
Polytechnic University of Turin

Master’s degree in Mathematical Engineering

Master thesis

Efficient Computation of Bifurcation
Diagrams with Spectral Element Method

and Reduced Order Models

Author:
Moreno Pintore

Advisors:
Prof. Claudio Canuto
Prof. Gianluigi Rozza

Co-Advisors:
Dr. Martin Hess

Dr. Federico Pichi

Academic year: 2018/2019





Contents

Introduction 1

1. Spectral Element Method 5
1.1. Introduction and one-dimensional formulation . . . . . . . . . . . . . . . . . . . . 5

1.1.1. Galerkin formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1.1. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1.2. Properties of the Galerkin formulation . . . . . . . . . . . . . . . 8

1.1.2. Expansion bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2.1. Types of expansions . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2.2. Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2. Extension to multidimensional problems . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1. Expansion bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2. Local operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2.1. Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2.2. Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2.3. Operations on arbitrary elements . . . . . . . . . . . . . . . . . . 20

1.2.3. Global operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.3.1. Static condensation method . . . . . . . . . . . . . . . . . . . . . 23

1.3. Application to incompressible flows . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1. Iterative methods in CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2. Static condensation method in CFD . . . . . . . . . . . . . . . . . . . . . 29

2. Reduced Basis Methods 33
2.1. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2. Proper orthogonal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3. Online phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1. Affine decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1.1. An explanatory example . . . . . . . . . . . . . . . . . . . . . . 39

2.4. RB applied to non-coercive problems . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1. Theoretical results for non-coercive problems . . . . . . . . . . . . . . . . 42

2.4.2. Non-coercive problem formulation and properties . . . . . . . . . . . . . . 43

2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3. Numerical Methods for Computing Bifurcation Diagrams 47
3.1. Introduction and theoretical background . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1. Numerical computation of bifurcation diagrams . . . . . . . . . . . . . . . 50



iv Contents

3.2. Continuation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1. Simple continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2. Pseudo-arclength continuation . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2.1. Bordering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3. Deflation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1. Deflation method for finding the roots of a polynomial . . . . . . . . . . . 57
3.3.2. Deflation method for finding multiple solutions of PDEs . . . . . . . . . . 58

3.3.2.1. Efficiency of the deflation method . . . . . . . . . . . . . . . . . 60
3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. Numerical results 63
4.1. Overview of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2. Results with a single parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1. Offline phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1.1. Deflated continuation method . . . . . . . . . . . . . . . . . . . 66
4.2.1.2. A simple heuristic to improve the deflation method . . . . . . . 69
4.2.1.3. Bifurcation diagram analysis . . . . . . . . . . . . . . . . . . . . 71
4.2.1.4. Choice of the technique used to construct the reduced space . . 74

4.2.2. Online phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2.1. Reconstructed bifurcation diagram . . . . . . . . . . . . . . . . . 75
4.2.2.2. Unphysical branches . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3. Results with two parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1. Overview of the problem and motivation . . . . . . . . . . . . . . . . . . . 80
4.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2.1. Efficiency quantification . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2.2. Stability and accuracy issues . . . . . . . . . . . . . . . . . . . . 86

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5. Conclusion 93

A. Appendix:
Fundamentals of Computational Fluid Dynamics 97
A.1. The Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2. The Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References 101



Introduction

Many physical phenomena can be described using partial differential equations (PDEs), they
usually are non-linear and, due to the non-linearity, multiple different solutions can exist. Un-
derstanding this property and the relation between the different solutions and some parameters
is crucial to predict the evolution of a system when the parameters can vary. Even if these
phenomena can be represented with bifurcation diagrams, obtaining them analytically or theo-
retically is impossible for almost every interesting problem. For this reason, one would like to
compute them numerically, but, due to the complexity of the task, several different techniques
must be used together to perform it in an accurate and efficient way. Firstly, one has to be
able to compute a solution of the problem for many values of the parameters, therefore the
solver should be as accurate and fast as possible because it will be used many times. Secondly,
a suitable continuation method is needed to efficiently follow a single branch of the bifurcation
diagram and, lastly, it is important to use another method to detect the bifurcation points or
discover new branches. In particular, the deflation method has been chosen to find them. The
problem is that, even if all these elements are available and optimized, the computation of a
bifurcation diagram is a very expensive operation; indeed the described methods have to be
performed a huge number of times and the associated computational cost can easily become
prohibitive if more than one parameter is involved.
In this work an efficient way to compute bifurcation diagrams with one or more parameters is
proposed and all the different required techniques are explained with a particular focus on their
implementation and the obtained results. We highlight that the described method can be used
in several different scenarios, in fact the spectral element method [42] (SEM) has been used to
compute the full order solutions required to generate the reduced space with the reduced basis
[38] (RB) method. These two techniques are very general because they simply consider the vari-
ational formulation of an arbitrary equation. Moreover, we implemented an advanced deflated
continuation method [28] to efficiently compute the set of solutions that discretizes the bifur-
cation diagram. In such a technique we alternate the continuation method [25], implemented
in two different ways in order to be able to accurately track all the branches during each phase
of the computation, and the deflation one, that we paired with a novel heuristic to increase its
effectiveness. Since a reduced order model (ROM) is used, the discussed methods can be divided
in two phases: the first one, named offline phase, is the most expensive one and is responsible
for the computation of the so called full order solutions or snapshots. Subsequently, in the
online phase, the solution of the discrete problem is sought in a low-dimensional space and all
the matrices and vectors are simply assembled [46] with objects created during the offline phase
and, for this reason, the computation is much faster.
Initially, we highlight that, in appendix A, a short description of the Navier-Stokes [73] (NS)
equations and an introduction to the computational fluid dynamics (CFD) will be presented, this
will be a brief overview of some fundamental concepts that will be frequently used throughout



2 Introduction

the whole text. In particular, in section A.1 the equations that will be used in the subsequent
chapters will be derived adding some physical assumptions to the complete NS equations system
in order to simplify it. Then, in section A.2, the most important non-dimensional number in
CFD [16] will be presented, it is named Reynolds number and its variation can imply qualita-
tive and quantitative changes in the solutions. Furthermore, if such a number is significantly
increased, the computation of the solutions becomes a more complex task.
In Chapter 1 the SEM will be analyzed, focusing on the variational formulation and on the ef-
ficiency [33] and accuracy issues. In section 1.1 the method will be presented in one dimension.
This is important to discuss, in an easier context, the Galerkin formulation [62] (section 1.1.1)
and the different kinds of expansion bases that can be used to discretize the problem (section
1.1.2). These topics will be used and generalized to multidimensional problems in section 1.2,
where the concept of local and global operations will be presented. Moreover, the static con-
densation method [42] will be analyzed in section 1.2.3.1, it is a technique used to increase the
efficiency of the SEM exploiting the fact that the expansion bases can be divided in two different
groups. Finally, in section 1.3, we will discuss how to apply the SEM to the CFD underlying the
required variational formulation, the iterative methods that can be used (section 1.3.1) and the
generalization of the static condensation method to consider both the velocity and the pressure
degrees of freedom [78] (section 1.3.2).
Then, in Chapter 2, the ROM will be accurately described with concentration on the different
structure of the formulation [64] with respect to SEM one (section 2.1) and on the method used
for constructing the reduced basis [32] (section 2.2). Moreover, the affine decomposition required
to ensure the efficiency of the method will be presented in section 2.3, while the extension of
such topics to non-coercive problems [38] will be discussed in section 2.4. This is important
because the variational problem associated to the NS equations is non-coercive and, therefore,
in order to consider a well-posed problem, one has to rely on different theorems and conditions.
Later, in Chapter 3, all the methods and the theory required to obtain a bifurcation diagram
will be presented. In section 3.1 the theory will be introduced [3] and the main ideas behind the
numerical computation of such diagrams will be presented. Subsequently, in section 3.2, the con-
tinuation method [67] will be introduced and two different approaches will be discussed, focusing
on their advantages and disadvantages. On the other hand, the second required technique, the
deflation method [29], will be analyzed in section 3.3. Here we will focus on its interpretation in
section 3.3.1 and on its efficiency in section 3.3.2.1.
Then, in Chapter 4, the numerical results that can be obtained with this method will be shown,
first with only a single varying parameter and then with two. In such a chapter we will prove
that, using the continuation and the deflation together, it is possible to obtain a bifurcation
diagram including more bifurcation points and that the singular values decay involved in the
POD method is only weakly influenced by the different branches or by the techniques used
to obtain them. Moreover, we will highlight the stability issues that can imply several nega-
tive consequences. For instance, in section 4.2.2.2, we will show that the online solver could
converge to unphysical solutions if the reduced basis is too noisy while, on the other hand, it
may not converge if two parameters are involved and the tolerance of the POD is not prop-
erly selected (section 4.3.2.2). We highlight that the software used to solve the full order
problem is Nektar++ version 4.4.0 [68], that is an open source spectral/hp software, while



3

ITHACA-SEM (https://github.com/mathLab/ITHACA-SEM) has been used to perform the
online phase. Moreover, the methods associated to the continuation method and to the defla-
tion method have been implemented in ITHACA-SEM.
Finally the conclusion will be presented in Chapter 5. Here we will shortly summarize the con-
tent and the motivation of the thesis, furthermore, we will present some extensions and methods
that could improve the results shown in Chapter 4.
Lastly, we want to remark that this thesis has been developed thanks to the MathLab team
of SISSA (Trieste, Italy), which members consistently helped us to understand and implement
the numerical methods, and to the European project “H2020 ERC CoG AROMA-CFD” that
supported the entire work.

September 2019, Torino and Trieste





1. Spectral Element Method

1.1. Introduction and one-dimensional formulation

In many different fields of engineering and physics, problems governed by systems of PDEs arise;
such systems are usually too complex to be analytically solved and specific numerical methods
are required to obtain approximated solutions. A very common method is the finite element
method (FEM) [62], it is based upon a variational formulation named Galerkin formulation
and its mathematical foundations have been deeply investigated in the last century. One of
the features of such a method is that it relies on a mesh [21]: a conforming partition of the
entire domain in many small subdomains that, in general, are small polygons (or n-dimensional
polytopes in Rn) with few vertices.
The name of the method derives from the fact that the combination between a subdomain
and a properly chosen finite set of functions is named element, the solution of the problem is
discretized by means of a finite number of elements. The functions associated to each subdomain
are, in general, low order polynomials that can approximate the real solution only locally; this
way numerous elements are required to ensure a global convergence. The process of increasing
the number of elements is called mesh refinement, while the associated type of convergence is
denoted as h-type convergence (here h stands for the average diameter of the elements). The
accuracy of the FEM is formally proved to algebraically increase by refining the mesh, the fact
that the discrete solution tends to the real one increasing the number of elements is thus ensured
by the mathematical foundations on which the method is based [6].
However, the FEM is not the most used method in CFD because it does not automatically respect
the mass conservation constraint. Moreover, a stability condition (named inf-sup condition [10]
and described in sections 1.3 and 2.4) can not be satisfied when h→ 0, not allowing the discrete
solution to properly converge to the real one. Therefore, the most used method in CFD is the
finite volume method [62] that relies on a different formulation that naturally respects the mass
balance. Moreover, there exists a third approach associated to the so called spectral methods
[18]. Several different methods can be denoted as spectral methods (see, for instance, [19]), they
are, in general, characterized by an exponential convergence and by the fact that the involved
discrete functions have supports that are wider then the one considered in the classical FEM.
In this work we will focus on a method called spectral element method (SEM), that is similar
to the hp-version of the FEM [70]. The notation hp means that the method is characterized
by a mesh refinement (h) [55] and by the use of polynomials which order can be increased to
reduce the error (p) [24]. It is important to highlight that a pure p-type method, that can be
seen as a FEM with a single element but with polynomials which order can be arbitrarily raised,
ensures an exponential convergence. However, in order to handle the geometrical features of the
domain, it is better to consider a mesh with few elements and a hp-approach that can exploit



6 Spectral Element Method

the advantages of both methods at the same time [15]. This way it is possible to obtain very
accurate solutions in complex domains with a limited number of degrees of freedom (unknowns
in the linear systems associated to the problem). In fact, according to properly chosen error
estimators, it is possible to understand if it is convenient to refine the mesh or to increase the
polynomial order inside a specific element [20]. This is important in order to reduce the required
computational cost associated to the problem that has to be solved.

1.1.1. Galerkin formulation

As the standard FEM, the SEM relies on the Galerkin formulation [42]. The latter will be
presented in one dimension in this section in order to understand it better and to present some
important results, while it will be generalized to higher dimensional problems only in the next
sections. However, since the discussed topics will be extended, the notation associated to the
partial derivatives will be exploited also in this section in order to avoid confusion. We highlight
that we will discuss the Galerkin formulation as presented in [42].
Let us consider the strong Poisson equation:

L(u) =
∂2u

∂x2
+ f = 0, (1.1)

where u = u(x), the spatial variable x belongs to the open domain Ω defined as Ω = (0, 1) and
homogeneous Dirichlet boundary conditions are prescribed as follows:

u(0) = u(1) = 0. (1.2)

In order to obtain an integral, or weak, formulation of problem (1.1), one can properly select a
pair of functional spaces Vtrial and Vtest, multiply the equation by a function v ∈ Vtest, integrate
such a product over the entire domain Ω, and seek the solution of the obtained integral problem
in Vtest [62]. Such spaces are defined as:

Vtrial = {u : u ∈ H1(Ω), u|∂ΩD
= gD},

Vtest = {v : v ∈ H1(Ω), v|∂ΩD
= 0}.

where ∂ΩD is the portion of the boundary of Ω associated to the Dirichlet boundary condition
and gD describes such a condition. It can be observed that, in problem (1.1) with the boundary
conditions in (1.2), ∂ΩD = {0, 1} and gD(x) = 0 ∀x ∈ ∂ΩD. Therefore, Vtrial coincides with
Vtest because of the homogeneous Dirichlet boundary conditions.
The integral equation is the following one:∫ 1

0

(
∂2u

∂x2
+ f

)
vdx = 0. (1.3)

The latter can be integrated by parts and, using the constraints expressed by the Dirichlet
boundary conditions, it can be equivalently written as:∫ 1

0

∂u

∂x

∂v

∂x
dx =

∫ 1

0
vfdx. (1.4)



Introduction and one-dimensional formulation 7

Finally, we can denote as the Galerkin approximation of problem (1.1) the function uδ(x) ∈
V δ
trial ⊂ Vtrial that satisfies problem (1.4) when V δ

trial is a generic finite-dimensional vectorial
subspace of Vtrial. We remark that uδ(x) is, in general, an approximation of u(x), but it can
be obtained much more easily. This way, introducing the forms a(·, ·) : Vtrial × Vtest → R and
f(·) : Vtest → R and denoting the left hand side of problem (1.4) as a(u, v) and its right hand
side as f(v), one can define the generalized weak formulation of problem (1.1) as:

Find u ∈ Vtrial, such that:

a(u, v) = f(v), ∀v ∈ Vtest.

In an analogous way, the approximate form of the weak formulation can be stated as:

Find u ∈ V δ
trial, such that:

a(uδ, vδ) = f(vδ), ∀vδ ∈ V δ
test. (1.5)

1.1.1.1. Boundary conditions

An useful property of the Galerkin formulation is that the boundary conditions can be directly
inserted in the equation, without having to handle them separately. Let us consider, for example,
the previous problem with the following non homogeneous Dirichlet and Neumann boundary
conditions:

u(0) = gD,
∂u(1)

∂x
= gN . (1.6)

To ensure the well posedness of the problem, the test functions have to be zero on the Dirichlet
boundary. However, in the pure Galerkin formulation the test space coincides with the trial one,
therefore the approximate solution uδ(x) is required to be defined as the sum of two different
contributions. Let us denote as uD a known function that satisfies the Dirichlet boundary
condition, it is denoted as lifting function and it belongs to V δ

trial. On the other hand, we will
indicate with uH ∈ V δ

test the unknown part of uδ [62]. This way it is possible to write uδ as:

uδ(x) = uH(x) + uD(x). (1.7)

Explicitly expanding the discretized version of equation (1.3) integrating by parts and using the
assumption (1.7), one can obtain the equation:∫ 1

0

∂uH

∂x

∂vδ

∂x
dx =

∫ 1

0
vδfdx+

[
∂uδ

∂x
vδ
]1

0

−
∫ 1

0

∂uD

∂x

∂vδ

∂x
dx

=

∫ 1

0
vδfdx+ gNv

δ(1)−
∫ 1

0

∂uD

∂x

∂vδ

∂x
dx.

(1.8)

Here we used the fact that
∂uδ

∂x
(0)vδ(0) = 0 because vδ(0) = 0, since it belongs to V δ

test. It

should be noted that the right hand side is known or can be computed, at least numerically,



8 Spectral Element Method

while the left hand one is unknown because it includes the unknown function uH . From now
on, if the subscripts “test” and “trial” are not required, they will be omitted for brevity.
Furthermore, one may need to handle Robin conditions of the form:

α
∂u(·)
∂x

+ βu(·) = gR, α 6= 0;

it can be observed that such a condition can also be written as:

∂u(·)
∂x

=
1

α
(gR − βu(·)) , α 6= 0. (1.9)

The relation (1.9) can then be substituted as a Neumann condition in the first line of expres-
sion (1.8) to obtain the following equation (here we assumed to have a homogeneous Dirichlet
boundary condition in x = 0 and the Robin boundary condition in x = 1):∫ 1

0

∂uδ

∂x

∂vδ

∂x
dx+

β

α
uδ(1)vδ(1) =

∫ 1

0
vδfdx+

vgR
α
vδ(1).

Finally, if one wants to express this problem with the general Galerkin formulation, one can
state it as follows:

Find uδ = uD + uH , where

uH ∈ V δ
test, uD ∈ V δ

trial,

such that:
a(uH , vδ) = f(vδ)− a(uD, vδ), ∀vδ ∈ V δ

test.

1.1.1.2. Properties of the Galerkin formulation

In order to consider only well posed problems, let us assume that a(v, u) is a bilinear form,
therefore the following relation holds:

a(c1u+ c2v, w) = c1a(u,w) + c2a(v, w), ∀v, w ∈ V.

Here u, v and w are generic functions, while c1 and c2 are scalar constants. Moreover, a(·, ·) is
required to be bounded and coercive:

|a(v, w)| ≤ γ‖v‖V ‖w‖V , ∀v, w ∈ V,
a(v, v) ≥ α‖v‖2V , ∀v ∈ V,

where γ, α ∈ R are such that γ < +∞ and α > 0. Under these assumptions, and if f(·) is in the
dual space of V , the Lax-Milgram theorem guarantees the existence and the uniqueness of the
solution of the abstract Galerkin problem [62]:

Find u ∈ V , such that:
a(u, v) = f(v), ∀v ∈ V. (1.10)



Introduction and one-dimensional formulation 9

Theorem 1.1.1 (Lax-Milgram Theorem). Let V be a Hilbert space, a(·, ·) : V × V → R a
bilinear, continuous and coercive form, and f(·) : V → R a continuous and linear form belong-
ing to the dual space of V . Then the solution u ∈ V of problem (1.10) exists and is unique.
Furthermore, denoting as α > 0 the coercivity constant of a(·, ·), the following inequality holds:

‖u‖V ≤
1

α
‖f‖V ′ .

It should be noted that, even if such a topic is out of the scope of the thesis, the Lax-Milgram
theorem can be further generalized [26]. Moreover, it is important to observe that the discrete
version of the Galerkin problem can be used to construct the linear system that has to be solved
to obtain the discrete solution [62]. To deeper explain such a process, let us consider the discrete
Galerkin problem:

Find uδ ∈ V δ, such that:

a(uδ, vδ) = f(vδ), ∀vδ ∈ V δ. (1.11)

Here V δ is a finite-dimensional space and, therefore, it can be described, using a set of basis
functions, as V δ = span{φ1(x), ..., φN (x)}. Firstly, one can observe that, thanks to the fact
that equation (1.11) is required to hold for all vδ in V δ, one can consider vδ = φi(x) for any
i = 1, ..., N and obtain:

a(uδ, φi(x)) = f(φi(x)), i = 1, .., N. (1.12)

Secondly, since uδ ∈ V δ, it can be expanded as a linear combination of basis functions as follows:

uδ(x) =
N∑
j=1

ûjφj(x),

and substituted in equation (1.12):

a

 N∑
j=1

ûjφj(x), φi(x)

 = f(φi(x)), i = 1, ..., N. (1.13)

Using the bilinearity of a(·, ·) one obtains:

N∑
j=1

ûja (φj(x), φi(x)) = f(φi(x)), i = 1, ..., N.

Finally, in order to obtain the linear system Aû = f, one can store the value of each term of the
form a(φj(x), φi(x)) in the entry (i, j) of the matrix A and the ones of the form f(φi(x)) in the
i-th position of the vector f:

A[i][j] = a(φj(x), φi(x)), f[i] = f(φi(x)).



10 Spectral Element Method

This way, each coefficient ûj is stored in the j-th position of the vector û. It is important to
observe that, thanks to the bilinearity of a(·, ·), the coefficients obtained solving the linear system
identify the solution of problem (1.11) even if the only test functions that have been considered
were of the form vδ = φi(x). In order to prove it, let us consider a generic test function:

vδ(x) =

N∑
k=1

v̂kφk(x),

and substitute it into equation (1.11):

a

(
uδ,

N∑
k=1

v̂kφk(x)

)
= f

(
N∑
k=1

v̂kφk(x)

)
,

that can be expanded as:

v̂1a(uδ, φ1(x)) + v̂2a(uδ, φ2(x)) + ...+ v̂Na(uδ, φN (x)) =v̂1f(φ1(x))+

+ v̂2f(φ2(x)) + ...+ v̂Nf(φN (x)),

and that can be finally rearranged as:

N∑
k=1

[
v̂k ·

(
a(uδ, φk(x))− f(φk(x))

)]
= 0.

It can be noted that such a summation is exactly equal zero for any sequence {v̂1, ...v̂N} due to
the fact that a(uδ, φk(x))− f(φk(x)) = 0 ∀k = 1, ..., N since uδ is such that (1.13) holds.
Another key result related to the Galerkin formulation is the Cea’s lemma [38]:

Lemma 1.1.2 (Cea’s Lemma). Let V be a Hilbert space and let us consider a bilinear, continuous
and coercive form a(·, ·) : V × V → R and a continuous linear form f(·) : V → R. Moreover, let
V δ be a conforming approximation space included in V and α and γ, respectively, the coercivity
and the continuity constants associated to a(·, ·). Then, the following inequality holds:

‖u− uδ‖ ≤ γ

α
inf

vδ∈V δ
‖u− vδ‖V .

Proof. Let us consider the equation associated to the abstract Galerkin formulation:

a(u, v) = f(v), ∀v ∈ V, (1.14)

and the one associated to its discrete version:

a(uδ, vδ) = f(vδ), ∀vδ ∈ V δ. (1.15)

One can chooses v = vδ (because V δ ⊂ V ) in equation (1.14) and subtract equation (1.15) from
equation (1.14) to obtain:

a(u− uδ, vδ) = 0, ∀vδ ∈ V δ, (1.16)



Introduction and one-dimensional formulation 11

that is known as Galerkin orthogonality. Furthermore, it is important to note that a(·, ·) is
an inner product on V because such a form is symmetric, coercive and bilinear, and that it is
equivalent to the norm ‖ · ‖V . Moreover, the following chain of inequalities holds:

α‖u− uδ‖2V ≤ a(u− uδ, u− uδ)
= a(u− uδ, u− vδ + vδ − uδ)
= a(u− uδ, u− vδ) + a(u− uδ, vδ − uδ)
= a(u− uδ, u− vδ) ≤ γ‖u− uδ‖V ‖u− vδ‖V ,

where the term a(u − uδ, vδ − uδ) can be deleted because
(
vδ − uδ

)
∈ V δ and equation (1.16)

holds. The first and the last terms of the chain can be rearranged obtaining:

‖u− uδ‖ ≤ γ

α
inf

vδ∈V δ
‖u− vδ‖V .

Cea’s Lemma is important because, assuming that limδ→0 infvδ∈V δ ‖v− vδ‖V = 0 ∀v ∈ V , one
can conclude that

lim
δ→0

uδ = u.

Therefore, when the approximation space V δ approximates V well enough, the approximated
solution uδ can be considered, within a certain tolerance, equal to the continuous one.

1.1.2. Expansion bases

Like in the FEM, also the SEM discrete spaces are obtained by partitioning the entire domain
in small subdomains (usually small polytopes with few vertices) where the function can be well
approximated by fixed order polynomials. The difference is that the FEM is based on the h-type
approach: the order of the polynomials is very low, often simply 1 or 2 in each element, and
the convergence is obtained refining the mesh (see, for instance, [69]). The opposite approach
is referred to as p-type method: here the mesh is fixed but the order of the polynomials is in-
creased more and more to achieve the convergence. In particular, if there is only a single element
in the entire domain, the p-type method can be considered a spectral method [18]. Both the
approaches have advantages and disadvantages, therefore, in order to combine them in the best
possible way, one can choose the hp-type method. The following discussion will be based on the
content of the related sections of [42].
Let us consider again the one dimensional setting: in this scenario each element Ωe is geometri-
cally represented by an interval contained in the entire domain Ω = (xmin, xmax). Let us define
Nel as the total number of elements, they are required to be non-overlapping and their union
has to entirely cover Ω:

Ω =

Nel⋃
e=1

Ωe, Ωi ∩ Ωj = ∅, ∀i, j : 1 ≤ i, j ≤ Nel



12 Spectral Element Method

In particular, in one dimension, the domain Ω = {x|xmin < x < xmax} can be partitioned with
a mesh defined by the points:

xmin = x0 < x1 < ... < xNel−1 < xNel = xmax,

while the associated elements can be defined as:

Ωe = {x|xe−1 < x < xe}.

It is important to observe that the reference interval associated to the standard element Ωst

defined as:
Ωst = {ξ| − 1 < ξ < 1},

can be mapped into any arbitrary interval via the mapping defined as:

x = χe(ξ) =
(1− ξ)

2
xe−1 +

(1 + ξ)

2
xe, ξ ∈ Ωst. (1.17)

In the reference element the local modes φi(ξ) that characterize the numerical method can be
defined in terms of the local coordinate ξ. Then, the local modes can be mapped back to the
original element via the mapping (1.17). Furthermore, such a mapping is interesting because it
is analytically invertible, the inverse mapping can be expressed as follows:

ξ = (χe)−1 (x) = 2
(x− xe−1)

(xe − xe−1)
− 1, x ∈ Ωe.

The modes obtained mapping back the local modes of the standard element can be trivially
extended with value 0 outside the interval associated to the specific element, this way the global
modes φΩ

i (x) are obtained. Using such global modes it is possible to define the discrete solution
as a linear combination of global modes and unknown coefficients as follows:

uδ(x) =

Ndof−1∑
i=0

φΩ
i (x)ûi =

Nel∑
e=1

P∑
p=0

φep(ξ)û
e
p,

where φep(ξ) = φp([χ
e]−1(x)), P denotes the polynomial order of the expansion, the subscripts

are associated to the element where the mode is different from zero and, finally, Ndof is the
number of degrees of freedom in global coordinates. The two coefficient vectors ûg = {ûi} and
ûl = {ûep} are related by the assembly matrix A, that imposes some constraints on the local
expansion coefficients because they are more than the global ones. The relation is:

ûl = Aûg.

However, it should be noted that only the degrees of freedom that actively participate to the
global expansion modes of different elements have multiple entries in the columns of A, therefore
the matrix is very sparse and it should never be explicitly assembled. Instead, it should be
substituted by a map that is used for those degrees of freedom with more entries in the columns
of the original matrix.



Introduction and one-dimensional formulation 13

1.1.2.1. Types of expansions

Several different sets of functions can be chosen as local expansion modes [19]. In order to
understand why the choice of such a set implies different characteristics of the method, we
present three representative types of expansion modes [42]:

φAp (ξ) = ξp p = 0, ..., P,

φBp (ξ) =

∏P
q=0,q 6=p(ξ − ξq)∏P
q=0,q 6=p(ξp − ξq)

p = 0, ..., P,

φCp (ξ) = Lp(ξ) p = 0, ..., P.

