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Chapter 1

Introduction

In the last years, instant messaging applications substituted classic SMS

texts. At �rst, messages were not encrypted, or they actually were but with

unreliable algorithms. After the mass surveillance scandal of 2013, secu-

rity became a must for every messaging application. The �rst applications

in commerce with encrypted messages were Threema and Telegram; What-

sApp took some time before transictioning to a system with reliable security.

In 2014, WhatsApp signed a partnership with Open Whisper Systems, a no

pro�t group which was developing a protocol for secure instant messaging,

called Signal; the integration was completed in the April of 2016, when both

companies claimed end-to-end encryption and a way to verify user keys were

now available on the app. This means that, starting from that month, all

messages , phone calls, videos, or any other form of information exchanged

could not be read by any unauthorized entity, WhatsApp included.

Aim of this thesis is an accurate description of the WhatsApp end-to-end

encryption protocol, from both mathematical and cryptographic points of

view.

Chapter 2 is crypto-oriented and it recaps the main cryptographic algo-

rithms developed during the last years which are used to encrypt and au-

thenticate strings of data.

Chapter 3 is instead math-oriented and it is incentrated on elliptic curves,

a modern mathematical instrument which has found various applications in

cryptography thanks to the advantage they have over other classic struc-

tures in the generation of secure key pairs. Montgomery curves will be the

focus on this part, because of an algorithm known as Montgomery Ladder

which speeds up the counting process.
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4 CHAPTER 1. INTRODUCTION

Chapter 4 faces the main argument of the thesis, focussing on the end-to-

end encryption protocol. It will be described in detail, starting from the

moment where an user installs the application, until when she regularly

exchanges messages. Informations about the security for both direct mes-

saging and multi-device communications, as well as some details about a

possible implementation of the protocol are provided.

Lastly, Chapter 5 mainly talks about the additional WhatsApp features,

starting from well known and widely utilized ones like group chats or phone

calls, and ending with some niche features like live locations.



Chapter 2

Short review of basic

cryptography

In this �rst Chapter, we brie�y recap some of the basic cryptographic al-

gorithms which will be later used by the Signal protocol to guarantee end-

to-end encryption. In particular, in Section 2.1 we talk about symmetric

cryptography with a detailed description of AES and the CBC mode, in Sec-

tion 2.2 we describe the Hash function SHA-2, in Section 2.3 we de�ne the

Message Authentication Code and its application in the generation of new,

stronger cryptogra�c keys (HKDF), in Section 2.4 we put together all what

we have learned in the �rst part of the Chapter to illustrate an algorithm

which guarantees con�dentiality, integrity, authentication (AEAD). Finally,

in Section 2.5 we summarise the role of a digital signature in cryptography.

2.1 Block ciphers: AES

In symmetric cryptography, there are two kinds of ciphers: stream ciphers

and block ciphers. In a stream cipher, every bit of the messageM is XORed

with a new, unpredictable, bit, produced by a Pseudo Random Number

Generator (PRNG). Instead, for a block cipher, M is divided into blocks

of the same length, i.e. M = BN ||. . . B2||B1, where "||" denotes the con-

catenation of bytes/bits sequences: if the last block has less bits than the

necessary, we proceed with a padding. To encrypt a block Bi with b bits

we use a key k, obtaining the cipher block Y = Ek(Bi). Usually, Y has

b bits too. Y is obtained applying multiple times the same functions to

give confusion and di�usion to the ciphertext. We call round R one single

5



6 CHAPTER 2. SHORT REVIEW OF BASIC CRYPTOGRAPHY

iteration of these functions. The key k can have more bits than the ones

of the block: in this case, a key schedule algorithm gives a di�erent key ki,

with the desired length, for every round Ri.

Figure 2.1: Rounds of a block cipher

The Advanced Encryption Standard (AES) is the most widely used sym-

metric block cipher. It is byte oriented. AES takes blocks with length 128

bits and accepts keys with length 128, 192 and 256 bits. The number of

internal rounds of the cipher is a function of the key length: there are 10,

12 and 14 rounds respectively. AES encrypts all 128 bits in one iteration:

this explains why it has a small number of rounds. AES consists of 3 dif-

ferent "layers". Each layer manipulates all 128 bits of the state A of the

algorithm. Each round, with the exception of the �rst which only performs

the �rst layer, consists of all three layers. Let's give some notation: we call

x the plaintext, y the ciphertext and nr the number of rounds. The state

A is arranged in a 4× 4 matrix where each position contains a single byte:

A =


A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15



The 3 layers are the following:

• Key Addition layer: A 128-bits round key, or a subkey derived

from the main key in the key schedule, is XORed to the state. The
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key bytes are arranged into a matrix with four rows and four (128-

bits key), six (192-bits key) or eight (256-bits key) columns, where

each element contains a single byte. An XOR addition of a subkey is

used both at the input and output of AES: this process is called key

whitening. The number of subkeys is equal to the number of rounds

plus one, due to the key needed for key whitening in the �rst key

addition layer. The AES subkeys are computed recursively, i.e., in

order to derive subkey ki, subkey ki−1 must be known, and so on. The

AES key schedule is word-oriented, where 1 word = 32 bits. Subkeys

are stored in a key expansion array W that consists of words. There

are di�erent key schedules for the three di�erent AES key sizes of 128,

192 and 256 bits. WhatsApp uses AES256, so let's describe its key

schedule.

Figure 2.2: AES key schedule for 256-bits key size

AES with 256-bits key needs 15 subkeys. De�ne the components of

the key matrix as K0, . . . , K31. The subkeys are stored in the 60 words



8 CHAPTER 2. SHORT REVIEW OF BASIC CRYPTOGRAPHY

W [0], . . . ,W [59]. The computation of the array elements is shown in

Figure 2.2. The key schedule has 7 iterations, where each iteration

computes 8 words for the subkeys. The subkey for the �rst AES round

is formed by the array elements (W [0],W [1],W [2],W [3]), the second

subkey by the elements (W [4],W [5],W [6],W [7]), and so on. There

are seven round coe�cients RC[1], ..., RC[7] within the function g().

The function g() rotates its four input bytes, performs a byte-wise

S-Box substitution, and adds a round coe�cient RC to it. g() has

two purposes: it adds nonlinearity to the key schedule and removes

symmetry in AES. This key schedule also has a function h() with 4-

bytes input and output. The function applies the S-Box to all four

input bytes. More details of the key schedule algorithm can be found

in [1].

• Byte Substitution layer (S-Box) : each element of the state gets

a non-linear trasformation. This introduces confusion to the data.

Computations are done in the �eld F2[x]/m(x), with m(x) = x8 +

x4 + x3 + x+ 1, which is an irreducible polynomial on F2. A byte a =

(a7a6 . . . a0) is identi�ed from the polynomial a7x
7+a6x

6+· · ·+a1x+a0.

Operations on the byte are computed modulo the polynomial m(x).

S-Box is a bijective function S : Z8
2 → Z8

2 such that S(a) = Aa−1 + v,

where A and v are a �xed matrix and a �xed vector. Their de�nition

can be found, for example, in [3]. a−1 can be computed e�ciently

with the Extended Euclidean Algorithm.

• Di�usion layer: as the name suggests, this layer provides di�usion

to the data. It is a combination of two sub-layers, both with only

linear trasformations:

� ShiftRows: in this sub-layer, the bytes in every row of the state

matrix A are shifted in the following way: no shift for the �rst

row, <<<1 for the second row, <<<2 for the third row, <<<3

for the last row. The symbol <<<n means we do a left rotation

of n positions.

� MixColumns: it is a matrix operation on every column of A,

which combines blocks of 4 bytes. The operation is the following:



2.1. BLOCK CIPHERS: AES 9


α′0

α′1

α′2

α′3

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




α0

α1

α2

α3



where (α0, α1, α2, α3) is a column of A and coe�cients in the

matrix are hexadecimal numbers which represent elements of

F256. If we represent these bytes with the polynomial α(x) =

α3x
3 + α2x

2 + α1x + a0, αi ∈ F256 we can also see this pas-

sage as the multiplication of α(x) with the �xed polynomial

c(x) = (03)16x
3 + (01)16x

2 + (01)16x+ (02)16 mod x4 + 1.

The last round nr does not make use of the MixColumn transformation.

Every round of AES is invertible because every function is invertible. To

decrypt a message encrypted with AES, we must reverse the order of the

operations done for encryption, using the same keys but in reverse order.

The layers S-Box, ShiftRows and MixColumns must be substituted with

their inverse. The de�nition of the inverse functions and more details about

AES security can be found in [1].

We have seen how AES encrypts a single block. How can we encrypt the

whole message? Di�erent "modes" can be used. The mode chosen from

WhatsApp is called Cipher Block Chaining (CBC). It provides con�dential-

ity for a message sent from A to B. There are two main ideas behind CBC

mode. First, the ciphertext yi depends not only on block Bi but on all pre-

vious plaintext blocks Bi−1, . . . , B1. Second, the encryption is randomized

by using an Initialization Vector (IV): this is an example of probabilistic

encryption, if we encrypt two blocks with two di�erent IV the two resulting

ciphertext sequences look completely unrelated for an attacker. IV is added

to the �rst plaintext. We do not want to keep it secret because we use it as

a nonce, so we replace it after a single use.

