y)f(y)
B2

≤
Ø

y

χx(y)f(y)2
Ø

y

χx(y) ≤ M
Ø

y

χx(y)f(y)2.

Moreover, Ø
x∈V

Ø
y∼x

f(y)2 ≤ Mëfë2.

Hence
ë∆fë2 ≤ 4M2ëfë2.

Definition 2.2.2. A subgraph ΓÍ = (V Í, EÍ) of a graph Γ = (V,E) is a graph such that
V Í ⊂ V and EÍ ⊂ E.

Now we state an analogue of the Green’s theorem.

Theorem 2.2.2. Let D a finite connected subgraph of V . ThenØ
x∈D

∆f(x)g(x) =
Ø

[x,y]∈Ẽ(D)

df([x, y])dg([x, y]) +
Ø
x∈D

z∼x, z /∈D

(f(x) − (f(z))g(x)

=
Ø

[x,y]∈Ẽ(D)

df([x, y]dg([x, y]) −
Ø
[x,z]

x∈D, z /∈D

df([x, z])g(x).

Proof. Every edge [x, y] with x, y ∈ V (D) contributes two terms to the sum on the left hand
side: ∆f(x)g(x) with (f(x) − f(y))g(x) and ∆f(y)g(y) with (f(y) − f(x))g(y). Adding these
two terms, we obtain (f(x) − f(y))(g(x) − g(y)) = df [x, y]dg[x, y]. The remaining contributions
are given from the any vertex x ∈ D which is connected with a vertex z /∈ D. These give
(f(x) − f(z))g(x) = df [x, z]g(x).

6



2.3 – Unbounded operators

Definition 2.2.3. A vertex x ∈ ∂D, i.e. x is in the boundary of D, if there exists a vertex z
such that z ∼ x and z /∈ D. If x ∈ D and x /∈ ∂D, it is said to be in the interior of D.

It follows from Theorem 2.2.2 that if either f or g are zero on the complement of the interior
of D then

é∆f, gêV (D) = édf, dgêẼ(D) = éf,∆gêV (D). (2.2)

Moreover, if f and g are functions on V and at least one of them is finitely supported, then

é∆f, gêV (G) = édf, dgêẼ(G) = éf,∆gêV (G). (2.3)

This show that ∆ is a symmetric nonnegative operator on C0(V ).

2.3 Unbounded operators
In this section we provide some basic definitions and theorems useful for analysing unbounded

operators. We proved that the combinatorial Laplacian may not be a bounded operator. More-
over, we showed that it is a symmetric but not self-adjoint operator in general. However, we
will show that it is essentially self-adjoint, i.e. that it admits a unique self-adjoint extension to
ü2(V ).

Definition 2.3.1. Let H be a Hilbert space. By an operator in H we mean a linear mapping T
whose domain D(T ) is a dense subspace of H and whose range R(T ) lies in H.

Definition 2.3.2. The graph of the linear operator T is the set of pairs

{(φ, Tφ) | φ ∈ D(T )}.

The graph of T , denoted by G(T ), is a subset of H × H which is a Hilbert space with the inner
product

é(φ1, ψ1), (φ2, ψ2)ê = éφ1, φ2ê + éψ1, ψ2ê.

T is called closed operator if G(T ) is a closed subset of H × H.

We point out that a linear operator T : H → H is bounded if and only if T has closed graph
because of the closed graph theorem. Notice that, in general, an unbounded operator is defined
on a dense subspace of H.

Definition 2.3.3. Let T1 and T be operators on H. If G(T ) ⊂ G(T1), then T1 is said to be an
extension of T and we write T ⊂ T1. Notice that T1 extends T if and only if D(T ) ⊂ D(T1) and
T1φ = Tφ for all φ ∈ D(T ).

Definition 2.3.4. An operator T is closable if it has closed extensions. It follows that every
closable operator has a smallest closed extension said its closure, which we denote by T .

The notion of adjoint operator can be extended to the unbounded case.

Definition 2.3.5. Let T be a linear operator on H. Let D(T ∗) be the set of φ ∈ H such that
exists an η ∈ H with

éTψ, φê = éψ, ηê for all ψ ∈ D(T ).

For each such φ ∈ D(T ∗) we define T ∗φ = η. T ∗ is called the adjoint of T .

7



2 – Graphs and combinatorial Laplacian

Notice that by the Riesz-Frechét theorem, φ ∈ D(T ∗) if and only if |éTψ, φê| ≤ Cëψë for
some constant C > 0 and for all ψ ∈ D(T ). Moreover, η is uniquely determined by the previous
definition since D(T ) is dense.

Remark 2.3.1. If T1 ⊂ T then T ∗ ⊂ (T1)∗ by definition of adjoint operator.

Theorem 2.3.1. Let T be a densely defined operator on a Hilbert space H. Then:

a) T ∗ is closed.

b) T is closable if and only if D(T ∗) is dense in which case T = T ∗∗.

c) If T is closable, then (T )∗ = T ∗.

A natural way to obtain a closed extension of an operator T is to consider the closure of G(T )
in H × H. The problem with such operation is that G(T ), in general, is not the graph of an
operator. However, symmetric operators, which we now define, admit always a closed extension.

Definition 2.3.6. Let T be an operator defined on D(T ). T is called symmetric if D(T ) ⊂
D(T ∗) and Tφ = T ∗φ for all φ ∈ D(T ). In other words, T is symmetric if and only if

éTφ, ψê = éφ, Tφê for all φ, ψ ∈ D(T ).

Thus, by Theorem 2.2.2, the combinatorial Laplacian is a symmetric operator with domain
C0(V ).

Definition 2.3.7. T is called self-adjoint if T = T ∗, that means, if and only if T is symmetric
and D(T ) = D(T ∗).

As we previously said, a symmetric operator is always closable, because D(T ) ⊂ D(T ∗) is
dense in H.

It follows that if T is symmetric, then T ∗ is a closed extension of T , so the smallest closed
extension T ∗∗ of T must be contained in T ∗. Hence for symmetric operators we have

T ⊂ T ∗∗ ⊂ T ∗

while, for closed symmetric operators

T = T ∗∗ ⊂ T ∗

and for self-adjoint operators,
T = T ∗∗ = T ∗.

Definition 2.3.8. A symmetric operator T is called essentially self-adjoint if its closure T is
self-adjoint.

If T is essentially self-adjoint, then it has a unique self-adjoint extension. Let A be a self-
adjoint extension of T . Then T ∗∗ ⊂ A. A is self-adjoint, thus A = A∗ ⊂ (T ∗∗)∗ = (T )∗ = T ∗∗.
It follows that A = T ∗∗.

Theorem 2.3.2. Let A a strictly positive symmetric operator, that means, éAφ, φê ≥ céφ, φê
for all φ ∈ D(A) and for some c > 0. Then, the following are equivalent:

a) A is essentially self-adjoint;

b) Ker{A∗} = 0;

8



2.4 – Bottom of the spectrum

c) Ran{A} is dense.

Now we consider the combinatorial Laplacian on a graph with domain C0(V ). Let ∆∗ denote
the adjoint of ∆ with domain C0(V ).

Proposition 2.3.1. The domain of ∆∗ is

D(∆∗) = {f ∈ ü2(V ) | ∆f ∈ ü2(V )}.

Proof. By definition,

D(∆∗) = {f ∈ ü2(V ) | ∃! η ∈ ü2(V ) such that é∆g, fê = ég, ηê ∀g ∈ C0(V )}.

For all g ∈ C0(V ) and f ∈ D(∆∗) by formula (2.3)

é∆g, fê = ég, ∆fê = ég, ηê.

In particular, for g = δx we obtain that ∆f(x) = η(x) for all x ∈ V . Hence ∆∗f(x) = η(x) =
∆f(x), as required.

Theorem 2.3.3. ∆ : C0(V ) → R is essentially self-adjoint.

Proof. From Theorem 2.3.2 applied to A = ∆ + I, it suffices to show that

Ker{A∗} = Ker{∆∗ + I} = {0}

or in other words that −1 is not an eigenvalue of ∆∗. Indeed, we now show that if f /= 0 satisfies
∆∗f = −f , then f /∈ ü2(V ).
We can use Theorem 2.3.2 because

é(∆ + I)f, fêü2(V ) = é∆f, fêü2(V ) + éf, fêü2(V )

and it holds
é∆f, fêü2(V ) = édf, dfêü2(Ẽ) ≥ 0.

Thus éAf, fê ≥ éf, fê. By contradiction, suppose there exists f ∈ ü2(V ), f /= 0 such that
∆∗f(x) = −f(x) for all x ∈ V . Then, by the analogue of Green’s theorem, ∆∗f(x) = ∆f(x) and

(m(x) + 1)f(x) =
Ø
x∼y

f(y).

Therefore it must exist a neighbour y ∼ x such that f(y) > f(x). This is true of all x ∈ V . It
follows that f /∈ ü2(V ).

2.4 Bottom of the spectrum
Now we show that in general, for a graph Γ = (V,E), we can characterize the infimum of the

ü2 Laplacian’s spectrum λ0 as
λ0 = inf

f∈C0(V )

édf, dfê
éf, fê

. (2.4)

This means that λ0 is the best constant for which the Poincaré inequality on Γ

édf, dfê ≥ λ0éf, fê (2.5)

9



2 – Graphs and combinatorial Laplacian

or equivalently
1
2
Ø

x,y∈V
x∼y

3
ϕ(x) − ϕ(y)

42
≥ λ0

Ø
x∈V

ϕ2(x)

holds for all f ∈ C0(V ).

Let x0 ∈ V be a vertex and denote Br = Br(x0) the ball of center x0 and radius r, ∂Br = ∂Br(x0)
its boundary and with Br its interior. We have

Br = {x ∈ V such that ρ(x0, x) ≤ r}.

Finally let C(Br, ∂Br) denote functions defined on Br which vanish on ∂Br and ∆r the reduced
Laplacian which acts in this space. That is,

C(Br, ∂Br) = {f ∈ C(Br) | f|∂Br
= 0},

∆rf(x) =
I

∆f(x) if x ∈ Br,
0 if x ∈ ∂Br.

Lemma 2.4.1. For every r ≥ 1 ∆r is a self-adjoint, nonnegative operator on C(Br, ∂Br).

Proof. This is an immediate consequence of (2.2) since

é∆rf, gêV (Br) = édf, dgêE(Br) = éf,∆rgêV (Br).

Notice that ∆r is also compact because it is a finite range operator. Thus Lemma 2.4.1 implies
that all eigenvalues are nonnegative and the existence of an orthonormal basis of eigenfunctions
with respect to the ü2-inner product. Denote by {λr

i }k(r)
i=0 the set of eigenvalues of ∆r listed

in increasing order and choose {φr
i }k(r)

i=0 corresponding eigenfunctions which are an orthonormal
basis for C(Br, ∂Br). This means,

∆rφ
r
i = λr

iφ
r
i for i = 1, ..., k(r),Ø

x∈Br

φr
j(x)φr

k(x) = δjk =
I

1 if j = k,
0 if j /= k.

Next we show that the smallest eigenvalue λr
0 of ∆r is the minimum of the problem (2.6) and

then letting r → ∞ we prove that λr
0 → λ0.

Lemma 2.4.2. Let ∆r denote the reduced Laplacian on Br. Then

γ = min
f∈C(Br,∂Br),

f /=0

édf, dfê
éf, fê

, (2.6)

is the smallest eigenvalue of ∆r, i.e. γ = λr
0. Moreover, if fr

0 is a function in C(Br, ∂Br) that
satisfies

λr
0 = édfr

0 , df
r
0 ê

éfr
0 , f

r
0 ê

, (2.7)

then ∆rf
r
0 = λr

0f
r
0 and fr

0 can be chosen so that fr
0 > 0 in Br.

10



2.4 – Bottom of the spectrum

Proof. If λ is any eigenvalue of ∆r with eigenfunction f , then

é∆f, fê
éf, fê

= λ ≥ γ.

If fr
0 satisfies (2.6) and {λr

i }k(r)
i=0 are the eigenvalues of ∆r with {φr

i }k(r)
i=0 the corresponding

eigenfunctions, which are an orthonormal basis of C(Br, ∂Br), then

fr
0 =

k(r)Ø
i=0

aiφ
r
i ,

with ai = éfr
0 , φ

r
i ê. We claim that ai = 0 if λr

i /= λr
0.

We first compute

0 = éd(fr
0 −

k(r)Ø
i=0

aiφ
r
i ), d(fr

0 −
k(r)Ø
i=0

aiφ
r
i )ê

= édfr
0 , df

r
0 ê − 2

k(r)Ø
j=0

aiéfr
0 ,∆rφ

r
i ê +

k(r)Ø
i,j=0

aiajéφr
i ,∆rφ

r
jê

= édfr
0 , df

r
0 ê − 2

k(r)Ø
j=0

a2
iλ

r
i +

k(r)Ø
i,j=0

aiajλ
r
jéφr

i , φ
r
jê

= édfr
0 , df

r
0 ê −

k(r)Ø
j=0

a2
iλ

r
i .