The expansion set {φAp }Pp=1 is called moment expansion (because each mode represents a different

moment), it is very simple and hierarchical because {φAp }Pp=1 ⊂ {φAp }
P+1
p=1 , but leads to very ill-

conditioned matrices. It should be noted that the hierarchical sets of expansion modes are
useful because they can be easily enriched adding functions to the existing set. On the other
hand, a non-hierarchical set is the Lagrange one {φBp }Pp=1, it is a nodal expansion because the
modes are defined via their value in specific points named nodes. The latter is characterized by
the important property that φBp (ξq) = δpq where δpq is the Kronecker delta (see [56]). Such a
property is very interesting because the values of the discrete solution in correspondence to the
nodes are simply the values of the expansion coefficients.
Eventually, the polynomials Lp(ξ) are defined as the Legendre polynomials [42]. This is a modal
and hierarchical expansion with the interesting property that these polynomials are orthogonal
according to the Legendre inner product:

(Lp(ξ), Lq(ξ)) =

∫ 1

−1
Lp(ξ)Lq(ξ)dx =

(
2

2p+ 1

)
δpq.

Such a property is important because it can be used to obtain very sparse matrices that are
very easy to assemble and the system associated to them are efficiently solved.
It should be observed that, even if a modal basis is chosen, it can always be transformed into
a nodal one using the properties of the Lagrange polynomials. In fact, they are very useful
to interpolate any smooth function and, if such a function is a polynomial which order is not
greater than the number of involved nodes, the interpolation polynomial is exactly the original
one.

1.1.2.2. Numerical integration

In order to obtain the discrete linear system from the continuous weak problem one has to be
able to numerically compute the involved integrals. Their evaluation, called quadrature [23],
approximates the integral with a linear combination as follows:

∫ 1

−1
u(ξ)dξ ≈

Q−1∑
i=0

wiu(ξi), (1.18)



14 Spectral Element Method

where Q is the number of quadrature points and wi some constant weights. The number of
weights and their values define the quadrature formula and its order, that is the maximum order
of the exactly integrated polynomials. There are several types of numerical integration rules
but, in this work, we will focus on the Gaussian quadrature because it is very accurate with high
order polynomials and it is widely used in the SEM context. See [57] for a more comprehensive
explanation about such type of quadrature rules and a possible extension to arbitrary polygons.
Let us assume that the integrand function u(ξ) is smooth enough, using the Lagrange polyno-
mials hi(ξ) it can be written as:

u(ξ) =

Q−1∑
i=0

u(ξi)hi(ξ) + ε(u), (1.19)

where ε(u) is the difference between the exact function u(ξ) and its polynomial approximation∑Q−1
i=0 u(ξi)hi(ξ).

Substituting expression (1.19) into (1.18) one can obtain expand the integral in the following
way: ∫ 1

−1
u(ξ)dξ =

Q−1∑
i=0

wiu(ξi) +R(u), (1.20)

where

wi =

∫ 1

−1
hi(ξ)dξ,

R(u) =

∫ 1

−1
ε(u)dξ.

It can be observed that the formula (1.18) is exact only if, when written as in equation (1.20),
R(u) = 0, this happens whenever u(ξ) is a polynomial of order less than or equal to Q − 1:
u(ξ) ∈ PQ−1([−1, 1]). However, if one properly chooses the locations of the abscissae ξi, it is
possible to obtain a formula of order 2Q − 1, named Gaussian quadrature rule [72]. Simi-
lar formulas can be used to numerically evaluate integrals that include the parametric weight
(1− ξ)α (1− ξ)β as follows: ∫ 1

−1
(1− ξ)α (1− ξ)β u(ξ)dξ.

Such integrals are very important in multidimensional problems because the Jacobian of the
mapping between an arbitrary element and the reference one can be included in the weight (see
section 1.2.2.1). Three types of Gauss quadratures exist, they are called Gauss, Gauss-Radau
and Gauss-Lobatto quadrature rules. The first one is associated to abscissae in the inner part
of the interval (−1, 1), while the abscissae of the second and third one respectively contain
only one or both the end points of such an interval. Moreover, it is interesting to observe that
the abscissae are associated to the zeros of the P -th order Jacobi polynomial but that their
explicit expression is not available: they have to be numerically computed, when needed, at the
beginning of a simulation via iterative formulas [56] or they can be read in specific tables. The
article [75] describes an algorithm that can be used to efficiently compute the nodes and the



Extension to multidimensional problems 15

weights involved in Gaussian quadrature formulas.
Finally, it should be noted that the Gauss-Legendre polynomials are also used to obtain the
differentiation matrices employing different formulas according to the choice of Gauss quadrature
involved.

1.2. Extension to multidimensional problems

In the previous sections we discussed the Galerkin formulation and the most used expansion
bases in one dimension. However, the realistic problems are, usually, two-dimensional or three-
dimensional, it is therefore compulsory to extend the described topics to use them in multidi-
mensional problems. In this section we will discuss some of the possible generalizations of the
one-dimensional expansion bases, then we will describe the main local operations and, finally,
the static condensation method. Such a technique is useful to significantly improve the effi-
ciency of the SEM and will be further extended in section 1.3.2. Once more, we remark that
the following discussion is based upon [42].

1.2.1. Expansion bases

In this section the main ideas of section 1.1.2 will be extend in multiple dimensions. The standard
region can be a quadrilateral or a triangle in two dimensions, while it can be a hexahedron, a
prism, a pyramid or a tetrahedron in three. Moreover, the local coordinates will be denoted as
ξ1 and ξ2 in two dimensions or ξ1, ξ2 and ξ3 in three. Finally, the bases will be named φpq(ξ1, ξ2)
or φpqr(ξ1, ξ2, ξ3) respectively in, again, two and three dimensions. Even if several kinds of bases
exist, we will focus on the most commonly used in the SEM and that can be described, as
follows, in terms of the product of one-dimensional functions:

φpq(ξ1, ξ2) = ψp(ξ1)ψq(ξ2).

This structure is very useful because, exploiting the sum factorization technique [4], many nu-
merical operations can be performed much more efficiently.
Let us consider a two-dimensional problem and the associated standard region Ωst = Q2 defined
as follows (see figure 1.1a):

Ωst = Q2 = {−1 ≤ ξ1, ξ2 ≤ 1}.

Since the region is defined as the tensor product of two one-dimensional domains, one can easily
generate a basis as the tensor product of two one-dimensional bases, like the ones defined in
section 1.1.2.1:

φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2), 0 ≤ p, q; p ≤ P1; q ≤ P2.

It can be observed that the order of the polynomials can be different in the two directions, this
property is useful when the elements are very long and narrow or the solution develops in a
particular direction, such an approach is used to balance the accuracy in both the directions.
Moreover, if the involved one-dimensional bases are hierarchical, the same property is guaranteed
also for the one defined as their tensor product. Even more flexibility can be achieved if the



16 Spectral Element Method

(a) Reference square Q2 (b) Reference triangle T 2

Figure (1.1) Most common reference domains Ωst in two dimensions

boundary/interior decomposition is exploited. It consists in dividing all the expansion basis in
two sets: one that includes all the boundary modes and one that includes the internal ones.
The former ones are characterized by the fact that they have a unit magnitude at one vertex of
the element and are zero at the other ones (vertex modes) or at one node of an edge while they
are zero on the other ones (edge modes). In three dimensions the definition can be analogously
extended to describe the face modes. The internal modes are all the remaining modes, their value
in correspondence to any node on the boundary of the element is always zero. This splitting,
that is more intuitive in a basis defined as tensor product, but that can be achieved also in
other scenarios, is the key element to ensure the efficiency of the SEM, exploiting the static
condensation technique (described in section 1.3.2).
Furthermore, one does not need all the modes associated to the tensor product, but can rely in
a smaller set, defined by the union of the modes required to generate an horizontal level of the
Pascal’s triangle with the edge modes:

SP = span
{
{ξi1ξ

j
2}(ij)∈P ∪ ξ

P
1 ξ2 ∪ ξ1ξ

P
2

}
,

P = {(i, j)|0 ≤ i, j ≤ P ; i+ j ≤ P},

where the last two polynomials in the definition of SP are needed to enrich a basis that would
be suitable for a triangular domain to obtain the space required by a quadrilateral one. Here the
subscripts denotes the concerned dimension while the superscripts specify which modes have to
be considered within the expansion bases. This space is called serendipity space [5] and could
be generalized considering both nodal and modal basis together. These results can be simply
extended to higher dimensions where the reference domains are cubes or hypercubes.
Unfortunately, when the geometry of the problem is complex, it is better to use unstructured



Extension to multidimensional problems 17

meshes with triangles or tetrahedrons. Let us focus again on the two-dimensional case, where
the reference domain is the following triangle (see figure 1.1b):

T 2 = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0}.

In order to exploit again a tensor product structure, it is necessary to consider a different
coordinate system through the transformation:

η1 = 2
(1 + ξ1)

(1− ξ2)
− 1,

η2 = ξ2,

(1.21)

and its inverse:

ξ1 =
(1 + η1)(1− η2)

2
− 1,

ξ2 = η2.

With this new coordinate system (η1, η2) it is possible to redefine T 2 as:

T 2 = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1}.

It should be noted that such a definition represents the reference square Q2 in terms of the new
coordinate system (η1, η2). Therefore, one can observe that the mapping (1.21) transforms the
reference triangle into the reference square. However, such a transformation expands a single
vertex into an entire edge, while its inverse collapses an entire edge into a single vertex. Because
of this, such a coordinate system is also called collapsed coordinate system. In three dimensions
it is possible to reduce prisms, pyramids and tetrahedrons to hexahedrons in an analogous way
but with different mappings, possibly repeatedly applied. Another approach to generate a basis
for triangular/tetrahedral elements consists of using the so called barycentric coordinate system,
that is very useful when the property of rotational symmetry is required [42].

1.2.2. Local operations

1.2.2.1. Integration

As explained in section 1.1.2.2, one has to be able to efficiently and accurately compute the
involved integral in order to obtain the linear system that has to be solved. The most trivial
extension to the techniques presented in such a section is the numerical integration over the
two-dimensional reference domain Q2:∫

Q2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ 1

−1
u(ξ1, ξ2)dξ1dξ2.

Such an integral can be numerically approximated usingQ1 points in the first direction, Q2 points
in the second one and the discussed one-dimensional quadrature rules in both the directions in
the following way: ∫

Q2

u(ξ1, ξ2)dξ1dξ2 ≈
Q1−1∑
i=0

wi

Q2−1∑
j=0

wju(ξi1, ξ
j
2)

 .



18 Spectral Element Method

It should be noted that it is possible to exploit any type of one-dimensional quadrature rule.
However, in order to simplify the imposition of the boundary conditions, it is convenient to rely
on rules that include both the end points.
In an analogous way, if one wants to integrate over the reference triangle T 2, using the collapsed
coordinate system (1.21), one could do it in the following way:∫

T 2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ −ξ2
−1

u(ξ1, ξ2)dξ1dξ2

=

∫ 1

−1

∫ 1

−1
u(η1, η2)

∣∣∣∣ ∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ dη1dη2

=

∫ 1

−1

∫ 1

−1
u(η1, η2)

(
1− η2

2

)
dη1dη2

≈
Q1−1∑
i=0

wi

Q2−1∑
j=0

wju
(
ηi1, η

j
2

)(1− ηj2
2

) .
(1.22)

However, it is better to use the Gauss-Jacobi quadrature rule:∫ 1

−1
(1− ξ)α(1 + ξ)βu(ξ)dξ =

Q−1∑
i=0

wα,βu(ξα,βi ),

because the Jacobian contribution |∂(ξ1, ξ2)/∂(η1, η2)| can be easily included in the quadrature
weights when α = 1 and β = 0. This way, the approximation in the last row of equation (1.22)
can be improved with the following quadrature rule:∫ 1

−1

∫ 1

−1
u(η1, η2)

(
1− η2

2

)
dη1dη2 =

1

2

Q1−1∑
i=0

w0,0
i

Q2−1∑
j=0

w1,0
j u

(
ηi1, η

j
2

) .
As in the previous sections, it is possible to generalize these rules to handle reference domains
associated with different dimensions and shapes.

1.2.2.2. Differentiation

In this section we will explain how to numerically differentiate a function. Firstly, it should
be observed that we will restrict ourselves to differentiation in terms of the local variable ξ,
therefore, the functions to be derived has to be approximated via Lagrange polynomials hi(ξ)
but, as we previously remarked, the modal expansions can always be represented in terms of
Lagrange polynomials. Since each one-dimensional function can be approximated as:

u(ξ) ≈ uδ(ξ) =
P∑
i=0

uihi(ξ),

the derivative of such an approximation can be expressed as

∂uδ

∂ξ
(ξ) =

P∑
i=0

up
∂hi
∂ξ

(ξ) =
P∑
i=0

u′ihi(ξ),



Extension to multidimensional problems 19

where

u′i =

P∑
j=0

uj
∂hj
∂ξ

(ξ)

∣∣∣∣∣∣
ξi

.

This transformation is very important when non-linear terms are present, for example the ad-
vection term in the momentum balance equation:

uδ(ξ)
∂uδ

∂ξ
(ξ), (1.23)

can be approximated as:

uδ(ξ)
∂uδ

∂ξ
(ξ) ≈

P∑
i=0

uiu
′
ihi(ξ).

In fact, if one evaluates (1.23) in ξ = ξk, one obtains:

uδ(ξk)
∂uδ

∂ξk
(ξ) =

(
P∑
i=0

uihi(ξk)

) P∑
j=0

uj
∂hj
∂ξ

(ξk)


=

(
P∑
i=0

uihi(ξk)

) P∑
j=0

u′jhj(ξk)


=

P∑
i=0

uiu
′
ihi(ξ),

where, to obtain the last equality, one exploits the fact that hi(ξk) = δik and hj(ξk) = δjk. It
should be observed, however, that if uδ(ξ) is a polynomial of order P , the expression (1.23) is
represented by a polynomial of order (2P − 1) but is approximated by one of order P . Nev-
ertheless, in correspondence to the interpolation nodes, the values of the polynomial of order
(2P − 1) that interpolates it and the ones of the obtained approximation are the same.
Let us consider the differentiation of a two-dimensional expansion in the reference domainQ2. As
in the one-dimensional case, such an expansion is written in terms of the Lagrange polynomials
as follows:

uδ(ξ1, ξ2) =

P1∑
i=0

P2∑
j=0

uijhi(ξ1)hj(ξ2),

with

uij = uδ(ξi1, ξ
j
2).

Then, it is possible to derive again an expression for its derivative exploiting the fact that the
function can be written as the sum of the product of terms that depend by a single coordinate.



20 Spectral Element Method

The obtained partial derivatives with respect to ξ1 and ξ2 are the following ones:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑
i=0

P2∑
j=0

uij
dhi(ξ1)

dξ1
hj(ξ2),

∂uδ

∂ξ2
(ξ1, ξ2) =

P1∑
i=0

P2∑
j=0

uijhi(ξ1)
dhj(ξ2)

dξ2
.

(1.24)

Once more, in order to differentiate uδ on the triangular region T 2, it is convenient to use the
Lagrange polynomials with the collapsed coordinates. Let us consider the function:

uδ(ξ1, ξ2) =

P1∑
i=0

P2∑
j=0

uijhi(η1)hj(η2),

where uij = uδ(ηi1, η
j
2) while η1 and η2 are defined by the relations (1.21). In order to derive

with respect to ξ1 and ξ2, one can rely on the chain rule:
∂

∂ξ1

∂

∂ξ2

 =


2

(1− η2)

∂

∂η1

2
(1 + η1)

(1− η2)

∂

∂η1
+

∂

∂η2

 . (1.25)

Finally, one can exploit the fact that the definition of T 2 in terms of the collapsed coordinates
is identical to the one of Q2 in terms of the Cartesian ones, this way one can consider equa-
tions (1.24) in the variables (η1, η2) instead of (ξ1, ξ2) and use the same formulas to obtain the
derivative of uδ on a triangle with respect to η1 and η2. Finally, one can use the chain rule in
equation (1.25) to obtain it in terms of ξ1 and ξ2. It is interesting, from the computational point
of view, to observe that the denominators in expression (1.25) tend to infinity when η2 → 1. To
overcome this problem is useful to consider a Radau-type Gaussian quadrature to avoid consider
that specific point.
Similar considerations can obviously be extended to three-dimensional cases in regions with
different shapes by exploiting different coordinate systems.

1.2.2.3. Operations on arbitrary elements

In the previous section we discussed the numerical integration and differentiation in the reference
domain. However, in general, one has to compute integrals and derivatives in elements with
arbitrary shapes, orientations and positions with respect to a globally fixed frame of reference.
To handle these scenarios, it is convenient to consider a mapping (different for each element)
between the element itself and the reference domain, it will be denoted as:

x1 = χe1(ξ1, ξ2), x2 = χe2(ξ1, ξ2). (1.26)



Extension to multidimensional problems 21

For instance, if the element e is geometrically represented by a triangle with straight edges and
with vertices, in global coordinates, equal to {(xA1 , xA2 ), (xB1 , x

B
2 ), (xC1 , x

C
2 )}, and considering C

as the collapsed vertex, then the mapping associated to x1 is the following one:

x1 = χe1(η1, η2) = xA1
(1− η1)(1− η2)

4
+ xB1

(1 + η1)(1− η2)

4
+ xC1

(1 + η2)

2
, (1.27)

or, in Cartesian coordinates:

x1 = χe1(ξ1, ξ2) = xA1 (−ξ1 − ξ2) + xB1 (1 + ξ1) + xC1
(1 + ξ2)

2
. (1.28)

Analogously, one can construct a similar mapping for quadrilateral regions with straight edges
as follows:

x1 = χ1(ξ1, ξ2) = xA1
(1− ξ1)(1− ξ2)

4
+ xB1

(1 + ξ1)(1− ξ2)

4
+

+ xC1
(1 + ξ1)(1 + ξ2)

4
+ xD1

(1− ξ1)(1 + ξ2)

4
.

(1.29)

These mappings are very useful because they allow one to transform complex operations in
arbitrary domains into operations that can be locally performed on the reference one. For
instance, if one wants to integrate the function u(x1, x2) on the arbitrary domain Ωe, one can
exploit the following formula:∫

Ωe
u(x1, x2)dx1dx2 =

∫
Ωst

u(ξ1, ξ2) |JnD| dξ1dξ2,

where JnD is the n-dimensional Jacobian of the previous mappings. If the domain is two-
dimensional and the elements are straight-sided triangles or quadrilaterals, one can evaluate
such a quantity computing the derivatives from expressions (1.28) and (1.29):

J2D =

∣∣∣∣∣∣∣∣∣
∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣∣∣ =
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
. (1.30)

Such a Jacobian is very useful also when computing derivatives in arbitrary domains. For
instance, let us consider, always in a two-dimensional case for brevity, the chain rule required
to compute the gradient:

∇ =


∂

∂x1

∂

∂x2

 =


∂ξ1

∂x1

∂

∂ξ1

∂ξ2

∂x1

∂

∂ξ2

∂ξ1

∂x2

∂

∂ξ1

∂ξ2

∂x2

∂

∂ξ2

 . (1.31)

One still needs an expression for the coefficients in the matrix, to obtain them one can consider
the total change of the general function u(ξ1, ξ2):

du(ξ1, ξ2) =
∂u

∂ξ1
dξ1 +

∂u

∂ξ2
dξ2,



22 Spectral Element Method

and, replacing u(ξ1, ξ2) by the expressions in equation (1.26), one can obtain the system:

 dx1

dx2

 =


∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2


 dξ1

dξ2

 .
Such a system can be inverted to obtain

 dξ1

dξ2

 =
1

J2D


∂x2

∂ξ2
−∂x1

∂ξ2

−∂x2

∂ξ1

∂x1

∂ξ1


 dx1

dx2

 , (1.32)

where J2D is the same Jacobian as in expression (1.30). However, since the mapping between
the arbitrary element and the standard one is invertible, one can apply the chain rule to ξ1 and
ξ2 directly, obtaining the following system:

 dξ1

dξ2

 =
1

J2D


∂x1

∂ξ1
−∂x1

∂ξ2

−∂x2

∂ξ1

∂x2

∂ξ2


 dx1

dx2

 . (1.33)

Finally, it is possible to equate systems (1.32) and (1.33) to obtain the coefficients needed to
compute the gradient in equation (1.31):

∂ξ1

∂x1
=

1

J2D

∂x2

∂ξ2
,

∂ξ1

∂x2
= − 1

J2D

∂x1

∂ξ2
,

∂ξ2

∂x2
=

1

J2D

∂x1

∂ξ1
,

∂ξ2

∂x1
= − 1

J2D

∂x2

∂ξ1
.

1.2.3. Global operations

All the described operations can be defined as local because they always involved a single element.
However, in order to compute the solution of the Galerkin problem on the entire domain, it
is crucial to be able to group together all the local results. Since the elements can be very
different from each other, one has to extend the local expansion modes to global functions. Let
us consider the arbitrary two-dimensional element Ωe and a local expansion mode φepq(x1, x2)

defined in Ωe: it can be easily extended to a global expansion mode φΩ
pq(x1, x2) defining it as

φΩ
pq(x1, x2) = φepq(x1, x2) when (x1, x2) ∈ Ωe, while φΩ

pq(x1, x2) = 0 otherwise. It can be noted
that the extension of a local interior mode is a C0 continuous function because it is exactly zero
on the boundary of the element but the same property does not hold for the local boundary
modes. Unfortunately, in order obtain a C0 continuous solution of the Galerkin problem, it is
important to consider only continuous basis functions, therefore one has to properly handle the



Extension to multidimensional problems 23

boundary modes.
To generate the C0 continuous basis, one can consider all the interior expansion modes and
define again the boundary ones gluing the similar boundary modes together [42]. The definition
of similarity of boundary modes can vary according to the type of modes. Let us consider two
nodal expansion modes defined in two different elements (the common support can only be a
vertex or an edge), they are said to be similar if there is a node, on the common support, where
their value is exactly one, while they are zero on the other ones. In an analogous way two modal
expansion modes are similar if they have the same polynomial order. However, it should be
noted that the modal modes are defined with respect to the specific local coordinate system of
their element, it is thus possible that the sign of one of them has to be reversed in order to
obtain two matching functions on the common boundary.
Moreover, we remark that this process can become more complex if non-Cartesian coordinate
systems are considered or if the problem dimension is higher. In the former case one has to
properly manage the specific chosen reference system. For instance, if one uses the collapsed
coordinates, it is necessary to correctly orient all the elements in order to obtain consistent
coordinate lines in adjacent elements.
In matrix notation, one can define the assembly matrix A as the matrix the relates the local
degrees of freedom to the global ones in the following way:

ûl = Aûg.

Here ûl is the vector that contains the coefficients associated to the local degrees of freedom,
while ûg is the vector of the coefficients associated to the global ones. Denoting as Neof the
number of local degrees of freedom and as Ndof the number of global ones, the dimension of A
is Neof × Ndof . The matrix A is very sparse, in fact A[i][j] 6= 0 only if the modes associated
to the local coefficient ûl[i] contributes to the global one ûg[j]. This way, in each row there is
exactly one non-zero entry, while multiple values different than zero can be present in the same
column because the global boundary modes are generated by more local modes. Finally, it can
be observed that if the expansion modes are of nodal type, then A can contain only 0 or 1,
while, if the modes are modal, the operations of reversing the sign of a mode are represented by
means of the value −1.

1.2.3.1. Static condensation method

In section 1.2.2 all the techniques that are needed to construct the local matrices (associated
to the problem but restricted to the degrees of freedom within a single element) have been
discussed, while in section 1.2.3 the assembly matrix A has been presented. The latter is useful
to transform the system obtained assembling all the local matrices, where the unknowns are
expressed in local coordinates, into a new system with global unknowns. Let us assume, in this
section, that one wants to solve the following linear systems:

Mu = f, (1.34)

where u is the vector of the coefficients associated to the global degrees of freedom. Let us
consider the following notation: Nbnd is the number of global degrees of freedom associated to



24 Spectral Element Method

boundary modes, Nint the number of global degrees of freedom associated to internal modes, and
Ntot can thus be defined as Ntot = Nbnd +Nint. It is important to highlight that, thanks to the
assembly matrix A, one can sort the global degrees of freedom, grouped by elements, in order
to have all the unknowns related to boundary modes in the first Nbnd positions of the vector u,
while considering all the unknowns associated to internal modes in the last Nint positions. This
way, the different objects in equation (1.34) can be structured as follows:

M =

 Mb Mc

MT
c Mi

 , u =

 ub

ui

 , f =

 fb

fi

 . (1.35)

Here u and f are simply organized in boundary and interior components, while M is divided in
four different blocks. The first one is Mb, it belongs to RNbnd×Nbnd and each entry of it represents
the interaction between two boundary modes. In an analogous way, Mi ∈ RNint×Nint contains the
information about the interaction between the interior modes. Finally, Mc ∈ RNbnd×Nint accounts
for the coupling between the boundary and the interior modes, while MT

c is its transpose. It
should be observed that the boundary-boundary matrix Mb is sparse and its bandwidth can be
reduced exploiting existent algorithms [27] or heuristics [48], while the boundary-interior matrix
Mc is a very sparse block diagonal matrix and it is easily generated by the corresponding terms
of the local matrices. Moreover, the interior-interior matrix Mi is block diagonal because the
interior modes of an element are orthogonal to the interior modes in other elements. Therefore,
it is composed by Nel blocks (where Nel is the number of elements) that are very small because
they contain only the interior degrees of freedom of a single element; such a property is the key
factor to efficiently solve system (1.34) using the static condensation method [42].
Let us consider again system (1.34) with the structure described in (1.35): Mb Mc

MT
c Mi

 ub

ui

 =

 fb

fi

 . (1.36)

One can pre-multiply such a system by the matrix: I −McM
−1
i

0 I

 ,
obtaining the following linear system: Mb −McM

−1
i MT

c 0

MT
c Mi

 ub

ui

 =

 fb −McM
−1
i fi

fi

 . (1.37)

Therefore, it is possible to decouple the boundary unknowns from the interior ones. The equation
associated to the boundary unknowns is the following one:(

Mb −McM
−1
i MT

c

)
ub = fb −McM

−1
i fi. (1.38)



Application to incompressible flows 25

After having solved equation (1.38), it is possible to exploit the second row of system (1.37) to
easily obtain ui as:

ui = M−1
i fi −M−1

i MT
c ub.

It should be noted that, even if from the mathematical point of view it is always possible to
solve a linear system with the described method, from the computational one the method is
useful only when it is efficient. Such an efficiency can be ensured if a specific structure of the
submatrices can be exploited. However, as noted above, Mi and Mc are two block diagonal
matrices with the blocks associated to the different elements. One can take advantage of such a
structure to efficiently invert Mi, in fact M−1

i is a block diagonal matrix with each block equal to
the inverse of the corresponding block of Mi (each submatrix can be locally inverted), moreover,
all the operations that do not involve the matrix Mb can be computed locally. This is very
important because the local operations can be performed in parallel, significantly increasing the
efficiency of the method. Finally, it can be noted that the only system that has to be solved is
the one in equation (1.38), which dimension is only Nbnd.
It should be noted that the described method is useful to efficiently solve systems characterized
by the structure described in equation (1.36), however, it can be improved pairing it with other
methods as in [33], where a multigrid approach has been used. Finally, it is possible to use the
static condensation method to enhance the efficiency of the reduced basis method [40].