For the step i, the input of the cryptographic algorithm is the result between

the XOR of the current plaintext blockBi and the preceding encrypted block

yi−1; for each block, the same key k is used. The plaintext M is divided
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into blocks BN ||. . . B2||B1, where each block has a required length given by

the block cipher E (e.g. 128 bits if E = AES). If needed, there is a padding

operation for the last block.

The formulas are the following:

y1 = Ek(B1 ⊕ IV ),

yi = Ek(Bi ⊕ yi−1) if i > 1.

When decrypting a ciphertext block yi in CBC mode, we have to reverse

the two operations we have done while encrypting. First, we apply the

decrypting function D, always with the same key k; then, we XOR the

correct ciphertext block to undo the XOR done while encrypting. The

formulas are

B1 = Dk(y1)⊕ IV,

Bi = Dk(yi)⊕ yi−1 if i > 1.

The main advantage of the CBC is the chain between all the blocks: in

this way, changing a single bit from the IV or from the block Bj changes yj

and every encrypted block after yj. Moreover, decryption is parallelizable.

Encryption itself is not su�cient: we also have to protect the integrity of

the message. This can be achieved by MACs or digital signatures, which

will be brie�y discussed in the Sections 2.3 and 2.5.

2.2 Hash functions: SHA-256

De�nition 2.1. Let Σ be an alphabet and let Σ∗ be the set of all words

(of arbitrary length) obtained from Σ. A pre-Hash function is a function

h : Σ∗ → Σn, with a �xed n.

Usually, in most applications we take Σ = {0, 1} and n = 160, 256, 384

or 512. h(x) is called hash or digest; it follows from its de�nition that

h(x) can't be injective. Hash functions must have the "avalanche e�ect"

property: changing a single bit in the input must change most of the bits

of the output. A Hash function must satisfy some properties: it has to be

one-way, collision resistant and second preimage resistant.

De�nition 2.2. Let h(x) be a pre-Hash function. A couple of elements

(a, b) ∈ Σ∗, with a 6= b and with the property h(a) = h(b) is called collision.
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De�nition 2.3. Let h(x) be a pre-Hash function and let z be a digest. h(x)

is said to be one-way if the computation of a number x such that h(x) = z

is computationally infeasible .

Given a digest, it should require a work equivalent to about 2n hash com-

putations to �nd any message that hashes to that value.

De�nition 2.4. Let h(x) be a pre-Hash function and �x a ∈ Σ∗. h(x)

is second preimage resistant if the computation of an element b ∈ Σ∗ with

b 6= a and h(a) = h(b) is computationally infeasible.

De�nition 2.5. Let h(x) be a pre-Hash function. h(x) is collision resistant

if the research of any collision (a, b) is computationally infeasible.

Finding any two messages which hash to the same value should require

work equivalent to about 2
n
2 hash computations. A known attack exploits

the birthday paradox to generate collisions. Of course, collision resistant

implies second preimage resistant.

De�nition 2.6. If a pre-Hash function is one-way, collision resistant and

second preimage resistant, it is called Hash function.

A mathematical proof of these properties is not trivial and usually they

are just ensured from a lot of tries and experiments. Every Hash function

available is guaranteed to be safe. The most famous and used are SHA-1,

SHA-2 and SHA-3. WhatsApp utilizes a speci�c implementation of SHA-2,

so we'll focus on this Hash Function for the rest of this Section.

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic Hash func-

tions. The SHA-2 family consists of six Hash functions with digests (Hash

values) which have 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384,

SHA-512, SHA-512/224, SHA-512/256. In particular, SHA-256 is a hash

function computed with 32 bits words. It di�ers from SHA-512 only in the

number of rounds. The other versions of SHA-2 are truncated versions of

SHA-256 and SHA-512. SHA-2 was published in 2001 by the National In-

stitute of Standards and Technology (NIST).

WhatsApp uses SHA-256 as the Hash function for HMAC (see the next

Section) and SHA-512 as the Hash function for EdDSA signatures, which
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will be discussed in Chapter 3. Since the two versions of SHA-2 are really

similar, we just describe SHA-256.

First of all, the message M which is going to be hashed is padded in such

a way that its length is a multiple of 512 bits. The padding is done this

way: if the length of the message M is l bits, append the bit 1 to the end

of the message, and then append k more zero bits, where k is the smallest

non-negative solution of the equation l + 1 + k ≡ 448 mod 512. After

this, append to the result the 64-bits block which is equal to the number

l written in binary. Then, M is divided into blocks of length 512 bits,

M = BN ||. . . B2||B1. SHA-256 is built using theMerkle-Damg̊ard structure:

it uses a compression function COM and an Initialization Vector IV. COM

is iterated N times (the number of blocks of the plaintext). Let's call Hj

the hash obtained at iteration j. The general formulas are

H1 = COM(IV,B1),

Hj = COM(Hj−1, xj) if j > 1.

The output is y = HN . COM is derived from a block cipher E. This

construction is called Davies-Meyer structure and works as follows: it uses

the block Bj as the key for the iteration j of the compression function and

Hj as the block to encrypt. It begins with a �xed initial hash value H0

(derived from the IV), and then it computes

Hj = EBj
(Hj−1)⊕Hj−1 ∀j > 1.

The XOR is necessary because without it the function would be invertible

and so breakable. H0 is a sequence of eight, �xed, 32-bits words, which can

be found in the document [16]. The SHA-256 compression function operates

on a 512-bits message block and a 256-bits intermediate hash value. The

512 bits of the block Bi are divided into sub-blocks B0
i , . . . , B

15
i , where

each sub-block has now 32 bits. There are also 8 registers: let's call them

a, b, c, d, e, f, g, h. In the rest of this Section, we'll use the following notation.

• ⊕: bitwise XOR;

• ∧: bitwise AND;

• ∨: bitwise OR;
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• x̄: complement of a bit x;

• +: addition mod 232;

• >>>n: right rotation of n bits;

• Rn: right shift of n bits.

Then, the hash computation proceeds as follows:.

for i = 1 : N {

• Initialize the registers a, b, c, d, e, f, g, h with the hash value Hi−1, di-

vided into sub-blocks of 32 bits each. We denote these sub-blocks with

Ha
i−1, H

b
i−1, H

c
i−1, H

d
i−1, H

e
i−1, H

f
i−1, H

g
i−1, H

h
i−1.

• Apply the SHA-256 function to update the registers: it works as fol-

lowing.

for j = 0 : 63{

� Compute the functions Ch(e, f, g),Maj(a, b, c),Σ0(a),Σ1(e), and

Wj, where:

Ch(x, y, z) = (x ∧ y)⊕ (x̄ ∧ z);

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z);

Σ0(x) = (>>>2 x)⊕ (>>>13 x)⊕ (>>>22 x);

Σ1(x) = (>>>6 x)⊕ (>>>11 x)⊕ (>>>25 x);

σ0(x) = (>>>7 x)⊕ (>>>18 x)⊕ (R3x);

σ1(x) = (>>>17 x)⊕ (>>>19 x)⊕ (R10x);

Wj = Bi
j for j = 0, . . . , 15;

Wj = σ1(Wj−2) +Wj−7 + σ0(Wj−15) +Wj−16 if j ≥ 16.

� T1 = h+ Σ1(e) + Ch(e, f, g) +Kj +Wj, where Kj is a constant

word which changes iteration per iteration (check the document

[16] for their de�nition);

� T2 = Σ0(a) +Maj(a, b, c);

� h = g;

� g = f ;
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� f = e;

� e = d+ T1;

� d = c;

� c = b;

� b = a;

� a = T1 + T2.

}

Figure 2.3: jth internal step of the SHA-256 Compression function

• Compute the ith intermediate hash value Hi: H
a
i = a + Ha

i−1, H
b
i =

b+Hb
i−1 and so on for every other register;

}
HN = Ha

N ||Hb
N ||Hc

N ||Hd
N ||He

N ||H
f
N ||H

g
N ||Hh

N is the hash of M .

Currently, the best public attacks break preimage resistance for 52 out of

64 rounds of SHA-256, and collision resistance for 46 out of 64 rounds of

SHA-256. SHA-2 in general is weak to the Length extension attack, a kind

of attack where it's possible to compute H(m1||m2) only knowing H(m1)

and the length of m1 for an attacker-controlled message m2. This is a �aw

of the Merkle-Damg̊ard construction. The use of a Message Authentication

Code is necessary: MAC is not vulnerable to this attack, because it doesn't

use this structure. The newest Hash function SHA-3 is not susceptible to

this attack.
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2.3 Message Authentication Code: MAC

A MAC consists of key generation, signing and verifying algorithms. MACs

share integrity and authentication with digital signatures, but they don't

give the non-repudiation property. A MAC takes a secret key and a message

as input, and calculates a MAC output (a tag). The receiver can do the

same operation, computing again the tag from the plaintext and the key.

