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Summary

Glioblastoma Multiforme (GBM) is a highly aggressive and malignant type of brain tumour.
Besides the typical hallmarks of cancer, such as uncontrolled cellular proliferation and instability,
GBM also exhibits dramatic invasive potential and resistance to common therapies: even with a
complete treatment including neurosurgery, chemotherapy and radiotherapy, the median survival
time is about 10-16 months. Hence, there is a critical need to understand and replicate the
biological complexity of the brain, in order to predict tumour evolution and arrange therapeutic
strategies accordingly. For that purpose, mathematical and computational models can provide
powerful instruments for investigating GBM progression: in the last decades, several models that
describe brain tumour growth have been proposed, using different frameworks and accounting
for different characteristics. Nevertheless, the vast majority of these models does not consider
realistic mechanical and constitutive properties of brain tissue, as well as the role of stress and
deformations exerted by the growing tumour. Instead, the presence of a growing mass inside
the brain may be critical and dangerous for the patient: it is then important to evaluate the
mechanical impact of Glioblastoma on the surrounding healthy tissue. Starting from the state-of-
the-art about brain tumour modeling, in this thesis we develop a mathematical multiphase model
for GBM, based on Continuum Mechanics, which includes brain hyperelasticity, in order to study
the effects of structural changes, deformations and stress on brain tissue due to the presence of a
growing tumour. In particular, we consider the region occupied by the tumour as separated from
the host tissue by a sharp moving interface: both the healthy and the diseased regions are treated
as a saturated biphasic mixture, comprising a solid and a fluid phase. The solid phase is described
as a Mooney-Rivlin hyperelastic material, while the fluid motion is determined using Darcy’s law
with anisotropic permeability; in the tumour region, we introduce proliferation and account for
deformations subsequent to it. To include the mechanical effect of growth of the tumour mass
in addition to the pure elastic deformation, we employ the natural configurations framework
and the multiplicative decomposition of the deformation gradient tensor. We also include in our
model an equation describing the evolution of the concentration of available nutrients, which are
transported by the fluid and can diffuse into the anisotropic brain tissue. The mathematical
model is then numerically solved using FEniCS, a Python-based PDE finite element solver, at
first in a simplified geometry, then in a three-dimensional brain geometry using available data
from MRI and DTI to build the computational domain and account for anisotropy. In the
end, results are analyzed to investigate the effect of deformations and unnatural displacement
induced on brain tissue by the growing Glioblastoma. Future developments might be focused
on the inclusion of elastic or viscoelastic constitutive models of the brain in a diffuse-interface
Cahn-Hilliard-type approach and on the plastic distorsions of brain fibers. Multiscale modelling
might also be used to determine how structural changes and mechanical properties at the cellular
level influence the parameters at the macroscopic scale and consequently the evolution of the
tumour.
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Introduction

Cancer is nowadays the second leading cause of death worldwide, according to the World Health
Organization: in particular, brain tumours constitute about 1.6% of new cancer cases every
year. Among them, Glioblastoma Multiforme (GBM) is one of the deadliest: in addition to the
typical features of cancer, it shows a dramatic invasive potential inside brain tissue, that makes
its complete removal by surgery almost impossible leading to recurrence after a few months.
Furthermore, GBM is one of the most aggressive types of cancer and exhibits a strong resistance
to common therapies: the median survival time for patients undergoing a complete treatment
of neurosurgery, chemotherapy and radiotherapy is about 10-16 months. Therefore, it is crucial
to investigate GBM progression, in order to acquire more details and arrange efficient thera-
peutic strategies to fight it: to this end, mathematical and computational models can provide
powerful tools to accelerate the research process, by reproducing tumour progression and pre-
dict its evolution through simulations. As a matter of fact, during the last decades several
mathematical models for cancer growth in general and for Glioblastoma in particular have been
proposed, proceeding alongside medical advances. The first attempts to describe GBM growth
using mathematics date back to the mid-1900s, when simple equations for population dynamics
were applied to cellular proliferation: nowadays, advances in Magnetic Resonance Imaging (MRI)
and Diffusion Tensor Imaging (DTI) has allowed to refine the models, accounting for features
such as heterogeneity of brain tissue, anisotropy and invasive behaviour. Recently, a consistent
step forward in Glioblastoma modeling has been made thanks to the work of Colombo et al. [1]
and Agosti et al. [2, 3], who developed a patient-specific computational framework capable of
reproducing GBM growth including patient data obtained through DTI and MRI.

However, the vast majority of the models for GBM growth present in the literature does not
account for a proper mechanical description of brain tissue. The tumour and the surrounding
brain parenchyma are almost always considered either as fluids or as linear elastic materials, while
experiments has clearly shown the highly nonlinear viscoelastic nature of the brain. Moreover,
the presence of a growing mass inside the brain may cause unnatural displacement and stress on
the host tissue that may lead to neurological damage. Hence, it is relevant to evaluate mechanical
deformations subsequent to tumour growth to achieve a realistic reproduction of Glioblastoma
proliferation.

Motivated by these observations, in this work we develop a mathematical model for GBM
growth and proliferation which includes brain hyperelasticity, in order to evaluate the effects of
structural changes and nonlinear elastic deformations of brain tissue. In particular, we propose
a macroscopic model based on finite deformations and Continuum Mechanics: we treat both the
tumour and the surrounding tissue as a saturated biphasic mixture, composed by a hyperelastic
cell phase and an ideal fluid phase. Moreover, we consider the tumour as separated by the host
tissue through a sharp interface, identified as a steep mollification of an indicator function. In
order to separate the elastic deformations from the inelastic distorsions caused by growth, we
employ a multiplicative decomposition of the deformation gradient. After deriving our model,
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we implement it in order to perform simulations using the finite element method at first on a
simplified geometry, then on a realistic brain setting with patient-specific sample data.

The work is organized as follows. In Chapter 1, we provide a short biological introduction to
cancer and Glioblastoma Multiforme, so as to understand the problem we aim at reproducing.
In Chapter 2, we summarize the main mechanical results that will be used to derive the model,
discussing the choice of an appropriate constitutive equation for brain tissue. Then, in Chapter 3,
after a brief literature review of brain tumour modeling, we thoroughly discuss the derivation of
our mechanical model and of its governing equations; before moving to simulations, we provide an
estimation for all the parameters that appear in the mathematical model. Chapter 4 is dedicated
to numerical implementation of the model: we firstly derive a weak formulation of it and then
describe how we have computationally implemented it. Lastly, in Chapter 5 we illustrate the
results of our numerical simulations, both on a simplified cubic geometry and on a realistic brain
geometry. Possible future developments are discussed at the end of the work, while in Appendix
A the complete code employed for numerical simulation is reported.
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Part I

Biological and Mechanical
Introduction
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Chapter 1

Biological Background

In this chapter, we provide an essential biological background: in order to develop a model
for tumour growth, it is indeed necessary to firstly understand the problem at hand from the
biological point of view. Then, in the first section we describe the most important features of
cancer and carcinogenesis, that is, the development of a cancer. After this general introduction,
we focus on brain tumours and in particular on Glioblastoma Multiforme, which is the main
subject of our study. Finally, we summarize the essential characteristics of Magnetic Resonance
Imaging and Diffusion Tensor Imaging.

1.1 Cancer and Carcinogenesis
The term cancer identifies a wide group of related diseases, which can develop almost every-
where in the human body: they are characterized by uncontrolled proliferation of some cells,
the growth of which continues regardless of the mechanisms that control cellular proliferation,
eventually leading to invasion of other tissues and colonization of regions normally reserved for
healthy cells [4]. These malignant cells grow more and more aggressively over time, and may
become lethal if they succeed to disrupt vital tissues and organs. Nowadays, cancer is the sec-
ond leading cause of death globally according to the World Health Organization (WHO): it was
estimated that there have been 18.1 million new cases and 9.6 million cancer deaths worldwide
in 2018 [5]. Hence, it is not difficult to understand the importance of a thorough and complete
investigation of all the mechanisms involved in tumour genesis, proliferation and elimination. As
a matter of fact, research in the field has consistently grown in recent years, starting to involve
many subjects in addition to medicine and biology, including mathematics and physics. In order
to study growth and proliferation of cancer from a mathematical and physical point of view,
which is the objective of this work, it is however necessary to understand the main biological
features of such a disease.

Normally, in a healthy human body, cells grow, duplicate and die according to precise mech-
anisms of regulation mediated by specific genes and proteins. Such activators and inhibitors
allow the body to maintain a strict control over cells proliferation and programmed death, or
apoptosis, and to induce duplication when needed. For instance, when some cells grow old or
become damaged, they die and are replaced by new ones through duplication, because they are
instructed to do so; similarly, when a mutation in the DNA occurs, the cell attempts to fix it: in
case of failure, the cell undergoes apoptosis and eliminates itself, in order to prevent undesired
changes and to protect the whole organism from dangerous alterations. However, sometimes
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1 – Biological Background

these processes may not work properly and malfunctions may take place, causing a cell to escape
control and become abnormal: this is where carcinogenesis, or the generation of cancer, begins.

Clearly, a single mutation is not usually sufficient to transform a healthy cell in a cancerous
one; however, the mutated DNA is inherited by its descendants: over the years, an accumulation
of mutations can gradually lead from an initial mild disorder in cell behaviour to the development
of typical cancer characteristics, such as uncontrolled proliferation and resistance to apoptosis.
An abnormal, mutated cell that starts growing and proliferating out of control will give rise to a
mass of diseased cells with the same mutated DNA, and hence with the same dangerous capabil-
ity to overduplicate: such a mass is called a tumour or neoplasm. As long as the neoplastic cells
do not become invasive, however, the tumour is said to be benign: in this case, it grows slowly
and does not spread into the surrounding tissues or in the vasculature; removing or destroying
a local benign tumour usually achieves a complete cure and prevents clinical complications. A
tumour is considered a cancer only if it becomes malignant, namely, if its mutated cells have
acquired the ability to spread out and invade other tissues [4]. However, even in the case of
a benign tumour, one needs to be careful and not to underestimate its potential danger: for
instance, as regards brain tumours, the limited space within the skull means that a large growth
may put pressure on brain areas and cause neurological problems.

More precisely, after the aforementioned sequence of genetic alterations, the development of
cancer takes place in a multistep process. Although not all cancers share the same features, two
common macro-stages are usually identified, as far as solid tumours are concerned [6, 7, 8]: an
avascular and a vascular phase. During the former, the tumour remains in a localized state with
dimensions of a few millimeters in diameter, and can only receive nutrients by diffusion. At this
stage, tumours form three-dimensional avascular nodules called multicell spheroids, in which an
external layer of proliferating cells surrounds a region composed of quiescent cells. Meanwhile,
cells located at the centre of the spheroid, being deprived of vital nutrients and oxygen, begin
to die and progressively form a necrotic core. During the avascular phase, in addition to exces-
sive proliferation (hyperplasia), tumour cells start to appear abnormal in shape and orientation
(dysplasia), but have not yet spread to other tissues.

The very high rate at which tumour cells reproduce causes a fast consumption of nutrients
and consequently slows down the growth. Even if this situation might seem favourable at first
glance, we know that it is not actually good at all. The invasive potential of a tumour can go
far beyond: as a result of further mutations, the tumour may acquire the ability to invade the
surrounding tissues and also colonize distant parts of the body. This new features mark the
transition from the avascular to the vascular phase, which is called as such because the neoplasm
starts to break the healthy host tissue and to drive angiogenesis, i.e. the formation of new blood
vessels from existing capillaries. It is worth to remark that angiogenesis is in itself a physiological
mechanism: oxygen and nutrients are crucial for cell function and survival, obligating virtually
all cells in a tissue to stay within 100 µm of a capillary vessel [9]. Indeed, apart from normal
conditions, there exist some circumstances in which the body needs to create or expand the
vascular network, such as wound healing, ischemia reperfusion, mammary gland vascularization
and myocardial infarction [10]. However, angiogenesis becomes a pathological phenomenon when
exploited by a growing tumoural mass suffering from hypoxia, i.e. a lack of oxygen: as a clear
display of its parasitical and invasive behaviour, the tumour induces new blood vessels from the
surrounding tissue to sprout towards itself, with the aim to provide itself an adequate nutrient
supply.

In order to accomplish this vascularization, tumours secrete a number of diffusible chemical
substances into the surrounding environment, mainly called Tumour Angiogenic Factors (TAFs)
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1.1 – Cancer and Carcinogenesis

and Vascular Endothelial Growth Factors (VEGFs) [11]. In response to these stimuli, nearby
endothelial cells (EC) of blood vessels proliferate and migrate following the chemical gradient
towards the tumour. Later, angioproteins promote the migration of muscle cells that form the
intermediate layer around the new endothelial one, leading to the complete formation of a new
vessel; during angiogenesis, capillaries may branch forming secondary vessels, which can fuse
together and form loops: this phenomenon is known as anastomosis. The process continues with
the formation of additional sprouts and loops until the development of a new vascular network
which penetrates the tumour, providing it a supply of oxygen and nutrients: clearly, the vascu-
larization of the tumour leads to an increase in its growth rate and to a faster progression. To
sum up, five biological phases of angiogenesis can be identified [12]: initiation, characterized by
changes in the endothelial cells shape and by increased permeability of the vessels; progression,
which includes migration and proliferation of ECs; differentiation, during which ECs stop to
grow and differentiate into primitive blood vessels; maturation, which includes the recruitment
of smooth muscle cells and remodelling of the new vascular network; guidance, in which the
architecture of the mature vasculature is delineated.

One of the most relevant and at the same time most dangerous consequences of tumour
vascularization is the occurrence of metastases, i.e. secondary tumours arising from the primary
mass at distant locations. Once it has become malignant, cancer spreads out and invades other
tissues exploiting the vasculature: diseased cells can detach from the primary tumour and enter
the circulatory or lymphatic system, eventually reaching another organ through blood circulation
(Fig. 1.1). Six steps can be defined in the process of metastases formation [13]:

• detachment, which is probably allowed because of a decrease in cellular adhesive interactions
with their neighbours;

• invasion. The cells break through the basal lamina (a layer of extracellular matrix that
separates cells from the surrounding tissue) by using specific enzymes like matrix metallo-
proteases (MMPs);

• intravasation. After breaking the basal lamina, cancer cells migrate and eventually reach a
blood vessel, entering the circulation: this operation is likely if the tumour is vascularised,
because the new vasculature created by angiogenesis facilitates the penetration into the
blood stream;

• transport and arrest. During their travel through circulation, cancer cells are subjected
to immunological attacks: however, some of them may be able to escape and survive.
Moreover, circulating cancer cells can interact with blood components and form aggregates
whose size help retention and arrest in the circulation;

• extravasation. After stopping in the circulation, cancerous cells develop adhesive interac-
tions with the endothelial cell lining and then migrate outside the blood stream;

• invasion of the target organ: diseased cells produce growth factors that induce changes in
the new location, and start developing a secondary cluster of cancer cells.

Metastatic cancer dramatically increases a patient’s likelihood of death, since it is a signal that
the malignant tumour has become invasive: as a consequence, its complete removal or cure be-
comes harder. It was estimated that metastases are the cause of 90% of human cancer deaths [14].

Finally, following the work of Hanahan and Weinberg, we summarize the typical hallmarks of
cancer, namely, some characteristics which can be considered as common to all types of cancers
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1 – Biological Background

Figure 1.1: Pathway from primary tumour formation to metastatic colonization [15].

and that together identify the acquired malignant capabilities of a neoplastic cell. In a first
version of their work [9], six hallmarks were proposed (Fig. 1.2):

• Self-sufficiency in growth signals. Healthy cells require specific growth signals before they
can move from a quiescent to a proliferative state: such behaviour contrasts with that
of cancer cells, which show a greatly reduced dependence on external growth stimulation.
Hence, tumour cells must generate autonomously many of their own growth signals, reduc-
ing their dependence on stimulation.

• Insensitivity to anti-growth signals. Within a normal tissue, growth-inhibitory signals act
to maintain cellular quiescence and homeostasis. However, cancerous cells develop the
ability to circumvent such signals, and as a consequence begin to grow out of control.

• Evading apoptosis. An healthy cell possesses a system of sensors which are responsible for
monitoring its inside and outside environment. If conditions of abnormality are detected,
for instance DNA damage or hypoxia, the sensors activate a programmed death pathway.
Being themselves aberrant and dangerously mutated, neoplastic cells must find a way to
avoid apoptosis, which represents an obstacle to their development.

• Limitless replicative potential. The three previous hallmarks guarantee the abnormal cell
autonomy in proliferation and allow it to circumvent physiological controls. However,
researches suggest that disruption of signaling is not on its own sufficient to ensure expansive
growth: it was demonstrated [16] that healthy cells in culture have a finite replicative
potential and, after a certain number of duplications, they stop growing. On the contrary,
tumour cells in culture seem to be immortal: this result suggests that, during tumour
progression, premalignant cells exhaust their allowed number of doublings. Consequently,
they have to find a way to breach this barrier and to acquire limitless replicative potential.

• Sustained angiogenesis. As it was discussed above, at a certain point of tumour develop-
ment vascularization becomes necessary to ensure nutrients supply and enhance neoplasm
expansion.
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1.2 – Brain Tumours and Glioblastoma Multiforme

• Tissue invasion and metastasis. The ability to create distant settlements and invade other
tissues is a peculiarity of a malignant tumour, as mentioned before.

Figure 1.2: The first six hallmarks of cancer [9].

In 2011, two additional hallmarks have been identified [17]: the reprogramming of energy
metabolism and the ability of evading immune destruction. The former is related to the ac-
quired capability of tumour cells to modify their metabolism in order to sustain uncontrolled
proliferation, while the latter refers to the avoidance of immunological destruction.

The acquisition of the hallmarks can happen in variable order: some genetic mutations may
confer several capabilities simultaneously, while in other cases a hallmark can be accessed only
through the collaboration of multiple genetic alterations. It is however made possible by two en-
abling characteristics: the first is the development of genetic instability, which generates random
mutations and rearrangements that can ignite the appearance of cancer features; the second is
the tumour-promoting role of inflammation. As regards the latter, it is nowadays known that the
inflammation response associated to the presence of a tumour may have the paradoxical effect
of enhancing tumour progression, by supplying fundamental molecules such as survival factors
and angiogenic factors to the tumour microenvironment.

1.2 Brain Tumours and Glioblastoma Multiforme
1.2.1 Classification of brain tumours
Brain and nervous system tumours constitute about 1.6% of new cancer cases every year [5].
A first classification splits them into two major groups: primary and secondary tumours. The
former are tumours that start in the brain and may spread to other parts of the central ner-
vous system, but rarely invade other tissues of the body, while the latter are metastatic cancers
coming to the brain from tumours that have started elsewhere. Metastatic brain tumours are
more common than primary ones: up to a half of metastases in the brain come from lung cancer,
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1 – Biological Background

which is the most widespread type of malignant neoplasm [18, 5].

A second classification proposed by the WHO [19] and currently accepted within the medical
community divides brain tumours into several groups according to the type of cells they affect: a
summary of the principal groups is reported in Table 1.1. Before discussing the main features of
each type and then focusing on the one which is primarily studied in the present work, namely,
Glioblastoma Multiforme, we briefly provide an introduction to the cells of the nervous system,
in order to simplify the understanding of the related classification.

The cells composing the central nervous system can be divided into two broad categories:
nerve cells, or neurons, and supporting cells, called neuroglia or simply glia [20, 21]. The neuron
is the information-processing and information-transmitting element of the nervous system: it is
a very specialized cell with the ability of being electrically excitable. Most neurons consist of a
soma, which corresponds to the cell body and contains the nucleus, and many dendrites branching
from the soma: they receive and transmit information to and from other neurons through the
synapses. The information conveyed by synapses on the neuronal dendrites is integrated and
read out at the origin of the axon, the portion of the nerve cell specialized for signal conduction
to the next site of synaptic interaction. It is a long, slender tube (it may extend even for a few
hundred micrometers) which carries the action potential, a brief electrochemical impulse that
permits communication between nerve cells.

However, neurons constitute only about half the volume of the central nervous system. They
have a very high rate of metabolism but have no means of storing nutrients, so they must con-
stantly be supplied with nutrients and oxygen or they will quickly die: the role played by cells
that support and protect neurons is therefore very important and is performed by the glia. Glial
cells hold neurons in place, control their supply of nutrients and keep the tissue clean by remov-
ing dead neurons. There are several types of glial cells: the most important ones in the central
nervous system are astrocytes, oligodendrocytes, microglia and ependymal cells. Astrocytes are
star-shaped cells which provide physical support and nourishment to neurons; they also con-
trol the chemical composition of the fluid surrounding the neurons by taking up or releasing
substances whose concentration must be kept within critical levels. The principal function of
oligodendrocytes is to provide support to axons and to produce the myelin sheath, which sur-
rounds and insulates axons from one another. Microglia cells - together with astrocytes - act as
cleaners of the nervous system, removing dead and dying neurons; they also protect the brain
from invading micro-organisms and are responsible for the inflammatory reaction in response to
brain damage. Finally, ependymal cells line the ventricular system of the brain: they take part
in the production of the cerebrospinal fluid and promote its circulation.

We can now outline some of the main groups composing the 2016 WHO classification of
central nervous system tumours [19]. There are about 150 different types of brain tumours: in
this work we are mainly interested in gliomas which, as the name suggests, affect glial cells and
are the most common primary malignant brain tumours. Among gliomas, we can distinguish
between astrocytic tumours or astrocytomas, which begin in astrocytes; oligodendroglial tumours
or oligodendrogliomas, affecting oligodendrocytes; ependymal tumours that involve ependymal
cells; mixed gliomas or oligoastrocytomas, affecting both astrocytes and oligodendrocytes; mixed
neuronal-glial tumours. According to WHO standards, central nervous system cancers are also
categorized by their behaviour and malignity using four grades:

• grade I (or low grade) tumours, which are circumscribed and characterized by cells that
look almost normal under a microscope, growing relatively slowly. Grade I tumours may
often be cured if they are completely removed by surgery;
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1.2 – Brain Tumours and Glioblastoma Multiforme

Tumour type Name Grade Incidence

Diffuse astrocytic/oligodendroglial

Diffuse astrocytoma II 10-15%
Anaplastic astrocytoma III 10-15%

Glioblastoma IV 12-15%
Oligodendroglioma II 2-3%

Anaplastic oligodendroglioma III 1-2%

Other astrocytic Pilocytic astrocytoma I 5-6%
Giant cell astrocytoma I <1%

Ependymal Ependynoma II 5%
Anaplastic ependynoma III 1%

Other gliomas Angiocentric glioma I <1%
Mixed neuroglial Ganglioglioma I 1%

Table 1.1: Classification of some brain tumours according to the WHO standards (2016) [19].

• grade II tumours, that grow faster than grade I and may spread to nearby healthy tissue,
making them incurable by only surgery. They are more likely to come back if removed and
may evolve into a higher-grade neoplasm;

• grade III tumours, which are malignant and present abnormal cells. They are very likely
to spread into nearby tissues and tend to come back;

• grade IV tumours, the most malignant, spread very quickly and show both pathological
angiogenesis and necrosis, i.e. unnatural cellular death. They are invasive and resistant to
common therapies.

Grade classification of the main mentioned gliomas and tumours is summarized in Table 1.1.
In particular, the 2016 update of WHO brain tumours classification shows a relevant change
from past standards: while in the past astrocytic and oligodendroglial tumours had been divided
into strictly separate groups, now all diffusely infiltrating gliomas (both astrocytic and oligoden-
droglial) are grouped together. This kind of classification underlines the invasive nature of such
tumours, in addition to the type of nervous cells they affect: diffuse gliomas infiltrate as single
cells within the host healthy tissue, making complete removal by surgery almost impossible. More
specifically, glioma cells detach from the primary tumour core as a consequence of reduction of
cell-cell adhesion and microenvironmental changes: then, by degrading the ECM, they create
a route and migrate to other parts of the brain [22]. Concerning this invasion mechanism, an
interesting feature of glioma cells is the so-called migration-proliferation dychotomy: migrating
cells seem to have a reduced proliferation rate with respect to actively proliferating cells. This
mechanism of phenotypic plasticity, which has been called Go-or-Grow [23], was also included
in some mathematical models, as we will discuss later.