Thus

édfr
0 , df

r
0 ê =

k(r)Ø
j=0

a2
iλ

r
i .

But (2.6) implies that

édfr
0 , df

r
0 ê = γéfr

0 , f
r
0 ê = γ

k(r)Ø
j=0

a2
i ,

therefore ai = 0 if λr
i /= γ and γ = λr

0. Notice that

éfr
0 , f

r
0 ê = é|fr

0 |, |fr
0 |ê

while
édfr

0 , df
r
0 ê ≥ éd|fr

0 |, d|fr
0 |ê

because |a−b| ≥
--|a|−|b|

-- for all a, b ∈ R. It follows that (2.6) can only be decreased by replacing
fr

0 with |fr
0 |, so we can assume that fr

0 ≥ 0 in Br. Moreover, if there exists x ∈ Br such that
fr

0 (x) = 0 then ∆rf
r
0 (x) = λr

0f
r
0 (x) = 0 that is

∆rf
r
0 (x) = −

Ø
y∼x

fr
0 (y) = 0.

It implies fr
0 = 0 because it is nonnegative, hence we get a contradiction.
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2 – Graphs and combinatorial Laplacian

It follows from Lemma 2.4.2 that

λr
0 ≥ λr+1

0 > 0,

so that we can define
λ0 = λ0(∆) = lim

r→∞
λr

0.

We now show that, equivalently, λ0 can be defined as in (2.4).

Proposition 2.4.1. Let λ0(∆) = limr→∞ λr
0, where λr

0 = min
f∈C(Br,∂Br),

f /=0

édf,dfê
éf,fê . Then,

λ0(∆) = inf
f∈C0(V ),

f /=0

édf, dfê
éf, fê

. (2.8)

Proof. Denote γ = inf
f∈C0(V ),

f /=0

édf,dfê
éf,fê . Notice that the corresponding eigenfunctions of λr

0, denoted

by fr
0 , belongs to C0(V ) for all r thus γ ≤ λ0(∆). Let now {fn}n∈N be a minimizing sequence

in (2.8). Then, each of fn ∈ C(Brn
, ∂Brn

) for some rn depending on n. This means that,

λ0(∆) ≤ λrn
0 ≤ édfn, dfnê

ëfnë2 → γ.

We conclude that γ = λ0(∆).

Remark 2.4.1. The combinatorial Laplacian is a bounded operator on ü2(Tq+1).

In Tq+1 the ü2 spectrum σ2(∆) of the Laplacian is known, we refer to [2] for this result. More
explicitly, one has that

σ2(∆) = [(√q − 1)2, (√q + 1)2].

We denote by Λq = λ0(∆) = (√q−1)2 the minimum of σ2(∆). It follows the Poincaré inequality
on Tq+1

1
2

Ø
x,y∈Tq+1

x∼y

3
f(x) − f(y)

42
≥ Λq

Ø
x∈Tq+1

f(x)2 (2.9)

for all f ∈ C0(V ).

2.5 Markov chains
In the upcoming section we elucidate some definitions and theorems concerning the Markov

chains theory. Notions such as the Green function are crucial for the purpose of later discussions,
since the above-mentioned theory will be applied to simple random walks on undirected graphs.
We follow in our description [9].

A Markov chain is given by a countable state space X and a stochastic transition matrix (or
transition operator) P = (p(x, y))x,y ∈X , where p(x, y) is the probability of moving from x to y
in one step, also called transition kernel. We also have to specify a starting point. Consequently,

12



2.5 – Markov chains

we have a X-valued random variables sequence Zn, n ≥ 0, where Zn represents the random
position in X at the time n. To model Zn is usual to choose as probability space the trajectory
space Ω = XN0 , equipped with the product σ-algebra arising from the discrete one X. Zn is the
n-th projection Ω → X. This characterizes the Markov chain starting at x, when Ω is equipped
with the probability measure given by

Px[Z0 = x0, Z1 = x1, ..., Zn = xn] = δx(x0)p(x0, x1) · ... · p(xn−1, xn).

We define
p(n)(x, y) = Px[Zn = y].

We assume that (X,P ) is irreducible, i.e. ∀x, y ∈ X there exists some n ∈ N such that
p(n)(x, y) > 0.

Definition 2.5.1. Given a Markov chain (X,P ) for every x, y ∈ X and z ∈ C we define the
Green function

G(x.y|z) =
∞Ø

n=0
p(n)(x, y)zn.

The notion of Green function on a Markov chain is related to the partial differential equa-
tions theory. Theorem 2.5.3 explains how they are connected. Before stating it we need some
preliminary results.

Lemma 2.5.1. For real z > 0, G(x, y|z) either diverge or converge simultaneously for all x, y ∈
X.

Proof. If u, v, x, y ∈ X, by irreducibility, ∃ k, l ∈ N such that p(k)(u, v) > 0 and p(l)(x, y) > 0.
Thus

p(k+n+l)(u, v) ≥ p(k)(u, x)p(n)(x, y)p(l)(y, v)

and, for z > 0,
G(u, v|z) ≥ p(k)(u, x)p(l)(y, v)zk+lG(x, y|z).

By the comparison theorem for series, if G(x, y|z) diverges for some x, y ∈ V then it diverges
for all u, v ∈ X. On the other hand, if G(u, v|z) is convergent, then G(x, y|z) is convergent
∀x, y ∈ X.

Thus, all G(x, y|z) (with x, y ∈ X) have the same radius of convergence r(P ) = 1
η(P ) , where

η(P ) = lim sup
n→∞

p(n)(x, y) 1
n ∈ (0,1].

This number is called the spectral radius of P .

Definition 2.5.2. The period of P is the number d = d(P ) = gcd{n ≥ 1 : p(n)(x, x) > 0}.

It is known that d is independent from x by assumption of irreducibility. If d = 1 we will say
that the chain is aperiodic.

Lemma 2.5.2. p(n)(x, x) ≤ η(P )n, and limn→∞ p(nd)(x, x) 1
nd = η(P ).

Proof. Let an = p(nd) (x, x). It is true that 0 ≤ an ≤ 1. If N(x) = {n : an > 0 }, then
gcd N(x) = 1. Note that aman ≤ am+n. Initially, we show that ∃ n0 such that an > 0 for all n
≤ n0. If m, n ∈ N(x) then m+n ∈ N(x). It is known that the greatest common divisor of a set
of integers can be written as a finite linear combination of elements of that set. For this reason,
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2 – Graphs and combinatorial Laplacian

we can write 1 = gcd N(x) = n1 − n2, where n1, n2 ∈ N(x) ∪ {0}. If n2 = 0 the proof is done
and n0 = 1. Otherwise, set n0 = n2

2 and decompose n ≥ n0 as n = qn2 + r = (q − r)n2 + rn1,
where 0 ≤ r < n2. It must be that q ≥ n2 > r, so that n ∈ N(x). Next, fix m ∈ N(x), let n ≥
n0, let n ≥ n0 + m, and decompose n = qnm + rn, where n0 ≤ rn < n0 + m. Write b = b(m)
= min { ar : n0 ≤ r < n0 + m }. Then b > 0 and an ≥ aqn

m arn
, so that a

qn
n

m b
1
n . If n → ∞ then

qn

n → 1
m . Hence,

a
1
m
m ≤ lim inf

n→∞
a

1
n
n ≤ η(P )d ∀m ∈ N(x).

This proves the first statement. If we now let m → ∞, then

lim sup
m→∞

a
1
m
m ≤ lim inf

n→∞
a

1
n
n .

Thus a
1
n
n converges and this ends the proof.

It is useful to define the stopping time and the hitting probabilities in order to provide an
easier way to compute the Green function on a Markov chain.

Definition 2.5.3. We define the stopping time

sy = min
n

{n ≥ 0 | Zn = y}

where this minimum is +∞ if the set is empty, the hitting probabilities and the associated func-
tions

f (n)(x, y) = Px[sy = n],

F (x, y|z) =
∞Ø

n=0
f (n)(x, y)zn.

Similarly, we define tx = minn {n ≥ 1 : Zn = x} and the associated function

U(x, x|z) =
∞Ø

n=0
Px[tx = n]zn.

The next lemma is one of the most important tool for dealing with Green functions. We will
apply this result many times in order to prove useful properties and to compute Green functions
on particular trees.

Lemma 2.5.3. Let (X,P ) a Markov chain, G the Green function and F,U the above defined
functions. Then,

a) G(x, x|z) = 1
1−U(x,x|z) ,

b) G(x, y|z) = F (x, y|z)G(y, y|z),

c) U(x, x|z) =
q

y p(x, y)zF (y, x|z) and

d) if y /= x, F (x, y|z) =
q

w p(x,w)zF (w, y|z).

14



2.5 – Markov chains

Proof. Part a) follows from the identity

p(n)(x, x) =
nØ

k=0
Px[tx = k]p(n−k)(x, x), if n ≥ 1,

while p(0)(x, x) = 1 and Px[tx = 0] = 0.
Indeed,

G(x, x|z) =
∞Ø

n=0
p(n)(x, x)zn =

∞Ø
n=1

nØ
k=0

Px[tx = k]p(n−k)(x, x)zn + p(0)(x, x)

= 1 +
∞Ø

k=0
zkp(k)(x, x)

1 ∞Ø
n=0

Px[tx = n]zn
2

= 1 +G(x, x|z)U(x, x|z).

Using the same argument we can prove b):
for x /= y,

G(x, y|z) =
∞Ø

n=0
p(n)(x, y)zn =

∞Ø
n=0

nØ
k=0

Px[sy = k]p(n−k)(y, y)zn

=
∞Ø

k=0
p(k)(y, y)zk

1 ∞Ø
n=0

Px[sy = n]zn
2

= G(y, y|z)F (x, y|z).

Note that if x /= y, then f (0)(x, y) = 0. Finally, by factoring through the first step we obtain c)
and d):

Px[tx = n] =
Ø

y

p(x, y)Py[tx = n− 1] for n ≥ 1,

and for x /= y:
Px[sy = n] =

Ø
y

p(x, y)Py[sy = n− 1] for n ≥ 1.

Thus,

U(x, x|z) =
∞Ø

n=1
Px[tx = n]zn =

∞Ø
n=1

Ø
y

p(x, y)Py[tx = n− 1]zn

=
Ø

y

p(x, y)
∞Ø

n=1
Py[tx = n− 1]zn =

Ø
y

p(x, y)z
∞Ø

k=0
Py[tx = k]zk

=
Ø

y

p(x, y)zF (y, x|z).

If x /= y:

F (x, y|z) =
∞Ø

n=0
Px[sy = n]zn =

∞Ø
n=1

Ø
w

p(x,w)Pw[sy = n− 1]zn

=
Ø

w

p(x,w)z
∞Ø

k=0
[sy = k]zk =

Ø
w

p(x,w)zF (w, y|z).
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2 – Graphs and combinatorial Laplacian

We will write G(x, y), F (x, y), U(x, x) respectively for G(x, y|1), F (x, y|1), U(x, x|1).
It can be proved that G(x, y) represents the expected number of visits of (Zn)n≥0 to y when
Z0 = x. Analogously, F (x, y) is the probability of ever reaching y when starting at x and U(x, x)
is the probability of ever returning after starting at x.

Definition 2.5.4. The Markov chain (X,P ) is said recurrent if G(x, y) = ∞ for some (that
means for all ) x, y ∈ X. Equivalently, X is recurrent if U(x, x) = 1 ∀x ∈ X. Otherwise (X,P )
is said transient.

We now consider P acting on functions f : X → R by the formula

Pf(x) =
Ø

y

p(x, y)f(y).

Then it is natural to define the weighted Laplacian ∆̃.

Definition 2.5.5. Let ∆̃ be the operator acting on functions on X by the formula

∆̃f(x) = (I − P )f(x).

Definition 2.5.6. Assume that P |f | is finite. Then we say that f is superharmonic if ∆̃f ≥ 0
pointwise, and harmonic if ∆̃f = 0.

Proposition 2.5.1. If f is superharmonic then Pnf is superharmonic for all n ≥ 1.

Proof. Consider n = 2. Computing P 2f = P (Pf) we obtain

P 2f(x) =
Ø

y

p(x, y)Pf(y) =
Ø

y

p(x, y)
Ø

z

p(y, z)f(z) =
Ø

z

Ø
y

p(x, y)p(y, z)f(z)

=
Ø

z

p(2)(x, z)f(z).

