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Introduction

This master thesis deals with the Stokes and the Navier-Stokes problem in a reduced order frame-
work and its extension to uncertainty quantification.
These equations are used for modeling fluid systems [41]. In the Stokes case we drop out the convec-
tive term obtaining a set of linear equations which can only describe phenomena in which inertial
forces are negligible compared to viscous forces. In the Navier-Stokes case we put this term in again,
obtaining non-linear equations, more difficult to treat but more realistic for describying physical
behaviours. In both cases we will not consider the dependency on time.
After their success in computational fluid dynamics, one of the problems that emerged is that often
the numerical simulations take too much computational time. Usually these problems are relevant
when the equations depend on some physical/geometrical parameters and we are interested in the
solution for several such parameters, as in the many-query problems or real-time simulation prob-
lems. In these cases the finite element method or finite volume method, called full order method,
are too slow and we need something faster. One of the solutions for these problems is to use the
reduced order method in which the idea is to reconstruct fastly the solution for a certain parameter
by a linear combination of precomputed solutions obtained with other parameters, knocking down
the computation cost, introducing nevertheless an additional error to the approximation.
Two algorithms are usually used for searching these solutions: the proper orthogonal decomposi-
tion(POD) and the greedy [8].
The former uses an eigenvalue problem and with a compression tecnique that retains only the most
important informations.
The latter uses an iterative approach based on searching the solutions with an error estimator.
In these methods we always have an offline phase where we solve the problem several times, ex-
ploring the space of the parameters and storing several useful quantities, such as some solutions,
matrices and vectors, making this process very expensive.
After if follow the online phase, when we have to solve the problem for a other parameter values
we use the quantities stored in the previous phase and we solve the problem fastly.
Subsequently we will introduce stocasticity and therefore uncertainty into the problem.

Uncertainty is everywhere: for example it is intrinsic in our measurements due to the noise that
can interfere with and so it has to be taken into account in our mathematical models.
Usual problems including uncertainty are the prediction of a uncertain quantity, parameter estima-
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tion, inverse problem [19].
In general we know that uncertainty is strictly related to the randomness and this last one can
philosophically be divied in two types: the one due to the noise is what we call aleatoric uncertainty
[23], the case in which the randomness is intrinsic into the problem, and the second one called
epistemic where the uncertainty arises from a lack of knowledge.
In any case we will treat mathematically both in the same way.
The uncertainty quantification is introduced in the framework of the Stokes and Navier-Stokes prob-
lem because we have said that they can depend on several geometrical or physical parameters that
in general could be aftected by some uncertainty and so randomness. In this thesis we want to
extend the work done in the elliptic case as for example in [24], [25], to the more complicated fluid
dynamics case.
In our work, following these articles, we will write a stochastic formulation of the Stokes and Navier-
Stokes equations, treating the randomness as parameters.
When we are working in a probabilistic framework we can use the information related to the dif-
ferent distributions associated to the parameters introducing some weights in the two algorithms
mentioned before, to catch the most likely parameters in several way, needed for calculating the
solutions used in the linear combination.
We note that when we introduce uncertainties we can use some methods for chosing the parameters,
such as the tensor product rule, the Monte-Carlo method, both usually expensive from a compu-
tational cost point of view, and the Smolyak rule, cheaper but less precise that the previous ones.
We will follow [36], [38], [39].
Let us conclude with the oganization of this master thesis:

• In the first chapter we will recall some notations and prerequisites useful for the covered topics.

• In the second chapter we will formulate the Stokes problem, showing the strong formula-
tion both with the Brezzi formulation and the Babuša one, and introducing a finite element
discretization afterwards.

• The third chapter is the most important one because we will introduce the reduced order
model for the Stokes problem, we will treat the inf-sup condition problem, solved with the
supremizer operator, we will explain the greedy and POD algorithm and the reduced algebraic
formulation of the Stokes equations.

• In the fourth chapter we will pass to the Navier-Stokes problem introducing the strong and
the weak formulation of it, followed by a finite element discretization. We will explain two
type of linearization tecniques necessary for treating the non-linear problem that will appear.

• In the fifth chapter we will introduce the uncertainty, formulating the problem with an intrinsic
randomness and with a weighted approach, applied both to the greedy and the POD algorithm.
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• In the sixth chapter we will explain three methods for sampling the parameters from a prob-
abilistic distribution: tensor product rule, Smolyak rule and Monte-Carlo method.

• The seventh chapter will be focused on some numerical experiments using RBniCS [3] library,
developed at SISSA mathLab. We will study some problems associated to several different
probabilistic distributions, observing the strong points and the weaknesses associated to the
methods that we have treated in the previous chapters.

• In the last chapters we will come up with a conclusion and we will propose some idea for
future works in this field.

We finally thank SISSA in Trieste where we have developed this thesis, in particular the MathLab
team that have helped us to understand the topics involved and finally the European project “H2020
ERC CoG AROMA-CFD” that made this work possible.

September 2019, Trieste and Torino
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Chapter 1

General notions about Stokes
equations

In this chapter we will recall some notions on the Stokes equations and their weak formulation with
both the Brezzi and Babuška approach, stressing important concepts such as the inf-sup condition,
really important for the reduced problem that we will see in the following chapters, while at the
end we will expose the finite element approximation with the relative algebraic problem as in [7].

1.1 The strong and the weak formulation: Brezzi’s theory

We introduce the parametric steady Stokes problem [9]. We take a 2D domain Ω ⊂ R2 with
boundary Γ. The Stokes problem is:

−ν∆u(x;µ) +∇p(x;µ) = f(x;µ) in Ω(µ),

∇ · u(x;µ) = 0 in Ω(µ),

u(x;µ) = 0 on Γw(µ),

u(x;µ) = gin(x;µ) on Γin(µ),

ν
∂u

∂n
(x;µ)− p(x;µ)n = 0 on Γout(µ),

(1.1)

where u is the velocity of the fluid, p the pressure, f a volume force field, ν a kinematic viscosity,
n is the normal unit vector of the boundary, µ = (µ1, µ2, ...) ∈ P where each µi is a physical or
geometrical parameter (we will discuss later in more details what kind of parameters we can have)
contained in a finite range and P is the set of all the parameters, x = (x, y) is the vector of the
spacial coordinates.
We have split the boundary in Γ = Γw ∪Γin∪Γout, depending on the boundary conditions imposed.
Hereafter the dependence on x will be ommitted as well as the one on µ until the next chapter.

Explaining the two equations, the first vectorial one are the Stokes momentum equations, obtained
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as the limit of the steady Navier-Stokes momentum equations when Re → 0. They are a set of
linear equations and so are easier to treat respect to the original Navier-Stokes ones.
The second one, scalar, is related to the hypothesis of incompressibility.
In fact if we remember the continuity equation for the density %:

∂%

∂t
+∇ · (%u) = 0,

supposing % ≈ constant in space and time, we obtain ∇ · u = 0.
The fourth and the fifth equations are boundary conditions that will be introduced in the weak
formulation of this problem.

Now let us pass to consider the weak formulation of the system and so let us see what are the
appropriate spaces for the test functions.
For the pressure we take a L2(Ω) space [7] but we will see why this is the right space to obtain a
meaningful weak formulation of our problem. We will define

Q := L2(Ω). (1.2)

The test space for the velocities has to be chosen according to the Dirichlet boundary conditions.
So we have to take H1

ΓD
(Ω) ×H1

ΓD
(Ω) as test space for velocities, where ΓD := Γw ∪ Γin. We will

call it:
V := H1

0,ΓD
(Ω)×H1

0,ΓD
(Ω). (1.3)

We anticipate that in a variational approach an homogeneous Neumann condition in Γout comes
naturally if we do not put any other condition.
So we are searching a solution u ∈ V .

Before continuing, we need to remember three results for a generic tensor S, a generic vector function
v and a generic scalar function q.
It holds that1 [4]

∇ · (STv) = S : ∇v + (∇ · S) · v, (1.4)

and (the Gauss theorem): ∫
Ω
∇ · (STv) dΩ =

∫
∂Ω
STv · n dΓ, (1.5)

and finally:
∇ · (qv) = ∇q · v + q∇ · v. (1.6)

Now we want to obtain the weak formulation, so let us begin from the first vectorial equation
multiplying for a velocity test function and integrating over the domain:∫

Ω
−ν∆u · v dΩ +

∫
Ω
∇p · v dΩ =

∫
Ω

f · v dΩ, ∀v ∈ V,

1with two general tensors it is defined A : B :=
∑
i,j Aij ·Bij .
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and using (1.4), (1.5) and (1.6) using as tensor S = ∇u, as vectorial function v and as scalar p,
remembering that ∇ · ∇u = ∆u we obtain:

ν

∫
Ω
∇u : ∇v dΩ−

∫
∂Ω

(
(∇u)Tv− pv

)
· n dΓ−

∫
Ω
p∇ · v dΩ =

∫
Ω

f · v dΩ, ∀v ∈ V. (1.7)

We also know that

(∇u)Tv · n =
∂u

∂n
· v,

and considering the boundary conditions and the fact that we are taking v ∈ V we have:∫
∂Ω

(
(∇u)Tv− pv

)
· n dΓ = 0.

Before moving further we need this theorem [7]:

Theorem 1. Let gin ∈ (H1/2(∂Ω))2 such that
∫
∂Ω gin · n = 0 there exists ug ∈ (H1(Ω))2 such that

gin = ug|∂Ω and ∇ · ug = 0 in Ω. ug is called lifting function.

According to this theorem we can split the solution in following way:

u = ug + u(0), (1.8)

with u(0) ∈ V .
Theoretically we know that ug exists, but practically we do not know its expression and so within
our codes we have to use some tricks related to the boundary to recover it. On the contrary u(0) is
related to differential equations so, it will became our unknown and from now on we will denote it
without any index (we will only write u).

Now the problem is to find a couple (u, p) such that:

ν

∫
Ω
∇u : ∇v dΩ−

∫
Ω
p∇ · v dΩ =

∫
Ω

f · v dΩ− 〈F g,v〉, ∀v ∈ V,

where

〈F g,v〉 = ν

∫
Ω
∇ug : ∇v dΩ.

Now we have to deal with the scalar equation of incompressibility ∇ · u = 0. We multiply it by a
pressure test function q ∈ Q and integrate:∫

Ω
q∇ · u = 0, ∀q ∈ Q.

So now it is clear why we have taken L2(Ω) for the pressure test function so that this integral makes
sense.
Using (1.8), we arrive at: ∫

Ω
q∇ · u(0) dΩ = 〈G, q〉, ∀q ∈ Q,
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where

〈G, q〉 = −
∫

Ω
q∇ · ug dΩ,

and at the end the weak problem is searching a couple (u, p) such that:
ν

∫
Ω
∇u : ∇v dΩ−

∫
Ω
p∇ · v dΩ =

∫
Ω

f · v dΩ− 〈F g,v〉, ∀v ∈ V,

∫
Ω
q∇ · u dΩ = 〈Gg, q〉, ∀q ∈ Q.

(1.9)

Now we want to rewrite this problem introducing some operators.

We define

〈F,v〉 :=

∫
Ω

f · v dΩ− 〈F g,v〉.

We introduce two bilinear forms a and b defined as:

a : V × V → R,

such that

a(u,v) := ν

∫
Ω
∇u : ∇v dΩ,

and
b : V ×Q→ R,

such that

b(v, q) :=

∫
Ω
q∇ · v dΩ.

Before the final formulation of the Stokes problem, in which we will use these operators, we have to
modify the spaces of the pressure test functions. In fact we note that in general there is a problem
with the pressures: if we take a constant c, then

∇(p+ c) = ∇p,

and so the pressure solution is known up to a constant if we search the pressure in L2(Ω). We note
that this problem is present when we have only homogeneous Dirichlet boundary conditions.
To solve the problem, we require that p belongs to L2

0(Ω), a subset of L2(Ω), where all the functions
have the property that ∫

Ω
p dΩ = 0.
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This is important because ∫
Ω
c dΩ = 0⇔ c = 0,

and so we do not have the problem of the constants anymore if we take the pressure in this space.
So the weak Stokes equations are defined in such a way:{

a(u,v) + b(v, p) = 〈F,v〉, ∀v ∈ V,
b(u, q) = 〈G, q〉, ∀q ∈ Q.

(1.10)

To introduce a theorem of existence and uniqueness we have to remind three other operators.
The first one is B : V → Q′ such that

〈Bv, q〉Q := b(v, q), ∀q ∈ Q.

So B is the divergence operator (∇·).
The second one is BT : Q→ V ′ such that

〈BT q,v〉V = b(v, q), ∀v ∈ V .

So BT is the gradient operator (∇).
The last one is A : V → V ′ such that

〈Av,w〉V = a(v,w), ∀w ∈ V .

With these operators we can observe that 2

L2
0(Ω) = L2(Ω)�kerBT ,

where / is the quotient operation and we will use this information in finite element discretization.
Now we can introduce the Brezzi theorem for the existence and uniqueness of the solution [5]:

Theorem 2. Supponing that a and b are both continuous bilinear forms and

• a is coercive on kerB, i.e. ∃α > 0 such that a(v, v) ≥ α||v||2V , ∀v ∈ kerB.

• b satisfies the inf-sup condition, i.e. ∃β > 0 such that

inf
q∈Q�kerBT

sup
v∈V

b(v, q)

||v||V ||p||Q
≥ β, (1.11)

or equivalently

∀q ∈ Q�kerBT ∃v ∈ V such that b(v, q) ≥ β||v||V ||p||Q, (1.12)

2the kernel of B is defined in such a way kerB = {v ∈ V |b(v, q) = 0, q ∈ Q}.
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so ∀F ∈ V ′, ∀G ∈ ImB we have that ∃!(u, p) ∈ (V,Q�kerBT ) solution of (1.10) and we have a
continuous dependence on the data:

||u||V ≤
1

α
||F ||V ′ +

1

β
(1 +

||a||
α

)||G||Q′ ,

||p||Q�kerBT
≤ 1

β
(1 +

||a||
α

)||F ||V ′ +
||a||
β2

(1 +
||a||
α

)||G||′Q.
(1.13)

1.2 Babuška’s theory

In this section we will see the Babuška formulation and the equivalence with the Brezzi one according
to [12].
Let us consider a general continuous bilinear form

B(·, ·) : U ×W → R,

and the problem of finding u ∈ U such that:

B(u, v) = 〈f, v〉, ∀v ∈W. (1.14)

This problem is well posed if and only if the Babuška condition holds:

inf
u∈U

sup
v∈W

B(u, v)

||u||U ||v||W
= inf

v∈W
sup
u∈U

B(u, v)

||u||U ||v||W
= βBA > 0, (1.15)

and in this case the solution is unique and it satisfies

||u||U ≤
||f ||W ′
βBA

.

For seeing the equivalence with Brezzi’s theory we take as space

U = V ×Q,

and as bilinear form
B((u, p), (v, q)) = a(u,v) + b(v, p) + b(u, q),

and
〈f, (v, q)〉 = 〈F,v〉+ 〈g, q〉.

So the Stokes problem with the Babuška formulation is to find (u, p) such that

a(u,v) + b(v, p) + b(u, q) = 〈F,v〉+ 〈g, q〉. (1.16)

The two approaches are equivalent because the functional forms with q as test function are inde-
pendent from those ones with v. So if we solve the problem splitting the equations or summing
them is equivalent. So from now on we can work interchangeably with both formulations.
This one will be very important in the reduced framework for the greedy algorithm in next chapter
but for the moment we come back to the Brezzi approach to introduce the finite element discretiza-
tion.

12



1.3 Finite element discretization with Brezzi’s formulation

Now we take two finite dimensional spaces VNδ ⊂ V and QNδ ⊂ Q for using a Galerkin approxima-
tion of the problem (1.10), with dimensions NV and Np, both multiples of Nδ [7].
In this case we search a couple (uNδ , pNδ) ∈ VNδ ×QNδ , solution of:{

a(uNδ ,vNδ) + b(vNδ , pNδ) = 〈F,vNδ〉, ∀vNδ ∈ VNδ ,
b(uNδ , qNδ) = 〈G, qNδ〉, ∀qNδ ∈ QNδ .

(1.17)

Now we would like a similar theorem to that 2 in the discrete case [5]:

Theorem 3. Assuming that a and b are both continuous bilinear forms on the discretized spaces
and

• a is coercive on kerBNδ , i.e. ∃α > 0 such that a(vNδ , vNδ) ≥ α||vNδ ||2V , ∀vNδ ∈ kerBNδ .