1.2.2 Glioblastoma Multiforme
In the present work, we focus on grade IV diffusely infiltrating astrocytoma, also called Glioblas-
toma Multiforme (GBM). It is the most aggressive and malignant among gliomas, as well as the
most common: as a matter of fact, it accounts for up to 15% of all primary brain tumours and
60-75% of all astrocytic tumours; it also accounts for the majority of gliomas (45.6%) [24, 25].
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1 – Biological Background

Moreover, GBM also exhibits dramatic invasive potential and resistance to common therapies:
even with a complete treatment including neurosurgery, chemotherapy and radiotherapy, the
median survival time is about 12-16 months [26].

From an historical point of view, the first to identify glioblastoma as a glial neoplasm was
Rudolf Virchow in 1863. For many years it was known as spongioblastoma multiforme [27], until
Bailey and Cushing [28] in 1926 proposed the name Glioblastoma Multiforme. Even if the word
"multiforme" is currently no longer a part of the WHO classification, the abbreviation GBM is
still commonly used and accepted in the literature to refer to glioblastoma. Moreover, the origin
of such a suffix is eloquent: it was meant to describe the appearance and morphology of the
tumour, which is characterized by necrosis, hemorrhages and cysts. Depending on the amount
of such features, glioblastoma can take various forms and may appear very different from an
individual to another.

Besides the typical hallmarks of cancer, glioblastoma shows propensity for necrosis, high
invasive potential and genomic instability. It frequently seems to grow along the fibres of the
white matter or along vessels, following the physical structures in the extracellular matrix of
the neighbouring brain. Moreover, GBM tends to show three-dimensional and irregular growth
patterns [29].

A distinction that can be made among glioblastomas, following the 2016 WHO classifica-
tion, splits them into two main categories according to the presence or absence of mutations in
gene IDH. IDH-wildtype glioblastoma (also called primary glioblastoma) develops de novo in the
brain and is the most frequent form of this cancer. Instead, IDH-mutant glioblastoma, which is
also referred to as secondary glioblastoma, arises from a malignant evolution of other tumours,
like diffuse or anaplastic astrocytoma [19]. In Table 1.2 we report a comparison between some
features of primary and secondary glioblastoma.

Feature Primary GBM Secondary GBM
Synonym IDH-wildtype IDH-mutant
Precursor lesion None Diffuse/Anaplastic astrocytoma
Proportion of GBMs 90% 10%
Mean age at diagnosis 62 years 44 years
Male-to-female ratio 1.42 : 1 1.05 : 1
Median survival time 15 months 31 months

Table 1.2: Comparison between some distinctive features of primary and secondary glioblastoma
[19]. The median survival time is referred to patients undergoing a complete treatment, i.e.
surgery, chemotherapy and radiotherapy.

As far as treatment is concerned, brain tumours in general and GBM in particular are exten-
sively resistant to therapies, especially chemotherapy. This is mainly due to the presence of the
blood-brain barrier, which is a selectively permeable barrier between the blood and the fluid that
surrounds the cells of the brain [21]. Even if the function of the blood-brain barrier is indeed
protective, since it avoids the absorption of undesired chemicals into the brain, it turns out to
be a double-edged sword for tumour treatment: many drugs are not able to cross the barrier
and reach the neoplasm they are supposed to target. Moreover, due to its deeply infiltrating
nature and its multi-scale heterogeneity, from the molecular to the tissue level, GBM is even
more difficult to treat than other tumours; at the present time, a curative treatment does not
exist. Palliative treatments such as neurosurgery, chemotherapy and radiotherapy are employed
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to improve patients’ quality of life and to extend their survival time. A complete treatment
usually starts with surgery and removal of as much of tumour mass as possible: however, com-
plete removal is almost impossible because of infiltration, so this type of cancer is very likely to
appear again. Another relevant issue connected to neurosurgery is the fragility of brain tissue:
the proximity of eloquent areas and structures of the brain limits the surgeon’s ability to fully
resect GBM [29]. Tumour resection immediately decompresses the brain, reducing intracranial
pressure and delaying cancer progression, increasing at the same time the likelihood of response
to chemotherapy and radiotherapy. After removal, the goal of radiation therapy is to selectively
kill cancer cells without harming the healthy ones; although radiation sessions cause damage to
both diseased and healthy tissues, during the time interval between treatments normal cells are
able to repair themselves, while tumorous cells are not. Meanwhile, the patient is treated with
chemotherapy by means of specific drugs designed to kill cancer cells.

1.3 Imaging Techniques
In this section, we briefly describe the characteristics of the main imaging techniques used in
brain tumour detection, namely Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imag-
ing (DTI). Medical images obtained through these techniques are employed to provide a com-
putational reconstruction of the brain, helping to build a realistic geometry and to account for
anisotropy of the brain environment. Without going into technical details, which are beyond the
objectives of this work, in what follows we outline the functioning principles of MRI and DTI,
so as to give an insight to the reader and favour an overall understanding. For a more detailed
description of imaging physics, we refer to [30, 31].

Magnetic Resonance Imaging is a technique that allows reconstruction of detailed body images
thanks to the detection of magnetic dipoles in the atomic nuclei of the organism. Basically, when
protons are placed into a static magnetic field B, they behave like spinning magnets and tend to
align to it in spite of their thermal motion. However, since protons possess an intrinsic magnetic
dipole moment due to their spin, the combination of the external field with the spin results
in a precession around the direction of B. This process increases the magnetization M of the
tissue which, under normal conditions, will be a vector aligned with the external magnetic field.
The magnetization is said to be fully longitudinal, i.e. directed as the magnetic field, while the
transverse magnetization (in the direction orthogonal to the magnetic field) is null.

However, if an electromagnetic radiation with a specific frequency is directed to the tissue
irradiated by the magnetic field, some protons can absorb energy thanks to the resonance phe-
nomenon: this results in a 90° rotation of their spin, which is the only other configuration allowed
by Quantum Mechanics. Then, the protons come into phase with the external electromagnetic
pulse, and therefore into phase with each other: this causes a decrease in the longitudinal magne-
tization, with a simultaneous increase in the transverse magnetization, which is not null anymore.
If the pulse is switched off, the protons will gradually recover their original configuration: the
longitudinal magnetization will return to the maximum value it had at the beginning, while
the transverse magnetization will disappear. This recovery of the initial state is postulated to
happen exponentially [30] and governed by two characteristic time constants:

M1(t) = M0(1− e−t/T1) , (1.1)
M2(t) = M0e

−t/T2 , (1.2)

whereM1 denotes the magnitude of the longitudinal magnetization andM2 the magnitude of the
transverse magnetization, assuming that the magnetization vector was rotated by 90° at t = 0.
The time constant T1 is called longitudinal relaxation time and quantifies the time required for

13



1 – Biological Background

M1 to recover: precisely, it corresponds to the time necessary for M1 to recover 63% of its
equilibrium value. T2 is instead known as transverse relaxation time, related to the time that the
transverse magnetization needs to disappear: more specifically, after a time T2 the transverse
magnetization drops to 37% of its starting value. By exploiting the differences in T1 and T2
into different tissues, it is possible to acquire signals from the M1 and M2 curves; two more
parameters called Time to Recover (TR, the time between two consecutive pulses) and Time
to Echo (TE, the time between the pulse and the acquisition of the signal) allow to associate
the magnetization intensity to a colour, obtaining an MRI image. An example of T1 and T2
brain imaging is reported in Figure 1.3: in the T1-weighted MRI, the cerebrospinal fluid has the
darkest appearance, grey matter is intermediate and white matter appears as the brightest; in
the T2-weighted MRI the interstitial fluid is instead the brightest, while grey matter is brighter
than white matter.

Figure 1.3: Comparison between a T1-weighted and a T2-weighted MRI brain imaging. In the T1
image, the cerebrospinal fluid is the darkest, whilst grey matter appears dark and white matter
is the brightest. Conversely, in the T2 image the fluid is the brightest, and grey matter is brighter
than white matter. Figure taken from [32].

The main advantages of MRI lie in its noninvasive nature and in its efficiency in detecting
brain tumours, as well as its capability to highlight the different tissue types composing the brain.
Nevertheless, MRI does not provide any information concerning the direction of the fibers, which
is an important feature when dealing with invasive brain tumours as we pointed out previously:
a possible way to overcome this limitation is to use Diffusion Weighted Imaging (DWI), and
in particular Diffusion Tensor Imaging (DTI). DWI is a type of magnetic resonance imaging
able to estimate the rate of water diffusion, due to random Brownian motion of molecules, into
each element of the image; essentially, the functioning principle of DWI is the following: if a
pulsed field gradient is applied to a uniform magnetic field in MRI, it will cause a phase shift in
protons which depends on the position of protons themselves. However, if another pulse with the
same magnitude but opposite direction is applied, phase alignment between protons should be
recovered, and the original signal should be captured again; if this is not the case, it means that
some molecules have moved during the time interval between the two opposite gradients. Such a
loss in MRI signals is due to diffusion and can be measured to estimate the diffusion coefficient of
water molecules in a specific region of the brain. Mathematically, the signal loss due to diffusion
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in a zone can be quantified through the equation proposed by Stejskal and Tanner [33]:

S = S0e
−bD , (1.3)

where S0 is the MRI signal intensity when no diffusion-field gradient is imposed, D is the diffusion
coefficient and b is a parameter, called diffusion weighting factor, that includes all the quantities
characterizing the field gradient. Equation (1.3) allows to evaluate D carrying out two mea-
surements, one with b = 0 followed by one with b /= 0, and calculating the signal intensities:

D = −1
b

ln S

S0
. (1.4)

From these measurements, values of D can be inferred and assigned to each portion of the
image, building a map of diffusion coefficients inside the brain. It is worth to remark that what
is measured that way is not properly the diffusion coefficient, since it depends on many factors
such that the microscopic structure of the brain environment, experimental conditions and so
on: this is why it is often more correctly referred to as apparent diffusion coefficient (ADC).

If a tissue is isotropic, i.e. no preferential directions exist, the quantification of the ADC
is sufficient to describe diffusion properties. However, in anisotropic tissues like white matter,
where there are preferential directions, a single measurement of the ADC along a certain direction
is not enough to fully characterize diffusion: as a matter of fact, performing measurements with
different directions of the field gradient leads to different results. To account for this effect and
describe diffusion more precisely, Diffusion Tensor Imaging (DTI) is employed. In this technique,
diffusion is not characterized by a single coefficient but rather by a second-order symmetric tensor,
called diffusion tensor :

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (1.5)

The diagonal components of D are proportional to the apparent diffusivity along the three direc-
tions, while the off-diagonal elements are related to the magnitude of diffusivity in a direction
when a gradient is applied in an orthogonal direction. With this assumption, Equation (1.3)
needs to be modified as follows:

S = S0e
−B:D, (1.6)

where the diffusion-weighting factor B is now a tensor as well. Hence, seven measurements are
now requested to estimate the components of the diffusion tensor: one giving S0 and six for the
independent components of D.

Diagonalization of the diffusion tensor allows to calculate its eigenvalues λ1, λ2, λ3 which
quantify the diffusivity along the eigenvectors e1, e2, e3, respectively. They can be used to
visualize the so-called diffusion ellipsoid, that is, an ellipsoid that spatially describes the distance
covered by water molecules in a time interval ∆t: the main axes of the ellipsoid are directed along
the eigenvectors, and their lengths coincide with the eigenvalues. So, the ellipsoid equation is

x̃ 2

2λ1∆t + ỹ 2

2λ2∆t + z̃ 2

2λ3∆t = 1, (1.7)

where O x̃ ỹ z̃ is the reference frame defined by the eigenvectors of D, which are orthogonal since
the tensor is symmetric; the eigenvalues are often considered in decreasing order, i.e. λ1 > λ2 >
λ3. The greatest eigenvalue λ1 is also referred to as longitudinal diffusivity, since it quantifies
the magnitude of diffusion along the main direction, i.e. the direction of the fibers.
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A scalar parameter used to quantify diffusion anisotropy is the fractional anisotropy (FA),
that coincides with the diffusion ellipsoid eccentricity:

FA =

√
1
2

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

λ2
1 + λ2

2 + λ2
3

. (1.8)

A fractional anisotropy of 0 defines an isotropic medium, where the eigenvalues are all coincident
and the ellipsoid is actually a sphere, with no preferential direction of diffusion. Instead, an FA
value of 1 indicates the existence of a totally preferred direction, making diffusion to occur only
along one of the eigenvectors.

Other useful measures of anisotropy are given by three indices, cl, cp and cs that are called
linear, planar and spherical index, respectively. They are defined as follows [34]:

cl = λ1 − λ2

λ1 + λ2 + λ3
, cp = 2(λ2 − λ3)

λ1 + λ2 + λ3
, cs = 3λ3

λ1 + λ2 + λ3
, (1.9)

where the eigenvalues are considered in decreasing order. The meaning of these coefficients is
evident from their definitions: if cl ≈ 1 there is only one preferential direction, identified by
the first eigenvector of the tensor; if cp ≈ 1 there are two dominating directions that do not
prevail over each other; finally, if cs ≈ 1, there is no preferential direction at all and the tensor
is isotropic. Clearly, cl + cp + cs = 1.

In the following chapters, after describing our mathematical model, we will run simulations
on a brain geometry that has been constructed through images coming from MRI and DTI.
Moreover, the diffusion tensor D and the tensor of preferential directions A of the brain will be
estimated starting by DTI data, as we will discuss in Section 4.2.
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Chapter 2

Mechanical Framework and
Preliminary Results

In this chapter, we outline the mechanical framework that will be employed to derive the math-
ematical model of GBM growth. In summary, the theoretical foundations of the model proposed
in this work lay on four main cornerstones: the theory of finite deformations and Continuum
Mechanics; the theory of mixtures; the evolving natural configurations framework and the choice
of appropriate constitutive equations to reproduce the mechanical behaviour of brain tissue. We
collect in the following the principal results related to these four theoretical bases of our theory,
establishing at the same time notations that will be used hereafter. For contents of section 2.1,
refer to [35].

2.1 Kinematics and Dynamics of Continua
We consider a continuum C that occupies a fixed reference configuration B∗, also known as
material or Lagrangian configuration, in a three-dimensional space. After a fixed time t, the
body will occupy a region Bt, called deformed or Eulerian configuration. A point X in B∗ is
called a material point.

Definition 1 A finite deformation from B∗ to Bt is a smooth function

χ : B∗ −→ Bt (2.1)
X −→ x = χ(X) (2.2)

that maps each material point X to a spatial point x in the deformed configuration.

If A denotes a set of material points, or more simply a material set, then

At = χ(A)

represents the set of spatial points occupied by the material points of A at time t, and we say
that A deforms to At at time t. Consistent with this definition, we say that a time-dependent
spatial set At convects with the body if there is a set A of material points such that At = χ(A)
for all t.

A finite deformation only describes the transition between the reference configuration and
the deformed one, without accounting for how that happens and what happens during the time
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interval. If t is allowed to vary, we obtain a deformation for each time instant: this collection
represents a motion of the body, denoted by

x = χ(X, t), (X, t) ∈ B∗ × (0, T ). (2.3)

Basically, by fixing t in a motion we have a finite deformation of the body, while by fixing X we
obtain the trajectory described by the particle that occupied position X in B∗.

Definition 2 The tensor field

F := ∇χ, Fij = ∂χi
∂Xj

(2.4)

is referred to as the deformation gradient. Its determinant, also called Jacobian, is denoted by

J := detF (2.5)

and needs to be strictly positive, in order to avoid unphysical effects.

By definition, the deformation gradient maps material vectors to spatial vectors, that is, if dX
is an infinitesimal vector in X ∈ B∗, the corresponding infinitesimal vector in the deformed
configuration is

dx = FdX. (2.6)
The deformation gradient and its Jacobian are also involved in deformation of volumes and

areas from the reference configuration to the deformed one. The following results, which will be
widely employed in the next chapter, hold.

Theorem 1 Let dΣ∗, dV ∗ and N be an element of area, an element of volume and a unitary
normal vector in the reference configuration B∗, respectively, and dΣ, dV and n the corresponding
elements in Bt. Then, the following relationships hold:

dΣ = JF−T dΣ∗, (2.7)
dV = JdV ∗, (2.8)
n = F−TN. (2.9)

The deformation of a continuum from the reference configuration B∗ to the deformed one Bt
can be equivalently described using the displacement field u(X), defined through

x(X) = X + u(X). (2.10)

In other words, the vector field u quantifies the displacement of a point from its position in the
material configuration:

u(X) = x(X)−X. (2.11)
Differentiating (2.10) with respect to the material coordinates, we obtain the relation

F = I + Grad u, (2.12)

where I is the second order identity tensor and

Grad u := ∂u
∂X , (Grad u)ij := ∂ui

∂Xj
, (2.13)
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is referred to as the displacement gradient.
An important distinction that needs to be underlined is the one between material and spatial

description of fields. In general, if ϕ denotes a scalar, vector or tensor field defined on the body
for all time, if we consider ϕ to be a function ϕ(X, t) of the material point X and time t we say
that we are using a material description of the field. But we may also consider ϕ to be a function
φ(x, t) of the spatial point x and time t: this is called spatial description and is related to the
material description through the motion, by setting:

φ(x, t) = ϕ(χ−1(x, t), t). (2.14)

In the following, unless there is danger of confusion, we will use the same symbol for both the
material and spatial description. Instead, we decide to employ a different notation to distinguish
between differential operators acting on different configurations: henceforth, we will use the
symbols Grad and Div to denote the material gradient and material divergence, respectively, i.e.
gradient and divergence with respect to the material point X in the reference body. Meanwhile,
∇ and ∇· will refer to the spatial gradient and spatial divergence, respectively, with respect to
the spatial point x = χ(X, t). By the chain rule, for ϕ a scalar field and u a vector field, we have

Gradϕ = FT ∇ϕ , Grad u = ∇uF. (2.15)
The velocity of a particle at time t and position x is defined as

v(x, t) = ∂x
∂t

= ∂χ(X, t)
∂t

= ∂χ(χ−1(x, t), t)
∂t

. (2.16)

Following a similar reasoning as before, given a field ϕ we can define a material time-derivative,
or Lagrangian derivative, as

ϕ̇(X, t) = ∂ϕ(X, t)
∂t

, (2.17)

where X is hold fixed. The material derivative is then related to the spatial one through the
chain rule, namely

ϕ̇ = dϕ(x, t)
dt

= ∂ϕ(x, t)
∂t

+ v(x, t) · ∇ϕ(x, t). (2.18)

We now introduce some other useful quantities that will be used in the model.

Definition 3 Let χ be a motion and F be its deformation gradient. Then
• C := FTF is called right Cauchy-Green deformation tensor. By definition, it is a symmetric

tensor that maps the material configuration into itself.

• The spatial tensor field L := ∇v = ḞF−1 is called the velocity gradient. An important
property of such a tensor that follows from its definition is the following:

trL = tr∇v = ∇ · v. (2.19)

Another relevant identity expressing transport of volume is

J̇ = J trL = J∇ · v. (2.20)

Definition 4 Let M be a generic tensor. The scalar quantities

IM := trM, (2.21)

IIM := 1
2
[
(trM)2 − trM2] , (2.22)

IIIM := detM, (2.23)
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are called first, second and third principal invariant of M, respectively. By definition, they are
invariant under frame of reference changes.

Proposition 1 Let M be a generic non singular tensor. Then, the following identities hold:

∂IM
∂M

= I, (2.24)

∂IIM
∂M

= IMI−MT, (2.25)

∂IIIM
∂M

= (M2 − IMM + IIMI)T. (2.26)

(2.27)

A relevant result widely employed in Continuum Mechanics is Reynolds’ transport theorem.

Theorem 2 (Reynolds) Let Vt be a spatial volume that convects with the body. If ψ is a scalar
field of class C1, then

d

dt

∫
Vt

ψ dV =
∫
Vt

(
ψ̇ + ψ∇ · v

)
dV =

∫
Vt

(
∂ψ

∂t
+∇ · (ψv)

)
dV. (2.28)

If the set Vt is not convecting, Reynolds’ relation needs to be modified as follows.

Theorem 3 Let Vt be a non-convecting set, ψ a C1 scalar field and wn := (vΣ − v) · n the
velocity of the boundary ∂Vt relative to the velocity of the body v. Then,

d

dt

∫
Vt

ψ dV =
∫
Vt

(
ψ̇ + ψ∇ · v

)
dV +

∫
∂Vt

ψwn dΣ. (2.29)

In the present work, we will assume that stresses can be represented by the Cauchy stress
tensor : formally, if t denotes the traction per unit area of the body, there exists a tensor field T
such that

t(n) = Tn. (2.30)
Since we will be working extensively with Lagrangian coordinates, it is useful to recall the

laws for transformations of vectors and tensors from the deformed configuration to the reference
one, known as Piola transformations.

Definition 5 Let u and M be a vector and a tensor field, respectively, defined on the current
configuration. If F is the deformation gradient associated to a motion χ, then the material field

u∗ := JF−1u (2.31)

is said to be the Piola transform of u. Similarly, the material tensor field

M∗ := JMF−T (2.32)

is said to be the Piola transform of M.

In particular, the Piola transform of the Cauchy stress

P := JTF−T (2.33)

is known in Continuum Mechanics as first Piola-Kirchhoff stress tensor.
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2.2 Mixture Theory
Since in our model the brain and the tumour will be represented as a mixture of cells and fluid,
in this section we outline the main features of mixture theory. Basically, such a theory allows
to describe mathematically a continuum C composed by an arbitrary number of phases inter-
acting with one another; there are no sharp boundaries between the phases: it would be almost
impossible, in a complex domain, to trace those microscopical interfaces. Even if we tried, it
would be impractical to deal with fields which, given the different nature of the phases, would
be discontinuous. Instead, the properties of a multiphase body are defined at every material
point and at every time instant as an average over a proper spherical neighbourhood of the point
called microscopic representative elementary volume (REV): the system is then schematized as
a mixture of interacting and "overlapping" continua [36]. This approach permits to exploit all
the instruments of Continuum Mechanics presented in Section 2.1 and to treat the problem at
a macroscopic scale using continuous fields for macroscopic variables. The macroscopic effects
of the microscopic configuration are retained in the form of coefficients that are created in the
process of averaging.

A basic feature of mixture theory and porous media mechanics is that all the phases are sup-
posed to be distributed throughout the whole domain. This implies that samples of a sufficiently
large volume (the REV), taken at different locations within the domain, will always contain all
the involved phases: we denote such a volume by Vt := V (x, t). Inside Vt, each phase α has a
mass mα(x, t) and occupies a volume Vα(x, t): we can then define a true mass density for the
α-th phase

γα(x, t) := mα(x, t)
Vα(x, t) , (2.34)

which is the density of the phase relative to its own volume inside the REV, and an apparent
mass density

ρα(x, t) := mα(x, t)
V (x, t) , (2.35)

calculated instead with the REV as reference. They are related through the concept of volume
fraction, that is, the volume occupied by the α-th constituent over the total volume:

φα(x, t) := Vα(x, t)
V (x, t) = ρα(x, t)

γα(x, t) . (2.36)

Obviously, for any phase, we have φα ∈ [0,1]. It follows that the apparent mass density can be
obtained by the true mass density using the relation:

ρα = φα γα. (2.37)

The mixture is said to be saturated if the phases fill the entire control volume without voids:
this implies that

N∑
α=1

φα = 1 ∀x ∈ B ∀t. (2.38)

Starting from these concepts, we can derive the mass balance equations for a mixture: in
principle, each phase has to satisfy its own mass balance, which can be written in integral
formulation as

d

dt

∫
Vt

ρα dV =
∫
Vt

Γα dV ∀α = 1, . . . , N, (2.39)
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where Γα(x, t) is a mass source term per unit volume of the body. Using Reynolds’ transport
theorem 2, one obtains ∫

Vt

(
∂ρα
∂t

+∇ · (ραvα)
)
dV =

∫
Vt

Γα dV, (2.40)

where vα is the velocity field of the α-th phase. If all the involved quantities are smooth and
we require that (2.40) holds for every volume, we arrive at the Eulerian local form of the mass
balance for a single phase:

∂ρα
∂t

+∇ · (ραvα) = Γα, (2.41)

or equivalently
ρ̇α + ρα∇ · vα = Γα. (2.42)

Recalling (2.37) and assuming that all phases are incompressible, that is γ̇α = 0, we can write

φ̇α + φα∇ · vα = Γα
γα
. (2.43)

The mass balance equation can then be rephrased, under the hypothesis of incompressibility of
constituents, with the volume fraction as unknown:

∂φα
∂t

+∇ · (φαvα) = Γα
γα
. (2.44)

In order to determine the velocity fields appearing in the mass balance equations, each com-
ponent of a mixture must satisfy its own momentum balance equation:

ρα

(
∂vα
∂t

+ vα · ∇vα
)

= ∇ · T̃α + ραbα + mα , (2.45)

where T̃α is the partial Cauchy stress tensor of the α-th phase, bα is the body force acting on
the α-th constituent and the term mα is the momentum supply that accounts for the inter-
action between different phases [37]. Since in most biological applications the motion of cells
and interstitial fluid is very slow, inertial terms can be neglected when compared to the stress
terms; moreover, body forces such as gravitational force are often assumed to be negligible and
dominated by the stresses.