1.3. Application to incompressible flows

As written in section 1.1.1, the spectral element method is based on the Galerkin formulation.
Therefore, in this section we will discuss, following [42] in the first part of it, the weak formulation
of the Navier-Stokes equations, the required functional spaces and some techniques to efficiently
compute a discrete solution of such a problem.
Let us consider an incompressible and isothermal flow, characterized by a constant viscosity
ν and a constant density ρ, coupled with proper boundary conditions on the boundary of the
domain Ω. The problem is governed by the incompressible Navier-Stokes equations: ∇ · u = 0

∂u

∂t
+ u · ∇u− ν∆u +∇p = 0

, (1.39)

where the pressure p has been redefined, as in section A.1, normalizing it over the constant
density. In order to obtain a well-posed Galerkin problem, one has to firstly select the proper
functional spaces for the velocity u and for the pressure p. They can be chosen according to
the higher spatial derivatives in system (1.39). Therefore, in order to study the property of the
Galerkin problem, system (1.39) is equivalent to the steady Stokes problem (1.40). In fact, in
both the problems, the highest spatial derivatives are represented by the terms ∆u and ∇p and,
consequently, the functional spaces required by the weak Navier-Stokes problem coincide with
the ones of the Stokes problem. {

∇ · u = 0

− ν∆u +∇p = f
, (1.40)



26 Spectral Element Method

here f is a forcing term that can include all the remaining terms of equation (1.39) when
explicitly treated. Recalling that the Dirichlet boundary conditions can be imposed via a lifting
function, the appropriate functional spaces, respectively for the velocity and for the pressure,
are the following ones:

H1
0 (Ω) = {w ∈ H1(Ω)|w = 0 on ∂ΩD},

L2
0(Ω) = {q ∈ L2(Ω)|

∫
Ω
qdx = 0},

where ∂ΩD represents the portion of the boundary of Ω associated to Dirichlet boundary con-
ditions.
In order to obtain the weak formulation of problem (1.40), one multiplies each equation by
proper test functions and integrates over the entire domain obtaining:

∫
Ω

(∇ · u)q = 0, ∀q ∈ L2
0(Ω)∫

Ω
(−ν∆u +∇p) ·w =

∫
Ω

f ·w, ∀w ∈ H1
0 (Ω)

. (1.41)

If we respectively denote L2
0(Ω) and H1

0 (Ω) as Q and V , we can name as Qδ ⊂ Q and V δ ⊂ V
the discrete pressure and velocity spaces. They are defined using a polynomial base inside each
element but, unfortunately, their order has to be properly chosen in order to satisfy the so called
inf-sup condition. In order to study such a condition, let us consider the following notation:

a(v,w) = ν

∫
Ω
∇v · ∇w = ν (∇v,∇w),

b(w, q) = −
∫

Ω
(∇ ·w)q = −(∇ ·w, q),

f(w) =

∫
Ω

f ·w = (f ,w).

(1.42)

This way it is possible to reformulate problem (1.41) in terms of the operators a(·, ·) : V ×V → R
and b(·, ·) : V ×Q→ R for the discrete solution (uδ, pδ) ∈ V δ ×Qδ as follows:{

a(v,uδ) + b(v, pδ) = f(v), ∀v ∈ V δ

b(uδ, q) = 0, ∀q ∈ Qδ
. (1.43)

Assuming that all the integrals are exactly computed thanks to proper Gaussian quadrature
rules, then the solution of problem (1.43) exists and is unique only if there exists a constant
βδ > 0 such that:

sup
v∈V δ

b(v, q)

‖v‖V
≥ βδ‖q‖Q, ∀q ∈ Qδ. (1.44)

Such a condition is called inf-sup condition and it will be more deeply investigated, together
with the Petrov-Galerkin formulation, in section 2.4.1. It is very important because, if it is not
satisfied, spurious pressure modes can exist, preventing the solution to be unique, therefore, the



Application to incompressible flows 27

problem can not be numerically solved because it is ill-posed. A spurious pressure mode is a
pressure field q∗ such that:

b(v, q∗) = 0, ∀v ∈ V δ.

It should be noted that, if a spurious mode q∗ exists and if (uδ, pδ) is a solution of problem
(1.43), then (uδ, pδ + cq∗) is another solution for any c ∈ R. This way, the solution (uδ, pδ) is
not unique anymore.
However, when the solution is unique, the following estimates hold:

‖uδ‖V ≤
γ

αδ
‖f‖V δ ′ ,

‖pδ‖Q ≤
1

βδ

(
1 +

γ2

αδ

)
‖f‖V δ ′ ,

where V δ ′ is the dual space of V δ, γ is the continuity constant associated to the operator a(·, ·):

|a(v,w)| ≤ γ‖v‖V ‖w‖V ,

and αδ is its coercivity constant:

a(v,v) ≥ αδ‖v‖2V .

It is important to observe that βδ may depend on the involved discretization, both on the mesh
and on the polynomial order associated to the discrete solutions. Unfortunately, it might happen
that, even if for a given type of discretization βδ > 0 exists, it is possible that βδ tends to zero
when the number of elements increases, their average size decreases or the polynomial order
increases. One of the possible approaches to overcome this problem is to reduce the dimension
of the space Qδ. An example is given by the PP (Ωe)/PP−2(Ωe) formulation (see [51] and [52]),
where the velocity is approximated with functions that can be represented by polynomials of
order P in each element, while the order of the polynomials associated to the pressure is only
P − 2. In this work we will consider only the PP (Ωe)/PP−2(Ωe) formulation since it leads to
inf-sup stable problems.

1.3.1. Iterative methods in CFD

Even if the Stokes equations allow one to easily obtain solutions that are very close to the
solutions of the complete Navier-Stokes system when the Reynolds number is very low, such an
approximation is worse and worse when Re increases. On the other hand, the Euler equations
presented in section A.2 can be used only when Re is very high. Therefore, when Re does not
allow one to use these two approximations, one is obliged to solve the complete Navier-Stokes
system.
Since in this work we are interested in steady and incompressible solutions, let us consider the
steady Navier-Stokes equations with the divergence-free constraint:{

∇ · u = 0

u · ∇u− ν∆u +∇p = 0
. (1.45)



28 Spectral Element Method

Since only linear problems can be solved, it is necessary to linearize the non-linear term u · ∇u
in system (1.45) and solve the non-linear system with an iterative approach. The two most used
schemes are the Picard iteration and the Newton one (see [16] for a description of these and
other methods).
Let us consider first the Picard iteration method. Here one assumes that, if the iterative solver
is converging to a solution ũ, the iterations uk and uk+1 have to be closer and closer, this way
uk+1 can be approximated with uk. Therefore, the non-linear term can be approximated in the
following way:

uk+1 · ∇uk+1 ≈ uk · ∇uk+1,

where uk is the velocity obtained in the last iteration and it is known, while uk+1 is the unknown
solution. After the linearization, during each iteration of the Picard method, one has to solve
the following Oseen problem:{

∇ · uk+1 = 0

uk · ∇uk+1 − ν∆uk+1 +∇pk+1 = 0
. (1.46)

On the other hand, one has to consider the following expansion to derive the Newton iterations:

uk+1 = uk + δuk, (1.47)

where uk is again the velocity field obtained in the k-th iteration, while δuk is a correction
required to obtain the subsequent velocity field from uk. Substituting equation (1.47) into the
non-linear term, one can write it as:

uk+1 · ∇uk+1 =
(
uk + δuk

)
· ∇
(
uk + δuk

)
=
[
uk +

(
uk+1 − uk

)]
· ∇
(
uk + δuk

)
= uk · ∇

(
uk + δuk

)
+
(
uk+1 − uk

)
· ∇
(
uk + δuk

)
= uk · ∇uk+1 +

(
uk+1 − uk

)
· ∇
(
uk + δuk

)
= uk · ∇uk+1 + uk+1 · ∇uk − uk · ∇uk + uk+1 · ∇δuk − uk · ∇δuk

= uk · ∇uk+1 + uk+1 · ∇uk − uk · ∇uk + δuk · ∇δuk.

Assuming that the iterative solver is converging, the approximation uk+1 ≈ uk holds and,
therefore, δuk ≈ 0. As a result, one can neglect the term δuk ·∇δuk and substitute the obtained
approximation of the non-linear term into equation (1.45) in the following way:{

∇ · uk+1 = 0

uk+1 · ∇uk + uk · ∇uk+1 − ν∆uk+1 +∇pk+1 = uk · ∇uk
. (1.48)

It should be noted that both methods rely on a first velocity field u0, that can be obtained
solving the Stokes problem, that is equivalent to the two methods when u0 = 0, but they do
not need an initial guess for the pressure. Moreover, it is important to highlight that the Picard



Application to incompressible flows 29

iteration method is very stable, in fact it can converge even with very bad initial guesses, but the
convergence is only linear. Such a slow converge could be a problem if one wants to compute a
solution very close to a bifurcation point because the number of required iterations may increase
too much, heavily slowing down the computation. On the other hand, the Newton method is
much faster because it is characterized by a quadratic convergence, but it needs a very good
initial guess. If a good initial guess is not available, an iterative solver based on the Newton
method may diverge. Therefore, sometimes it is better to use some Picard iterations before the
Newton ones in order to compute a good enough velocity field for the first Newton step. Such a
technique will be used and generalized in section 4.2.1.2 to improve the stability of the deflation
method (see section 3.3).

1.3.2. Static condensation method in CFD

In this section the static condensation method discussed in section 1.2.3.1 will be more deeply
explained, focusing on the matrices that arise from the Galerkin formulation of the incom-
pressible Navier-Stokes equations. We remark that, since the used methods are implemented
in Nektar++, a more comprehensive description of the static condensation method applied to
the Navier-Stokes equations and of other techniques can be found in [78], that is the reference
followed to develop the following discussion.
Once again, let us consider the incompressible Navier-Stokes system:{

∇ · u = 0

u · ∇u− ν∆u +∇p = 0
. (1.49)

Multiplying by the proper test functions and integrating over the entire domain one can obtain
its weak formulation. Moreover, let us consider the notation (1.42) and denote the non-linear
operator associated to the term u · ∇u as:

c(u,v,w) =

∫
Ω

(v · ∇w) u.

Therefore, the Galerkin formulation can be written as:

Find (u, p) ∈ V ×Q such that:{
c(v,u,u) + a(v,u) + b(v, p) = f(v), ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q
. (1.50)

System (1.50) can be linearized according to the Picard iteration:{
c(v,uk,uk+1) + a(v,uk+1) + b(v, pk+1) = f(v), ∀v ∈ V

b(uk+1, q) = 0, ∀q ∈ Q
, (1.51)



30 Spectral Element Method

or to the Newton one:{
c(v,uk+1,uk) + c(v,uk,uk+1) + a(v,uk+1) + b(v, pk+1) = f(v) + c(v,uk,uk), ∀v ∈ V

b(uk+1, q) = 0, ∀q ∈ Q
.

(1.52)

Finally, systems (1.51) and (1.52) can be discretized and the unknown coefficients can be sorted
in order to have the ones related to the velocity boundary modes ubnd at the beginning of
the vector, the ones associated to the velocity interior modes uint at its end, and the pressure
coefficients between ubnd and uint. The obtained linear system [36] can be written as:

A −DT
bnd B

−Dbnd 0 −Dint

B̃T −DT
int C




ubnd

p

uint

 =


fbnd

0

fint

 , (1.53)

where the right hand side has been sorted according to the unknown vector and the following
notation has been used:

A[i][j] = c(φjbnd, φ
i
bnd,u

k) + c(φjbnd,u
k, φibnd) + a(φjbnd, φ

i
bnd),

B[i][j] = c(φjbnd, φ
i
int,u

k) + c(φjbnd,u
k, φiint) + a(φjbnd, φ

i
int),

B̃T [i][j] = c(φjint, φ
i
bnd,u

k) + c(φjint,u
k, φibnd) + a(φjint, φ

i
bnd),

C[i][j] = c(φjint, φ
i
int,u

k) + c(φjint,u
k, φiint) + a(φjint, φ

i
int),

Dbnd[i][j] = b(φjbnd, ψ
i),

Dint[i][j] = b(φjint, ψ
i),

fbnd[i] = f(φibnd) + c(φibnd,u
k,uk),

fint[i] = f(φiint) + c(φiint,u
k,uk).

Here φmbnd represents the m-th global velocity boundary mode, φmint the m-th global velocity
interior mode and ψm the m-th global pressure mode. Moreover, it should be noted that
the terms of the form c(φ··, φ

·
·,u

k) or c(φ··,u
k,uk) are different from zero only if the Newton

linearization has been used.
As in section 1.2.3.1, we highlight that the matrix C is block diagonal because it represents
the interaction between the velocity interior modes that are orthogonal to the modes in other
elements, it is therefore efficient to explicitly invert it and premultiply system (1.53) as follows:

I 0 −BC−1

0 I DintC
−1

0 0 I





A −DT
bnd B

−Dbnd 0 −Dint

B̃T −DT
int C




ubnd

p

uint

 =


fbnd

0

fint


 ,



Application to incompressible flows 31

where I is the identity matrix, obtaining the following partially decoupled system:
A−BC−1B̃T −DT

bnd +BC−1DT
int 0

−Dbnd +DintC
−1B̃T −DintC

−1DT
int 0

B̃T −DT
int C




ubnd

p

uint

 =


fbnd −BC−1fint

DintC
−1fint

fint

 . (1.54)

Moreover, it is possible to perform a second level of static condensation on the 2× 2 block that
relates the velocity boundary modes and the pressure ones. To do so, one can split the boundary
degrees of freedom into the mean pressure p0 (or a degree of freedom that can represent it) and
the remaining degrees of freedom p̂. The mean pressure is then grouped with the velocity
boundary coefficients in the new variable b = [ubnd, p0] and the first two equations of system
(1.54) can therefore be expressed as: Â B̂

Ĉ D̂

 b

p̂

 =

 f̂bnd

f̂p

 , (1.55)

where

Â =

 A−BC−1B̂T
(
−DT

bnd +BC−1DT
int

)
{(i,0)}(

−Dbnd +DintC
−1B̃T

)
{(0,j)}

−
(
DintC

−1DT
int

)
(0,0)

 ,
B̂ =

 (−DT
bnd +BC−1DT

int

)
{(i,j):j 6=0}

−
(
DintC

−1DT
int

)
{(0,j)}

 ,
Ĉ =

[
−Dbnd +DintC

−1B̃T −
(
DintC

−1DT
int

)
{(i,0):i 6=0}

]
,

D̂ =
[
−
(
DintC

−1DT
int

)
{(i,j):i 6=0,j 6=0}

]
,

f̂bnd =

 fbnd −BC−1fint

−
(
DintC

−1fint
)

0

 ,
f̂p =

[(
DintC

−1fint
)
{i:i 6=0}

]
.

Here we assumed that the first element in p was p0, but the same matrix decomposition can be
obtained properly sorting the pressure coefficients. Therefore, the subscripts 0 in the submatrices
represent the row or the column associated to the mean pressure.
Moreover, it can be observed that D̂ is block diagonal and it is thus possible to efficiently invert
it to achieve the second level of the static condensation premultiplying system (1.55) by the
proper matrix in the following way: I −B̂D̂−1

0 I


 Â B̂

Ĉ D̂

 b

p̂

 =

 f̂bnd

f̂p

 . (1.56)



32 Spectral Element Method

This way one can obtain the system: Â− B̂D̂−1Ĉ 0

Ĉ D̂

 b

p̂

 =

 f̂bnd − B̂D̂−1f̂p

f̂p

 . (1.57)

It is important to observe that the system defined by the first row of equation (1.57) is the only
one that has to be solved and that it is much smaller than the initial one (equation (1.53)). After
having computed ubnd and p0 with such a system, it is possible to recover the other pressure
coefficients as:

p̂ = D−1
(̂

fp − Ĉb
)
.

We highlight that the matrix D has already been inverted to compute b, therefore it can be
used to directly obtain p̂ without solving any linear system. Finally, uint can be recovered with
the third row of equation (1.54):

uint = C−1
(

fint − B̃Tubnd +DT
intp
)
.

Once again, since C−1 has already been computed, it is possible to directly recover uint.



2. Reduced Basis Methods

In order to numerically solve a system of PDEs, many different methods have been developed
in the last decades. Unfortunately, one of their common disadvantages is that they discretize
a continuous system with a combination of numerous unknowns in order to obtain a discrete
solution that is as close as possible to the continuous one. This way, even if it is possible to obtain
an arbitrary level of accuracy without knowing any information about the solution, assembling
and solving the obtained linear systems is very expensive. Moreover, one might be interested
in solving several times the same problem with different values of some parameters but, due to
the huge computational cost required by such methods, the computation can easily become too
expensive. Common situations where the classical numerical methods can not be used because
of their cost are, for instance, related to optimal control, uncertainty quantification, design,
real time queries and optimization. In this work we propose a class of methods called reduced
basis (RB) methods [38], they divide the computations in two different phases. The first phase,
named offline phase, is very expensive and it is used to set up the model, then the problem is
very efficiently solved for a specific value of the parameter in the online phase [50]. Finally, we
highlight that the method will be presented as in [38].

2.1. Problem formulation

Let us consider a suitably regular domain Ω ⊂ Rd with d = 1, 2, 3 and, in order to prop-
erly impose the Dirichlet boundary conditions, let us assume that a measurable portion of the
boundary ΓD is associated to such a condition. It should be noted that, in this work, we always
analyze Galerkin problems associated to regular domains, even if it is possible to extend them
considering more general geometries [31]. It is then possible to define the Hilbert space V such
that:

V = V (Ω) = {v ∈ H1(Ω) : v
ΓD

= 0},

with the inner product (v, w)V , ∀v, w ∈ V and the corresponding induced norm ‖v‖V =
√

(v, v)V ,
∀v ∈ V . Finally, let us introduce the parameter space P ⊂ Rn that contains the involved param-
eter vector µ = (µ1, ..., µn). Consequently, it is possible to define the abstract and parametric
Galerkin problem as:

Given µ ∈ P , find u(µ) ∈ V such that:

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V. (2.1)

Where a(·, ·;µ) : V × V × P → R is a bilinear, symmetric, coercive and continuous form for all
µ ∈ P with respect to the the norm ‖ · ‖V when needed. Therefore, the following relations hold



34 Reduced Basis Methods

for all u, v, w ∈ V :
a(c1u+ c2v, w;µ) = c1a(u,w;µ) + c2a(v, w;µ),

a(v, w;µ) = a(w, v;µ),

a(v, v;µ) ≥ α(µ)‖v‖2V ,

a(v, w;µ) ≤ γ(µ)‖v‖V ‖w‖V ,

where α(µ) and γ(µ) are respectively defined, for every µ ∈ P , as:

α(µ) = inf
v∈V

a(v, v, µ)

‖v‖2V
, γ(µ) = sup

w∈V
sup
v∈V

a(v, w;µ)

‖v‖V ‖w‖V
.

Moreover, let us assume that f(·;µ) : V × P → R is a linear and continuous form with respect
to the norm ‖ · ‖V , for any parameter value and any v, w ∈ V :

f(c1v + c2w;µ) = c1f(v;µ) + c2f(w;µ),

f(v;µ) ≤ δ(µ)‖v‖V .

Such properties are useful to establish the well-posedness of the Galerkin problem, except the
symmetry of a(·, ·;µ) that can be used to simplify the formulation and the error analysis [64].
Since, in most cases, obtaining an analytical solution of problem (2.1) is impossible, such a prob-
lem is numerically solved: the space V is approximated by a finite-dimensional space V δ ⊂ V
and the discrete Galerkin formulation reads as follows:

Given µ ∈ P , find uδ(µ) ∈ V δ such that:

a(uδ(µ), v;µ) = f(v;µ), ∀v ∈ V δ. (2.2)

Such problems have been deeply investigated, we thus refer, for instance, to [11], [12] and [13] for
some classical results about nonlinear and parametric discrete problems. Once more, we remark
that the discrete solution uδ(µ) is an approximation of the solution u(µ) of the continuous
problem (2.1), they can be related using the Galerkin orthogonality and the coercivity and the
continuity assumptions as follows:

‖u(µ)− uδ(µ)‖V ≤

√
γ(µ)

α(µ)
inf

vδ∈V δ
‖u(µ)− vδ‖V . (2.3)

This is important because it ensures that the solution is approximated with an arbitrary accu-
racy; because of such a property uδ(µ) will be called truth solution. More generally, the manifold
M that contains all the solutions of problem (2.1), i.e.

M = {u(µ) : µ ∈ P} ⊂ V,

can be approximated by its discrete counterpart (comprising the discrete solutions of problem
(2.2)):

Mδ = {uδ(µ) : µ ∈ P} ⊂ V δ.



Problem formulation 35

The key assumption, in the reduced basis framework, is that Mδ is of low dimension even if
the dimension N δ of V δ is much higher. The fact that N δ is huge is the main cause of the
high computational cost associated to the numerical solver. Exploiting such an assumption, one
would like to seek the discrete solution in a much smaller space that is approximately equivalent
toMδ. Let V rb be such a space, N rb � N δ its dimension and {ξ1, ...ξNrb} ⊂ Mδ the associated
reduced basis, therefore V rb can be described as:

V rb = span{ξ1, ..., ξNrb} ⊂ V δ.

Problem (2.2) can be expressed in the reduced space V rb as follows:

Given µ ∈ P , find urb(µ) ∈ V rb such that:

a(urb(µ), v;µ) = f(v;µ), ∀v ∈ V rb. (2.4)

After having defined the problem in the reduced space, one would like to prove that the solutions
that can be obtained are accurate enough. To do so, let us consider the norm of the difference
between the continuous solution u(µ) and the one in V rb as a measure of the accuracy; such a
norm can be divided into two different terms by the triangle inequality:

‖u(µ)− urb(µ)‖V = ‖u(µ)− uδ(µ) + uδ(µ)− urb(µ)‖V
≤ ‖u(µ)− uδ(µ)‖V + ‖uδ(µ)− urb(µ)‖V .

Since any arbitrary accuracy can be achieved by the full order solver, one can neglect the term
‖u(µ) − uδ(µ)‖V and focus only on ‖uδ(µ) − urb(µ)‖V . However, it is important to remember
that, in order to obtain accurate solutions for any parameter value, one has to control the error
associated to any µ ∈ P or, equivalently, one could control a global quantity such as:

sup
uδ∈Mδ

inf
vrb∈V rb

‖uδ − vrb‖V ,

or, relaxing the supremum over Mδ, as:√∫
µ∈P

inf
vrb∈V rb

‖uδ(µ)− vrb‖2V dµ, (2.5)

that introduces the notion of least-squares optimality for the accuracy. Finally, it is important
to observe that the accuracy and the efficiency of the method are very problem dependent, in
fact, a statement equivalent to relation (2.3) holds for the reduced space too, because it is based
on a similar Galerkin formulation:

‖u(µ)− urb(µ)‖V ≤

√
γ(µ)

α(µ)
inf

vrb∈V rb
‖u(µ)− vrb‖V .

Moreover, in order to properly approximate the manifold Mδ, one may need another high-
dimensional space. Some information on the suitable dimension for V rb are contained in the
Kolmogorov N rb-width of Mδ in V rb [58], that is defined as:

dNrb(Mδ) = inf
V rb: dimV rb=Nrb

sup
uδ∈Mδ

inf
vrb∈V rb

‖uδ − vrb‖V .



36 Reduced Basis Methods

If dNrb(Mδ) rapidly decays, it means thatMδ can be accurately approximated with low dimen-
sional spaces. On the other hand, if the decay is very slow, the reduced basis method might
not be the best approach to handle the problem because it is impossible to summarize a lot of
information in few basis functions.

2.2. Proper orthogonal decomposition

One of the most common methods that can be used to generate the reduced space V rb is the
proper orthogonal decomposition (POD) method [38]. Let us consider a discrete and finite-
dimensional subset Ph ⊂ P of cardinality M . The obtained N rb-dimensional space is the one
that minimizes the quantity: √

1

M

∑
µ∈Ph

inf
vrb∈V rb

‖uδ(µ)− vrb‖2V , (2.6)

over all the N rb-dimensional subspaces of VM = span{uδ(µ) : µ ∈ Ph} [46]. Since VM is
generated by the elements in Mδ(Ph) = {uδ(µ) : µ ∈ Ph} ⊂ V δ, the quantity in (2.6) can be
considered as a discrete version of the quantity in equation (2.5).
Let us sort the elements of Ph as µ1, ..., µM , the corresponding discrete solutions can thus be
ordered as uδ(µ1), ...uδ(µM ). Such discrete solutions will be denoted as ψi = uδ(µi) in order to
lighten the notation. Moreover, it is possible to introduce the following symmetric and linear
operator C : VM → VM defined as:

C(vδ) =
1

M

M∑
i=1

(
vδ, ψi

)
V
ψi, vδ ∈ VM .

Let us consider its eigenvalue-eigenfunction pairs (λi, ξi) ∈ R × VM normalized with the con-
straint that ‖ξi‖ = 1 and such that λ1 ≥ λ2 ≥ ... ≥ λM ; they satisfy:

(C (ξi) , ψj)V = λi (ξi, ψj)V , 1 ≤ j ≤M.

The set {ξ1, ....ξNrb} of the first N rb eigenfunctions generates the N rb-dimensional space V POD

that minimizes the quantity in (2.6) and each element ξi is an orthogonal POD basis function.
With such functions it is possible to define a projection operator PNrb : V → V POD as follows:

PNrb(v) =
Nrb∑
i=1

(v, ξi)V ξi.

It can be observed that, thanks to the fact that the POD basis functions are orthonormal to
each other, the following relation holds:

(PNrb(v), ξi)V = (v, ξi)V , 1 ≤ i ≤ N rb.



Proper orthogonal decomposition 37

It is important to observe that, when the projection is applied to M δ(Ph), the following error
estimate [74] can be used to properly select the value of N rb:√√√√ 1

M

M∑
i=1

‖ψi − PNrb (ψi) ‖2V =

√√√√ M∑
i=Nrb+1

λi. (2.7)

Therefore, to choose the value of N rb, one can normalize the eigenvalues over their sum obtaining
the normalized eigenvalues:

λ̃i =
λi∑M
j=1 λj

,

and, fixing a POD tolerance τPOD ∈ [0, 1], select N rb as:

N rb = arg max
Nrb=1,2,...,M

Nrb∑
i=1

λ̃i

 ≤ τPOD. (2.8)

This way the quantity on the right hand side of equation (2.7) can be controlled by the quantity√
1− τPOD, therefore the error on its left hand side can become arbitrary small increasing such

a tolerance.
From the implementation point of view, one can proceed as follows to generate the space V POD:

1. Properly discretize P in order to obtain Ph.

2. Compute the snapshots ψi = uδ(µi) for all µi in Ph.

3. Construct the correlation matrix C ∈ RM×M defined as

C[i][j] =
1

M
(ψi, ψj)V , 1 ≤ i, j ≤M.

4. Compute the eigenvalue-eigenvector pairs (λi, vi) of C (see [39] for an efficient algorithm
to perform such a task), with ‖vi‖ = 1, as:

Cvi = λivi, 1 ≤ i ≤M.

5. Sort the eigenvalues in descending order, sort the eigenvectors accordingly.

6. Choose τPOD and compute N rb using formula (2.8).

7. Compute the orthogonal POD basis functions {ξ1, ...ξNrb} as:

ξi(x) =
1√
M

M∑
j=1

(vi)jψj(x), 1 ≤ i ≤ N rb,

where the symbol (vi)j represents the j-component of the vector vi.



38 Reduced Basis Methods

The described method is optimal in the l2 norm thanks to the relation (2.7) but, due to the fact
that M truth solutions have to be computed, grouped in the correlation matrix and analyzed, the
offline phase is very expensive. In fact in general M � N rb and, therefore, one has to compute
many different snapshots even if most of them have to be discarded because they do not contain
important informations. Furthermore, the computation of the eigenvalue-eigenvector pairs of
the correlation matrix scales as O(M2N rb) and can be considered a very expensive step of the
POD method. However, such a method remains very attractive because the obtained reduced
space is proved to be optimal in an l2-sense. An alternative method, that minimizes the error
in an l∞-sense, is the greedy algorithm [38].