• b satisfies the inf-sup condition, i.e. ∃βh > 0 such that

βNδ := inf
qNδ∈

QNδ�kerBTNδ

sup
vNδ∈VNδ

b(vNδ , qNδ)

||vNδ ||VNδ ||pNδ ||QNδ
≥ βh, (1.18)

or equivalently

∀qNδ ∈ QNδ�kerBT
Nδ
∃vNδ ∈ VNδ such that b(vNδ , qNδ) ≥ βh||vNδ ||VNδ ||pNδ ||QNδ , (1.19)

so ∀F ∈ V ′Nδ , ∀G ∈ ImB
′
Nδ

we have that ∃!(uNδ , pNδ) ∈ (VNδ ,
QNδ�kerBT

Nδ
) solution of (1.17) and

we have a continuous dependence on the data:
||uNδ ||VNδ ≤

1

α
||F ||V ′Nδ +

1

βNδ

(
1 +
||a||
α

)
||G||Q′Nδ ,

||pNδ ||QNδ�kerBTNδ
≤ 1

β

(
1 +
||a||
α

)
||F ||V ′Nδ +

||a||
β2
Nδ

(1 +
||a||
α

)||G||′QNδ .
(1.20)

We introduce ANδ , BNδ , B
T
Nδ

as the restrinction of A, B, BT to the finite dimensional spaces.
The question is if, knowing that the hypotesis of theorem 2 holds, it also holds those ones of the
theorem 3 since QNδ ⊂ Q and VNδ ⊂ V .
In other words we would like that the hypothesis that hold in the infinite cases were inherited in
the discrete case so that we could use the theorem again.
But this is not possible.
In fact kerBNδ 6⊂ kerB. To show it we remember the two definitions:

kerB = {v ∈ V |b(v, q) = 0, ∀q ∈ Q}, (1.21)
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and
kerBNδ = {vNδ ∈ VNδ |b(vNδ , qNδ) = 0, ∀qNδ ∈ QNδ}. (1.22)

It is true that VNδ ⊂ V and so we have less possible candidates to stay in the kernel, but in discrete
case we have less constraints because QNδ ⊂ Q. So in general there are no relations between them
and so the bilinear form a is no coercive anymore.
It is the same for kerBT

Nδ
and so in general we also loose the inf-sup condition.

For the first case we have no other choice that suppose again that the coercivity hold also for the
finite dimensional case.
An alternative can be to suppose that the coercivity holds on the entire space V and so it would
also hold for VNδ , but this hypothesis it is not true in general.
For the second problem we can construct a Fortin operator [10] to stabilize, i.e. to recover the
stability, using for example a Taylor-Hood finite element [7] or other type of stabilisation, for
example Streamline Upwind Petrov-Galerkin(SUPG)[11].
We are talking about the inf-sup condition (1.18) because if it does not hold we have that:

∃qNδ ∈ QNδ s.t. b(vNδ , qNδ) = 0, ∀vNδ ∈ VNδ ,

and so we lose the uniqueness of the pressure solution even though we have it in the infinite
dimensional problem. These other solutions are in general called spurious pressure modes.
We will have the same problem in the reduced methods.
We conclude this section introducing the algebraic problem.[7]

For doing this we take a basis of the two spaces, for examples

{Φi}i=1,...,NV ,

for the velocities, where NV is the dimension of the velocity space and

{ψi}i=1,...,Np ,

for the pressure where Np is the dimension of the pressure space.
After we decompose our solutions onto this basis in such a way:

uNδ(x) =

NV∑
i=1

uiNδΦi(x),

and

pNδ(x) =

NV∑
i=1

piNδψi,

and introducing the matrices A,B defined in such a way

[A]ij = a(Φj ,Φi),

[B]ij = b(Φj , ψi),
(1.23)
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and the vectors FNδ , GNδ , uNδ , pNδ defined like

(FNδ)i = 〈F,Φi〉,
(GNδ)i = 〈G,ψi〉,

(uNδ)i = uiNδ ,

(pNδ)i = piNδ ,

(1.24)

we arrive at the classical finite element algebraic formulation:{
AuNδ +BT pNδ = FNδ ,

BuNδ = GNδ .
(1.25)

We can rewrite this equation introducing:

S =

[
A BT

B 0

]
,

U =

[
uNδ
pNδ ,

]
,

F =

[
FNδ

GNδ

]
.

This matrix is block symmetric due to the symmetry of A, so it has real eigenvalues. If we want
that the system SU = F has a solution, the matrix A must have all the eigenvalues different from
0.
Reading (1.25) from the first equation we have

uNδ = A−1(FNδ −B
T pNδ),

and putting it in the second equation we obtain:

BA−1BT pNδ = BA−1F + G.

In this case we have uniqueness of the solution only when kerBT = {0} that is an equivalent for-
mulation of the inf-sup condition [7].

To resume, we have seen how much is important the inf-sup condition and it will be one of the key

problem in reduced methods.

1.4 Conclusions

In this chapter we have presented the parametric Stokes equations in the strong and weak form with
an associate theorem of existence and uniqueness of the solution based on the inf-sup condition. We

15



got a formulation both with Brezzi’s theory and the equivalent Babuška’s one. In the former case
we introduce two bilinear forms while in the latter only one, linear combinations of the previous
ones.
We have finally introduced a finite element discretization with the associated linear algebraic system
and we have stressed the importance of the inf-sup condition to avoid spurious modes of pressure.
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Chapter 2

Reduced ordel modelling for Stokes
equations

In this chapter we will talk about reduced order method for Stokes equations in case of domains
with parametric geometrical dependences and parametric physical dependences such as diffusivity,
length of the domain or the angle of incidence of a flux, etc. References on this topic are in [8], [13],
[14] and [15].
In the first part we will explain what a reduced approach is and what are the benefits. Next, we
will see why we need to trace back our domain to a reference one by an affine mapping. Then we
will go into details into the creation of the reduced basis introducing the supremizer operator that
gives us velocities useful for satisfying the inf-sup condition in the reduced space. At the end we
will talk about the two main algorithms for generating the basis for the reduced spaces, the POD
and the greedy, explaining the different computational costs and scopes.

2.1 Introduction to the reduced problem

To start we want to remember the equations (1.10):{
a(u,v;µ) + b(v, p;µ) = F (v;µ), ∀v ∈ V,
b(u, q;µ) = G(q;µ), ∀q ∈ Q.

(2.1)

In this case we have two main issues:

• Ω is dependent on a vector parameter µ ∈ P. This is a problem because we need a different
mesh for all the possible parameters, that is prohibitive, and then also the quantities in the
problem depend on the geometry.
So we want to have some reference domain where we will do our simulations independently
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from µ in such a way to transpose the geometric dependence into an algebraic one and have
a general treatment of this one.

• we have some physical dependencies into the terms a or b. For example the viscosity ν can be
one of the uncertainties of the problem. In this case we have an algebraic dependence from
the beginning.

So the problem depends on µ and without any expedient the cost of one simulation is of order of
Nδ as we can see in (1.25).
Sometimes this can be too expensive and we want to reduce this cost. This is the case of a real-time
simulation and the time for a single one is too long or a many-query problem where to afford too
many simulation can be prohibitive.
The goal of the reduced method approach is to lower the cost to N � Nδ and to let these tasks
possible.
This gain has a price to pay as we will see presenting some ideas behind the reduced method.
The implementation of the method we say that is divided in two phases [8]:

• offline phase: this is the most expensive phase. Here we compute the truth solution for several
parameters chosen according to one of two algorithms called greedy and POD. The cost hence
depends on multiple of Nδ.
Whatever algorithm we chose, at the end we have N solutions whose linear span is called
“reduced space”. In addition in this phase we memorize informations associated with these
solutions and other important ones for the next phase.

• online phase: in this phase we are ready to do fast simulations and for doing them we search
the solution in the reduced space using the quantities stored before. The cost of this phase
must depend only on N and this allows to satisfy real-time simulations and many-query
problems.

2.2 General theory behind reduced order methods

In this section we will go into details of the theory of reduced order methods.[8]
First of all it is classically introduced the concept of solution manifold, i.e. the set of the solutions
of the parametrized problem under variation of the parameters µ ∈ P, where the set P can have a
continuum cardinality. With a reduced basis approach we want to approximate this manifold space
with a lower dimensional one of N elements, solutions of the problem for certain parameters.

To better understand we go deeper into the problem. In general we have to solve the equations

(2.1) varying the parameters involved. So we have a manifold of solutions:

M = {
(
u(µ), p(µ)

)
|µ ∈ P} ⊂ V ×Q,
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where each pair is a solution of a Stokes problem with a different parameter.
Usually we do not know the exact solution so we use a numerical method to approximate it and
obtain

(
uNδ(µ), pNδ(µ)

)
, called truth solution. In the same way we can obtain:

MNδ = {
(
uNδ(µ), pNδ(µ)

)
|µ ∈ P}.

The hypothesis is that MNδ approximates well M.
In our mind we want to create a N -dimensional space Vrb (that sometimes we will also denote with
VN ) that well approximates MNδ . This space is composed by N truth solutions ξi and so we can
indicate Vrb as:

Vrb = span{ξ1, ..., ξN} ⊂ VNδ .

Now we want to know how good is the approximation from this new space and for this we can see
that:

||u(µ)− urb(µ)||V ≤ ||u(µ)− uNδ(µ)||V + ||uNδ(µ)− urb(µ)||V ,

using the triangular inequality.
We point out that we have the same results for the pressure.
Let us see the different terms involved in the addition. The first one depends on the numerical
method used for searching the truth solution and so we expect that it is small enough. This cames
from the assumption thatMNδ approximates wellM. Usually we suppose that the second one has
an exponential decay with N , i.e. augmenting the number of basis we obtain a better approximation.
Before introducing the two algoritms for the generation of the basis we need to consider the geometric
dependency to obtain a general formulation to work with.
In this one the problem will be refered to a reference domain. This is important for what we have
said before but also because the reduced space is generated from the span of several solutions and
so we need a common domain to compare and combine them.

2.3 Pull back to the reference domain

The first step for going in this matter is that we can have geometrical and/or physical dependencies.
We will reformulate the problem such that we will only have an algebraic dependency that we will
treat in a unique way.
Let us begin with the geometrical dependency. The physical dependency will be implied until

otherwise specified.
To start we have to split the domain Ω in several subdomains such that Ω =

⋃R
r=1 Ωr and we rewrite

the several functional forms according to the separation.
We can first note that:

∇u : ∇v =
∑
k,j=0

∂uk
∂xj

∂vk
∂xj

=
∑
k,j=0

∑
i=0

δij
∂uk
∂xi

∂vk
∂xj

,
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so we have, introducing vij = νδij , using the Einstein convention for the indices:

a(u,v) =

R∑
r=1

∫
Ωr
vij

∂u

∂xi
· ∂w

∂xj
dΩ,

and for the other forms:

b(v, p) = −
R∑
r=1

∫
Ωr
p∇ ·w dΩ,

F (v) =

R∑
r=1

∫
Ωr

f · v dΩ.

Now we want to trace back each domain Ωr(µ) to a reference one Ω̂r with an affine trasformation
of the form:

x̂ = T (x) = Gr(µ)x + gr, 1 ≤ r ≤ R ,

Now using the chain rule:
∂

∂xi
=
∂x̂j
∂xi

∂

∂x̂j
= Grij(µ)

∂

∂x̂j
,

and introducing
û(x̂) := u(T−1(x̂)), p̂(x̂) := p(T−1(x̂)), (2.2)

the bilinear forms become:

â(û, v̂) =

R∑
r=1

∫
Ω̂r

∂û

∂x̂i

(
Grii′νi′j′G

r
jj′ det(Gr(µ)−1)

) ∂ŵ

∂x̂j
dΩ̂, ∀ŵ ∈ V̂ ,

and

b̂(v̂, p̂) = −
R∑
r=1

∫
Ω̂r
p̂
(
Grij(µ)det(Gr(µ))−1

)∂ŵj
∂x̂i

dΩ̂, ∀ŵ ∈ Q̂,

and the force term that we remember is composed by 〈F, ŵ〉 = 〈Fs, ŵ〉+ 〈F 0, ŵ〉 becames

〈F̂s, ŵ〉 =
R∑
r=1

∫
Ω̂r

(
f̂ rdet(Gr(µ))−1

)
ŵ dΩ̂,

〈F̂ 0, ŵ〉 = −â(L̂gin , ŵ).

Now we redefine:

ν̂rij(µ) := Grii′(µ)νi′j′G
r
jj′det(G

r(µ))−1, for 1 ≤ i, i′, j, j′ ≤ 2, r = 1, ..., R,

χrij(µ) := Grijdet(G
r(µ))−1.
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Let us introduce now the terms:

Θq(i,j,r)(µ) := ν̂rij(µ), aq(i,j,r)(û, ŵ) :=

∫
Ω̂r

∂û

∂x̂i
· ∂ŵ

∂x̂j
dΩ̂,

Φs(i,j,r)(µ) := χrij(µ), bs(i,j,r)(p̂, ŵ) := −
∫

Ω̂r
p̂
∂ŵi
∂x̂j

dΩ̂,

where q(i, j, k) is a function to enumerate the different terns (i, j, k).
We have the affine decomposition hypothesis holds, i.e. that we can split in such a way:

â(û, v̂;µ) =

Qa∑
q=1

Θq(µ)aq(û, v̂), (2.3a)

b̂(p̂, ŵ;µ) =

Qb∑
s=1

Φs(µ)bs(p̂, ŵ), (2.3b)

with aq and bq two bilinear forms independent from µ such that:

aq : V̂ × V̂ → R,

bq : Q̂× V̂ → R,

where V̂ := T (V ), Q̂ := T (Q) and finally:

Θq : P→ R,
Φs : P→ R,

independent from pressure and velocity.
As we will understand in the next chapter this is a very important hypothesis to reduce the cost of
the reduced approach in the online phase.
So the problem becames to find a solution (û(µ), p̂(µ)) ∈ V̂ × Q̂ such that:{

â(û(µ), ŵ;µ) + b̂(p̂(µ), ŵ;µ) = 〈F̂ , ŵ〉(µ), ∀ŵ ∈ V̂ ,
b̂(q̂, û(µ);µ) = 〈Ĝ, q̂〉(µ), ∀q̂ ∈ Q̂.

From now on we will work into the reference domain so we will not keep the hat and it will be
implied.

2.4 Inf-sup condition problem, supremizer operator and reduced
basis

In this section we will talk about the philosophy behind the reduced method approach. We will
introduce two spaces VN ⊂ VNδ and QN ⊂ QNδ . The first space has dimension NV � NV and the
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second one Np � Np and they are a multiple of a number N . The idea is to project onto these
finite reduced spaces to obtain an algebraic problem with much less degrees of freedom, i.e. that
N � Nδ.
The first task is how to chose the two spaces, that is what basis is the optimal one to mantain the
algebraic stability and a low approximation error.
The problem of the algebraic stability is related to the inf-sup condition. As we have said before, one
of the issues that arrives when we introduce a Galerkin approximation with the finite dimensional
spaces VNδ ⊂ V and QNδ ⊂ Q is the fact that is not true in general that the inf-sup condition holds
in the finite dimensional spaces, that is it is not true in general that:

∃β0 > 0 : β(µ) = inf
q∈QNδ

sup
w∈VNδ

b(q,w;µ)

||w||V ||q||M
≥ β0, ∀µ ∈ P. (2.4)

In a reduced approach we have the same problem because we are still doing a projection.
For this purpose we introduce the supremizer operator following [13]:

Tµ : QNδ → VNδ ,

that associates a pressure to a velocity and defined such that:

(Tµq,w)V = b(q,w;µ), ∀w ∈ VNδ , (2.5)

that is equivalent to:

Tµq = arg sup
w∈VNδ

b(q,w;µ)

||w||V
, ∀w ∈ VNδ . (2.6)

Proof. To understand this last equivalence we can think the supremizer as the operator that
associates for each fixed pressure q the relative Riesz rappresentation [6] of the operator

f(w;µ) := b(q,w;µ).

This cames directly from the definition (2.5).
So for the Riesz theorem [6] we know that

||f ||V ′ = ||Tµq||V ,

but

sup
w∈VNδ

f(w)

||w||
= ||f ||V ′ = ||Tµq||V =

f(Tµq)

||Tµq||V
,

and so

Tµq = arg sup
w∈VNδ

f(w)

||w||V
, ∀w ∈ VNδ .