To close the model for a multiphase continuum, it is necessary to specify constitutive equa-
tions for the stresses, in order to properly account for the mechanical response to deformations.
The choice of appropriate constitutive equations, especially in the case of brain tissue, is quite
a delicate matter and will be discussed thoroughly in Section 2.4. Here, we recall that the sat-
uration assumption of the constituents implies the presence of a Lagrange multiplier [38, 39];
consequently, the constitutive equations for each phase can be characterized by a pressure con-
tribution and an excess part:

T̃α = −φαpI + Tα. (2.46)
The first term on the right-hand side of (2.46) accounts for the amount of pressure sustained
by the α-th phase, while the second term Tα is connected to the purely mechanical response of
the constituent and needs to be derived from an appropriate constitutive equation for the α-th
phase. In our case, we will have to deal with a fluid phase and a solid phase composed by brain
tissue: more details regarding the choice of a constitutive expression for Tα of the brain will be
provided in Section 2.4.
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2.3 Evolving Natural Configurations Framework
A fundamental aspect for the development of a realistic model is a proper description of the
growing tumour, especially from the mechanical point of view. Even if in some cases it might be
sufficient to treat the tumour as an ideal fluid, as it was done in early mathematical models of
cancer, this approach neglects the role of deformations and stresses. As a consequence, it does
not allow to investigate the role of mechanical aspects that has been shown to be relevant for
tumour growth and development [40]. Furthermore, in dealing with brain tumours, it is crucial to
quantify the mechanical impact that tumour growth may have on the surrounding healthy tissue:
a growing cancer may exert stress and pressure on nearby brain areas and induce unnatural
displacement, with possible damage. The relevance of a detailed mechanical description of a
tumour is then clear: to that end, Continuum Mechanics and mixture theory represent indeed a
powerful and well established framework to work with.

However, in developing a mathematical model that includes mechanics, some non trivial dif-
ficulties arise: cells duplicate and die, the environment is continuously modified and remodelled
as a result of tumour growth, and when dealing with solid tumours it is not clear which reference
configuration should be used to measure deformations, since the material is constantly changing
[41]. In the context of tumour growth and biological applications, this problem was tackled in
[42, 40, 43] by applying the concept of evolving natural configurations, which consists in split-
ting the evolution in pure elastic deformations and deformations subsequent to growth. In this
section, following the modelling background proposed in [42, 44], we outline the main aspects of
the natural configurations framework, which will be employed to derive our mechanical model of
GBM growth.

A possible, immediate way of describing growth using classical Continuum Mechanics is to
imagine that particles composing a body can be labelled in a certain reference configuration and,
in going from the starting configuration to the final one, new particles appear. However, this
approach turns out to be not theoretically suitable, since it makes the definition of a motion
from the original configuration onto the current one impossible; as a matter of fact, with this
assumption, the new particles arising from growth process would have no counterpart in the
starting configuration, causing the motion to be non invertible. A possible solution to overcome
this difficulty could be to solve the problem in an Eulerian frame of reference; the Eulerian
approach is still not feasible when dealing with solid bodies undergoing large deformations, since
boundary conditions can only be formulated in the current configuration which is an unknown of
the problem. In the modeling context proposed in [42], growth is not seen as an increase in the
number of particles, but rather as an increase in the mass of already existing particles. Doing
so, the body has exactly the same number of particles at any time - which allows to define a
motion - while the mass of the body may have changed, because of an increasing or decreasing
in the mass of each particle.

Starting from this idea, we consider a body which is in a configuration B0 at time t = 0,
and we suppose that such a body undergoes deformations and growth so that at time t its
configuration is B. During this motion, each particle of the body may have grown, and the
consequent state of stress might be different from zero. We now imagine to remove a particle
from the current configuration and relieve its state of stress while keeping its mass constant: at
the end of this process, relaxing the constraint that the body remains integer [40], the considered
particle will have a configuration which will be, in general, different from both the one it had in
B0 and B; the particle is said to be in its natural state: the collection of all the particles taken
in their natural states builds up the natural configuration of the body at time t, denoted by Bg.

The natural configuration then represents an intermediate, useful state of the body which can
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be used to decompose the global deformation F into two different contributions, as pictured in
Figure 2.1. As discussed first by Rajagopal [45], the deformation from the natural configuration
to the current one can be measured through a tensor Fe, while the path from B0 to Bg is described
by another tensor Fg. Hence, the following decomposition holds:

F = FeFg. (2.47)

Figure 2.1: Multiplicative decomposition of the deformation gradient (from Lubarda, 2004 [44]).
B0 denotes the reference configuration, B the current configuration and Bg the natural configu-
ration of the body. We note that mass is preserved from Bg to B, while growth takes place in
the path from B0 to Bg.

The physical meaning of the two tensors introduced in this manner can be understood bearing
in mind the observations of Skalak [46], who proposed the idea that growth is accompanied
by incompatible deformations and residual stresses, and Rodriguez et al. [47], suggesting to
decompose the deformation gradient into an elastic part and an inelastic part connected to
growth. As a matter of fact, since we assumed that mass is preserved from Bg to B, the tensor Fe
in (2.47) is not directly related to growth: hence, the whole contribution of deformations due to
growth processes is carried by the other tensor Fg. Therefore, the multiplicative decomposition
of the deformation gradient allows to separate the inelastic distortions related to growth from
the pure elastic contribution, which determines the stress response of the material. In summary,
recalling that the deformation gradient describes how the body is deforming locally in going
from B0 to B, we can say that Fe tells how the body is deforming elastically from the natural
configuration Bg to B, whilst Fg tells how the body is growing locally [42]. Since F is invertible,
it follows from (2.47) that Fe and Fg are invertible as well; additionally, the determinant of the
deformation gradient can be expressed as

J = JeJg, (2.48)

where Je := detFe and Jg := detFg.
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Using the same principles of reasoning, more complex decompositions of the deformation
gradient may be considered to take into account other biological phenomena. For instance, one
could introduce another intermediate configuration between Bg and B to model the internal
plastic reorganization of the growing tissue. However, for the moment we will not include these
effects in our model: for a more detailed description, the reader is referred to [43, 48].

2.4 Constitutive Equations for Brain Tissue
In order to close the model, it is necessary to prescribe constitutive equations that properly
characterize the mechanical response of a material to deformations. We begin this section by
briefly recalling the main results related to nonlinear elasticity, or hyperelasticity. Then, we
discuss the problem of choosing an appropriate constitutive equation capable to represent the
mechanical behaviour of brain tissue. Since our main goal is to study how a growing glioblastoma
affects the healthy host tissue from a mechanical viewpoint, such a choice is crucial and not trivial
at all, due to the extremely complex nature of the brain. For contents of section 2.4.1, the main
references are [35] and [49].

2.4.1 Hyperelasticity
In classical mechanics, the force and energy within an elastic spring depend only on the change
in length of the spring; moreover, the force is independent of the past history of the length as
well as the rate at which the length is changing in time. In Continuum Mechanics, local length
changes are characterized by the deformation gradient F: therefore, we can extend the definition
of elastic body by introducing a dependence of stress only on local deformation.

Definition 6 A continuum C is said to be hyperelastic if there exists a function σ(F) such that

T(F) = ρ
∂σ

∂F
FT , (2.49)

where T is the Cauchy stress tensor, ρ the density of the material and F the deformation gradient.
Equivalently, a continuum is hyperelastic if there exists a function W(F), called strain energy
density function, such that

T(F) = 1
J

∂W
∂F

FT , (2.50)

where J = detF.

It is worth to remark that W(F), which expresses the elastic energy per unit volume of the
material, satisfies W(F) = ρ∗ σ(F), where ρ∗ is the density in the reference configuration.

In order to satisfy the material frame indifference principle, which states that a constitutive
equation must not depend on the adopted frame of reference, it can be shown that the following
theorem holds.

Theorem 4 A hyperelastic material satisfies the frame indifference principle if and only if its
strain energy density function depends on the deformation through the right Cauchy-Green strain
tensor C:

W(F) = W̃(C). (2.51)
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Consequently, Theorem 4 and Definition 6 impose that the general constitutive equation for
a hyperelastic material reads

T(F) = 2ρF ∂σ̃
∂C

FT (2.52)

= 2
J
F
∂W̃
∂C

FT . (2.53)

An additional simplification on the constitutive equation can me made if the material is
assumed to be isotropic with respect to the mechanical response: in such a case, the strain
energy density is an isotropic function of C, leading to the following result.

Theorem 5 A hyperelastic material that satisfies the frame indifference principle is isotropic if
and only if its strain energy density function depends on C only through the principal invariants,
namely,

W̃(C) = Ŵ(IC, IIC, IIIC). (2.54)

In summary, the most general form of the constitutive equation describing a hyperelastic
frame-indifference isotropic material is

T(F) = 2ρF∂σ̂(IC, IIC, IIIC)
∂C

FT (2.55)

= 2
J
F
∂Ŵ(IC, IIC, IIIC)

∂C
FT . (2.56)

2.4.2 Mechanical Modeling of the Brain
Modeling the mechanical behaviour of the brain has become increasingly important over the past
decades. Despite the progresses and research initiatives on how the brain functions and operates,
comparatively little is known about how the brain behaves at the mechanical level. According
to Goriely et al. [50], two main factors contribute to this relatively poor state of knowledge:
first, the brain is a fully enclosed organ that is particularly difficult to examine and to deal with
physically; second, viewed as a solid, it is extremely soft and its mechanical response is heav-
ily influenced by a fluid phase. Nonetheless, the last decade has seen fundamental advances in
brain mechanics, which was proved to have a key role in several situations and pathologies such
as traumatic brain injury, brain development and brain tumours, the latter being the focus of
the present work. In what follows, we review the main perspectives regarding the constitutive
modeling of brain tissue, so as to make a choice for our model; it is however essential to notice
that, even if many constitutive models have been proposed so far, no general consensus on which
model is the best exists. In fact, several difficulties arise when dealing with experimental set-
tings involving brain tissue: human brain specimen are not always available and must be treated
carefully, since they are extremely delicate; moreover, in vitro tests need to be generalized to in
vivo conditions, providing an additional complication.

A first, important remark put forward by experimental studies of Budday et al. [51] con-
cerns the anisotropy of brain tissue. In their work, the authors have established that despite the
intrinsic microstructural anisotropy due to the presence of nerve fibers, the human brain tissue
is nearly isotropic from a mechanical viewpoint. As a matter of fact, no significant mechanical
directional dependency was observed in their assays, even in highly anisotropic regions of the
brain. Therefore, we will align ourselves to these results and consider the brain as isotropic
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as far as mechanics is concerned; when it comes to diffusion of substances and fluids, however,
anisotropy cannot be neglected, as the same authors pointed out.

As regards the mechanical characterization, the vast majority of experimental results agree
upon the highly nonlinear and viscoelastic nature of brain tissue [50, 51, 52], under different
loading conditions [53, 54, 55, 56] and even with multiple loading modes [51]. In more detail,
Miller [57] and Miller and Chinzei [56, 58] observed a strong stress-strain rate dependence and
a tension-compression asymmetry on porcine brain tissue; they proposed firstly a linear, then a
nonlinear viscoelastic model for brain behaviour at low strain rates, suitable for neurosurgical
simulations. As confirmed by experimental settings performed by Rashid et al. at intermediate
and dynamic strain rates both in compression [53] and in tension [54], porcine brain specimen
showed a pronounced difference between the two loading conditions and a stiffer response with
increasing strain rates. These results have been further reinforced by Budday et al. [51], who
tested human brain specimen under shear in two orthogonal directions, compression and tension.
Brain tissue showed again a nonlinear mechanical response, which was significantly stiffer in com-
pression than in tension; shear stresses were also found to increase with increasing compressive
strain but not with increasing tensile strain. Hystereses also showed up during cyclic loading:
the pre-conditioning of the samples was substantial between the first and the second cycle, while
it became less evident during all subsequent cycles. The authors attributed this characteristic to
the porous nature of brain tissue, where interstitial fluid is gradually squeezed out of the sam-
ple; this observation is also supported by the fact that, if the specimen underwent a 60 minutes
recovery period in a saline solution, their pre-conditioning behaviour was very similar to that of
the initial test. Stress relaxation experiments confirmed the highly time-dependent response of
the tissue, with a relaxation of up to 80% within only 300 seconds.

Once established the nonlinear viscoelastic nature of the brain, it is mandatory to identify a
mechanical constitutive model able to capture its essential features. For the purposes of our work,
we are interested in brain tissue’s elastic response under small strain rates: in the first instance,
we will not include explicit viscous contributions, assuming that all inelastic deformations are
included in the growth term of the multiplicative decomposition (2.47). Therefore, we neglect
time-dependent behaviour and focus on time-independent, hyperelastic constitutive modeling of
brain tissue.

To that end, several models have been proposed in the literature [52]: there is a general
agreement that the generalized Ogden model [59] with strain energy density function

WOgd(C) =
N∑
i=1

µi
αi

(λαi
1 + λαi

2 + λαi
3 − 3), (2.57)

where λi are the principal stretches (i.e. the square roots of the eigenvalues of C = FTF), and
N , µi, αi are the material parameters, is suitable to represent the mechanical behaviour of soft
brain tissue. In particular, fitting to experimental data by Budday et al. [51], Rashid et al.
[53, 54, 55] and Mihai et al. [60] showed that a modified one-term Ogden model

WOgd(C) = 2 µ
α2 (λα1 + λα2 + λα3 − 3), (2.58)

where
µ = 1

2µ1α1

corresponds the classical shear modulus and α1 = α, is able to capture the compression-tension
asymmetry and the elastic behaviour of the brain with multiple loading modes simultaneously.
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Budday et al. also remark the fact that parameter α needs to be given a negative value, in order
to represent the effect that stresses are higher in compression than in tension; a positive value for
α would yield the opposite result, not respecting experimental evidence. Some authors, including
Mihai et al. [60], employed the Mooney-Rivlin model [61, 62], whose strain energy function is

WMR(C) = 1
2µ1(IC − 3) + 1

2µ2(IIC − 3), (2.59)

where the parameters µ1 and µ2 are related to the shear modulus µ through µ = µ1 + µ2. The
Mooney-Rivlin model can be viewed as a special case of the Ogden model (2.57) by choosing
N = 2, α1 = 2, α2 = −2:

WMR(C) = 1
2c1

[
λ2

1 + λ2
2 + λ2

3 − 3
]
− 1

2c2
[
λ−2

1 + λ−2
2 + λ−2

3 − 3
]

(2.60)

= 1
2µ1(IC − 3) + 1

2µ2(IIC − 3). (2.61)

Mihai et al. [60] also proposed a four-parameter constitutive model by adding a Mooney-
Rivlin-type energy (2.59) to the one-term Ogden strain energy function (2.58):

W(C) = C0

2α
(
λ2α

1 + λ2α
2 + λ2α

3 − 3
)

+ C1

2
(
λ2

1 + λ2
2 + λ2

3 − 3
)

+ C2

2
(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)
.

(2.62)
Their model turns out to be capable of predicting the elastic behaviour of human brain tissue
under combined multi-axial loading.
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Model and Simulations
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Chapter 3

Mathematical Model of GBM
Growth

After having established both the biological and the mechanical framework in the previous chap-
ters, we are now ready to derive our mathematical model for Glioblastoma growth and prolifera-
tion. First of all, we provide a review on brain tumour modeling and analyze the results that have
been obtained so far in this field: in particular, we distinguish between macroscopic, mesoscopic,
microscopic and hybrid models, discussing their strong and weak points. Afterwards, we provide
a thorough derivation of our model: it is a continuum multiphase model that includes the hy-
perelastic nature of brain tissue, in order to investigate the mechanical impact of GBM growth.
The governing equations are firstly derived in an Eulerian framework and then reformulated into
a Lagrangian one. In the last part of the chapter, we provide an appropriate estimation for all
the parameters, so as to simulate tumour progression realistically.

3.1 Review of Brain Tumour Modeling
As we pointed out in Chapter 1, cancer growth is an extremely complex process, involving
many phenomena which occur at different scales: even if research in the field has drawn a lot
of attention during the last decades, there is still much to be understood as far as tumours are
concerned. In particular, concerning Glioblastoma Multiforme, there is a critical need to under-
stand and replicate the biological complexity of the brain, in order to predict tumour evolution
and arrange therapeutic strategies accordingly. The study of cancer proliferation has gradu-
ally involved researchers with different backgrounds, including mathematicians and physicists:
several mathematical models of tumour growth have been proposed, with the purpose of provid-
ing a better understanding of the phenomenon while speeding up the research process through
the use of computer simulations. As a matter of fact, mathematical and computational models
can provide powerful instruments for investigating cancer progression, especially in those cases
which are particularly difficult to be treated with current therapeutic protocols such as GBM.
Before deriving our model, we review some of the main models of brain tumour growth that
have been proposed: they have become increasingly sophisticated and refined during the years,
using different frameworks and accounting for different characteristics of brain tissue. Advances
in experimental and mechanical study of the brain progressively provided new features to the
modeling process: nevertheless, as we will discuss soon, the vast majority of these models does
not consider realistic mechanical and constitutive properties of brain tissue, as well as the role
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of deformations and stresses exerted on and by the growing tumour. Hence, in order to get a
better insight into an highly lethal cancer as GBM, it is important to include a proper mechanical
framework in models and simulations.

Excellent reviews on mathematical modeling of brain tumours and gliomas are the ones by
Harpold et al. [63], Hatzikirou et al. [29], Rockne et al. [64] and more recently those by Goriely
et al. [50], Martirosyan et al. [65] and Alfonso et al. [22].

In general, mathematical modeling of tumour growth should reproduce as much as possible
the complexity of the process and the different scales on which cancer evolution takes place. As
a consequence, a first distinction among models can be done by considering the scale they are
meant to describe: authors usually distinguish between microscopic, mesoscopic and macroscopic
scale [66, 29].

The microscopic scale includes all the phenomena that occur at the subcellular level, such
as gene expression, cell functioning and protein cascades, while the mesoscopic scale focuses
on interactions between single cells and structural changes at cellular level. These two scales
are strongly connected to molecular biology and to the emerging field of mechanobiology, which
aims at understanding how physical forces act at the cellular level. Instead, the macroscopic
scale concentrates on processes and phenomena that take place at the tissue level, studying for
instance convection and diffusion of nutrients, mechanical properties of tissues and tumours, cell
migration and diffusion of metastases, visible effects of therapies. Cancer proliferation involves all
these scales, which are also reciprocally influenced: this is particularly evident in invasive gliomas,
where, for example, genetic mutations in signalling pathways at the microscopic level or changes
in cell-cell interaction at the mesoscopic level are thought to be related to altered capability
of cell migration. Progresses in mechanobiology suggest that alterations in cell mechanics have
a significant role in the progression of brain tumours [50]: the attempts to develop realistic
multi-scale models that might provide a link between different phenomena, however, lie on a
consolidated knowledge of cellular biology of Glioblastoma, which is currently not available.

In the last decades, researchers have developed a wide variety of mathematical models for
GBM growth, reflecting the previous scale classification: different approaches have contributed
to explore and unravel distinct features of this cancer, as well as to address different biological
questions. In the following, we firstly provide a brief overview of micro-mesoscopic models
of glioma invasion; then, we focus more thoroughly on macroscopic approaches, providing a
comparison between models and putting in evidence their main mathematical and biological
foundations.

3.1.1 Microscopic and Mesoscopic Models
Microscopic and mesoscopic models of brain tumour proliferation mainly fulfill two objectives:
the first is to reproduce the early growth of gliomas at the very beginning, when the tumour is
composed by a few diseased cells and is still in its avascular phase; the second is to investigate the
effects of cell interactions and microenvironmental conditions on cancer progression and invasive
behaviour. Such models are based on in vitro experiments and allow a potentially detailed study
of biophysical processes at the cellular level: since cell-cell adhesion and cell-microenvironment
interactions are believed to have an important role in invasive migration [23], their investigation
is of crucial importance.

At those levels, cellular automata (CA) or agent-based models (ABMs) are mostly used [29].
CA are discrete models that treat cells as points in a regular spatial two- or three-dimensional
lattice: each cell is described by a state, which is updated at each discrete time step according to a
precise rule. The choice of such a rule is critical and makes the difference between models: it can
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be deterministic, stochastic or both, and the new state may depend on several variables such as
the state of the cell at the previous time step and the states of its neighbours. Instead, ABMs treat
the cells as agents that interact with each other and can make simple decisions according to a set
of fixed rules which are biologically justified: the goal of such models is to analyze the collective
emerging behaviour of the system as a result of the possibly complex interactions between its
agents. ABMs also differ from cellular automata in the fact that they are usually lattice-free, so
that cells are allowed to move and change their orientation, providing a more realistic description
of the phenomenon. Even if this kind of mathematical models can provide a powerful instrument
to examine growth patterns at the first stages of tumour proliferation, they can be difficult to
study analitically and their computational cost may become unacceptable as the number of cells
increases. In fact, a tumour spheroid of 1 mm radius may include several hundred thousand cells,
making the use of CA or ABMs inadequate for the simulation of significant cancer sizes [67].

For the study of gliomas, Kansal et al. [68] proposed in 2000 the first three-dimensional
cellular automaton to simulate glioma growth: their model included several new features, such as
a distinction between necrotic, proliferative and non-proliferative cells, and an isotropic, adaptive
grid lattice, which allowed to simulate even small tumours accurately within a three orders of
magnitude increase in radius. Starting from an initial distribution of about 1000 cells, the model
was able to simulate growth until a fully developed tumour of 1011 cells; the authors also included
a stochastic component in their work, giving each cell a certain probability of division at each
time step.

More recently, an interesting experimental result obtained by Khain et al. [69] was explained
by the same authors thanks to a 2D stochastic cellular automaton. They studied glioma cell
migration in two different settings: initially away from a glioma spheroid placed on a substrate,
then in a wound-healing geometry, where a scratch was made to separate cells. By measuring the
migrated distance of both normal and hypoxic cells, they found that in the spheroid case there
were no significant differences between the two types of cells; instead, in the wound-healing setting
hypoxic cells migrated less than normal cells. This counter-intuitive result was well explained by
their cellular automaton model, suggesting that hypoxia not only reduces cell motility, but also
cell-cell adhesion; as a consequence, hypoxic glioma cells can detach more easily from the tumour
core, enhancing their capability of invasion. Glioma cells migration on substrates of collagen and
astrocytes was also investigated by Aubert et al. [70] employing a two-dimensional CA model:
results indicated that interactions between tumoural cell and normal astrocytes have a role in
GBM invasion; in particular, the authors showed that inhibiting glioma cells interactions favours
migration, while inhibition of glioma cells-astrocytes interactions reduces it.

The ability of glioma cells to change their phenotype from proliferative to migratory according
to the characteristics of the microenvironment, the so-called phenotypic plasticity discussed in
the first chapter, has also been investigated through the use of cellular automata. Tektonidis et
al. [71] proposed a lattice-based model to reproduce the migration-proliferation dychotomy: in
order to achieve that, they introduced two different parallel lattices, each hosting a different cell
phenotype. Resting cells reside on one lattice, while moving cells on the other. At each time step,
cells can switch between phenotypes with constant probabilities. Their work shed light on the
Go-or-Grow mechanism and, coupling it with the self-repulsion between glioma cells that was
demonstrated experimentally [72], was able to reproduce experimental results. Other cellular
automata models which provided insight into the duality between proliferation and migration in
glioma cells are the ones by Hatzikirou et al. [73] and Bottger et al. [74]. In particular, Hatzikirou
and coworkers address hypoxia as the main cause of phenotypic switching and find support to
their theory in GBM resection and subsequent recurrence: when the tumour is removed, hypoxic
cells that remain in the tissue become normoxic and convert themselves from an invasive to a
proliferative phenotype. This observation should explain the fast recurrence after glioma removal
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since, if only mutations were responsible for phenotypic plasticity, repopulation would require
a longer time. Although many researchers agree upon the hypotesis of migration-proliferation
dichotomy as a relevant characteristic of invasive gliomas, not all the authors consider it to be
a necessary property: for instance, Scribner and Fathallah-Shaykh [75] proposed a single cell
model able to replicate the key features of GBM, such as the formation of a multilayer structure
with necrosis and poor survival times, without including the Go-or-Grow mechanism.