The operation has success if they get the same tag. Users have to share

the secret key like they do when dealing with symmetric cryptography.

They need to use a secure channel or they can exploit some properties of

asymmetric cryptography to get a shared key, which must be pseudorandom

(e.g., it can be generated by a PRNG). We'll see some examples in Chapter

3. MACs must not allow the computation of a correct tag for a new message

for an user who doesn't know the key. A standard way to get this condition

is utilizing a Hash function. In fact, the most used version of MAC is

the Keyed-Hash Message Authentication Code (HMAC). HMAC can be

implemented with every existing Hash function. WhatsApp, for example,

uses HMAC with SHA-256. Let's see how HMAC works in this case. Let

H(x) be SHA-256, so it has as input sequences (blocks) of 512 bits and as

output a digest of 256 bits. Let K be the secret key: the best choice would

be a key K with length 256 bits, because a smaller key would be padded

adding zeros and a bigger key would be hashed to this length. De�ne two

�xed vectors,

Ipad = 00110110

and

Opad = 01011100,

where each string is repeated 256
8

= 32 times. Finally, letM be the message.

Then,

HMACK(M) = H((K ′ ⊕Opad)||H((K ′ ⊕ Ipad)||M)),

where K ′ is the key eventually padded or hashed if it is smaller or bigger

than 256 bits.

This de�nition for the computation of the tag can look complicated, but it

assures security against the length extension attack.
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2.3.1 HMAC-based Key Derivation Function

A Key Derivation Function (KDF) is a basic and essential component of

cryptosystems. Its goal is to take some source of initial keying material and

derive from it one or more cryptographically strong secret keys. Usually, it

takes weak key material (an example can be some Di�e-Hellman exchanged

shared secrets which are not uniformly distributed) and a pseudo random

KDF key, to turn it into a stronger key. This function consists of two steps:

�rst, it takes the potentially weak source material and extracts from it a

�xed-length pseudorandom key k; then, it can expand the key k into several

additional pseudorandom cryptographic keys.

The goal of the �rst stage is to "concentrate" the possibly dispersed entropy

of the input keying material into a short, but cryptographically strong,

pseudorandom key: if the input of the algorithm is an already secure key,

the �rst step can be omitted and just the second step is performed. The goal

of the second stage is instead the expansion of the pseudorandom key to the

desired length, which depends on the cryptographic application. Let's now

describe what happens in each stage.

• Step 1: Extraction.

We need a Hash function (e.g. SHA-256): denote l the length of the

output of the Hash function in octets (for SHA-256, l = 32).

The inputs for the extract phase are:

� An optional salt value (i.e. a non secret random value). When a

salt value isn't provided, a default value is used, precisely a byte

sequence of zeros. The presence of a salt makes sure that the

derived keys are di�erent if the input keying material repeats;

� IKM: an input key material. IKM is used as the HMAC input,

not as the HMAC key.

The HMAC function is used to derive the new key: the output is

PRK = HMACsalt(IKM).

• Step 2: Expansion.

We need again a Hash function. The inputs of the second phase are

the following:
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� PRK, a pseudorandom key of at least l octets. Usually, it is the

output of the �rst phase;

� info, an optional context and application speci�c information.

It can be a string with l = 0. Its main objective is to bind

the derived key material to application-speci�c information. For

example, info may contain a protocol number or an ID. It should

be independent from IKM;

� L, the length required for the output of this phase. It must

satisfy the relation L ≤ 255l.

Then, the output OKM is computed in this way:

N =

¢
L

l

•
,

T = T (1)||T (2)||. . . ||T (N),

where

T (0) = empty string,

T (i) = HMACPRK(T (i− 1)||info||Ci);

Ci is a constant which changes at every iteration and it is a byte (there

is a maximum of 256 di�erent constants).

Finally,

OKM = �rst L bytes of T.

2.4 Authenticated-Encryption with Associated-

Data

We have already discussed why con�dentiality is not enough. The attacker

might use active techniques, and the receiver might want to ensure the data

have really been constructed by a sender with the right key. In the past, the

common scheme was simply the composition of an encryption scheme and

a MAC. More recently, the idea of providing both security services using

a single cryptoalgorithm has been preferred: its name is Authenticated-

Encryption with Associated-Data (AEAD). It provides con�dentiality, in-

tegrity and data authenticity simultaneously. In fact, AEAD can authen-

ticate a part of its input (e.g. a header), which is called Associated Data
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(AD). Associated Data are usually not encrypted.

Both cipher and MAC are replaced by an AEAD algorithm: it has more

e�ciency compared to the generic composition of conventional mechanisms

and it is faster. Moreover, classic cipher and MAC schemes also have a

signi�cant shortcoming: an inability to e�ciently authenticate a string of

associated-data bound to the ciphertext. Instead, AEAD performs this op-

eration without any problem. Several crypto algorithms that implement

AEAD algorithms have been de�ned, including block cipher modes of op-

eration and dedicated algorithms.

An AEAD algorithm has two operations, authenticated encryption and au-

thenticated decryption. Most known ciphers can be used for these two com-

putations, but the classic choice is AES with some mode. Authenticated

encryption has 4 inputs, each of which is an octet string:

• a secret key K, which must be generated in a way that is uniformly

random or pseudorandom. The length of K must be �xed and it is

between 1 and 255 octets;

• a nonce N , which changes at every iteration of the algorithm. For any

particular value of the key, each nonce provided to distinct calls of the

algorithm must be distinct, or each nonce must be zero-length;

• a plaintext M . The number of octets in M may be zero;

• the associated data AD, which contain the data to be authenticated,

but not encrypted. The number of octets in AD may be zero;

The output is a ciphertext C, which is at least as long as the plaintext,

or an indication that the requested encryption operation could not be per-

formed. The number of octets in C may be zero. This algorithm provides

con�dentiality and message authentication. If the length of M is zero, the

algorithm works like a MAC on AD. AD is used to protect informations

that need to be authenticated, but don't need to be kept con�dential.

Similarly, the authenticated decryption operation has four inputs: K, N ,

AD, and C, as de�ned above. It has only a single output, either a plaintext

M or a special symbol FAIL that indicates that the inputs are not authentic.
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Usually, AEAD is used like an encrypt-then-MAC scheme. In this scheme,

the steps are the following: encrypt the cleartext, then compute the MAC

on the ciphertext, and append it to the ciphertext. The keys for the two

steps can be the same (even though it's not recommended) or di�erent: in

this case, the �rst b bits of the key K are used as the encryption key, and

the last b bits of K are used as the authentication key.

Figure 2.4: Encrypt-then-MAC scheme

2.5 Digital Signatures

When dealing with asymmetric cryptography, every user has a public key

and a private key. If Alice (A) wants to send a message to Bob (B), she

takes the public key of B and encrypts her message. B receives the message

and is able to decrypt it thanks to her private key. B doesn't know who

sent him the message though. Digital signatures �x this problem, giving

the recipient a way to check who sent the message. Thanks to signatures,

we gain the property of non-repudation, i.e. the sender of a message can't

deny its submission. Moreover, like MACs, a signature gives us the two

properties of integrity and authentication. A general scheme for a digital

signature is the following. Let A, B be two users who want to exchange

a message. Let Eka , Ekb be the two encrypting functions (they are public

because they require the public keys), with inverseDka , Dkb (they are private

because they require the private keys), and let h() be a Hash function. Let

sA be a text containing some speci�c information about A, like her name,

a progressive number or an ID. If A is the sender, the receiver B wants to

be sure about who is sending him a message. The steps are the following:

• A sends to B Ekb(M) and the couple (Ekb(Dka(sA||h(M))), sA) where

h(M) is the digest of a plaintext M . The usage of h() is important
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because it guarantees that this signature is viable only for this speci�c

M ;

• B obtains M from Ekb(M) using his decrypting function Dkb and

computes h(M). Then, he applies to the signature he received the

function EkaDkb and subtracts h(M): if the result he gets is equal to

sA, he is sure about the sender.

We'll see in the next Chapter a concrete example of digital signature on

elliptic curves.



Chapter 3

Elliptic Curves

To understand how WhatsApp generates keys for its users, we need to

introduce some theory about elliptic curves and their use in cryptography.

This Chapter will face this argument, without worrying too much about

mathematical details - the focus will be on the cryptographic applications.

Elliptic Curve Cryptography (ECC) has been around since the mid-1980s.

ECC provides the same level of security of other systems (such as Discrete

Logarithm systems, DL for short) with smaller keys (approximately 160�256

bits vs. 1024�3072 bits). ECC is based on the generalized DL problem, and

thus DL-protocols (such as the Di�e�Hellman key exchange) can also be

realized using elliptic curves. In many cases, ECC needs less computations

and uses shorter signatures and keys over the Discrete Logarithm scheme.