Now we want to create two reduced spaces for velocity and pressure such that the inf-sup condition
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holds, using the supremizer operator. In this case we take a discretization of the parametric space
P that we call PµN = {µ1,µ2, ...,µN}. We suppose to have the solution of the Stokes problem
with each of these parameters, so we know u(µ) and p(µ), ∀µ ∈ PµN . We will call for simplicity
u(µi) := ζi and p(µi) := ξi.
So the reduced space for the pressure is:

QN := span{ξi : i = 1, ..., N}, (2.7)

while for the velocity:

V µN := span{ζi, i = 1, ..., N ;Tµξi, i = 1, ..., N}. (2.8)

We can see now that this space depens on the parameter µ due to the dependence on N in the
supremizer operator. We will understand that the velocities Tµξi that we have added are such that
the inf-sup condition holds.
So the reduced problem consists in finding the solution (uN (µ), pN (µ)) ∈ V µN ×QN such that:{

a(uN (µ),w;µ) + b(pN (µ),w;µ) = 〈F,w〉, ∀w ∈ V µN ,
b(q,uN (µ);µ) = 〈G, q〉, ∀q ∈ QN .

(2.9)

Now we define the inf-sup condition for the reduced basis as:

βN (µ) = inf
q∈QN

sup
w∈V µ

N

b(q,w;µ)

||w||V ||q||Q
. (2.10)

Theorem 4. Defined the inf-sup condition for the reduced problem as in (2.10) and that one for
the truth problem as in (1.18) we have that:

βN (µ) ≥ βNδ(µ) ≥ β0 > 0, ∀µ. (2.11)

Proof.

βNδ(µ) = inf
q∈QNδ

sup
w∈VNδ

b(q,w;µ)

||w||V ||q||Q
≤ inf

q∈QN
sup

w∈VNδ

b(q,w;µ)

||w||V ||q||Q
, (2.12)

because QN ⊂ QNδ . Now we want to change VNδ into VN and for this purpose we need the
supremizer and in particular the equation (2.6):

inf
q∈QN

sup
w∈VNδ

b(q,w;µ)

||w||V ||q||Q
= inf

q∈QN

b(q, Tµq;µ)

||Tµq||V ||q||Q
≤ inf

q∈QN
sup

w∈VN

b(q,w;µ)

||w||V ||q||Q
= βN (µ),

and the last inequality is due to the fact that we have put the supremizer in the reduced space.
Now we want to rewrite the space V µN to obtain an algebraic formulation. So we remind the affine
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decomposition of the bilinear form b:

b(p,w;µ) =

Qb∑
s=1

Φs(µ)bs(p,w), (2.13)

and so we expect the same decomposition of:

Tµξ =

Qb∑
q=1

Φq(µ)T qξ.

With this decomposition we can rewrite in a more compact way:

V µN = span

{
σi :=

Q
b∑

k=1

Φk(µ)σki, for i = 1, ..., 2N

}
,

where Q
b

= Qb + 1,ΦQ
b

= 1.
For i = 1, ..., N :

σki = 0, for k = 1, ...., Qb,

σ
Q
b
i

= ζi = uN (µi),

while for i = N + 1, ..., 2N :

(σki,w)V = bk(ξi−N ,w), ∀w ∈ VNδ , for k = 1, ..., Qb,

σ
Q
b
i

= 0.

With this basis we can search the solutions in the reduced space with this form:

uN (µ) =

2N∑
j=1

uNj (µ)σj , (2.14a)

pN (µ) =
N∑
j=1

pNj (µ)ξj . (2.14b)

For finding the coefficients uNj and pNj we introduce this decomposition in the reduced problem
(2.9) obtaining: { ∑2N

j=1A
µ
ijuNj (µ) +

∑N
k=1B

µ
ikpNk(µ) = Fµi , 1 ≤ i ≤ 2N,∑2N

j=1BjmuNj (µ) = Gµl , 1 ≤ m ≤ N,
(2.15)
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where we have introduced the matrices Aµ, Bµ and vectors Fµ, Gµ such as:

Aµij =

Qa∑
k=1

Q
b∑

k′=1

Q
b∑

k′′=1

Θk(µ)Φk′(µ)Φk′′(µ)a(σk′i,σk′′j)
k, 1 ≤ i, j ≤ 2N,

Bµil =

Qb∑
k=1

Q
b∑

k′=1

Φk(µ)Φk′(µ)b(σk′i, ξl)
k, 1 ≤ i ≤ 2N, 1 ≤ l ≤ N,

Fµi =

Q
b∑

j=1

Φj(µ)〈F,σk′i〉, 1 ≤ i ≤ 2N,

Gµl = 〈G0, ξl〉, 1 ≤ l ≤ N.

So we can reconduce our problem to the algebraic one:(
Aµ Bµ

BµT 0

)(
uN (µ)
pN (µ)

)
=

(
Fµ

Gµ

)
. (2.16)

So in this case we have a vector of dimensions of order of N with respect to before that was of order
of Nδ.
Now we want to discuss a little more the computational cost of finding this solution and understand
the importance of the affine decomposition hypothesis.
This hypothesis is significant in the online phase when we are solving (2.16). If we see the de-
composition of the several terms involved in the equations we can compute in the offline phase the
terms that are independent from µ such as a(σk′i,σk′′j)

k, 〈F,σk′i〉, b(σk′i, ξl)k and store them. In
the online phase we reconstruct the different terms involved in the system with a cost that scales
with O((Qa +Qb)) and we solve the system with a cost of O(N), independent from Nδ.
When this assumption does not hold there are other tecniques such as EIM and DEIM [20], [21],
two linearization tecniques for obtaining the affine decomposition again.

2.5 Greedy and POD algorithms

Now we want a method to effectively generate the reduced spaces for velocity and pressure. To do
this there are two classical algorithms: the greedy algorithm and the proper orthogonal decomposi-
tion (POD) one.
To explain them we have to discretize the space of the parameters P with a discrete space Ph ⊂ P
obtained taking a finite number of parameters according to some rule. Several methods are available
to do that and in particular in the weighted approach this is one of the problems that we treat. In
any case we expect that the space Mδ(Ph) = {

(
uNδ(µ), pδ(µ)

)
|µ ∈ Ph} well approximates Mδ.
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2.5.1 Proper Orthogonal Decomposition (POD)

In this case the goal is to project the velocity solution that, as we have said, belongs to VNδ , into a
space VN such that this one minimizes the quantity:√

1

M

∑
µ∈Ph

inf
vrb∈VN

||uNδ(µ)− vrb||2V , (2.17)

where M is the cardinality of Ph. This error is called projection error. So we are searching the
solution that minimizes the `2 norm distance between the truth solution and the reduced solution.
For doing this we will follow the work of [16].
In the case of Stokes equations we have the same goal for the pressure but the treatment is similar to
the velocity one and so we will treat only this last one. We note that we do not write them together,
as a pair, because we are searching a basis for the velocity and one for the pressure, separately.
We first chose the parameters µ1,µ2, ...,µM composing Ph and obtain the corresponding solutions
uNδ(µ1),uNδ(µ2), ...,uNδ(µM ). We will denote

ψm := uNδ(µm).

For searching the optimal space we have to introduce the linear and symmetric operator:

C(vδ) :=
1

M

M∑
m=1

(vδ,ψm)Vψm,

with vδ ∈ VM := span{uNδ(µ)|µ ∈ Ph}.
Due to the symmetry we know that we have a sequence of eigenvalues and normalized eigenfunctions
(λn, ξn) ∈ R× VM of C (so with ||ξi||V = 1) that form a basis, satisfying

(C(ξn),ψi)V = λn(ξn,ψi)V , 1 ≤ i ≤M. (2.18)

After we have solved this eigenvalue problem, we order the eigenfunctions according to the decreasing
value of the related eigenvalue λ1 ≥ λ2 ≥ ... ≥ λM ≥ 0. After this sorting we take the first N
eigenfunctions and their spanned space will be the reduced space VN .
To explain this truncation we first introduce the projection operator PN : V → VN defined as:

PN (f) =
N∑
i=1

(f , ξi)V ξi.

We want to prove that: √√√√ 1

M

M∑
i=1

||ψm − PN (ψm)||2V =

√√√√ M∑
i=N+1

λi. (2.19)

Proof.
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1

M

M∑
m=1

||ψm − PN (ψm)||2V =
1

M

M∑
m=1

||
M∑
n=1

(ψm, ξn)V ξn −
N∑
n=1

(ψm, ξn)V ξn||2V =

1

M

M∑
m=1

||
M∑

n=N+1

(ψm, ξn)V ξn||2V =
1

M

M∑
m=1

(
M∑

n=N+1

(ψm, ξn)V ξn,
M∑

j=N+1

(ψm, ξj)V ξj)V =

1

M

M∑
m=1

M∑
n=N+1

M∑
j=N+1

(ψm, ξn)V (ψm, ξj)V (ξn, ξj)V ,

and for the ortonormality we have that (ξn, ξj)V = δnj and so:

M∑
m=1

M∑
n=N+1

M∑
j=N+1

(ψm, ξn)V (ψm, ξj)V δnj =
M∑
m=1

M∑
n=N+1

(ψm, ξn)2
V ,

but we know that
∑M

n=1(ξn,ψm)Vψm = λnξn, so doing the scalar product with ξn we obtain:

M∑
m=1

(ξn,ψm)2
V = λn||ξn||2V = λn,

for the normality of ξn. Introducing this equivalence in the previous one we obtain:

1

M

M∑
m=1

||ψm − PN (ψm)||2V =
M∑

n=N+1

λn.

So it is clear that if we recall how the eigenfunctions have been ordered, the choice of the basis has

been done to minimize the error of projection along all the possible spaces using the eigenvalues as
indicators.
However we note that at the beginning we do not know the proper choice of M and N . For the
first value we can say that we take the value such that Ph well approximates P in a sense that we
have to choose. On the other hand for searching N we can use an energy function E(N) =

∑N
i=1 λi

and we take the N such that
E(N) ≥ fixed tolerance.

We can now pass to the algebraic formulation.

For introducing it we need the snapshot matrices, those containing on each column the vector of
the different degrees of freedom corresponding to the solutions varying the parameters:

Su :=

[
u(µ1)|u(µ2)|...|u(µM )

]
∈ RNu×M , Sp :=

[
p(µ1)|p(µ2)|...|p(µM )

]
∈ RNp×M ,
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and also the mass matrices:

(Xu)ij :=

(
φj ,φi

)
V

, (Xp)ij :=

(
ξj , ξi

)
Q

,

where {φi}
Nδ
i=1, {ξi}

Nδ
i=1 are the Lagrangian basis of the truth problem respectively for velocity and

pressure.
Next, we introduce the matrices Cu, Cp associated to the relative operator:

Cu := STuXuSu ∈ RM×M , Cp := STp XpSp ∈ RM×M . (2.20)

So the eigenvalue problem can be solved computing:

Cuψ
n
u

= λnuψ
n
u
, Cpξ

n
p

= λnpξ
n
p
, (2.21)

and the vectors ψn
u

and ξn
p

contain the values with respect to the degrees of freedom.

Finally we reconstruct the reduced basis functions {χ
i
}i=1,...,Nu for the velocity and {ζi}i=1,...,Np for

the pressure in the following way:

χ
i

=
1√
λui
Suψ

i
u
, ζ

i
=

1√
λpi
Spξ

i
p
. (2.22)

2.5.2 Greedy algorithm

As we have just seen, in the POD algorithm we obtain all the basis at the same time and this
requires M evaluations of the truth solution. Sometimes this can be too expensive and so we need
other approaches. In the greedy one we do several iterations and in each one we add one new basis,
each time solving a truth problem.
We will present the algorithm as presented in [14].
We first introduce the general idea for this type of algorithm and we will go into detail later for the
Stokes equations.
To run the algorithm we need an error estimator ∆Nδ

N (µ) such that

||uδ(µ)− urb(µ)||V ≤ ∆Nδ
N (µ),

where uδ is the truth solution of a generic problem, urb is the reduced solution of this one and V is
the space where the solution u is defined.
In the case of the Stokes equations we will see that u will be the pair of velocity and pressure.
We require that this error estimator is also sharp, i.e.

∃C > 0 such that C ·∆Nδ
N (µ) ≤ ||uδ(µ)− urb(µ)||V ,

for having the complete control over the error from above and below.
The main characteristic of the error estimator is that it has to be cheap to be computed.
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Then passing to the algorithm, it works in this way: we begin searching randomly a parameter µ1,
so a truth solution uδ(µ1) and creating V 1

N := span{uδ(µ1)}; after when we are at the generic n-th
step, we have a n − 1 < N dimensional space V n−1

N := span{uδ(µ1), uδ(µ2), ..., uδ(µn−1)} and we
add to this space a function according to the following rule: we select the parameter µn such that:

µn = arg max
µ∈Ph

∆Nδ
n−1(µ),

so we search the solution uδ(µn) and finally we add it to V n−1
N to create the space:

V n
N := span{uδ(µ1), uδ(µ2), ..., uδ(µn−1), uδ(µn)}.

We repeat this operation until the estimator is under a certain tolerance for all the parameters in
the sample space.
We note in fact that ∆Nδ

N (µ) changes according also to the reduced solution created with the V n−1
N ,

as well as the change of the parameter, and this is the reason why we do successive iterations.
Now we note the two main differences between a POD algorithm and a greedy one.

In the first one we are minimizing the error with a `2 norm, that we have discretized with a finite
sum, while in the case of the greedy we are working with a `∞ norm. So the reduced basis that
we obtain will be usually different. The second difference is that in the POD case we have to solve
an eigenvalue problem depending on M so we cannot take Ph too big. Instead in the greedy case
we have to evaluate the error estimator several times but this is cheap. The expensive phase is the
evaluation of N truth solutions and so we can afford a bigger space Ph.
Another difference is that if we want to add other elements to the reduced space, in the POD case
we have to compute the eigenvalue problem again and this is very expensive. In the greedy case we
have only one additional problem to solve.
So it seems that the greedy algorithm is always better and we could wonder why the POD algorithm
is used. The fact is that in general we do not know the error estimator that is specific of the equations
that we are solving. On the contrary the POD approach works in general and so it gives us always
a reduced basis space to our problem.

Formalism behind the greedy algorithm

Let us introduce the space Y := V × Q, the pair of pressure and velocity U = (u, p) ∈ Y and the
norm:

||U||Y := (||u||2V + ||p||2Q)1/2,

induced by the scalar product:

(V,W)Y := (v,w)V + (p, q)Q,

for V = (v, p) and W = (w, q).
As we can see, in this case the solution u that we have used before is now u = U = (u, p).
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We can define in the same way UNδ = (uNδ , pNδ) ∈ YNδ = VNδ ×QNδ and UN = (uN , pN ) ∈ YN =
VN ×QN .
As we have said before we have to take M parameters for chosing the future elements of the basis
and for doing this we will use the error estimator, that in this case is such that:

||UNδ(µ)−UN (µ)||Y = (||uNδ(µ)−uN (µ)||2V +||pNδ(µ)−pN (µ)||2Q)1/2 ≤ ∆Nδ
N (µ), ∀µ ∈ P, ∀N,Nδ.

We will see later the expression of this estimator.
Now let us take the maximum number of basis Nmax that we desire, a tolerance for the error εrbtol
and a training sample Ph ⊂ P, of cardinality M .
This is the greedy algorithm:

1 choose at random µ1 ∈ Ph and create S1 = {µ1}
2 set QN1 = span{ξ1 := pNδ (µ1)} V N1 = span{ζ1 := uNδ (µ1), T

µ1
p ξ1}

3 for i = 2 : Nmax
4 µi = argmaxµ∈Ph(µ)

5 εi−1 = ∆N
i−1(µi)

6 if εi−1 ≤ εrbtol
7 Nmax = i− 1
8 end

9 Si = Si−1 ∪ µi
10 QNi = QNi−1 + span{ξi := pNδ (µi)}
11 XN,µ

i = XN,µ
i−1 + span{ζi := uNδ (µi), T

µi
p ξi}

12 end

So at each iteration the algorithm selects a couple (ζi, ξi) and adds it to the previous space generated
by the span of the previous solutions founded. The solution is selected in such a way that it
maximizes the error between the truth solution and the reduced one generated with the reduced
space of the previous iteration. The main fact is that this error is estimated by ∆N

i−1(µi) that has
to be inexpensive. We can also note that we can afford a larger dataset of Ph. In fact in this case
we only compute the truth problem or Nmax times or until we do not reach the convergence but
this can be only a number of times i ≤ Nmax.
We finally note that the reduced space for the velocity contain also the supremizers.