An agent-based modeling framework was instead used by Mansury et al. [76, 77, 78] to
simulate early avascular GBM growth. Starting from the assumption that tumours behave like
complex self-organising systems, the authors proposed a 2D variable lattice model in which
the agent-cells migrate by looking for attractive nodes, i.e. nodes that have higher nutrients
concentration, low toxic metabolites concentration and reduced mechanical confinement.

3.1.2 Macroscopic Models
Discrete computational approaches such as cellular automata and agent-based models repre-
sent useful tools to explore invasive migration, phenotypic plasticity and early growth of GBM.
However, they are not suitable to be studied from an analytical viewpoint and may reach an
overwhelming computational cost when it comes to simulate fully developed cancers. Further-
more, CA and ABMs are not able by themselves to capture some features of Glioblastoma that
may be relevant, such as the intricate anisotropy of brain tissue and its mechanical response. On
the other hand, macroscopic models neglect the intrinsically discrete nature of tumours as cell
aggregates, in exchange for a more flexible description provided by the instruments of Continuum
Mechanics. At the macroscopic level, a cancer is treated as a continuum and described through
continuous variables such as cell and nutrient concentrations, volumetric fractions and densities,
whose variations are regulated by differential equations.

Throughout the years, macroscopic modeling of GBM growth has become increasingly de-
tailed, following the experimental advances and discoveries to develop realistic models. The first
attempts to provide a continuous description of tumours, in the mid-1900s, were guided by the
hypotesis that cancer cells divided at almost constant rates, depending on the different types of
tumours and following a simple exponential law for growth [63]. In subsequent years, several
other population growth models, such as logistic or gompertzian laws, were proposed to describe
cancer proliferation [64]: however, none of them accounted for the spatial distribution of cells or
for their motility, which are crucial aspects when dealing with invasive gliomas.

The first development of a more refined, although still very simple, mathematical model for
GBM growth is attributed to Murray and his group in the 1990s [79, 80]. In order to include cell
motility and spatial dynamics together with proliferation, they proposed a conservation-diffusion
equation as follows:

∂c

∂t
= D∇2c+ ρc. (3.1)

In (3.1), the unknown c(x, t) is the concentration of Glioblastoma cells at point x and time t,
while D is the diffusion coefficient of tumour cells and ρ is their net proliferation rate. This
basic model paved the way for subsequent works and was taken as a starting point by many
researchers, who tried to improve it adding more complex features. The first extension, by the
same authors, considered two different cell populations c1 and c2 with different responses to
chemotherapies:

∂c1
∂t

= D∇2c1 + ρ1c1 −K1c1 −K2c1 , (3.2)

∂c2
∂t

= D∇2c2 + ρ2c2 −K2c2. (3.3)
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In particular, population c1 is sensitive to both the first and the second type of therapy, while
population c2 is resistant to the first and sensitive to the second. A year later, Woodward
et al. [81] employed the two-population model (3.2), (3.3) to perform simulations of surgical
GBM resection, by setting to zero the concentration of cells in the assumed region of removal,
and studied the effects on survival time. So far, simulations assumed two-dimensional tumour
growth in a homogeneous tissue and relied on clinical data derived from Computed Tomography
(CT) observations.

Advances in MRI technology, however, suggested that a constant and uniform diffusion coef-
ficient was not a proper approximation: as a matter of fact, glioma cells tend to exhibit greater
motility in white matter than in grey matter. To include this heterogeneity into the model,
Swanson et al. [82] allowed the diffusion coefficient to depend on position x:

∂c

∂t
= ∇ · (D(x)∇c) + ρc, (3.4)

where D(x) = Dw in white matter zones and D(x) = Dg in grey matter ones, with Dw > Dg. An
assumption that has to be pointed out [82] regards the fact that equation (3.4) only represents a
second phase of growth process, where a small mass has already formed before diffusion starts:
otherwise, the model would only simulate a case in which tumour cells spread out in the brain,
but no bulk tumour exists. The same researchers also performed simulations on a realistic brain
geometry and exploited their model to investigate the effect of brain heterogeneity on drug
delivery, resection and GBM invasion [83, 84, 85, 86]. Specifically, concerning chemotherapy,
they proved that it may be ineffective on glioma invasion due to cell motility: invading cells not
targeted by the treatment remain undetectable by MRI and lead to recurrence of cancer [64, 84].
Later, an extension of the proliferation-invasion model was proposed including hypoxia, necrosis
and angiogenesis [87], so as to quantify their role in tumour progression.

To capture the specific behaviour of tumour spheroids of reduced dimensions, Stein et al.
[88] relaxed the assumption made by Swanson and coworkers, proposing an advection-reaction-
diffusion equation only for the invasive fraction of cells, with a source term that models the
appearance of new motile cells coming from the tumour core.

Afterwards, a further relevant step in GBM modeling was made thanks to the work of Jbabdi
et al. [34] who provided a refinement of Swanson’s model by incorporating the effect of brain
anisotropy. Indeed, it is commonly recognized that glioma cells not only migrate faster in white
matter, but also move preferentially along blood vessels and white matter fiber tracts. This
feature is included in the model by considering diffusion guided not by a single coefficient D(x)
but by a tensor D(x), which is reconstructed through the use of Diffusion Tensor Imaging (DTI).
A more formal description of anisotropic proliferation together with a kinetic model was pro-
posed by Painter and Hillen [89], whose results underline the importance of anisotropy in glioma
development.

Other models in the literature that make use of differential equations to describe different
phenomena related to Glioblastoma growth and treatment are the one by Yangjin et al. [90],
which explores the evolution of the tumour microenvironment through reaction-diffusion equa-
tions for cancer cells, microglia cells and several growth factors concentrations; and the one by
Hathout et al. [91] who extended Swanson’s model to include an advection term, in order to
refine the mathematical description of migration. Finally, as far as radiotherapy is concerned,
extensions of Swanson’s model including a death term due to radiation effects have been pro-
posed [92, 93].

The continuum models presented so far are able to capture both qualitatively and quanti-
tatively some peculiar characteristics of Glioblastoma growth: however, none of them accounts
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for a mechanical description of brain tissue and for the influence of a growing tumour on the
surrounding healthy areas from a mechanical viewpoint. Instead, since the skull encompasses a
fixed volume, the presence of a growing mass may be critical: the growth of a neoplasm could
induce an unnatural displacement of the healthy tissue, known as mass effect, which may result
in neurological injury [94].

Continuum Mechanics provides a powerful and suitable theoretical framework to model tu-
mour growth: the employment of kinematics and balance laws is well-established, as proved by
the works of Ambrosi and Mollica [42, 40], Ambrosi and Preziosi [37, 43], Ambrosi et al. [95, 96],
Ben Amar and Goriely [97]. As regards brain tumours and pathologies, Clatz et al. [98] coupled
diffusion with biomechanical deformation, treating brain tissue as a linear elastic material. Lang
et al. [99] developed a model for propagation of damage and oedema in brain tissue using an
iterative approach and Continuum Mechanics. However, more recent works on macroscopic mod-
els for Glioblastoma Multiforme growth has been developed using mixture theory in addition to
classical Continuum Mechanics: the main features of such a theory were summarized in Section
2.2. Here, we review some of the main multiphase models concerning biomechanical modeling of
the brain.

As much as Continuum Mechanics, the use of mixture theory in the field of mathematical
biology is not a novelty: for unspecific tumour growth modeling, it has been used by Ambrosi
and Preziosi [37, 43], Ambrosi et al. [100], Byrne and Preziosi [38], Sciumè et al. [101] and
more recently by Giverso et al. [48] and Mascheroni et al. [102]. Concerning brain mechanics
specifically, Mascheroni et al. [103] developed a multiphase model to describe the growth of
Glioblastoma Multiforme spheroids: in their work, they considered the tumour as a saturated
biphasic mixture, composed by a solid and a fluid phase; the constitutive equation for the
stress, however, resembles the one for an elastic fluid. Ehlers and Wagner [104] proposed a
more elaborated model for brain tumour growth and drug delivery, assuming the presence of
three phases: an hyperelastic and mechanically anisotropic solid skeleton, the blood and the
interstitial fluid, the latter further split into a liquid solvent and a dissolved therapeutic agent.
Other attempts to investigate the role of biomechanical forces in brain tumour growth have been
carried out by Angeli et al. [105, 106] using a biphasic isotropic model of brain tissue; unlike the
previous reviewed models, they also introduce a multiplicative decomposition of the deformation
gradient to distinguish the elastic and inelastic contribution to the overall deformation.

A recently developed approach for Glioblastoma Multiforme modeling employs multiphase
diffuse interface models of Cahn-Hilliard [107] type. From a physical viewpoint, in the diffuse
interface approach, sharp interfaces are replaced by transition layers: this is translated into
mathematics by introducing a fourth-order nonlinear advection-reaction-diffusion equation anal-
ogous to the phase-field model of Cahn and Hilliard. This kind of approach has two relevant
advantages: it avoids the need to impose interface conditions between the tumour and the host
tissue and eliminates the necessity of tracking the interface motion explicitely. A theoretical
framework for diffuse interface tumour models was proposed by Wise and coworkers [108] and
was used for instance to study microstructural patterns in skin cancer [109] and tumour growth
in complex microenvironmental geometries [110]. However, the application of diffuse interface
to Glioblastoma growth is of our major interest: Colombo et al. [1] firstly proposed a GBM
multiphase proliferation model making use of a Cahn-Hilliard-type equation, accounting also for
anisotropy and heterogeneity of brain tissue through the use of DTI and MRI imaging. Agosti
et al. [2, 3] then introduced and simulated therapies in the GBM diffuse interface model. Such
an approach to brain tumour modeling is innovative and has all the benefits of a diffuse interface
description; however, as many of the reviewed models, it treats both the healthy tissue and the
tumour as fluids from a constitutive point of view, which might not be suitable to investigate
mass effect and consequences of cancer-induced deformations on the brain.
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3.1.3 Hybrid and Multi-Scale Models

Cancer onset and progression are inherently multi-scale processes: they consist of phenomena
that take place at all the previously discussed scales. This multi-scale nature and the strong
coupling between scales should be considered as much as possible in mathematical modeling,
always maintaining an appropriate balance between realism and possible unnecessary compli-
cations: hybrid and multi-scale models aim at providing a connection between microscopic and
macroscopic representations. They integrate both discrete and continuous variables that are used
to represent individual cells or concentration fields for microenvironmental factors, respectively.
Excellent reviews on hybrid mathematical models in the field of tumour growth and treatment
are the ones by Rejniak and Anderson [111] and by Chamseddine and Rejniak [112]. Here, we
report the main multi-scale models concerning glioma proliferation.

Frieboes et al. [113] proposed a 3D multi-scale computational model for Glioblastoma growth
based on what they call functional collective cell migration units (FCCMU). Their approach is
based on theoretical principles and numerical algorithms that link the tissue scale behaviour
of the tumour to the underlying molecular biology: the bridging is realized through the use
of experimentally tested functional relationships between the microscopic properties of cancer
cells and tissue scale model parameters. The model is based on mass and momentum conserva-
tion equations nonlinearly coupled to a hybrid lattice-free model of tumor-induced angiogenesis.
Simulations were able to reproduce morphological features of a growing GBM such as hypoxia,
necrosis and neovascular structures around the tumour.

A different kind of hybrid model is the one developed by Khain et al. [114] which is an
extension of an aforementioned microscopic model by the same authors [69]. Starting from a
simple Fisher-Kolmogorov equation with constant diffusion coefficient and logistic growth term,
they analyze the dependence of the propagation velocity of the resulting traveling wave upon a
parameter q that quantifies cell-cell adhesion.

The work by Zhang et al. [115] investigated the impact of clonal heterogeneity on tumour
growth by modeling a simplified glioma progression pathway. They employed a 3D multi-scale
model which incorporates five types of glioma cells having different peculiarities and emerging
sequentially. The simulated heterogeneity seems to influence glioma growth patterns and leads
to asymmetries that resembles clinical observations.

Other interesting models focused on Glioblastoma phenotypic switching are proposed by
Gerlee and Nelander [116, 117], who start from an agent-based stochastic model to derive a
system of partial differential equations. The unknowns of this system are the densities of both
proliferative and motile cells, according to the proliferation-invasion dichotomy. Their model
gives insight into the dependency between microscopic parameters and macroscopic dynamics
of GBM growth: simulations support the fact that tumour expansion (i.e. the velocity of the
resulting traveling wave solution of the PDE system) depends non-trivially on proliferation and
migration switching rates; moreover, they put in evidence that there exists a critical apoptosis
rate above which the tumour cannot grow.

Lastly, we mention the hybrid mathematical model of glioma proliferation by Tanaka et al.
[118]: working in radial symmetry, they employ a compartmental continuous model to describe
the variation of proliferative, migrative and dead glioma cells. Then, they add a diffusion equation
for the nutrients to distinguish between the proliferating rim, the hypoxic region and the necrotic
core of the tumour. Finally, these equations are coupled to a stochastic invasion model for the
cells that are in the migration compartment.
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3.2 Model Derivation
We are now ready to derive the governing equations of our continuum, multiphase model for
Glioblastoma Multiforme growth and proliferation. Although a wide variety of macroscopic
models concerning brain tumour growth has been proposed in the last decades, as discussed
in Section 3.1.2, the vast majority of them still lacks a proper mechanical description of brain
tissue. Instead, since the mass effect due to the presence of a growing tumour inside the brain
may be critical and dangerous for the patient, it is relevant to evaluate deformations, stresses and
unnatural displacement caused by GBM. We then develop a mathematical model which includes
brain hyperelasticity, in order to study the effects of structural changes and nonlinear elastic
deformations of brain tissue. At the same time, to achieve a realistic description of Glioblastoma
proliferation, we employ a sample of patient-specific data to include the anisotropy of the brain:
following the path paved by Colombo et al. [1] and Agosti et al. [2, 3], the goal is to make a step
forward towards the development of a mathematical and computational model able to accurately
represent GBM growth.

3.2.1 Multiphase Model with Sharp Interface
In this section, we derive a macroscopic, Continuum Mechanics-based model for GBM growth
using a multiphase approach and the evolving natural configurations framework, introduced in
Sections 2.2 and 2.3 respectively. Following [38, 37], we consider the brain as a saturated domain
comprising two distinct phases, which represent the cell population (labelled with subscript “s”)
and the interstitial fluid (labelled with subscript “`”). Moreover, we assume that the region
occupied by the tumour is well defined and completely separated from the healthy host tissue,
so that the boundary between the tumour and the surrounding environment can be described
by a moving interface. In particular, we denote by Ωt(t) the subregion occupied by the growing
tumour and by Ωh(t) the subregion occupied by the healthy tissue: they are both treated as
biphasic, including a cellular and a fluid phase. In our description, we assume that the cellu-
lar phase includes healthy, diseased and necrotic cells, while the fluid phase resumes interstitial
brain fluid, blood and nutrients; the distinction between cancer and host tissue is then realized
through the use of a separating interface rather than through the introduction of different phases
for tumorous and healthy cells. Indeed, since our main focus concerns the mass effect and the
mechanical impact of the growing Glioblastoma on its surrounding tissues, this approach seems
more appropriate and allows to fully distinguish the tumour from the rest of the brain tissue,
accounting for the porous nature of the brain at the same time. Moreover, since we want to
evaluate tissue deformation resulting from tumour proliferation, the cell phase is supposed to
behave as an hyperelastic solid, whose constitutive equation will be detailed in the following
sections. The liquid phase is instead considered constitutively as an ideal fluid.

The multiphase approach we employ to describe tumour growth is based on the theory of
mixtures and consists of a set of mass and momentum balance equations. First of all, we
assume that both the phases are intrinsically incompressible and external body forces (such as
the gravitational force) as well as inertial effects are negligible: this hypotheses are reasonable
when dealing with biological problems [37], since the motion of cells and interstitial fluid is very
slow. Under these assumptions, recalling (2.44), (2.45) and (2.46), the general balance laws write

∂φα
∂t

+∇ · (φαvα) = Γα , α = s, ` , (3.5)

∇ · T̃α + m̃α = 0 , α = s, `. (3.6)
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Equation (3.5) represents the mass balance of the α-th phase, while Equation (3.6) corresponds
to the momentum balance of each phase neglecting inertia and body forces. For each phase α, φα
denotes the volumetric fraction, vα is the velocity, T̃α is the partial Cauchy stress tensor, Γα is
the mass growth rate and m̃α represents the rate at which the α-th phase exchanges momentum
with the other phase.

Since we consider the medium as saturated, i.e. the two phases fill all the available space in
the domain, the constraint ∑

α=s,`
φα = φs + φ` = 1 (3.7)

has to hold. Consequently, summing Equation (3.5) over both phases and using (3.7) yields

∇ ·

∑
α=s,`

(φαvα)

 = ∇ · (φsvs + φ`v`) =
∑
α=s,`

Γα = Γs + Γ` = 0 , (3.8)

where in the last passage we have assumed that mass exchanges occur only among the constituents
taken into account (the mixture is said to be closed with respect to mass).

The term m̃α in Equation (3.6) contains all forces acting on the α-th phase due to its inter-
actions with the only other present phase. Using thermodynamics arguments, one can show that
it is given by a dissipative and a non-dissipative part [48, 119]:

m̃α = m̃α
(d) + p∇φα, (3.9)

where p is the pressure of the interstitial fluid. The dissipative part can be expressed as

m̃α
(d) = mαβ , (3.10)

where the term mαβ represents the force acting on the α-th phase due to the other phase, denoted
by subscript β. By invoking the action-reaction principle, in our case it holds that

m̃s
(d) = ms` = −m`s = −m̃`

(d). (3.11)

3.2.2 Mass and Momentum Balance Laws
Firstly, we consider the region occupied by the tumour Ωt(t) and write equations (3.5) and (3.6)
for the two phases. We assume that, in this region, cells proliferate since the tumour is growing:
from the closed mixture assumption, it follows that the mass exchange in the cellular phase
happens at the expense of the liquid phase. The mass balances of the cellular and fluid phase
then read:

∂φs

∂t
+∇ · (φsvs) = Γs , (3.12)

∂φ`
∂t

+∇ · (φ`v`) = Γ` = −Γs. (3.13)

As regards the momentum balance, we recall that, in a saturated mixture, the partial Cauchy
stress associated with the α-th phase of the mixture can be written as

T̃α = −φα pI + Tα, (3.14)

where Tα is referred to as effective (or extra-) stress, and the purely hydrostatic contribution
−φα pI indicates the amount of pressure sustained by the α-th phase. We underline that, in the
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present theory, p is a Lagrange multiplier rather than a constitutively determined quantity. Using
the definitions of T̃α and m̃α given in (3.14) and in (3.9), (3.10) respectively, Equation (3.6) can
be specialized for each phase as:

− φs∇p+∇ · Ts + ms` = 0, (3.15)

− φ`∇p+∇ · T` + m`s = 0. (3.16)

Coherently with the hypotheses usually made to deduce Darcy’s Law, we require that the
extra-stress of the fluid phase T` is negligible with respect to the pressure gradient and to the
interaction forces between fluid and solid phase. As a consequence, we take Darcy’s Law as a
momentum balance for the fluid phase:

v` = vs −
K(φ`)
µφ`

∇p, (3.17)

where v` is the velocity of the fluid, vs is the velocity of the cellular phase, µ is the dynamic
viscosity of the fluid component and K is the permeability tensor. The dependence upon φ` can
be made explicit, for instance, by taking K(φ`) = φ2

l

1−φl
K0, with K0 independent of φ`. However,

if the fluid volumetric fraction does not significantly vary - as it is in many situations - K can be
assumed independent of φ`.

The momentum balance for the solid phase can then be obtained by summing (3.15) and
(3.16) recalling the saturation condition (3.7) and the action-reaction principle (3.11):

−∇p+∇ · Ts = 0. (3.18)

To model the presence of white and gray matter fibers in the brain tissue and account for the
consequent anisotropy in the fluid motion, we can take the permeability tensor as

K(φ`) = K(φ`)A, (3.19)

where A denotes the tensor of preferential directions derived through DTI and MRI imaging that
will be described in Section 3.3.

In the domain occupied by the healthy tissue Ωh(t), the mass and momentum balance equa-
tions are similar and can be derived through an analogous reasoning: however, we assume that
in the healthy region the proliferation of cells is compensated by natural cell death, so that the
rate of growth Γs is equal to 0. The closed mixture assumption (3.8) immediately implies that
also the source term Γ` must be null. Hence, the mass balances in the healthy region can be
written as

∂φs

∂t
+∇ · (φsvs) = 0, (3.20)

∂φ`
∂t

+∇ · (φ`v`) = Γ` = 0. (3.21)

The momentum balances are exactly the same as the ones in the tumour region (3.18) and (3.17).

3.2.3 Stress Tensors and Constitutive Equations
To close the system of mass and momentum balance equations derived in the previous section, it is
necessary to determine an appropriate evolution law for the Cauchy stress tensor Ts associated
with the cellular tumour population, both in the diseased and in the healthy region. This
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is a relevant part of this mathematical model, since our primary aim is to study how GBM
growth influences mechanically the surrounding tissues and to quantify the entity of stress and
deformation as a consequence of tumour proliferation. The definition of a realistic constitutive
equation for brain tissue is a non trivial problem, that we summarized in Section 2.4.2 and
reviewed in Section 3.1.2: in the following, we derive stress-deformations relationships employing
the evolving natural configurations framework [42], whose main features have been described in
Section 2.3; moreover, we treat the brain as a nonlinear elastic material: this is an innovative
aspect in Glioblastoma mathematical modeling, as we pointed out in the literature review, since
only very few works introduced an appropriate mechanical brain behaviour.

Tumour Cells Stress Tensor

As we mentioned previously, in the tumour region we introduce a growth term in order to study
GBM proliferation. Since we are mostly interested in studying the mechanical effect of the
growing tumorous mass inside the brain, we recall that a tissue undergoing growth experiences
inelastic deformations and residual stresses [46, 47]. To account for this fact, a possible way is
to employ a multiplicative decomposition of the deformation gradient: if we denote by Fs the
deformation gradient tensor of the cellular population, we have

Fs = Fe Fg. (3.22)

In Equation (3.22), Fe is the purely elastic contribution to the overall deformation gradient,
whereas Fg represents the inelastic distortions related to growth. Recalling the description pro-
vided by Ambrosi and Mollica [42] and summarized in Section 2.3, the physical meaning of the
multiplicative decomposition can be related to the assumption that a third configuration, called
natural configuration, is inserted between the reference and the actual ones traditionally used in
Continuum Mechanics. This natural state of the material is stress-free and corresponds to the
configuration of a body undergoing inelastic deformation processes: the transition between the
reference configuration and the natural one is then described by the tensor Fg, while the subse-
quent elastic accomodation is included in Fe. We also recall that throughout the path between
the natural configuration and the current configuration mass is assumed to be preserved, so that
growth contribution is entirely carried by Fg.

A consequence of Equation (3.22) is that the volumetric part of the deformation gradient,
Js = detFs, can be written as

Js = JeJg, (3.23)

with Je := detFe and Jg := detFg. Since the overall deformation gradient Fs is assumed to be
non singular, from (3.23) it follows that each tensor introduced in (3.22) is non singular as well.