2.3. Online phase

In the previous sections we described how to properly formulate the Galerkin problem in the
reduced space and how to generate such a space. The generation of the reduced space is a very
expensive operation, in fact one has to compute many different solutions that have to be then
processed again to construct V rb. However, since the aim of the reduced basis method is to be
able to obtain a discrete solution of problem (2.1) in a very efficient way, one has to split the
computation in two phases: in the offline one the snapshots are computed and V rb is generated,
while in the online one the problem is efficiently solved. In order to solve the problem in the
online phase, one could construct the full order matrix Aδ(µ) and the full order right hand side
f δ(µ) of the linear system associated to problem (2.2) and project them onto V rb as:

Arb(µ) = BTAδ(µ)B, f rb(µ) = BT f δ(µ),

where B ∈ RNδ×Nrb
is a matrix which columns contain the different basis functions of V rb. Since

Aδ(µ) ∈ RNδ×Nδ
and f δ(µ) ∈ RNδ

, but Arb(µ) ∈ RNrb×Nrb
and f rb(µ) ∈ RNrb

, the solution of
the full order system

Aδ(µ)uδ = f δ,

is much more expensive than the one of the reduced system

Arb(µ)urb = f rb,

because one assumes that N δ � N rb. However, the assembly of the reduced system requires
operations that depend on N δ, significantly reducing the efficiency of the online phase. In order
to overcome this problem, one relies on the affine decomposition of each term of the full order
system.

2.3.1. Affine decomposition

Let us assume that both a(·, ·;µ) and f(·;µ) can be expressed as linear combinations of forms
that do not depend on µ and coefficients that only depend on it (see [46] for a more detailed
explanation):

a(v, w;µ) =

Qa∑
q=1

θqa(µ)aq(v, w),



Online phase 39

f(v;µ) =

Qf∑
q=1

θqf (µ)fq(v),

where
aq : V × V → R, fq : V → R,

θqa : P → R, θqf : P → R.

Since all the forms aq(·, ·) and fq(·) are independent of µ, their associated matrices and vectors
can be constructed during the offline phase as:

Arbq [i][j] = aq(ξj , ξi), 1 ≤ i, j ≤ N rb,

f rbq [i] = fq(ξi), 1 ≤ i ≤ N rb.

Finally, it is possible to efficiently assemble the reduced solution matrix Arb(µ) and the associated
reduced right hand side as:

Arb(µ) =

Qa∑
q=1

θqa(µ)Arbq ,

f rb(µ) =

Qf∑
q=1

θqf (µ)f rbq .

It should be noted that such assemblies respectively scale as O
(
Qa
(
N rb

)2)
and O

(
Qf
(
N rb

)2)
,

they are therefore independent from N δ. Unfortunately it is not always possible to rely on the
initial affinity assumption and, to recover an approximation of it, one has to use the empirical
interpolation method [8].

2.3.1.1. An explanatory example

In order to better understand how to exploit the affine decomposition, let us consider one of the
easiest parametric problems: the parametric steady heat conduction problem. Let us denote as
Ω a rectangular domain, it is divided into two subdomains Ω1 and Ω2 as in figure 2.1. Moreover,
let Γi1 and Γi2, i = 1, 2, 3, respectively be the external boundaries of Ω1 and Ω2, they are such
that: (

3⋃
i=1

Γi1

)
∪

 3⋃
j=1

Γj2

 = ∂Ω,

Γji ∩ Γlk = ∅, ∀i, k ∈ {1, 2}, ∀j, l ∈ {1, 2, 3}.
A non-homogeneous Neumann boundary condition is associated to the right side of the domain
Γ2

2, while homogeneous Dirichlet boundary conditions are imposed on the other portions of ∂Ω.
The problem is thus governed by the following system:

∇ · k(µ)∇u(µ) = 0, in Ω

u(µ) = 0, in ∂Ω \ Γ2
2

k(µ)∇u(µ) · n = g(µ), in Γ2
2

. (2.9)



40 Reduced Basis Methods

Figure (2.1) Domain of interest associated to the heat diffusion example.

Here u(µ) is the unknown temperature field, n the outward pointing normal unit vector on Γ2
2,

while k(µ) and g(µ) are two known functions that depend on the parameter µ. Physically, k(µ)
is related to the material conductivity while g(µ) represents the heat flux across Γ2

2. To consider
a more general problem, let us assume that µ is a vector in R2, the first component of it, named
µ1, is associated to k(µ), while the second one (namely µ2), parametrizes g(µ). For the sake of
simplicity we assume that g(µ) and k(µ) are, respectively, a constant function and a piecewise
constant function. They can be thus defined as:

g(µ) = µ2,

k(µ) = k1 + µ11Ω2 =

{
k1 in Ω1

k1 + µ1 in Ω2
,

here k1 is a known constant value associated to the first subdomain, while the difference between
the latter value and the corresponding one in Ω2 is represented by µ1. In order to obtain the
weak formulation, one chooses the proper space V defined as:

V = {v ∈ H1(Ω) : v = 0 in ∂Ω \ Γ2
2},

multiplies the Poisson equation in system (2.9) by an arbitrary test function v ∈ V and integrates
over the entire domain Ω obtaining the following equation:∫

Ω
(∇ · k(µ)∇u(µ)) v = 0, ∀v ∈ V.

It is then possible to integrate it by parts in order to obtain:∫
Ω
k(µ)∇u(µ)∇v =

∫
∂Ω
k(µ) (∇u(µ) · n) v, ∀v ∈ V,



Online phase 41

where the integral on the right hand side is exactly zero on (∂Ω \ Γ2
2) because v ∈ V . The

obtained variational formulation is, therefore:

Find u ∈ V such that:

a(u(µ), v;µ) = f(v;µ), ∀v ∈ V, (2.10)

where

a(u(µ), v;µ) =

∫
Ω
k(µ)∇u(µ)∇v,

f(v;µ) =

∫
∂Ω
k(µ)∇u(µ)v · n =

∫
Γ2
2

k(µ)∇u(µ)v · n = µ2

∫
Γ2
2

v.

It is important to highlight that, in order to consider a well-posed problem, k(µ) is required to
be greater then 0, therefore the inequalities k1 > 0 and µ1 > −k1 have to hold.
In order to derive an affine decomposition, one can split the operator a(·, ·;µ) as follows:

a(u(µ), v;µ) =

∫
Ω
k(µ)∇u(µ)∇v

=

∫
Ω1

k(µ)∇u(µ)∇v +

∫
Ω2

k(µ)∇u(µ)∇v

=

∫
Ω1

k1∇u(µ)∇v +

∫
Ω2

(k1 + µ1)∇u(µ)∇v

= k1

∫
Ω1

∇u(µ)∇v + (k1 + µ1)

∫
Ω2

∇u(µ)∇v.

It can be observed that, after having properly discretized the problem, each entry (i, j) of the
associated matrix A can be computed as:

A[i][j] = a(ξj , ξi) = k1

∫
Ω1

∇ξj∇ξi + (k1 + µ1)

∫
Ω2

∇ξj∇ξi, 1 ≤ i, j ≤ N δ.

Such integrals are no longer dependent on µ and, if the reduced version of problem (2.10) has
to be solved in the online phase, they can be precomputed during the offline one in order to
increase the efficiency. Let us consider the following notation:

Arb1 =

∫
Ω1

∇ξj∇ξi, Arb2 =

∫
Ω2

∇ξj∇ξi,

θ1
a(µ) = k1, θ2

a(µ) = k1 + µ1.

It is now possible to explicitly write the affine decomposition of the stiffness matrix Arb(µ)
associated to the reduced version of problem (2.10) as:

Arb(µ) =

2∑
q=1

θqa(µ)Arbq .



42 Reduced Basis Methods

This way Arb(µ) can be efficiently assembled and the computation of the required integrals is
performed only in the offline phase. The same process can be repeated for the right hand side,
even if the summation is over a single index, considering the following notation:

f rb1 =

∫
Γ2
2

v, θ1
f = µ2,

and assembling the right hand side associated to the reduced linear system as f rb = θ1
f f rb1 .

2.4. RB applied to non-coercive problems

One of the main differences between the formulation that arises from the Navier-Stokes equa-
tions and the one considered so far is that the former one can not rely on the coercivity property.
In order to explain how a non-coercive problem can be handled, we will consider the following
parametrized abstract problem instead of problems (1.43) or (1.50):

Given µ ∈ P , find u(µ) ∈ V such that:

a(u(µ), v;µ) = f(v;µ), ∀v ∈W, (2.11)

where now the bilinear form a(·, ·;µ) : V ×W ×P → R is not coercive. Moreover, it is important
to highlight that the test space W is different from the trial one V , this choice leads to a more
general approach called Petrov-Galerkin formulation. We refer to [63] for a deeper explanation
of the theory required to solve such problems while, once more, we will briefly outline the main
results as discussed in [38].

2.4.1. Theoretical results for non-coercive problems

In this section some important theoretical results about non-coercive problems will be presented.
The non-parametric scenario will be considered, nevertheless, the following discussion can be
easily extended to parametric problems. We will therefore focus on the following problem:

Find u ∈ V such that:

a(u, v) = f(v), ∀v ∈W. (2.12)

The first theorem is the Banach-Nečas-Babuška theorem [38], it provides the existence, the
uniqueness and the stability with respect to the data of the solution u ∈ V of problem (2.12).
However, some of its hypothesis can be relaxed considering V as a Banach space and W as a
reflexive Banach space [65].

Theorem 2.4.1. (Banach-Nečas-Babuška Theorem)
Let V and W be two Hilbert spaces, a(·, ·) : V ×W → R a bilinear and continuous form and
f(·) : W → R an element of the dual space of W . Then, the solution u ∈ V of problem (2.12)
exists and is unique if and only if:



RB applied to non-coercive problems 43

1a. There exists a constant β > 0 such that:

β‖v‖V ≤ sup
w ∈W
w 6= 0

a(v, w)

‖w‖W
, ∀v ∈ V. (2.13)

2a. The following implication holds:

a(v, w) = 0, ∀v ∈ V =⇒ w = 0.

We highlight that the first condition can be written as

β = inf
v ∈ V
v 6= 0

sup
w ∈W
w 6= 0

a(v, w)

‖v‖V ‖w‖W
, (2.14)

and it is therefore referred to as inf-sup condition. It should be noted that β > 0 even if the
definition in (2.14) is used instead of the one in (2.13).
Moreover, one can obtain the discrete version of problem (2.12) considering two finite-dimensional
spaces V δ ⊂ V and W δ ⊂W and seeking a discrete solution uδ ∈ V δ such that:

a(uδ, vδ) = f(vδ), ∀vδ ∈W δ.

Such a problem, if the dimension of V δ is the same of the one of W δ, can be transformed into a
square linear system with a process analogous to what has been explained in section (1.1.1.2).
However, in this context the properties of solvability and stability of the discrete problem can
not be inherited by the continuous one, therefore one has to directly apply the Banach-Nečas-
Babuška theorem on it. The two conditions can be adapted as follows:

1b. There exists a constant βδ > 0 such that:

βδ‖vδ‖V ≤ sup
wδ ∈W δ

wδ 6= 0

a(vδ, wδ)

‖wδ‖W
, ∀vδ ∈ V δ. (2.15)

2b. The following implication holds:

a(vδ, wδ) = 0, ∀vδ ∈ V δ =⇒ wδ = 0.

2.4.2. Non-coercive problem formulation and properties

Let us consider again problem (2.11) and, in order to take into account a well-posed problem,
let us assume that there exists a constant β(µ) ≥ β > 0 such that:

β(µ) = inf
v ∈ V
v 6= 0

sup
w ∈W
w 6= 0

a(v, w;µ)

‖v‖V ‖w‖W
≥ β, ∀µ ∈ P.



44 Reduced Basis Methods

Such a continuous parametrized problem can be discretized obtaining:

Given µ ∈ P , find uδ(µ) ∈ V δ such that:

a(uµδ (µ), vδ;µ) = f(vδ;µ), ∀vδ ∈W δ. (2.16)

Since the latter problem is solved with the full order solver, we can reasonably assume that a
discretization that satisfies the discrete inf-sup condition has been used.
Finally, it is possible to consider the Petrov-Galerkin formulation of the same problem in the
reduced basis framework as follows:

Given µ ∈ P , find urb(µ) ∈ V rb such that:

a(urb(µ), vrb;µ) = f(vrb;µ), ∀vrb ∈W rb. (2.17)

where

V rb = span{uδ(µi) : 1 ≤ i ≤ N rb},

W rb = span{Aµδu
δ(µi) : 1 ≤ i ≤ N rb}.

Here {µi}Ni=1 ⊂ P is a set of parameter values and Aµδ : V δ →W δ is an operator such that:

(Aδvδ, wδ)W = a(vδ, wδ;µ), ∀vδ ∈ V δ, ∀wδ ∈W δ.

Since with such an operator it is possible to realize the supremum associated to the inf-sup
condition:

βδ(µ) = inf
vδ ∈ V δ

vδ 6= 0

sup
wδ ∈W δ

wδ 6= 0

a(vδ, wδ;µ)

‖vδ‖V ‖wδ‖W
= inf

vδ ∈ V δ

vδ 6= 0

a(vδ, Aµδ v
δ;µ)

‖vδ‖V ‖Aµδ vδ‖W
,

the operator Aµδ is denoted as inner supremizer operator [38]. With the latter property one can
prove the stability of problem (2.17) as follows:

βrb(µ) = inf
vrb ∈ V rb

vrb 6= 0

sup
wrb ∈W rb

wrb 6= 0

a(vrb, wrb;µ)

‖vrb‖V ‖wrb‖W
= inf

vrb ∈ V rb

vrb 6= 0

a(vrb, Aµδ v
rb;µ)

‖vrb‖V ‖Aµδ vrb‖W

≥ inf
vδ ∈ V δ

vδ 6= 0

a(vδ, Aµδ v
δ;µ)

‖vδ‖V ‖Aµδ vδ‖W
= βδ(µ),

where the inequality is obtained considering the infimum over the bigger space V δ ⊃ V rb.
Therefore βrb(µ) ≥ βδ > 0 for any µ ∈ P : the required inf-sup condition holds in the reduced
order frameworks thanks to the stability of the truth problem.



Conclusion 45

2.5. Conclusion

In this chapter the reduced basis method has been presented. In sections 2.1 and 2.2 we showed
that, even if the required Galerkin formulation is similar to the one involved in the FEM or
in the SEM, great care must be taken in order to choose and construct the reduced space
where the solution is sought. Moreover, in order to ensure the efficiency that characterizes
the method, we explained how to exploit the affine decomposition to inexpensively assemble
the linear system. Finally, in order to apply such a technique to the Navier-Stokes system,
we presented some theoretical results associated to non-coercive problems. It is important to
highlight that the diagrams shown in Chapter 4 could be obtained using only the SEM, the
continuation method and the deflation one, however, the computational cost associated to the
task would be unaffordable. Therefore, we decided to pair the previous techniques to the reduced
basis method in order to prove that it is possible to efficiently compute bifurcation diagrams
associated to more than one parameter and with more bifurcation points. A more detailed
description of such a pairing can be found in Chapter 4.





3. Numerical Methods for Computing
Bifurcation Diagrams

In Chapter 1 we presented the spectral element method, that can be used to compute an approx-
imated solution of an arbitrary system of differential equations. Then, in Chapter 2, the reduced
basis method has been introduced, it relies on a discretization method (that, in the context of
this thesis, is the SEM) and allows one to compute the solution of the same system much more
efficiently when a parameter is varied. However, if one wants to generate a bifurcation diagram,
one has to be able to compute a single solution of the problem very efficiently and to obtain
more solutions associated to the same system. This is important because the system has to be
repeatedly solved for different values of the parameters and, after the bifurcation points, multi-
ple solutions can coexist. In order to handle these problems, we decided to use the continuation
method [25] and the deflation method [29], that will be presented, after an initial introduction
to the bifurcation theory, in sections 3.2 and 3.3. Finally, they will be coupled in the deflated
continuation method in the next chapter in order to generate the bifurcation diagrams.

3.1. Introduction and theoretical background

In everyday life, it is possible to observe several different phenomena where changes occur,
suddenly or not, due to an external cause. For example, if one applies a stronger and stronger
pressure in the middle of a rigid bar fixed at both ends, at the beginning it will stay still, then it
could begin to bend and, finally, it will break. Other examples could be the rise of instabilities,
asymmetries, irregularities, chaotic behaviours or motion in, respectively, stable, symmetric,
regular, ordered or stationary systems. Since one would like to model in a mathematical way
these changes, one is obliged to model also what is acting on the observed subject: to do so,
it is useful to consider a parameterization of the external cause with scalar quantities that can
express, for example, its intensity. In order to be consistent with the previous sections, we will
call this parameter µ, it is important to observe again that µ could be a scalar or a vector, but
that this distinction does not influence the following theory. However, it should be noted that
very often, in literature, this quantity is referred to as λ.
These phenomena can be modeled and studied with the so called bifurcation theory [45]. Even if
in this work we are studying bifurcations in PDEs, it is convenient to introduce the reader into
this theory using examples of solutions of algebraic equations. In this section we will assume
that µ ∈ R, furthermore we denote with µ0 the critical value, if it exists, under which and
over which there is a qualitative difference in the solution set. When one is working on algebraic
equations, one is interested in the way in which the scalar solutions can be (possibly analytically)
represented.



48 Numerical Methods for Computing Bifurcation Diagrams

Figure (3.1) Plot of f(x;µ) = x2 + µ for different values of µ

Let us first consider the equation:

f(x;µ) = x2 + µ = 0.

It represents a centered parabola that can be vertically translated by µ, the solutions of such an
equation can be therefore easily described as:

{−+
√
−µ}, µ < 0

{0}, µ = 0

∅, µ > 0

.

In this very simplified setting, it is possible to analytically obtain the critical value µ0 = 0
and the explicit expression for every existing solutions before and after such a point. A simple
visualization of this phenomenon can be obtained with a bifurcation diagram: it is a diagram
where the solutions are represented on an axis, while the other one accounts for the parameter.
In this case one can use a bidimensional representation and plot µ on the x-axis and the solutions
x on the y-axis, while, in general, more than one parameter can be involved in the diagram and
the solution could be a non scalar quantity. In the latter scenario it is convenient the summarize
the information contained in the solutions with a scalar function, while some parameters could
be grouped together generating more interesting quantities. It is clear that the plot 3.2 can be
divided in three regions: the critical point and the associated single solution, the region before
such a point with two solutions for each value of µ, and the region after it, without any solution.
We are finally ready to define one of the key elements of the bifurcation theory:

Definition 3.1.1. Let F be the set F = {(µ, x) ∈ Rn × V : x is a solution of f(x;µ) = 0}
and I be the identity operator. A branch B is defined as a subset of F such that ∀g : V → R,
g ∈ C1, the image of B by the use of (I, g) : Rn × V → Rn+1 is a connected submanifold of
class C1 of D .

= (I, g)(F) that can not be further extended without intersecting other connected
submanifolds of class C1 belonging to D.

One can observe that in the last example two different branches are present, the first one
is {(µ, x)| x =

√
−µ}, while the second one is {(µ, x)| x = −

√
−µ}. It is important to note



Introduction and theoretical background 49

Figure (3.2) Bifurcation diagram relative to the problem f(x;µ) = x2 + µ = 0

that they are two distinct branches, in fact, if one chooses the function g(x) = x2, the curve
that represents them together is not differentiable anymore. There are several different kinds
of bifurcations (see [3] or [44] for a more detailed explanation), in particular, the one explained
above is called turning point, fold bifurcation, saddle node or limit point. Such a class is charac-
terized by the fact that two solutions annihilate each other or that they are born from a single
solution, in both the cases there are two solutions on one side of the critical value (according to
the parameter axis) and zero on the other one. In order to describe other types of bifurcations
we recall the definition of bifurcation point :

Definition 3.1.2. A solution pair (µ0, x0) of the problem f(x;µ) = 0 is a bifurcation point if
the number of solutions associated to µ < µ0 is different than the same quantity for µ > µ0 or
if the stability properties of the branches change when µ crosses the critical value µ0.

Another important class of bifurcation points is represented by the so called transcritical
bifurcation points. Let us consider the following equation:

ẋ = µx− x2. (3.1)

The equilibria are always x = 0 and x = µ, but their stability changes for µ < 0 or µ > 0. The
bifurcation diagram for this problem is shown in figure 3.3, where the heavy lines represent the
stable branches, while the dashed lines the unstable ones.
We are finally ready to introduce the pitchfork bifurcation points, that are the ones on which
this work focuses. The canonical example for this type of bifurcations is the following one:

ẋ = µx− x3. (3.2)

Even if the structure of the problem is very similar to the one of (3.1), their equilibria are very
different. One can easily observe that, for µ < 0, the only branch is the trivial one (x = 0) and it
is stable, while, when µ > 0, there are three branches: the trivial one that becomes unstable and
the two stable branches x = −+

√
µ. This class of bifurcation points is very common in symmetric

problems, it is therefore reasonable that we will face it while solving our test problem, since
it is perfectly symmetric. The bifurcation diagram for equation (3.2) is shown in figure 3.4,
where the same notation used for the previous example has been assumed for the stability of
the branches.



50 Numerical Methods for Computing Bifurcation Diagrams

Figure (3.3) Bifurcation diagram relative to the equilibria of the problem ẋ = µx− x2

Figure (3.4) Bifurcation diagram relative to the equilibria of the problem ẋ = µx− x3

3.1.1. Numerical computation of bifurcation diagrams

Since it is often impossible to compute even a single solution of a realistic problem, one is,
in most of the cases, unable to analytically compute a bifurcation diagram. Therefore, one is
obliged to use some numerical techniques to obtain a discrete approximation of it. It should be
noted that, when more than one parameter is involved, it may be complex to properly visualize
and interpret the obtained diagram. In this work we will show very simple and interpretable
diagram, however, we refer to [71] for a more advanced visualization technique.
The basic idea that is used in this work is to split such a computation into two logic blocks, that
have to be alternated to obtain the final result. The first block is called continuation method, its
aim is to compute, starting from a solution belonging to a given branch, a sequence of solutions
that approximates that specific branch. The second block is, instead, named deflation method :
it is used to compute the first solution that the continuation needs to follow a new branch. Both
the methods have advantages and disadvantages that will be analyzed in the next sections. It
should be noted that the complexity further increases because, when one numerically solves a
PDE for a value of a parameter that is very close to a critical value, the matrix of the associated
linear system can become singular, preventing the previous methods to work properly [2].



Continuation method 51

As remarked in the introduction of this work, the problem of such an approach is that, due
to the complexity of its aim, it is very expensive; in fact one has to compute several different
solutions for an equal number of different values of the parameters. It is therefore crucial to be
able to compute each solution in a very efficient way. On the other hand, the computation of the
bifurcation diagram is independent of the discretization method used to solve the equations, and
can therefore be applied in a reduced order framework without major modifications. However,
we decided to use two slightly different versions of the continuation method and of the deflation
one in the offline phase and in the online one in order to obtain the desired result in a more
accurate and fast way.

3.2. Continuation method

In section 3.1 the concept of bifurcation diagram has been defined and a first description of
the continuation method has been presented. Here the discussion will be further developed,
presenting both the advantages and disadvantages of such a method and two different versions
of it.
As previously remarked, the aim of the method is to follow a single branch of the diagram,
constructing a sequence of solutions that can properly discretize it [25], for this reason it can
also be called branch tracing or path following.
In this section we will assume that a solution of the problem

L(u;µ) = 0, (3.3)

exists for any parameter value µ ∈ P . Equation (3.3) is deliberately abstract so that it is possible
to develop a general theory, however, the reader should keep in mind that in this work it will be
particularized as the Navier-Stokes system. In that case the velocity-pressure pair (u, p) will be
represented by the abstract variable u, while the parameter µ will play the role of the viscosity
ν or will be a vectorial quantity that accounts for the pair (ν, s). Let us remember that s is the
inlet velocity scaling: a multiplicative constant that influences the amplitude of the parabolic
profile applied as a Dirichlet boundary condition for the inlet velocity.
From now on, in this section, we will assume that µ ∈ R. It is possible to do it without loss of
generality because the method can be used with µ ∈ RN letting vary only a single component of
the parameter vector, that is exactly what will be done in the last chapter, when a bifurcation
diagram with two parameters will be computed. Under such an assumption, it can be noted that
equation (3.3) implicitly defines one or more curves Ci of solution pairs (µ,u). If L is smooth
enough there will be a single branch C0 that, as long as the Jacobian matrix JL is full-rank,
can be extended [67]. Unfortunately the full-rank condition is respected only by some classes
of bifurcation points, for example by the turning points, while other ones, like the pitchfork
bifurcations, do not respect it. However, even if from a theoretical point of view this issue
prevents the branch to be properly followed, the discrete nature of the continuation method can
overcome it.
Let us assume that an iterative numerical solver is available and that we already know a solution
pair (µ0,u0) belonging to the branch Ci. In order to obtain the first solution of a branch, two
techniques will be used in this work. The first one consists in using the solver with the null initial



52 Numerical Methods for Computing Bifurcation Diagrams

guess (or a best one if it can be obtained solving simpler equations with the homotopy method),
this method is useful when one wants to compute the first solution of the entire bifurcation
diagram and one has not any information about the branches that exist. The second technique
is based on the deflation method, that does not allow the solver to converge to known branches.
Therefore, if it converges, it will converge to solutions that belong to unknown branches; such
method will be further discussed in section 3.3.
The continuation method exploits the fact that, for the iterative solver, each solution (µ,u) is
characterized by a region of attraction such that, if it contains the initial guess used to initialize
the iterative solver, it will converge to that specific solution. The aim of the continuation is,
in fact, to compute an approximation (µ, ũ) of a solution pair (µ,u) that should be as close as
possible to it. This way, one can start from the solution (µ0,u0), compute the approximation
(µ1, ũ1) and use it as initial guess for the solver to converge to (µ1,u1). It is then possible to re-
peat the same procedure computing first (µ2, ũ2) and then (µ2,u2). In general, the continuation
method allows one to easily compute (µi+1,ui+1) using the last solution (µi,ui). It is therefore
possible to iteratively construct a sequence of solution pairs that approximates an entire branch
given a first point (a solution pair) belonging to it. The difference between two consecutive
solution pairs will be called step, while the quantity ∆µi = ‖µi − µi−1‖ will be considered as
a measure of the step size. It is important to remark that in practice, even if µ is a vectorial
quantity, only a single component of it is different between µi and µi+1, therefore the step size
can be redefined as ∆µi = |µi,j − µi−1,j |, where the j-th component is the one that varies.
However, if ∆µi is randomly chosen three problems could arise:

• A turning point occurs, the solver could diverge.

• ∆µi is too large, therefore the approximation ũi is too bad and the solver can not converge,
furthermore a pitchfork bifurcation could be overlooked.

• ∆µi is too small causing a waste of resources, in the worst scenario the computational cost
of the method can become prohibitive.

In this work two different continuation methods are used, they will be explained in the following
sections, focusing on their implementations and their advantages and disadvantages.