We pass now to determinate the error estimator using a Babuška approach for the Stokes equations.
In particular we will use the two equations (1.14) and (1.16). We note that there are two other
ways to work on the problem, explained in [17] and [18].
As we have done previously we introduce a bilinear form B : Y × Y → R such that:

B(V,W;µ) := a(v,w;µ) + b(p,w;µ) + b(q,v;µ), (2.23)

and a linear form f : Y → R such that:

f(W) := F (W) + g(q), (2.24)

30



where V := (v, p) and W = (w, q).
We can also introduce the continuity constant:

γ(µ) = sup
V∈Y

sup
W∈Y

B(V,W;µ)

||W||Y ||V||Y
< +∞, ∀µ ∈ P. (2.25)

and the Babuška inf-sup stability condition:

∃βb0 > 0 such that βb(µ) := inf
W∈Y

sup
V∈Y

B(W,V;µ)

||W||Y ||V||Y
≥ βb0, ∀µ ∈ P. (2.26)

These two constant are needed for the well posedness of the Stokes problem formulated with the
Babuška formulation.
We can define the same constant in the case of the finite element space and the reduced space and
we call them:

βbNδ(µ) := inf
W∈Y Nδ

sup
V∈Y Nδ

B(W,V;µ)

||W||Y ||V||Y
, βbN (µ) := inf

W∈Y N
sup

V∈Y N

B(W,V;µ)

||W||Y ||V||Y
.

To satisfy the stability in the reduced case we need this condition holds:

βbN ≥ βbNδ ≥ β
b
0.

Now we introduce the residuals ru(·;µ) and rp(·;µ) defined as:

ru(w;µ) := F (w)− a(uN ,w;µ)− b(pN ,w;µ) = a(eu(µ),w;µ) + b(ep(µ),w;µ), (2.27a)

rp(q;µ) := g(q)− b(q,uN ;µ) = b(q, eu;µ), (2.27b)

with

eu(µ) := uNδ − uN ,

ep(µ) := pNδ − pN .

Using the definition of βNδ we have:

βbNδ(µ)||UNδ(µ)−UN ||Y ≤ sup
W∈Y Nδ

B(UNδ −UN ,W;µ)

||W||Y
,

and introducing r(W;µ) := ru(w;µ) + rp(q;µ) and its dual norm:

||r(·;µ)||Y ′ := sup
V∈YNδ

r(V;µ)

||V||Y
,

noting that:
B(UNδ(µ)−UN ,W;µ) = r(W;µ) ∀W ∈ YNδ
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we obtain:

||UNδ(µ)−UN (µ)||Y ≤
||r(·;µ)||Y ′
βLB(µ)

:= ∆Nδ
N (µ),

where βLB is a lower bound of the inf-sup constant βbNδ .
We can rewrite this inequality in a decoupled way:

||uNδ(µ)− uN (µ)||2V + ||pNδ − pN ||
2
Q ≤

1

β2
LB(µ)

(
||ru(·;µ)||2V ′ + ||rp(·;µ)||2Q′

)
,

with

||ru(·;µ)||V ′ := sup
w∈VNδ

ru(w;µ)

||v||V
, ||rp(·;µ)||Q′ := sup

q∈QNδ

rp(q;µ)

||q||Q
,

and these two norms are such that:

||r(·;µ)||2Y ′ = ||ru(·;µ)||2V ′ + ||rp(·;µ)||2Q′ . (2.28)

So now we know that the posterior error bound is:

∆Nδ
N (µ) :=

||r(·;µ)||Y ′
βLB(µ)

. (2.29)

For the βLB we refer to the appendix of [14] where a SCM approach is used while now we will
explain how to compute the residual norm.
For this last part in which we will find the norm of the residual we will introduce the Riesz rep-
resentation of ru(·;µ) and rp(·;µ) that is the two vectors êu(µ) ∈ VNδ and êp(µ) ∈ QNδ such
that:

(êu(µ),w)V = ru(w;µ), ∀w ∈ VNδ ,
(êp(µ), q)Q = rp(q;µ), ∀q ∈ QNδ .

So according with what we have written in (2.27a) and (2.27b) we obtain:

a(eu(µ),w;µ) + b(ep(µ),w;µ) = (êp(µ),w)V , ∀w ∈ VNδ , (2.30)

b(q, e(µ);µ) = (êp(µ), q)Q, ∀q ∈ QNδ , (2.31)

and in addition from the Riesz theorem we know that:

||ru(·;µ)||V ′ = ||êu(µ)||V , ||rp(·;µ)||Q′ = ||êp||Q.

The next step is to suppose the affine decomposition of B(V,W;µ) =
∑Qa+2Qb

q=1 Θ̂(µ)Bq(V,W)
where

Θ̂q(µ) = Θq(µ), q = 1, ..., Qa,

Θ̂q+Qa(µ) = Θ̂q+Qa+Qb(µ) = Φq(µ), q = 1, ...Qb,
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and

Bq(V,W) = aq(v,w), q = 1, ..., Qa,

Bq(V,W) = bq−Qa(p,w), q = Qa + 1, ..., Qa +Qb,

Bq(V,W) = bq−Qa−Qb(q,v), q = Qa +Qb + 1, ..., Qa,+2Qb,

remembering (2.3a) and (2.3b).
Denoting our pair of solutions UN = (uN (µ), pN (µ)) ∈ R3N and using the decomposition that we
have introduced in (2.14a) and (2.14b) we obtain:

r(W;µ) = F (W)− B(UN (µ),W;µ) = F (W)−
3N∑
j=1

UNj(µ)

Q̂∑
q=1

Θ̂q(µ)B(Φj ,W), (2.32)

with Q̂ = Qa + 2Qb and

Φj := (σj , 0), j = 1, ..., 2N,

Φj := (0, ξj), j = 2N + 1, ..., 3N.

Introducing now ê(µ) := (êu(µ), êp(µ)) we obtain

(ê(µ),W)Y = (êu(µ),w)V + (êp(µ), q)Q =

F (W)−
3N∑
j=1

UNj(µ)

Q̂∑
q=1

Θ̂q(µ)B(Φj ,W),

and so we have that:

ê(µ) = F +

Q̂∑
q=1

3N∑
j=1

Θ̂q(µ)UNj(µ)B̂qj , (2.33)

where F ∈ YNδ , B̂
q
j ∈ YNδ and they are such that:

(F ,W)Y = F (W), ∀W ∈ Y Nδ ,

(Bqj ,W)Y = −B(Φj ,W), ∀W ∈ Y Nδ , 1 ≤ n ≤ 3N, 1 ≤ q ≤ Q̂.

So we have that:

||ê(µ)||2Y =
(
F +

Q̂∑
q=1

3N∑
j=1

Θ̂(µ)UNj(µ)Bqj ,F +

Q̂∑
q′=1

3N∑
j′=1

Θ̂′(µ)UNj′(µ)Bq
′

j′

)
Y

= (2.34)

(F ,F)Y +

Q̂∑
q=1

3N∑
j=1

Θ̂q(µ)UNj(µ)
{

2(F ,Bqj )Y +

Qa∑
q′

N∑
j′

Θ̂q′(µ)UNj′(µ)(Bqj ,B
q′

j′ )Y

}
. (2.35)
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So in the offline phase we solve for F and Bqj and we can compute the residual norm. But if we store
these quantities we can use them in the online phase for an estimation of the error in the case we
are not dealing with a benchmark simulation where we know the real solution in the continuum. As
we see, to estimate the residual norm in the online phase we need to compute Θ̂q(µ) for 1 ≤ q ≤ Q̂
and UNj for 1 ≤ j ≤ 3N and we need to do all the multiplications and sums. So at the end the

computation cost is O(Q̂29N2) which is independent from Nδ.

2.6 Conclusions

In this chapter we have seen how to treat the parametric Stokes equations introducing the pull
back to a reference domain in the case of geometrical dependency of the problem, to convert it
into an algebraic one. We have subsequently presented the reduced methods explaining the benefits
of splitting the simulation process in an offline and an online phase and how a reduced basis, the
main element in these methods, has to be in general. In particular we have definied the supremizer
operator and we have seen that it is important to use it for creating a reduced space so that the
inf-sup condition holds.
In the final sections we have explained two algorithms for the generation of the reduced basis: the
greedy algorithm and the POD one.
They lead to different results and have different properties: the former uses a L∞ norm with an
iterative approach, usually cheap, to select the basis and requires an error estimator dependent from
the problem we deal with, while the POD works using a projection with a L2 norm and it does not
need anything but can be very expensive.
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Chapter 3

Reduced order modelling for Steady
Navier-Stokes equations

In this chapter we will talk about the steady Navier-Stokes equations with some geometrical and/or
physical parameters. The main difference with the Stokes problem is the presence of the convective
term that introduces some non-linearity but makes the equations more realistic to describe some
phenomena.
The chapter is organized as follows: in the first part we will introduce the strong formulation
of the equations following [37], the weak one following [16] and after we will study the Galerkin
approximation with numerical approaches to non linear problems, according to [37]. At the end we
will work in a reduced framework using a POD approach, coming back to [16].

3.1 The steady Navier-Stokes problem

The equations that we will treat are a semplification of the general Navier-Stokes one in the case
we suppose that the solution does not depend on time [41].
We suppose to work with a domain Ω ⊂ Rd where d = 2, 3 and Γ is the boundary. The Navier-Stokes
equations read as follows:

−ν∆u(x;µ) + (u(µ) · ∇)u(µ) +∇p(x;µ) = f(x;µ) in Ω(µ),

∇ · u(x;µ) = 0 in Ω(µ),

u(x;µ) = 0 on Γw(µ),

u(x;µ) = gin(x;µ) on Γin(µ),

ν
∂u

∂n
(x;µ)− p(x;µ)n = 0 on Γout(µ),

(3.1)

where u is the velocity of the fluid, p the pressure, f a volume force field, ν a kinematic viscosity,
n is the normal unit vector of the boundary, µ = (µ1, µ2, ...) ∈ P where each µi is a physical or
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geometrical parameter and P is the set of all the parameters, x = (x, y) is the vector of the spacial
coordinates.
We have split the boundary in Γ = Γw ∪Γin∪Γout, depending on the boundary conditions imposed.
For our experiments we will take f = 0 for an easier treatment.
Hereafter the dependence on x will be omitted.

We note firstly that by comparing the Navier-Stokes equations with respect to the Stokes ones they
also present a convective term u · ∇u. This allows to model other physical phenomena that with
the Stokes equations are not possible such as the recirculation zone, separation of the flow, as main
examples. Mathematically this term introduces a non-linearity in the problem that needs some
treatments in the algebraic problem, for example a linearization, as we will see in the following
sections.
Now we introduce the Reynolds number as

Re = L|u|/ν,

where L is a characteristic length of the domain while u is a characteristic velocity. In our cases we
will take Re ∈ [0, 100] because we will use a standard finite element method for finding a numerical
solution and if we increase too much this number we have problem of instability of the numerical
solution.
This term appears clearly when we are working with the adimenzionalized Navier-Stokes equation
and enshrines the regime of the flow and so its behavior [41].
To begin with the weak formulation of the problem, first of all we introduce a parametric map

T : Ω(µ)→ Ω̂

with Ω̂ a reference domain independent from µ and this transformation is a bijection such that
T (Ω;µ) = Ω̂. As we have explained before we can split our domain Ω in several subdomains Ωr,
create a map T r for each of these ones and define T |Ωr = T r.
After we denote with V and Q respectively the velocity and pressure test space defined over Ω̂ such
that:

V := H1
0,ΓD

(Ω̂), Q := L2(Ω̂),

where ΓD := Γin ∪ Γw. We can equip V and Q with respectively the H1-seminorm equivalent to
the H1-norm if ΓD 6= ∅. For the weak formulation we work in the same way that in the Stokes case
and we end up with the following problem: to find the pair (u, p) ∈ V ×Q such that:{

a(u,v;µ) + b(v, p;µ) + c(u,u,v;µ) + d(u,v;µ) = F (v;µ), ∀v ∈ V,
b(u, q;µ) = G(q;µ), ∀q ∈ Q,

(3.2)

where, using the Einstein convention of the repeated indices,:

a(u,v;µ) :=

∫
Ω̂

∂u

∂xi
kij(x;µ)

∂v

∂xj
dx, b(v, q;µ) := −

∫
Ω̂
qχij(x;µ)

∂vj
∂xi

dx, (3.3)
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the classical bilinear forms associated one with the diffusion and the other with pressure term.
We indicate with k a χ two terms associated with the transformation T defined as:

k(x;µ) := ν(JT (x;µ))−1(JT (x;µ))−T |JT (x;µ)|,
χ(x;µ) := (JT (x;µ))−1|JT (x;µ)|,

where JT (x;µ) ∈ Rd×d is the Jacobian matrix associated to the transformation T , and |JT (x;µ)|
is its determinant.
In addition we have a trilinear form:

c(u,v, z;µ) :=

∫
Ω̂
uiχji(x;µ)

∂vm
∂xj

zm dx. (3.4)

As we can see c is associated with the convective term. We have written it in general but in our
problem we will use c(u,u,v;µ).
If we introduce the lift function ug(µ) such that ug|Γin = gin, ug|Γ\Γin = 0, we have then the
decomposition

uΓ(µ) = u(µ) + ug(µ),

where uΓ is the velocity satisfying the boundary conditions while u is the velocity such that u|ΓD =
0. With this decomposition we have additional terms related to ug(µ):

d(u,v;µ) := c(ug,u,v;µ) + c(u,ug,v;µ),

F (v;µ) := −a(ug,v;µ)− c(ug,ug,v;µ),

G(q;µ) := −b(ug, q;µ).

We can do some additional hypothesis related to the dependency on µ of gin and ug:

• gin(µ) = Θin(µ)g̃in.

• ug(µ) = Θin(µ)ũg.

where g̃in and ũg are independent from µ. These decompositions can be useful in the reduced basis
approach for the online phase.

3.2 Finite element discretization and algebraic formulation

We want to introduce a finite element discretization of the problem (3.2) with the classical Galerkin
approach according to [16]. As usual we take two finite dimensional spaces VNδ and QNδ of dimen-
sions Nu and Np respectively, both multiple of a number Nδ. We denote with {φi}j=1,...,Nu and
{ξj}j=1,...,Np the lagrangian basis associated with them.
The problem becames, given µ ∈ P, to find a solution (uNδ , pNδ) ∈ VNδ ×QNδ such that:

a(uNδ ,vNδ ;µ) + d(uNδ ,vNδ ;µ) + b(vNδ , pNδ(µ);µ)

+c(uNδ(µ),uNδ(µ),vNδ ;µ) = F (vNδ ;µ), ∀vNδ ∈ VNδ ,
b(uNδ(µ), qNδ ;µ) = G(qNδ), ∀qNδ ∈ QNδ .

(3.5)
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For the well posedness of the problem we need as in the Stokes case that the inf-sup condition and
the continuity of the bilinear forms must hold.
Now let us pass to the algebraic formulation of the problem.
We decompose our functions with respect to the lagrangian basis in the following way:

vNδ =

Nu∑
i=1

viNδφ
i ∈ VNδ , qNδ =

Np∑
i=1

qiNδξi, (3.6)

and we can associate to this function the corresponding vector:

vNδ ↔ v =

(
v

(1)
Nδ
, v

(2)
Nδ
, ..., v

(Nu)
Nδ

)
∈ RNu , (3.7)

qNδ ↔ q =

(
q

(1)
Nδ
, q

(2)
Nδ
, ..., q

(Np)
Nδ

)
∈ RNp . (3.8)

So we can reformulate (3.5) in the algebraic way:[
A(µ) C(u(µ);µ)BT (µ)
B(µ) 0

] [
u(µ)
p(µ)

]
=

[
f(µ)

g(µ)

]
, (3.9)

where

u :=

(
u

(1)
Nδ
, u

(2)
Nδ
, ..., u

(Nu)
Nδ

)
,

p :=

(
p

(1)
Nδ
, p

(2)
Nδ
, ..., p

(Np)
Nδ

)
,

(A(µ))ij := a(φj , φi;µ) + d(φj , φi;µ),

(B(µ))ki := b(φi, ξk;µ),

(C(u;µ))ij :=

Nu∑
n=1

u
(n)
Nδ
c(φn, φj , φi;µ),(

g(µ)
)
k

:= −b(ug,Nδ , ξk;µ),

(f(µ))k := −a(ug,Nδ , φk;µ)− c(ug,Nδ ,ug,Nδ , φk;µ),

where ug,Nδ is a lifting function approximation of the real one, using a finite element discretization.
For solving (3.21) that is a non-linear system in the velocity we need to linearize it and for doing it
we will use the Picard/Oseen or the Newton iteration [40].

• Picard/Oseen iteration: in this type of approximation the velocity in the previous step is
substituted into the convective term. So in the strong form we have that:

uk+1 · ∇uk+1 ≈ uk · ∇uk+1.
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We do not do the approximation

uk+1 · ∇uk+1 ≈ uk+1∇uk,

because in this way we would solve a Stokes problem that does not take into account the non-
linearity and so the gain of using the Navier-Stokes equations that involve non-linear terms.
With this iteration we need to start with an initial guess on the velocity u(0) but none on the
pressure.
The Picard iteration costructs a sequence of solutions (uk+1, pk+1) that solves:{

−ν∆uk+1 + (uk · ∇)uk+1 +∇pk+1 = f,

∇ · uk+1 = 0.
(3.10)

In the weak formulation, we are solving:{
a(uk+1,v;µ) + d(uk+1,v;µ) + b(uk+1, pk+1) + c(uk,uk+1,v) = F (v), ∀v ∈ V,
b(uk+1, q) = 0, ∀q ∈ Q.