Furthermore, we suppose that the tumour cell population behaves as an hyperelastic material
exhibiting isotropic behaviour from its natural state, despite the anisotropic alignment of fibers:
this assumption is justified by the previously mentioned results by Budday et al. [51], whose
experimental assays revealed that anisotropy is not involved in the mechanical response of the
brain. The choice of modeling only the elastic behaviour of the material is a simplification since,
as we discussed previously, the brain response would be better approximated by a viscoelastic
equation: however, in the case of tumour growth which is a very slow process, the rate depen-
dent response can be neglected without introducing significant errors [42]. Then, proceeding as
depicted in Section 2.4.2 and recalling Definition 6, we assume that the strain energy density
function Wsn, expressed per unit volume of the natural state, is of Mooney-Rivlin type [61, 62].
Making use of Theorems 4 and 5 as a consequence of frame indifference and isotropy, one can
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write

Ŵsn(Ce) = 1
2µ1t (ICe − 3) + 1

2µ2t (IICe − 3) , (3.24)

where µ1t and µ2t are the material parameters of the tumour while

ICe = tr(Ce)

and
IICe = 1

2

[
(tr Ce)2 − tr

(
C2

e
)]

are respectively the first and second principal invariant of the right Cauchy-Green elastic defor-
mation tensor Ce = FTe Fe. Recalling (2.49), we know that, given the elastic energy σs(Fe) of an
isotropic hyperelastic material, the Cauchy stress tensor Ts of the cellular phase can be expressed
constitutively as

Ts = ρs
∂σs

∂Fe
FTe . (3.25)

In order to satisfy the material indifference principle, the elastic energy must depend only on
the right Cauchy-Green tensor Ce = FTe Fe: we will denote it by σ̂s(Ce). The constitutive relation
(3.25) is then modified as follows:

Ts = 2ρsFe
∂σ̂s

∂Ce
FTe . (3.26)

Finally, since - as usual in the multiplicative decomposition framework - mass is supposed to be
preserved during the pure elastic deformation defined by Fe, we can relate the energy function
to the strain energy density function in the natural configuration through the relation:

Ŵsn = σ̂sρsn = σ̂sρsJe = σ̂sρsφ
−1
s φsn = σ̂sρ̂sφsn, (3.27)

where ρ̂s denotes the true mass density of the solid phase, Je is the determinant of the elastic
part of the deformation gradient, while ρs = ρ̂sφs is the apparent mass density and φsn is the
volumetric fraction of the cell phase in the natural state. In (3.27), we have imposed mass
conservation between the natural and the current configuration:

ρsn = Jeρs. (3.28)

Then, we enforced the assumption that the solid phase is incompressible, i.e. ρ̂s is a constant:
this allows to rewrite (3.28) in a stronger form as

φsn = Jeφs. (3.29)

As a consequence, using (3.26), (3.27) and (3.29), we can derive the expression for the Cauchy
stress of the solid phase:

Ts = 2ρsFe
∂σ̂s

∂Ce
FTe

= 2 ρ̂sφs

ρ̂sφsn
Fe
∂Ŵsn

∂Ce
FTe

= 2 φs

φsn
Fe
∂Ŵsn

∂Ce
FTe

= 2J−1
e Fe

∂Ŵsn

∂Ce
FTe in Ωt(t).
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The constitutive expression of the Cauchy stress tensor Ts must be accompanied by equations
determining Fs and Fg. However, the tensor Fs, which is entirely determined by the motion of
the cell phase, is not an additional unknown for the model, whereas Fg has to be determined by
solving appropriate evolution equations. The evolution of Fg can be obtained self-consistently
by working out Equation (3.12) [48, 102, 120]. First of all, we multiply Equation (3.12) by
Js, i.e. the determinant of the overall deformation gradient Fs, and rewrite it on the reference
configuration as

˙Jsφs = JsΓs. (3.30)

Secondly, recall that we denote by ρ̂α the true mass densities of the phases and by ρα = ρ̂αφα the
apparent mass densities; then, ρsr = Jsρs is the mass density of the solid phase in the reference
configuration, while ρsn = Jeρs is the mass density of the solid phase in the natural configuration.
Since we are considering the cell phase as incompressible, we have

φsr = Jsφs = JeJgφs = Jgφsn, (3.31)

where φsr stands for the volumetric fraction of the solid phase in the reference configuration, and
we have used (3.23) and (3.29). Then, substituting into the Lagrangian mass balance equation
of the solid phase (3.30) and recalling (3.31) we obtain

˙Jgφsn = JsΓs, (3.32)

φ̇snJg + J̇gφsn = JsΓs. (3.33)

Since from standard calculus it holds that J̇g = Jg tr(Lg), where Lg is the strain rate tensor (or
velocity gradient) associated to Fg, namely,

Lg = ḞgF−1
g , (3.34)

introducing this result into (3.33) one obtains

φ̇snJg + Jgφsn tr(Lg) = JsΓs. (3.35)

We now make the assumption that the rate of mass change of the solid phase is entirely com-
pensated by the volume change due to growth [42, 48, 102, 120] : this requirement leads to the
condition

φs tr(Lg) = Γs . (3.36)

Multiplying both sides of (3.36) by Js yields

Jsφs tr(Lg) = JsΓs (3.37)

which, if we recall (3.31), is equivalent to

Jgφsn tr(Lg) = JsΓs. (3.38)

From (3.38) and (3.35) it follows immediately that φsn is constant in time, and it can be assumed
to be known from the outset.

In the following, we will consider an isotropic growth of the form

Fg = gI (3.39)
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with I being the identity tensor and g a scalar field. Therefore, (3.39) leads to

tr(Lg) = 3ġg−1.

Consequently, (3.36) yields
ġ

g
= 1

3
Γs

φs
, in Ωt(t). (3.40)

Equation (3.40) is an ordinary differential equation that, equipped with an initial condition,
determines g univocally, provided that Γs is given constitutively. Hence, it completely determines
the evolution of the growth tensor Fg.

Healthy Cells Stress Tensor

As stated above, in the present work we will assume that in the host healthy tissue, i.e. in
the region Ωh(t), the net source term Γs is null, since the death of healthy cells is compensated
by proliferation. Therefore, in this case the multiplicative decomposition is not needed and the
Cauchy stress tensor for the cell phase can be derived using a plain hyperelastic constitutive
equation.

We still consider that the host cell population behaves as an elastic material exhibiting an
isotropic behaviour, despite the anisotropic alignment of fibers which is not relevant from the
mechanical point of view. As done for the tumour cell population, we will assume that the strain
energy density functionWs in the healthy region, expressed per unit volume, is of Mooney-Rivlin
type:

Ŵs(Ce) = 1
2µ1h (ICe − 3) + 1

2µ2h (IICe − 3) , (3.41)

where µ1h, µ2h are the material parameters of the host tissue, Fe is the elastic deformation
gradient tensor of the healthy region, while Ce = FTe Fe is the right Cauchy-Green deformation
tensor associated to it. Hence, the Cauchy stress tensor of the solid phase in the healthy domain
is given by

Ts = 2
Je

Fe
∂Ŵs

∂Ce
FTe in Ωh(t). (3.42)

We remark that, in principle, the strain energy density function of the healthy tissue might be
different from the one describing the elastic behaviour of the tumour tissue.

3.2.4 Nutrients
The rate of tumour growth Γs is influenced by many different factors, such as the stress and the
availability of nutrients [42, 40, 96, 102]. In particular, the amount of nutrients that diffuse inside
the tissue and are transported by the liquid moving in the interstitial space strongly affects the
cells capability to duplicate: in order to insert this kind of dependency in the growth term, it is
necessary to introduce in our model an equation describing the evolution of these chemicals in
the domain.

We assume that nutrients are transported by the fluid phase and can diffuse into it; at the
same time, they are taken by the growing tumour and uniformly supplied by the vasculature. We
introduce the hypotesis that the nutrients uptake by the healthy tissue is negligible compared to
the one by the tumour tissue: biologically, this is equivalent to say that the nutrients absorbed
by the host tissue are immediately replaced by the vasculature. Hence, if we denote by cn the
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concentration of available nutrients normalized with respect to the physiological concentration,
so that cn ∈ [0,1], the mass balance of nutrients in both regions Ωt(t) and Ωh(t) reads

∂

∂t
(φ`cn) +∇ · (φ`cnv`) = ∇ · (φ`D∇cn) + Γ`cn +Gn , (3.43)

where φ` is the volumetric fraction of the fluid phase, v` is the velocity of the same phase, D is
the diffusion tensor obtained through DTI imaging and Gn is the source term which accounts for
absorption of nutrients by the tumour and increasing in concentration due to incoming nutrients.
The use of a tensor in the diffusion term allows to account for the anisotropy of the brain tissue
[34], that induces fluids to diffuse preferentially along certain directions. Actually, the tensor
D describes how water diffuses along specific directions: however, if we consider that the main
nutrient for cells is oxygen which is carried by water molecules, we can take the same tensor as
a descriptor of the diffusion values of nutrients.

Using standard calculus techniques, one can rewrite (3.43) as

cn
∂φ`
∂t

+ φ`
∂cn
∂t

+ φ`v` · ∇cn + cn∇ · (φ`v`) = ∇ · (φ`D∇cn) + Γ`cn +Gn. (3.44)

If we recall the mass balance equation of the fluid phase (3.13), (3.44) can be rephrased as

∂cn
∂t

+ v` · ∇cn = 1
φ`
∇ · (φ`D∇cn) + Gn

φ`
. (3.45)

In particular, in a first formulation of our model, we will consider the following form for the
source term:

Gn = [−ζφsφ`cn + Sn(1− cn)φ`]HΩt(t) , (3.46)

where HΩt(t) is the indicator function of the tumour domain Ωt(t). This expression describes
the fact that nutrients are consumed by the tumour with a constant rate ζ: the uptake depends
on the volumetric fractions of cells and liquid in the tumour region, as well as on the available
concentration of nutrients. Concurrently, nutrients are supplied by the vasculature at a rate Sn as
far as their concentration is below the physiological value, i.e. cn < 1. The delivery of nutrients is
also weighted with a factor φ` to mathematically assert that the more fluid phase is available, the
greater supply of nutrients can be provided. The whole expression is multiplied by the tumour
indicator function: in the healthy region we assume that production and absorption of nutrients
are reciprocally balanced. Accounting for the functional formulation of Gn assumed in (3.46),
the final equation describing the evolution of normalized nutrients concentration becomes:

∂cn
∂t

+ v` · ∇cn = 1
φ`
∇ · (φ`D∇cn) + [−ζφscn + Sn(1− cn)]HΩt(t). (3.47)

3.2.5 Constitutive Equation for the Tumour Growth Rate
Once we have introduced an equation describing the evolution of available nutrients, we can
express the cell net proliferation rate Γs. In a first approximation, one can assume the following
constitutive equation:

Γs = νφs(1− φs) (cn − c0)+ , (3.48)

where (·)+ denotes the positive part and ν is a positive coefficient. We see that the proliferation
rate depends linearly on the available concentration of nutrients cn, provided that it is greater
than a threshold c0: this can be thought of as the hypoxia threshold, below which tumour cells
do not receive enough nourishment and stop duplicating. Consequently, the growth rate becomes
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zero and growth arrests. Instead, as long as cn > c0, the cell phase is allowed to grow and the
proliferation is proportional to the difference between the actual nutrients concentration and the
hypoxia threshold. Moreover, in (3.48), we have that growth depends on the fraction of cells that
is already present - which is reasonable since cell population grows by duplication; finally, we
have a factor (1− φs), whose presence is explained by the necessity to decrease the proliferation
rate as the cellular phase approaches saturation and fills all the available space: this accounts
for the phenomenon of contact inhibition. A possible alternative formulation for Γs, if we want
to reproduce growth interruption before complete saturation, consists in the introduction of a
volumetric fraction threshold φmax:

Γs = νφs(φmax − φs) (cn − c0)+ . (3.49)

More complex relations including explicitly the role of stresses may be considered: we limit to
mention the one proposed by Mascheroni et al. [102, 103], that adapted to our framework reads

Γs = νφs(φmax − φs) (cn − c0)+

(
1− δ1

(Σ)+

(Σ)+δ2

)
, (3.50)

where δ1 < 1, δ2 are positive constants that account for the role of mechanical stress on cell
proliferation, and Σ is an appropriate measure of stress. For instance, to reproduce growth
inhibition due to compression, one can take as stress measure the isotropic part of the Cauchy
stress, namely [102]:

Σ = −1
3 tr(Ts). (3.51)

3.2.6 The Complete Eulerian Model
In the following, we collect together the equations governing the evolution of the system developed
in the previous sections. To gather the equations for both the tumour and the healthy domain
in a unified Eulerian formulation of the model, we introduce a level-set function ϕ such that
ϕ(t) > 0 in Ωt(t) and ϕ(t) < 0 in Ωh(t). The introduction of such a function allows to employ
an Heaviside function H(ϕ(t)) to distinguish between the tumour and the healthy region.

The set of equations in the domain Ω = Ωt(t)∪Ωh(t), composed by the union of the tumour
region and the healthy region, is then:

∂tφs +∇ · (φsvs) = ΓsH(ϕ(t)) , (3.52a)

∂tφ` +∇ · (φ`v`) = Γ`H(ϕ(t)) = −ΓsH(ϕ(t)) , (3.52b)

φ` + φs = 1 , (3.52c)

−∇p+∇ · Ts = 0 , (3.52d)

v` = vs −
K(φ`)
µφ`

∇p , (3.52e)

ḞsF−1
s = ∇vs , (3.52f)

ġ

g
= 1

3
Γs

φs
H(ϕ(t)) , (3.52g)

∂tcn + v` · ∇cn = 1
φ`
∇ · (φ`D∇cn) + [−ζφscn + Sn(1− cn)]H(ϕ(t)), (3.52h)

∂tϕ+ vs · ∇ϕ = 0, (3.52i)
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where
Fe = FsF−1

g , (3.53a)
Fg = gI , (3.53b)

Ŵsn(Ce) =
[

1
2µ1t (ICe − 3) + 1

2µ2t (IICe − 3)
]
H(ϕ(t))+ (3.53c)

+
[

1
2µ1h (ICe − 3) + 1

2µ2h (IICe − 3)
]

[1−H(ϕ(t))] , (3.53d)

Ts = 2J−1
e Fe

∂Ŵsn

∂Ce
FTe , (3.53e)

K(φ`) = K(φ`)A , K(φ`) = φ2
`

1− φ`
K0 (3.53f)

Γs = νφs(φmax − φs) (cn − c0)+ . (3.53g)

(3.53h)
We note that the system is closed, since it features 21 scalar unknowns (the volumetric

fractions φs and φ`, the nine components of the deformation gradient Fs, the three components
of the velocities vs and v`, the scalar fields g, p and cn, the function ϕ) and (3.52)-(3.53)
constitute a set of 21 scalar equations. Once the system has been solved, the displacement field
can be retrieved through the relation:

Fs = I + Grad u, (3.54)
where Grad u is defined as in (2.12).

The material interface between the tumour and the healthy tissue, ∂Ωt(t), moves with the
tumour cells, with velocity vs|∂Ωt . In particular, we have to guarantee the continuity of the
displacement, stress and flux at the interface, so we have the following interface conditions to be
satisfied on the two sides of the boundary:

vs|Ωt · n = vs|Ωh · n , (3.55a)

[φ` (v` − vs)] |Ωt · n = [φ` (v` − vs)] |Ωh · n , (3.55b)

p|Ωt = p|Ωh , (3.55c)

Ts|Ωtn = Ts|Ωhn , (3.55d)

cn|Ωt = cn|Ωh , (3.55e)

[φ`cn(v` − vs)− φ`D∇cn] |Ωt · n = [φ`cn(v` − vs)− φ`D∇cn] |Ωh · n, (3.55f)
where n denotes the unit normal vector to ∂Ωt(t) pointing outwards. We emphasize that the
continuity of the effective stress Ts (3.55d) stems from the continuity across the interface of the
total stress T combined with the assumption (3.55c) that requests the continuity of the pressure
across the surface [102]. In fact, the saturation condition in our case implies that T = −pI + Ts,
which in turn implies the interface condition

[−pI + Ts] |Ωtn = [−pI + Ts] |Ωhn . (3.56)
Hence, accounting for (3.55c), we obtain the continuity of the effective stress across the separating
surface.
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3.2.7 Lagrangian Formulation of the Model
The purpose of this section is to rewrite the set of equations (3.52) using a Lagrangian description
of motion, where the quantities of interest are considered in terms of material coordinates. In the
following, we will denote by Ω∗

t the reference configuration of the tumour, i.e. the configuration
at t = 0; more generally, we will use a superscript ∗ to denote any material element. With this
notation, we recall from Theorem 1 that if we consider dV and dΣ to be, respectively, a volume
element and a surface element in the current configuration, we have

dV = Js dV
∗ , (3.57a)

dΣ = Js F−T
s dΣ∗. (3.57b)

Moreover, from now on we will use the symbols ∇ and ∇· to denote the spatial gradient and
spatial divergence, respectively, while Grad and Div will refer to the material gradient and di-
vergence.

Integrating equation (3.52a) over the tumour domain Ωt(t), we have:∫
Ωt(t)

[ ∂tφs +∇ · (φsvs) ] dV =
∫

Ωt(t)

Γs dV. (3.58)

Using Reynolds’ transport theorem 2 and recalling that the material interface ∂Ωt moves with
the tumour cells, we obtain

d

dt

∫
Ωt(t)

φs dV =
∫

Ωt(t)

Γs dV. (3.59)

By (3.57), we write the global balance equation in the reference configuration as

d

dt

∫
Ωt∗

φs Js dV
∗ =

∫
Ωt∗

Γs Js dV
∗, (3.60)

which locally becomes
˙Jsφs = JsΓs. (3.61)

As regards equation (3.52b), the same integration over the tumour domain leads to∫
Ωt(t)

[ ∂tφ` +∇ · (φ`v`) ] dV = −
∫

Ωt(t)

Γs dV. (3.62)

However, since the interface does not move with the fluid, in this case we have to make use of
the generalized Reynolds’ transport theorem 3, which gives

d

dt

∫
Ωt(t)

φ` dV −
∫
∂Ωt(t)

φ`(vs − v`) · dΣ = −
∫

Ωt(t)

Γs dV. (3.63)

Hence, (3.57) yields

d

dt

∫
Ω∗t
φ`Js dV

∗ −
∫
∂Ω∗t

φ`(vs − v`) · JsF−T
s dΣ∗ = −

∫
Ω∗t

ΓsJs dV
∗. (3.64)
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Using the divergence theorem, we obtain

d

dt

∫
Ω∗t
φ`Js dV

∗ −
∫

Ω∗t
Div

[
Jsφ`F−1

s (vs − v`)
]
dV ∗ = −

∫
Ω∗t

ΓsJs dV
∗. (3.65)

The final local balance then reads
˙Jsφ` + Div

[
Jsφ`F−1

s (v` − vs)
]

= −ΓsJs. (3.66)

As regards the momentum balance of the solid phase, if we set T = −pI+Ts to be the Cauchy
stress tensor of the mixture and integrate (3.52d) over the tumour domain, we obtain∫

Ωt(t)

∇ · T dV = 0. (3.67)

Using the divergence theorem and (3.57) to write the integral on the reference configuration, we
have ∫

∂Ω∗t
JsTF−T

s dΣ∗ = 0. (3.68)

Recalling the definition of the first Piola-Kirchhoff stress tensor P = JsTF−T
s and using again

the divergence theorem, we obtain ∫
Ω∗t

DivP dV ∗ = 0, (3.69)

which locally becomes
DivP = 0. (3.70)

Finally, we rewrite (3.52e) using the Lagrangian formulation as

v` = vs −
K
µφ`

(F−T
s Grad p). (3.71)

In fact, if we write Darcy’s Law in integral form∫
S

φ`(v` − vs) · dΣ = −
∫
S

K
µ
∇p · dΣ (3.72)

and move the integrals to the reference configuration, we get∫
S∗

[
K
µ
F−T

s Grad p+ φ`(v` − vs)
]
· JsF−T

s dΣ∗ = 0. (3.73)

If all the involved quantities are supposed to be regular, we have the local form

JsF−1
s

K
µ
F−T

s Grad p+ φ`JsF−1
s (v` − vs) = 0, (3.74)

which is equivalent to
F−1

s (v` − vs) = − 1
µφ`

F−1
s KF−T

s Grad p. (3.75)
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Multiplying both sides by Fs we obtain

v` − vs = − K
µφ`

F−T
s Grad p, (3.76)

which is precisely (3.71).

Concerning the nutrients, we start from the balance equation

∂

∂t
(φ`cn) +∇ · (φ`cnv`) = ∇ · (φ`D∇cn) + Γ`cn +Gn (3.77)

and we integrate it over the tumour domain recalling the closed mixture assumption, obtaining:

∫
Ωt(t)

[ ∂t(φ`cn) +∇ · (φ`cnv`) ] dV =
∫

Ωt(t)

∇ · (φ`D∇cn) dV −
∫

Ωt(t)

(Γscn −Gn) dV. (3.78)

Using Reynolds transport theorem and Gauss theorem, we have

d

dt

∫
Ωt(t)

φ`cn dV −
∫
∂Ωt(t)

φ`cn(vs − v`) · dΣ =
∫
∂Ωt(t)

φ`D∇cn · dΣ +

−
∫

Ωt(t)

(Γscn −Gn) dV. (3.79)

If we rewrite the integrals on the reference configuration, the balance becomes:

d

dt

∫
Ω∗t
φ`cnJs dV

∗ −
∫
∂Ω∗t

φ`[cn(vs − v`) + DF−T
s Grad cn] · JsF−T

s dΣ∗ =

−
∫

Ω∗t
(ΓscnJs −GnJs) dV ∗, (3.80)

so that its local version is

˙Jsφ`cn −Div[Jsφ`cnF−1
s (vs − v`)]−Div[Jsφ`F−1

s DF−T
s Grad cn] = −ΓscnJs +GnJs. (3.81)

Recalling the mass balance of the fluid phase (3.66), (3.81) can be rephrased as

Jsφ`ċn + Jsφ`F−1
s (v` − vs) ·Grad cn −Div[Jsφ`F−1

s DF−T
s Grad cn] = GnJs, (3.82)

which finally becomes

ċn + F−1
s (v` − vs) ·Grad cn −

1
Jsφ`

Div[Jsφ`F−1
s DF−T

s Grad cn] = Gn
φ`
. (3.83)

To close the mathematical problem, we need to prescribe a constitutive equation for the
elastic component of the first Piola-Kirchhoff stress tensor Ps. Recalling its definition and doing
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some calculation, we obtain:

Ps = JsTsF−T
s (3.84)

= 2JsJ
−1
e

(
Fe
∂Ŵsn

∂Ce
FTe

)
F−T

s (3.85)

= 2JgJeJ
−1
e Fe

∂Ŵsn

∂Ce
FTe (FeFg)−T (3.86)

= 2JgFe
∂Ŵsn

∂Ce

(
(FeFg)−1Fe

)T (3.87)

= 2JgFe
∂Ŵsn

∂Ce
F−T

g (3.88)

= 2JgFsF−1
g
∂Ŵsn

∂Ce
F−T

g , (3.89)

where in the last passage we highlighted the meaning of the first Piola tensor and the formal
analogy with (3.26).

3.2.8 The Complete Lagrangian Model

To sum up, the set of equations in Lagrangian form in the tumour reference domain Ω∗
t is:

˙Jsφs = JsΓs , (3.90a)

˙Jsφ` + Div
[
Jsφ`F−1

s (v` − vs)
]

= −JsΓs , (3.90b)

φs + φ` = 1 , (3.90c)

DivP = 0 , (3.90d)

v` = vs −
K(φ`)
µφ`

(F−T
s Grad p) , (3.90e)

ġ = g

3
Γs

φs
, (3.90f)

ċn + F−1
s (v` − vs) ·Grad cn −

1
Jsφ`

Div[Jsφ`F−1
s DF−T

s Grad cn] = Gn
φ`

, (3.90g)
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where

Fe = FsF−1
g , (3.91a)

Fg = gI , Jg = detFg , (3.91b)

Ŵsn(Ce) = 1
2µ1t (ICe − 3) + 1

2µ2t (IICe − 3) , (3.91c)

P = −pI + Ps, Ps = 2JgFe
∂Ŵsn

∂Ce
F−T

g (3.91d)

K(φ`) = K(φ`)A , K(φ`) = φ2
`

1− φ`
K0 (3.91e)

Γs = νφs(φmax − φs) (cn − c0)+ , (3.91f)

Gn = −ζφ`φscn + Snφ`(1− cn) . (3.91g)

A similar reasoning can be employed to derive the Lagrangian equations in the healthy tissue
reference domain Ω∗

h, recalling that in this region we do not consider proliferation and we assume
that production and consumption of nutrients are balanced. Eventually, we are lead to the
following set of equations in the healthy domain:

˙Jsφs = 0 , (3.92a)

˙Jsφ` + Div
[
Jsφ`F−1

s (v` − vs)
]

= 0 , (3.92b)

φs + φ` = 1 , (3.92c)

DivP = 0 , (3.92d)

v` = vs −
K(φ`)
µφ`

(F−T
s Grad p) , (3.92e)

ġ = 0 , (3.92f)

ċn + F−1
s (v` − vs) ·Grad cn −

1
Jsφ`

Div[Jsφ`F−1
s DF−T

s Grad cn] = 0. (3.92g)

The set of constitutive assumptions (3.91) still holds, provided that in the healthy region we
assume Fg = I, since there is no growth there, and possibly change the material parameters
by considering µ1h and µ2h. Then, the effective unknowns of the problem are the volumetric
fractions φs and φ`, the scalar fields g, cn and p, the displacement field of the solid phase us and
the fluid velocity v`.