3.2.1. Simple continuation

We will discuss, in this section, the simplest possible version of the continuation method. It is
based on the assumption that, due to the continuity of each branch, if the step size ∆µi is very
short, the sought solution ui will be very similar to ui−1. Therefore, if ∆µi is small enough,
ui−1 can be used as initial guess to obtain ui.
One of the main problem of this method is the fact that a way to determine a proper ∆µi does
not exist and very often one is obliged to choose it with heuristics or previous knowledge. For
instance, one could decide to fix the same value ∆µ for each step size ∆µi, selecting ∆µ running
several times the simulation and analyzing the converge of the iterative solver. If it can converge
in very few iterations the step size is probably too small and many resources would be wasted
because of the computation of too many solutions. On the other hand, if ∆µ is too large, ui−1



Continuation method 53

is very different from ui and it could cause many different numerical issues. Unfortunately, the
optimal number nopt of iterations is not known a priori and it is very problem dependent. In
this work we fixed nopt = 6 as suggested in [67] but many different and more complex techniques
to properly select the best value of ∆µi at each iteration are described both in [1] and in [67].
Let us analyze the different problems that arise when ∆µi is too large. Firstly, the solver could
be initialized with an initial guess that is so far from the actual solution that it is not able
to converge. Secondly, the initial guess could be very different from the sought solution but
not enough to make the solver diverge, still it will need many iterations to converge and this
phenomenon will slow down the entire computation. Lastly, if ui−1 is between two branches
when µ = µi, the solver could converge to a solution belonging to the wrong one.
Furthermore, fixing a constant step size is not a wise choice because there are regions (in the
space P ×V ) where obtaining a good approximation of the next solution is a more complex task
than in other parts of the domain. For instance, let us consider the portion P1 of a branch that
is very close to a bifurcation point and the region P2 that belongs to the same branch but it is
far from any singular point. With a fixed step size ∆µ, the quantity ‖ũi − ui‖, that represents
the distance between the approximation obtained with the continuation and the sought solution,
can vary considerably according to the fact that the pair (µi,ui) belongs to P1 or to P2. If ∆µ is
optimal in P1, it will be too short in P2 and it will imply a waste of resources; otherwise, if it is
optimal in P2, a very bad approximation will be computed for any point in P1. Unfortunately,
in general, one does not know the proper value of the step size that should be used and, for this
reason, it is often chosen in a way that allows the continuation to supply good approximations
in the neighbourhood of the bifurcation points, even if the entire computation is slowed down.
However, when a prior knowledge is available it is important to exploit it, for instance, if the
region that a bifurcation point belongs to is known, it would be clever to use a very small ∆µ
only in that portion of the branch. Otherwise, if the problem (3.3) is known to became more
and more complex to solve when a parameter raises, one could impose that ∆µi < ∆µi−1 if
µi > µi−1 (or viceversa) to improve the stability of the method.
Nevertheless, it should be noted that this simple version of the continuation is very effective when
one can not exploit informations on the followed branch apart from the last solution. In fact
it allows one to obtain the next solution using only the previous one, that is the only available
information about the branch if it is not possible to linearize it. However, the limitations due to
the lack of knowledge on ∆µ, obliged us to implement also a better method, based on a branch
linearization, called pseudo-arclength continuation [67].

3.2.2. Pseudo-arclength continuation

The key idea behind the pseudo-arclength continuation is to use, instead of the parameter itself,
the branch arclength to parametrize the curve, this way it is possible to consider the variation
of the parameters and the one of the solution together. We remark that we will describe the
technique how outlined in [43]. Let us consider a discrete version of problem (3.3):

Lδ(uδ;µ) = 0, (3.4)

where uδ ∈ RN , µ ∈ R and Lδ : RN+1 → R. Here we assumed again that µ is a scalar quantity, if
it is not, it is always possible to consider as parameter only the component of µ the is varying and



54 Numerical Methods for Computing Bifurcation Diagrams

Figure (3.5) Visualization of the pseudo-arclength continuation method

reduce that problem to this one. Furthermore, in order to lighten the notation, the subscripts δ
will be omitted both in Lδ and in uδ.
Let us denote as (µi,ui) a point on the regular path Γ, and with (µ̇i, u̇i) the unit tangent to Γ
in (µi,ui). It is then possible to adjoin the following normalization equation to problem (3.4):

N(u, µ; ∆Si) = u̇Ti (u− ui) + µ̇i(µ− µi)−∆Si = 0, (3.5)

where the dots represent the derivation in the new variable S. It can be noted that equation
(3.5) represents a plane that is orthogonal to the tangent vector (µ̇i, u̇i) and which distance
from (µi,ui) is exactly ∆Si. Assuming that ∆Si and the curvature of Γ are small enough, the
intersection between the line tangent to Γ to which (µi,ui) belongs and the plane N will be very
close to the sought solution pair (µi+1,ui+1). Therefore, one wants to solve the system:{

L(u;µ) = 0

u̇Ti (u− ui) + µ̇i(µ− µi)−∆Si = 0
. (3.6)

Using the notation ∆ui = ũi+1 − ui and ∆µi = µ̃i+1 − µi, it is possible to use the Newton
method to solve system (3.6), reducing it to the following linear system:[

Liu Liµ
u̇i µ̇i

] [
∆ui
∆µi

]
=

[
Li

∆Si

]
. (3.7)

Where in the terms Li· the subscripts stand for the derivation operation, while the superscript i
represents the fact that the operator is evaluated in the pair (µi,ui), therefore Liu = Lu(ui;µi)
and Liµ = Lµ(ui;µi). The branch linearization performed to compute the approximation
(µi+1, ũi+1) can be visualized in figure 3.5.
One of the problems of the method is that one does not know explicitly u̇i and µ̇i and has to use
an approximation of their values in the previous system. They can be approximated in many



Continuation method 55

different ways, for example using the relations in (3.8):
u̇ =

ui − ui−1

∆Si−1

µ̇ =
µi − µi−1

∆Si−1

. (3.8)

It should be noted, however, that the normalization (3.5) is an assumption and can be changed,
for instance generalizing it as

N(u, µ; ∆Si) = θu̇Ti (u− ui) + (1− θ)µ̇i(µ− µi)−∆Si = 0, 0 < θ < 1,

while another possible type of normalization could be:

N(u, µ; ∆Si) = θ‖u− ui‖2 + (1− θ)‖µ− µi‖2 −∆S2
i = 0, 0 < θ < 1,

that does not involve any unknown derivative.
In this work the used normalization equation is (3.5), and the derivatives are discretized as
in (3.8). Since the derivatives approximations require two solutions on the same branch, we
used this version of the continuation method only in those situations where we were able to
distinguish two consecutive solutions on the same branch, otherwise the simple continuation
(subsection 3.2.1) has been used. For example, we were obliged to use the simple continuation
after the computation of the first solution and in those situations in which the number of branches
in the previous iteration was different than the same number in the iteration before it. In the
latter scenario one does not know, in general, which solutions were in the same branches and
which branch appeared or disappeared.
Finally, one has to understand how to properly choose the value of ∆S, in order to avoid
the issues present in the simple continuation. However, comparing the errors made using a
wrong value of ∆µi and a wrong value of ∆Si, one observes that much better results can
be obtained with the pseudo-arclength continuation. In fact, near a bifurcation point, two
consecutive solutions are very different and, since the quantities ‖ũi+1−ui‖ and |µi+1− µi| are
bound by ∆Si, |µi+1 − µi| is obliged to be very small. On the other hand, when µi is far from
any critical value and therefore two consecutive solutions are very close, bigger steps are allowed.
This way the step size is automatically chosen adaptively, solving the main issue of the simple
continuation even with an almost randomly fixed ∆Si. However, in order to further improve
the pseudo-arclength continuation, it is also important to properly choose ∆Si, many different
methods are present in literature, for instance in [1] and in [67]. We decided to implement a
very simple method to adaptively set the arclength step size, it is based on the fact that, if the
Newton method converges in about 6 iterations, the initial guess was at a proper distance by
the sought solution, while if it converges in less or more iterations, the step size was probably
too short or too long (such an empirical approach is more deeply discussed in [67]). Therefore,
one wants to reduce ∆Si when the number n of iterations required for the convergence is much
higher than 6 and increase it when n is lower. Moreover, in order to manage the continuation
of different branches at the same time and the presence of bifurcation points, a minimum value



56 Numerical Methods for Computing Bifurcation Diagrams

∆Smin and a maximum value ∆Smax has been fixed. The formula used to compute the arclength
step size update is the following:

∆Si+1 =


∆Smin, if

6

n
∆Si < ∆Smin

∆Smax, if
6

n
∆Si > ∆Smax

6

n
∆Si otherwise

. (3.9)

3.2.2.1. Bordering algorithm

As discussed in section 1.3.2, it is very important to use the static condensation method on the
linear system to increase the efficiency of the SEM. Unfortunately, to use such a technique, a
very specific structure of the matrix is required, but such a structure is not present in system
(3.7). This means that, if one wants to rely on the methods implemented in Nektar++, the
matrix in the concerned problem has to be properly modified: we decided to implement the
bordering algorithm [43] to do it. In order to lighten the notation, let us consider the following
system: [

A b
c d

] [
x
y

]
=

[
e
f

]
. (3.10)

Since the matrix in system (3.10) represents the one in (3.7) and the submatrix A stands for
Liu, we can assume that both A and the entire matrix are not singular when the current value
of µ is not a critical value. It is thus possible to multiply the first row by A−1 to obtain the
following equation:

A−1Ax+A−1by = x+A−1by = A−1e. (3.11)

Moreover, we denote as u and v the following vectors:

u = A−1b, v = A−1e. (3.12)

With such a notation, equation (3.11) can be multiplied by c and subtracted by the second row
of problem (3.10), obtaining the following equality:

cx− cx+ dy − cuy = f − cv,

that can be rearranged as:

y =
f − cv
d− cu

. (3.13)

Therefore, if one wants to solve problem (3.10) relying on an efficient solver of a system associated
to the matrix A, one can compute u and v with the relations (3.12), use them to obtain y with
the formula (3.13) and then x as:

x = v − uy,

that can be easily derived from equation (3.11). It should be noted that two linear systems
associated to the matrix A have to be solved to compute u and v efficiently, but then it is
possible to compute x and y with only three scalar products.



Deflation method 57

3.3. Deflation method

As previously explained, the continuation method is able to entirely reconstruct a branch of the
bifurcation diagram, however, it requires a first solution belonging to it. In order to obtain such
a first solution, one can use several methods, in this work we focused on a particular technique
called deflation method [29]. Since it can be seen as a generalization of a method that can be
used to compute the roots of a polynomial, the following simplified scenario will be analyzed
first. Moreover, we remark that the method will be described as in [28] and [29].

3.3.1. Deflation method for finding the roots of a polynomial

Let p(x) be a scalar polynomial and let x0, x1,..., xm−1 be the m roots of it, then p(x) can be
written as:

p(x) = c0

m−1∏
j=0

(x− xj). (3.14)

If one is able to compute only one root at a time, one can proceed in the following iterative way
to obtain all of them. The following notation will be used in the description of the method: the
root computed at the k-th iteration will be called xk. However, it should be noted that, since the
terms in (3.14) can be arbitrarily sorted, it is possible to reorder the indices set according to the
order in which the root can be found. This way, it is formally correct to use the same notation
xj for both the j-th root in (3.14) and the root found at the j-th iteration of the method. In
the first step one can simply compute the root x0 of p(x), then, in order to find the second one,
one can analyze the following polynomial:

p1(x) = c0

∏m−1
j=0 (x− xj)
x− x0

= c0

m−1∏
j=1

(x− xj),

that can be used to define the problem p1(x) = 0, named deflated problem. It can be observed
that the roots of p1(x) are also roots of p(x), but p1(x0) 6= 0. Since one is able to compute only
a single root of a generic polynomial, it is not possible to obtain also x1 from p(x), however, it
is possible to compute it using p1(x) because x1 is its first root. The method can be obviously
generalized, one wants to discover at the k-th step the root xk, using the polynomial pk(x)
defined as follows:

pk(x) = c0

∏m−1
j=0 (x− xj)∏k−1
j=0(x− xj)

= c0

m−1∏
j=k

(x− xj).

Such polynomials can be iteratively constructed removing the last obtained root from the last
analyzed polynomial.
It is important to note that, if the root is sought with a numerical method, the exact solution
xj will not be found, in its place the approximation x̃j will be computed. This implies that xj is
still a root of pj+1(x), even if, in its neighbourhood, the deflated function will be characterized
by strong gradients that will prevent the solver to converge again to xj . Let us consider, for
example, the polynomial:

q(x) = (x− 1)(x+ 1)x,



58 Numerical Methods for Computing Bifurcation Diagrams

Figure (3.6) Visualization of a numerically deflated function

which roots are {−1, 0, 1}. Assuming that the root x = 1 is the first that can be found, but that
the solver is able to compute only the approximation x̃ = 0.999, the first deflated function can
be written as:

q1(x) =
x− 1

x− 0.999
(x+ 1)x. (3.15)

It can be noted that x = 1 is still a root of q1(x), but that its global behaviour (shown in picture
3.6) is very close to the one of the exactly deflated polynomial qe1(x) = (x+ 1)x. This way, if an
iterative method starts from an initial guess that is far enough from the exact solution x = 1, it
will not converge anymore to that root.
The deflation method has been first generalized to face systems of non-linear algebraic equations
(see [14] and [47]), and then it has been further modified to find different solutions of PDEs (see
[29]).

3.3.2. Deflation method for finding multiple solutions of PDEs

The aim of this section is to generalize the method described in section 3.3.1 to face problems
governed by PDEs. Let us consider again the abstract problem:

L(u) = 0. (3.16)

As in the previous section, one wants to obtain as many solutions as possible of (3.16), where
a solution is a function u such that L(u) = 0. In order to describe the deflation method in
infinite-dimensional Banach spaces, a generalized definition of the deflation operator is needed
(see [29]).

Definition 3.3.1. Let V , W , Z and U respectively denote three Banach spaces and an open
subset of V . Let L : U ⊂ V → W be a Fréchet differentiable operator with derivative L′. For
each w ∈ U , u ∈ U\{w}, let M(u; w) : W → Z be an invertible linear operator. If, for any L
such that L(w) = 0 and L′(w) is nonsingular, and for any sequence {ui} ⊂ U\{w} converging
to w, the following inequality holds:

lim inf
i→∞

‖M(ui; w)L(ui)‖Z > 0, (3.17)

then M is a deflation operator.



Deflation method 59

From such a definition one deduces two important properties of a deflation operator:

• Spurious solutions can not exist becauseM is an invertible operator. A solution u0 is said
to be spurious if M(u0; w)L(u0) = 0 but L(u0) 6= 0. If such a solution existed M would
map both 0 ∈ W and L(u0) ∈ W to 0 ∈ Z, but this is not possible since M is linear and
invertible.

• Every solution ũ 6= w of problem (3.16) is preserved. In fact, if L(ũ) = 0, thenM(ũ; w)L(ũ) =
0 by linearity of M.

The previous definition describes a deflation operator, but it is too abstract in practical scenarios.
We thus present a more useful condition to understand if an operator is a deflation operator
(the next lemma has been first introduced in [14] and then generalized in [29]).

Lemma 3.3.2. Let L : U ⊂ V →W be a Fréchet differentiable operator andM(u; w) : W → Z
a linear operator. If, for each w ∈ U , for any sequence {ui} ⊂ U\{w} converging to w and for
any sequence {vi} ⊂W , the following property holds:

‖ui −w‖M(ui; w)vi
Z−−→ 0 =⇒ vi

W−−→ 0, (3.18)

then M is a deflation operator.

Proof. Let us assume that relation (3.18) holds for a given operatorM(u; w) : W → Z that is not
a deflation operator. SinceM is not a deflation operator, there exist an operator L : U ⊂ V →W
and an element w ∈ U such that L is a Fréchet differentiable operator, L(w) = 0 and L′(w) is
nonsingular. Moreover, there exists a sequence {ui} ⊂ U\{w} converging to w and such that

lim inf
i→∞

‖M(ui; w)L(ui)‖Z = 0.

It is thus possible to define a subsequence {vi} ⊂ U\{w}such that M(vi; w)L(vi)
Z−−→ 0. Let

as consider the sequence {li} ⊂W as:

li =
L(vi)

‖vi −w‖U
.

The limit M(vi; w)L(vi)
Z−−→ 0 can then be expressed as follows:

‖vi −w‖UM(vi; w)li
Z−−→ 0.

Furthermore, using the fact that L(w) = 0 and that L is a Fréchet differentiable operator, it is
possible to expand it in a Taylor series around the function w in the following way:

L(vi) = L(w) +L′(w; vi −w) + o(‖vi −w‖2U )

= 0 +L′(w; vi −w) + o(‖vi −w‖2U ).

Therefore, the following approximation locally holds:

L(vi)

‖vi −w‖U
=

1

‖vi −w‖U
[
L′(w; vi −w) + o(‖vi −w‖2U )

]
≈ L′

(
w;

(vi −w)

‖vi −w‖U

)
.



60 Numerical Methods for Computing Bifurcation Diagrams

Finally, since the hypothesis (3.18) holds, one can observe that li
Z−−→ 0 or, equivalently:

L(vi)

‖vi −w‖U
Z−−→ 0.

The last two statements imply that L′(w) is singular, leading to a contradiction with the first
hypothesis.

The most intuitive deflation operator that can be useful to handle problems governed by PDEs
is the direct generalization of what has been used in section 3.3.1, it can be written as

M(u; w) =
I

‖u−w‖U
. (3.19)

Here and from now on, we denote I as the identity operator on W . Depending on the nature of
the solution w it could be useful to consider the following modified version of (3.19):

M(u; w) =
I

‖u−w‖pU
. (3.20)

Furthermore, it has been observed that, using these two deflation operators, a numerical solver
could converge to unphysical solutions u simply becauseM(u; w)→ 0 as ‖u−w‖U → +∞. We
thus decided to implement the deflation method with the following associated operator, with
p = 1 and p = 2, to face the latter issue:

M(u; w) = I +
I

‖u−w‖pU
. (3.21)

Finally, like in section 3.3.1, it is possible to deflate multiple solutions at the same time sim-
ply concatenating different deflation operators. For instance, if one has already computed the
solutions u1,...un−1, it is possible to solve the following problem to seek the n-th one:

M(u; u1) · · · M(u; un−1)L(u) = 0. (3.22)

3.3.2.1. Efficiency of the deflation method

One of the main weaknesses of the deflation method is that it does not ensure that the solver
will converge to new solutions. In fact, it can not converge to the already known ones because
it is pulled away from them by the deflation operator, but if it is too far from other existing
solutions (or if they do not exist) the solver will simply diverge. In order to be reasonably sure
that new solutions will not be found, it is convenient to fix a high enough maximum number
nmax of iterations for the iterative solver.
The issue is that, if such a number is too low there is a chance that a new solution could have
been found with an higher value of nmax but, if it is too high, several computational resources
will be wasted in an useless exploration of the solution space. We decided to use nmax = 150
in the offline phase and nmax = 300 in the online one because we observed that, with these two
values, the solver is able to converge to new branches if they exist and if they are close to known



Deflation method 61

branches. However, if the deflation method is coupled with an efficient continuation method it
can be considered the bottleneck of the method. For instance, in this work a single step of the
continuation method requires to solve the linear system twice to obtain the initial guess and, on
average, 6 times to converge to the next solution with the Newton method. Instead, if the solver
can not find a new solution of the deflated system, 150 (or 300 in the online phase) iteration
will be wasted. It is thus crucial to use a very efficient deflation method to reduce as much as
possible the time invested in solving the deflated systems.
If one wants to solve the deflated system G(u; w) =M(u; w)L(u) = 0 with the Newton method,
it shall iteratively solve the following linear system (note that, from now on, the dependency
from u or w will be omitted for brevity):

JG∆u = −G. (3.23)

Considering for simplicity M : U → R, one can expand the Jacobian of the deflated system as:

JG =MJL + LM′T . (3.24)

It can be noted that the computational cost of the assembly of JG grows quadratically with
the degrees of freedom and that, even if JL is sparse, JG is not because of the term LM′T .
Therefore, the computation would be further slowed down solving the problem using equation
(3.23) directly. Here we propose a method, suggested in [28], to efficiently obtain the solution
of equation (3.23) without solving the system itself but modifying the Newton residual of the
undeflated system.
Let us consider the undeflated system L(u) = 0 with the associated discretization:

JL∆uL = −L, (3.25)

and the deflated one G(u) = 0 with the analogous Newton discretization:

JG∆uG = −G. (3.26)

Finally, we remember that the Sherman-Morrison formula can be used to obtain an analytical
expression of the inverse of a matrix with a rank-one perturbation. If A ∈ Rn×n, b ∈ Rn and
c ∈ Rn, then the Sherman-Morrison formula states that:

(A+ bcT )−1 = A−1 − A−1bcTA−1

1 + cTA−1b
.



62 Numerical Methods for Computing Bifurcation Diagrams

Using such a formula it is possible to efficiently solve (3.26) in the following way:

∆uG = −J−1
G G

= −
(
MJL + LM′T

)−1
(ML)

= −

(
M−1J−1

L −
M−1J−1

L LM′TM−1J−1
L

1 +M′TM−1J−1
L L

)
(ML)

= −J−1
L L+

J−1
L LM′TM−1J−1

L L

1 +M′TM−1J−1
L L

=

(
1−

M−1M′TJ−1
L L

1 +M−1M′TJ−1
L L

)(
−J−1

L L
)

=
1

1 +M−1M′TJ−1
L L

∆uL

= τ∆uL.

We highlight that τ can be very efficiently computed, in fact only the computation of a scalar
product is needed, and it scales linearly with the total number of degrees of freedom. Moreover,
we used such a formula to couple a heuristic to the deflation method in order to increase its
efficiency and effectiveness (see section 4.2.1.2). It is important to observe that the computation
of ∆uG does not require to assemble and solve system (3.26), instead, one has to solve system
(3.25) (that has already been assembled to solve the undeflated system) and then one can obtain
∆uG as:

∆uG = τ∆uL.

3.4. Conclusion

In this chapter, after a brief introduction, the two methods through which it is possible to
compute the bifurcation diagrams shown in Chapter 4 have been introduced. The first one is
the continuation method, it is used to obtain an initial guess for the iterative solver in order
to follow a specific branch of the diagram. Its accuracy is important because a bad initial
guess may imply serious stability issues or the loss of a branch of the diagram. In order to be
able to always obtain accurate guesses, we decided to implement two versions of it: the simple
continuation (section 3.2.1) and the pseudo-arclength continuation (section 3.2.2); they will be
used in different phases of the deflated continuation method (see section 4.2.1.1). The second
method that has been introduced in this chapter is the deflation method, it is used to ensure
that the iterative solver does not converge to already computed solutions. This way, it is possible
to obtain different solutions associated to the same values of the parameters. Such a method
is exploited to compute the first solutions on the unknown branches of the diagram, however,
since it is very expensive, we focused on its efficiency in section 3.3.2.1.



4. Numerical results

4.1. Overview of the problem

We are finally ready to present the results that can be obtained using the previously described
methods. As explained in the introductory chapter and in section A.1, the aim of this work
is to apply different numerical techniques in order to compute bifurcation diagrams efficiently.
Since we want to study the motion of a fluid, the problem is governed by the Navier-Stokes (NS)
equations, that can be simplified using the assumptions in section A.1, obtaining the following
system: {

∇ · u = 0

u · ∇u− ν∆u +∇p = 0
. (4.1)

The test case of this work is, therefore, the study of the incompressible, steady and viscous flow
in a two-dimensional and straight channel with two backward facing steps and an inlet narrower
than the channel height. Before proceeding, it is important to highlight that, since Re is the
only important involved parameter and it is non-dimensional, the specific units of measurement
can be arbitrarily defined. For this reason they will not be specified, however, if one is interested
in the specific physical values, one can consider all the values as associated to the SI system.
The domain is represented in figure 4.1; it is not to scale because, this way, it is possible to
focus on the qualitative geometrical features and on the portions of the boundary associated to
specific boundary conditions. The domain is the composition of two rectangles, the height of the
bigger one is 7.5 length units and its length 90 length units; on the other hand the height and
the length of the smaller one are, respectively, only 2.5 and 10 length units. Finally, the smaller
rectangle is vertically centered with respect to the bigger one. The vertical wall on the left (in
figure in blue) is the inlet, from this side the fluid can enter into the domain and, consequently,
a Dirichlet boundary condition is imposed on the velocity. Since the extreme points of such an
edge are (2.5, 0) and (5, 0), the inlet condition is the following one:{

u = 20(5− y)(y − 2.5)

v = 0
, (4.2)

where the multiplicative factor in front of the term (5− y)(y − 2.5) is used to properly modify
the characteristic velocity U of the fluid to obtain the correct values of the Reynolds number. It
should be noted that expression (4.2) represents a parabolic profile, it is the most physical one
because the velocity has to be equal 0 on the walls due to the no-slip condition [73]. However,
it should be noted that, in order to obtain the asymmetrical solutions without using specific
numerical techniques, it is possible to modify the inlet velocity profile as in [76]. Condition (4.2)



64 Numerical results

Figure (4.1) Test case domain. The colours highlight the specific type of boundary: the inlet
is the blue wall, the outlet the red one, while the remaining ones are impermeable
rigid walls.

will be modified as follows in section 4.3:

{
u = 20s(5− y)(y − 2.5)

v = 0
,

where the scaling factor s is the second considered parameter.
The vertical wall on the right, instead, is the outlet: the side from which the fluid exits from
the domain. Here homogeneous Neumann boundary condition are used to impose a stress free
(or natural) boundary condition on the velocity. Finally, the remaining walls are characterized
by no-slip conditions [73]: they are homogeneous Dirichlet boundary conditions that represent
the fact that, due to the viscosity of the fluid, the fluid particles adjacent to an impermeable
wall are required to move with the same velocity of the wall itself.
Even if it looks very simple, many different solutions can coexist: they are shown in figure 4.2.
Only the streamwise component of the velocity is represented, that is the one associated to
the horizontal direction, from left to right. Each picture can be interpreted in the following
way: where the colour is blue the fluid is still (or going from right to left very slowly in dark
blue regions), while in the rest of the domain it is moving from left to right with an horizontal
velocity magnitude explained by the legend. Coherently with the Bernoulli law, it is possible
to observe that the highest velocities are present in the narrowest region, while the backward
facing steps allow the bifurcations to occur. The fluid can go through the channel closer to one
of the two walls or in a symmetric way: in physics this phenomenon is named Coanda effect
(see [73] for a complete explanation of the Coanda effect and of the Bernoulli law). Moreover,
it can be noted that, due to the symmetry of the domain and of the boundary conditions, if a
field u is a solution of problem (4.1), another solution can be obtained mirroring u with respect
to the horizontal symmetry axis y = 3.75, such a phenomenon can be observed, for instance, in
solutions 4.2d and 4.2e.



Results with a single parameter 65

(a) ν = 1 (b) ν = 0.6 (c) ν = 0.3

(d) ν = 0.6 (e) ν = 0.6 (f) ν = 0.3

(g) ν = 0.3 (h) ν = 0.3 (i) ν = 0.3

Figure (4.2) Examples of solutions that can be obtained varying the viscosity: only the stream-
wise component of the velocity is represented

4.2. Results with a single parameter

In this section the results that can be obtained with a single varying parameter will be shown
and, since our test case is very similar to the model described in [37], we expect very similar
results.
As said in section A.2, the Reynolds number is the only non-dimensional number that is present
in system (4.1) after the normalization, and for this reason it is responsible for the bifurcations.
Let us remember that it is defined as Re = UL

ν , where U , L and ν respectively represent the
characteristic velocity, length and viscosity. In this section the varying parameter will be the
kinematic viscosity. Note that, if U and L are constant, the variation of Re is simply the inverse
of the variation of ν and that it is thus possible to observe different solutions using such a
parameter.
The aim of this work is to develop an efficient method to compute an entire bifurcation diagram,
however, in this section, we will only focus on the methods that allow one to compute such a
diagram both in the offline and in the online phase. In fact, even if the computation of the
diagram in the online phase is very efficient, it is not possible to obtain it without computing
almost the same diagram in the offline one. Let us suppose that one wants to exploit the
described methods only in the online phase, then the reduced space would be generated by
snapshots belonging to a single branch. In the test case described in the previous section
the only branch that can be found without the deflation method is the symmetrical one and,
therefore, the reduced solutions are linear combinations of symmetrical fields. It is thus clear
that the reduced space is not rich enough and the remaining branches can not be obtained with
the deflation method.
To avoid such an issue, one has to obtain, in the offline phase, solutions belonging to every
branch that will be reconstructed in the online one. Therefore, when a single parameter is
involved in the computation of the diagram, the entire bifurcation diagram has to be computed
in both the phases. However, even if it is not efficient, we performed such a task in order to
empirically prove that the continuation method and the deflation one can be used to obtain the
entire diagram in the reduced framework. On the other hand, in section 4.3 the problem of
the efficiency will be handled exploiting in a more clever way the offline-online splitting, even
if all the needed techniques will already have been covered in this section and in the previous



66 Numerical results

chapters. In such an approach one computes few bifurcation diagrams with a single parameter
in the offline phase, while the entire diagram is computed only in the online one. However, this
difference will be more deeply explained in section 4.3.1.