(3.11)

We continue the iteration until we do not reach the convergence that we have when:

||∇(uk+1 − uk)||V ≤ tol. (3.12)

In the algebraic sense this approximation is translated into solving iteratively this system:[
A(µ) C(uk(µ);µ)BT (µ)
B(µ) 0

] [
uk+1(µ)
pk+1(µ)

]
=

[
f(µ)

g(µ)

]
. (3.13)

We note that this iteration has a linear convergence [40], i.e.:

||∇(u− uk+1)||V ≤ %||∇(u− uk)||V ≤ %k||∇(u− u0)||V , (3.14)

where % is a positive constant.
The stationary solution is approximated by the one we obtain at convergence of the iterations.

• Newton iteration: this method is usually faster than the previous one when we are near the
solution. The idea behind is that the solution at the k+ 1-step does not differ too much from
the one at the k one, i.e.:

uk+1 = uk + δuk,

with δuk small.
So the convective term becames:

uk+1 · ∇uk+1 = (uk + δuk) · ∇(uk + δuk) =

uk · ∇uk+1 + (uk+1 − uk) · ∇(uk + δuk) =

uk · ∇uk+1 + uk+1 · ∇uk − uk · ∇uk + δuk · ∇δuk.
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We neglet the quadratic term in δu because is supposed to be too small with respect to the
other terms.
So the strong equation becames:{

−ν∆uk+1 + uk+1 · ∇uk + uk · ∇uk+1 +∇pk+1 = f + uk · ∇uk,

∇ · uk+1 = 0.
(3.15)

In this case we can use a solution from the Stokes problem as initial guess but the method
does not converge if we are working with high Reynolds numbers and the initial guess is not
good enough. In this case we use the Stokes problem as initial guess for a problem with low
Reynolds number and after we pass this last one as initial guess for the high Reynolds number
problem.
Passing to the weak equation:

a(uk+1,v;µ) + c(uk,uk+1,v;µ) + c(uk+1,uk,v;µ)+

b(v, pk+1;µ) + d(uk+1,v;µ) = F (v) + c(uk,uk,v;µ), ∀v ∈ VNδ ,
b(uk+1, q;µ) = 0, ∀q ∈ Q.

(3.16)

For what it concernes the algebraic problem we have to introduce this other form:

N(u;µ)nm :=

Nu∑
j=1

u
(j)
Nδ
c(φn, φj , φm;µ), (3.17)

and we obtain the system:[
A(µ) (C(uk(µ);µ) +N(uk(µ);µ))BT (µ)
B(µ) 0

] [
uk+1(µ)
pk+1(µ)

]
=

[
f(µ)

g(µ)

]
. (3.18)

For this iteration, from [40], we have a quadratic convergence:

||∇(u− uk)||V ≤ ||∇(uk−1 − u)||2V . (3.19)

In our results we will use only the Newton approach.
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3.3 Reduced model for Navier-Stokes equations

In this section we discuss the reduced formulation of the Navier-Stokes problem.
Firstly we need an affine decomposition hypothesis on the severals terms involved:

a(u,v;µ) =

Qa∑
q=1

Θq(µ)aq(u,v),

b(p,w;µ) =

Qb∑
s=1

Φs(µ)bs(p,w),

C(u,v, z;µ) =

Qc∑
q=1

ΘC
q (µ)Cq(u,v, z),

F (v)(µ) =

Qf∑
q=1

Θq(µ)F q(v).

In general if this hypothesis does not hold we can use linearization tecniques such as EIM or DEIM
[22].
As method for reducing the problem we use a POD approach as in the Stokes case of (2.21). There
are no differences in the Navier-Stokes case so we will not spend time on it but let us see the reduced
formulation of the problem following [19]. Using the POD approach we obtain two reduced spaces:

QN := span{ψn := pNδ(µ
n), n = 1, ..., N},

VN := span{ζn := uNδ(µ
n), Tµψn, n = 1, ..., N} =

span{σn, n = 1, ..., 2N | σi = uNδ(µ
i), for i = 1, ..., N, σi = Tµψi, for i = N + 1, ...2N},

where Tµ : QNδ → VNδ is the supremizer operator defined as in (2.5). As we have said, the
enrichment of the reduced velocity space with the supremizer is necessary for satisfying the inf-sup
condition. So the reduced problem is to find a pair (uN , pN ) ∈ VN ×QN :

a(uN ,vN ;µ) + d(uN ,vN ;µ) + b(vN , pN (µ);µ)

+c(uN (µ),uN (µ),vN ;µ) = F (vN ;µ), ∀vN ∈ VN ,
b(uN (µ), qN ;µ) = G(qN ), ∀qN ∈ QN ,

(3.20)

that we can write in an matrix form as:[
AN (µ) CN (uN (µ);µ)BT

N (µ)
BN (µ) 0

] [
u(µ)N
p(µ)N

]
=

[
f(µ)N
g(µ)N

]
. (3.21)
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where

(A(µ))ij := a(σj ,σi;µ) + d(σj ,σi;µ),

(B(µ))ki := b(σi, ψk;µ),

(C(uN ;µ))ij :=
2N∑
n=1

u
(n)
N c(σn,σj ,σi;µ),(

g
N

(µ)
)
k

:= −b(ug,Nδ , ψk;µ),

(f(µ)N )k := −a(ug,Nδ ,σk;µ)− c(ug,Nδ ,ug,Nδ ,σk;µ).

As in the finite element approximation this is a non-linear problem that we can solve using an
iterative method such as Picard/Oseen or Netwon.

3.4 Conclusions

In this chapter we have presented the parametric steady Navier-Stokes equations in the strong
and weak form, stressing the importance of the non-linear convective term. We have subsequently
introduced a finite element discretization with the associated non-linear algebraic system. To deal
with this non-linearity we have explained two tipes of approximation, the Picard/Osseen iteration
and the Newton one, seeing the different rates of convergence for each one.
In the last part we have exposed the reduced method for the Navier-Stokes problem, similar to the
Stokes one.
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Chapter 4

Weighted reduced order methods

When we are working with physical and in particular fluid dynamical systems, uncertainties come
naturally due to the lack of information about some quantities or due to measure errors that intro-
duce some stochasticity in the model. In these cases sometimes we can only have a probabilistic
information such as a probability density function associated to the occurence of a certain random
event. So it can be interesting to obtain some statistics and for doing this we need to do a lot of
simulations. Since this can be very expensive, the idea is to use the reduced method approach. In
this case we will see that stochasticity is treated as a set of parameters with a probability distribu-
tion. The distribution can be used for assigning an “importance” to the parameters and can result
in a reduction of the computational cost as we will see in the numerical experiments. This idea will
be realized with the weighted approach.
For what concerns the organization of the chapter, we will first introduce the stochastic formulation
of the Stokes problem and after we will introduce the weighted greedy and weighted POD algorithms,
following the works of [25], [26], [27], [28].
We cite some articles that exposes a comparison of the weighted approach with the stochastic col-
location method in [29] and [30].
We finally note that we will treat only the Stokes problem because the Navier-Stokes is analogous.

4.1 Problem setting

We first begin with the formulation of the stochastic Stokes problem [26]. First of all let us introduce
a triple (Ω,F , P ) that denotes a complete probability space where Ω is the set of the outcomes ω ∈ Ω
1, F is a σ-algebra of events and P : F → [0, 1] is a probability measure, i.e. P (Ω) = 1. In such a
framework we introduce a real-valued continuous random variable Y : (Ω,F)→ (R,B) being B the
Borel σ-algebra on R. We denote with Γ the image of Y and with ρ : Γ→ R the probability density

1We note that in the previous chapters Ω was the physical domain but now it is the probability space.
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function. We can also define the k-th moment of Y as:

E[Y k] :=

∫
Ω
Y kdP =

∫
Γ
ykρ(y)dy.

Now let us take a open bounded domain D ⊂ Rd (d = 2, 3) with Lipschitz boundary. We can define
a random field v : D × Ω → R as a random variable fixed x ∈ D. We can also define the Hilbert
space

Hs(D) := L2(Ω)⊗Hs(D), (4.1)

with s ∈ R, equipped with the norm:

||v||Hs(D) :=

(∫
Ω
||v(·, ω)||2Hs(D)dP

)1/2

. (4.2)

Thus we can understand that Hs(D) is the space of the functions such that they belong to Hs(D)
when we fix ω and such that the Hs−norm, with respect to the space variable, of the vector stays
in the L2(Ω) space. We observe that H0(D) = L2(D) ⊗ L2(Ω) := L2(D). We can introduce the
inner product that induces the previous norm as:

(w, v)L2 :=

∫
Ω

∫
D
wv dxdP, ∀w, v ∈ L2(D). (4.3)

We define a random vector v = (v1, v2, ..., vd) : D × Ω → R as the vector whose components are
random fields. This one belongs to the space

Hs,d(D) := (L2(Ω)⊗Hs(D))d,

and we have that H0,d(D) = L2,d(D). This space has the norm:

||v||Hs,d(D) :=

d∑
i=1

||vi||Hs(D), (4.4)

and the inner product:

(v,w)Hs,d(D) :=
d∑
i=1

(vi, wi)Hs . (4.5)

Now we are ready to introduce the stochastic Stokes problem in the strong formulation as in [26].
We take a random variable ν : Ω→ R+, a random field f : D ×Ω→ Rd and h : ∂DN ×Ω→ R. As
usual we search a solution (u, p) : D × Ω→ Rd × R such that:

−ν(ω)∆u(x, ω) +∇p(x, ω) = f(x, ω) in D(ω),

∇ · u(x, ω) = 0 in D(ω),

u(x, ω) = 0 on ∂DD,0(ω),

u(x, ω) = gin(x, ω) on ∂Din(ω),

ν
∂u

∂n
(x, ω)− p(x, ω)n = h(x, ω) on ∂DN (ω),

(4.6)
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with ∂DD,0 ∪ ∂Din ∪ ∂DN = ∂D. We denote with ∂DD := DD,0 ∪ ∂Din.
Now we want to pass to the weak formulation, so we introduce the test space for the velocity:

V := {v ∈ H1,d(D) : v = 0 on ∂DD}, (4.7)

and the test space for the pressure:

Q := L2(Ω)⊗ L2
0(D). (4.8)

With these spaces we can introduce the weak formulation. We are searching the pair (u, p) ∈ V ×Q
such that: {

A(u,v) + B(v, p) = F(v), ∀v ∈ V,
B(u, q) = G(q), ∀q ∈ Q,

(4.9)

with the bilinear form A : V × V → R defined as:

A(u,v) :=

∫
Ω

∫
D
ν(ω)∇u(ω) : ∇v(ω) dxdP =

d∑
i,j=1

∫
Ω

∫
D
ν(ω)

∂ui(ω)

∂xj

∂vi(ω)

∂xj
dxdP, (4.10)

the bilinear form B : V ×Q → R defined as:

B(v, q) := −
∫

Ω

∫
D
∇ · v(ω)q(ω) dxdP = −

d∑
i=1

∫
Ω

∫
D

∂vi(ω)

∂xi
q(ω) dxdP, (4.11)

the linear form F : V → R defined as:

F(v) := (f(ω),v)Hs,d(D) + (h(ω),v)∂DN − a(ugin(ω),v), (4.12)

and finally the linear form G : Q → R defined as:

G(q) := −B(ugin(ω), q(ω)), (4.13)

where ugin is the lifting function.
Now to have the well-posedness of the Stokes problem we need some hypothesis on ν, f, h, A and
B.

1. The random viscosity ν is uniformly bounded from below and from above almost everywhere,
i.e. there exist two constants 0 < νmin ≤ νmax <∞ such that

P (ω : νmin ≤ ν(ω) ≤ νmax) = 1. (4.14)

2. The random force f and h satisfy:

||f||L2,d(Ω) <∞, (4.15)

||h||H <∞. (4.16)
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3. A is continuous and coercive, i.e. it holds:

∃γa > 0 such that A(u,v) ≤ γa||u||V ||v||V , ∀u,v ∈ V, (4.17)

for the continuity and:

∃αa > 0 such that A(u,u) ≥ αa||u||2V , ∀u ∈ V0, (4.18)

for the coercivity, where V0 := {v ∈ V : B(v, q) = 0,∀q ∈ Q} is the kernel of B.

4. B is continuous and the inf-sup condition holds:

∃γb > 0 such that B(v, q) ≤ γb||v||V ||q||Q, ∀v ∈ V, ∀q ∈ Q, (4.19)

for the continuity, while

∃β0 > 0 such that inf
q∈Q

sup
v∈V

B(v, q)

||v||V ||q||Q
≥ β0. (4.20)

Now with these hypothesis we have the following theorem that we will not prove because the proof
is similar to the deterministic case that can be seen in [7]:

Theorem 5. Under the previous hypothesis we have done on ν, f, h, A and B there exists a unique
solution to the stochastic Stokes problem in (4.9) and moreover we have these inequalities on the
solution (u, p):

||u||V ≤
1

αa
(Cp||f||L2,d +

αa + γa
βb

||h||H),

||p||Q ≤
1

βb

((
1 +

γa
αa

)
Cp||f||L2,d +

γa(αa + γa)

αaβb
CT ||h||H

)
,

where CT and CP are the constant from the trace theorem and the Poincaré constant [7].

Let us do an important assumption on the stochastic dependence of the quantities involved in
the equations that will be useful for applying the reduced order models.
We suppose that ν, f and h depend on a finite number N of random variables that we collect in a
random vector Y (ω) = (Y1(ω), Y2(ω), ..., YN (ω)) : Ω→ Γ = Γ1×Γ2 · · ·×ΓN ⊂ RN with a probability
density function ρ = (ρ1, ..., ρN ) : Γ→ RN . In other words we are doing an hypothesys on how the
stochastic dependency is expressed:

ν(ω) = ν(Y (ω)),

f(·, ω) = f(·, Y (ω)),

h(·, ω) = h(·, Y (ω)).
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In general each quantity will depend on different random vectors Yν , Yf , Yh but for ease of notation
we will compact them in a single vector Y = (Yν , Yf , Yh) with dimension N .
Thanks to the Doob-Dynkin lemma [33] we also have that:

u(·, ω) = u(·, Y (ω)),

p(·, ω) = p(·, Y (ω)).

Now we want to lead us back to the parametric partial differential equations and to see the random
vector Y as a parameter, following the same idea of [27] for the elliptic case.
For doing this we need an other important assumption: we suppose that Γk is a compact set, for
each k. If this last hypothesis is not true we can obtain it truncating the probability distribution
on a compact set where we have the higher probability.
The next step is to define again the linear and bilinear forms, changing the test spaces from V and
Q to V and Q defined as in the deterministic case (1.2) and (1.3):

a : V × V → R such that:

a(u,v; y) :=

∫
D
ν(y)∇u(y) : ∇v dx =

d∑
i,j=1

∫
D
ν(y)

∂ui(y)

∂xj

∂vi
∂xj

dx,

b : V ×Q→ R such that:

b(v, p; y) := −
∫
D

(∇ · v)p(y) dxdP = −
d∑
i=1

∫
D

∂vi
∂xi

p(y) dx,

F : V → R such that:

F (v; y) := (f(y),v)Hs,d(D) + (h(y),v)∂DN − a(ugin(y),v),

G : Q→ R such that:

G(q; y) := −b(ugin(y), q).

So we can reformulate the (4.9). We want to find a solution (u, p) : Γ→ V ×Q such that:{
a(u,v; y) + b(v, p; y) = 〈F,v〉(y), ∀v ∈ V ,
b(u, q; y) = 〈G, q〉(y), ∀q ∈ Q.

(4.21)

for a.e. y ∈ Γ distributed according to ρ(y). In this way we have recast our stochastic problem to
a parametric one. But at this level if we do not do something else we do not use the probability
density function. For this reason we will introduce the weighted approach in the next section.
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Before going on we want to discretize our problem (4.21) with a Galerkin approximation. As usual
we introduce two finite dimensional spaces VNδ and QNδ with a dimensional proportional to Nδ. So
we search a pair (uNδ , pNδ) ∈ VNδ ×QNδ such that:{

a(uNδ ,vNδ ; y) + b(vNδ , pNδ ; y) = 〈F,vNδ〉(y), ∀vNδ ∈ VNδ ,
b(uNδ , qNδ ; y) = 〈G, qNδ〉(y), ∀qNδ ∈ QNδ ,

(4.22)

for a.e. y ∈ Γ. As usual we will refer to this problem as the truth one.
We note that in the following sections we will use the probabilistic information to search the best
snapshots in order to reduce the computation cost.