For the sake of a more compact notation, in the following we set

w∗
`s := F−1

s (v` − vs), (3.93)

K∗ := JsF−1
s KF−T

s , (3.94)

D∗ := JsF−1
s DF−T

s . (3.95)

Then, denoting by HΩ∗t the indicator function of the tumour reference domain, the complete

52



3.2 – Model Derivation

Lagrangian model in the domain Ω∗ = Ω∗
t ∪ Ω∗

h becomes:
˙Jsφs = JsΓsHΩ∗t , (3.96a)

˙Jsφ` + Div [Jsφ`w∗
`s] = −JsΓsHΩ∗t , (3.96b)

φs + φ` = 1 , (3.96c)

DivP = 0 , (3.96d)

Jsφ`w∗
`s = − 1

µ
K∗ Grad p , (3.96e)

ġ = g

3
Γs

φs
HΩ∗t , (3.96f)

Jsφ`ċn + Jsφ`w∗
`s ·Grad cn −Div[φ`D∗ Grad cn] = JsGn , (3.96g)

Ps = 2JgFsF−1
g
∂Ŵsn

∂Ce
F−T

g , (3.96h)

Γs = νφs(φmax − φs) (cn − c0)+ , (3.96i)

Gn = [−ζφ`φscn + Snφ`(1− cn)]HΩ∗t . (3.96j)

As for the Eulerian case, we need to provide appropriate conditions at the interface between
the tumour and the host tissue. We recall that for a general balance equation in Lagrangian
form

ψ̇J = bJ −Div Φ∗, (3.97)
where ψ is the quantity of interest, J is the determinant of the deformation gradient tensor and
Φ∗ is the Piola transform of the vector field Φ:

Φ∗ = JF−1Φ,

the boundary conditions are written as

JψJ vΣ∗ ·N−Φ∗ ·NK = 0, (3.98)

where J·K denotes the jump across the interface Σ∗, N is the unit normal vector directed outwards
and

vΣ∗ ·N = (vΣ − v) · F−TN.

Applying this general formula to (3.90) and considering N to be the unit normal field pointing
outward the tumour reference domain, we obtain the following set of boundary conditions:

Jvs ·
F−T

s N
|F−T

s N|
K|∂Ω = 0 , (3.99a)

Jφ`JsF−1
s (vs − v`) ·NK|∂Ω = 0 , (3.99b)

J(−JspF−T
s + Ps)NK|∂Ω = 0 , (3.99c)

JpK|∂Ω = 0 , (3.99d)
JcnK|∂Ω = 0 , (3.99e)
JJsφ`cnF−1

s (vs − v`) ·N + Jsφ`F−1
s DF−T

s Grad cn ·NK|∂Ω = 0. (3.99f)
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Given that J−JsF−T
s NK|∂Ω = 0, it is possible to rephrase the previous set of interface conditions

as

JJsF−1
s vs ·NK|∂Ω = 0 , (3.100a)

JK∗ Grad p ·NK|∂Ω = 0 , (3.100b)
JPsNK|∂Ω = 0 , (3.100c)
JpK|∂Ω = 0 , (3.100d)
JcnK|∂Ω = 0 , (3.100e)
JJsφ`cnF−1

s (vs − v`) ·N + Jsφ`F−1
s DF−T

s Grad cn ·NK|∂Ω = 0. (3.100f)

3.3 Parameters Estimation
The last passage to complete the mathematical model and focus on its numerical implementa-
tion consists in assessing the values of the parameters that appear in the system. This is both a
challenging and delicate task: since our goal is to simulate tumour progression and its mechan-
ical impact, the choice of the parameters is crucial to have a realistic and reliable outcome. At
the same time, when working in the field of mathematical biology, accurate estimations of the
parameters are often difficult to obtain. In this section, we review the literature so as to assign
a value, or at least a range of values, to the parameters introduced in our model.

First of all, we deal with the material parameters µ1t and µ2t that appear in the Mooney-
Rivlin energy density. Mihai et al. [60] proposed various constitutive elastic models specific
for brain tissue: among them, they also consider a Mooney-Rivlin-type energy, for which they
propose as values for the material parameters µ1t = −3.5899 kPa and µ2t = 5.5218 kPa. Since
we will be working with units of the order of millimeters, we convert them into MPa, resulting
in µ1t = −3.5899 · 10−3 MPa and µ2t = 5.5218 · 10−3 MPa.

As regards the parameters involved in the growth rate Γs proposed in Equations (3.48) and
(3.49), we estimate them as done in other recent works on Glioblastoma [1, 2]. In particular,
the cell proliferation constant ν is taken as the inverse of typical doubling times for in vitro
glioma cells, that vary from 24 to 48 hours: then, a range 0.5 − 1 day−1 can be considered
appropriate for ν [113]. Since proliferation depends significantly on nutrients availability, also
smaller values seem however admissible [1]: for this reason, in the following we will consider the
minimum value inside the mentioned interval, i.e. ν = 0.5 day−1. The hypoxia threshold c0 is
estimated in the literature as ranging from 0.15 to 0.5 [121, 113, 118]: we will mainly consider
the former in simulations, as done by Gerlee and Anderson [121]. Moreover, we need to estimate
the nutrients consumption rate ζ and the nutrients supply rate Sn appearing in (3.46): as far
as the former is concerned, following the approach by Colombo et al. [1], it can be estimated
indirectly through biological measurements of the oxygen diffusion coefficient in the human brain
Dn and the distance covered by an oxygen molecule before it is uptake by a cancer cell ln. The
mean value for Dn reported in the literature is Dn = 10−5 cm2/day = 86.4 mm2/day [1, 113],
while ln is estimated to be about ln = 100µm = 10−1 mm [113]. Hence, we can take a value of
ζ = Dn/l

2
n = 8640 1/day. The parameter Sn is instead quite difficult to estimate: as done in

[1, 2] we refer to the value of 104 1/day proposed in [109]. Finally, as mean diffusion coefficient of
the nutrients, we consider the same Dn previously mentioned, recalling that we consider oxygen
as the main source of nourishment for the cells.

We still need to give an estimate of φsn, that is, the cell volumetric fraction in the natural
state: as we proved in (3.36), with our assumption on growth process it is a constant, so we can
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assume that it is given from the outset. Different values appear in the literature: Colombo et
al. [1] and Agosti et al. [2] in their model for Glioblastoma considered a value of φsn = 0.39,
which they derived as the complementary value of the extra-cellular space studied in [122] and
amounting at up to 61%. Differently, in their tumour growth model, Mascheroni et al [102]
employed a quite high value of φsn = 0.8. In order to avoid overestimation or underestimation,
we decide to take as reference the value proposed by Giverso et al. [48], which is φsn = 0.5.

Finally, it remains to estimate the value K0 which appears in the permeability tensor expres-
sion: for simplicity, as it is often done in the literature, we prefer to estimate the ratio k := K0/µ,
where µ is the dynamic viscosity of the fluid phase; given its definition and the spatial and tem-
poral scale we employ in our model, such a ratio has units mm2/(MPa · day). Values found in
the literature cover quite a wide range: for instance, Mascheroni et al. [102] consider a value
k = 4.875 · 10−13 m2/(Pa · s); a conversion to our framework results in a value of k = 5.5 · 102

mm2/(MPa · day). Moreover, in their dimensional analysis, Giverso et al. [48] consider a range
of 10−15− 10−13 m2/(Pa · s), which corresponds to an interval of 100− 102 mm2/(MPa · day) in
our case, consistent with the aforementioned value. For this reason, in our simulations we will
consider an estimation of k = 5.5 · 102 mm2/(MPa · day).

We report the complete list of all the used parameters, along with their description, their
values and the main references in which they can be found, in Table 3.1.

Parameter Description Value Ref.
µ1t Mooney-Rivlin material parameter -3.5899 · 10−3 MPa [60]
µ2t Mooney-Rivlin material parameter 5.5218 · 10−3 MPa [60]
ν Cell proliferation constant 0.5 day−1 [113]
c0 Hypoxia threshold 0.15 [121]
ζ Nutrients consumption rate 8640 day−1 [113]
Sn Nutrients supply rate 104 day−1 [1]
φsn Cell volume fraction in the natural state 0.5 [48]
φmax Maximum cell volume fraction 0.8 -
Dn Mean nutrients diffusion coefficient 86.4 mm2 day−1 [113]
k Hydraulic conductivity 5.5 · 102 mm2 MPa−1 day−1 [102]

Table 3.1: Values of model parameters.

To complete the parameters overview, we need to provide a definition for the diffusion tensor
D and for the tensor of preferential directions A, as defined in [1, 2, 3]. Since we consider oxygen
as the main nutrients source, the components of D can be inferred from DTI imaging data,
following the procedure summarized in Sections 1.3 and 4.2. Concerning A, its construction is
done using DTI data modified as described in [34, 2, 3]; in particular, it is assumed that the
tensor A has the same eigenvectors of the diffusion tensor, but increased anisotropy along the
preferential directions of motion inside the brain. To enhance anisotropy without altering the
preferred directions, a control parameter r is introduced: given λ1, λ2, λ3 the descending order
eigenvalues of D and e1, e2, e3 the corresponding eigenvectors, A is defined as

Â = a1(r)λ1e1 ⊗ e1 + a2(r)λ2e2 ⊗ e2 + a3(r)λ3e3 ⊗ e3, (3.101a)

A = 1
Âav

Â , Âav = 1
3 tr(Â). (3.101b)

In the previous expressions, r is the tuning parameter of anisotropy and ai(r) are functions of r

55



3 – Mathematical Model of GBM Growth

defined by a1(r)
a2(r)
a3(r)

 =

r r 1
1 r 1
1 1 1

clcp
cs

 , (3.102)

where the coefficients cl, cp, cs are the anisotropy indices introduced in (1.9). The case r = 1
corresponds to no increase in anisotropy, while r > 1 enhances anisotropy according to the
indices, as given by (3.102).
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Chapter 4

Numerical Implementation

Once we have developed our mechanical model for Glioblastoma growth, it is customary to derive
an appropriate weak formulation of the involved equations, in order to solve them numerically
and simulate tumour progression. To this end, we manipulate the Lagrangian model to obtain a
weak formulation, which is then discretized in time and space for the subsequent implementation.
Boundary and initial conditions are also discussed and prescribed. Finally, we explain how the
brain meshes that we will employ for our simulations have been obtained from patient-specific
data, allowing to account for a realistic geometry.

4.1 Weak Formulation of the Lagrangian Model
In this section we derive a weak formulation of the Lagrangian model proposed before, which
will be used to implement a finite element algorithm. We recall that, in general, the weak form
of a time-independent differential problem reads:

find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (4.1)

where V is a proper functional space, a is a bilinear form and F is a functional. Analogously,
the weak form of a time-dependent differential problem can be written generally as

find u(t) ∈ V :
(
∂u

∂t
(t), v

)
+ a(u(t), v) = F (v) ∀v ∈ V. (4.2)

Before going further, we summarize and simplify the Lagrangian model (3.96) through some
algebraic manipulation. First of all, we sum the first two equations of (3.96): using the saturation
condition and the closed mixture assumption, and substituting (3.96e), we obtain

J̇s = Div
[
K∗

µ
Grad p

]
. (4.3)

Then, recalling the definition of φsn (3.29) and the fact that it is a constant quantity, we can
rewrite the first equation of the model (3.96a) as a simple identity:

Jsφs = Jgφsn ⇒ φs = Jg

Js
φsn. (4.4)
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As regards the equation for the first Piola-Kirchhoff stress tensor P (3.96d), we remember that

P = JsTF−T
s = −JspF−T

s + Ps, (4.5)

where Ps is the constitutive elastic part of the first Piola-Kirchhoff stress tensor. It follows that
DivP = 0 becomes

Div
[
−JspF−T

s + Ps
]

= 0. (4.6)
Finally, we can reformulate the equation for the nutrients (3.96g) using Darcy’s Law in the
reference configuration as follows:

Jsφ`ċn −
K∗

µ
Grad p ·Grad cn −Div [φ`D∗ Grad cn] = JsGn. (4.7)

To sum up, the equations we have to solve in the reference domain Ω∗ = Ω∗
t ∪ Ω∗

h are:

J̇s = Div
[
K∗

µ
Grad p

]
, Js = detFs , (4.8a)

Jsφs = Jgφsn , (4.8b)

Fs = I + Grad us , (4.8c)

φs + φ` = 1 , (4.8d)

Div
[
−JspF−T

s + Ps
]

= 0 , (4.8e)

ġ = g
Γs

3φs
HΩ∗t , (4.8f)

Jsφ`ċn −
K∗

µ
Grad p ·Grad cn −Div [φ`D∗ Grad cn] = JsGn, (4.8g)

recalling that we take Jg = 1 and J̇g = 0 in the healthy region Ω∗
h.

The system of equations (4.8) allows to determine all the unknown fields, namely, the
displacement field us(X, t) and the scalar fields p(X, t), φs(X, t), φ`(X, t), g(t) and cn(X, t),
∀X ∈ Ω∗ = Ω∗

t ∪ Ω∗
h and ∀t ∈ (0, T ), provided that proper initial and boundary conditions

are prescribed. To this end, since in our simulations for Glioblastoma growth in the brain we
will deal with the cranial skull as the boundary of our domain, we consider the following set of
boundary conditions:

us = 0 on ∂Ω∗
h \ ∂Ω∗

t ,∀ t ∈ (0, T ) (4.9a)
p = 0 on ∂Ω∗

h \ ∂Ω∗
t ,∀ t ∈ (0, T ) (4.9b)

cn = 1 on ∂Ω∗
h \ ∂Ω∗

t ,∀ t ∈ (0, T ) (4.9c)
K∗ Grad p ·N = 0 on ∂Ω∗

h \ ∂Ω∗
t ,∀ t ∈ (0, T ) (4.9d)

PN = 0 on ∂Ω∗
h \ ∂Ω∗

t ,∀ t ∈ (0, T ) (4.9e)
D∗ Grad cn ·N = 0 on ∂Ω∗

h \ ∂Ω∗
t ,∀ t ∈ (0, T ). (4.9f)

In detail, we impose a null Dirichlet boundary condition for the displacement us and for the
pressure p, while we consider a null Neumann condition for the normal fluxes K∗ Grad p · N,
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D∗ Grad cn ·N and for the normal stress PN at the boundary of the cranial skull. As regards the
nutrients concentration, we suppose that the brain boundary is sufficiently far from the tumour:
we can then assume that on the boundary the oxygen concentration is maintained constant at
the physiological value of 1 by the vasculature.

Concerning initial conditions, at the beginning of the GBM growth process it is reasonable to
assume that the displacement and the pressure are equal to zero; meanwhile, we take the scalar
field g related to the growth component of the deformation gradient as equal to 1 everywhere in
the domain at t = 0. We also assume that the volumetric fraction of the cell phase is initially
equal to the constant volumetric fraction in the natural state φsn. Finally, in order to obtain
the initial nutrients concentration c0n(X), we solve the steady version of the nutrients governing
equation (4.8g), neglecting advection:

−Div [φ`D∗ Grad cn] = JsGn. (4.10)

Figure 4.1: Initial distribution of nutrients concentration c0n(X), obtained by solving the station-
ary equation (4.10).

To sum up, we have the following set of initial conditions:

us(X, 0) = 0 ∀X ∈ Ω∗ (4.11a)
p(X, 0) = 0 ∀X ∈ Ω∗ (4.11b)
g(X, 0) = 1 ∀X ∈ Ω∗ (4.11c)

φs(X, 0) = φsn ∀X ∈ Ω∗ (4.11d)
cn(X, 0) = c0n(X) ∀X ∈ Ω∗. (4.11e)
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We are now ready to derive a weak formulation of the Lagrangian model, which will allow
us to solve it numerically using the finite element method. We first write the weak form in
each domain Ω∗

t and Ω∗
h, separately and then we extend the weak form to the whole domain

Ω∗ = Ω∗
t ∪ Ω∗

h. First of all, we multiply each side of (4.8a) by a test function qt ∈ H1(Ω∗
t ) and

integrate the whole equation over the Lagrangian tumour domain:∫
Ω∗t
J̇sqt dV

∗ =
∫

Ω∗t
Div

[
K∗

µ
Grad p

]
qt dV

∗. (4.12)

If we integrate by parts the second order derivatives, we obtain∫
Ω∗t
J̇sqt dV

∗ = −
∫

Ω∗t
Grad qt ·

K∗

µ
Grad p dV ∗ +

∫
∂Ω∗t

qt

µ
K∗ Grad p ·N dΣ∗. (4.13)

Similarly, in the healthy domain, we take qh ∈ H1(Ω∗
h) and we obtain∫

Ω∗h
J̇sqh dV

∗ = −
∫

Ω∗h
Grad qh ·

K∗

µ
Grad p dV ∗ +

∫
∂Ω∗h

qh

µ
K∗ Grad p ·N dΣ∗, (4.14)

where ∂Ω∗
h = ∂Ω∗

t ∪ ∂Ωout
h is the boundary of the healthy domain that is composed by the

interface with the tumour ∂Ω∗
t and by the external boundary corresponding to the cranial skull

∂Ωout
h . Since on ∂Ωout

h we impose the null Neumann condition (4.9d), we have∫
Ω∗h
J̇sqh dV

∗ = −
∫

Ω∗h
Grad qh ·

K∗

µ
Grad p dV ∗ −

∫
∂Ω∗t

qh

µ
K∗ Grad p ·N dΣ∗, (4.15)

where N is the normal vector to the interface pointing outwards of the tumour domain Ω∗
t . Thus,

summing up (4.13) and (4.15) and taking q ∈ H1(Ω∗ \ ∂Ω∗
t ) we obtain∫

Ω∗
J̇sq dV

∗ = −
∫

Ω∗
Grad q · K

∗

µ
Grad p dV ∗ −

∫
∂Ω∗t

s
q

µ
K∗ Grad p

{
·N dΣ∗, (4.16)

that thanks to the interface condition (3.100b) can be rephrased as∫
Ω∗
J̇sq dV

∗ = −
∫

Ω∗
Grad q · K

∗

µ
Grad p dV ∗ −

∫
∂Ω∗t

µ−1K∗ Grad p JqK ·N dΣ∗, (4.17)

so that if we take q ∈ H1(Ω∗) the jump across the boundary ∂Ω∗
t vanishes. Generally speaking,

if we consider a sharp interface between the tumour and the host tissue, the last term on the
right-hand side of (4.17) is not supposed to vanish. As a matter of fact, the field Js may
be discontinuous and the test function q cannot be taken directly in H1(Ω∗). However, the
implementation of a weak formulation with jumps and discontinuities is not trivial: for the sake
of simplicity, in a first version of our model we will take q ∈ H1(Ω∗), assuming that the interface
between tumour and surrounding tissue is not exactly sharp, but rather described by a steep
mollification of the indicator function HΩ∗t of the tumour reference domain. This assumption
ensures that all quantities are continuous and allows to rephrase the weak formulation of the
first equation as ∫

Ω∗
J̇s(us) q dV ∗ = −

∫
Ω∗

Grad q · K
∗

µ
Grad p dV ∗, (4.18)

for all test functions q ∈ H1(Ω∗). If we introduce a discretization of the time derivative using
the implicit Euler method, we have∫

Ω∗

Jk+1
s (uk+1

s )− Jks (uks )
∆t q dV ∗ = −

∫
Ω∗

Grad q · (K∗)k+1

µ
Grad(pk+1) dV ∗, (4.19)
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4.1 – Weak Formulation of the Lagrangian Model

where, given N time steps on the interval (0, T ), ∆t := T/N is the time step, and we have used
a superscript k to denote the value of a quantity at time tk = k∆t. For the sake of a lighter
notation, from now on we will drop the superscript k + 1 to denote the value of a quantity of
interest at the next time step. Then, in order to write the weak formulation properly, we multiply
both sides by ∆t, isolating on the right-hand side all terms that involve only the test functions:∫

Ω∗
Js(us) q dV ∗ + ∆t

∫
Ω∗

Grad q · K
∗

µ
Grad p dV ∗ =

∫
Ω∗
Jks (uks ) q dV ∗. (4.20)

As far as equation (4.8e) is concerned, we multiply it by a vector test function qt ∈H1(Ω∗
t )

and integrate over the tumour reference domain:∫
Ω∗t

Div
[
−JspF−T

s + Ps
]
· qt dV

∗ = 0. (4.21)

Using tensor integration by parts, we get

−
∫

Ω∗t

(
−JspF−T

s + Ps
)

: Grad qt dV
∗ +

∫
∂Ω∗t

(
−JspF−T

s + Ps
)
N · qt dΣ∗ = 0. (4.22)

If we do the same in the healthy domain, taking qh ∈H1(Ω∗
h) the result is

−
∫

Ω∗h

(
−JspF−T

s + Ps
)

: Grad qh dV
∗ −

∫
∂Ω∗t

(
−JspF−T

s + Ps
)
N · qh dΣ∗ = 0, (4.23)

since we have assumed that on the outer boundary of the healthy domain, i.e. the cranial skull,
the null Neumann condition (4.9e) holds. It follows that, summing the two equations (4.22),
(4.23) and being q ∈H1(Ω∗ \ ∂Ω∗

t ), the weak formulation on the whole domain is

−
∫

Ω∗

(
−JspF−T

s + Ps
)

: Grad q dV ∗ −
∫
∂Ω∗t

J
(
−JspF−T

s + Ps
)
N · qK dΣ∗ = 0. (4.24)

With the same assumptions as before, if we choose q ∈H1(Ω∗), the jump vanishes and we obtain

−
∫

Ω∗

(
−JspF−T

s + Ps
)

: Grad q dV ∗ = 0. (4.25)

We further observe that the variational problems (4.17) and (4.25) are nonlinear and coupled:
in view of the numerical implementation, it is convenient to rewrite them into a single nonlinear
variational problem by summing the two weak forms. Doing that, we obtain the following
variational problem for the displacement and the pressure: find (us, p) ∈H1(Ω∗)×H1(Ω∗) such
that

(Js(us), qp) + ∆t
(

Grad qp,
K∗

µ
Grad p

)
− (P(us, p),Grad qu) =

(
Jks (uks ), qp

)
, (4.26)

for all (qu, qp) ∈H1(Ω∗)×H1(Ω∗), where (·, ·) denotes the standard scalar product in L2(Ω∗).

The last partial differential equation for which we need a weak formulation is the one for the
nutrients (4.8g). Multiplied by a test function qt ∈ H1(Ω∗

t ) it becomes:∫
Ω∗t
Jsφ`ċn qt dV

∗ −
∫

Ω∗t

K∗

µ
Grad p ·Grad cn qt dV

∗ −
∫

Ω∗t
Div[φ`D∗ Grad cn] qt dV

∗ =

=
∫

Ω∗t
JsGn qt dV

∗.
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Integrating by parts, we obtain∫
Ω∗t

(
Jsφ`ċn −

K∗

µ
Grad p ·Grad cn

)
qt dV

∗ +
∫

Ω∗t
φ` Grad qt · D∗ Grad cn dV ∗+

−
∫
∂Ω∗t

qt φ`D∗ Grad cn ·NdΣ∗ =
∫

Ω∗t
JsGn qt dV

∗.

Following the same approach on the healthy domain and summing the equations, for q ∈ H1(Ω∗ \ ∂Ω∗
t )

one has∫
Ω∗

(
Jsφ`ċn −

K∗

µ
Grad p ·Grad cn

)
q dV ∗ +

∫
Ω∗
φ` Grad q · D∗ Grad cn dV ∗+

+
∫
∂Ω∗t

Jq φ`D∗ Grad cnK ·NdΣ∗ =
∫

Ω∗
JsGn q dV

∗,

recalling the null Neumann condition on the flux (4.9f). Also in this case, by taking q ∈ H1(Ω∗)
and recalling the interface condition, the previous formulation becomes∫

Ω∗

(
Jsφ`ċn −

K∗

µ
Grad p ·Grad cn

)
q dV ∗ +

∫
Ω∗
φ` Grad q · D∗ Grad cn dV ∗ =

∫
Ω∗
JsGn q dV

∗.