Thus, iterating this argument, we can define Pn as the operator which acts on functions by the
formula

Pnf(x) =
Ø

y

p(n)(x, y)f(y).

We assume by hypothesis that

Pf(x) ≤ f(x) for all x ∈ X.

Then,

p(x, y)Pf(y) ≤ p(x, y)f(y) for all y ∈ X

and
P 2f(x) ≤ Pf(x) ≤ f(x).

We can iterate this argument for all n ≥ 1.

Theorem 2.5.1 (Minimum principle). If f is superharmonic and there is x ∈ X such that
f(x) = minXf then f is constant.
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2.6 – Green function on trees

Proof. By Proposition 2.5.1 f(x) ≥
q

y p
(n)(x, y)f(y). Hence it is impossible that f(y) > f(x)

for any y such that p(n)(x, y) > 0. Indeed, it holds
q

y p
(n)(x, y) = 1 and if there exists ȳ ∈ X

such that f(ȳ) > f(x) then

Pnf(x) =
Ø

y

p(n)(x, y)f(y) ≥ f(ȳ)p(n)(x, ȳ) +
Ø
y /=ȳ

p(n)(x, y)f(x) > f(x)
Ø

y

p(n)(x, y) = f(x).

This is impossible because of our assumption. Finally, (X,P ) is irreducible so f ≡ f(x).

Then it follows the discrete analogue of Liouville Theorem.

Theorem 2.5.2. Let f be an harmonic function. If there exists x ∈ X such that f(x) = maxXf
then f is constant.

Proof. By assumption f(x) = maxXf . It implies −f(x) = minX(−f) and −f is harmonic
(hence superharmonic). Then by Theorem 2.5.1 −f is constant and so f is constant.

Next theorem yields the main property of the discrete Green function on a Markov chain and
explains how it is linked to the continuous version.

Theorem 2.5.3. Let (X,P ) be a transient Markov chain and fix z ∈ X. Then the function
f : X → R such that f(x) = G(x, z) is superharmonic. Moreover, ∆̃f(x) = δz(x).

Proof.
Pf(x) =

Ø
y∈X

p(x, y)G(y, z) =
Ø
y∈X

p(x, y)F (y, z)G(z, z).

If x /= z :

Pf(x) = G(z, z)
Ø
y∈X

F (y, z)p(x, y) = F (x, z)G(z, z) = G(x, z) = f(x).

Where the last two identities hold because of Lemma 2.5.3 b), d).
If x = z :

Pf(z) =
Ø
y∈X

p(z, y)G(y, z) =
Ø
y∈X

p(z, y)F (y, z)G(z, z) = G(z, z)U(z, z) < G(z, z) = f(z).

This is true because X is transient if and only if U(x, x) < 1 for all x ∈ X. In particular

f(z) − Pf(z) = G(z, z)(1 − U(z, z)) = 1,

for part a) of Lemma 2.5.3.

2.6 Green function on trees
The thesis now proceeds with the purpose of associating a Green function to every transient

graph. The idea is to obtain a Markov chain from a graph and then to compute the Green
function on this chain. For this reason, we introduce the notion of simple random walk on a
graph. Subsequently, we state and prove useful theorems essential to then find the Green function
on a tree. Finally, we present explicit computations of Green function in two particular cases.
We anticipate that the Green function has great importance in this work since it can be used to
obtain Hardy weights, that is the main goal of Chapter 4.
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2 – Graphs and combinatorial Laplacian

The simple random walk on a locally finite graph Γ = (V,E) is the Markov chain with state
space X = V and transition probabilities

p(x, y) =
I

1/m(x) if y ∼ x,
0 otherwise.

The graph is called recurrent (transient) if the simple random walk has this property.
Note that it is equivalent to say that f is superharmonic if ∆f(x) ≥ 0 or ∆̃f(x) ≥ 0 because

∆f(x) = m(x)f(x) −
Ø
y∼x

f(y) = m(x)(f(x) −
Ø
y∼x

p(x, y)f(y)) = m(x)∆̃f(x).

Now we focus on trees. We recall that in a tree for every pair of vertices x, y ∈ V there exists a
unique path (said geodesic path) π(x, y) of length ρ(x, y) connecting the two.

Theorem 2.6.1. If w ∈ π(x, y) then F (x, y|z) = F (x,w|z)F (w, y|z).

Proof. Because of the tree structure, the random walk must pass through w on the way from x
to y. Conditioning with respect to the first visit in w,

f (n)(x, y) =
nØ

k=0
f (k)(x,w)f (n−k)(w, y).

Hence, by a direct computation

F (x, y|z) =
∞Ø

n=0
f (n)(x, y)zn = f (0)(x,w)

5
f (0)(w, y) + f (1)(x,w)z + f (2)(w, y)z2 + ...

6
+

f (1)(x,w)z
5
f (0)(w, y) + f (1)(x,w)z + f (2)(w, y)z2 + ...

6
+ . . .

=
∞Ø

n=0
znf (n)(x,w)

5 ∞Ø
n=0

f (n)(w, y)zn

6
= F (x,w|z)F (w, y|z).

Notice that in a homogeneous tree if x ∼ y obviously F (x, y|z) = F (z), so that Theorem
2.6.1 implies F (v, w|z) = F (z)ρ(v,w).

Theorem 2.6.2. For the simple random walk on Tq+1, one has

G(x, y|z) = 2q
q − 1 +

ð
(q + 1)2 − 4qz2

A
q + 1 −

ð
(q + 1)2 − 4qz2

2qz

Bρ(x,y)

.

In particular, η(P ) = 2√
q

q+1 .

Proof. Consider two neighbours x, y. Using Lemma 2.5.3 d) we obtain

F (z) = F (x, y|z) =
Ø
w∼x

1
q + 1zF (z)ρ(x,y) = 1

q + 1z + q

q + 1zF (z)2.
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2.6 – Green function on trees

Computing the solutions of the second order equation, we choose

F (z) = 1
2qz

A
q + 1 −

ð
(q + 1)2 − 4qz2

B

as the right solution because F (0) = 0. Now apply Lemma 2.5.3 c) and

U(x, x|z) =
Ø

y

p(x, y)zF (y, x|z) =
Ø
y∼x

1
q + 1zF (z) = zF (z)

then, use Lemma 2.5.3 a) and b)

G(x, x|z) = 1
1 − zF (z) ,

G(x, y|z) = F (x, y|z)G(y, y|z) = 1
1 − zF (z)F (z)ρ(x,y)

= 1

1 − 1
2q

A
q + 1 −

ð
(q + 1)2 − 4qz2

B 1
2qz

A
q + 1 −

ð
(q + 1)2 − 4qz2

Bρ(x,y)

= 2q
q − 1 +

ð
(q + 1)2 − 4qz2

A
q + 1 −

ð
(q + 1)2 − 4qz2

Bρ(x,y)

.

Finally, by Pringsheim theorem, G(x, y|z) is a non-negative coefficients power series, thus its
radius of convergence r(P ) = 1

η(P ) is its smallest positive singularity. So it is the value of z > 0
where the term under square root is zero.

It follows that the simple random walk on Tq+1 is transient for every q ≥ 2. In this thesis we
will study the homogeneous tree Tq+1 always assuming that q ≥ 2.

Corollary 2.6.1. If we fix a vertex o in Tq+1 and q ≥ 2, then ∆G(y, o) := ∆Go(y) = (q+1)δo(y)
for every y ∈ Tq+1.

Proof. Take y /= o:

∆Go(y) = (q + 1)Go(y) −
Ø
z∼y

Go(z)

= 2q
2(q − 1)

3
1
q

4ρ(y,o)3
q + 1 − q

3
1
q

4
− q

4
= 0.

Moreover,

∆Go(o) = (q + 1)Go(o) −
Ø
z∼o

Go(z)

= (q + 1) q

q − 1 − (q + 1) q

q − 1

3
1
q

4
= q2 − 1

q − 1 = q + 1.
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Now we focus on the simple random walk on the bi-regular tree.

Theorem 2.6.3. For the simple random walk on TP,D one has

G(x, y) =



3
FPFD

4ρ(x,y)/2
1

1−FP
if |x| and |y| are both even,A

FPFD

Bρ(x,y)/2
1

1−FD
if |x| and |y| are both odd,A

FP

B(ρ(x,y)+1)/2A
FD

B(ρ(x,y)−1)/2
1

1−FP
if |x| is odd and |y| is even,A

FP

B(ρ(x,y)−1)/2A
FD

B(ρ(x,y)+1)/2
1

1−FD
if |x| is even and |y| is odd,

with FD = D/[(D − 1)P ], FP = P/[(P − 1)D] constants.

Proof. Consider x ∼ y. It is clear that if |x| is odd then F (x, y) = FP is constant for any x ∼ y.
Similarly, if |x| is even then F (x, y) = FD. Now we want to determine these constants.
If |x| is even and x ∼ y, using Lemma 2.5.3 d) and Theorem 2.6.1 we can write

FD = F (x, y) =
Ø

w

p(x,w)F (w, y) = 1
m(x)

Ø
w∼x

F (w, y) = 1
P

53Ø
w∼x
w /=y

F (w, y)
4

+ F (y, y)
6

= 1
P

CA Ø
w∼x,
w /=y

F (w, x)F (x, y)
B

+ 1
D

= 1
P

A
(P − 1)FDFP + 1

B
.

Moreover,

FP = F (y, x) =
Ø

w

p(y, w)F (w, x) = 1
m(y)

Ø
w∼y

F (w, x) = D − 1
D

FDFP + 1
D
.

These two equations provide the systemI
FD = 1

P (P − 1)FDFP + 1
P

FP = 1
D (D − 1)FDFP + 1

D .

The only admissible solution is I
FD = D

(D−1)P

FP = P
(P −1)D .

Now use Lemma 2.5.3 c) and compute

U(x, x) =
Ø

y

p(x, y)F (y, x) =
I
FP if |x| is even,
FD if |x| is odd,

and by Lemma 2.5.3 a) it holds

G(x, x) = 1
1 − U(x, x) =

I
1

1−FP
if |x| is even,

1
1−FD

if |x| is odd.
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2.6 – Green function on trees

Theorem 2.6.1 yields

F (x, y) =


(FPFD)ρ(x,y) if |x|, |y| are both even or odd,
F

(ρ(x,y)+1)/2
D F

(ρ(x,y)−1)/2
P if |x| is even and |y| is odd,

F
(ρ(x,y)+1)/2
P F

(ρ(x,y)−1)/2
D if |x| is odd and |y| is even.

Finally, from Lemma 2.5.3 b)
G(x, y) = F (x, y)G(y, y)

we can deduce our thesis.

Corollary 2.6.2. If we fix a vertex o in TP,D and P,D ≥ 3, then ∆G(x, o) = Pδo(x).

Proof. Let o ∈ TP,D.
If |x| is even, and x /= o,

∆G(x, o) = P (FDFP )|x|/2 1
1 − FP

− (P − 1)F (|x|+2)/2
P F

|x|/2
D

1
1 − FP

− F
|x|/2
P F

(|x|−2)/2
D

1
1 − FP

= (FPFD)|x|/2 1
1 − FP

3
P − (P − 1)FP − F−1

D

4
= G(x, o)

3
P − P

D
− (D − 1)P

D

4
= 0.

If |x| is odd,

∆G(x, o) = D(FD)(|x|+1)/2(FD)(|x|−1)/2 1
1 − FP

+

− (D − 1)F (|x|+1)/2
P F

(|x|+1)/2
D

1
1 − FP

− F
(|x|−1)/2
P F

(|x|−1)/2
D

1
1 − FP

= G(x, o)
3
DP −D +D − PD

P

4
= 0.

Moreover,

∆G(o, o) =
3

P

1 − FP
− P

FP

1 − FP

4
= P.
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Chapter 3

Classical Hardy inequalities

In this chapter we shall present the historical development of the Hardy inequality, that is
the main subject of this work. We consider both the discrete and continuous version of the
inequality, introducing contributions of Hardy and other well-known mathematicians. For this
section we refer to [7], which we follow in our analysis.
More precisely the statements of the Hardy inequality we will consider are:

Discrete Hardy inequality
If p > 1 and {ak}∞

k=1 is a sequence of nonnegative real numbers, then

∞Ø
n=1

ap
n ≥

1p− 1
p

2p ∞Ø
n=1

A
1
n

nØ
k=1

ak

Bp

. (3.1)

Continuous Hardy inequality
If p > 1, f is a nonnegative function in (0,+∞) and f ∈ Lp(0,+∞), then f is integrable over
the interval (0, x) for each positive x andÚ ∞

0
f(x)pdx ≥

A
p− 1
p

Bp Ú ∞

0

A
1
x

Ú x

0
f(t)dt

Bp

dx. (3.2)

In the following pages we show in chronological order the results that yield these two forms of
the Hardy inequality. Finally, in Theorem 3.2.2 we will also state and prove the N -dimensional
version of (3.2).