4.2 Weighted algorithms

Several weighted reduced order methods have been invented, see for example [32] where the value
at risk is used, but in this thesis we will follow [26], [27] and [28].
Since we want to work in a reduced framework, as usual we have to find two reduced spaces VN and
QN with dimensions that are multiples of N � Nδ and generated by a finite linear combination of
solutions of the truth problem (4.22). For doing that we have to chose a discrete parameters space
Ph and searching in it some parameters y for computing the truth solutions.
The main novelty in the weighted approach is that we assign different weights to the parameters
according to a weight function w(y), chosen following some rules that we will see. This function
will have the role of chosing the parameters space and the basis.
What we will find in the numerical experiments is that when we are working with parameters
derived from a distribution far from the uniform one (which we were implicitely supposing in the
deterministic case), the weighted approach can be useful for lowering the computational cost. For
example this method can take the most likely parameters and so with few basis we can obtain good
results for the more likely parameters.
We note that the reduced formulation is the same as the one in (2.9) so we will not repeat it. What
changes it is the method with which we select the parameters for the solutions and the solutions
chosen.
As usual we have to do an affine decomposition assumption of the different terms in the equations.
So we suppose they are a linear combination of the components of the random vector Y (ω) =
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(Y1(ω), Y2(ω), ..., YN (ω)) : Ω→ Rk, i.e.:

a(u,v;Y (ω)) = a0(u,v) +

K∑
k=1

ak(u,v)Yk(ω),

b(v, q;Y (ω)) = b0(v, q) +
K∑
k=1

bk(v, q)Yk(ω),

F (v;Y (ω)) = F0(v) +

K∑
k=1

Fk(v)Yk(ω),

G(q;Y (ω)) = G0(q) +
K∑
k=1

Gk(q)Yk(ω),

with the bilinear forms ak, bk and the linear forms Fk, Gk defined in the different spaces:

ak : V × V → R ∀k = 0, ...,K,

bk : V ×Q→ R ∀k = 0, ...,K,

Fk : V → R ∀k = 0, ...,K,

Gk : Q→ R ∀k = 0, ...,K.

4.2.1 Weighted Proper Orthogonal Decomposition

In the weighted POD approach we would like to find the N -dimensional subspace VN such that it
minimizes the error: ∫

Γ
||uNδ(y)− uN (y)||2V ρ(y) dy. (4.23)

We have to discretize this integral with a finite sum, so the goal is to minimize:

∑
y∈Ph

w(y)||uNδ(y)− uN (y)||2V =
M∑
i=1

wi||uNδ(yi)− PN (uNδ(yi))||
2
V , (4.24)

where Ph is a finite discretization of Γ (that in the deterministic case was P) of cardinality equal to
M .
The weights wi have to be chosen according to some rule such as the Monte-Carlo method, the
tensor product rule or the Smolyak rule that we will see in next chapter.
For minimizing the quantity (4.23) we can follow a similar strategy to that in the deterministic
case. We introduce the operator Ĉ defined as:

Ĉ(vNδ) :=

M∑
m=1

wm(vNδ , ψm)V ψm,
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where ψm := uNδ(ym). So we search the eigenfunctions and eigenvalues of Ĉ. If we do the same
math as in the deterministic case we arrive to the algebraic formulation in which we have to find the
eigenvector of Ĉ := P ·C where C is the same matrix defined in (2.20) while P := diag(w1, ..., wM ).
In this case P is a preconditioner matrix.
We note that Ĉ is not symmetric in the usual sense but it is with with respect to the scalar product
induced by the matrix C. Infact if we have the scalar product induced defined as:

〈x, y〉C := xTCy,

Ĉ is symmetric with respect to this scalar product if and only if:

〈Ĉx, y〉C = 〈x, Ĉy〉C , (4.25)

that is equivalent to, using the definition:

xT ĈTCy = xTCĈy,

and so Ĉ is symmetric if:
ĈTC = CĈ.

So if we do the simple computations:

ĈTC = (PC)TC = CTP TC = CPC = CĈ,

for the symmetry of C and P .
So with this scalar product we can use the spectral theorem and we have an orthogonal basis of
eigenvectors.
Now the problem is how to chose the set Ph.
The easiest technique is the Monte-Carlo one that we will explain in more details in the next section.
We only say that is this case we take M realizations of the random vector Y and put the weight

w(y) =
1

M
in the (4.24).

Another approach is to select Ph and w according to some quadrature rule for approximating (4.23).
So if we take a quadrature rule Qρ, considering the function ρ in the integral and an integrable
function f : Γ→ R we have:

Qρ(f) :=
M∑
i=1

wif(xi), (4.26)

that approximates the general integral: ∫
Ω
f(y)ρ(y) dy. (4.27)

If we change Qρ obviously we change the nodes, the weights and so the preconditioner P .
Finally we say that in the deterministic case we could not take M too big. However in the stochastic
case we have the alternative of using a sparse grid quadrature rule (chapter 6).
Let us see now the weighted POD algorithm:
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1 1) choose the training set Ph ⊂ Γ and the weights wi according to some quadrature

rule.

2 2) solve the truth problem for each of the parameters in Ph and find the solutions

{ψi}i=1,...,M

3 3) assemble the matrix Ĉij = wiCij with Cij = (STu XuSu)ij and search the N biggest

engenvectors ξ1, ..., ξN and related eigenvalues

4 4) construct VN = span{ξ1, ..., ξN}

For the pressure we have the similar objective of minimizing the quantity:∫
Γ
||pNδ(y)− pN (y)||2Qρ(y) dy, (4.28)

and since the idea is the same that for the velocity, we will not repeat it.

4.2.2 Weighted greedy algorithm

Let us pass to the weighted greedy algorithm, similar to the deterministic one, following the works
in [25], [27] and [28].
The algorithm works in the following way: at the beginning we chose a parameter y1 at random using
the probability distribution, we solve the truth problem (4.22) and we obtain the solution UNδ(y1) =
(uNδ(y1), pNδ(y1)). After this inizialitation the algorithm proceeds iteratively: at the n−th iteration
we search the parameter yn such that UNδ(yn) := (uNδ(yn), pNδ(yn)) is the worst approximated
solution by UN (yn) := (uN (yn), pN (yn)) on the whole discrete space Ph, so we compute the truth
solution with this parameter and we add it to the reduced space.
For this choice we want also use the probabilistic information of the parameters, so we choose y ∈ Ph
such that:

arg max
y∈Ph

w(y)||UNδ(y)−UN (y)||Y , (4.29)

where Y := V ×Q.
As we have said in the third chapter, explaining the greedy algorithm, we need an error estimator
∆̂Nδ
N (y). In this case we take

∆̂Nδ
N (y) := ∆Nδ

N (y) · w(y), (4.30)

with w : Γ→ R a weight function and ∆Nδ
N (y) the error estimator (2.29) in the deterministic case.

If we introduce the weighted norm:

||U(y)||w := w(y)||U(y)||Y , (4.31)

we can give a different meaning on the maximization of ||UNδ(y)−UN (y)||w according to the choice
of w.
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In fact if we take:

E
[
||UNδ −UN ||2Y

]
=

∫
Ω
||UNδ −UN ||2Y dP =∫

Γ
||UNδ(y)−UN (y)||2Y ρ(y) dy ≤

∫
Γ

∆Nδ
N (y)2ρ(y) dy,

and so if we take w(y) :=
√
ρ(y) the greedy algorithm controls the average of ||UNδ −UN ||2Y . In

fact we have from above that:

E[||UNδ −UN ||2Y ] ≤
∫

Γ
∆̂Nδ
N (y)2 dy ≤ |Γ| sup

y∈Γ
∆̂Nδ
N (y)2, (4.32)

with |Γ| < +∞ measure of the set Γ, finite because we have supposed the compactness.
On the contrary if we chose w(y) := ρ(y) we have this control:

||E[uNδ ]− E[uN ]||Y ≤
∫

Γ
||UNδ(y)−UN (y)||Y ρ(y) dy ≤ |Γ| sup

y∈Γ
∆̂Nδ
N (y). (4.33)

So changing the weight w we are minimizing different quantities.
We finally note that in the algorithm we work with a finite sum, approximation of the integral, and
so the parameter space over we will search the maxima of the error estimator will be Ph and not Γ.
We finish this chapter presenting the weighted greedy algorithm:

1 Initialization:

2 take a discrete space Ph according to the probability density function

3 take a tolerance εtol as stopping criteria for the algorithm

4 choose a maximum number of reduced bases Nmax
5 choose a first parameter y1 and create the sample space S1 := {y1}
6 solve the truth problem for y1 and create Y 1

N := span{UN (y1)}
7

8 Iteration:

9 for i=2,...,Nmax

10 choose yi ∈ Ph such that it maximizes ∆̂
Nδ
N (y)

11 if ∆̂
Nδ
N (yi) ≤ εtol

12 Nmax = i
13 end

14 solve the truth problem for yi to obtain UN (yi)
15 add yi to the space Si−1, creating Si = Si−1 ∪ {yi}
16 add UN (yi) to the reduced basis space Y i−1

N , creating Y iN ⊕ span{UN (yi)}

4.3 Conclusions

In this section we have firstly introduced the stochastic Stokes problem, similar to the stochastic
Navier-Stokes one, in the strong and weak formulation. This one was too general and to reconduct
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our problem into a reduced method framework we have done a hypothesis on the stochastic depen-
dence on the parameters and thanks to the Doob-Lemma we have obtained the classical reduced
formulation but with also a probability distribution associated to the parameters. Finally we have
explained the weighted algorithms for the generation of the reduced basis: the weighted greedy
and the weighted POD. They are similar to the determinist version but they use the probabilistic
distribution to weight the parameters. This has led to a better choice of the basis and a lower
computational cost.
We finally cite the article [31] that treats a stochastic problem in which the advection is a dominating
phenomena and we need a stabilization method.
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Chapter 5

Random parameter space sampling:
tensor products, sparse grids, and
random grids

In this chapter we will discuss different types of grid that we can use for the discrete sampling space
introduced in the previous chapters. We will use the theory developed in [34]. These different types
of grid will be used in the numerical experiments.
They are usually seen in a more general context, the one of the approximation of a general multi-
dimensional integral of a function f : Rd → R with a weight function g : Rd → R as follows:

Idg f =

∫
I1×I2×...×Id

g(x1, x2, ..., xd)f(x1, x2, ..., xd) dxd...dx1,

where Ii ⊂ R is an interval and so I := I1×I2× ...×Id is an hyperrectangle in Rd, g(x1, x2, ..., xd) =
g1(x1) · · · gd(xd) is the weight function where gi : Ii → R, gi(xi) ≥ 0 ∀i: in particular in our case it
is the probability density function of a random vector with probabilistic independent components.
There are several methods for approximate this integral:

• with a tensor product rule [36].

• with a sparse Smolyak rule [38].

• with a Monte-Carlo method writing the integral as E[f ] and sampling according to g seen like
a probability density function of a random variable. [39]

• with a Monte-Carlo method writing the integral as E[f ·g] and sampling according to a uniform
random variable [39].

The Monte-Carlo is the easiest way to do this integration but it has a slow convergence rate to the
truth integral; the tensor product rule suffers of the problem of the curse of dimensionality while
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the sparse Smolyak rule tries to solve this problem.
We will describe the four types of approximation in the next sections.

5.1 Tensor Product quadrature rule

In this section we will talk about tensor product rule and an algorithm to implement it.

In this case we take first a set of univariate quadrature rules (U
(j)
k )dj=1 where k is the number of

nodes used for the approximation.
In our case the rule is chosen depending on gj according to the numerical integration [35]. For
example if gj(xj) = 1 we use a Gauss − Legendre quadrature; for gj(xj) = (1 − xj)α(1 + xj)

β we
use a Gauss− Jacobi quadrature.

So for each j we have a set of k nodes (x
(j)
i )ki=1 and weights (w

(j)
i )ki=1 associated with the rule U

(j)
k .

With this in mind we can approximate in such a way:

Idg f ≈
k∑

i1=1

· · ·
k∑

id=1

w
(1)
i1
· · · w(d)

id
f(x

(1)
i1
, ..., x

(d)
id

). (5.1)

In practice in this case we take a set of the nodes for each dimension and we do a cartesian product
obtaining nodes in Rd. After we evaluate f on them multiplying by a number that is the product
of the weights associated to each components of the d− dimensional node.
We can see an example of tensor product grid using a Gauss-Jacobi univariate rule quadrature in
figure 5.1.
With this grid we have a problem with the curse of dimensionality. In fact if we use n nodes for

Figure 5.1: Tensor product grid with 4 nodes for a Gauss-Jacobi univariate rule with d = 2

each dimension, at the end we have nd nodes. So if we increase the dimension of the space of the
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parameters, the number of nodes involved will grow exponentially.
We will try to solve this problem with the next grid introduced in section 6.2.
Now let us pass to analyze the algorithm in Python to generate it.

1 TensorProductRule(d,n,univariate_rule ,bounds ,param =[])

2

3 tmpnodes , tmpweights = univariate_rule(n,param [0], bounds [0])

4 for j in range(d):

5 tmp1 , tmp2 = univariate_rule(n,alpha=param[j],bounds[j])

6

7 tmpnodes = combvec(tmpnodes ,tmp1)

8 tmpweights = combvec(tmpweights ,tmp2)

9

10 return nodes , weights

with

1 combvec(Mat ,vec):

2

3 # .shape returns the dimensions of the object: 0 for rows , 1 for columns

4 num_raw_mat = Mat.shape [0]

5 num_col_mat = Mat.shape [1]

6 num_col_vec = vec.shape [1]

7 # zeros generates a matrix of zeros

8 a = zeros(( num_raw_mat +1, num_col_mat*num_col_vec))

9

10 for j in range(num_raw_mat):

11 for i in range(num_col_mat):

12 for k in range(num_col_vec):

13 a[j,k*num_col_mat+i] = Mat[j,i]

14

15 for i in range(num_col_mat):

16 for j in range(num_col_vec):

17 a[num_raw_mat ,j*num_col_mat+i] = vec[0,j]

18

19 return a

The function combvec only do a cartesian product of its arguments in all the possible ways. For

example if we have

(
3 5
1 7

)
and

(
9
)

the result will be

3 5
1 7
9 9

 .

So in this code we take an univariate rule for each dimension with certain parameters (for example
treating the Beta function we need α and β) and each time we do the cartesian product to obtain
the grid.
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Finally, talking about the rate of convergence we know that is O(N−
r
d ) [34] where r is the highest

regularity in Hr(I) of the function f .

5.2 Smolyak quadrature rule

In this section we will see what a Smolyak quadrature rule is using the theory developed in [34].
This rule is created from a sequence of tensor product grids of low order of approximation, but to
define it we have to introduce the tensor product more formally than before.
Let S and T two univariate rule operators such that

Sf =
m∑
i=1

aif(xi),

and

Tf =
n∑
i=1

bif(yi),

we define the tensor product operator T ⊗ S as follows

(T ⊗ S)f =
m∑
i=1

n∑
j=1

aibjf(xi, yj),

In general if we have a sequence of univariate rule operators {Ti}i=1,...,n we can define recursively

1⊗
i=1

Ti = T1,
n⊗
i=1

Ti =
n−1⊗
i=1

Ti ⊗ Tn, for n = 2, 3, 4, ...,

and the quadrature operator
⊗n

i=1 Ti is such that:

n⊗
i=1

Tif =

m1∑
i1=1

· · ·
mn∑
in=1

w
(1)
i1
w

(2)
i2
· · · w(n)

in
f(x

(1)
i1
, ..., x

(n)
in

), for n = 1, 2, 3, ....

So it is nothing but the tensor product rule of the previous section. We are now ready to introduce
the new rule.