It is now mandatory to introduce a time discretization of the previous equation: we do that by
invoking again the implicit Euler method, which leads to∫

Ω∗

[
Jk+1

s
ck+1
n − ckn

∆t − (K∗)k+1

µφk+1
`

Grad(pk+1) ·Grad(ck+1
n )

]
q dV ∗+

+
∫

Ω∗
Grad q · (D∗)k+1 Grad(ck+1

n ) dV ∗ =
∫

Ω∗
Jk+1

s
Gk+1
n

φk+1
`

q dV ∗.

Multiplying by ∆t, reordering the terms and dropping the superscript k + 1 we arrive at∫
Ω∗

[
Jscn q − ∆t K

∗

µφ`
Grad p ·Grad cn q + ∆tGrad q · D∗ Grad cn

]
dV ∗ = (4.27)

=
∫

Ω∗

(
Jsc

k
n + ∆t Js

Gn
φ`

)
q dV ∗,

for all q ∈ H1(Ω∗). We stress that, given the displacement us and the pressure p obtained by
solving (4.26), (4.27) is a linear variational problem to be solved with respect to the unknown
cn.

4.2 Mesh Preparation
The computational brain mesh and the meshes containing the values of D and A have been
constructed from DTI and MRI data, collected from patients of the Istituto Neurologico Carlo
Besta in Milan and kindly processed and provided by Dr. Abramo Agosti (MOX, Politecnico di
Milano). Without going into detail, since mesh building from imaging data is not the focus of this
work, in our simulations we have employed already existing brain meshes of patients affected by
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4.2 – Mesh Preparation

Glioblastoma Multiforme, constructed as done in [1, 2, 3]. In the following, we briefly summarize
the process and refer the reader to the cited papers for a more detailed description.

The first step consists in the segmentation of MRI imaging, i.e. the partitioning of several
grey-scale images in order to label the different regions of the brain and the tumorous zone.
This can be done using specific software packages, such as Slicer3D. Once the segmentation has
been performed, the computational 3D brain mesh can be constructed from the segmented images
using dedicated Python libraries (VTMK and TetGen): they are able to build a three-dimensional
tetrahedral mesh and to provide smoothing and refinement where needed. In particular, the grid
is refined in the brain area around the growing cancer, in order to provide a better solution in
the interested zone without increasing too much the computational cost. The external surface of
the mesh and a slice highlighting the refined tumour area are reported in Figure 4.2: the mesh
is composed by 230842 tetrahedral cells and 39357 points.

(a) External brain mesh. (b) Refinement in the tumour zone.

Figure 4.2: External computational brain mesh and refinement. The tetrahedral mesh is conve-
niently refined in the tumour zone.

To include diffusion and preferential directions information into the mesh, data from DTI
imaging are employed. First of all, the six images coming from DTI medical exams need to be
aligned with the ones from MRI, since in general they are not. This is done thanks to auto-
mated tools [1, 2]: once all the images are aligned, one can create six different meshes, in which
a diffusion value for the coefficient Dij is assigned to each cell. Doing so, diffusion data can
be integrated into the computational mesh built upon MRI data: a Z-normal slice of each DTI
mesh, representing an independent component of D, is reported in Table 4.1. Using an analogous
procedure, six meshes containing the values of the six independent components of the tensor A
are constructed: an example is shown in Table 4.2.
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Table 4.1: Components of the diffusion tensor D reconstructed from DTI imaging data of a
patient, sliced with Z-normal planes. The highest values for diffusion coefficients are attained in
the cerebrospinal fluid and are coloured in red.
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Table 4.2: Components of the preferential directions tensor A reconstructed from DTI imaging
data of a patient, sliced with Z-normal planes. In this case, white matter has the highest values.
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4.3 Implementation of the Problem
To perform simulations and solve our equations numerically, we still need to introduce a spatially
discrete formulation of the continuous variational problems (4.26) and (4.27), as well as of the
other equations involved in the model. We make use of linear tetrahedron P1 elements, so we
introduce the following finite element spaces:

V h := {qh ∈
[
C0(Ω∗)

]3 : qh|K ∈ [P1(K)]3 ∀K ∈ Th} ⊂H1(Ω∗) , (4.28)

Wh := {qh ∈ C0(Ω∗) : qh|K ∈ P1(K) ∀K ∈ Th} ⊂ H1(Ω∗) , (4.29)

where Th is a conforming decomposition of the domain Ω∗ into tetrahedra K. Then, we
are able to define our fully discrete variational problem as follows: for k = 1, . . . , N , given
(ukh, pkh, ckh) ∈ V h ×Wh ×Wh find (uh, ph, ch) ∈ V h ×Wh ×Wh such that ∀ (vh, wh, qh) ∈
V h ×Wh ×Wh

( Js(uh), wh ) + ∆t
(

Gradwh,
K∗

µ
Grad ph

)
− (P(uh, ph),Grad vh ) =

(
Jks (ukh), wh

)
, (4.30)

( Js(uh)ch, qh )−∆t
(

K∗

µφ`
Grad ph ·Grad ch, qh

)
+ ∆t ( Grad qh,D∗ Grad ch ) = (4.31)

=
(
Js(uh)ckh, qh

)
+ ∆t

(
Js(uh) Gn(ch)

φ`
, qh

)
,

where we have dropped the unnecessary subscripts in order to have a lighter notation and we have
denoted by (·, ·) the standard scalar product on L2(Ω∗). We remark that, since we are working
in a Lagrangian configuration, also the tensors K∗ = JsF−1

s KF−T
s and D∗ := JsF−1

s DF−T
s depend

on uh.
Once we have obtained the discrete formulation of the partial differential equations, the last

step is to introduce a proper discretization of the other equations involved, namely the ordinary
differential equation for g (4.8f), the saturation condition (4.8d) and the relation (4.8b).

Regarding (4.8f), it can be easily discretized in time using the implicit Euler method. Then,
we have

gk+1 − gk

∆t = gk+1 Γk+1
s

3φk+1
s

HΩ∗t , (4.32)

which can be immediately rephrased as

gk+1 = gk
(

1−∆t Γk+1
s

3φk+1
s

HΩ∗t

)−1

. (4.33)

Equation (4.8b) is simply discretized as follows:

Jk+1
s φk+1

s = Jk+1
g φsn ⇒ φk+1

s =
Jk+1

g

Jk+1
s

φsn. (4.34)

Once we have computed φk+1
s , we can derive φk+1

` using the saturation condition (4.8d):

φk+1
` = 1− φk+1

s . (4.35)

Given the discretized form of all the necessary equations, we are now able to run numerical
simulations of the model. To this end, we implemented our code using an open source computing
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software for solving partial differential equations called FEniCS [123, 124, 125]. Such a software
provides a high-level Python and C++ interface for solving PDEs through the finite element
method: in particular, FEniCS code is attractive since it remains very close to the mathematical
formulation, allowing the user to write down a program which closely resembles the variational
form of equations. For instance, in FEniCS it is possible to choose the finite element of interest,
define function spaces for test and trial functions, import external meshes easily ad define a
variational problem with just a few lines of code. It also comes with built-in classes specifically
dedicated to the resolution of nonlinear variational problems, which in our case is an important
feature. In Appendix A we report and comment in detail the Python codes we implemented and
used for our numerical simulations.
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Chapter 5

Numerical Simulations

In this chapter, we employ the previously derived discrete formulation of our model to implement
it through the finite element solver FEniCS. We firstly simulate Glioblastoma progression on a
simplified cubic geometry, both with an isotropic and artificially anisotropic setting, to test the
code and its features. Then, we move to the real brain mesh whose construction was explained
in the previous chapter, since our main goal is to investigate the mechanical deformation of brain
tissue.

5.1 Simulations on a Simplified Geometry
Firstly, we test our numerical code on a simplified geometry, in order to evaluate its reliability and
accuracy. Hence, we simulate GBM growth on a cubic geometry, with side length of 10 mm and
a spherical proliferation region placed at the center of the cube, with a radius of approximately
1.5 mm. As we discussed, the tumour region is separated from the healthy tissue by a steep
mollification of the indicator function: in order to guarantee a better outcome while containing
the computational cost as much as possible, we refine the mesh along the boundary of the
tumour in the Lagrangian reference domain, as shown in Figures 5.1a and 5.1b. After that,
we take into account the parameters values reported in Table 3.1. For the first simulations, we
consider both the host tissue and the tumour as identical from the mechanical viewpoint, so
we do not distinguish the elastic parameters in the two regions: we consider all the domain as
composed by general brain tissue, with Mooney-Rivlin parameters µ1t and µ2t as reported in
Table 3.1. Eventually, to investigate the role of tumour growth in a softer host tissue, we perform
a simulation taking µ1h, µ2h as material parameters in the healthy region, while keeping µ1t, µ2t
in the tumour region.

We also choose a time step ∆t = 0.1 days, which is nearly equal to 2 hours and a half. Initial
and boundary conditions are imposed as described in (4.9) and (4.11): first of all, we run two
simulations on the cubic mesh, one with isotropic diffusion and permeability and another with
artificial anisotropy, in order to better observe its effect on growth.

In the isotropic case, both the diffusion tensor and the permeability tensor are multiples
of the identity tensor: specifically, we take D = DnI and µ−1K = kI, where Dn and k are
estimated as in Table 3.1. We first solve the stationary problem for the nutrients, and then the
other equations in the model (4.30), (4.31), (4.33) and (4.34): in this situation, we expect to
find results that reflect the isotropic growth of the tumour, putting in evidence the fact that no
preferential directions for diffusion and fluid motion are identified.
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Indeed, as shown in Figure 5.1 and Figure 5.2, in this case the tumour is expanding isotropi-
cally: during growth, it maintains a spherical shape, which induces a uniform displacement along
all directions. Moreover, looking at Figure 5.1, the deformation due to the growing GBM is ev-
ident: the displacement in the surrounding tissue amounts at 0.11 mm in magnitude after 16.5
days of cancer progression. The average velocity of tumour expansion then amounts at 0.0068
mm/day: this value is consistently smaller than the ones found in the literature. For instance,
the diffuse interface model proposed in [1] predicted a velocity of 0.068 mm/day, which is an
order of magnitude greater than ours [3]. It is also smaller than the maximum expansion veloc-
ity reported in the literature, which is around 0.09 mm/day [126]. In Figure 5.2 we report the
distribution of the other variables involved in our model: they all mirror the isotropic evolution
of the tumour as expected. More specifically, we have a reduced concentration of nutrients in
the diseased region at the center of the cube, since the tumour is consuming oxygen and other
nutrients to sustain its own proliferation (Fig. 5.2a); at the same time, the presence of an in-
cremented cell volume in the tumour core (Fig. 5.2d) provokes a decrease in fluid pressure (Fig.
5.2b). Finally, the scalar field g that governs the deformations due to GBM growth is greater
than 1 inside the tumour region and equal to 1 outside, as expected. A little irregularity appears
along the boundary of the tumour, due to the choice of a steep mollification of the indicator
function.

As regards the anisotropic simulation, we employ the same parameters and time step as in
the isotropic case, though varying the diffusion tensor and the permeability tensor. We do not
consider real data obtained from DTI imaging yet: instead, we impose a forced anisotropy along
the Z-axis, taking the tensor of preferential directions as A = diag(0.1, 0.1, 2.8). Therefore, we
have D = DnA and µ−1K = kA: consequently, in this simulation we expect to observe enhanced
diffusion, fluid motion and displacement induced by GBM proliferation along the Z-direction.

This is indeed the case, as one can observe through the comparison between variables in
the isotropic and anisotropic setting, reported in Tables 5.1, 5.2, 5.3 and 5.4. The presence of
anisotropy in diffusion and conductivity causes the tumour to grow preferentially along the Z
direction: as we can see in Table 5.1, in the isotropic case there is a uniform induced displacement
in a circular region around the growing Glioblastoma, while the introduction of anisotropy forces
GBM to acquire a more elongated shape. As a consequence, the displacement is greater along
the preferential direction (about 0.13 mm) and reduced on the other two directions (about 0.007
mm each). Furthermore, anisotropy in diffusion and fluid motion is evident as shown in Tables
5.2 and 5.4: nutrients concentration and fluid pressure maintain a more compact shape in the
XY-plane, while they show a clear preferential direction along the Z-axis.

At this point, having observed a relevant difference in GBM growth due to anisotropy in
both diffusion and permeability, we decide to run two more simulations in order to investigate
which variable gave the most consistent contribution to anisotropic proliferation. Hence, we
firstly perform a simulation in which diffusion is anisotropic while the permeability tensor is
isotropic, then we consider an isotropic D and an anisotropic K: results are shown in Table 5.5.
We clearly see that anisotropy in growth mainly stems from anisotropy in permeability, while
the contribution of diffusion is almost negligible, though we observe anisotropy in nutrients
distribution. This is not surprising, since in our model the relative velocity of the solid phase,
which coincides with the velocity of the tumour material interface, is proportional to the pressure
gradient through the tensor K: as a consequence, setting anisotropy in the permeability tensor
causes GBM to identify a preferential direction for growth.

Simulations performed so far on the cubic geometry assumed that the healthy and the cancer-
ous tissue were mechanically identical. Hence, we lastly decide to investigate the effect of a softer
host tissue: we suppose that the material outside the tumour region is hyperelastic, but with
Mooney-Rivlin parameters that are half the ones of the proliferating GBM. The displacement
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(a) Cube mesh. (b) Mesh refinement on the tumour boundary.

(c) Displacement magnitude. (d) X-component of the displacement.

(e) Y-component of the displacement. (f) Z-component of the displacement.

Figure 5.1: Magnitude and components of displacement in the isotropic cubical case. The results
are shown after a time t = 16.5 days and clipped along the YZ-plane. All the plots have spatial
units of millimeters.
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(a) Concentration of nutrients cn. (b) Pressure p.

(c) Field g. (d) Cell volume fraction φs.

Figure 5.2: Plot of the other variables of the model in the isotropic cubical case. The results are
shown after a time t = 16.5 days and clipped along the YZ-plane.

72



5.1 – Simulations on a Simplified Geometry

YZ-plane

Variable Isotropic Case Anisotropic Case

‖us‖

(us)Z

(us)Y

Table 5.1: Comparison between displacement magnitude and components in the isotropic case
and in the anisotropic case, at time t = 16.5 days, in the YZ-plane. The difference is evident in
the Z-direction, since diffusion and hydraulic conductivity are enhanced along the Z-axis.
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YZ-plane

Variable Isotropic Case Anisotropic Case

cn

p

Table 5.2: Comparison between nutrients concentration and fluid pressure in the isotropic case
and in the anisotropic case, at time t = 16.5 days, in the YZ-plane. The difference is evident in
the Z-direction, since diffusion and hydraulic conductivity are enhanced along the Z-axis.
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XY-plane

Variable Isotropic Case Anisotropic Case

‖us‖

(us)Y

(us)X

Table 5.3: Comparison between displacement magnitude and components in the isotropic case
and in the anisotropic case, at time t = 16.5 days, in the XY-plane. Since diffusion and conduc-
tivity are enhanced along the Z-axis, we observe a consequent reduction in displacement along
the other two directions.
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XY-plane

Variable Isotropic Case Anisotropic Case

cn

p

Table 5.4: Comparison between nutrients concentration and fluid pressure in the isotropic case
and in the anisotropic case, at time t = 16.5 days, in the XY-plane. Since diffusion and conduc-
tivity are enhanced along the Z-axis, we observe a consequent reduction in concentration and
pressure along the other two directions.
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YZ-plane

Variable Anisotropic D Anisotropic K

‖us‖

cn

p

Table 5.5: Comparison between variables with only anisotropic diffusion and only anisotropic
permeability, at time t = 16.5 days, in the YZ-plane. Anisotropy in the deformation subsequent
to growth is mainly due to the anisotropic contribution of tensor K.

plots are reported in Figure 5.3 for an isotropic simulation: indeed, after 11 days of progression,
in the case with softer host tissue we observe a greater displacement (about 0.12 mm) than in the
other case (about 0.086 mm). These values correspond to an average expansion velocity along
the preferential direction of 0.011 mm/day: though still smaller than the values found in the
literature, in this case the difference is less pronounced, and our velocity has the same order of
magnitude as other works [3]. This result clearly shows the relevance of elasticity in the mechan-
ical impact of Glioblastoma growth: furthermore, it underlines the importance of an accurate
choice of the material parameters for brain tissue, in order to obtain a reliable quantification.
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(a) Softer host tissue.

(b) Stiffer host tissue.

Figure 5.3: Displacement magnitude after t = 11 days with (a) different elastic parameters in
the host and tumour tissue and (b) identical elastic parameters. In the case with softer host
tissue, we observe a consistently greater displacement around the growing tumour.
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5.2 Simulations on the Brain
After having tested our code on a simplified case, we shift to GBM simulations on a realistic brain
geometry, obtained from DTI and MRI data. Preparation of the mesh have been described in
Section 4.2: here, we present the results of numerical tests of our model, in order to gain insight
into the mechanical impact of a growing tumour inside the brain. Differently from the cubical
case, the diffusion tensor and the permeability tensor have been constructed through medical
data, so as to build a realistic geometry. Moreover, we take an indicator function of the tumour
region bigger than the simplified situation, so as to represent real dimensions of the GBM.

In Figure 5.4 the final configuration of the tumour inside the brain mesh after a simulation
of t = 90 days is shown, while in Tables 5.6 and 5.7 we report the plots of the different variables
involved in our model. As we can observe, the growing mass indeed provokes a displacement in the
surrounding tissue, whose maximum value can be quantified in about 0.14 mm in magnitude after
three months. In this case, the average tumour expansion velocity amounts at 0.002 mm/day:
as in the cubic case, this value is significantly smaller than the ones present in the literature.
The behaviour of all the other variables is in agreement with tumour proliferation: we have a
negative pressure in the tumour zone, where the volumetric fraction of the cell phase φs increases
and the concentration of nutrients cn decreases, as expected.

Figure 5.4: Tumour region (in red) inside the brain mesh after 90 days of growth.

In order to highlight the displacement induced by the growing GBM, in Figure 5.5 we show
the tumour mass surrounded by the ring representing the magnitude of us, along three different
planes and with three different sections.

Concerning anisotropy, if we observe the different colour scales in Tables 5.6 and 5.7, we
can verify that the displacement magnitude is not the same along the three cutting planes: in
particular, the maximum attained value for ‖us‖ ranges from 0.092 mm in the XY-plane to 0.14
mm in the XZ-plane. This is a first sign of anisotropy: as a matter of fact, if we analyze the
displacement vector components at different times, we can observe that the displacement along
X remains almost isotropic during the whole simulation, while growth along Y and Z turns out
to be practically isotropic until the first month, after which it shows a slight anisotropy. In Table
5.8 we collect the observed maximum and minimum values of the components of the displacement
vector, proving what we have just discussed.
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Variable YZ XY XZ

‖us‖

p

φs

Table 5.6: Comparison between variables during GBM growth in the brain, clipped along three
different planes, at time t = 90 days. After three months, the maximum displacement induced
by the tumour is around 0.14 mm in the XZ-plane, while the minimum amounts at 0.092 mm in
the XY-plane.
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Variable YZ XY XZ

cn

g

Table 5.7: Comparison between variables during GBM growth in the brain, clipped along three
different planes, at time t = 90 days.

Days X Y Z

5 days 0.044 mm 0.043 mm 0.047 mm
-0.050 mm -0.045 mm -0.048 mm

30 days 0.089 mm 0.086 mm 0.095 mm
-0.097 mm -0.096 mm -0.100 mm

60 days 0.093 mm 0.090 mm 0.097 mm
-0.100 mm -0.110 mm -0.110 mm

90 days 0.094 mm 0.091 mm 0.099 mm
-0.100 mm -0.120 mm -0.120 mm

Table 5.8: Maximum and minimum displacement values along each direction at t = 5, 30, 60, 90
days.

81



5 – Numerical Simulations

(a) YZ-plane (b) XY-plane

(c) XZ-plane (d)

(e) (f)

Figure 5.5: Displacement magnitude plots on (a)-(c) three different planes and (d)-(f) three
different sections with highlighted tumour mass, after 90 days of growth.
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Main Outcomes and Future
Developments

The main purpose of this work is to make a step forward in Glioblastoma Multiforme growth
modeling, by proposing a first version of a mechanical model able to account for hyperelastic
deformations of brain tissue. Using the well-established framework of Continuum Mechanics
and mixture theory, we focused on the development of a mathematical model for GBM growth,
including a proper constitutive equation to reproduce the nonlinear elastic behaviour of brain
tissue shown by many experiments. In particular, we modelled the brain as a saturated biphasic
mixture, comprising a solid phase of cells and a fluid phase. The tumour region is identified
and separated from the healthy surrounding tissue by a material interface, which is described
by a continuous mollification of an indicator function. With these assumptions, we obtained
a Lagrangian model including seven equations, accompanied by the constitutive definition of
the hyperelastic energy and by the multiplicative decomposition of the deformation gradient, to
distinguish the elastic contribution from the inelastic one due to growth.

After model derivation, the following step consisted in its numerical implementation using the
finite element method. Therefore, we derived a weak formulation of our model, so as to solve all
the involved equations numerically. The discretized version of the model was then implemented
using a Python code: we focused on the development of a finite element algorithm, which was
implemented by means of the open source computing library FEniCS. We firstly tested our code
on a simplified cubic geometry, both in isotropic and anisotropic conditions, in order to check its
reliability. Then, we performed a first simulation on a brain geometry to verify the outcome of
our model when applied to a realistic setting: we included medical data from DTI and MRI into
the computational mesh, to account for real diffusion patterns and for anisotropy of the fibers
inside the brain.

From our simulations, we observed how the growth of a tumour inside the brain has a me-
chanical impact on the surrounding healthy tissue, causing a deformation and a subsequent
displacement quantified in about 0.14 mm after 90 days. Even though the displacements turn
out to be very small, it is worth to remark that they cannot be neglected. For instance, when
the tumour mass is removed by surgery, the rearrangement of brain tissues strongly depends on
deformations and stresses inside the brain, that can be described and quantified only using a
mechanical model of this kind. Hence, it is important to have a model providing a complete and
realistic mechanical description.

However, our results still show some consistent limitations that need to be addressed in
future research developments. First of all, it should be appropriate to overcome the choice of a
continuous indicator function for the tumour region: to this end, numerical techniques like the
Extended Finite Element Method could be applied to the present model, allowing to treat the
fields as discontinuous functions on the two different domains. Even if Glioblastoma infiltration
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into the surrounding tissues partially justifies its description using an interface that is not totally
sharp, it would be more realistic to distinguish the tumour region from the healthy region without
any mollification. Moreover, the inclusion of an anisotropic growth tensor should be evaluated:
the problem of modeling preferential directions for growth is still quite complicated and not
thoroughly addressed in the literature. Indeed, the intrinsic anisotropy of brain tissue might be
better modelled if deformations caused by growth are treated through an anisotropic tensor, in
addition to the already anisotropic choices made for the diffusion tensor and for the permeability
tensor. In our work, we overcame this issue by imposing anisotropy on the growth process in an
indirect way, but in a future development we would like to treat growth as directly anisotropic.

Other possible improvements of the proposed model concern the simulation of therapies and
resection, highlighting for instance deformations and displacements that happen after surgical
removal of Glioblastoma tumour mass; with regard to this, plastic reorganization could be in-
cluded in the model, to reproduce the mechanical behaviour of the brain as much realistically as
possible. In particular, it would be important to describe the reorganization of the brain fibers
around the tumour during growth and after resection.

Finally, multiscale modeling could be employed to determine how changes at the cellular level
influence tumour evolution at the macroscopic scale.
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Appendix A

Code Documentation

In the following, we report the complete Python code that has been used for numerical simulations
of the model. After importing the libraries DOLFIN and FEniCS, we define all the useful
kinematic variables that appear in the variational formulations (lines 1-116). Then, we introduce
the tumour indicator function as a Python Expression, refining the mesh in the cubic case so as
to better solve the problem along the tumour boundary (lines 119-153).