3.1 Discrete Hardy inequality
We start analyzing the "history" of the proof of (3.1). Notice that Theorem 3.1.1 and Theorem

3.1.2 can be seen as weak versions of the discrete Hardy inequality.

Theorem 3.1.1 (Hardy, 1919). The convergence of the series
q∞

n=1 a
2
n with an ≥ 0 implies the

convergence of
q∞

n=1(An/n)2, where An =
qn

k=1 ak.

Proof.A
An

n

B2

=
A
an + An

n
− an

B2

≤ 2a2
n + 2

A
An

n
− an

B2

= 4a2
n + 2

A
An

n

B2

− 4anAn

n
.
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3 – Classical Hardy inequalities

This implies
NØ

n=1

A
An

n

B2

≤
NØ

n=1
4a2

n + 2
NØ

n=1

A
An

n

B2

− 4
NØ

n=1

anAn

n
(3.3)

for each N ∈ N. Then,

−2anAn = −
nØ

k=1
a2

k −
nØ

j,k=1
j /=k

ajak +
n−1Ø
k=1

a2
k +

n−1Ø
j,k=1
j /=k

ajak

= −
3 nØ

k=1
ak

42
+
3 n−1Ø

k=1
ak

42
− a2

n

= −(A2
n −A2

n−1) − a2
n ≤ −(A2

n −A2
n−1).

Thus,

−2
NØ

n=1

anAn

n
≤ −

NØ
n=1

A2
n −A2

n−1
n

= − A2
1

1 · 2 − A2
2

2 · 3 − · · · − AN−1

(N − 1) ·N
− A2

N

N

≤ −
NØ

n=1

1
n(n+ 1)A

2
n.

The last inequality holds because −(A2
N )/N ≤ (−A2

N )/[N(N + 1)].
By substituting the last estimate in (3.3), we get

NØ
n=1

A
An

n

B2

≤ 4
NØ

n=1
a2

n + 2
NØ

n=1

A
An

n

B2

− 2
NØ

n=1

1
n(n+ 1)A

2
n

= 4
NØ

n=1
a2

n + 2
NØ

n=1

(n+ 1)A2
n − nA2

n

n2(n+ 1)

= 4
NØ

n=1
a2

n + 2
NØ

n=1

1
n2(n+ 1)A

2
n,

which yields
NØ

n=1

3
1 − 2

n+ 1

43
An

n

42
≤ 4

NØ
n=1

a2
n. (3.4)

When N → ∞, by the limit comparison we obtain the statement.

An important generalization of this result was proved by Riesz one year after.

Theorem 3.1.2 (Riesz, 1920). If p > 1, an ≥ 0, and
q∞

n=1 a
p
n is convergent, then

q∞
n=1(An/n)p

is convergent, where An =
qn

k=1 ak.
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3.1 – Discrete Hardy inequality

Proof. Let Φn := n−p + (n+ 1)−p + . . . .
Then, defining A0 = 0, we get,

NØ
n=1

A
An

n

Bp

=
NØ

n=1
Ap

n(Φn − Φn+1) =
NØ

n=1
(Ap

n −Ap
n−1)Φn −Ap

N ΦN+1

≤
NØ

n=1
(Ap

n −Ap
n−1)Φn (3.5)

Notice that
Ap

n −Ap
n−1 ≤ panA

p−1
n . (3.6)

Indeed, since the function f : R+ → R, f(x) = xp is convex for p ≥ 1, for every fixed x0 ∈ R+

f(x) ≥ f(x0) + f Í(x0)(x− x0) ∀ x ∈ R+.

Choosing x0 = An and x = An−1 we obtain

Ap
n−1 ≥ Ap

n + pAp−1
n (−an)

which implies (3.6). By (3.5) and (3.6) we get

NØ
n=1

3
An

n

4p

≤ p

NØ
n=1

anA
p−1
n Φn.

Moreover,

Φn < n−p +
Ú ∞

n

x−pdx = n−p + n−(p−1)

p− 1 ≤ p

p− 1n
−(p−1).

The last inequality holds because

n−p + n−(p−1)

p− 1 = n−p

3
1 + n

p− 1

4
= n−p

3
p− 1 + n

p− 1

4
≤ p

p− 1n
−(p−1)

⇐⇒ p− 1 + n

p− 1 ≤ p

p− 1n ⇐⇒ (p− 1)(n− 1) ≥ 0,

that is true for all n ∈ N and p > 1. Finally, recall the Hölder’s inequality,

∞Ø
n=1

anbn ≤

A ∞Ø
n=1

ap
n

B1/pA ∞Ø
n=1

bq
n

B1/q

where p > 1, 1
p + 1

q = 1.
Then we can conclude

NØ
n=1

3
An

n

4p

≤ p2

p− 1

NØ
n=1

an

A
An

n

Bp−1

≤ p2

p− 1

A
NØ

n=1
ap

n

B1/pC NØ
n=1

A
An

n

B(p−1)qD1/q

.
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3 – Classical Hardy inequalities

It is trivial to show

q(p− 1) =
3
p− 1
p

4−1
(p− 1) = p.

Hence

NØ
n=1

3
An

n

41−1/q

≤ p2

p− 1

A
NØ

n=1
ap

n

B1/p

,

which is equivalent to

NØ
n=1

3
An

n

4p

≤
3

p2

p− 1

4p
A

NØ
n=1

ap
n

B
.

Theorem 3.1.2 yields more then what Hardy formulated in Theorem 3.1.1. Hardy noticed
that the constant (p2/(p− 1))p could be improved by (p/(p− 1))p yielding the inequality (3.1).

Theorem 3.1.3 (Landau-Hardy, 1921). Let p > 1, an ≥ 0, and An =
qn

k=1 ak. Then the
inequality

NØ
n=1

ap
n ≥

3
p− 1
p

4p NØ
n=1

3
An

n

4p

(3.7)

holds for N ∈ N fixed or N = ∞. Moreover, for N = ∞ the constant
3

p−1
p

4p

is sharp.

Proof. We divide the proof in three steps.

Step 1. Consider cn = 1 − 2/(n+ 1) and for m = 2, 3, . . . let

a1 = a2 = · · · = am = b1, am+1 = am+2 = · · · = a2m = b2, . . . ,

a(N−1)m+1 = a(N−1)m+2 = · · · = aNm = bN .

From inequality (3.4) with Nm in place of N we obtain

4m
NØ

n=1
b2n ≥ (c1 + · · · + cm)

3
B1

1

42
+ (cm+1 + · · · + c2m)

3
B2

2

42
+ . . .

+ (c(N−1)m+1 + · · · + cNm)
3
BN

N

42
,

where Bn =
qn

k=1 bk. Dividing by m and letting m → ∞, we find that

(c1 + c2 + · · · + cm)/m → 1,
(cm+1 + · · · + c2m)/m → 1, etc.

A possible way for proving these limits is the following: it is known that
qm

n=1 1/n ∼ Clog(m).
Indeed,

log(m+ 1) =
Ú m+1

1
dt/t ≤

mØ
n=1

1
n

≤ 1 +
Ú m

1
dt/t = 1 + log(m),
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3.1 – Discrete Hardy inequality

thus qm
n=1 cn

m
≤ m− 2(log(m+ 1) − log(2))

m
→ 1 for m → ∞.

This implies
NØ

n=1

3
Bn

n

42
≤ 4

NØ
n=1

b2n,

which yields (3.1) with p = 2.

Step 2. For y ≥ 0 it holds
yp − py + p− 1 ≥ 0. (3.8)

In order to prove this inequality, we could study the first derivative and note that

p(yp−1 − 1) ≥ 0 ⇐⇒ y ≥ 1,

and

for y = 1 1 − p+ p− 1 = 0,
for y = 0 p− 1 > 0.

So (3.8) is verified. Then, let y = y1
y2
, with y1 ≥ 0, y2 > 0, and obtain

yp
1 − py1y

p−1
2 + (p− 1)yp

2 ≥ 0.

Now, for a nonnegative {bn}n choose y1 = bn and y2 = (p − 1)Bn/(pn), where Bn =
qn

k=1 bk,
and obtain

bp
n − pbn

3
p− 1
p

Bn

n

4p−1
+ (p− 1)

3
p− 1
p

Bn

n

4p

≥ 0,

so
NØ

n=1
bp

n −
3
p− 1
p

4p−1 NØ
n=1

pbn

3
Bn

n

4p−1
+ (p− 1)

3
p− 1
p

4p NØ
n=1

3
Bn

n

4p

≥ 0. (3.9)

Moreover, we verified in the proof of Theorem 3.1.2 that

pbnB
p−1
n = pBp−1

n (Bn −Bn−1) ≥ Bp
n −Bp

n−1,

thus
NØ

n=1
pbn

3
Bn

n

4p−1
≥

NØ
n=1

(Bp
n −Bp

n−1) 1
np−1 =

N−1Ø
n=1

Bp
n

3
1

np−1 − 1
(n+ 1)p−1

4
+Bp

N

1
Np−1

≥
NØ

n=1
Bp

n

3
1

np−1 − 1
(n+ 1)p−1

4
≥ (p− 1)

NØ
n=1

Bp
n

1
(n+ 1)p

. (3.10)

The last inequality holds because

1
np−1 − 1

(n+ 1)p−1 ≥ p− 1
(n+ 1)p

⇐⇒ (n+ 1)p

np−1 − (n+ 1) ≥ p− 1

⇐⇒
3
n+ 1
n

4p

−
3
n+ 1
n

4
≥ (p− 1) 1

n
.
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3 – Classical Hardy inequalities

which is verified choosing y = (n+ 1)/n in (3.8). Combining the two inequalities (3.9) (3.10) we
discover that

NØ
n=1

bp
n ≥

3
p− 1
p

4p NØ
n=1

Bp
n

3
p

(n+ 1)p
− p− 1

np

4
=
3
p− 1
p

4p NØ
n=1

cn

3
Bn

n

4p

,

where cn = p(1+ 1
n )−p −p+1 → 1 when n → ∞. Now, as we did in Step 1, consider the sequence

b1 = b2 = . . . = bm = a1, bm+1 = bm+2 = · · · = b2m = a2, . . . ,

b(N−1)m+1 = b(N−1)m+1 = b(N−1)m+2 = · · · = bNm = aN ,

replacing N with Nm we conclude

m

3
p

p− 1

4p NØ
n=1

ap
n ≥ (c1 + c2 + · · · + cm)

3
A1

1

4p

+ (cm+1 + cm+2 + · · · + c2m)
3
A2

2

4p

+

+ · · · + (c(N−1)m+1 + c(N−1)m+2 + · · · + cNm)
3
AN

N

4p

.

Dividing by m and letting m → ∞ we observe that (c1 + c2 + · · · + cm)/m → 1, (cm+1 + cm+2 +
· · · + c2m)/m → 1, etc., which means that (3.7) holds for all finite N and in particular it is still
valid when N → ∞.
Step 3.We prove that

3
p/(p− 1)

4p

is the sharp constant for N = ∞. Choose an = n−1/p−Ô

(0 < Ô < 1 − 1/p). Then

An =
nØ

k=1
k−1/p−Ô >

Ú n

1
x1/p−Ôdx

= 1
1 − 1/p− Ô

(n1−1/p−Ô − 1) > p

p− 1(n1−1/p−Ô − 1),

implying that3
An

n

4p

>

3
p

p− 1

4p (n1−1/p−Ô − 1)p

np
=
3

p

p− 1

4p

n−1−Ôp

3
1 − 1

n1−1/p−Ô

4p

≥
3

p

p− 1

4p

n−1−Ôp

3
1 − p

n1−1/p−Ô

4
(3.11)

=
3

p

p− 1

4p

n−1−Ôp

3
1 − 1

n1−1/p−Ô

4p

=
3

p

p− 1

4p

(n−1−Ôp − pn−2+1/p+Ô−Ôp).

Put y = 1/(n1−1/p−Ô), then (3.11) holds because it is equivalent to yp − py + p − 1 ≥ 0 with
y ≥ 0. Furthermore, the above inequality yields

NØ
n=1

3
An

n

4p

>

3
p

p− 1

4p3 NØ
n=1

ap
n − p

NØ
n=1

1
n2−1/p−Ô+Ôp

4

=
3

p

p− 1

4p3 NØ
n=1

ap
n − pCN,Ô

4
,
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3.1 – Discrete Hardy inequality

where CN,Ô → C as N → ∞ for any Ô > 0 because 2 − 1/p− Ô+ Ôp > 1. Thus

NØ
n=1

3
An

n

4p
M

NØ
n=1

ap
n >

3
p

p− 1

4p3
1 − pCN,Ô

M
NØ

n=1
ap

n

B
→
3

p

p− 1

4p

,

since
qN

n=1 a
p
n =

qN
n=1 n

−1−Ô → ∞ as N → ∞ and Ô → 0+. So the sharpness is established.