4.2.1. Offline phase

4.2.1.1. Deflated continuation method

In order to efficiently compute a bifurcation diagram in the online phase, a reduced space that
already contains enough information to reconstruct every branch is needed. To construct it, all
the different branches have to be followed also in the offline phase, this way solutions belonging
to different branches can be then grouped together to generate a rich enough reduced space. In
this section a method that can be used to compute solutions belonging to different branches will
be discussed. It can be noted that, in order to compute such a set of solutions in an efficient
way, it is better to directly compute a bifurcation diagram with the described techniques rather
then computing a set of isolated solutions. In fact, if one wanted to compute several different
solutions without computing a diagram, one should be able to obtain many solutions on each
branch (otherwise the reduced space would not contain enough information) and should use
many different initial guesses that would not be easily obtained.
In sections 3.2 and 3.3 the continuation and deflation methods have been presented. They are
very useful when one wants to obtain local informations about known or unknown branches of
a bifurcation diagram but, in order to entirely obtain such a diagram, they have to be used
together in a coordinate way. The proposed technique to bind the two methods is called deflated
continuation and it is discussed in [28]. The idea behind the method is to initially compute a first
solution, that will belong to the first branch, and then use it as initial guess for the continuation
method to obtain that branch entirely. Moreover it is important to use the deflation method
after each step of the continuation one in order to discover new branches that will be followed,
with the continuation, in parallel.
Unfortunately, we observed that the deflation method works fine only if an unknown branch is
close to a known one. Let us assume that every already computed solution belongs to the branch
B0 and no informations about other branches are available. If one wants to use the deflation
method to find the branch B1, one should use the iterative solver on the deflated system using
as initial guess a constant field or a perturbation of an existent solution. Actually, these two
approaches are equivalent, in fact, in general, if the first solution on B0 has been obtained
starting from a constant solution, the iterative solver would always converge to pressure-velocity
pairs in B0 with a similar initial guess. This way, after n steps of the iterative solver, the actual
iteration would be very close to B0 and can be thus considered as a perturbation of a solution on
that branch. The problem is that, as remarked in sections 1.3.1 and 3.3.2.1, the iterative solver
requires an initial guess close enough to the sought solution in order to converge to it and, if any
solution on B1 is too far from B0, it would not be able to converge simply because the initial
guess is very bad.
In order to solve this issue it is important to use the deflation at each step of the continuation
method, in fact, under the assumption that only pitchfork or transcritical bifurcations are present
(see section 3.1), right after the critical point the different branches are very close and it is



Results with a single parameter 67

possible to converge to solutions belonging to a branch different from the one used to obtain the
initial guess.
The pseudo-code of the deflated continuation, even if in a very simplified version, is represented
below:

//First solution

ν = ν0;

Computation of u0: a solution of L(u; ν) = 0;
S = {u0} // Set of solutions to be continued

for(int i = 1; i < Nmax; i++)

{

// Continuation of known branches

Stmp = ∅ // Set of solutions to be deflated and continued in the next

↪→ step

G(·; ν) = L(·; ν) // The deflated system is the undeflated one

for(int j = 0; j < S.size(); j++)

{

Computation of ũi using S[j]; // Simple continuation

ν = ν + ∆ν; // Parameter update

Computation of ui: a solution of G(u; ν) = 0;
if the solver converged to ui,j
{

Stmp = Stmp ∪ {ui,j}; // Stmp update

G(·; ν) =

(
1 +

1

‖ · −ui,j‖

)
G(·; ν); // G update

}

}

// Deflation method

for(int j = 0; j < Stmp.size(); j++)

{

Computation of ui: a solution of G(u; ν) = 0;
if the solver converged to ui,j
{

Stmp = Stmp ∪ {ui,j}; // Stmp update

G(·; ν) =

(
1 +

1

‖ · −ui,j‖

)
G(·; ν); // G update

}

}

// Setup for the next continuation step

S = Stmp;
}



68 Numerical results

The presented version is a simplified one for many different reasons, however, we will analyze
only the ones related to the numerical methods. Firstly, the aim of the pseudo-code was only
to represent the logical structure of the method, but great care must be taken to manage
the different data structures, especially if a better continuation method is used. Secondly,
as remarked in section 3.3.2.1, it is important to modify only the residuals of each Newton
iteration instead of the entire linear problem as written in the pseudo-code. Thirdly, in order
to exploit as much information as possible from the data, it would be advisable to use a better
continuation method, like the pseudo-arclength continuation method, even if it would slow down
the computation of each single solution. In fact, as explained in section 3.2.2, with the pseudo-
arclength continuation the computation of the next initial guess is more expensive, but one can
afford bigger steps, reducing also the overall needed amount of time and memory. The latter
is an important issue for the algorithm, because all the solutions have to be stored in order to
construct the reduced space, and a lower number of solutions implies lighter data structures.
Furthermore, the time needed to generate all the matrices and the vectors that will be used in
the online phase increases if a bigger number of snapshots is available. However, the reduced
space dimension is almost the same in both the cases, because it depends by the information
contained in the snapshots and not by their number, therefore a longer computation does not
imply a better result.
Another downside of using smaller steps is that the deflation can be considered the bottleneck
of the deflated continuation method and, if one wants to use it at each steps, it is better to use
bigger steps in order to avoid wasting too much time in useless iterations in the portion of the
method related to the deflation. However, it should be noted that, with the pseudo-arclength
continuation, two different solutions are required to obtain each initial guess, therefore the data
structure has to be properly modified or adapted in order to be able to recognize which are the
last two solutions on each branch (we remember that the number of branches is not known a
priori). On the other hand, the pseudo-arclength continuation method can not be used at each
step because two solutions on the same branch could not be available. In these situations, that
mostly occur at the first two steps where 0 or 1 solutions are available, or after a bifurcation point
where the number of known branches changes in two consecutive steps, the simple continuation
method is used.
Moreover, it can be observed that the deflation is used also in the continuation phase, this is
useful when two branches are very close to each other, for instance after a bifurcation point. In
fact, if two branches are very close, it is possible that the iterative solver converges to a solution
belonging to a branch even if the initial guess is a numerical approximation of a solution on the
other one. On the other hand, if the branches are very far, the same solution can be obtained
solving the deflated or the undeflated system, thanks to the property of the deflation function.
It should be noted that, even if we said that the deflation can converge only if it is used in a
little neighbourhood of a bifurcation point, we also suggested to use a continuation method that
allows very long steps. Unfortunately, they could be so long that, at the j-th step, the critical
point could be between (νj ,uj) and (νj+1,uj+1) but far from both. In order to face this new
problem we decided to limit the quantity ∆νj with an upper bound ∆νmax. However, since we
did not want to lose the accuracy obtained with the pseudo-arclength continuation method, we
modified it in the following way. Note that the same notation as in section 3.2.2 will be used,



Results with a single parameter 69

even if the abstract parameter µ will be substituted by the viscosity ν. Therefore, the system
that one wants to solve is the following one:[

Liu Liν
u̇i ν̇i

] [
∆ui
∆νi

]
=

[
Li

∆Si

]
. (4.3)

When the resulting ∆νi is less than ∆νmax no correction is needed, otherwise one can fix
∆νi = ∆νmax removing it from the unknowns, and then reconstruct the residual of the velocity
with the formula:

Liu∆ui = Li − Liν∆νmax. (4.4)

It should be noted that, in order to know if ∆νi > ∆νmax, one has to solve system (4.3) and, if
it is solved with the bordering algorithm (section 3.2.2.1), two linear systems associated to the
same matrix Liu have to be solved. Then, solving equation (4.4), the same system is solved for
the third time; it is thus convenient to use a proper matrix factorization in order to increase
the efficiency of this phase. We remark that the same approach can be used to impose a lower
bound ∆νmin to the step size, it can be useful when, due to the presence of a bifurcation, the
chosen steps are so small that the method get stuck in its neighbourhood.
Finally, if some information about the position of the bifurcation points is available, it is clever
to exploit it. Let us assume that the first critical value is associated to ν = ν0 and that this
information is at least approximately known, since the deflation is the bottleneck of the deflated
continuation method, it is uselessly expensive to use the deflation before such a value. In fact it
is impossible to converge to new branches because they do not exist, while, on the other hand,
using it around the critical value (or right after it if one is sure about the the value of ν0) will
increase the probability of discovering new solutions. Similarly, if the nature of the bifurcation is
known, and therefore one knows that only n branches exist, the deflation phase can be avoided
after having found exactly n different solutions.

4.2.1.2. A simple heuristic to improve the deflation method

In section 3.3.2.1 we proved that it is possible to use the deflation simply acting on the residual of
the Newton method but, unfortunately, we observed that in our test case the iterative solver on
the deflated system was too slow and this ruined its convergence. We thus decided to implement
a heuristic, based on the results in section 3.3.2.1, to improve the efficiency and the effectiveness
of such a method. In order to describe it, we briefly summarize the used notation:

L(u; ν) = 0, (4.5)

is the initial problem that has to be solved. Let us assume that it has been solved once,
obtaining the solution u0; we can thus define the deflated problem multiplying the previous one
by a deflation function M(u; u0):

G(u; ν,u0) =
1

‖u− u0‖pU
L(u; ν) =M(u; u0)L(u; ν) = 0, (4.6)

where U is a subspace of the space where the solution is sought but, in general, can be a generic
normed space. The solution set of problem (4.6) is the same of the undeflated one but without



70 Numerical results

u0 therefore, computing a solution of it, is equivalent to obtain a second solution u1 of (4.5).
The deflated problem can thus be generalized in the following way assuming that n solutions
u0, ...un−1 of (4.5) are obtained using each time a different deflated system:

G(u; ν,u0, ...,un−1) =
1

‖u− un−1‖pU
· ... · 1

‖u− u0‖pU
L(u; ν)

=M(u; u0, ...,un−1)L(u; ν) = 0.

(4.7)

Using, for example, the Newton method, problems (4.5) and (4.7) can be respectively discretized
as follows:

JL∆uL = −L, (4.8)

JG∆uG = −G. (4.9)

Finally, it has been proved (see section 3.3.2.1) that constructing JG and G at each iteration is
not necessary, since solving (4.9) is equivalent to solve (4.8), compute the scalar quantity τ and
directly obtain ∆uG as:

∆uG = τ∆uL. (4.10)

Finally, we remember that τ can be efficiently computed with the following formula, where all
the dependencies are omitted for brevity:

τ =
1

1 +M−1M′TJ−1
L L

. (4.11)

The problem is that, in our test case, |τ | was, sometimes, very small, about 10−7 or less, implying
that ‖∆uG‖ ≈ 0. This way the iterative solver got almost blocked for several iterations on fields
that were always very close to each other but that were not solutions of the system. We also
noted that, even changing the value of p, this behaviour was always present. In order to improve
the method we observed that, since τ is a scalar quantity, it can not modify the direction of
the vector ∆uL but only its magnitude or its orientation (when τ < 0). Assuming that the
iterative solver is converging to an already found solution ui of problem (4.5), τ = 1 means
that the deflation is not doing anything, τ > 1 (or 0 < τ < 1) means that the steps are bigger
(or smaller) than usual towards ui, and finally τ < 0 means that the deflation is pushing the
iterative solver away from ui.
It is thus essential to modify τ while maintaining its sign. The first modification to avoid very
small values of τ is to fix a threshold τt such that, if |τ | < τt, the value of τ is automatically
changed in −+τt, with the sign chosen according to the original one. Actually, we observed that
it was better to split such a condition in two different conditions with the positive and negative
thresholds τ+

t = 0.6 and τ−t = −0.4 in order to use, then, the following expression to initially
set τ :

τ =


τ−t , if τ > τ−t

τ+
t , if τ < τ+

t

τ otherwise

.

Moreover, we wanted, as much as possible, to avoid setting τ with these constant thresholds,
because they are not adaptive or problem dependent. Instead, we preferred to use a strength



Results with a single parameter 71

factor to modify τ maintaining at least a proportionality between the used value and the one
obtained with the formula (4.11). Analyzing the sign of τ , we understood that sometimes it
could be negative, then become positive and, after some iterations, return negative again. We
interpreted this behaviour as follows: at the beginning, when τ < 0, the current iteration is too
close to a known solution ui, in these iterations the deflation is pushing the solver away from
ui. However, when it becomes positive, it means that the deflation function does not consider
ui as too close. Unfortunately, the solver could still converge to ui if the current iteration is
not far enough from it, this way the subsequent iterations would be closer and closer to ui,
until τ would eventually become negative again. This problem occurs because the steps between
two subsequent iterations are too small, and it is due to the fact that, if τ is too small, the
threshold is used to modify τ , but also the threshold is very small. Unfortunately, considering
a bigger threshold would destroy the stability of the solver. We thus decided to multiply τ with
a strength factor c ≥ 1 obtaining the following expression:

τ =


τ−t , if cτ > τ−t

τ+
t , if cτ < τ+

t

cτ otherwise

.

In order to properly set c we used an iterative approach: initially, it is set to 1 but then, each
time τ becomes positive, c is multiplied by 1.75. This way, it is more and more likely to obtain
a value of τ such that cτ > τ+

t or cτ < τ−t so that the actually used value in equation (4.10)
is not related to the thresholds and the steps are bigger and bigger. This approach solves the
previous problem but it could happen that the steps between two iterations are so big that the
solver could diverge.
If the current iterations are very far, in norm, from any solution, but τ is negative and the
previous iteration was not that far from any other solution, it means that the last |cτ | factor
was too big. Therefore, the last update is ignored and the next one is computed iteratively
dividing the strength factor by 2 in order to obtain a better field. Otherwise, if τ is positive
or the previous iteration was already very far from other solutions, the linearization method
is changed from the Newton method to the Oseen one. It can be useful because the Newton
method can converge only if the initial guess is close enough to the solution, while the Oseen
one can slowly converge from further initial guesses. However, the Oseen method is very slow,
therefore we decided to switch back to the Newton method when, with the Oseen iterations, the
solver is converging and the distance between two subsequent iterations is small enough.
In any case, if the iterative solver has not converged in 150 iterations, we decide that it will not
converge because the other solutions are too far or they do not exist. We thus move on to the
next initial guess in the deflation phase or the next value of ν to follow the known branches.

4.2.1.3. Bifurcation diagram analysis

In this section the nature of the snapshots and the effectiveness of the described techniques
will be analyzed. To do it, we will show the associated bifurcation diagram, this way it will
be possible to discuss the obtained result and understand the different features of solutions
belonging to different branches.



72 Numerical results

Figure (4.3) Bifurcation diagram obtained in the offline phase. Each point represent a single
SEM solution.

In order to compare our results with the ones present in [29], we decided to use the same function
to obtain the bifurcation diagram, that is defined as:

f(u, p) = f(u) = −+
∫

Ω
‖u−Ru‖2, (4.12)

where the sign is chosen according to the fact that the jet is closer to the upper wall or to the
lower one. It should be noted that here u = (u, v), the variable u does not take into account
the pressure as in the previous sections and, for this reason, only the velocity is involved in the
computation of the bifurcation diagram. Furthermore, the velocity fieldRu is obtained reflecting
u through the horizontal symmetry axis. This way, the obtained output can be interpreted as a
measure of the asymmetry of the solutions, if u is perfectly symmetric f(u) = 0, while, on the
other hand, when the velocity fields u is significantly asymmetric, |f(u)| is very high.
The obtained bifurcation diagram is shown in figure 4.3, it contains two pitchfork bifurcations
and five different branches. The diagram is obtained with an initial solution associated to ν = 1
computed simply using a constant initial guess, then the initial branch is followed with the
continuation method decreasing ν and the deflation is used to obtain the initial point on new
branches.
It can be observed that the points are closer to each other for low values of ν, while they are
farther and farther as the parameter increases. This is due to the fact that the Reynolds number
increases when ν decreases, therefore the computation of each solution is more complex for low
viscosities and using a better initial guess (with smaller step sizes) improves the stability of the
method. Moreover, it should be noted that the symmetrical solutions are always very similar,
while the asymmetric ones can significantly vary even for small variations of the parameter.
This implies that the step sizes chosen by the continuation method for the symmetric branch



Results with a single parameter 73

are much bigger than the ones for the other branches. If one is only interested in obtaining the
branches this is not an issue, but it can ruin the deflation method effectiveness, in fact it is not
possible to deflate an entire branch but only single solutions. In order to better understand the
problem, let us assume that the branches B0 and B1 have already been found, let us denote as
(ν0,u0) the last obtained solution pair on B0 and with (ν1,u1) and (ν2,u2) the last two solution
pairs on B1. Finally let us assume that ν2 > ν0 > ν1 and that the Newton method is used with
a perturbation of u0 as initial guess and with ν = ν0. Since a solution u3 on B1 associated to
ν = ν0 is not know, it can be obtained by the Newton method even if the deflation operator
is built using both u1 and u2 because it is a solution of the deflated system. To avoid such a
problem, while maintaining the accuracy of the pseudo-arclength continuation and meaningful
step sizes, we decided to use on every branch the minimum step size chosen by the continuation
of all the known branches. To do it, one can use a technique similar to the one presented in
section 4.2.1.1 to impose a maximum step size.
Moreover, it should be noted that, in the described test case, there exist a limited number
of solutions for any value of the parameter but such a property does not always hold true.
For instance, if one considers the three-dimensional and axisymmetric version of the domain
described in section 4.1, where the two rectangles are substituted by two cylinders, infinite
different solutions exist. In fact, given a solution ũ of the problem, it is always possible to
generate infinite different solutions rotating ũ around the symmetry axis. Therefore, one has to
modify the deflation method to deflate an entire group of solutions at the same time; the easiest
way to do it is to modify the deflation function as described in [9]. However, imposing the same
step sizes on all the branches is still required to effectively deflate the known solutions.
Since the first obtained solution is computed using ν = 1 and then the viscosity is slowly
decreased, we will refer to the bifurcation point associated to ν ≈ 0.970 as the first bifurcation
point, while the one for ν ≈ 0.395 as the second one. Then, to better interpret the diagram
in figure 4.3, it is convenient to relate each branch to the solutions shown in figure 4.2. Let
us consider the central branch: for each solution u belonging to it f(u) = 0, therefore it can
be said that those solutions are symmetrical. In fact the solution 4.2a is associated to ν = 1,
4.2c to ν = 0.3 and 4.2b is a representative solution of the central branch for a viscosity value
between the two critical values. These solutions are symmetrical and it should be noted that
with lower viscosities (or better higher Reynolds numbers) the jet becomes narrower but longer;
this phenomenon is reasonable thinking about the Reynolds number effects as follows. Since
Re = UL

ν , the same qualitative behaviour could be obtained fixing a proper value of ν and
increasing the velocity maintaining Re in the same range of values as before. In that case the
values of the velocity in each point would be different, but it would be easier to visualize the fact
that the jet elongates and restricts increasing the velocity (and therefore the Reynolds number).
Then, let us consider the upper branch that arises from the first bifurcation point, the associated
solutions are asymmetric and their asymmetry grows more and more because |f(u)| increases
when ν is decreased; two representative solutions on it are in figures 4.2d and 4.2i. It can be
observed that at the beginning only the first part of the jet is asymmetric, while for higher Re
the asymmetry propagates throughout the entire channel. It can be noted that solutions 4.2e
and 4.2h are the reflections of the previous ones and, in fact, they belong to the lower branch
that detaches from the first bifurcation point. Finally, solutions 4.2f and 4.2g can be seen as



74 Numerical results

representatives solutions for the remaining two branches (respectively the upper and the lower
one). Let us observe that the asymmetry arises closer to the outlet because the Reynolds number
is higher.

4.2.1.4. Choice of the technique used to construct the reduced space

In order to perform the offline-online splitting it is important to compute, during the offline
phase, all the required vectors and matrices that allow one to efficiently solve the same problem
in a reduced space. Such a space can be generated with different methods, like the POD method
(see section 2.2) or the greedy algorithm (see [38]). In the latter approach, one iteratively
updates the snapshots set adding, at each step, a new snapshot that is selected looking for the
worst approximated solution with the current reduced space. If the method is optimized and an
error estimate is available in order to efficiently obtain the reduced space, it is faster than the
POD method. However, the two techniques converge to the same space only when the reduced
spaces sizes tend to infinity. Unfortunately, the greedy algorithm can not be easily used when
the aim is to compute an entire bifurcation diagram, in fact one should be able to face at least
two different problems. The first one is related to the fact that more than one solution can be
associated to a single value of the parameter, therefore the error estimate should be modified
to be able to catch the error on each branch. Secondly, in order to obtain the bifurcations, the
parameters have to be above a critical threshold but, if the parameters are in a range where
strong instabilities occur, the solver could diverge because of the absence of a good initial guess
(in this work obtained with the continuation method). Therefore, the greedy algorithm should
be properly modified in order to face the first problem, a continuation method could be useful
to reach the needed values of the parameter (but it would involve the computation of many
full order solutions) while some other method should be used to obtain solutions on different
branches in regions far from the bifurcation points.
On the other hand, the deflated continuation method seems to be perfectly adapted to the POD
method, in fact it allows one to have snapshots belonging to all the different branches and it
can ensure good initial guesses for the Newton method to enable it to converge even for higher
Reynolds numbers. All the snapshots can then be grouped together to generate, using the POD
method, a global reduced base. It is called global because one can choose to use a local reduced
basis approach, this topic will be analyzed in Chapter 5.
Finally, since the POD method is based on the analysis of the eigenvalues of the snapshots
correlation matrix, it is interesting to observe their decay. In order to obtain a general result we
considered four different scenarios: in the first one, that will be called the reference setting, we
computed 24 snapshots belonging to the first three branches and using the constraint that, in the
continuation method, ∆νi < ∆νmax = 0.02 ·ν. With the reference setting we obtained snapshots
associated to values of ν in the interval [0.85, 1], the corresponding decay of the eigenvalues of the
correlation matrix is shown in figure 4.4a. This way, it can be noted that all the snapshots are
in a small neighbourhood of a bifurcation point but, even if the reduced order model performs
worse in such a region, the eigenvalues decay is exponential as expected [32]. The eigenvalues in
the plots are normalized over the sum of all the eigenvalues and, this way, it can be seen that the
first eigenvalue is always very close to 1 even if the sum of the normalized eigenvalues is exactly
1. This property explains the fact that the first POD mode contains most of the information



Results with a single parameter 75

contained in the snapshots. Furthermore, an exponential decay can be clearly observed, it is
a very useful property because this way, as explained in section 2.2, one can fix a threshold to
select the best dimension for the reduced space and generate a very small subspace that contains
almost all the information of the solution manifold.
In figure 4.4b the step sizes in the continuation method are smaller, this way all the snapshots
are closer to the bifurcation, in fact they are associated to viscosities in the interval [0.91, 1].
However, it can be noted that the decay is qualitatively the same as in figure 4.4a, therefore the
step sizes in the continuation method do not deeply influence the result. This can be considered
an expected property since the eigenvalues decay depends by the manifold that is approximated
by the snapshots and the continuation step sizes do not change it. On the other hand, if such
a manifold changes, for example when only one of the three branches (the symmetric one in
the plot) is considered, the decay is very different. Such a phenomenon can be seen in figure
4.4c: the decay is much faster even if with 24 snapshots the viscosity reached the value 0.64
and therefore its range is wider. A faster decay means that the reduced space dimension will
be much lower, it is reasonable since it can summarize the needed information in less snapshots
since they are all similar. Finally, in figure 4.4d, the reference settings are considered, but with
100 snapshots instead of 24. The range of the viscosity is [0.51, 1], therefore the manifold is
different from the one discretized with the reference setting, but the decay is much slower, in
fact the 24-th normalized eigenvalue is around 10−6 instead of 10−11 as in figures 4.4a or 4.4b.

4.2.2. Online phase

4.2.2.1. Reconstructed bifurcation diagram

In this section our aim is to use the reduced space built in the offline phase to quickly and
accurately reconstruct the entire diagram described by the snapshots. The main idea used to
obtain the diagram is very similar to the one used in the offline phase: the continuation method
will be used to follow the first branch, then the first solutions on new branches will be computed
with the deflation, and finally these new branches will be entirely tracked with the continuation
method.
The differences between the offline and online deflated continuations are mainly three. Firstly,
the first solution in the online phase is obtained starting from the projection of the correspond-
ing full order solution on the reduced space as initial guess. This is very important because one
of the main weakness of the global basis with snapshots coming from different branches is the
stability, this way a very good initial guess is used for the first solution, while the initial guesses
for the subsequent solutions are obtained with the continuation method. Therefore, every solu-
tion is very close to the initial guess used to compute it and the iterative solver can converge
to it even if the global basis is noisy. Secondly, since in the online phase the computation of a
solution is a very cheap operation, we decided to use the simple continuation (see section 3.2.1)
with small step sizes. To have reasonable values for each ∆νi we refined the offline parameter
grid adding, between each pair of subsequent parameter values used in the offline phase, a fixed
number of points (usually between 2 and 20). This way the step sizes are smaller near the
bifurcation points because in those regions the steps used in the offline phase were very small,
while they are bigger otherwise. We remark that with this approach one of the main weakness



76 Numerical results

(a) Reference settings (b) Reference settings but with ∆νmax = 0.01 · ν

(c) Reference settings but with all the snapshots
belonging to the same branch

(d) Reference settings but with 100 snapshots

Figure (4.4) Eigenvalues decay obtained with different settings of the model. The reference
settings are: 24 snapshots belonging to three branches with the constraint ∆νi <
∆νmax = 0.02 · ν for the continuation step sizes.



Results with a single parameter 77

of the simple continuation can be solved because the steps become proportional to the steps cho-
sen by the pseudo-arclength continuation used offline. Thirdly, we observed that the deflation
method works fine also in the reduced framework, we thus modified it only slightly to improve
the performances. The first change is due to the fact that with some settings the solver could
converge in only one or two iterations, and the deflation did not have enough time to avoid the
convergence, therefore we used as initial guess in the deflation phase the zero field to slow down
the convergence. Moreover, we observed that the deflation was more stable than in the offline
phase but that it still needed to be associated to a heuristic, even if it is simpler than the one
discussed in section 4.2.1.2. We maintained the strength factor c and the thresholds even if the
values used to update c and as thresholds have been empirically modified to prevent the solver
to immediately diverge. On the other hand, since the continuation steps are very small and the
computation of a solution very cheap, we decided to always use the Newton method and avoid
the process of iteratively dividing τ by 2 when the solver diverged.
The obtained bifurcation diagram is shown in figure 4.5, it can easily be noted that the reduced
model is able to capture all the different branches and entirely reconstruct the diagram even
if it includes some bifurcation points. This specific diagram has been obtained with a POD
tolerance equal to 0.999, the dimension of the reduced space was 37, while the snapshots are
computed using polynomials of order 10 in each element. The accuracy of the solutions obtained
in this phase is proved by an empirical error analysis, that has been performed comparing each
online solution with the full order field obtained using that specific solution as initial guess; the
error is shown in figure 4.6. It can be observed that, even if the reduced order model is able to
capture the different natures of the branches, the error increases in the neighbourhood of the
bifurcation points. This phenomenon is due to the fact that in the inner part of each branch a
small variation of the parameter implies a small variation of the solutions, while this does not
happen immediately after a bifurcation point. It can also be noted looking at the bifurcation
diagram, the almost vertical part of the asymmetric branches represents the fact that there are
few solutions that are only slightly asymmetric, but these fields can not be approximated as well
as the other ones because very few snapshots are similar to them. In the error plot each line
represent a different branch, it can be noted that the mirrored branches have the same error,
while the symmetric one is often represented more accurately. Moreover, the solutions in the
online phase have been computed with the tolerance of the iterative solver equal to 10−6, it can
be observed that the average error is very close to it, even if, after the bifurcation points, the
accuracy decreases of a couple of order of magnitude.
Moreover, the oscillations are due to the fact that the reduced base is able to more faithfully
reproduce fields that are very close to the most important snapshots. Such a behaviour can be
more easily explained using the greedy algorithm because in that case the base is generated by
solutions, but it can be observed also using the POD method, since the informations contained
in the reduced spaces obtained with the two approaches are similar.
Lastly, it is interesting to observe that the error decay over the reduced space dimension is expo-
nential as expected, this phenomenon can be observed in figure 4.7. Such a plot has been obtained
computing several solutions in a neighbourhood of the first bifurcation point (ν ∈ (0.85, 1)), this
is important because, as observed in figure 4.6, such a region is the one where the error is higher.
In order to obtain a reliable result, we set both the offline and online iterative solver tolerances



78 Numerical results

Figure (4.5) Bifurcation diagram efficiently obtained in the online phase.

equal to 10−10, this way one can recognize that the exponential decay is present only when the
error is much greater than such a tolerance, while it remains constant when its magnitude is
comparable with such a value. Moreover, the maximum and the average relative errors, that
have been computed over 138 different solutions, are very close to each other and exhibit the
same behaviour. This can be interpreted saying that the error decay has to be exponential also
in smaller neighborhoods of the bifurcation point, in fact, if the closest solution to the critical
point was associated to a bigger error that would not exponentially decrease, the maximum error
would be much bigger of the average one.