Before setting down the variational problems, we employ a C++ code for the evaluation of
DTI data and the construction of the diffusion tensor (lines 160-243) and the tensor of preferential
directions (lines 248-329), obtained from patient-specific data. We then define the finite elements
using linear continuous Lagrange basis, the parameters, the model variables, initial and boundary
conditions (lines 346-469).

Finally, we construct the variational problems (lines 474-519): in particular, as regards dis-
placement and pressure, we use the built-in class NonlinearVariationalProblem, since our
problem is nonlinear. All the equations are solved and the data stored inside the time loop in
lines 544-601.

1 import dolfin
2 from dolfin import *
3 from fenics import *
4 import numpy as np
5

6 #Form compiler options
7 dolfin.parameters["form_compiler"]["cpp_optimize"] = True
8 dolfin.parameters["form_compiler"]["representation"] = "uflacs"
9 dolfin.parameters["form_compiler"]["quadrature_degree"] = 4

10

11 ################# USEFUL KINEMATICS VARIABLES ##################
12

13 # Renaming grad to Grad because it looks nicer in the reference configuration
14 from ufl import grad as ufl_grad
15 def Grad(v):
16 return ufl_grad(v)
17

18 # Second order identity tensor
19 def SecondOrderIdentity(u):
20 d = u.geometric_dimension()
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21 return variable(Identity(d))
22

23 # Deformation gradient
24 def DeformationGradient(u):
25 I = SecondOrderIdentity(u)
26 return variable(I + Grad(u))
27

28 # Determinant of the deformation gradient
29 def Jacobian(u):
30 F = DeformationGradient(u)
31 return variable(det(F))
32

33 # Right Cauchy-Green tensor
34 def RightCauchyGreen(u):
35 F = DeformationGradient(u)
36 return variable(F.T*F)
37

38 # Left Cauchy-Green tensor
39 def LeftCauchyGreen(u):
40 F = DeformationGradient(u)
41 return variable(F*F.T)
42

43 # Invariants of an arbitrary tensor, A
44 def Invariants(A):
45 I1 = tr(A)
46 I2 = 0.5*(tr(A)**2 - tr(A*A))
47 I3 = det(A)
48 return [variable(I1), variable(I2), variable(I3)]
49

50 # Invariants of the (right/left) Cauchy-Green tensor
51 def CauchyGreenInvariants(u):
52 C = RightCauchyGreen(u)
53 [I1, I2, I3] = Invariants(C)
54 return [variable(I1), variable(I2), variable(I3)]
55

56 # Isotropic growth tensor in the multiplicative decomposition
57 def IsotropicGrowthTensor(u, g):
58 I = SecondOrderIdentity(u)
59 return variable(g*I)
60

61 # Elastic part of the deformation gradient
62 def ElasticPart(u, g):
63 F = DeformationGradient(u)
64 F_g = IsotropicGrowthTensor(u, g)
65 return variable(F*inv(F_g))
66

67 # Right Cauchy-Green tensor of the elastic part
68 def ElasticRCG(u, g):
69 F_e = ElasticPart(u, g)
70 return variable(F_e.T*F_e)
71
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72 # Determinant of the growth tensor
73 def Jg(u, g):
74 F_g = IsotropicGrowthTensor(u, g)
75 return variable(det(F_g))
76

77 # Determinant of the elastic part
78 def Je(u, g):
79 F_e = ElasticPart(u, g)
80 return variable(det(F_e))
81

82 # First Piola-Kirchhoff stress tensor
83 def Pk(u, p, g):
84 J_g = Jg(u, g)
85 J_e = Je(u, g)
86 F = DeformationGradient(u)
87 J = Jacobian(u)
88 I = SecondOrderIdentity(u)
89 C_e = ElasticRCG(u, g)
90 F_g = IsotropicGrowthTensor(u, g)
91 Ice, IIce, IIIce = Invariants(C_e)
92

93 mu1 = Constant(-3.59e-03)
94 mu2 = Constant(5.52e-03)
95

96 #Strain energy: Mooney-Rivlin
97 psi = (mu1/2)*(Ice - 3) + (mu2/2)*(IIce - 3)
98 gamma1 = diff(psi, Ice) + Ice*diff(psi, IIce)
99 gamma2 = -diff(psi, IIce)

100

101 P_s = 2*J_g*F_e*(gamma1*I + gamma2*C_e)*inv(F_g).T
102 return variable(P_s - J*p*inv(F).T)
103

104 # Pullback of a tensor from the current to the reference
105 # configuration
106 def TensorPullback(K0, u):
107 J = Jacobian(u)
108 F = DeformationGradient(u)
109 return variable(J*inv(F)*K0*inv(F).T)
110

111 # Pullback of a vector field from the current to the reference
112 # configuration
113 def VectorPullback(T0, u):
114 J = Jacobian(u)
115 F = DeformationGradient(u)
116 return variable(J*inv(F)*T0)
117

118

119 # -------- Define mesh and tumour indicator function -----------#
120

121 # Cube test simulations
122 #mesh = BoxMesh(Point(0.0,0.0,0.0), Point(10.0,10.0,10.0), 30, 30, 30)
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123 #tumour_indicator = Expression('0.5 - (1/pi)*atan(50*( pow((x[0]-5),2) + pow((x[1]-5),2) +
pow((x[2]-5),2) - 1.8 ) )', degree=2)↪→

124

125 # Brain simulations
126 mesh= Mesh("brain.xml")
127 tumour_indicator = Expression('0.5 - (1/pi)*atan(50*( pow((x[0]-190.5),2) + pow((x[1]-294),2) +

pow((x[2]-(-2.5)),2) - 20 ) )', degree=2)↪→

128

129

130

131 # --- Code for mesh refinement in the tumour region for the cube case --- #
132

133 #PT = FiniteElement("Lagrange", mesh.ufl_cell(), 2)
134 #VT = FunctionSpace(mesh, PT)
135 #H = interpolate(tumour_indicator, VT)
136

137 #cell_markers = MeshFunction("bool", mesh, mesh.topology().dim())
138 #cell_markers.set_all(False)
139 #for cell in cells(mesh):
140 #mp = cell.midpoint()
141 #if H(mp) > 5e-03:
142 #cell_markers[cell] = True
143

144 #mesh = refine(mesh, cell_markers)
145

146 #cell_markers = MeshFunction("bool", mesh, mesh.topology().dim())
147 #cell_markers.set_all(False)
148 #for cell in cells(mesh):
149 # mp = cell.midpoint()
150 # if H(mp) > 1e-02 and H(mp) < 0.99:
151 # cell_markers[cell] = True
152

153 #mesh = refine(mesh, cell_markers)
154

155

156

157

158 # ------------------------- Tensors D and T -------------------------------- #
159

160 # Code for C++ evaluation of DTI and construction of tensor D
161 defineMatrix_code_D = """
162

163 #include <pybind11/pybind11.h>
164 #include <pybind11/eigen.h>
165 namespace py = pybind11;
166

167 #include <dolfin/function/Expression.h>
168 #include <dolfin/mesh/MeshFunction.h>
169

170

171 class Components_DT_D : public dolfin::Expression
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172 {
173 public:
174

175 // Create expression with 6 components
176 Components_DT_D() : dolfin::Expression(6) {}
177

178 // Function for evaluating expression on each cell
179 void eval(Eigen::Ref<Eigen::VectorXd> values, Eigen::Ref<const Eigen::VectorXd> x, const

ufc::cell& cell) const override↪→

180 {
181 const uint topDim = cell.topological_dimension;
182 const uint cell_index = cell.index;
183 values[0] = (*d11)[cell_index];
184 values[1] = (*d12)[cell_index];
185 values[2] = (*d13)[cell_index];
186 values[3] = (*d22)[cell_index];
187 values[4] = (*d23)[cell_index];
188 values[5] = (*d33)[cell_index];
189 }
190

191 // The data stored in mesh functions
192 std::shared_ptr<dolfin::MeshFunction<double> > d11;
193 std::shared_ptr<dolfin::MeshFunction<double> > d12;
194 std::shared_ptr<dolfin::MeshFunction<double> > d13;
195 std::shared_ptr<dolfin::MeshFunction<double> > d22;
196 std::shared_ptr<dolfin::MeshFunction<double> > d23;
197 std::shared_ptr<dolfin::MeshFunction<double> > d33;
198

199 };
200

201 PYBIND11_MODULE(SIGNATURE, m)
202 {
203 py::class_<Components_DT_D, std::shared_ptr<Components_DT_D>, dolfin::Expression>
204 (m, "Components_DT_D")
205 .def(py::init<>())
206 .def_readwrite("d11", &Components_DT_D::d11)
207 .def_readwrite("d12", &Components_DT_D::d12)
208 .def_readwrite("d13", &Components_DT_D::d13)
209 .def_readwrite("d22", &Components_DT_D::d22)
210 .def_readwrite("d23", &Components_DT_D::d23)
211 .def_readwrite("d33", &Components_DT_D::d33);
212 }
213

214 """
215

216 # Define DT components expression and matrix
217

218 d11 = MeshFunction("double",mesh,"d11S.xml.gz")
219 d22 = MeshFunction("double",mesh,"d22S.xml.gz")
220 d33 = MeshFunction("double",mesh,"d33S.xml.gz")
221 d12 = MeshFunction("double",mesh,"d12S.xml.gz")
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222 d13 = MeshFunction("double",mesh,"d13S.xml.gz")
223 d23 = MeshFunction("double",mesh,"d23S.xml.gz")
224

225 d11_file_pvd = File("d11S.pvd","compressed")
226 d22_file_pvd = File("d22S.pvd","compressed")
227 d33_file_pvd = File("d33S.pvd","compressed")
228 d12_file_pvd = File("d12S.pvd","compressed")
229 d13_file_pvd = File("d13S.pvd","compressed")
230 d23_file_pvd = File("d23S.pvd","compressed")
231

232 d11_file_pvd << d11
233 d22_file_pvd << d22
234 d33_file_pvd << d33
235 d12_file_pvd << d12
236 d13_file_pvd << d13
237 d23_file_pvd << d23
238

239

240 d = CompiledExpression(compile_cpp_code(defineMatrix_code_D).Components_DT_D(), d11 = d11, d12 =
d12, d13 = d13, d22 = d22, d23 = d23, d33 = d33, degree=2)↪→

241

242 # Diffusion tensor
243 D0 = as_matrix([ [d[0], d[1], d[2]], [d[1], d[3], d[4]], [d[2], d[4], d[5]] ])
244

245

246

247 # Code for C++ evaluation of DTI and construction of tensor T
248 defineMatrix_code_T = """
249

250 #include <pybind11/pybind11.h>
251 #include <pybind11/eigen.h>
252 namespace py = pybind11;
253

254 #include <dolfin/function/Expression.h>
255 #include <dolfin/mesh/MeshFunction.h>
256

257 class Components_DT_T : public dolfin::Expression
258 {
259 public:
260

261 // Create expression with 6 components
262 Components_DT_T() : Expression(6) {}
263

264 // Function for evaluating expression on each cell
265 void eval(Eigen::Ref<Eigen::VectorXd> values, Eigen::Ref<const Eigen::VectorXd> x, const

ufc::cell& cell) const override↪→

266 {
267 const uint topDim = cell.topological_dimension;
268 const uint cell_index = cell.index;
269 values[0] = (*t11)[cell_index];
270 values[1] = (*t12)[cell_index];
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271 values[2] = (*t13)[cell_index];
272 values[3] = (*t22)[cell_index];
273 values[4] = (*t23)[cell_index];
274 values[5] = (*t33)[cell_index];
275 }
276

277 // The data stored in mesh functions
278 std::shared_ptr<dolfin::MeshFunction<double> > t11;
279 std::shared_ptr<dolfin::MeshFunction<double> > t12;
280 std::shared_ptr<dolfin::MeshFunction<double> > t13;
281 std::shared_ptr<dolfin::MeshFunction<double> > t22;
282 std::shared_ptr<dolfin::MeshFunction<double> > t23;
283 std::shared_ptr<dolfin::MeshFunction<double> > t33;
284

285 };
286

287 PYBIND11_MODULE(SIGNATURE, m)
288 {
289 py::class_<Components_DT_T, std::shared_ptr<Components_DT_T>, dolfin::Expression>
290 (m, "Components_DT_T")
291 .def(py::init<>())
292 .def_readwrite("t11", &Components_DT_T::t11)
293 .def_readwrite("t12", &Components_DT_T::t12)
294 .def_readwrite("t13", &Components_DT_T::t13)
295 .def_readwrite("t22", &Components_DT_T::t22)
296 .def_readwrite("t23", &Components_DT_T::t23)
297 .def_readwrite("t33", &Components_DT_T::t33);
298 }
299

300 """
301

302 # Define DT components expression and matrix
303

304 t11 = MeshFunction("double",mesh,"t11S.xml.gz")
305 t22 = MeshFunction("double",mesh,"t22S.xml.gz")
306 t33 = MeshFunction("double",mesh,"t33S.xml.gz")
307 t12 = MeshFunction("double",mesh,"t12S.xml.gz")
308 t13 = MeshFunction("double",mesh,"t13S.xml.gz")
309 t23 = MeshFunction("double",mesh,"t23S.xml.gz")
310

311 t11_file_pvd = File("t11S.pvd","compressed")
312 t22_file_pvd = File("t22S.pvd","compressed")
313 t33_file_pvd = File("t33S.pvd","compressed")
314 t12_file_pvd = File("t12S.pvd","compressed")
315 t13_file_pvd = File("t13S.pvd","compressed")
316 t23_file_pvd = File("t23S.pvd","compressed")
317

318 t11_file_pvd << t11
319 t22_file_pvd << t22
320 t33_file_pvd << t33
321 t12_file_pvd << t12
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322 t13_file_pvd << t13
323 t23_file_pvd << t23
324

325

326 tmat = CompiledExpression(compile_cpp_code(defineMatrix_code_T).Components_DT_T(), t11 = t11, t12
= t12, t13 = t13, t22 = t22, t23 = t23, t33 = t33, degree=2)↪→

327

328 # Tensor of preferential directions
329 mat_T = as_matrix([ [tmat[0], tmat[1], tmat[2]], [tmat[1], tmat[3], tmat[4]], [tmat[2],

tmat[4], tmat[5]] ])↪→

330

331

332

333

334 # ---------------------- Define finite elements and function spaces --------------------------- #
335

336

337 P2 = VectorElement("Lagrange", mesh.ufl_cell(), 1) # displacement u
338 P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1) # pressure p, growth g, fraction phi_s,

concentration c_n↪→

339 TH = MixedElement([P2, P1])
340

341 V = FunctionSpace(mesh, TH) #(u,p)
342

343 W = FunctionSpace(mesh, P1) # g, phi_s, c_n
344

345

346 # ----------------------- Parameters definition ------------------------- #
347

348 # Initial and boundary values
349 c = Constant(1.0)
350 u0 = Constant((0.0, 0.0, 0.0))
351 pp = Constant(0.0)
352 TT = Constant((0.0, 0.0, 0.0))
353

354 # Simulation time and time step
355 T = 3e01 #30 days
356 num_steps = 3e02 #300 steps
357 dt = T / num_steps #1e-01 days --> 2,4 hours
358

359

360 phi_sn = Constant(0.5)
361 nu = 0.5 # day^-1
362 k = Constant(5.5e02) #(mm^4) / (MPa day)
363 K0 = k*mat_T # Conductivity tensor with DTI data
364 #K0 = as_matrix([ [k, 0, 0], [0, k, 0], [0, 0, k] ]) # Conductivity tensor isotropic
365 cn0 = Constant(0.15) # Hypoxia Threshold (dimensionless)
366 zeta = Constant(8640) # Nutrients consumption rate (1/day)
367 Sn = Constant(1e04) # Nutrients supply rate (1/day)
368 #Dn = Constant(86.4) # Nutrients Diffusion coefficient (mm^2/day)
369 #D0 = as_matrix([ [Dn, 0, 0], [0, Dn, 0], [0, 0, Dn] ]) # Isotropic diffusion tensor

92



A – Code Documentation

370 phimax = Constant(0.8)
371

372

373 # ---------------- Define Dirichlet boundary conditions for u, p, c ----------------- #
374

375 def boundary(x, on_boundary):
376 return on_boundary
377

378 bcu = DirichletBC(V.sub(0), u0, boundary)
379 bcp = DirichletBC(V.sub(1), pp, boundary)
380 bcn = DirichletBC(W, c, boundary)
381

382 bcs = [bcu, bcp]
383

384

385 # ---------------- Define functions for variational problems ------------------------ #
386

387 # Incremental displacement and pressure
388 dup = TrialFunction(V)
389 (du, dp) = split(dup)
390

391 # Test functions for displacement and pressure
392 u_, p_ = TestFunctions(V)
393

394 # Displacement and pressure (current value)
395 up = Function(V)
396 (u, p) = split(up)
397

398 # Displacement and pressure (previous iteration)
399 up_prev = Function(V)
400 (u_prev, p_prev) = split(up_prev)
401

402 # Functions for scalar field g
403 g = Function(W)
404 dg = TrialFunction(W)
405 q = TestFunction(W)
406 g_prev = Function(W)
407

408 # Functions for phi_s
409 phi_s = Function(W)
410 dphi = TrialFunction(W)
411 eta = TestFunction(W)
412

413 # Functions for c_n
414 cn = Function(W)
415 dcn = TrialFunction(W)
416 qcn = TestFunction(W)
417 cn_prev = Function(W)
418

419

420 # ------------------- Define initial conditions ------------------ #
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421

422 # Initial condition for u and p
423 up_init = Expression( ("0.0", "0.0", "0.0", "0.0"), degree=1)
424 up_prev = interpolate(up_init, V)
425

426 # Initial conditions for g and phi_s
427 g_prev = interpolate(Constant(1.0), W)
428 phi_s = interpolate(Constant(0.5), W)
429

430

431

432 # ----------------- Definition of model variables ----------------- #
433

434 # Gamma_s: tumour growth term
435 cn_g = Expression("cc > c0 ? (cc-c0) : 0", cc = cn_prev, c0 = cn0, degree=1)
436

437 def Gamma_s(phi_s, cn_g):
438 return variable(nu*phi_s*(phimax-phi_s)*cn_g)
439

440 # Gn: source term for nutrients
441 def Gn_l(phi_s, cn):
442 return variable(-zeta*phi_s*cn + Sn*(1-cn))
443

444 Gn = Gn_l(phi_s, dcn)
445

446

447 # Kinematics
448 d = len(u)
449 I = SecondOrderIdentity(u) # Identity tensor
450 F = DeformationGradient(u) # Deformation gradient F_s
451 C = RightCauchyGreen(u) # Right Cauchy-Green tensor of F_s
452

453 F_g = IsotropicGrowthTensor(u, g) # Growth part of F_s
454 F_e = ElasticPart(u, g) # Elastic part of F_s
455 C_e = ElasticRCG(u, g) # Elastic right Cauchy-Green
456

457

458 Ic, IIc, IIIc = CauchyGreenInvariants(u)
459 Ice, IIce, IIIce = Invariants(C_e) # Invariants of elastic RCG
460 J = Jacobian(u)
461 F_k = DeformationGradient(u_prev)
462 J_k = Jacobian(u_prev)
463 J_g = Jg(u, g)
464 J_e = Je(u, g)
465

466 P = Pk(u, p, g)
467 K_star = TensorPullback(K0, u)
468 T_star = VectorPullback(TT, u)
469 D_star = TensorPullback(D0, u)
470

471
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472

473

474 # --------------------- Variational problem for u and p ------------------------ #
475

476 deltat = Constant(dt)
477 L = J*p_*dx + deltat*inner(Grad(p_), K_star*Grad(p))*dx - inner(P, Grad(u_))*dx - J_k*p_*dx +

inner(T_star, u_)*ds↪→

478 j = derivative(L, up, dup)
479 problem = NonlinearVariationalProblem(L, up, bcs, J=j)
480 solver = NonlinearVariationalSolver(problem)
481

482 prm = solver.parameters
483 #info(prm, True)
484 #prm['newton_solver']['absolute_tolerance'] = 1E-8
485 #prm['newton_solver']['relative_tolerance'] = 1E-7
486 #prm['newton_solver']['maximum_iterations'] = 25
487 prm['newton_solver']['relaxation_parameter'] = 1.0
488

489 prm['newton_solver']['linear_solver'] = 'mumps'
490 #prm['newton_solver']['linear_solver'] = 'gmres'
491

492 #prm['newton_solver']['preconditioner'] = 'hypre_amg'
493 #prm['newton_solver']['krylov_solver']['absolute_tolerance'] = 1E-9
494 #prm['newton_solver']['krylov_solver']['relative_tolerance'] = 1E-7
495 #prm['newton_solver']['krylov_solver']['maximum_iterations'] = 1000
496 prm['newton_solver']['krylov_solver']['monitor_convergence'] = True
497 #prm['newton_solver']['krylov_solver']['nonzero_initial_guess'] = True
498 #prm['newton_solver']['krylov_solver']['gmres']['restart'] = 40
499 #prm['newton_solver']['krylov_solver']['preconditioner']['same_nonzero_pattern'] = True
500 #prm['newton_solver']['krylov_solver']['preconditioner']['ilu']['fill_level'] = 0
501

502

503 # ----------------------- Variational problem for nutrients -------------------- #
504

505 # Steady state solution to derive initial condition
506 dcn_staz = TrialFunction(W)
507 cn_staz = Function(W)
508 ac_staz = inner(Grad(qcn), D0*Grad(dcn_staz))*dx +

J_k*tumour_indicator*zeta*phi_s*dcn_staz*qcn*dx + J_k*tumour_indicator*Sn*dcn_staz*qcn*dx↪→

509 Lc_staz = J_k*tumour_indicator*Sn*qcn*dx
510

511 solve(ac_staz == Lc_staz, cn_staz, bcn)
512

513 cn_prev.assign(cn_staz)
514

515

516 # Variational problem
517 Fcn = J*dcn*qcn*dx - deltat*(1/(1-phi_s))*inner(K_star*Grad(p), Grad(dcn))*qcn*dx +

deltat*inner(Grad(qcn), D_star*Grad(dcn))*dx - J*cn_prev*qcn*dx -
deltat*J*tumour_indicator*Gn*qcn*dx

↪→

↪→

518 ac = lhs(Fcn)
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519 Lc = rhs(Fcn)
520

521

522

523 # ------------------- Files for data storing ------------------------------- #
524 displacement_file = File("u_nutrients.pvd")
525 pressure_file = File("p_nutrients.pvd")
526 phi_s_file = File("phi_s_nutrients.pvd")
527 g_file = File("g_nutrients.pvd")
528 cn_file = File("cn.pvd")
529 Js_file = File("Js.pvd")
530

531 Jp_k = project(J_k, W)
532

533 t = float(0)
534 (uu, pp) = up_prev.split()
535 displacement_file << (uu, t)
536 pressure_file << (pp, t)
537 phi_s_file << (phi_s, t)
538 g_file << (g_prev, t)
539 cn_file << (cn_prev, t)
540 Js_file << (Jp_k, t)
541

542

543

544 # ---------------------- Loop for time stepping --------------------------- #
545

546 n = 1
547 while(t <= T):
548

549 t+= dt
550 print("Iterazione", n, "-esima", "Tempo", t)
551

552 TT.t = t
553

554 # Solution for g
555 ag = dg*(1-deltat*(Gamma_s(phi_s, cn_g)*tumour_indicator/(3*phi_s)))*q*dx
556 Lg = g_prev*q*dx
557 solve(ag == Lg, g)
558

559 if n % 10 == 0:
560 g_file << (g, t)
561

562 g_prev.assign(g)
563

564

565 # Solution of nonlinear variational problem for u and p
566 solver.solve()
567

568 (_u, _p) = up.split()
569 Jp = project(Jacobian(_u),W)
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570

571 if n % 10 == 0:
572 displacement_file << (_u, t)
573 pressure_file << (_p, t)
574 Js_file << (Jp, t)
575

576

577 up_prev.assign(up)
578

579

580

581 # Solution for phi_s
582 aphi = J*dphi*eta*dx
583 Lphi = pow(g, 3)*phi_sn*eta*dx
584 solve(aphi == Lphi, phi_s)
585

586 if n % 10 == 0:
587 phi_s_file << (phi_s, t)
588

589

590

591 # Solution of linear variational problem for cn
592

593 solve(ac == Lc, cn, bcn)
594

595 if n % 10 == 0:
596 cn_file << (cn, t)
597

598 cn_prev.assign(cn)
599

600

601 n = n+1

97
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