Finally we show an easier proof of (3.1) given by Elliot in 1926 and based on the following

Proposition 3.1.1 (Young’s inequality). Given two nonnegative numbers a,b and p, q such that
1/p+ 1/q = 1 with p, q > 1, then

ab ≤ aq

q
+ bp

p
.

Proof. Let λ = 1/p, so 1 − λ = 1/q . It is known that the logarithm is a concave function. Then

log (aq(1 − λ) + bpλ) ≥ λp log b+ (1 − λ)q log a = log a+ log b = log (ab).

Then it follows an alternative proof of (3.1).

Proof. Let αn = An/n and α0 = 0. Note that

an = An −An−1 = An + 1 − n

n− 1An−1 = n

3
An

n
− An−1

n− 1

4
+ An−1

n− 1 .

Using Young’s inequality:

αp
n − p

p− 1α
p−1
n an = αp

n − p

p− 1

3
nαn − (n− 1)αn−1

4
αp−1

n

= αp
n

3
1 − np

p− 1

4
+ (n− 1)p

p− 1 αp−1
n αn−1

≤ αp
n

3
1 − np

p− 1

4
+ (n− 1)

p− 1

3
(p− 1)αp

n + αp
n−1

4
= 1
p− 1

3
(n− 1)αp

n−1 − nαp
n

4
.

Summing from 1 to N yields

NØ
n=1

3
An

n

4p

− p

p− 1

NØ
n=1

3
An

n

4p−1
an ≤ −

Nαp
N

p− 1 ≤ 0,

and from Hölder inequality

NØ
n=1

3
An

n

4p

≤ p

p− 1

NØ
n=1

3
An

n

4p−1
an ≤ p

p− 1

3 NØ
n=1

ap
n

41/p3 NØ
n=1

3
An

n

4p41/q

.

Division by the last factor yields the statement.
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3 – Classical Hardy inequalities

3.2 Continuous Hardy inequality
In 1925, Hardy formulated and proved his famous integral inequality. The main idea, which

links the discrete and integral version, is the following: define f(x) = ak for k − 1 ≤ x ≤ k and
k ≥ 1 with {an} a nonnegative decreasing sequence. We infer that the function

1
x

Ú x

0
f(t)dt =

qn−1
k=1 ak + an(x− n+ 1)

x

is decreasing in [n− 1, n]; indeed we have

d

dx

3
1
x

Ú x

0
f(t)dt

4
= −

qn−1
k=1 ak − an(n− 1)

x2 = −
qn

k=1 ak − ann

x2 ≤ 0,

which is equivalent to an ≤
qn

k=1
ak

n , that holds because an is decreasing. Hence, we obtain
∞Ø

n=1

3qn
k=1 ak

n

4p

≤
∞Ø

n=1

Ú n

n−1

3qn−1
k=1 ak + an(x− n+ 1)

x

4p

dx

=
Ú ∞

0

3
1
x

Ú x

0
f(t)dt

4p

dx ≤
3

p

p− 1

4p Ú ∞

0
f(x)pdx

=
3

p

p− 1

4p ∞Ø
n=1

ap
n.

In line with such idea, Hardy stated the following result:

Theorem 3.2.1 (Hardy, 1926). Let p > 1 and let f ≥ 0 be p-integrable on (0,∞). Then
F (x) =

s x

0 f(t)dt < ∞ for every x > 0 andÚ ∞

0
fp(x)dx ≥

3
p− 1
p

4p Ú ∞

0

3
F (x)
x

4p

dx.

Furthermore, the constant (p/(p− 1))p is sharp in the sense that the previous inequality cannot

hold with a constant C >

3
p−1

p

4p

.

Remark 3.2.1. If f ∈ Lp(R), then F Í = f in the weak sense. Hence, the inequalityÚ ∞

0

1
F Í(x)

2p

dx ≥
3
p− 1
p

4p Ú ∞

0

3
F (x)
x

4p

dx

is equivalent to (3.2).

Proof. Using integration by parts and the identity d/dx(F (x)p) = pF (x)p−1f(x) which holds for
almost every x in (0,∞), for arbitrary 0 < α < A < ∞ we get:Ú A

α

3
F (x)
x

4p

dx = − 1
p− 1

Ú A

α

F p(x) d
dx

(x1−p)dx

= α1−p

p− 1F
p(α) − A1−p

p− 1F
p(A) + 1

p− 1

Ú A

α

x1−p d

dx
(F p(x))dx

≤ α1−p

p− 1F
p(α) + p

p− 1

Ú A

α

3
F (x)
x

4p−1
f(x)dx.
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3.2 – Continuous Hardy inequality

Recall the continuous version of the Hölder’s inequalityÚ A

α

3
F (x)
x

4p−1
f(x)dx ≤

3Ú A

α

fp(x)dx
4 1

p
3Ú A

α

3
F (x)
x

4p

dx

4(p−1)/p

,

because (p− 1)q = (p− 1)p/(p− 1) = p and 1/q = (p− 1)/p if 1/p+ 1/q = 1.
Taking β such that α ≤ β ≤ A and applying the previous two inequalities to F (x)−F (α) instead
of F (x), we find thatÚ A

α

3
F (x) − F (α)

x

4p

dx

≤ p

p− 1

Ú A

α

3
F (x) − F (α)

x

4p−1
f(x)dx

≤ p

p− 1

3Ú A

α

fp(x)dx
4 1

p
3Ú A

α

3
F (x) − F (α)

x

4p

dx

4(p−1)/p

.

Thus 3Ú A

α

3
F (x) − F (α)

x

4p

dx

4 1
p

≤ p

p− 1

3Ú ∞

0
fp(x)dx

4 1
p

,

and a fortiori, 3Ú A

β

3
F (x) − F (α)

x

4p

dx

4 1
p

≤ p

p− 1

3Ú ∞

0
fp(x)dx

4 1
p

.

Then let α → 0+ and observe that F (x) − F (α) → F (x). To conclude, let A → ∞ and β → 0+.
For proving the sharpness of the constant, it suffices to use a variant of the argument of Theorem
3.1.3.

The previous proof is close to Hardy’s original idea but it contains some simplifications
suggested by Pólya. Next we state the Minkowski inequality which is useful for an alternative
proof of (3.2).
Proposition 3.2.1 (Minkowski inequality). Let f : R×R → R be a positive measurable function
and 1 ≤ p ≤ ∞. Then3Ú

R

3Ú
R
f(x, y)dy

4p

dx

4 1
p

≤
Ú
R

3Ú
R
fp(x, y)dx

4 1
p

dy.

Now we present Ingham’s proof of (3.2).

Proof. Put

Hf(x) = 1
x

Ú x

0
f(t)dt =

Ú 1

0
f(tx)dt,

By Minkowski’s inequality3Ú ∞

0

1
H(fx)

2p

dx

4 1
p

= ëHfëp =
....Ú 1

0
f(t)dt

....
p

≤
Ú 1

0
ëf(t)ëpdt =

Ú 1

0

3Ú ∞

0
fp(tx)dx

4 1
p

dt

=
Ú 1

0

3Ú ∞

0
fp(s)ds/t

4 1
p

dt = p

p− 1

3Ú ∞

0
fp(s)ds

4 1
p

.
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3 – Classical Hardy inequalities

We conclude this section with theN -dimensional version of (3.2), namely the Hardy inequality
in RN . The natural functional space where the inequality can be stated is the Sobolev space
W 1,p(RN ), which we now recall.
Given a multi-index α in NN and a function f : Ω ⊂ RN → R for some open set Ω we denote

Dαf(x) = ∂|α|f(x)
∂α1

x1 ∂
α2
x2 · · · ∂αN

xN

.

Definition 3.2.1. For p > 1 and Ω an open subset of RN let

W 1,p(Ω) = {f ∈ Lp(Ω) such that Dαf ∈ Lp(Ω) for all |α| = 1},
W 1,p

loc (Ω) = {f ∈ Lp(Ω) such that Dαf ∈ Lp
loc(Ω) for all |α| = 1},

where Dα is the weak derivative.

Theorem 3.2.2. Assume 1 < p < N and u ∈ W 1,p(RN ). Then u/|x| ∈ Lp(RN ) andÚ
RN

|∇u(x)|pdx ≥ ((N − p)/p)p

Ú
RN

|u(x)|p

|x|p
dx. (3.12)

Furthermore, the constant ((N − p)/p)p is sharp.

Proof. A density argument allows us to consider only smooth functions u ∈ C∞
c (RN ). Under

this assumption we have that

|u(x)|p = −
Ú ∞

1

d

dλ
|u(λx)|pdλ = −p

Ú ∞

1
|u(λx)|p−2u(λx)éx,∇u(xλ)êdλ.

By using Hölder’s inequality, it follows that

Ú
RN

|u(x)|p

|x|p
dx = −p

Ú ∞

1

Ú
RN

|u(λx)|p−2u(λx)
|x|p−1 é x

|x|
,∇u(xλ)êdxdλ

= −p
Ú ∞

1

dλ

λN+1−p

Ú
RN

|u(y)|p−2u(y)
|y|p−1

∂u(y)
∂r

dy

= p

N − p

Ú
RN

|u(y)|p−2u(y)
|y|p−1

∂u(y)
∂r

dy

≤ p

N − p

3Ú
RN

|u(y)|p

|y|p
dy

4 p−1
p
3Ú

RN

----∂u(y)
∂r

----pdy41/p

.

Then we conclude that Ú
RN

----u(x)
x

----pdx ≤
3

p

N − p

4p Ú
RN

|∇u(x)|pdx.

Following the idea of Hardy used in the discrete case, we show the CN,p is the best constant.

Given ε > 0, consider the radial function U(r) =
I
AN,p,ε if r ∈ [0,1],
AN,p,εr

(p−N)/p−ε if r > 1,
where AN,p,ε = p/(N − p+ pε). It is easy to check that

U Í(r) =
I

0 if r ∈ [0, 1],
−r−N/p−ε if r > 1.
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3.2 – Continuous Hardy inequality

By a direct computation we getÚ
RN

Up(x)
|x|p

dx =
Ú

B1

Up(x)
|x|p

dx+
Ú
RN \B1

Up

|x|p
dx

= Ap
N,p,εωn

3Ú 1

0
rN−1−pdr +

Ú ∞

1
r−(1+pε)dr

4
= Ap

N,p,εωn

Ú 1

0
rN−1−pdr +Ap

N,p,ε

Ú
RN

|∇u(x)|pdx,

where ωn is the measure of the N − 1 dimensional unit sphere. We conclude letting ε → 0.
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Chapter 4

The supersolution construction of
Hardy weights

By a Hardy type inequality for a nonnegative operator P we mean that the inequality
P ≥ CW holds for some positive weight function W , called Hardy weight, and a positive con-
stant C.
In the previous chapter classical proofs of the Hardy inequality on N and on RN have been illus-
trated. They are all based on the clever exploitation of elementary inequalities such as Young’s
or Minkowski’s inequalities.
In this chapter we present an alternative approach which is based on the use of positive su-
persolutions; i.e. to every positive supersolution v of Pu = 0, we associate the Hardy weight
W := Pv/v. More precisely, in Section 4.1 and 4.2 we show an application of this technique
when P = ∆ by means of suitable positive radial superharmonic functions.
In general, this approach gives no information about the optimality of the Hardy weight Pv/v,
i.e., it does not allow to say whether the obtained weight is "the largest possible" in a suitable
sense. More recently, in [6], a refinement of the supersolution method has been developed in
the context of general elliptic operators. In particular, it has been proved that optimal weights
can be derived in terms of special superharmonic functions such as the Green function of the
operator.
In Section 4.3 we present an application of these results in our framework which, in some case,
allows to prove the optimality of the weights previously derived.
Finally, in Section 4.4, as a by-product of our results we derive optimal improvements of the
Poincaré inequality.

4.1 Continuous setting
We start by illustrating the continuous version of the supersolution method in the case

P = −∆. For the following theorem we refer to [3].

Theorem 4.1.1. Let Ω ⊂ RN be an open set and let ∆ be the Laplace operator on L2(Ω). Suppose
that there is a positive continuous function u ∈ W 1,2

loc (Ω) and a positive potential W ∈ L1
loc(Ω)

such that
−∆u ≥ Wu
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4 – The supersolution construction of Hardy weights

in weak sense, namely Ú
Ω

∇u(x) · ∇φ(x) dx ≥
Ú

Ω
W (x)u(x)φ(x) dx

for all 0 ≤ ϕ ∈ C∞
c (Ω). Then the quadratic form inequalityÚ

Ω
|∇f(x)|2dx ≥

Ú
Ω
W (x)|f(x)|2dx

holds for all f ∈ C∞
c (Ω).