An elliptic curve is a special type of polynomial equation. For cryptographic

use, we need to consider the curve over a �nite �eld. The most popular

choice is the prime �eld GF (q), where all arithmetic is performed modulo

a prime q. The de�nition of an elliptic curve requires the curve to be

nonsingular. Geometrically speaking, this means that the plot has no self-

intersections or vertices, which is achieved if the discriminant of the curve

is nonzero. We are not going to focus too much on this condition, since it's

always possible to get a nonsingular curve without trouble. Section 3.1 will

recap the most common and widely used type of elliptic curve, the curve

in Short Weierstrass form. Sections 3.2 and 3.3 will introduce the recent

Edwards curves, while Section 3.4 describes a last kind of elliptic curve, the

Montgomery curve, and the important Montgomery Ladder algorithm. The

Section 3.5 introduces Curve25519, which is the elliptic curve chosen from

WhatsApp for the generation of keys. Finally, Section 3.6 describes two

21
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variants of a digital signature scheme de�ned on Edwards curves.

3.1 Short Weierstrass form curves

The most straightforward kind of elliptic curve can always be written in

Short Weierstrass form, i.e. the curve has the equation y2 = x3 + ax+ b .

De�nition 3.1.1. The elliptic curve over GF (q), q > 3, is the set of all

pairs (x, y) ∈ GF (q) which ful�ll

y2 ≡ x3 + ax+ b mod q(3.1.1)

together with an imaginary point at in�nity O, where a, b ∈ GF (q) and

with the nonsingularity condition 4a3 + 27b2 6= 0 mod q.

For cryptographic uses, we are interested in studying the curve over a �nite

�eld. However, nothing prevents us from taking an elliptic curve equation

and plotting it over the set of real numbers.

Figure 3.1: Plot of the Elliptic Curve y2 = x3 − 3x+ 3 over R

The elliptic curve is symmetric with respect to the x-axis (it follows from

its de�nition). As already stated before, we need a group, i.e. we need some

elements and an operation between these elements. Getting the elements of

the group on an elliptic curve is easy: we can take the points (with integer

coordinates) which full�ll the equation (3.1.1). The di�cult part is �nding

an operation between these points. Let's denote this operation with "⊕". If
we know a few integer points on the elliptic curve E, we can generate new
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integer points on the curve by drawing a line passing through two distinct

points P and Q or a tangent line passing for a point P . The new point

of the curve E where that line intersects the elliptic curve will be another

integer point. This is known as the Chord-Tangent Method. If P , Q are two

points of E, let's call S = (x, y) the point obtained using the Chord-Tangent

method. Then, we de�ne the operation on the elliptic curve as

R = P ⊕Q := (x,−y).

The same operation holds if we are considering a tangent line: just compute

the point R = P ⊕ P . Let's now get some formulas to calculate the new

point R starting from two other points P , Q (or just a single point P ). We

need to distinguish between the two cases. Let's call λ the slope of the line.

• Case 1: R = P ⊕Q (P = (xP , yP ) 6= Q = (xQ, yQ)) (point addition).

We can compute the coordinates of R with the formulas

xR = λ2 − xP − xQ mod q(3.1.2)

yR = λ(xP − xR)− yP mod q(3.1.3)

λ =
yQ − yP
xQ − xP

mod q(3.1.4)

Figure 3.2: Point Addition

• Case 2: R = P ⊕ P = 2P (P = Q = (xP , yP )) (point doubling). We



24 CHAPTER 3. ELLIPTIC CURVES

can compute the coordinates of R with the formulas

xR = λ2 − 2xP mod q(3.1.5)

yR = λ(xP − xR)− yP mod q(3.1.6)

λ =
3x2P + a

2yP
mod q(3.1.7)

Figure 3.3: Point Doubling

The neutral element of the group is the "point at in�nity" O. It does not
belong to the curve: we must use projective coordinates to fully describe this

point. We can add a coordinate z to get rid of O.Without too much detail,

we can think the curve with coordinates (X : Y : Z), where this notation

denotes the equivalence class of (x, y, z). With these new coordinates, the

equation of an elliptic curve in Short Weierstrass form is

Y 2Z = X3 + aXZ2 + bZ3.

The classic form is just the curve (X : Y : 1). We know that O does not

belong to this plane, so Z 6= 1. We can take Z = 0 to get

0 = X3 ⇒ X = 0.

The point O corresponds to the equivalence class (0 : 1 : 0).

The inverse of a point P is de�ned as −P = (x,−y). In fact, it's easy to

check that P ⊕ (−P ) = O.
The associative property follows from some well-known results of algebraic
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geometry: a proof can be found in [2].

We can reassume all these observations with a general Theorem.

Theorem 3.1.2. Let E be a rational elliptic curve. Denote E(Q) as the

set of all rational projective points on E. Then E(Q) is an abelian group

under ⊕.

We can now also motivate the following result.

Theorem 3.1.3. The points on an elliptic curve together with O have cyclic

subgroups. Under certain conditions all points on an elliptic curve form a

cyclic group.

This Theorem is extremely useful because we have a good understanding

of the properties of cyclic groups. For this reason, we know how to build

cryptosystems from cyclic groups.

De�nition 3.1.4. The number of points in a group is called order of the

group. The order of a point P is the smallest positive integer n such that

nP = O.

The order of P is linked to the order of the elliptic curve by the Lagrange's

Theorem, which states that the order of a subgroup is a divisor of the order

of the group. In other words, if an elliptic curve contains N points and one

of its subgroups contains n points, then n is a divisor of N . We call cofactor

the ratio c = N
n
. The number of points N can be computed e�ciently, for

example, with the Schoof's algorithm, which has O(log9(q)) complexity.

The details can be found in [5].

Instead, an estimate of the number of points N of an elliptic curve is given

from this Theorem.

Theorem 3.1.5. (Hasse)

Let N be the number of points of an elliptic curve E(GF (q)), where q is the

power of a prime. Then,

|N − (q + 1)|≤ 2
√
q.

This Theorem states that the number of points is roughly in the range of

the prime q. For instance, if we need an elliptic curve with 2160 elements,
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we have to use a prime of length of about 160 bits.

The second step is the description of the discrete logarithm problem on

an elliptic curve. Let's consider a primitive element P and another element

T . The Elliptic Curve Discrete Logarithm Problem (ECDLP) consists in

�nding a number d such that dP = T , where with dP we denote the com-

putation P ⊕· · ·⊕P d times. In cryptosystems, d is the private key which is

an integer, while the public key T is a point on the curve with coordinates

T = (xT , yT ). If the elliptic curve is chosen with care, the best known at-

tacks against the ECDLP are considerably weaker than the best algorithms

for solving the DL problem modulo q. It is important to remember that this

security is only achieved if cryptographically strong elliptic curves are used.

There are several families of curves that possess cryptographic weaknesses,

like supersingular curves. A core requirement is that the cyclic group (or

subgroup) formed by the curve points has prime order. There are other

properties to be respected and assuring all of them is not trivial: usually,

people use standardized curves.

Example 3.1. (ECDSA)

Before moving on with the description of other kinds of elliptic curves used

in cryptography, let's describe the Elliptic Curve Digital Signature Algorithm

(ECDSA). A variant of this digital signature is used by WhatsApp. Fix an

elliptic curve in Short Weierstrass form E in the �eld GF (q) and a point G

on the curve. Let N be the number of points of the curve (it can be found

with Schoof's algorithm) and let H be a Hash function. Every user chooses

an integer d ∈ GF (q) as her private key, computes P = dG and uses P as

her public key.

ECDSA signing algorithm works as follows:

• the sender A computes the digest h = H(M) of the plaintext M ;

• A chooses k ∈ ZN randomly (i.e. every value has the same probability,

the distribution is uniform);

• A computes the point of the curve kG = (x, y);

• A �xes r ≡ x mod N and computes s = (h+ rd)k−1 mod N ;

• The signature is the couple (r, s).
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It guarantees integrity, authentication and non-repudiation, because only A

can know her private key d, so only A can compute (r, s). Moreover, in

the signature there is h = H(M), so it can be used only for the speci�c

message M , it can't be reused fraudulently for other messages. To verify the

signature, the receiver B must:

• compute w = s−1 mod N = k(h+ rd)−1 mod N ;

• compute u = wh and v = wr;

• compute the point Q = uG + vP , where P = dG is the public key of

A;

• accept the signature only if the �rst coordinate of the point Q, let's

say x, coincides with r mod N .

This works because

Q = uG+ vP = whG+ wr(dG) = w(h+ rd)G = kG = (x, y).

3.2 Edwards curves

Edwards curves are a family of elliptic curves studied by Harold Edwards

in 2007. Let GF (q) be a �eld with char(GF (q))6= 2. The starting point

to face this family of curves is the equation of the unitary circumference

x2 + y2 = 1. We can take two points of the circumference and "add" them

(denote again this operation with the symbol ⊕), getting a new point of the

circumference, simply using goniometric formulas.