4.2.2.2. Unphysical branches

Even if we proved that it is possible to use the reduced order methods to reconstruct an entire
bifurcation diagram, many different parameters are required to properly set the model up. The
most important one is the tolerance used by the POD method to choose the dimension of the
reduced space, unfortunately a general technique to set it in the best way is not known. The
problem is that if the tolerance is too low the reduced space is too small and the different
branches can not be reconstructed properly. In such a case, in the deflation steps, the solver
could always diverge or it could converge only far from the bifurcation point, but, on the other
hand, a too strict tolerance can imply several issues.
Firstly, if the reduced space is generated by too many snapshots it is very noisy, leading to
serious stability issues, in the worst scenario the solver is not able to converge even starting
from very good initial guesses. Secondly, the online matrices are full, therefore the resolution
of the linear system can become very expensive. Finally, if the tolerance is not high enough
to destroy the convergence but the reduced base is still very noisy, unphysical solutions can be
found by the solver. When these solutions are associated to random points in the bifurcation



Results with a single parameter 79

(a) Uniform scale (b) Logarithmic scale

Figure (4.6) Error with respect to full order solutions relative to the solutions in figure 4.5

Figure (4.7) Maximum and average relative errors over the reduced space dimension. A clear
exponential decay can be observed.



80 Numerical results

(a) Physical solution (b) Unphysical solution

Figure (4.8) Examples of solutions belonging to the upper branches starting from the second
(physical solutions) and third (unphysical solutions) bifurcations points in diagram
4.9a.

diagram or they look unphysical, it is easy to understand that they are due to numerical issues
and they have to be discarded. However, sometimes their associated points in the bifurcation
diagram are grouped like in a standard branch and they look coherent with the equation and
the boundary conditions. Therefore, it is not always possible to easily understand if a solution
is physical or not simply looking at it. The visualization of two different but similar solutions
that have been obtained in the online phase are represented in figure 4.8, one of them is physical
while the other one is not. It can be observed that the two solutions are associated to the
same viscosity and that they are almost indistinguishable, the only visible difference is that
the unphysical jet (figure 4.8b) is a bit narrower than the physical one (figure 4.8a), but it is
impossible to say which one is feasible simply looking at them.
Such a phenomenon can also be observed in the bifurcation diagrams in figures 4.9a and 4.9b,
that have been computed with, respectively, 64 and 76 basis. In order to figure out if the
branches that have not been obtained in the offline phase are physical, we performed an error
analysis. To do it, we used the reprojection of each online solution uRB in the full order
space as initial guess for the offline solver, obtaining the solution uSEM ; then the error is
computed as ‖uSEM − uRB‖L2 . It should be noted that, with such an approach, the offline
solver always converged in a single iteration for the physical branches in regions far from the
bifurcations points, while it needed more iterations for the unphysical ones to converge to the
closest admissible fields. In order to prove that those branches are not physical it is possible to
look at the error plots in figure 4.10. The error associated to physical solutions, at least far from
the bifurcation points, is always below a certain threshold (for example a couple of order above
the tolerance used by the iterative solver that, for these plots, was 10−8), while the error of the
unphysical ones is always very high. It is also interesting to observe that, since the physical
and unphysical branches are closer and closer (decreasing the viscosity), the error of the latter
is smaller and smaller, but it is still much higher than the one relative to feasible solutions.
Finally, we anticipate that such a phenomenon will be important in section 4.3.2.2 and that it
will be used to better interpret the diagram of the error of a diagram with two parameters.

4.3. Results with two parameters

4.3.1. Overview of the problem and motivation

In section 4.2 we proved that it is possible to reconstruct an entire bifurcation diagram in a
very efficient and accurate way. The result can be achieved using, in the offline phase, the



Results with two parameters 81

(a) RB size = 64 (b) RB size = 76

Figure (4.9) Bifurcation diagrams obtained in the online phase obtained using snapshots com-
ing from only 5 branches.

(a) Uniform scale (b) Logarithmic scale

Figure (4.10) Error with respect to full order solutions relative to the solutions in figure 4.9a



82 Numerical results

deflated continuation to have snapshots coming from all the different branches, generating, with
the POD method, a global reduced basis and, finally, using again the deflated continuation to
reconstruct the diagram in the online phase. Even if such a result can be interesting from the
theoretical point of view, the diagram has been, in practice, already computed during the offline
phase; therefore the online reconstruction loses its relevance. One could reply that in the online
phase one can afford very small continuation steps and therefore the branches are discretized
in a better way. However, it is not possible to obtain it without using short steps also in the
computation of the snapshots, otherwise the asymmetric branches would not be found using the
deflation. Furthermore, because of this constraint in the offline phase, several full order different
solutions have to be computed. For instance, in order to obtain a diagram with ν ∈ (0.3, 1) with
∆νi < ∆νmax = 0.02 ·ν, one needs 315 snapshots. Once more, let us note that the dependency of
∆νmax by ν is useful to use smaller steps for higher Reynolds numbers. We remark that, if one
wants to compute a bifurcation diagram letting vary two or more parameters with the previously
described method, the number of snapshots could easily grow too much. Moreover, one can not
use a tensorial product of more one-dimensional grids because the bifurcation points depend
by an unknown combination of all the parameters, otherwise the property of the continuation
method to use adaptive step sizes would be lost. A more general approach, letting vary n
parameters (named µ1,...,µn), can be summarized by the following pseudo-code:

// The parameters are organized in a vector, the current value of µj is µ[j].

for(double µ[n] = µnmin; µ[n] < µnmax; µ[n] = µ[n] + (∆µ)n)
{

for(double µ[n− 1] = µn−1
min; µ[n− 1] < µn−1

max; µ[n− 1] = µ[n− 1] + (∆µ)n−1)

{

.

.

.

for(double µ[2] = µ2
min; µ[2] < µ2

max; µ[2] = µ[2] + (∆µ)2)

{

Computation of a one-dimensional bifurcation

↪→ diagram letting vary only µ1

}

.

.

.

}

}

Where, in order to improve the method, each increment (∆µ)i can be a function of the sub-
sequent parameters µi+1, ..., µn. Let us assume that the snapshots required to compute the
one-dimensional diagram in the inner loop are always approximately N1 and that, for every
index j such that 1 < j ≤ n, Nj = (µjmax − µjmin)/(∆µ)j . Then the total number of solutions



Results with two parameters 83

that have to be computed is, approximately,
∏n
j=1Nj . Let us remember that the initial value of

a parameter could be the maximum of its range and then it can be decreased till its minimum.
Since the result is the same, the best approach should take into account the specific problem,
solving the easiest problem at the beginning, and then moving on to more and more complex
problems. For instance, in CFD, if µi represents the Reynolds number, it is better to begin
with µimin and then use the continuation to obtain good guesses for higher Reynolds numbers.
Viceversa, if a parameter represents the viscosity, it is better to slowly decrease it because an
higher viscosity can stabilize the numerical method.
It can be observed that this is a good approach only if every bifurcation point can be obtained
letting vary only µ1 (for example, if all the bifurcation points are pitchfork bifurcations, this
hypothesis is respected). Moreover, if the first solution of the inner loop is obtained using as
initial guess the closest solution to it, every initial guess is obtained with the pseudo-arclength
continuation method except for a very small number of them (the ones related to the first snap-
shots of each one-dimensional diagram) that are computed with the simple continuation. For
this reason, even if this approach is very expensive because a huge number of snapshots have to
be computed, it is very accurate and could lead to a very accurate reconstruction of the diagram
in the online phase.
However, such a method would have the same weakness of the one discussed in section 4.2: the
online phase would be almost useless because the diagram would have been already computed,
even if in a very expensive way, during the offline phase. In order to solve such a problem
and to develop an efficient way to compute such a diagram, we chose a different approach: a
one-dimensional diagram is always computed letting vary only the first parameter, but only the
two extrema of each interval are used as values in the other dimensions. It can be noted that it
is equivalent to use the previous schema with ∆µj = µjmax−µjmin for any j greater than 1. This
fact implies that the simple continuation in the directions different from the first one can not
work because the step is too long but, on the other hand, only 2n−1N1 snapshots are required.
Therefore, since the simple continuation can not work, we decided to use the zero field as initial
guess for the first solution of the inner loop, this way the computation of that solution is much
slower but the gain in terms of computational time required for the computation of the snapshots
is huge. However, the computation of the snapshots is still very demanding, but this is the most
efficient way to get informations from every dimensions of the parameter space. We remark
that in the offline phase, using the second approach, one does not obtain a multi-dimensional
bifurcation diagram but only more one-dimensional diagrams. The snapshots coming from them
will then grouped together to generate the reduced basis and the entire bifurcation diagram will
be constructed only in the online phase using the first approach (in the online phase one can
afford it because of the efficiency that characterizes such a phase).
In this work we decided to fix n = 2 to prove that the method works fine, therefore only two
one-dimensional diagrams are computed in the offline phase. In order to exploit and generalize
all the results in section 4.2, the first parameter is, once more, the viscosity ν, while the second
one is a multiplicative scaling factor of the inlet boundary condition, that will be called s. One
could observe that we previously wrote that the bifurcations are due to the Reynolds number
and that these two parameters are strongly related to it. In fact the viscosity is part of it and
the maximum or the mean velocity of the Dirichlet boundary condition at the inlet is often used



84 Numerical results

(a) 2 values of s, 15 values of ν (b) 30 values of s, 1 value of ν (c) 5 values of s, 6 values of ν

Figure (4.11) Eigenvalues decay obtained with different settings of the model obtained using
the scaling as a parameter with different sampling for the snapshots.

as characteristic velocity of the fluid. In order to be sure to use two parameters that contain
different informations, we looked again at the eigenvalues decay of the correlation matrix.
One would expect to find a behaviour similar to the one present in figure 4.4 if the two pa-
rameters lead to different features in the solutions. On the other hand, if the scaling was not
interesting, a too strong decay would have occurred, with the first eigenvalue very high and the
other ones very low. An intermediate phenomenon where the two parameters are too strongly
related (and therefore they contain very similar informations) could be discovered if the eigen-
values decay, in a simulation with snapshots obtained letting vary both the parameters, would
not be exponential.
In figure 4.11a the setting is similar to the one used to obtain the diagrams: only 2 values of scal-
ing are considered, while the two required one-dimensional bifurcation diagrams (that included
a bifurcation point) have been obtained letting varying only the viscosity. It can be observed
that there are two different slopes due to the fact that the snapshots can be clustered in two
groups according to their associated scaling, but that the decay is again exponential. In figure
4.11b all the snapshots have been computed with ν = 1 but with 30 different values of scaling,
the plot is very similar to the one in figure 4.4c because in both the scenarios all the snapshots
belong to the symmetric branch. Finally, in figure 4.11c, the snapshots have been obtained with
a tensor product of 5 values of scaling and 6 values of viscosity. It is interesting to remark that
similar solutions can be obtained properly varying both the parameters (such a phenomenon
will be better explained in section 4.3.2.2), therefore the solution manifold is smaller and it is
possible to summarize it with fewer POD modes. However, it is important to highlight that
the eigenvalues decay is always exponential and very similar to the one shown in the subplots
of figure 4.4. Therefore, one can conclude that the scaling can be considered as an interesting
parameter and additional informations are added to the space when it is taken into account.

4.3.2. Results

In this section the results that can be obtained using the described techniques will be pre-
sented. They are the generalization of the ones presented in section 4.2.2, however, since we
have already analyzed the eigenvalues decay in section 4.3.1, we will focus on the obtained bifur-



Results with two parameters 85

Figure (4.12) Bifurcation diagram efficiently obtained in the online phase with two parameters
and two bifurcations. The colour gradient remarks the value f(u) in each point
in order to allow the reader to more easily interpret the diagram.

cation diagram and on its accuracy. In order to prove that the method works, we immediately
show a complete bifurcation diagram with two parameters over the tensorial parameter domain
(ν, s) ∈ [0.3, 1]× [0.8, 1] (figure 4.12). In the next subsections it will be analyzed, with a partic-
ular focus on its accuracy and on the issues that have to be faced to obtain it.

4.3.2.1. Efficiency quantification

We want to remark the fact that the diagram in figure 4.12 has been discretized with 16970
different solutions, therefore it would have been very expensive to compute it with the full
order solver. Such solutions are associated to parameters obtained with a finer grid (finer with
respect to the one in the offline phase) in both the directions; this can partially explain the
huge number of solutions, even if further details will be presented soon. Obviously, if one is
interested in a diagram that looks continuous in both the parameters, one can simply refine
the grid in the second direction, the computational cost will proportionally increase with the
number of solutions, but the result can be obtained using the same method. However, even if
many solutions have to be computed, the computation of such a diagram is very efficient because
obtaining a single solution is a very inexpensive operation in the online phase.
It is not possible to compare the time needed to perform the entire offline phase with the
one spent in the online one because in the online phase much more solutions are computed.
Moreover, it would also be unfair to compare the time needed for solving the problem once



86 Numerical results

because it depends by the goodness of the initial guess: smaller steps of the continuation method
or different types of such a method would imply very different initial guesses. As explained above
we chose the pseudo-arclength continuation method in the offline phase to afford bigger steps but,
due to the fact that the online solver is very fast, we preferred to use the simple continuation
method with the step sizes equal to a fixed fraction of their offline counterpart. Finally, the
iterative solver needs much more iterations when the parameters are very close to critical values
or when, in the online phase, the reduced space is very noisy.
Therefore, the only meaningful times to be compared are the ones required, on average, by the
iterative solvers to perform a single step. We observed that, even if they depend by the numbers
of degrees of freedom, the orders of magnitude of these quantities in the offline and in the online
one are very different. The offline solver is based on the methods of Nektar++ and, even if very
big linear systems have to be assembled and solved, it is very high-performance due to the static
condensation method used to solve them (see section 1.3.2). On the other hand, in the online
phase the assembly of the system is very efficient due to the affine decomposition (see section
2.3.1), while solving it is very fast because of its small dimension.
In this work we always used few thousands degrees of freedom in the offline phase (note that
this number is very low, thanks to the SEM that allows a much faster convergence, when
compared with classical FEM solutions), being able to perform a single step of the iterative
solver in, on average, approximately 0.03 seconds for a system with about 1500 degrees of
freedom and approximately 0.67 seconds for about 7000 degrees of freedom. Instead, in the
online phase, we always used reduced spaces of dimensions lower than about 100, discovering
that a single iteration of the solver needed between 10−6 and 10−4 seconds depending on the
system dimension. We remember that the involved software is ITHACA-SEM and that it is
possible to reduce the computational times that much thanks to efficient operations in the online
phase and to the fact that the Navier-Stokes equations are first linearized and then projected
on the reduced space. Therefore, on average, one can say that the online phase is about 10000
times faster.

4.3.2.2. Stability and accuracy issues

The main problem that has to be faced when one wants to reconstruct an entire bifurcation
diagram with more parameters and bifurcation points is related to the stability of the online
solver. As discussed in section 4.2.2.2, the model is very sensitive to the dimension of the reduced
space but, with a single varying parameter, many different choices on the tolerance of the POD
method lead to very good results. Instead, when one lets vary two parameters at the same time,
the reduced space is very noisy and it spoils the stability of the solver.
Moreover, the two chosen parameters are strongly related to the Reynolds number, but we think
that the situation can only worsen if the parameters are unrelated, for example considering two
geometrical parameters that influence the domain only locally in two distinct region (see [35],
where the SEM has been used with the reduced basis method and a geometrical parameter). It
can be noted that the Reynolds number is the governing parameter also looking at the diagram
4.12 from another point of view, like in figure 4.13. Even if understanding the structure of
the diagram has become harder, this perspective highlights the fact that the bifurcation points
(grouped according to their natures) generate two straight lines. Such a phenomenon can be



Results with two parameters 87

Figure (4.13) Bifurcation diagram obtained in the offline phase. Such a diagram is the same as
in figure 4.12 but from a different perspective to observe the bifurcation points
in a better way.



88 Numerical results

explained considering the fact that if one multiplies both the characteristic velocity and the
viscosity for the same number, Re does not change. Indeed, different choices for the characteristic
velocity are admissible and, probably, the most physical choice is strongly related, but not exactly
proportional, to the inlet velocity; therefore the scaling does not influence the Reynolds number
directly but only indirectly.
Such a property is reflected on the bifurcation diagram, because the lines that connect the
bifurcation points are straight lines but, if two critical points of the same nature are associated
to the values (ν1, s1) and (ν2, s2), the two ratios νi/si are slightly different. If they were equal it
would mean that the inlet velocity (its peak or its average) is the physical characteristic velocity.
Instead, the small difference means that the local features of the domain and of the velocity and
pressure fields are important in the exact definition of the Reynolds number. Finally, we think
that with other parameters the bifurcation points would be grouped in different curves and that
the reduced space would became even noisier, leading to even worse stability issues.
When one wants to reconstruct a bifurcation diagram with only a bifurcation point, even if
with two parameters, the iterative solver is able to converge with many different values of the
POD tolerance but, if more bifurcation points are involved, great care must be taken to allow the
method to be stable. In order to improve the stability we tried different approaches. Initially, we
obviously tried to select the best POD tolerance. The problem is that, to obtain two bifurcations
using two parameters, the range of the viscosity should be wide enough, five different kind of
solutions are present and there are solutions that are very similar even for different values
of the parameters. About the third factor, one would expect, for instance, that the solution
associated to the pair (ν1, s1) is qualitatively very close to the one associated to (ν2,

ν2
ν1
s1) (if

they are properly normalized over the inlet condition) because these pairs would generate the
same global Re. The first two factors lead to a very big reduced space, while the third one can
generate much noise in the basis. However, it is not possible to avoid these issues because they
are strictly related to the problem itself, we thus decided to keep the POD tolerance very low
(for example the diagram 4.12 is obtained with such a tolerance equal to 0.997). A low tolerance
implies that the noisy and less useful data are discarded but, due to the first two factors, the
basis is still big enough to represent the different phenomena. The choice of the POD tolerance
equal to 0.997 in the previous diagrams led to a reduced basis of dimension 29.
In order to overcame the issue related to the fact that the basis is very noisy due to similar
solutions for different values of the parameters, we tried three different approaches related to
the offline grid of the scaling. At the beginning we simply used an uniform grid in the second
direction over the interval (smin, smax) to compute the snapshots, that is the first idea exposed
in section 4.3.1. We observed that the method was moderately stable for values of scaling far
from the extrema of the interval but that it was unstable near them. This phenomenon led to
the second approach, here we tried to use a non-uniform grid, based on the Chebyshev-Gauss
points distribution, to capture more informations near the end of the interval, while maintaining
the stability in its center. The expression of the n values according to such a distribution in the
reference interval [−1, 1] can be described as follows:

si = cos θi, θi =
iπ

n− 1
, i = 0, ..., n− 1, si ∈ [−1, 1].



Results with two parameters 89

The previous formula can be used to obtain a similar distribution over the interval [smin, smax]
in the following way:

si =
smax − smin

2
si +

smax + smin
2

, i = 0, ..., n− 1 si. ∈ [smin, smax]

Using such a distribution, we observed that the stability slowly increased with the number n
of values on the scaling grid in the offline phase. The problem was that even with n = 40 the
online solver often diverged or converged to unphysical solutions. Further increasing n would
have implied a very expensive offline phase (the one-dimensional bifurcation diagram over the
viscosity has to be computed n times) and a loss of the online phase relevance because the
diagram would have been already computed in the offline phase. However, such an approach
is, probably, the best one if more unrelated parameters are considered, like geometrical ones,
because this way it is possible to capture enough information while maintaining the stability of
the solver.
Finally, we tried a third approach (already briefly presented in section 4.3.1) to reduce as much
as possible the noise in the reduced space. In the offline phase all the snapshots are computed
for values of scaling equal to smin or to smax, therefore only two one-dimensional bifurcation
diagrams are computed in such a phase. This way the basis contains the information about the
second parameter but the number of viscosity-scaling pairs that generate the same Reynolds
number are limited. In this work the best results have been obtained with the third approach,
but it is possible that it could badly perform in more complex scenarios.
A wiser choice in the offline sampling is very useful to improve the accuracy, but could not be
enough to always allow the converge of the online solver. In order to further improve the model
we decided to use more snapshots but, since we observed that too many values of the second
parameter spoiled the reduced basis, we preferred to refine the offline grid associated to the
viscosity. This is very useful mostly when there are branches that are much shorter than the
others, in fact they would contain much less snapshots and, therefore, the POD method could
discard their information. In this work this issue is present, since the two branches that arise
from the last bifurcation point are very close to the end of the domain. It could be noted that, in
order to obtain an equivalent result without the scaling, the constraint ∆νi < ∆νmax = 0.02 · ν
led to a clean reduced basis and a stable online solver, while , in order to obtain the diagram
4.12 the stronger constraint ∆νi < ∆νmax = 0.0075 ·ν has been used. Another way to obtain an
equivalent result would be to enlarge the viscosity domain, this way the last branches would be
longer, would contain more snapshots, and therefore their information would be more important
for the POD method. Moreover, to avoid adding noise to the reduced basis because of bad
solutions, we raised the order of the polynomials in each element from 10 to 12. This way the
computation of the snapshots and of the matrices/vectors needed in the online phase is slower,
but we observed that in the deflation phase (both offline and online) the new branches are found
much earlier.
Finally, we show the error associated to the two-dimensional bifurcation diagram in figure 4.14,
both in uniform and in logarithmic scale. Looking at subplot 4.14b one can observe that the
lowest relative errors are much higher than the ones in 4.6b. This is due to the fact that, even
with all the techniques described above, the reduced basis was still noisy and, in order to ensure
the convergence even near the bifurcation points, we have been obliged to raise the tolerance



90 Numerical results

(a) Uniform scale
(b) Logarithmic scale

Figure (4.14) Error with respect to full order solutions

used by the iterative solver to 10−5. Other two features that can be noted are related to the
peaks: firstly, as in figure 4.14, the error significantly increases near the bifurcation points and is
characterized by an oscillatory behaviour. This is again, as for the one-dimensional problem, due
to the fact that the reduced order models do not perform perfectly when the solution manifold
is not smooth enough, and the bifurcation points destroy the smoothness of such a manifold.
Secondly, it can be observed that the error raises also for values of the parameters such that
s/ν ≈ 2. This phenomenon is probably due to the presence of some fictitious critical point that
arises only in the online phase like the unphysical branches in section 4.2.2.2. To obtain the
diagram the reduced space dimension was only 29 but, probably thanks to the higher number
of snapshots, it already contained the information to recognize the fake branches presence, even
if the solver did not converge to unphysical solutions.

4.4. Conclusion

In this chapter the results that can be obtained with the described methods have been shown.
In section 4.2.1.1 we described how to couple the continuation method with the deflation one
to efficiently generate a bifurcation diagram, then, in section 4.2.1.2 we discussed a possible
heuristic to improve the effectiveness of the deflation method and, finally, we analyzed the first
bifurcation diagram in section 4.2.1.3. The diagram in figure 4.3 can be considered as the
first proof of the effectiveness of the described approach. However, it has been obtained with
full order solutions and, therefore, its computation was very expensive. Subsequently, we proved
that it is possible to efficiently reconstruct such a diagram exploiting the reduced basis methods,
even if great care must be taken to handle the stability issues of the online solver. Moreover, we
extended such a result to a scenario characterized by the presence of two different parameters,
demonstrating that it is possible to obtain results that would be unaffordable without a reduced
order method.
On the other hand, we were also interested in the accuracy of the method and, therefore, we
analyzed the norm of the difference between the full order solutions and the reduced ones,



Conclusion 91

observing that such a quantity decays exponentially with the dimension of the reduced space.
However, since the aim of the reduced basis method is to efficiently reconstruct smooth solution
manifolds, the error near the bifurcation points was higher than elsewhere, even if we observed
that its decay is exponential even in those critical regions.





5. Conclusion

The purpose of this work was to develop a technique to efficiently compute bifurcation diagrams
using different existing methods together.
A bifurcation diagram is a diagram that graphically summarizes specific informations about the
solutions of a non-linear equation (that can be differential or not). Obtaining it analytically is
usually impossible in the context of differential equations because one is, often, not able to com-
pute the different solutions. On the other hand, one could numerically compute a finite number
of approximated solutions to obtain a discrete bifurcation diagram, but different techniques are
required in order to find all the existing solutions of the problem. However, the latter is a costly
computation and, if several parameters are involved or if their range is wide, the computational
cost may become prohibitive. Therefore, we decided to rely on a reduced order method to split
the task in two different steps: the first one, namely the offline phase, is used as a preparation
step, while the second one, namely the online phase, is characterized by the actual computation
of the bifurcation diagram. As explained in Chapter 2, the reduced basis method can be used
to construct the bifurcation diagram because, after the generation of the reduced space involved
in the Galerkin formulation of the problem in the offline phase, the computation of a single so-
lution is an inexpensive process. However, the offline phase is very expensive because solutions
belonging to all the branches of the diagram have to be computed. Moreover, such solutions
are characterized by numerous degrees of freedom and, to obtain them all, different numerical
methods have to be used.
In order to reduce the computational cost associated to the offline phase, we decided to rely
on the spectral element method because such a method is characterized by an exponential con-
vergence when the total number of degrees of freedom is incremented (see Chapter 1 for the
description of the method). This way, it is possible to obtain very accurate approximations us-
ing a limited number of unknowns. For instance, the mesh used to obtain the results discussed
in Chapter 4 is presented in figure 5.1; such a mesh is associated to the domain Ω described in
section 4.1. It can be observed that it is very coarse but that the areas of the elements closer
to the inlet are half of the ones of the remaining elements. This is useful because we decided
to fix the same polynomial order inside all the elements and, this way, we could maintain an
acceptable level of accuracy in the most important region of the domain. In fact, the different
solutions shown in figure 4.2 can be distinguished simply analyzing the first part of the domain.
On the other hand, it was useful to consider an extended channel because, otherwise, the outlet
boundary conditions would have strongly influenced the solutions and the solver would have
converged to unphysical pressure-velocity fields. It can be observed that different results can
be obtained with the same mesh but with polynomials of different order. For instance, using
the mesh in figure 5.1, one can obtain good approximations of symmetric solutions using poly-
nomials of order 4, while one needs, at least, polynomials of order 6 to compute the solutions
belonging to the first three branches of the diagram in figure 4.3 and of order 8 to obtain the



94 Conclusion

Figure (5.1) Mesh used to compute the snapshots. The spectral element method is able to
capture the different features of the solution even with very coarse meshes thanks
to the high order of the involved polynomials.

last two branches. However, to increase the stability of the online solver, we observed that it
was better to further increase the order of such polynomials.
Finally, we used two different methods to generate the bifurcation diagram: the continuation
method and the deflation method. Assuming one has already obtained a solution on a branch, it
is possible to entirely track such a branch using the continuation method. The key idea behind
this method is to exploit the last n computed solutions ui−1, ...,ui−n to derive a good initial
guess for the next one ui to be sure that the solver, starting from the obtained initial guess, will
converge to ui. In this work we discussed and used two different approaches, associated to n = 1
and n = 2, and respectively named simple continuation (see section 3.2.1) and pseudo-arclength
continuation (see section 3.2.2). Such methods have advantages and disadvantages that have
been more deeply discussed in their specific sections and in Chapter 4. Finally, the deflation
method has been used to discover solutions on unknown branches (see section 3.3) preventing
the solver to converge to known pressure-velocity fields.
In Chapter 4 we presented several results that can be obtained with such an approach. We
proved that it is possible to compute bifurcation diagrams including more bifurcation points
and characterized by more parameters exploiting the continuation and the deflation methods,
that the eigenvalues decay is weakly influenced by the presence of different branches, and that
one can exploit the offline-online splitting to efficiently reconstruct the diagram.
However, we also highlighted that many stability problems may occur in complex scenarios,
preventing the solver to converge to any solution. As discussed in sections 4.2.2 and 4.3.2.2,
in order to handle them we decided to use a global reduced basis and to properly select the
tolerance associated to the POD method and the range of variation of the involved parameters.
This way, it is possible to efficiently and accurately reconstruct the diagram, however, some of
the tasks performed in the offline phase have to be repeated in order to choose such values.
An other possible approach, that could improve the stability of the online solver, is related to the
local reduced basis approach [34]. In such an approach the snapshots have to be clustered and
a reduced basis associated to each cluster has to be generated (here any of the several existing
clustering techniques [41] can be used). The stability of the online solver is supposed to improve
because each basis is much less noisy than a global one, in fact the snapshots in each cluster are
very similar to each other and, therefore, the different clusters represent different branches or
portions of them. Moreover, the associated bases can be considered related to the speficic part
of the branches. However, it is important to remark that the deflation in the online phase should
be properly modified to use multiple basis. In fact the solver could only converge to solutions



95

that can be represented by the considered basis, it is therefore compulsory to select at each step
the correct one. However, since we observed that the deflation works fine with a basis associated
to few branches, one could use, at each step, two bases together to be able to represent both
the known branch that contains the initial guess and the sought unknown solution.
On the other hand, if one is interested in improving the accuracy of the method without modi-
fying it, it is possible to enrich the reduced space with special velocity fields named supremizers
[46]. As discussed in Chapters 1 and 2, the inf-sup condition is required both in the full order
problem and in the reduced one to ensure the stability. However, the stability of the full order
problem does not imply the one of the reduced problem [7]. In order to obtain a stable prob-
lem, one can consider, for each pressure basis function pj , an other function denoted as inner
supremizer velocity function Tµpj and defined as:

Tµpj := arg sup
v∈V δ

b(v, pj ;µ)

‖v‖V
,

where V δ is the full order space and b(·, ·;µ) has been defined in section 1.3. It should be
observed that Tµpj is the solution of the following discrete elliptic problem:

(Tµpj ,v)V = b(v, pj ;µ), ∀v ∈ V δ. (5.1)

After having solved problem (5.1), it is possible to enrich the reduced space V rb as follows:

Ṽ rb := V rb ⊕ span{Tµpj : j = 1, ..., N rb}.