Definition 1. (Smolyak quadrature rule): Let (U
(j)
i )∞i=1 be a sequence of univariate quadrature rules

in the interval ∅ 6= Ij ⊂ R, j = 1, ..., d.
We introduce the difference operators in Ij by setting

∆
(j)
0 = 0, ∆

(j)
1 = U j1 , ∆

(j)
i+1 = U

(j)
i+1 − U

(j)
i , for i = 1, 2, 3, ....
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The Smolyak quadrature rule of order k in the hyperrectangle I1 × I2 × · · · × Id is the operator

Qdk =
∑

|α|1≤k,α∈Nd

d⊗
i=1

∆(i)
αi . (5.2)

We note that the tensor product ∆
(1)
α1 ⊗ · · · ⊗∆

(d)
αd vanishes whenever αi = 0 for some index i so

we will assume that αi ≥ 1 ∀i and so we need k ≥ d.
Let us try to understand a simple case, d = 1:

Q1
k =

k∑
i=1

∆
(1)
i = U

(1)
1 + (U

(1)
2 − U (1)

1 ) + · · ·+ (U
(1)
k − U

(1)
k−1) = U

(1)
k , ∀k ≥ 1. (5.3)

We can write with the tensor product quadrature written with the difference operators:

d⊗
i=1

U
(i)
k =

( k∑
α1=0

∆(1)
α1

)
⊗ · · · ⊗

( d∑
αd

∆(d)
αd

)
=

k∑
α1=0

· · ·
k∑

αd=0

d⊗
i=1

∆(i)
αi =

∑
|α|∞≤k,α∈Nd

d⊗
i=1

∆(i)
αi ,

(5.4)

in which we have used the distributive property.
As we can see in the tensor product grid we are changing the norm of α from a L1 norm of the
sparse grid to a L∞ one.
Now we need another form for the Smolyak quadrature rule, easier to implement and we want
something related to the tensor product because we already know how to implement it.
We will do this in two steps with two theorems.

Theorem 6. Let α ∈ Nd and α ≥ 1, i.e. αi ≥ 1,∀i. Then

d⊗
i=1

∆(i)
αi =

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi . (5.5)

Proof. Let us use the induction on d.
In the case of d = 1 we can have two cases: for i = 1:

∆
(1)
1 = U

(1)
1 = (−1)0U

(0)
1−0,

and for i > 1:
∆

(1)
i = U

(1)
i − U

(1)
i−1 = (−1)0U

(1)
i−0 + (−1)1U

(1)
i−1, ∀i ≥ 2.
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Now we suppose that the claim holds for all values less or equal than d. We want to prove for d+ 1.
Let α ∈ Nd+1 and α ≥ 1.

∑
γ∈{0,1}d+1

α−γ≥1

(−1)|γ|1
d+1⊗
i=1

U
(i)
αi−γi =

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1+0
d⊗
i=1

U
(i)
αi−γi ⊗ Uαd+1−0

+
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1+1
d⊗
i=1

U
(i)
αi−γi ⊗ Uαd+1−1

=
∑

γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi ⊗∆(d+1)

αd+1
,

since ∆
(d+1)
αd+1 = U

(d+1)
αd+1 − Uαd+1−1. The first equivalence is related to the fact that we are summing

on γ that can be any element of {0, 1}d and so γd+1 can be or 0 or 1.
From the induction hypothesis we know that:

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi =

d⊗
i=1

∆(i)
αi ,

that substituted above gives the thesis.
So now we are arrived to:

Qdk =
∑
|α|1≤k
α∈Nd

∑
γ∈{0,1}d
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi =

∑
γ∈{0,1}d

∑
|α|1≤k
α∈Nd
α−γ≥1

(−1)|γ|1
d⊗
i=1

U
(i)
αi−γi .

Introducing β = α − γ with condition β ≥ 1, |β|1 ≤ k − |γ|1 and |β|1 ≤ |β|1 + |γ|1 ≤ k, we can
change the order of summation:

Qdk =
∑
|β|1≤k

β∈Nd,β≥1

∑
γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1
d⊗
i=1

U
(i)
βi
.
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Moreover it holds: ∑
γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1 =

min{d,k−|β|1}∑
i=0

(−1)i
∑

γ∈{0,1}d
|γ|1=i

1

=

min{d,k−|β|1}∑
i=0

(−1)i#{γ ∈ {0, 1}d; |γ|1 = i}

=

min{d,k−|β|1}∑
i=0

(−1)i
(
d

i

)
,

where the first equivalence is true because |γ|1 ≤ d but it holds d ≤ k − |β|1 or d ≥ k − |β|1 but in
this last case we have to take into account the restrinction that |γ|1 ≤ k − |β|1.
From this observation we conclude that the term above vanishes whenever d ≤ k − |β|1 and so we
can discard these multi-indices. If we remember that β ≥ 1, adding this last condition, we obtain:

|β|1 ≥ max{d, k − d+ 1}.

Now we can use a result from [34]∑
γ∈{0,1}d
|γ|1≤k−|β|1

(−1)|γ|1 = (−1)k−|β|1
(

d− 1

k − |β|1

)
.

Putting all togheter we obtain that if k ≥ d, we have the characterization:

Qdk =
∑

max{d,k−d+1}≤|β|1≤k
β∈Nd,β≥1

(−1)k−|α|1
(

d− 1

k − |α|1

) d⊗
i=1

U
(i)
βi
. (5.6)

Let us see an example to understand better the Smolyak formula:

Q3
5 =

∑
3≤|α|1≤5
α∈N3,α≥1

(−1)5−|α|1
(

2

5− |α|1

)
Uα1 ⊗ Uα2 ⊗ Uα3 =

(−1)2

(
2

2

)
U1 ⊗ U1 ⊗ U1 + (−1)1

(
2

1

)
(U2 ⊗ U1 ⊗ U1 + U1 ⊗ U2 ⊗ U1 + U1 ⊗ U1 ⊗ U2)+

(−1)0

(
2

0

)
(U2 ⊗ U2 ⊗ U1 + U2 ⊗ U1 ⊗ U2 + U1 ⊗ U2 ⊗ U2 + U3 ⊗ U1 ⊗ U1 + U1 ⊗ U3 ⊗ U1+

U1 ⊗ U1 ⊗ U3) = U1 ⊗ U1 ⊗ U1 − 2U2 ⊗ U1 ⊗ U1 − 2U1 ⊗ U2 ⊗ U1 − 2U1 ⊗ U1 ⊗ U2+

U2 ⊗ U2 ⊗ U1 + U2 ⊗ U1 ⊗ U2 + U1 ⊗ U2 ⊗ U2 + U3 ⊗ U1 ⊗ U1 + U1 ⊗ U3 ⊗ U1+

U1 ⊗ U1 ⊗ U3.
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As we can see Q3
5 is a combination of terms of tensor grid rules but with a lower order with respect

to the associated tensor product rule
⊗3

i=1 U
(i)
5 .

We can better understand visually with an example of the nodes generated by this rule using Q2
5

in the case in which the univariate rule is the Gauss Jacobi, in the figure 5.2.
In figure 5.3 we have a Q2

6 with the same univariate rule.

Figure 5.2: Sparse tensor grid Q2
5 with a Gauss Jacobi rule

Figure 5.3: Sparse tensor grid Q2
6 with a Gauss Jacobi rule

As we can see the points are not distributed on the boundary but in the inner part of the domain.
If we want to know how many nodes we will have with a certain rule we can use this theorem:
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Theorem 7. Let U
(j)
i be univariate quadrature rules with n

(j)
i = 2i−1 nodes and k ≥ d ≥ 1. The

number of evaluation nodes of Qdk is

k∑
i=max{d,k−d+1}

2i−d
(
i− 1

d− 1

)
.

Let us pass to the algorithms for creating a Smolyak grid:

1 def SmolyakRule(d,q,rule ,bounds ,param =[]):

2

3

4 # d is the dimension of the integral and the quadrature nodes too.

5 # q is the order of the quadrature rule

6 # param is the set of parameters

7 # bounds is the vector that contains the bounds of the interval

8

9 bounds = np.array(bounds)

10 nodes = np.zeros((d,1))

11 weights = np.zeros ((1 ,1))

12 for l in range(max(d,q-d+1),q+1):

13 # l==d means that I’ve only alpha = (1,1,1,...,1)

14 # so I cannot generate with d_tuple algorithm

15

16 if l == d:

17

18 tmpnodes = np.zeros ((d,1))

19 tmpweights = np.ones ((1,1))

20 for i in range(d):

21

22 tmp1 , tmp2 = univariate_rule (1,rule ,alpha=param[i][1], beta=param[i

][0])

23 tmpnodes[i,0] = (bounds[i,1]- bounds[i,0])*tmp1 [0,0] + bounds[i,0]

24 # i do not want a vector of all weights but only the product

25 tmpweights [0,0] = (bounds[i,1]- bounds[i,0])*tmp2 [0,0]* tmpweights

[0,0]

26

27 tmpweights [0,0] = (-1)**(q-l)*au.binom_coeff(d-1,q-l)*tmpweights [0,0]

28 nodes = np.concatenate ((nodes ,tmpnodes),axis =1) # axis = 1 adds as a

column

29 weights = np.concatenate ((weights ,tmpweights),axis =1)

30

31 else:

32

33 ind , m = d_tuples(d,l)

34

35 for i in range(m):

36
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37 gamma = ind[i,:] # we take one alpha at a time

38 tmpnodes , tmpweights = univariate_rule(int(gamma [0]),rule ,alpha=

param [0][1] , beta=param [0][0])

39 #tmpnodes , tmpweights = univariate_rule (1,rule ,alpha=param [0][0] ,

beta=param [0][1])

40 for j in range(1,d):

41 tmp1 , tmp2 = univariate_rule(int(gamma[j]),rule ,alpha=param[j

][1], beta=param[j][0])

42 #tmp1 , tmp2 = univariate_rule (1,rule ,alpha=param[j][0], beta=

param[j][1])

43 tmpnodes = combvec(tmpnodes ,tmp1)

44 tmpweights = combvec(tmpweights ,tmp2)

45

46 for j in range(d):

47 for k in range(tmpnodes.shape [1]):

48 tmpnodes[j,k] = (bounds[j,1]- bounds[j,0])*tmpnodes[j,k] +

bounds[j,0]

49 tmpweights[j,k] = (bounds[j,1]- bounds[j,0])*tmpweights[j,k]

50

51 # product of different component of the weight associated to the

same node

52 tmpweights = (-1)**(q-l)*au.binom_coeff(d-1,q-l)*np.array([np.prod(

tmpweights , axis =0)])

53

54 nodes = np.concatenate ((nodes ,tmpnodes),axis =1)

55 weights = np.concatenate ((weights ,tmpweights),axis =1)

56

57

58

59 return nodes , weights , count

with

1 def d_tuples(d, q):

2 # this combinatorial algorithm generates the different tuples alpha for the

Smolyak rule

3 k = np.ones((1,d))

4 khat = (q-d+1)*k

5 ind = np.zeros((1,d))

6

7 p = 0

8 while k[0,d-1] <= q:

9 k[0,p] = k[0,p]+1

10 if k[0,p] > khat[0,p]:

11 if p != d-1:

12 k[0,p] = 1

13 p = p+1

14 else:

15 for j in range(p):

16 khat[0,j] = khat[0,p]-k[0,p]+1

17 k[0,0] = khat [0,0]

64



18 p = 0

19 ind = np.concatenate ((ind ,k))

20

21 n = ind.shape [0]

22 ind = ind[1:n,:]

23 n = ind.shape [0]

24

25 return ind , n

For the algorithm we need these ingredients:

1. An univariate rule for generating nodes and weights.

2. A generator of vector α ∈ Nd such that α ≥ 1 and |α| = l with l ≥ d that is implemented in
d tuples.

3. The combvec algorithm for the cartesian product.

We have split the cases of l == d and l > d because the implementation of the algorithm d tuples.
In both cases the structure is this one:

1. We generate the nodes and the weights of an univariate rule.

2. We do a cartesian product along all the directions.

3. We multiply for the coefficient (−1)k−|α|1
(
d−1
k−|α|1

)
.

4. We concatenate (append) with the existing nodes and weights.

Finally concerning the accuracy we present a result from [34].

Theorem 8. (Polinomial precision): Let Ui be univariate quadrature rules that correspond to the
weight wj and have polynomial exactness mi ≤ mi+1 . Let w(x1, ..., xd) = w1(x1) · · ·wd(xd). Then:

Idwf = Qdq(f), ∀f ∈
∑
|α1|=q
α∈Nd

⊗d
i=1 P1

mαi
, q ≥ d,

where

d⊗
i=1

P1
mαi

= {f : (x1, x2, ..., xd) ∈ Rd →
d∏
i=1

pi(xi) ∈ R; pi ∈ P1
mi , for i = 1, ..., d}.

The following theorem gives us the convergence rate of the Smolyak quadrature rule [34].
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Theorem 9. (Fundamental theorem of Smolyak quadrature). Let ni = 2i−1 denote the number of
evaluation points of interpolatory quadrature rules Ui with positive weights in [−1, 1]. If we denote
N(k, d) = # number of nodes, then the corresponding Smolyak quadrature rule of degree k has the
asymptotic convergence rate of∣∣∣∣∣

∫
[−1,1]d

f(x1, ..., xd)dxd · · · dx1 −
∑

|α|1≤k,α∈Nd

d⊗
i=1

∆αif

∣∣∣∣∣ = O
( log(N(k, d))(r+1)(d−1)

N(k, d)r
)
,

for f ∈ Hr([−1, 1]d).

5.3 Monte-Carlo Methods

In this case we have a completely different approach which relies on seeing the integral in the
following way:

E
[
f(X)

]
,

with X random variable with density distribution g with compact support.
So we have to compute:

E
[
f(X)

]
=

∫
I1×I2×...×Id

g(x1, x2, ..., xd)f(x1, x2, ..., xd) dxd...dx1.

We can approximate this integral with a Monte-Carlo method in two ways:

• we take several realizations of the random variable X and after we approximate as:

E
[
f(X)

]
≈

N∑
i=1

1

N
f(Xi),

with N large enough.

• we take several realizations of a uniform random variable U and after we approximate as:

E
[
f(X)

]
= E

[
(f · g)(U)

]
≈

N∑
i=1

1

N
f(Ui)g(Ui),

with N large enough.

We expect that the two methods for n→∞ converge to the same value. In this case the convergence

rate is O(
1√
N

) [36].
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5.4 Conclusions

In this chapter we have introduced some methods to approximate a multidimensional weighted in-
tegral of a general function: the tensor product rule, the sparse Smolyak rule and the Monte-Carlo
rule with two variants.
In the first rule we numerically integrate along all the dimensions and we subsequently do a carte-
sian product of the nodes to obtain a grid of nodes. We subsequently multiply the weights along
all the dimensions associated with the components of a multidimensional node to obtain a weight
related to it.
The sparse rule uses instead a linear combination of tensor product rules of low computational cost.
The Monte-Carlo rule approximates the average integral with a finite sum: in the first variant of this
rule we sample according to the weight distribution and in the second one according to a uniform
distribution.
We have seen, studying the convergence rate, that except for the sparse rule, the computational
cost is too high due to the curse of dimensionality and then the Smolyak rule is sometimes the only
one that we can use for a numerical mutidimensional integration.
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Chapter 6

Numerical results

In this final chapter we will propose some experiments we have done for testing the effectiveness of
the algorithms that we have introduced before.
We will work with the same problem in all the cases but changing the distributions from the
parameters came. In particular we have used four types of Beta(α, β), normally concentrated in
[0, 1] and after translated into the desired range, which depend on α and β: by varying them the
shape of the distribution can completely change. This is one of the two reasons why we have chosen
the Beta distribution. The other one is because the Beta has a compact support, necessary for the
hypothesis of the stochastic reduced approach, and we do not need to truncate it.
Its density distribution is:

f(x;α, β) :=
1

B(α, β)
xα−1(1− x)β−1, (6.1)

with
1

B(α, β)
=

Γ(α+ β)

Γ(α)Γ(β)
where Γ is the Gamma function.

The set of parameters we have chosen for our experiments are (α, β) = (75, 75), (10, 10), (20, 1),
(0.03, 0.03) and we can see the plot of the associated distributions in the figure 6.1.
The choice of (α, β) = (75, 75) or (10, 10) was done for simulating something similar to a Gaussian
distribution but with different heights. In these cases the distribution is symmetric and concen-
trated in a certain range. In the case of (α, β) = (20, 1) we have a distribution not symmetric and
concentrated around x = 1. Finally with (α, β) = (0.03, 0.03) we have again a symmetric distribu-
tion but concentrated in two zones instead of one as in the other cases.
The problem we have chosen in the Stokes case is the following:

−∆u(x, y;µ) +∇p(x, y;µ) = f(x, y;µ) in Ω(µ),

∇ · u(x, y;µ) = 0 in Ω(µ),

u(x, y;µ) = 0 on Γw(µ),

u(x, y;µ) = µ4 · (−y · (y − 3), 0) on Γin,

ν
∂u

∂n
(x, y;µ)− p(x, y;µ)n = 0 on Γout.