In fact, let's take two random points P1 and P2, and let's call α the angle

between the y-axis and P1, β the angle between the y-axis and P2. In this

way, we can rename the coordinates of the points as

P1 = (sin(α), cos(α)),

P2 = (sin(β), cos(β)).

The addition of angles de�nes a commutative group law:

P3 = P1 ⊕ P2 = (sin(α + β), cos(α + β)),
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Figure 3.4: Sum of points on a circumference

where

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

and

cos(α + β) = cos(α) cos(β)− sin(α) sin(β).

The neutral element is the point (0, 1), and P3 satis�es the unit circle equa-

tion. Sadly, it can be proved that a circumference is not an elliptic function.

Generalizing the example, we get the so-called Edwards curves.

De�nition 3.2.1. An Edwards curve over GF (q), with char(GF (q)) 6= 2

is a curve given by the equation

x2 + y2 = 1 + dx2y2.

where d ∈ GF (q) with d 6= 0, 1.

If d becomes smaller and smaller, the curve looks more and more like a

"star�sh". We have to de�ne the elements of the group and the operation

between these elements. Similarly to the Short Weierstrass curves case, the

research of the elements is easy: we just take the points of the curve with in-

teger coordinates. Surprisingly, the operation in this kind of elliptic curve is

really simple and doesn't use the chord and tangent method. The procedure

remembers the unit circle's addition law, and an idea of its construction can

be found in [34]. The neutral element is also the same, i.e. the point (0, 1).
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Figure 3.5: Edward curves for d = −2,−10,−50,−200.

Figure 3.6: Operation on an Edward curve

The formulas for the addition are the following: if P1 = (x1, y1) and P2 =

(x2, y2), then

P3 = P1 ⊕ P2 =

Ç
x1y2 + y1x2

1 + dx1x2y1y2
mod q,

y1y2 − x1x2
1− dx1x2y1y2

mod q

å
.

Doubling can also be performed with the same formula. It's also easy to

prove that, if P = (x, y), then −P = (−x, y).

Bernstein and Lange generalized the addition law to the curves with equa-

tion x2 + y2 = c2(1 + dx2y2) (c 6= 0). All curves in this form are isomorphic

to the curves in the classical Edwards form. Let's now compute the order

of some trivial points of the curve, the "angles" (0,−1), (1, 0) and (−1, 0).



30 CHAPTER 3. ELLIPTIC CURVES

Using the doubling formula, we get

(0,−1)⊕ (0,−1) = (0, 1),

2(1, 0) = (1, 0)⊕ (1, 0) = (0,−1)⇒ 4(1, 0) = (0, 1),

2(−1, 0) = (−1, 0)⊕ (1, 0) = (0,−1)⇒ 4(−1, 0) = (0, 1),

so the points have order 2, 4, 4 respectively. Trivially, these points belong

to every Edwards curve: this characteristic will be important later.

How these curves relate with classical elliptic curves? Edwards showed that

every elliptic curve over GF (q) can be expressed in the form x2 + y2 =

1 + dx2y2 if GF (q) is algebraically closed. However, over a �nite �eld, only

a small fraction of elliptic curves can be expressed in this form. To be more

precise, we need to introduce the concept of birational equivalence.

De�nition 3.2.2. Two curves E1 and E2 are birationally equivalent if there

is a map φ : E1 → E2 between them which is de�ned at every point of E1

except a small set of exceptions and there is an inverse map φ−1 : E2 → E1

which is de�ned at every point of E2 except a small set of exceptions.

This de�nition is very close to that of an isomorphism, except for the fact

that we allow some "exceptions", i.e. points where the map is not de�ned.

To make all more concrete, we can think of an isomorphism as a tuple of

polynomials:

φ : E1 → E2

(x, y) 7→ (f(x, y), g(x, y)),

where f, g are polynomials in x, y. The inverse is also de�ned in terms of

polynomials.

A birational map can be seen as a tuple of fractions of polynomials, say

φ : E1 → E2

(x, y) 7→
Ç
f1(x, y)

f2(x, y)
,
g1(x, y)

g2(x, y)

å
.

This is de�ned at all points (x, y) except for the ones where f2(x, y) = 0 or

g2(x, y) = 0. The inverse is also a fraction of polynomials, and can therefore

be unde�ned at certain points.
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What is true is that every elliptic curve in Short Weierstrass form E,

de�ned on a �nite �eld, with a point of order 4 (and with a single point of

order 2) is birationally equivalent to an Edwards curve Ed. This condition

is natural because we have already observed that every Edwards curve has

always a point of order 4. There are no NIST curves at the moment with

points of order 4, so to build the birational equivalence we must work on

some extension �eld with a point of order 4.

In particular, this equivalence means that the output of the Edwards ad-

dition law corresponds to the output of the standard addition law on a

birationally equivalent elliptic curve E. One can therefore perform group

operations on E (or on any other birationally equivalent elliptic curve) by

performing the corresponding group operations on the Edwards curve. The

group operations could encounter exceptional points where the Edwards ad-

dition law is not de�ned. It can be proved that, when d is not a square,

there are no exceptional points: the denominators in the Edwards addition

law cannot be zero (see [8] for details about the proof). In other words,

when d is not a square, the Edwards addition law is complete: it is de�ned

for all pairs of input points on the Edwards curve over GF (q). If q ≡ 3

mod 4, this pitfall can be avoided choosing a curve with order 4r, where r

is a prime.

3.3 Twisted Edwards curves

We can generalize Edwards curves introducing a new parameter a. In fact,

the existence of points of order 4 restricts the number of elliptic curves

in Edwards form over GF (q). We embed the set of Edwards curves in a

larger set of elliptic curves of a similar shape by introducing twisted Edwards

curves. First of all, we need the following de�nition.

De�nition 3.3.1. Let E be an elliptic curve over a �eld GF (q). We call

an associated quadratic twist another elliptic curve which is isomorphic to

E over an algebraic closure of GF (q).

Remark 3.3.2. An algebraic closure of a �eld K is an algebraic extension of

K that is algebraically closed, so it contains a root for every non-constant

polynomial in K[x], the ring of polynomials in the variable x with coe�-

cients in K.
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Then, we can de�ne the twisted Edwards curves.

De�nition 3.3.3. Fix a �eld GF (q) with char(GF (q)) 6= 2. Fix distinct

nonzero elements a, d ∈ GF (q). The twisted Edwards curve with coe�cients

a and d is the curve

EE,a,d : ax2 + y2 = 1 + dx2y2.

An Edwards curve is a twisted Edwards curve with a = 1.

The twisted Edwards curve EE,a,d : ax2 +y2 = 1+dx2y2 is a quadratic twist

of the Edwards curve EE,1, d
a

: x̄2 + ȳ2 = 1 + d
a
x̄2ȳ2.

The group law for twisted Edwards curves is really similar to the one of

Edwards curves. The formula is the following: if P1 = (x1, y1) and P2 =

(x2, y2), then

P3 = P1 ⊕ P2 =

Ç
x1y2 + y1x2

1 + dx1x2y1y2
mod q,

y1y2 − ax1x2
1− dx1x2y1y2

mod q

å
.

The formula is the same for point doubling. These formulas are complete

(i.e., have no exceptional cases) if a is a square inGF (q) and d is a nonsquare

in GF (q). Again, if q ≡ 3 mod 4, this can be avoided choosing a curve with

order 4r, r prime. This generalization is actually useful for cryptographic

purposes because there is often a computational advantage: less operations

are required in average. Even when an elliptic curve can be expressed in

Edwards form, expressing the same curve in twisted Edwards form often

saves time in arithmetic. It can be proved (read [10] for details) that if q ≡ 1

mod 4, twisted Edwards curves cover considerably more elliptic curves than

Edwards curves.

Example 3.2. (Edwards448)

Edwards448 is one of the most used non-standardized curves, together with

Curve25519, which will be discussed later. It is used by Signal, but not by

WhatsApp. A reason is the fact that on this curve, while it o�ers more

security (224 bits of security), computations are slower. The equation of

the curve is

x2 + y2 = 1− 39081x2y2,
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de�ned over GF (q) with q = 2448 − 2224 − 1. It can be proved that q ≡ 3

mod 4. The constant d = −39081 was chosen as the smallest number (in

absolute value) which guarantees the completeness of the law (i.e. the curve

and its twist have order 4r and 4r′ with r, r′ primes).

3.4 Montgomery curves

We now introduce a last class of elliptic curves.

De�nition 3.4.1. Fix a �eld GF (q) with char(GF (q)) 6= 2. Fix A ∈
GF (q) with A 6= ±2 and B ∈ GF (q), B 6= 0. The Montgomery curve with

coe�cients A and B is the curve

EM,A,B = By2 = x3 + Ax2 + x.