This way, if one seeks the solution of the reduced problem in Ṽ rb, the stability is ensured, even if
it is more expensive because the dimension of Ṽ rb is 2N rb instead of N rb (that is the dimension
of V rb).
Furthermore, we want to describe a possible application of such a work, even if such a topic is
deeper discussed in [60]. The application is the mitral regurgitation: it is a disease in which
the blood flows from the left ventricle of the heart to the left atrium through the mitral valve.
The echocardiography is the most used tool to detect and quantify the dangerousness of such a
disease, however, when the blood flux is very close to the wall, it is complex to correctly interpret
the obtained images and the disease may be not recognized. It is therefore useful to exploit the
direct simulation of the flow to quantify the blood flow rate to understand if a patient requires
a proper treatment. Anyway, as previously written, simulating the exact flux of the blood is a
very expensive process, it is therefore convenient to rely on reduced order methods to be able
to effectively use such a technology. From the mathematical point of view and considering a
parametrized domain to describe the heart and parametrized coefficients to describe the blood,
it is possible to describe the different possible blood fluxes as different solutions of the Navier-
Stokes equations. It is therefore useful to rely on the bifurcation theory to analyze them, for
instance with the techniques described in this thesis.
The domain used in Chapter 5 can be considered as a very simplified version of the mitral
valve (the small inlet) and of the left atrium (the channel), while the involved parameters are
associated to the blood viscosity, that can be related to its temperature, and to its velocity
in the mitral valve [36]. We observed that the asymmetrical solutions exist only above certain



96 Conclusion

thresholds of the parameters but, as observed in [36], the bifurcation points are strongly related
to the shape and to the dimension of the domain. It is therefore advisable to consider more
parameters and a more faithful approximation of the domain before applying the described
method to a real scenario. However, if one is only interested in the values of the parameters
associated to the bifurcation points, it is possible to detect them analyzing the sign of the real
part of the eigenvalues of the linearized problem, as described in [59] or in [61]. Once more,
even if one is only interested in such a result, it is important to consider reduced order methods
to obtain it in an efficient way, otherwise the method would be too expensive to be applied to
biomedical problems.
It is also important to note that the results shown in Chapter 4 could be obtained using the FEM
instead of the SEM. However, the discussed approach, based on the SEM, is characterized by two
main advantages. Firstly, in order to obtain the same level of accuracy, a FEM solution would
require much more degrees of freedom, therefore, the entire offline phase would be significantly
more expensive. In fact assembling and solving the linear systems scale with the number of
degrees of freedom and the construction of the reduced space is greatly influenced by such a
quantity. Secondly, the support of each SEM basis is much wider than the one of a FEM basis.
Such a property implies that the reduced bases, characterized by a global support, are more
similar to the SEM ones [30], therefore the obtained discretizations are more strongly related
and the projections on the reduced space are more similar to the original snapshots (to parity
of reduced space dimension). Moreover, the discussed method can be generalized as in [53] and
[49]: here the reduced basis element method (RBEM) is presented. Such a method is similar to
the RB one, but exploits the fact that the SEM basis functions are characterized by a wider
support in order to construct a reduced space associated to each element (or to each region of
a partitioned domain). The RBEM can be used to ulteriorly improve the efficiency and the
accuracy of the RB method.
Finally, we want to highlight some of the future perspectives of this work. Firstly, one can
modify the described methods to improve the stability of the online solver in order to consider
more parameters or a wider parameter domain. Such a result can be achieved, as written above,
exploiting the supremizers [46] or a local reduced basis approach [34]. Secondly, in order to
apply the described method to biomedical problems as previously discussed, it is important to
consider three-dimensional [60] and curved [36] domains. Lastly, since the described method is
very expensive and its computational cost will further increase when paired with more realistic
geometries, a wider parameter domain or more than two parameters, it is important to improve
its efficiency. To do it, one can use the RBEM [53] or adapt one of the described methods. For
instance, we observed that the deflation method can be considered the bottleneck of the deflated
continuation method. To lighten such a technique, one could pair it with another method to
automatically decide if the deflation is required or not, e.g. one could solve an eigenvalue
problem as in [61] to detect the bifurcation points and then activate the deflation in a small
neighbourhood of such a critical point.



A. Appendix:
Fundamentals of Computational Fluid Dynamics

A.1. The Navier-Stokes equations

The starting point of a thesis in computational fluid dynamics (CFD) can only be an overview
of the Navier Stokes (NS) equation system [22], that can be written in the following way:

∂ρ

∂t
+∇ · (ρu) = 0

∂ (ρu)

∂t
+∇ · (ρuu) = ∇ · σ + f

∂E

∂t
+∇ · (Eu) = ∇ · (σu + q) + f · u

. (A.1)

Here u = u(x, t) is the velocity field, ρ the density, E the total specific energy, σ the stress
tensor, q the heat flux vector and, finally, f is the external force [42]. Even if many different
materials can be associated to as many expressions of σ, in this work we want to simplify as
much as possible the model, therefore we will consider only Newtonian fluids where the following
relation holds:

σ = −p̃ I + µ
[
∇u + (∇u)T

]
− λ (∇ · u) I. (A.2)

Here p̃ is the pressure, I is the unit tensor and µ and λ are the the viscosity coefficients. It
should be noted that, if one is not interested in discontinuous solutions (useful for example to
model the shocks), can assume that the continuum hypothesis [73] holds and can express the
thermodynamic equilibrium by means of the Stokes’ hypothesis, that implies that

2λ+ 3µ = 0.

We refer to [17] for a more detailed description of the hypothesis and for an alternative formu-
lation.
Another term that can be modeled in different ways is the heat flux q in the energy equation,
even if the most common one is obtained using the Fourier law:

q = −k(T )∇T,

where T is the temperature.
The Navier-Stokes equations are the most accurate continuous model to describe the motion of
a fluid but, due to their complexity, it is impossible to solve them analytically except in few
simplified cases. Therefore, one is obliged to solve them, or at least one of their approximations,



98
Appendix:

Fundamentals of Computational Fluid Dynamics

numerically. They are called, respectively, the mass balance equation, the momentum balance
equation and the energy balance equation because they describe the variation of those quantities
with the constraint that they have to be conserved. In order to simplify the system (A.1), the
first constraint that one can add is the incompressibility constraint [16]:

Dρ

Dt
=

d

dt
ρ (x, t) =

∂ρ

∂t
+ u · ∇ρ = 0.

Such a constraint represents the fact that the density of the fluid can not vary on the streamlines.
With this assumption the first equation can be simplified into ∇ · u = 0; it can be proved that
such an approximation is acceptable if the characteristic velocity of the fluid is much lower than
the speed of sound. The second approximation that we will use is ρ = const, this is very useful
because it allows to decouple the energy equation from the other two. In fact, in this case, u
and p̃ are the only remaining unknowns and, with the mass and momentum balance equations,
there is the same number of equations and unknowns. It is interesting to observe that, even if
we will decouple and ignore the energy equation, one could solve first the mass and momentum
equations obtaining the pressure and velocity fields, and then use them to compute the energy
using the remaining equation. Finally, since we are interested in steady flows without external
forces, the following additional constraints are required:

∂u

∂t
= 0, f = 0.

Using all these assumptions together, redefining the pressure as p = p̃/ρ and employing the
kinematic viscosity ν = µ/ρ instead of the dynamic one µ, it is possible to obtain the following
system: {

∇ · u = 0

u · ∇u− ν∆u +∇p = 0
. (A.3)

Such a system describes the steady motion of an incompressible fluid. It should be noted that it
is an approximation, however, it is very accurate when the described assumptions hold. Finally,
we highlight that this is the system that will be solved to obtain the results shown in Chapter
4.

A.2. The Reynolds number

Before proceeding, it is important to understand the role played by the different terms in the
momentum equation. To do it, one can fix three quantities that represent the system and
normalize the equations according to these values. In particular, if U is a characteristic velocity,
L is a characteristic length and ν is the characteristic kinematic viscosity, it is possible to define
the Reynolds number (Re) as Re = UL

ν . Such a non-dimensional number is useful because the
momentum equation (in equation (A.3)) can be written in the following way:

u · ∇u− 1

Re
∆u +∇p = 0. (A.4)



Conclusion 99

However, it should be noted that the velocity and the pressure in equation (A.3) are associated
with proper units of measure, while in equation (A.4) they are not. On the other hand, the
structure of the mass balance equation does not change after the normalization while the energy
balance equation can be written in terms of another non-dimensional parameter: the Prandtl
number [73]. Thanks to the normalized momentum balance equation, it is possible to understand
that Re accounts for the ratio between the magnitude of the inertial terms and the diffusive
ones in the equation itself. In fact u · ∇u represents the advection because it models the fact
that the velocity transports its own gradient acting as an inertial phenomenon, while, on the
other hand, ∆u is associated to the diffusion. Therefore, if Re is much lower than 1, the motion
is governed by the diffusion and by the pressure gradient, the equation that represents the
limit phenomenon for which Re → 0 is called Stokes equation. The Stokes equation is a good
approximation for flows that are very slow, or very viscous or in a domain with very small length-
scales. The equation can be solved with many different methods because it does not contain
the non-linear term, that is the actual source of complexity. The other intuitive approximation
is the limit for very high Re, where the governing terms are the advection and the pressure
gradient. The resulting equation is called Euler equation and it is much more used because,
in common scenarios, Re is at least of order 105. However, it is much more complex than the
Stokes equation because it maintains the non-linear advection term. Anyway, it should be noted
that several phenomena in fluid dynamics are due to the presence of the boundary layer, a thin
region around an impermeable wall that can be modeled including all the different terms in the
Navier-Stokes equations [66].
Since we are interested in bifurcations but they are not present when the Reynolds number is
very low, we decided to consider values of such a number belonging to the interval (100, 1000);
in such a range of Re both the Stokes equation and the Euler equation are bad approximation of
(A.3), therefore one is obliged to directly solve (A.3). It is important to understand that Re is
the only physical parameter in the equation (if one does not consider parameters associated to
the domain or to the boundary conditions), therefore, even if one chooses different parameters,
every change in the solution can always be related to it. This observation will be relevant to
properly analyze the results shown in the last chapters, where two different parameters will vary
but they may be considered as part of the Reynolds number.

A.3. Conclusion

It is important to highlight that, when the Reynolds number is high enough, the flow can become
turbulent, significantly increasing the complexity of the simulations because a turbulent flow is
characterized by the presence of numerous multi-scale vortexes called eddies [54]. To model it,
one can mainly choose between three different approaches [77].
The first one, called direct numerical simulation (DNS) does not require a turbulence model
but the discretization technique has to be able to catch the smallest scales of the flow. The
second one, named Reynolds-averaged Navier-Stokes equations (RANS), relies on one or more
coefficients to mimic the effect of the turbulence on the main flow. Lastly, the large eddy
simulation (LES) is an intermediate technique that mimics the smallest scales but directly
simulates the bigger ones. However, since in this work we are not interested in turbulent flows,



100
Appendix:

Fundamentals of Computational Fluid Dynamics

we decided to avoid any turbulence model. Instead, we preferred to use the SEM to directly
simulate the flow, to do it one has to transform the strong Navier-Stokes equations (A.3) into
its weak counterpart as explained in sections 1.1.1 and 1.3. Furthermore, we highlight that a
similar formulation is also required by the reduced basis method.
Finally, even if we wrote that the Reynolds number is the key parameter to describe the motion
of an incompressible fluid, we will consider the viscosity and a multiplicative factor in the inlet
boundary condition as varying parameters in Chapter 4. However, it will be possible to relate
the features of the obtained solutions to the Reynolds number thanks to its definition.



Bibliography

[1] Introduction to numerical continuation methods.
E.L. Allgower, K. Georg. Volume 45. SIAM (2003)

[2] Bifurcations in nonlinear systems. Computational issues
F.L. Alvarado. IEEE International Symposium on Circuits and Systems, pages 922-925.
IEEE (1990)

[3] A primer of nonlinear analysis.
A. Ambrosetti, G. Prodi. Cambridge Studies in Advanced Mathematics, number 34. Cam-
bridge University Press (1995)

[4] Efficient matrix computation for tensor-product isogeometric analysis: The use of sum fac-
torization.
P. Antolin, A. Buffa, F. Calabro, M. Martinelli, G. Sangalli. Computer Methods in Applied
Mechanics and Engineering, volume 285, pages 817-828. Elsevier (2015)

[5] The serendipity family of finite elements.
D.N. Arnold, G. Awanou. Foundations of Computational Mathematics, volume 11, number
3, pages 337-344. Springer (2011)

[6] Error-bounds for finite element method.
I. Babuška. Numerische Mathematik, volume 16, number 4, pages 322-333. Springer (1971)

[7] Supremizer stabilization of POD-Galerkin approximation of parametrized Navier-Stokes
equations.
F. Ballarin, A. Manzoni, A. Quarteroni, G. Rozza. MATHICSE Technical Report, École
Polytechnique Fédérale de Lausanne (2014)

[8] An empirical interpolation method: application to efficient reduced-basis discretization of
partial differential equations.
M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera. Comptes Rendus Mathematique, volume
339, number 9, pages 667-672. Elsevier (2004)

[9] Bifurcation analysis with symmetry groups.
N. Boullé, P. Farrel. ENS Rennes and University of Oxford. Summer internship 2017

[10] A proof of the inf-sup condition for the Stokes equations on Lipschitz domains.
J.H. Bramble. Mathematical Models and Methods in Applied Sciences, volume 13, number
3, pages 361-371. Worlds Scientific (2003)



102 Bibliography

[11] Finite dimensional approximation of nonlinear problems. I. Branches of nonsingular solu-
tions.
F. Brezzi, J. Rappaz, P.A. Raviart. Numerische Mathematik, volume 36, number 1, pages
1-25. Springer (1980)

[12] Finite dimensional approximation of nonlinear problems. II. Limit points.
F. Brezzi, J. Rappaz, P.A. Raviart. Numerische Mathematik, volume 37, number 1, pages
1-28. Springer (1981)

[13] Finite dimensional approximation of nonlinear problems. III. Simple bifurcation points.
F. Brezzi, J. Rappaz, P.A. Raviart. Numerische Mathematik, volume 38, number 1, pages
1-30. Springer (1982)

[14] Deflation techniques for the calculation of further solutions of a nonlinear system.
K.M. Brown, W.B. Gearhart. SIAM, Journal on Scientific Computing, volume 37, number
4, pages A2026-A2045. SIAM (2015)

[15] Convergence of an adaptive hp finite element strategy in higher space-dimensions.
M. Bürg, W. Dörfler. Applied Numerical Mathematics, volume 61, number 11, pages 1132-
1146. Elsevier (2011)

[16] Numerical methods for incompressible flow.
M. Burger. Lecture notes based on lecture notes by René Pinnau, TU Darmstadt (2004)

[17] A note on Stokes’ hypothesis.
G. Buresti. Acta Mechanica, volume 226, number 10, pages 3555-3559. Springer (2015)

[18] Spectral methods: evolution to complex geometries and applications to fluid dynamics.
C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang. Springer (2007)

[19] Spectral methods: fundamentals in single domains.
C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang. Scientific Computation, Springer
(2006)

[20] On the numerical analysis of adaptive spectral/hp methods for elliptic problems.
C. Canuto, M. Verani. Analysis and numerics of partial differential equations, pages 165-
192. Springer (2013)

[21] Computational fluid dynamics.
T. Chung. Cambridge University Press (2010)

[22] Navier-Stokes equations.
P. Constantin, C. Foias. University of Chicago Press (1988)

[23] Methods of numerical integration.
P.J. Davis, P. Rabinowitz. Courier Corporation (2007)

[24] High-order methods for incompressible fluid flow.
M.O. Deville, P.F. Fischer, E. Mund et al. Volume 9. Cambridge University Press (2002)



Bibliography 103

[25] Numerical bifurcation methods and their application to fluid dynamics: analysis beyond
simulation.
H.A. Dijkstra et al. Communications in Computational Physics, volume 15, number 1, pages
1-45. Cambridge University Press (2014)

[26] Generalizations of the Lax-Milgram theorem.
D. Drivaliaris, N. Yannakakis. Boundary Value Problems, volume 2007, number 1. Springer
(2007)

[27] A new matrix bandwidth reduction algorithm.
A. Esposito, M.F. Catalano, F. Malucelli, L. Tarricone. Operations Research Letters, vol-
ume 23, number 3-5 pages 99-107. Elsevier (1998)

[28] The computation of disconnected bifurcation diagrams.
P.E. Farrel, C.H.L. Beentjes, A. Birkisson. ArXiv preprint arXiv:1603.00809 (2016)

[29] Deflation techniques for finding distinct solutions of nonlinear partial differential equations.
P.E. Farrel, A. Birkisson, S.W. Funke. SIAM Journal on Scientific Computing, volume 37,
number 4, pages A2026-A2045. SIAM (2015)

[30] A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal
parameter sampling and constrained projection.
L. Fick, Y. Maday, A.T. Patera, T. Taddei. Journal of Computational Physics, volume 371,
pages 214-243. Elsevier (2018)

[31] Elliptic problems in nonsmooth domains.
P. Grisvard. SIAM (2011)

[32] Convergence rates of the POD-greedy method.
B. Haasdonk. ESAIM: Mathematical Modelling and Numerical Analysis, volume 47, number
3, pages 859-873. EDP Sciences (2013)

[33] A fast spectral element solver combining static condensation and multigrid techniques.
L. Haupt, J. Stiller, W.E. Nagel. Journal of Computational Physics 255, pages 384-395.
Elsevier (2013)

[34] A localized reduced-order modeling approach for PDEs with bifurcating solutions.
M.W. Hess, A. Alla, A. Quaini, G. Rozza, M. Gunzburger. Computer Methods in Applied
Mechanics and Engineering, volume 351, pages 379-403. Elsevier (2019)

[35] A spectral element reduced basis method for Navier-Stokes equations with geometric varia-
tions.
M.W. Hess, A. Quaini, G. Rozza. ArXiv preprint arXiv:1812.11051 (2018)

[36] Reduced basis model order reduction for Navier-Stokes equations in domains with walls of
varying curvature.
M.W. Hess, A. Quaini, G. Rozza. ArXiv preprint arXiv:1901.03708 (2019)



104 Bibliography

[37] A spectral element reduced basis method in parametric CFD.
M.W. Hess, G. Rozza. European Conference on Numerical Mathematics and Advanced
Applications, pages 693-701. Springer (2017)

[38] Certified reduced basis methods for parametrized partial differential equations.
J.S. Hesthaven, G. Rozza, B. Stamn. Springer (2016)

[39] Fast SVD for large-scale matrices.
M. Holmes, A. Gray, C. Isbell. Workshop on Efficient Machine Learning at NIPS, volume
58, pages 249-252 (2007)

[40] A static condensation reduced basis element method: Complex problems.
D.B.P. Huynh, D.J. Knezevic, A.T. Patera. Computer Methods in Applied Mechanics and
Engineering, volume 259, pages 197-216. Elsevier (2013)

[41] An introduction to statistical learning.
G. James, D. Witten, T. Hastie, R. Tibshirani. Volume 112. Springer (2013)

[42] Spectral/hp element methods for CFD.
G.E Karniadakis, S.J. Sherwin. Numerical Mathematics and Scientific Computation. Oxford
University Press, USA (1999)

[43] Numerical methods in bifurcation problems.
H.B. Keller. Tata Institute of Fundamental Research, Springer (1986)

[44] Bifurcation theory: an introduction with applications to PDEs.
H. Kielhöfer. Volume 156, Springer Science and Business Media (2006)

[45] Elements of applied bifurcation theory.
Y.A. Kuznetsov. Volume 112. Springer Science and Business Media (2013)

[46] Model order reduction in fluid dynamics: challenges and perspectives.
T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza. Reduced order methods for modeling and
computational reduction, pages 235-273. Springer (2014)

[47] Newton’s method with deflation for isolated singularities of polynomial systems.
A. Leykin, J. Verschelde, A. Zhao. Theoretical Computer Science, volume 359, number 1-3,
pages 111-122. Elsevier (2006)

[48] Heuristics for matrix bandwidth reduction.
A. Lim, B. Rodrigues, F. Xiao. European Journal of Operational Research, volume 174,
number 1, pages 69-91. Elsevier (2006)

[49] A reduced basis element method for the steady Stokes problem.
A.E. Løvgren, Y. Maday, E.M. Rønquist. ESAIM: Mathematical Modelling and Numerical
Analysis, volume 40, number 3, pages 529-552. EDP Sciences (2006)



Bibliography 105

[50] The reduced basis element method: Offline-online decomposition in the nonconforming,
nonaffine case.
A.E. Løvgren, Y. Maday, E.M. Rønquist. Spectral and High Order Methods for Partial
Differential Equations, pages 247-254. Springer (2011)

[51] A well-posed optimal spectral element approximation for the Stokes problem.
Y. Maday, A.T. Patera, E.M. Rønquist. Technical Report 87-148, ICASE, Hampton, VA
(1987)

[52] Spectral element methods for the Navier-Stokes equations.
Y. Maday, A.T. Patera. IN: State-of-the-art surveys on computational mechanics (A90-
47176 21-64). New York, American Society of Mechanical Engineers, 1989, p. 71-143. Re-
search supported by DARPA (1989)

[53] A reduced-basis element method.
Y. Maday, E.M. Rønquist. Journal of Scientific Computing, volume 17, number 1-4, pages
447-459. Springer (2002)

[54] The physics of fluid turbulence.
W.D. McComb. Chemical physics (1990)

[55] Mesh smoothing for the spectral element method.
K. Mittal, P. Fischer. Journal of Scientific Computing, volume 78, number 2, pages 1152-
1173. Springer (2019)

[56] Metodi e algoritmi per il calcolo numerico.
G. Monegato. Clut (2008)

[57] Generalized Gaussian quadrature rules on arbitrary polygons.
S. Mousavi, H. Xiao, N. Sukumar. International Journal for Numerical Methods in Engi-
neering, volume 82, pages 99-113, number 1. Wiley Online Library (2010)

[58] Reduced basis approximation and a posteriori error estimation for parametrized partial dif-
ferential equations.
A.T. Patera, G. Rozza et al. MIT Cambridge, MA, USA (2007)

[59] Reduced basis approaches for parametrized bifurcation problems held by non-linear Von
Kármán equations.
F. Pichi, G. Rozza. Journal of Scientific Computing (2019)

[60] Computational reduction strategies for the detection of steady bifurcations in incompressible
fluid-dynamics: applications to Coanda effect in cardiology.
G. Pitton, A. Quaini, G. Rozza. Journal of Computational Physics, volume 344, pages
534-557. Elsevier (2017)

[61] On the application of reduced basis methods to bifurcation problems in incompressible fluid
dynamics.



106 Bibliography

G. Pitton, G. Rozza. Journal of Scientific Computing, volume 73, number 1, pages 157-177.
Springer (2017)

[62] Modellistica numerica per problemi differenziali.
A. Quarteroni. Volume 97. Springer (2016)

[63] Reduced basis approximation and a posteriori error estimation for Stokes flows in
parametrized geometries: Roles of the inf-sup stability constants.
G. Rozza, D.B.P. Huynh, A. Manzoni. Volume 125, pages 115-152, number 1. Numerische
Mathematik (2013)

[64] Reduced basis approximation and a posteriori error estimation for affinely parametrized
elliptic coercive partial differential equations.
G. Rozza, D.B.P. Huynh, A.T. Patera. Archives of Computational Methods in Engineering,
volume 15, number 3. Springer (2007)

[65] Notes on the Banach-Necas-Babuška theorem and Kato’s minimum modulus of operators.
N. Saito. ArXiv preprint arXiv:1711.01533 (2017)

[66] Boundary-layer theory.
H. Schlichting, K. Gersten. Springer (2016)

[67] Practical bifurcation and stability analysis.
R. Seydel. Volume 5. Springer Science and Business Media (2009)

[68] Nektar++: An open-source spectral/hp element framework.
S.J. Sherwin et al. Computer Physics communications, volume 192, pages 205-219. Elsevier
(2015)

[69] Delaunay refinement algorithms for triangular mesh generation.
J.R. Shewchuk. Computational geometry, volume 22, number 1-3, pages 1-74. Elsevier
(2002)

[70] Higher-order finite element methods.
P. Solin, K. Segeth, I. Dolezel. Chapman and Hall/CRC (2003)

[71] Computation and visualization of bifurcation surfaces.
D. Stiefs, T. Gross, R. Steuer, U. Feudel. International Journal of Bifurcation and Chaos,
volume 18, number 8, pages 2191-2206. World Scientific (2008)

[72] Introduction to numerical analysis.
J. Stoer, R. Bulirsch. Springer (2002)

[73] Physical fluid dynamics.
D.J. Tritton. Springer Science and Business Media (2012)

[74] POD-Galerkin reduced-order modeling with adaptive finite element snapshots.
S. Ullmann, M. Rotkvic, J. Lang. Journal of Computational Physics, volume 325, pages
244-258. Elsevier (2016)



Bibliography 107

[75] On computing rational Gauss-Chebyshev quadrature formulas.
J. Van Deun, A. Bultheel, P. González. Mathematics of Computation, volume 75, number
253, pages 307-326 (2006)

[76] Iterative solvers and inflow boundary conditions for plane sudden expansion flow.
E. Wahba. Applied Mathematical Modelling, volume 31, number 11, pages 2553-2563. El-
sevier (2007)

[77] Turbulence modeling for CFD.
D.C Wilcox et al. Volume 2. DCW industries La Canada, CA (1998)

[78] Nektar++: Online documentation.
Accessed 01/09/2019, <http://doc.nektar.info/doxygen/3.3/annotated.html>