Proof. If f ∈ C∞
c (Ω) we may consider f = ug where g ∈ W 1,2

c (Ω) and obtainÚ
Ω

NØ
i=1

3
∂f(x)
∂xi

42
dx =

Ú
Ω

NØ
i=1

3
∂u(x)
∂xi

g + u(x)∂g(x)
∂xi

42
dx

≥
Ú

Ω

NØ
i=1

53
g(x)∂u(x)

∂xi

42
+ 2u(x)g(x)∂u(x)

∂xi

∂g(x)
∂xi

6
dx

=
Ú

Ω

NØ
i=1

∂u(x)
∂xi

∂

∂xi

3
u(x)(g(x))2

4
dx

=
Ú

Ω
∇u(x) · ∇(u(x)g2(x)) dx

≥
Ú

Ω
W (x)

!
u(x)g(x)

"2
dx =

Ú
Ω
W (x)|f(x)|2 dx,

where in the last step we exploit the fact that ug2 can be approximated by a sequence of
0 ≤ un ∈ C∞

c by using a mollifier.

More in general, let P be a symmetric and nonnegative second-order linear elliptic operator
defined on a domain Ω ⊂ RN and let q be the associated quadratic form. A Hardy type inequality
with a weight W ≥ 0 has the form

q(ϕ) ≥ C

Ú
Ω
W (x)ϕ2(x) dx (4.1)

for all ϕ ∈ C∞
c (Ω), with C > 0.

Definition 4.1.1. A symmetric and nonnegative operator P is said critical in Ω if (4.1) holds
true if and only if W = 0. Conversely, when (4.1) is valid for a non trivial weight W the operator
is called subcritical in Ω.

It has been shown in [4] that P − W is critical if and only if there exists a unique positive
solution to (P −W )u = 0, which is called Agmond ground state. In [4] the authors introduce
the notion of optimal weight that we now recall.

Definition 4.1.2. The weight W is said an optimal Hardy weight for the operator P if

• the operator P −W is critical in Ω;

• P −W ≥ λW fails to hold on C∞
c (Ω \K) for all λ > 0 and all K ⊂ Ω compact;
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4.1 – Continuous setting

• the ground state v is not an eigenfunction, i.e. v /∈ L2
W (Ω), namelyÚ

Ω
v2(x)W (x) dx = +∞.

The next theorem provides a method to obtain an optimal weight for a operator P by means
of the associated Green function see [5] and references therein. We refer to [4] for this result.

Theorem 4.1.2. Let P be a symmetric subcritical operator in Ω, and let G(x) := GΩ
P (x,0) be its

minimal positive Green function with a pole at 0 ∈ Ω. Let u be a positive solution of the equation
Pu = 0 in Ω satisfying

lim
x→∞

G(x)
u(x) = 0,

where ∞ is the ideal point in the one-point compactification of Ω. Consider the supersolution
v =

√
Gu. Then

W = Pv

v

is an optimal Hardy weight with respect to P and the punctured domain Ω∗ = Ω \ {0}.

Example 4.1.1. As an application of the above theorem, consider P = −∆ the Laplace operator
on Ω∗ = RN \{0}, where N ≥ 3, and denote by G(x) = |x|2−N the corresponding positive minimal
Green function with pole at 0 see [3] Chapter 1.1.8. Consider the positive superharmonic function
in Ω∗

v(x) =
ð
G(x)1 =

ð
G(x) = |x|(2−N)/2.

By a direct computation we infer

−∆v(x) =
3

2 −N

2

4
N

2 |x|−N/2−1 − (N − 1)(2 −N)
2|x|

|x|−N/2 = (2 −N)2

22|x|2
|x|1−N/2

= Wv(x).

Hence, by Theorem 4.1.2,
−∆v(x)
v(x) =

3
2 −N

2|x|

42

is an optimal weight for −∆ and we reobtain the classical Hardy inequality

Ú
RN

f2(x)
|x|2

dx ≤
3

2
N − 2

42 Ú
RN

|∇f(x)|2dx ∀f ∈ C∞
c (Ω).

It is worth noting that v is the unique positive solution of −∆v = Wv and v /∈ L2
W (RN ).

Indeed, Ú
RN

|x|(2−N) 1
|x|2

=
Ú ∞

0
r−NrN−1 dr = +∞.

Hence, as expected, v is the ground state but it is not a eigenfunction.
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4 – The supersolution construction of Hardy weights

4.2 Discrete setting
Now consider a graph Γ = (V,E). We state the analogue of Theorem 4.1.1 and Theorem

4.1.2 for functions on graphs. For the next theorem we refer to [1], Proposition 3.1.

Theorem 4.2.1. Let ∆ be the combinatorial Laplacian and let u be a positive function on V
such that

∆u(x) ≥ W (x)u(x) ∀x ∈ V

with W ≥ 0. Then for all f ∈ C0(V ) the following holds:

éf,∆fêü2 = 1
2
Ø

x,y∈V
x∼y

(f(x) − f(y))2 ≥
Ø
x∈V

W (x)f(x)2. (4.2)

Proof. Take any f ∈ C0(V ). Then

éf,Wfêü2 ≤
Ø
x∈V

f(x)∆u(x)
u(x) f(x) =

Ø
x∈V

Ø
y∈V

χx(y)f2(x)
3
u(x) − u(y)

u(x)

4

=
Ø
x∈V

Ø
y∈V

χx(y)
3
f2(x) − u(y)

u(x)f
2(x)

4

=
Ø
x∈V

Ø
y∈V

χx(y)
5
f(x)2 − 1

2

3
u(y)
u(x)f

2(x) + u(x)
u(y)f

2(y)
46

≤
Ø
x∈V

Ø
y∈V

χx(y)
3
f2(x) − f(x)f(y)

4

= 1
2
Ø
x∈V

Ø
y∈V

χx(y)
3
f(x) − f(y)

42
= éf,∆fêü2 ,

where the last inequality holds because it is equivalent to the Young’s inequality.

Notice that the previous theorem is also valid if W ≤ 0 but, in such case, the inequality (4.2)
is trivial. We also point out that if u provides the weight W , then the function cu gives the same
inequality for all c ∈ R \ {0}.
The approach of [4] has been applied in the context of Schrödinger operators on weighted graphs.

Definition 4.2.1. Given a graph Γ = (V,E) and a potential Q : V → R we define the formal
Schrödinger operator H on V by

H := ∆ +Q.

The associated bilinear form h of H on C0(V ) × C0(V ) is given by

h(φ, ψ) := 1
2
Ø

x,y∈V
x∼y

(φ(x) − φ(y))(ψ(x) − ψ(y)) +
Ø
x∈V

Q(x)φ(x)ψ(x).

We denote by h(φ) := h(φ, φ) the associated quadratic form on C0(V ).
A Hardy type inequality with a weight W ≥ 0 has the form

h(φ) ≥ C
Ø
x∈V

W (x)φ2(x)

for all φ ∈ C0(V ), with C > 0.
We need the following definitions in order to introduce the notion of optimal weight in a graph.
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4.2 – Discrete setting

Definition 4.2.2. Let h be a quadratic form associated with the Schrödinger operator H, such
that h ≥ 0 on C0(V ). The form h is called subcritical in V if there is a nonnegative W ∈ C0(V )
different from the identically zero function such that h − W ≥ 0 on C0(V ). A positive form h
which is not subcritical is called critical in V.

In [6] it is shown that the criticality of h is equivalent to the existence of a unique positive
function which is H-harmonic. Analogously to the continuous case, such a function is called a
ground state.

Definition 4.2.3. Let h be a quadratic form associated with the Schrödinger operator H. We
say that a positive function W : V → [0,∞) is an optimal Hardy weight for h in V if

• h−W is critical in V ,

• h−W ≥ λW fails to hold on C0(V \K) for all λ > 0 and all finite K ⊂ V .

• The ground state Ψ is not an eigenfunction, i.e. Ψ /∈ ü2W , namelyØ
x∈V

Ψ2(x)W (x) = +∞.

Definition 4.2.4. A function u : V → R is called proper on W ⊂ V if u−1(I) is compact (or,
equivalently, finite) for all compact I ⊂ u(W ) := {u(x)|x ∈ W}.

In [6] the authors present a theorem which provides an optimal inequality for a Schrödinger
operator H under the assumption of the existence of positive H-superharmonic functions that
are H-harmonic outside a compact set.

Theorem 4.2.2. Let Γ = (V,E) be a connected graph and let Q be a given potential. Let u, v be
positive H superharmonic functions that are H-harmonic outside of a finite set. Let u0 := u/v,
and assume that

• a) u0 : V → (0,∞) is proper.

• b) sup
x,y∈V

x∼y

u0(x)
u0(y) < ∞.

Then the function

W := H[(uv)1/2]
(uv)1/2

is an optimal Hardy weight. Moreover

W (x) = 1/2
Ø

y∼x,y∈V

53
u(y)
u(x)

41/2
−
3
v(y)
v(x)

41/262
,

for all x ∈ V satisfiyng Hu(x) = Hv(x) = 0.

The following lemma is useful to derive from Theorem 4.2.2 the next two theorems where
H = ∆.

Lemma 4.2.1. Given a graph Γ = (V,E) assume that m(x) ≤ C for all x ∈ V , and let u be
strictly positive ∆-superharmonic on U ⊂ V . Then

sup
x∼y
x∈U

u(x)
u(y) ≤ C.
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4 – The supersolution construction of Hardy weights

Proof. Since u > 0 and ∆u(y) ≥ 0, we get for x ∼ y

u(x) ≤
Ø
z∼y

u(z) ≤ m(y)u(y) ≤ Cu(y)

where C > 0 does not depend on x ∈ U .

The next theorem is the discrete analogue of Theorem 4.1.2 when P is the combinatorial
Laplacian. We refer to [6].

Theorem 4.2.3. Let a transient connected graph with a bounded vertex degree be given, and let
o ∈ V be a fixed reference vertex. Let Go : V → (0,∞) be the Green function, and assume that
G = Go is proper. Then the following inequality holds true

1
2
Ø

x,y∈V
x∼y

(φ(x) − φ(y))2 ≥
Ø
x∈V

W (x)φ2(x)

for all finitely supported functions φ on V , where

W (x) :=
∆
!
G(x)1/2"
G(x)1/2

is an optimal Hardy weight in V , and for all x /= o

W (x) = 1
2G(x)

Ø
y∼x

!
G(x)1/2 −G(y)1/2"2.

Proof. We apply Theorem 4.2.2 with v = G(·, o) and u = 1. In particular, assumption (a) of
Theorem 4.2.2 is satisfied for u0 = 1/G(·, o). Furthermore, assumption (b) follows from Lemma
4.2.1. Hence the statement follows.

More in general in [6] it is also proved that it is possible to construct an optimal weight by
means of functions that are harmonic outside a compact (i.e. finite) set.

Theorem 4.2.4. Let G = (V,E) be a connected graph with bounded vertex degree and let K be
a finite subset of V . Let u : V → (0,∞) be a positive function which is harmonic and proper on
V \K and such that u = 0 on K. Then the following Hardy-type inequality holds true on K

1
2
Ø

x,y∈V
x∼y

(φ(x) − φ(y))2 ≥
Ø

x∈V \K

W (x)φ2(x)

for all finitely supported functions φ with support in V \K, where the weight function W is given
by

W (x) = 1
2u(x)

Ø
y∼x

(u(x)1/2 − u(y)1/2)2 x ∈ V \K.

Moreover, W is optimal in V \K.
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4.3 – Hardy inequalities on some particular graphs

Proof. Let hV \K be the restriction of the form h to the space C0(V \K). Then the operator
HV \K acts as

HV \Kϕ(x) =
Ø

y∈V \K,y∼x

(ϕ(x) − ϕ(y)) +Q(x)ϕ(x),

with Q(x) := #{z ∈ K|z ∼ x}. Hence v = 1 is HV \K-superharmonic in V \ K and HV \K-
harmonic outside of the combinatorial neighborhood of K. Moreover, as ∆ = HV \K for functions
supported on V \K, the restriction of u to V \K is HV \K harmonic.
Assumption (a) of Theorem 4.2.2 is satisfied for u0 = u. Furthermore, assumption (b) follows
from Lemma 4.2.1. Hence we obtain for ϕ ∈ C0(V \K),

1
2
Ø
x∼y

(ϕ(x) − ϕ(y))2 = h(ϕ) ≥
Ø

x∈V \K

W (x)ϕ2(x)

with optimal weight W given by

W (x) =
HV \Ku

1/2

u1/2 (x) = 1
2u(x)

Ø
y∼x

3
u1/2(x) − u1/2(y)

42

for x ∈ V \K.