The parameter A controls the geometry of the curve, while the parameter B

is called twisting factor. Since the value of B is incidental for cryptography,

we won't give too much importance to this parameter. EM,A,B is an elliptic

curve, so there must be a group law between its points, with operation

⊕. In this case, it is de�ned in the following way: let P = (xP , yP ) and

Q = (xQ, yQ) be two points of the curve, and let λ be the slope of the line

passing for the two points. Then, R = P ⊕Q = (xR, yR), with

xR = Bλ2 − (xP + xQ)− A mod q(3.4.1)

yR = λ(xP − xR)− yP mod q(3.4.2)

and

λ =
yQ − yP
xQ − xP

mod q

if P 6= ±Q,

λ =
3x2P + 2AxP + 1

2ByP
mod q

otherwise. The neutral element is the point at in�nity O, while the inverse
of the point P = (x, y) is the point −P = (x,−y).

For Montgomery curves, the following Theorem holds.

Theorem 3.4.2. Fix a �eld GF (q) with char(GF (q)) 6= 2. Then:
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• Every twisted Edwards curve over GF (q) is birationally equivalent

over GF (q) to a Montgomery curve.

• Conversely, every Montgomery curve over GF (q) is birationally equiv-

alent over GF (q) to a twisted Edwards curve.

It's important to observe that this is not true for curves in Short Weierstrass

form: every Montgomery curve can be written in Short Weierstrass form (if

q is not a power of 3), while the converse is not true in general. From the

Theorem, it follows that there is a quadratic twist of EM,A,B birationally

equivalent to an Edwards curve. The transformation formulas from the

twisted Edwards curve ax2 + y2 = 1 + dx2y2 to the Montgomery curve

Bv2 = u3 + Au2 + u are

u =
1 + y

1− y
⇒ y =

u− 1

u+ 1
mod q

v =
1 + y

x(1− y)
⇒ x =

u

v
mod q

Doing the calculations, we �nd A = 2(a+d)
a−d and B = 4

a−d .

The map is de�ned for every point if ∞ is handled carefully as input and

output. The critical points are u = −1 and v = 0.

Example 3.3. (Curve25519)

Let's consider the Montgomery curve known as Curve25519. It will be fun-

damental in the generation of keys for the WhatsApp key exchange protocol.

This curve o�ers 128 bits of security and it is de�ned as

v2 = u3 + 486662u2 + u,

de�ned over GF (q) with q = 2255 − 19.

Let's apply the transformation described above. we have B = 1 and A =

486662. Solving the system of equations, we get a and d:


4

a−d = 1

2(a+d)
a−d = 486662

⇒ a = 486664 d = 486660.

The twisted Edwards curve is 486664x2 + y2 = 1 + 486660x2y2. We know

too that this curve is equivalent to the Edwards curve Ed : x2 + y2 = 1 +
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121665
121666

x2y2. Thanks to this relation, we have proved that Curve25519 has a

point of order 4. It can also be shown that q ≡ 1 mod 4. Doing a di�erent

trasformation, it can be shown that the twisted Edwards curve can be written

in the form −x2 + y2 = 1− 121665
121666

x2y2 also.

There are some situations where the twisting is not necessary. We already

know that every elliptic curve in Short Weierstrass form E with a point of

order 4 is birationally equivalent to an Edwards curve Ed. The result is

generalized in the following Theorem.

Theorem 3.4.3. Fix a �eld GF (q) with char(GF (q)) 6= 2. Let E be an

elliptic curve over GF (q). The group E(GF (q)) has an element of order 4

if and only if E is birationally equivalent over GF (q) to an Edwards curve.

This also means that the unique point of order 2 is unnecessary.

All variants of elliptic curves described above allow a key exchange pro-

tocol. Miller, and independently Koblitz, proposed an elliptic curve variant

of the classic Di�e-Hellman method.

Remark 3.4.4. Elliptic curve Di�e-Hellman (ECDH) is a generalization of

the Di�e-Hellman protocol on elliptic curves. Let's see how it works on an

Elliptic curve written in Short Weierstrass form with coe�cients in Zp. Let

P be the (public) base point of the elliptic curve. Alice and Bob choose

their secret keys kA, kB ∈ Zp and compute the public keys PA = kAP and

PB = kBP . They can now obtain a shared key: if Alice wants to write a

message to Bob, she takes the value PB and computes k1 = kAPB = kAkBP .

In the same way, Bob takes the value PA and computes k2 = kBPA = kBkAP.

Since we are in an abelian group, kAkB = kBkA and for this reason they

obtain the same point of the curve. They can now use this key to exchange

messages through a symmetric cipher like AES.

Miller suggested to exchange just the x-coordinate instead of (x, y)-coordi-

nates: i.e., sending x(P ) rather than an entire point P , where x(x, y) =

x. In this case, ECDH works as follows: let's assume we have a curve

written in Short Weierstrass or Montgomery form, the same base point P

and the same private keys of the Remark. Alice computes x(kAP ), while

Bob computes x(kBP ). Alice and Bob then both know a shared secret
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x(kAkBP ) = x(kA(kBP )) = x(kB(kAP )). The algorithm works as follows:

suppose that A wants to send a message to B. Then:

• A gets the public key of B x(kBP ), substitutes the value in the equa-

tion of the curve and solves the equation, �nding two possible values

of y. The values are always 2 because x(kBP ) is the coordinate of a

point of the curve and we are working in a �eld;

• A has now two possible points ±kBP = (x(kBP ),±y);

• A computes the two points ±kAkBP with the Montgomery formu-

las of addition and doubling: the computation of the y-coordinate is

necessary for this step;

• these two points have the same x-coordinate: A has now the shared

key x(kAkBP ).

Observe that x(kAkBP ) is entirely determined by kA and x(kBP ). Indeed,

the only possible ambiguity in recovering kBP from x(kBP ) is the possi-

ble distinction between kBP and −kBP , and this distinction has no ef-

fect on x(kAkBP ): the x-coordinate is invariant under point negation, so

x(kA(−kBP )) = x(−kAkBP ) = x(kAkBP ). The same argument applies if

x-coordinates on Short Weierstrass or Montgomery curves are replaced by

y-coordinates on (twisted) Edwards curves. The bottleneck here is elliptic-

curve scalar multiplication: the operations could require too much time.

For Montgomery curves, A can use the more e�cient Montgomery Lad-

der to compute x(kAkBP ) from x(kBP ) and kA, using the doubling and

di�erential-addition formulas. This approach is simpler and almost 3 times

faster than the algorithm just described.

The structure of Montgomery curves is important for the speed: from the

modern Edwards perspective, Montgomery takes advantage of having a

point of order 4 on the curve or its twist.

First of all, let's see how to compute x(nP ) knowing only n and x(P ). Let's

start with the simplest case, n = 2. .

• Doubling
The following Theorem holds.

Theorem 3.4.5. Fix a �eld GF (q) with char(GF (q)) 6= 2. Fix A,B ∈
GF (q) with B(A2−4) 6= 0. De�neM as the Montgomery curve By2 =
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x3 + Ax2 + x, and de�ne x as follows:

x : M(GF (q))→ GF (q) ∪ {∞}

x(x, y) = x, x(O) =∞.

Let P = (x, y) be an element of M(GF (q)). If x(P ) = ∞, then

x(2P ) = ∞. If x(P ) 6= ∞ and x(P )3 + Ax(P )2 + x(P ) = 0 then

x(2P ) =∞. If x(P ) 6=∞ and x(P )3 + Ax(P )2 + x(P ) 6= 0, then

x(2P ) =
(x(P )2 − 1)2

4(x(P )3 + Ax(P )2 + x(P ))
.

Proof. If x(P ) =∞ ⇒ P = O ⇒ 2P = O ⇒ x(2P ) =∞.
Assume now that x(P ) 6=∞. Then, P = (x, y) for some x, y ∈ GF (q)

and x, y satisfy the equation ofM . By de�nition, x(P ) = x(x, y) = x.

If we assume x3 + Ax2 + x = 0⇒ y = 0. Then,

2P = (x, 0) + (x, 0) = (x, 0)− (x, 0) = O ⇒ x(2P ) =∞,

where the second equality follows from the fact that if P = (x, y)

then −P = (x,−y) for a curve in Montgomery form. Assume now

x3 + Ax2 + x 6= 0 ⇒ y 6= 0. We can use the formulas (3.4.1 - 3.4.2)

with λ = 3x2+2Ax+1
2By

mod q (because we are doubling). Consequently,

x(2P ) = Bλ2 − 2x− A = B

Ç
3x2 + 2Ax+ 1

2By

å2

−A− 2x

=
(3x2 + 2Ax+ 1)2

4By2
− A− 2x

=
(3x2 + 2Ax+ 1)2

4(x3 + Ax2 + x)
−A−2x = · · · = x4 − 2x2 + 1

4(x3 + Ax2 + x)
=

(x2 − 1)2

4(x3 + Ax2 + x)

where in the third passage we have used the equation of the Mont-

gomery curve M and then we have just done basic calculations to get

the thesis.