(6.2)
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Figure 6.1: Beta distributions used in the experiments

For the Navier-Stokes case we have taken the same problem but the only difference is the addition
of the convective term u · ∇u as usual.
The geometry is that one in figure 6.2, where the triangles denotes the decomposition of our domain
(Ω = ∪Rr=1Ωr) as explained in the third chapter.
For what concerns the boundaries, Γin is the left side, Γout is the right side while Γw is equal to
∂Ω \ (Γout ∪ Γin).
The parameters involved are:

µ = (µ0, µ1, µ2, µ3, µ4) = (L1, h1, L2, h2, ymax). (6.3)

Let us explain them. With ymax we denote the maximum value of the parabola in the boundary
condition. The other parameters are geometrical and referred to the two rectangles. L is the lenght
of the base of the rectangle while h is the height of this one. So in this case we are parameterizing
the dimensions of the two rectangles.
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Figure 6.2: Geometry of the problem with four geometrical dependencies: L1, h1, L2, h2.

The ranges considered for the five parameters are:

µ0 ∈ (0.2, 1.9),

µ1 ∈ (0.2, 2.0),

µ2 ∈ (0.2, 1.9),

µ3 ∈ (0.2, 2.0),

µ4 ∈ (0.2, 20.0).

We have taken around M = 240 parameters for the learning set Ph in all the experiments. Some-
times, with the tensor product rule and the Smolyak rule, we have obtained more or less parameters
depending on the case because it is more difficult to have the exact number that we want.
The experiments have been done changing each time the probability distribution and the algorithm
used.
For the Stokes problem we have organized the experiment for the velocity comparing the methods
as written below:

• First experiment: Standard greedy, weighted greedy, standard POD and weighted POD.

• Second experiment: Monte-Carlo POD, Tensor product POD with a Gauss-Jacobi quadrature
rule, Sparse rule POD.

• Third experiment: Monte-Carlo POD, Uniform Monte-Carlo POD
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The pressure has been investigated in the Navier-Stokes section. In this case we have organized the
results of the velocity in the following way:

• First experiment: standard POD and weighted Monte-Carlo POD.

• Second experiment: Monte-Carlo POD and tensor product rule POD with a Gauss-Jacobi
quadrature rule, sparse rule POD.

We have compared also the pressures:

• Third experiment: standard POD and weighted POD with tensor product rule.

In the following plots we will see the absolute error and the relative error with a H1−semi-norm
for the velocity and a L2-norm for the pressure on the y-axis (only for the Navier-Stokes problem)
while on the x−axis we have the number N of basis used for the reduced solution. They are plotted
with a logarithm scale. In addition we will show the maximum error and the relative maximum
error with the L∞-norm.
These errors have been computed taking 100 parameters obtained randomly according to the chosen
distribution. For each one we have found the truth solution and the reduced one changing the
number of basis.
Mathematically, for each N we have computed :

absolute error:

∫
Ω
|uNδ(Y (ω))− uN (Y (ω))|H1dP ≈

1

100

100∑
i=1

|uNδ(yi)− uN (yi)|H1 ,

absolute maximum error: max
i=1,...,100

|uNδ(yi)− uN (yi)|H1 ,

relative error:
1

100

∑100
i=1 |uNδ(yi)− uN (yi)|H1

|uNδ(yi)|H1

,

relative maximum error: max
i=1,...,100

|uNδ(yi)− uN (yi)|H1

|uNδ(yi)|H1

.

All the following computations have been done using RBniCS library [3] which is based on FEniCS.

6.1 Stokes problem

In this section we will present the numerical experiments for the Stokes problem as we have ex-
plained above for the case of parameters coming from a Beta distribution with (α, β) equal to:
(0.03, 0.03), (10, 10), (20, 1), (75, 75).
We can see in the figure 6.3 an example of simulation with a reduced basis where we have plotted
the velocity magnitude. In this case we have no separation zone as expected because it is a typical
phenomena related to the convective term not present in the Stokes equations.

6.1.1 Stokes: Beta 0.03 0.03
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Figure 6.3: Stokes simulation with parameter (1.0, 1.0, 1.0, 1.0, 0.7): velocity magnitude profile.
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Figure 6.4: Stokes, first experiment: standard greedy, weighted greedy, standard POD and weighted
POD, with a Beta(0.03, 0.03)
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Figure 6.5: Stokes, second experiment: Monte-Carlo POD, Tensor product POD with a Gauss-
Jacobi quadrature rule, Sparse rule POD, with a Beta(0.03, 0.03).
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Figure 6.6: Stokes, third experiment: Monte-Carlo POD and Uniform Monte-Carlo POD, with a
Beta(0.03, 0.03).
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6.1.2 Stokes: Beta 10 10

Figure 6.7: Stokes, first experiment: standard greedy, weighted greedy, standard POD and weighted
POD, with a Beta(10, 10).
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Figure 6.8: Stokes, second experiment: Monte-Carlo POD, Tensor product POD with a Gauss-
Jacobi quadrature rule, Sparse rule POD, with a Beta(10, 10).
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Figure 6.9: Stokes, third experiment: Monte-Carlo POD and Uniform Monte-Carlo POD, with a
Beta(10, 10).
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6.1.3 Stokes: Beta 20 1

Figure 6.10: Stokes, first experiment: standard greedy, weighted greedy, standard POD and
weighted POD, with a Beta(20, 1).
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Figure 6.11: Stokes, second experiment: Monte-Carlo POD, Tensor product POD with a Gauss-
Jacobi quadrature rule, Sparse rule POD, with a Beta(20, 1).
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Figure 6.12: Stokes, third experiment: Monte-Carlo POD and Uniform Monte-Carlo POD, with a
Beta(10, 10).
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6.1.4 Stokes: Beta 75 75

Figure 6.13: Stokes, first experiment: standard greedy, weighted greedy, standard POD and
weighted POD, with a Beta(75, 75).
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Figure 6.14: Stokes, second experiment: Monte-Carlo POD, Tensor product POD with a Gauss-
Jacobi quadrature rule, Sparse rule POD, with a Beta(75, 75).
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Figure 6.15: Stokes, third experiment: Monte-Carlo POD and Uniform Monte-Carlo POD, with a
Beta(75, 75).
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6.1.5 Discussion for the Stokes problem

As we can see in the first experiment, the two weighted algorithms work better that the standard
ones and these ones have no big differences except for the case of Beta(20, 1), figure 6.10, where the
weighted greedy has some problems but without any apparent reason.
For what concernes the second experiment we can see that the Monte-Carlo works very well. The
other two approaches do a good job except for the case of Beta(20, 1), figure 6.11, for the tensor
product and the Beta(0.03, 0.03), figure 6.5, for the sparse rule where we probably need more
parameters because the distribution is concentrated in two zones.
Finally, even though it might seem strange, the Monte-Carlo method, taking parameters from the
Beta distribution but without weights, works better with respect to the Uniform Monte-Carlo
method that takes parameters from a uniform distribution and after put some weights as we can
see in 6.6, 6.9, 6.12, 6.15.
The fact can be clearer thinking that the two approaches converge to the same result only when we
take an infinite number of parameters. In the experiments this is not possible and the fact that we
take few parameters from the distribution and we do not weight them is more clever that taking the
parameters randomly, with some of which that could be with a low probability, and subsequently
weight them.

6.2 Navier-Stokes problem

In this section we will present the numerical experiments for the Navier-Stokes problem as we have
explained above for the case of parameters coming from a Beta distribution with (α, β) equal to:
(0.03, 0.03), (10, 10), (20, 1), (75, 75).
We can see in the figure 6.16 an example of simulation with a reduced basis.
If we compare with the Stokes case in figure 6.3 we can see two completely different physical
behaviours. In this case we have a separation zone related to the convective term.

6.2.1 Navier-Stokes: Beta 0.03 0.03
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Figure 6.16: Navier-Stokes simulation with parameter (1.05, 1.0, 1.05, 1.35, 10.0): velocity magnitude
profile.
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Figure 6.17: Navier-Stokes, first experiment: standard POD and weighted Monte-Carlo POD, with
a Beta(0.03, 0.03).
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Figure 6.18: Navier-Stokes, second experiment: Monte-Carlo POD and tensor product rule POD
with a Gauss-Jacobi quadrature rule, sparse rule POD,with a Beta(0.03, 0.03).
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Figure 6.19: Navier-Stokes, third experiment: standard POD and weighted POD with tensor prod-
uct rule with a Beta(0.03, 0.03).
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6.2.2 Navier-Stokes: Beta 10 10

Figure 6.20: Navier-Stokes, first experiment: standard POD and weighted Monte-Carlo POD, with
a Beta(10, 10).
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Figure 6.21: Navier-Stokes, second experiment: Monte-Carlo POD and tensor product rule POD
with a Gauss-Jacobi quadrature rule, sparse rule POD,with a Beta(10, 10).
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Figure 6.22: Navier-Stokes, third experiment: standard POD and weighted POD with tensor prod-
uct rule with a Beta(10, 10).
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6.2.3 Navier-Stokes: Beta 20 1

Figure 6.23: Navier-Stokes, first experiment: standard POD and weighted Monte-Carlo POD, with
a Beta(20, 1).
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Figure 6.24: Navier-Stokes, second experiment: Monte-Carlo POD and tensor product rule POD
with a Gauss-Jacobi quadrature rule, sparse rule POD,with a Beta(20, 1).
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Figure 6.25: Navier-Stokes, third experiment: standard POD and weighted POD with tensor prod-
uct rule with a Beta(20, 1).
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6.2.4 Navier-Stokes: Beta 75 75

Figure 6.26: Navier-Stokes, first experiment: standard POD and weighted Monte-Carlo POD, with
a Beta(75, 75).
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Figure 6.27: Navier-Stokes, second experiment: Monte-Carlo POD and tensor product rule POD
with a Gauss-Jacobi quadrature rule, sparse rule POD,with a Beta(75, 75).

6.2.5 Discussion for the Navier-Stokes problem

Also in this case the weighted approach works better than the standard one as we can see in the
first experiment for all the distributions. The standard one sometimes seems to have big troubles
very clear in the maximum error plot for Beta(20, 1) when we see the first and the third experiment,
figures 6.23 and 6.25.
For what concernes the second experiment we have similar results to the Stokes case. In fact the
sparse rule has some problems for Beta(0.03, 0.03), figure 6.18, due probably to the fact we have
few parameters. In the other case the Monte-Carlo is the best approach followed by the sparse
one, sometimes similar to the tensor product. But in all the cases we have a good H1 error and
maximum error.
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Figure 6.28: Navier-Stokes, third experiment: standard POD and weighted POD with tensor prod-
uct rule with a Beta(75, 75).

6.3 Conclusions

In these numerical experiments we have obtained similar results for the Stokes case and the Navier-
Stokes one. As expected, we have seen that the weighted algorithms work better than the standard
ones, in particular for the case of concentrated probability distributions, e.g. the Beta(75, 75).
We also have verified that the sparse Smolyak rule is reliable to avoid the curse of dimensionality
and to obtain good results for the numerical integration, but in the cases where the distribution is
concentrated in more than one zone we need more parameters.
The tensor product rule does not give particular better result than the Monte-Carlo one but it is
more complicated to implement, so we think it is not a good solution for our problem.
Finally studying the results of the two versions of Monte-Carlo approximation, we have seen that
the one that samples from the Beta distribution is better.
In general this version is the best solution with respect to all the other possibilities when we do not
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have too many parameters.
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Chapter 7

Conclusions and future perspectives

In this master thesis we have presented the Stokes and the Navier-Stokes problem in the steady
case, formulating the problem both for the deterministic and the stochastic case, introducing first
the strong formulation of the equations and later the weak one. Subsequently we have introduced
a Galerkin approximation with the associated algebraic system.
We have explained the two algorithms used in the reduced framework: the greedy and the POD,
both in the standard and the weighted approach.
We have finally done some simulations of the same problem taking parameters coming from a Beta
distribution of different values α and β.
In our experiments we have used several methods to search the reduced solution such as the standard
and weighted greedy, the standard and the weighted POD using in this last case different variants:
Monte-Carlo method, sampling from a distribution different from the uniform one; Uniform Monte-
Carlo, taking the parameters from a uniform distribution and after weighting them according to
the probability distribution; Tensor product and Smolyak sparse rule using a Gauss-Jacobi rule: in
this case we follow an approach related to the numerical integration.
We firstly note that when we are working with a parameter that comes from a probability distri-
bution a standard approach gives us a poor approximation if we use not too many basis like in our
cases. The weighted one, on the contrary, with few basis can result in a good approximation and
so it is really better for obtaining a reduced solution with a lower computational cost.
In all the simulations we have seen that the best choice is the Monte-Carlo method sampling from
the distribution of interest.
On the contrary the Uniform Monte-Carlo method is not really good even though it is a similar
tecnique to the previous one. So we understand that the sample where we take the parameters is
very important, probably more important of using weights on the parameters.
All other cases can give us a good approximation of the solutions. In the Stokes case, in which we
know the posterior error bound, the weighted greedy is a good method for almost all the distribu-
tions except one. The tensor product is quite good but in our opinion, not giving better results with
respect to the Monte-Carlo tecnique and being more complicated to implement, it is not interesting
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to use it in other applications. On the contrary the Smolyak grid gives us good results. Infact
considering that sometimes is the only possible method when we have a huge space of parameters,
these graphs that we have seen can reassure us that this rule can be one of the possible solutions
when we have the problem of the curse of dimensionality. However we have to pay attention in the
case of a distribution that is not concentrated in only one zone: in such a situation we need more
parameters for obtaining a good approximation.
For possible future investigations we think that the study of other non-linear stochastic problems
can be interesting, as for the case of a non-linear elastic beam [42] or the nonlinear Schrödinger
equation [43], perhaps inserting a lot of parameters for better noting the issue of the curse of di-
mensionality.
We also hope to see the application of the Smolyak rule to industrial problems where there are
usually a lot of uncertain parameters and so where this method could deal with.
It would be also interesting to find a weighted posterior estimator for the Navier-Stokes case in
alternative to the POD approach.
Some topics are not be treated such as a the non-affine case where we need an empirical interpola-
tion method and for doing this in the Stokes case it could be followed this article: [44].
We finally think that other types of sparse grids can be implemented, as described in [23] or with
a more general approach in [34].
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Appendix A

Mathematical preliminaries

In this appendix we want to remember some concepts and notations that we will use in the next
chapters. We refer to [1] and [2] for further details.
Let us take a normed space V . We define a linear form as an application F : V → R such that:

F (u+ v) = F (u) + F (v), ∀u, v ∈ V,
F (αv) = αF (v), ∀α ∈ R, ∀v ∈ V.

We can write F (v) also with the notation 〈F, v〉.
Usually we will take a bounded linear form, i.e. such that:

|F (v)| ≤ C||v||V , ∀v ∈ V. (A.1)

We define the dual of V and we denote it with V ′ the set:

V ′ := {F : V → R such that F is linear and bounded}, (A.2)

equipped with the norm:

||F ||V ′ = sup
v∈V \{0}

|F (v)|
||v||V

. (A.3)

We have a central theorem that we will use in the reduced method:

Theorem 10. (Riesz rappresentation theorem). Let H be a Hilbert space with a scalar product
(·, ·)H . For each linear and bounded form F ∈ H ′ it exists a single element xF ∈ H such that:

F (y) = (y, xF )H ∀y ∈ H and ||f ||H′ = ||xF ||H . (A.4)

If we take two normed spaces V and Q we can define a bilinear form as an application a :
V ×Q→ R such that:

a(αu+ βv,w) = αa(u,w) + βa(v, w), ∀α, β ∈ R,∀u, v, w ∈ V,
a(u, αv + βw) = αa(u, v) + βa(u,w), ∀α, β ∈ R, ∀u, v, w ∈ V.
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Now let us pass to the Sobolev spaces.
We take an open domain Ω ⊂ Rd and a positive integer k. We denote with L2(Ω) the space:

L2(Ω) := {f : Ω→ R such that

∫
Ω
f2 dΩ <∞}. (A.5)

The Sobolev space of order k is defined as:

Hk(Ω) = {f ∈ L2(Ω) such that Dαf ∈ L2(Ω), |α| ≤ k}, (A.6)

where:

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αd
d

, (A.7)

with the partial derivate intended in the sense of the distributions and where α = (α1, α2, ..., αd) ∈
Nd with |α| = α1 + α2 + ...+ αd.
By definition we have Hk+1(Ω) ⊂ Hk(Ω) and H0(Ω) = L2(Ω).
It holds that Hk(Ω) is a Hilbert space with the scalar product:

(f, g)Hk(Ω) =
∑

α∈Nk,|α|≤k

∫
Ω

(Dαf)(Dαg) dΩ, (A.8)

that induces the norm:

||f ||Hk(Ω) =
√

(f, f)Hk(Ω) =

√√√√ ∑
α∈Nd,|α|≤k

∫
Ω
|Dαf |2 dΩ. (A.9)

We introduce also the seminorm because we will use it in the numerical experiments:

|f |Hk(Ω) =

√√√√∑
|α|=k

∫
Ω

(Dαf)2 dΩ. (A.10)
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