4.3 Hardy inequalities on some particular graphs
In this section we apply the results presented in the previous section in particular classes of

trees, namely in N, in the homogeneous tree Tq+1 and in the biregular tree TP,D.

4.3.1 Hardy inequalities on N
When Γ = N, not only it is possible to recover the classical Hardy inequality but it is also

possible to improve it. Notice that the following inequality is consequence of (3.1), and it could
be considered the discrete analogous of (3.2.1). For the next theorem we refer to [6].

Theorem 4.3.1. Consider the graph in which the vertices are the non-negative integers and two
nodes n1, n2 are neighbours if and only if |n1 −n2| = 1. Then for all finitely supported function
ϕ : N0 → R with ϕ(0) = 0 we have

∞Ø
n=0

3
ϕ(n) − ϕ(n+ 1)

42
≥

∞Ø
n=1

W (n)ϕ2(n)

with the Hardy weight W given by

W (n) =
∞Ø

k=1

3
4k
2k

4
1

(4k − 1)24k−1
1
n2k

for n ≥ 2 and W (1) = 2 −
√

2. In particular, W (n) > 1/(4n2) ∀n ≥ 1.

Proof. Consider the combinatorial Laplacian in N

∆ϕ(n) =
Ø
m∼n

3
ϕ(n) − ϕ(m)

4
= 2ϕ(n) − ϕ(n− 1) − ϕ(n+ 1) for all n ≥ 1.
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4 – The supersolution construction of Hardy weights

If we choose u(n) = n, clearly ∆u(n) = 0 if n ≥ 1. Then using Theorem 4.2.4 with such a
function we get

W (n) = 1
2n ((n+ 1)1/2 − n1/2)2 + (n1/2 − (n− 1)1/2)2

= 2 −
53

1 − 1
n

41/2
+
3

1 + 1
n

41/26
.

Employing the Taylor expansion of the square root at 1, we infer3
1 ± 1

n

41/2
=

∞Ø
k=0

3
1/2
k

43
±1
n

4k

= 1 ± 1
2n − 1

8n2 ± 1
16n3 − 5

128n4 ± . . . ,

which yields the result.

4.3.2 Hardy inequalities on Tq+1

Consider the homogeneous tree Γ = Tq+1 with q ≥ 2. We initially apply Theorem 4.2.3 to
get an optimal weight. Subsequently we apply Theorem 4.2.1 using a family of radial positive
superharmonic functions on Γ. Finally, we obtain another optimal weight for ∆ by means of
Theorem 4.2.2.
Theorem 4.3.2. For all ϕ ∈ C0(Tq+1) the following inequality holds:

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Wopt(x)ϕ2(x),

where

Wopt(x)=
I

Λq + q1/2 − q−1/2 if |x| = 0,
Λq if |x| ≥ 1.

is optimal for ∆ and Λq = (q1/2 −1)2 is the bottom of the ü2 combinatorial Laplacian’s spectrum.
Proof. Consider the function ũ(x) =

ð
G(x, o), where G is the Green function on Tq+1. By

Theorem 4.2.3 we only need to show that
∆ũ(x)
ũ(x) = Wopt(x).

In the case of homogeneous tree, for q ≥ 2, is known explicitly the Green function, see Chapter
2. Hence,

ũ(x) =

ó
q

q − 1

3
1
q

4|x|

.

Now, for x /= o, we compute

∆ũ(x)
ũ(x) =

3
q + 1 −

3
1
q

41/2
− q

3
1
q

4−1/24
=
3

(q + 1) − q1/2 − q1/2
4

=
3
q1/2 − 1

42
= Λq > 0.
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4.3 – Hardy inequalities on some particular graphs

While for x = o we have,

∆ũ(o)
ũ(o) =

C
(q + 1)

3
q

q − 1

41/2
− (q + 1)

A
1

(q − 1)1/2

BD3
q − 1
q

41/2

= q + 1 − q + 1
q1/2 = Λq + q1/2 − q−1/2 > Λq.

Remark 4.3.1. Notice that G1/2 is the ground state of h∆ −Wopt. Indeed it solves the equation
(∆ −Wopt)v = 0 and Ø

x∈Tq+1

G(x)Wopt(x) = +∞.

In fact, Ø
x∈Tq+1

G(x)Wopt(x) = Wopt(o)
q

q − 1 +
Ø

|x|≥1

Λq
q

q − 1q
−|x|.

Then we computeØ
N≥|x|≥1

q−|x| = (q + 1)q−1 + (q + 1)qq−2 + · · · + (q + 1)qN−1q−N = (q + 1)q−1N,

which goes to +∞ when N → +∞. It follows thatØ
x∈Tq+1

G(x)Wopt(x) = +∞.

Theorem 4.3.3. For all 0 ≤ β ≤ log2 q
1/2 and γ ∈ [q−1/2, q−1/2 + q1/2 − 2β ] it holds

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Wβ,γ(x)ϕ2(x)

for all ϕ ∈ C0(Tq+1), where Wβ,γ ≥ 0 is defined as follows

Wβ,γ(x) =


(q + 1)(1 − q−1/2/γ) if |x| = 0,
q + 1 − q1/2(2β + γ) if |x| = 1,
q + 1 − q1/2[(1 + 1/|x|)β + (1 − 1/|x|)β ] if |x| ≥ 2.

Proof. It suffices to apply Theorem 4.2.1 with u = uβ,γ , defined as follows

uβ,γ(x) =
I
q−1/2|x||x|β if |x| ≥ 1,
γ if |x| = 0.

Indeed,

∆u(o)
u(o) = q + 1 − (q + 1)q

−1/2

γ
= (q + 1)

3
1 − q−1/2

γ

4
,
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4 – The supersolution construction of Hardy weights

which is nonnegative if γ ≥ q−1/2.
For x such that |x| = 1

∆u(x)
u(x) = q + 1 − q

q−12β

q−1/2 − γ

q−1/2

= q + 1 − q1/2(2β + γ)

which is nonnegative if γ ≤ q1/2 + q−1/2 − 2β . The restriction β ≤ 1/2 log2 q comes out to make
consistent q−1/2 ≤ γ ≤ q−1/2 + q1/2 − 2β .
Finally, for x such that |x| ≥ 2

∆u(x)
u(x) = q + 1 − q

q−1/2(|x|+1)(|x| + 1)β

q−1/2|x||x|β
− q−1/2(|x|−1)(|x| − 1)β

q−1/2|x||x|β

= q + 1 − q1/2(1 + 1/|x|)β − q1/2(1 − 1/|x|)β ≥ 0,

is equivalent to

q1/2 + q−1/2 ≥ (1 + 1/|x|)β + (1 − 1/|x|)β .

If β ≤ 1, the function f : R+ → R, such that f(x) = xβ is concave. It follows that

f(1/2(1 + 1/|x|) + 1/2(1 − 1/|x|)) = f(1) ≥ 1/2f(1 + 1/|x|) + 1/2f(1 − 1/|x|)

that is equivalent to
2 ≥ (1 + 1/|x|)β + (1 − 1/|x|)β .

Then,

∆u(x)
u(x) = q + 1 − q1/2[(1 + 1/|x|)β + (1 − 1/|x|)β ] ≥ q + 1 − 2q1/2 = Λq > 0.

If log2 q
1/2 ≥ β > 1, notice that the function h : [2,+∞) → R such that h(x) = (1 + 1/x)β +

(1 − 1/x)β is decreasing. Indeed,

hÍ(x) = − 1
x2 β((1 + 1/x)β−1 − (1 − 1/x)β−1) < 0.

In our computation, |x| ≥ 2, then h reaches its maximum for |x| = 2. Thus it suffices to study3
3
2

4β

+
3

1
2

4β

≤ q1/2 + q−1/2.

Notice that

d

dβ

53
3
2

4β

+
3

1
2

4β6
= 2−β(3βlog(3/2) − log(2)) ≥ 0

holds true for all β > 1. Hence it suffices to study3
3
2

4log2 q1/2

+
3

1
2

4log2 q1/2

≤ q1/2 + q−1/2.
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4.3 – Hardy inequalities on some particular graphs

It is easy to check the validity of the last inequality because3
3
2

4log2 q1/2

≤ 2log2 q1/2
= q1/2,3

1
2

4log2 q1/2

= 2log2 q−1/2
= q−1/2.

In the graph below we plot the optimal Hardy weight Wopt obtained by means of the Green
function in Theorem 4.3.2 and Wβ,γ = W−1/2,β,γ defined in Theorem 4.3.3.

Figure 4.1. Plot of Wβ,γ and Wopt for q = 5, β = 0.3 and γ = 3/4.

Remark 4.3.2. Note that the statement of Theorem 4.3.2 can be enriched by considering the
family of radial functions

uα,β,γ(x) =
I
qα|x||x|β if |x| ≥ 1,
γ if |x| = 0,

with α ∈ R and β and γ as in Theorem 4.3.3.
Indeed, a straightforward computation shows that for |x| ≥ 2

Wα,β,γ(x) = ∆uα,β,γ(x)
uα,β,γ(x) = q + 1 − qα+1(1 + 1/|x|)β − q−α(1 − 1/|x|)β .

Nevertheless, there holds

Wα,β,γ(x) = q + 1 − q1+α − q−α + o(1), as |x| → +∞
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4 – The supersolution construction of Hardy weights

which is maximum for α = −1/2. Indeed, let t = qα and g(t) = −qt − 1/t. Computing the
derivative we get

gÍ(t) = 0 ⇐⇒ −q + 1/t2 = 0 ⇐⇒ t = q−1/2,

gÍÍ(q−1/2) < 0.

Therefore, the choice α = −1/2 turns out to be the best to get a weight as large as possible at ∞.
It is also worth noting that for α = −1/2

W−1/2,β,γ(x) = Λq + o(1).

Remark 4.3.3. Notice that if we choose β = 0 and γ = 1 in Theorem 4.3.3 we obtain

W0,1(x) = Wopt(x).

Hence we get the same inequality of Theorem 4.3.2.

Remark 4.3.4. For 0 ≤ β ≤ 1/2 log2 q and q−1/2 ≤ γ ≤ q1/2 + q−1/2 − 2β consider the above
defined weights Wβ,γ . We have

Wβ,γ(x) = Λq + q1/2 β(1 − β)
|x|2

+ o( 1
|x|2

) as |x| → ∞.

Now we want to maximize the behavior of these weights when |x| tends to infinity; since

max
β

β(1 − β) = 1/4,

which is reached for β = 1/2. For such a choice of α, β, when |x| → ∞, we have

Wβ,γ(x) = Λq + q1/2 1
4|x|2

+ o(1/|x|2).

Remarks 4.3.2, 4.3.4 suggest that best choice of parameters in Theorem 4.3.3 to have a
largest weight at infinity is α = −1/2 and β = 1/2. This intuition is somehow confirmed by the
statement below.

Theorem 4.3.4. The following holds:

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Wopt(x)ϕ2(x) ∀ϕ ∈ C0(Tq+1),

where

Wopt(x) =


0 if |x| = 0,
(q + 1) −

√
2q1/2 − 1 if |x| = 1,

(q + 1) − q1/2
5
(1 + 1/|x|)1/2 + (1 − 1/|x|)1/2

6
if |x| ≥ 2,

with Wopt optimal Hardy weight for the Hardy inequality associated with ∆.
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4.3 – Hardy inequalities on some particular graphs

Proof. Consider the Schrödinger operator H = ∆ +Q, with

Q(x) =


q(q + 1) se |x| = 0,
q1/2(q + 1) se |x| = 1,
−Λq se |x| ≥ 2.

We firstly show that the positive functions

u = q−1/2|x|,

v =
I
q−1 if |x| = 0,
|x|q−1/2|x| otherwise,

are H-superharmonic on Tq+1 and H-harmonic outside of a finite set.
Indeed,

Hu(o) = (q + 1)(1 − q−1/2) + q(q + 1) = (q + 1)(q + 1 − q−1/2),

which is clearly positive because q ≥ 2.

Hu(|x| = 1) = (q + 1)q−1/2 − qq−1 − 1 + q−1/2q1/2(q + 1)
= (q + 1)(q−1/2 + 1) − 2 ≥ 1 + 3

√
2.

If |x| ≥ 2, then

Hu(x) = (q + 1)q−1/2|x| − qq−1/2(|x|+1) − q−1/2(|x|−1) − Λqq
−1/2|x|

= q−1/2|x|(q + 1 − 2q1/2 − Λq) = 0.

Moreover,

Hv(o) = (q + 1)(q−1 − q−1/2) + q(q + 1)q−1 = (q + 1)(1 + q−1 − q−1/2);

notice that 1 ≥ q−1/2, thus Hv(o) is positive.