Divisions are slow. To avoid divisions, the Montgomery Ladder rep-

resents x-coordinates in a slightly di�erent way. This requires extra-

multiplications, but there is still a computational gain. Using projec-

tive coordinates, the Theorem can be adjusted: it is possible to prove

that these formulas are complete. This is over the scope of the thesis.

The interested reader can check, for example, [11].
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• Di�erential addition
We would like to �nd a formula to compute, for example, x(P2 + P3)

starting from x(P2) and x(P3). Sadly, this is not possible because, if

we have only these informations, we can have multiple possible values

for x(P2 +P3). However, the computation becomes certain if we know

x(P3−P2) too. These formulas can, for example, produce x(3P ) given

x(2P ) and x(P ), or produce x(7P ) given x(4P ), x(3P ), x(P ).

Theorem 3.4.6. Fix a �eld GF (q) with char(GF (q)) 6= 2. Fix A,B ∈
GF (q) with B(A2−4) 6= 0. De�neM as the Montgomery curve By2 =

x3 + Ax2 + x, and de�ne x as follows:

x : M(GF (q))→ GF (q) ∪ {∞}

x(x, y) = x, x(O) =∞.

Let P2, P3 be elements of M(GF (q)) with P3 6= O, P2 6= O, P2 6= P3

and P3 6= −P2. Then, x(P3) 6= x(P2) and

x(P3 + P2)x(P3 − P2) =
(x(P3)x(P2)− 1)2

(x(P3)− x(P2))2
.

We omit the proof, which uses the same ideas of the proof of The-

orem 3.4.5. Even in this case, formulas can be optimized to remove

the division. Using projective coordinates, it is possible to prove that

these formulas are quasi-complete: in fact, there are only two "prob-

lematic" points, (0, 0) and O. These points always produce the same

output and can be handled changing slightly the de�nition of x in the

following way:

x0 : M(GF (q))→ GF (q) ∪ {∞}

x0(x, y) = x, x0(O) = 0.

With this function, the formulas are complete. A proof for this fact

can be found, again, in [11].

3.4.1 The Montgomery Ladder

This Section combines the Montgomery's doubling formula with the Mont-

gomery's di�erential-addition formula to obtain the Montgomery Ladder.
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The algorithm has full generality and applies to any abelian group. Origi-

nally, the Montgomery Ladder was proposed to speed up scalar multiplica-

tion in the context of elliptic curves. Let's start describing the algorithm

in general. We want to compute y = gk in an abelian group (G, ∗), with
inputs g and k. Let's write the binary expansion of the exponent k:

k =
t−1∑
i=0

ki2
i, ki ∈ {0, 1} ∀i.

The Montgomery Ladder relies on the following observation. De�ne

Lj :=
t−1∑
i=j

ki2
i−j,

Hj := Lj + 1.

Observe that L0 = k. Then, it's easy to prove that

(Lj, Hj) =


(2Lj+1, 2Lj+1 + 1) if kj = 0

(2Lj+1 + 1, 2Lj+1 + 2) if kj = 1.

=


(2Lj+1, Lj+1 +Hj+1) if kj = 0

(Lj+1 +Hj+1, 2Hj+1) if kj = 1.

Suppose that at each iteration, a �rst register R0 contains the value of g
Lj

and a second register R1 contains the value of g
Hj . The prior system implies

that

(gLj , gHj) =


((gLj+1)2, gLj+1gHj+1) if kj = 0

(gLj+1gHj+1 , (gHj+1)2) if kj = 1.

This algorithm for evaluating y = gk is called the Montgomery Ladder.

The starting point is always Lj = 0, Hj = 1: for this reason, we have R0 = 1

and R1 = g as the start of the algorithm. Algorithm' steps are reassumed

in Figure 3.7. The output of the algorithm is of course gk = gL0 .

From a computational perspective, the Montgomery Ladder, in its basic

version, appears inferior to other classic binary algorithms as it requires 2t

multiplications instead of 1.5t multiplications, on average.

The key property is that the relation R1

R0
remains constant (= g) during the

iterations of the algorithm. This fact can be applied on Montgomery curves.

Let M be a Montgomery curve. Let R0 and R1 be two points of M de�ned
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Figure 3.7: Montgomery Ladder

over GF (q). If the di�erence G = R1 − R0 is known then x(Y ) = x(kG)

can be computed from x(R0), x(R1) and x(G). (In the Figure 3.8, + is

Figure 3.8: Montgomery Ladder for Montgomery curves

equal to ⊕ de�ned the Section before). Because the computations can be

carried out with the x-coordinates only, a lot of multiplications in GF (q)

are saved, resulting in an algorithm faster than other classical algorithms.

Additionally, fewer memory is required since the y-coordinates need not to

be handled during the computation of x(kG). When dealing with digital

signatures, however, we need to know the sign of the y-coordinate of kG,

y(kG). In this case, it can be e�ciently computed at the end of the algo-

rithm, from the x-coordinates of kG and (k + 1)G, which is contained in

the register R1.

The typical problem in ECC is the computation of a scalar multiple kP ,

where k is the secret key. Anyone who observes the time taken by the ladder

can deduce the position of the top bit set in k, since this position dictates

the number of steps of the ladder. One �x is to always arrange for k to have

a �xed top bit, for example allowing only values of k where the highest bit
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is always set to 1. Montgomery Ladder can also be parallelized (see, for

example, [13]).

The most known implementation attack to Montgomery Ladder is the

side-channel attack. A side-channel attack is any attack based on infor-

mation gained from the implementation of a computer system, rather than

weaknesses in the implemented algorithm itself. Timing information, power

consumption, or even sound can provide an extra source of information,

which can be exploited. The Montgomery Ladder is highly regular. What-

ever the processed bit is, there is always a multiplication followed by a

squaring (an addition and a doubling in the case of elliptic curves). The

Montgomery Ladder can be implemented to prevent a given side-channel

attack. Of course, this protection against simple sidechannel attacks do not

ward o� other kind of attacks. For other kind of attacks against Mont-

gomery Ladder see, for example, [13].

3.5 Curve25519

In this Section, we do a detailed explanation of the curve chosen from What-

sApp, Curve25519. To ease the notation, we call Fq the �eld GF (q). We

have already seen that the curve is

E : y2 = x3 + 486662x2 + x,

de�ned over Fq with q = 2255 − 19; q is a prime. The curve was introduced

from Bernstein. First of all, observe that B = 1 6= 0 and that A = 486662

is a number chosen in a way that A2 − 4 6= 0 mod q, so the curve is

nonsingular. Moreover, A2 − 4 is not a square. It is a Montgomery curve

and we have already proved that it is birationally equivalent to the twisted

Edwards curve

486664x2 + y2 = 1 + 486660x2y2.

Let's now investigate how it is used in cryptography.

The x- coordinate of the base point B is x = 9. This point generates a cyclic

subgroup whose order is the prime p25519 = 2252+277423177773723535358519

37790883648493. The primality of p25519 is essential because there is an at-

tack which works with points with non-prime order that an attacker can use

to save time in the computation of discrete logarithms. The order of the
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point is really large, so it's possible to generate a lot of di�erent and valid

key pairs (i.e., a private key and the associated public key). The cofactor

c is equal to 8, so the order of the curve is 8p25519, while it can be proved

that the order of the twist is 4r with r prime.

The �eld where Curve25519 lives is Fq = Zq . Since Fq is a �eld, it is well

known that there are exactly q−1
2

squares in Fq. Let's call δ the smallest

number that is not a square in Fq. For the Fermat's Theorem, this happens

if δ
q−1
2 ≡ −1 mod q (δ 6= 0).

De�ne Fq2 := Zq × Zq. This structure has the following operations:

−(a, b) = (−a,−b)

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)(c, d) = (ac+ δbd, ad+ bc).

It can be proved that Fq2 is a commutative ring.

De�ne now E(Fq2) := {∞} ∪ {(x, y) ∈ Fq2 : y2 = x3 + Ax2 + x.}, with
the convention −∞ =∞. This curve has the classic formulas for addition,

doubling and inverse for the points of a Montgomery curve. E(Fq2) is a

commutative group under these formulas. Finally, de�ne the function

x0 : E(Fq2)→ Fq2

x0(x, y) = x, x0(O) = 0.

Then, the following Theorem holds.

Theorem 3.5.1. Let q be a prime with q ≥ 5. Let A be an integer such

that A2 − 4 is not a square modulo q. De�ne E as the elliptic curve y2 =

x3 + Ax2 + x over the �eld Fq. De�ne the function x0 like above. Let n

be an integer and let r ∈ Fq. Then, there exists a unique s ∈ Fq such that

x0(nQ) = s for all Q ∈ E(Fq2) such that x0(Q) = r.

Since we are talking about cryptography, we can see inputs and outputs

of Curve25519 as sequences of bytes. By de�nition, the set of bytes is

{0, 1, . . . , 255}. There is a bijection between the two sets

{0, 1, . . . 2256 − 1} → {0, 1, . . . , 255}32

s→ s̄ =

Ç
s mod 256,

ú
s

256

ü
mod 256, . . . ,

ú
s

25631

ü
mod 256

å
,
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where the second set contains all 32-bytes strings.