Hv(|x| = 1) = (q + 1)q−1/2 − q2q−1 − q−1 + (q + 1)q1/2q−1/2

= (q + 1)(q−1/2 + 1) − 2 − q−1 = q − 1 + q1/2 + q−1/2 − q−1

is positive because q − 1 − q−1 ≥ 1/2.
Finally, for |x| ≥ 2 then

Hv(x) = (q + 1)|x|q−1/2|x| − (|x| + 1)qq−1/2(|x|+1) − (|x| − 1)q−1/2(|x|−1) − Λqq
−1/2|x|

= |x|q−1/2|x|(q + 1 − 2q1/2 − Λq) = 0.

Then, in order to apply Theorem 4.2.2, we need to show that

u0(x) := u(x)/v(x) =
I
q if |x| = 0,
1/|x| otherwise,

is proper and

sup
x,y∈Tq+1

x∼y

u0(x)
u0(y) < ∞.
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4 – The supersolution construction of Hardy weights

The function u0 is proper because

lim
|x|→∞

u0(|x|) = 0

and u0(|x|) > u0(|x|+1) > 0 for all |x| ≥ 1, thus u−1
0 (K) is finite for all compact set K ⊂ (0,∞).

Now consider x ∼ y,

u0(x)
u0(y) =


q if |x| = 0,
1/q if |y| = 0 and |x| = 1,
1 + 1/|x| if |y| = |x| + 1 and |x| ≥ 1,
1 − 1/|x| if |y| = |x| − 1 and |x| ≥ 2.

Thus

sup
x,y∈Tq+1

x∼y

u0(x)
u0(y) = q.

We deduce from Theorem 4.2.2 that the weight

W̃ (x) : = H[(uv)1/2](x)
(uv)1/2(x)

= ∆(uv)1/2

(uv)1/2 +Q(x)

=


q(q + 1) if |x| = 0,
(q + 1) −

√
2q1/2 − 1 + q1/2(q + 1) if |x| = 1

(q + 1) − (1 + 1/|x|)1/2q1/2 − q1/2(1 − 1/|x|)1/2 − Λq if |x| ≥ 2
,

is an optimal weight for H. Notice that the optimal Hardy inequality obtained considering the
quadratic form h associated with H

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
+
Ø
x∈T

Q(x)ϕ2(x) ≥
Ø

x∈Tq+1

3
∆(uv)1/2(x)
(uv)1/2(x)

+Q(x)
4
ϕ2(x)

is equivalent to the Hardy inequality associated to ∆

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

∆(uv)1/2(x)
(uv)1/2(x)

ϕ2(x) ∀ϕ ∈ C0(Tq+1).

Moreover,

Wopt(x) := ∆(uv)1/2(x)
(uv)1/2(x)

=


0 if |x| = 0,
(q + 1) −

√
2q1/2 − 1 if |x| = 1,

(q + 1) − (1 + 1/|x|)1/2q1/2 − q1/2(1 − 1/|x|)1/2 if |x| ≥ 2,

is nonnegative. The optimality of W̃ implies that it does not exist a nonnegative function f
different from the identically zero function such that

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
−

Ø
x∈Tq+1

Wopt(x)ϕ2(x) ≥
Ø

x∈Tq+1

f(x)ϕ2(x),
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4.3 – Hardy inequalities on some particular graphs

or, equivalently, h∆ −Wopt is critical.
It follows that

z(x) = (u(x)v(x))1/2

is the ground state of h∆ −Wopt. Notice that

Wopt(x) > Wopt(x) if |x| ≥ 2,
z(x) > G1/2(x) if |x| ≥ 2,

with Wopt and G1/2 such as in Theorem 4.3.2.
Then Ø

x∈Tq+1

z2(x)Wopt(x) = +∞

because of Remark 4.3.1.
Finally, by contradiction, suppose there exist λ > 0 and K ⊂ Tq+1 compact set such that

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
−

Ø
x∈Tq+1

Wopt(x)ϕ2(x) ≥ λ
Ø

x∈Tq+1

Wopt(x)ϕ2(x) (4.3)

for all ϕ ∈ C0(Tq+1\K). Then, (4.3) holds true on C0(Tq+1\(K∪B2(o))) with B2(o) = {x ∈ Tq+1
such that |x| < 2}. Notice that Woptϕ

2(x) ≤ Wopt(x)ϕ2(x) for all ϕ ∈ C0(Tq+1 \ (K ∪ B2(o))).
It follows

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
−

Ø
x∈Tq+1

Wopt(x)ϕ2(x)

≥ 1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
−

Ø
x∈Tq+1

Wopt(x)ϕ2(x)

≥ λ
Ø

x∈Tq+1

Wopt(x)ϕ2(x) ≥ λ
Ø

x∈Tq+1

Wopt(x)ϕ2(x)

for all ϕ ∈ C0(Tq+1 \ (K ∪B2(o))). This is a contradiction because Wopt is optimal.

4.3.3 Hardy inequalities on TP,D

In the same way we proceeded for the homogeneous tree now we apply Theorem 4.2.1 to
Γ = TP,D.

Proposition 4.3.1. Let Γ = TP,D be the bi-regular tree of degree P, D and fix o ∈ Γ. Then, for
all ϕ ∈ C0(Γ), it holds the following inequality

1
2
Ø

x,y∈Γ
x∼y

3
ϕ(x) − ϕ(y)

42
≥
Ø
x∈Γ

W (x)ϕ2(x)

where
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4 – The supersolution construction of Hardy weights

W (x)=


1/2
3

(P − 1)(1 − F
1/2
P )2 + (1 − F

−1/2
D )2

4
if |x| > 0 is even,

1/2
3

(D − 1)(1 − F
1/2
D )2 + (1 − F

−1/2
P )2

4
if |x| is odd,

P (1 − F
1/2
P ) if x = o,

with FD = D/(PD − P ) and FP = P/(PD −D) for any P,D ≥ 3. Moreover, W is optimal.

Proof. Choose u(x) =
ð
G(x, o) with G the Green function on TP,D. Subsequently compute the

ratio ∆u/u. Notice that u is radial.
If |x| > 0 is even,

∆u(|x|)
u(|x|) = P − (P − 1)u(|x| + 1)

u(|x|) − u(|x| − 1)
u(|x|)

= P − (P − 1)F 1/2
P − F

−1/2
D

= 1
2

3
2P − 2(P − 1)F 1/2

P − 2F−1/2
D

4
= 1

2

3
P − 1 + P + 1 − 2(P − 1)F 1/2

P − 2F 1/2
D

4
= 1

2

3
(P − 1)(1 − 2F 1/2

P ) + 1 + P − 2F−1/2
D

4
= 1

2

3
(P − 1)(1 − 2F 1/2

P + FP ) − (P − 1)FP + 1 + P − 2F−1/2
D

4
= 1

2

3
(P − 1)(1 − 2F 1/2

P + FP ) + 1 + F−1
D − 2F−1/2

D

4
= 1

2

3
(P − 1)(1 − F

1/2
P )2 + (1 − F

−1/2
D )2

4
.

If |x| is odd,

∆u(|x|)
u(|x|) = D − (D − 1)u(|x| + 1)

u(|x|) − u(|x| − 1)
u(|x|)

= D − (D − 1)F 1/2
D − F

−1/2
P

= 1
2

3
2D − 2(D − 1)F 1/2

D − 2F−1/2
P

4
= 1

2

3
D − 1 +D + 1 − 2(D − 1)F 1/2

D − 2F 1/2
P

4
= 1

2

3
(D − 1)(1 − 2F 1/2

D ) + 1 +D − 2F−1/2
P

4
= 1

2

3
(D − 1)(1 − 2F 1/2

D + FD) − (D − 1)FD + 1 +D − 2F−1/2
P

4
= 1

2

3
(D − 1)(1 − 2F 1/2

D + FD) + 1 + F−1
P − 2F−1/2

P

4
= 1

2

3
(D − 1)(1 − F

1/2
D )2 + (1 − F

−1/2
P )2

4
.
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If x = o,

∆u(|x|)
u(|x|) = P − P

u(1)
u(0)

= P (1 − F
1/2
P ).

4.4 Improved Poincaré inequalities
In this section we present three examples of improved Poincaré inequality derived by means

of Theorem 4.3.3, Theorem 4.3.2 and Theorem 4.3.4. We recall that the Poincaré inequality on
Tq+1 states

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥ Λq

Ø
x∈Tq+1

ϕ2(x) ∀ϕ ∈ C0(Tq+1).

Notice that Λq = (q1/2 − 1)2 is the best constant by definition in the sense that the previous
inequality cannot hold with a constant Λ > Λq.
For improved Poincaré inequality we mean an inequality of the form

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Λqϕ
2(x) +

Ø
x∈Tq+1

R(x)ϕ2(x) ∀ϕ ∈ C0(Tq+1),

for some R ≥ 0 in Tq+1.
The following improved Poincaré inequality is an immediate consequence of Theorem 4.3.2:

Corollary 4.4.1. It holds

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Λqϕ
2(x) +

Ø
x∈Tq+1

Roptϕ
2(x) ∀ϕ ∈ C0(Tq+1),

where Ropt(x) =
I

(q − 1)/q1/2 if |x| = 0,
0 otherwise.

From Theorem 4.3.3 it follows a family of improved Poincaré inequality.

Theorem 4.4.1. For all 0 ≤ β ≤ log2(3/2 − 1/(2q)) and 1/2 + 1/(2q) ≤ γ ≤ 2 − 2β, it holds

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Λqϕ
2(x) +

Ø
x∈Tq+1

Rβϕ
2(x) ∀ϕ ∈ C0(Tq+1),

where 0 ≤ Rβ(x) =


q−1/2(2/3q − 1/γ) if |x| = 0,
2 − 2β − γ if |x| = 1,

q1/2
3

2 − (1 + 1/|x|)β − (1 − 1/|x|)β

4
if |x| ≥ 2.
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Proof. Consider the family of positive radial functions uβ,γ defined by

uβ,γ(x) =
I
q−1/2|x||x|β if |x| ≥ 1,
γ if |x| = 0,

with γ ≥ 1/2 + 1/(2q), 0 ≤ β ≤ log2(3/2 − 1/(2q)).
Then ∆uβ,γ/uβ,γ provides weights larger than Λq in Tq+1. Indeed, computing

Wβ,γ(x) = ∆uβ,γ(x)
uβ,γ(x) ,

we get

Wβ,γ(x) = Wβ,γ(|x|) =


q + 1 − (q + 1)q−1/2/γ if |x| = 0,
q + 1 − q1/2(2β + γ) if |x| = 1,

q + 1 − q1/2
3

(1 + 1/|x|)β + (1 − 1/|x|)β

4
if |x| ≥ 2.

Next, it is easy to check that Wβ(0),Wβ(1) are larger than Λq for our choices of parameters.
In fact

q + 1 − (q + 1)q−1/2/γ ≥ q + 1 − 2q1/2 ⇐⇒ 1/2 + 1/(2q) ≤ γ

and

q + 1 − q1/2(2β + γ) ≥ q + 1 − 2q1/2 ⇐⇒ 2β ≤ 2 − γ.

It follows 1/2 + 1/(2q) ≤ γ ≤ 2 − 2β and β ≤ log2(3/2 − 1/(2q)) . Notice that for this choice of
γ and β it follows β ≤ log2(3/2) < 1. In Theorem 4.3.3 we proved that for 0 ≤ β < 1 it holds
Wβ,γ(x) ≥ Λq for |x| ≥ 2.

In the next theorem we show an improved Poincaré inequality in the complement of the ball
of radius 2 by means of Theorem 4.3.4.
Theorem 4.4.2. The following holds:

1
2

Ø
x,y∈Tq+1

x∼y

3
ϕ(x) − ϕ(y)

42
≥

Ø
x∈Tq+1

Λqϕ
2(x) +

Ø
x∈Tq+1

Ropt(x)ϕ2(x) ∀ϕ ∈ C0(Tq+1 \B2(o)),

(4.4)
where

Ropt(x) = q1/2
5
2 − (1 + 1/|x|)1/2 − (1 − 1/|x|)1/2

6
if |x| ≥ 2,

and B2(o) = {x ∈ Tq+1 such that |x| < 2}.
Moreover, the constant q1/2 is sharp in the sense that the inequality cannot hold with a reminder
term C

5
2 − (1 + 1/|x|)1/2 − (1 − 1/|x|)1/2

6
with C > q1/2.

Proof. We know from Theorem 4.3.4 that the optimal weight Wopt(x) is larger than Λq for
|x| ≥ 2. Then we can define

Ropt(x) = Wopt(x) − Λq ∀x ∈ Tq+1 \B2(o).

and it follows (4.4). The sharpness of q1/2 is consequence of the optimality of W̃ for H where
W̃ ,H are chosen such as in the proof of Theorem 4.3.4.
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