A Curve25519 public key is a 32 bytes string, so it belongs to the set

{0, 1, . . . , 255}32 = {r̄ : r ∈ {0, 1, . . . , 2256 − 1}}. We have already observed

the x-coordinate of the base point B: it is a public point, so it belongs to

this set, as it can easily be veri�ed.

A Curve25519 secret key instead belongs to the set {n̄ : n ∈ 2254+8{0, 1, . . . , 2251−
1}}. This means private keys are integers n with 2254 ≤ n ≤ 2255 and n ≡ 0

mod 8. This particular choice is done to avoid two attacks:

• it sets the most signi�cant bit to 1, getting rid of one of the Mont-

gomery Ladder problem. In this way, the loop always has the same

amount of iterations, and no timing information can accidentally be

leaked by the variable iteration count;

• all keys are chosen ≡ 0 mod 8 so no information about the secret key

is leaked in the case of an active small-subgroup attack: in fact, we

know that c = 8, so the order of the curve is a multiple of 8. This

means there are some remaining points with smaller order. Suppose

the following scenario: A and B wants to get a shared key. Their secret

keys are a and b. Let G be the base point of Curve25519 = (9, . . . ).

We already know how they can derive a shared key abG. An active

attacker could replace Bob's message bG with a point of order 8 and be

able to �nd a mod 8 by inspecting following messages. When every

valid secret key is ≡ 0 mod 8, the attacker can't do nothing with this

attack.

We can observe that both keys have always length 32 bytes = 256 bits. We

can now de�ne the map

Curve25519 : {C25519 SecKeys}×{C25519 PubKeys} → {C25519 PubKeys}

(n̄, r̄)→ s̄,

where s ∈ {0, 1, . . . , 2255 − 20} has the following property: it is the unique

integer such that s = x0(nQ) for all Q ∈ E(Fq2) such that x0(Q) = r

mod 2255 − 19, as the prior Theorem implied. Using a single coordinate

instead of the whole point makes public keys smaller without the expense

of point decompression.
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If an application uses Curve25519, it must generate independent uniform

random secret keys for every user: large deviations from uniformity can elim-

inate all security. As the name suggests, the secret key must be kept secret:

only the user must know it, and it can be used to compute the associated

public key Curve25519(n̄, 9̄) or a shared secret Hash H(Curve25519(n̄, r̄))

for a given r̄, where H is a public hash function (e.g. SHA-256). The secret

key must be reused with many public keys of other users and not thrown

away after a single use. It is easy to design a safe function H which works

for a Curve25519 implementation: it needs less security of a safe encryption

cipher to stop all known attacks. An attacker, of course, could have access

to all informations about public keys of the users and to encrypted mes-

sages, which are protected thanks to a secret-key cryptosystem C, where

the keys for C are the shared-secret hashes H(Curve25519((n̄i, r̄j))) for var-

ious users i and j.

The attacker could also generate many public keys r′ and, using r′ in the

Di�e-Hellman protocol, see messages protected by C where the keys for C

are of the form H(Curve25519(n̄i; r
′)). In this case, the security depends

on C and not on Curve25519.

Computations on Curve25519 rely on fast x-coordinate scalar moltipli-

cation and so on the Montgomery Ladder. The curve was chosen as a

Montgomery curve to be able to do extremely fast x-coordinates opera-

tions. Curves of this shape have order divisible by 4, requiring a marginally

larger prime for the same conjectured security level, but this is outweighed

by the extra speed of curve operations. A−2
4

is chosen as a small integer,

to speed up the multiplication by this fraction; this has no e�ect on the

conjectured security level. It has been shown that this curve is more than

twice faster than other curves and have the same conjectured security level.

As of August 2019, Curve25519 (and Curve448 too) are not standardized,

but NIST will add them soon into their list of optimal curves to use in

cryptography.

3.6 EdDSA signature schemes

In this last Section, to avoid confusion, we denote with coordinates (u, v)

the points of a Montgomery curve (e.g. Curve25519, the curve we use for
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the description, even though the scheme remains valid for any Montgomery

curve) and with coordinates (x, y) the points of the associated (twisted)

Edwards curve.

Edwards-curve Digital Signature Algorithm (EdDSA) is de�ned, like the

name suggests, on twisted Edwards curves, where a public key is a com-

pressed point consisting of a twisted Edwards y-coordinate and a sign bit s

which is either 0 or 1. The sign is 0 if the x−coordinate is the "positive"
value, 1 otherwise (of course, if we are working in a �nite �eld GF (p) we only

have positive values between 0 and p− 1, but if we take, for example, x = 3

then we call x = 3 the number with s = 0, x = −3 = p − 4 the number

with s = 1). Any e�ciently computable birational equivalence preserves

ECDLP di�culty, so the di�culty of computing ECDLP for Curve25519

immediately implies the di�culty of computing ECDLP for the associated

twisted Edwards curve. The associated curve is also called Ed25519.

To ease the comprehension of the paragraph, we summarise here the 11

parameters which will be used during the Section:

• B is the base point of Ed25519;

• I is the identity point of Ed25519 = (0, 1);

• p is the prime of the �eld where we work, i.e. p = 2255 − 19;

• q = 2252 + 27742317777372353535851937790883648493 is the order of

the base point B;

• c = 8 is the cofactor;

• d = −121665
121666

mod p is the twisted Edwards curve parameter;

• A = 486662 is the Montgomery curve constant;

• n = 2 is a non-square integer modulo p (the smallest number with

this property for Curve25519);

• |p|= dlog2(p)e = 255;

• |q|= dlog2(q)e = 253;

• b = 8d |p|+1
8
e = 256 is the bitlength for the encoded point.
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We'll also use some functions written in pseudocode to explain the various

steps of the algorithm.

Since a birational map between the two curves always exists, we can

convert the u-coordinate of a point on the Montgomery curve to the y-

coordinate of the equivalent point on the twisted Edwards curve. We call

this function u-to-y. For Curve25519, the map is

Function u-to-y(u)

y = u−1
u+1

mod p;

return y

The function convert takes as input the u-coordinate and gives as output the

point P of the twisted Edwards curve. Before the conversion, the function

masks o� the excess high bits of u. This is done to preserve compatibility

with point formats that reserve a sign bit for the use in other protocols. s

is always set to 0: since the function only takes the u-coordinate, it can't

distinguish between the two possibilities for the twisted Edwards sign bit.

The pseudo code of the convert function is the following (we denote Py the

y−coordinate of P and with Ps the sign of P ):

Function convert(u)

umasked = u mod 2|p|;

Py = u-to-y(umasked);

Ps = 0;

return P

With this notation, we have B = convert(9), because 9 is the u-coordinate

of the base point of Curve25519. To make private keys compatible with this

conversion, we de�ne a twisted Edwards private key as a scalar g where the

twisted Edwards public key G = gB has a sign bit of zero. Instead, we

allow a Montgomery private key k to be a scalar with any sign.

The conversion is done as following: we compute the "product" E = kB

and we de�ne the y−coordinate of G as the y-coordinate of E, then we

impose the sign to be equal to zero. Then, the corresponding private key

g is adjusted so that it is a number with s = 0. The algorithm is called
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calculate-key-pair and the pseudocode is the following:

Function calculate-key-pair(k)

E = kB;

Gy = Ey;

Gs = 0;

if Es = 1{
g = −k mod q;

}
else {
g = k mod q;

}
return G, g

This function requires at every call the computation of the point E. To

improve speed, E can be saved elsewhere, so the computation is only done

once and not repeated every single time an user needs a point conversion.

E can be public because it is protected by ECDLP.

From now, we represent an integer in bold (x) if it is a byte sequence of

b bits that encodes the integer in little-endian form, i.e. it places the least

signi�cant byte �rst, while an elliptic curve point in bold (P) encodes Py as

an integer in little-endian form with length b− 1, followed by a bit for Ps.

We study two digital signatures based on EdDSA: XEdDSA and VXEdDSA.

They both require the Hash function SHA-512. if i ≥ 0 and 2|p|− i− 1 > p,

we de�ne the family of Hash functions

hashi(x) = hash(2b − i− 1||x).

The second condition on i is necessary because this scheme doesn't work

for any p which is a Mersenne prime. Prepending a di�erent constant for

each function call, we get several independent secure functions derived from

a single secure Hash function. This is known as domain separation. In this

way, we can use the same Hash function over and over without changing

the private key: we just need to change the value of i, and thanks to the

avalanche e�ect every time we change a single bit we get a completely

di�erent digest.
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Both signatures are randomized, because at every call of the function a new,

random, sequence of 64-bytes Z is produced.

3.6.1 XEdDSA

XEdDSA is so called because it uses X25519, which is the elliptic curve

Di�e-Hellman exchange done using Curve25519. If A wants to send a mes-

sage M to B, she also adds a signature in this way:

• A takes her Montgomery private key k mod q and computes G and g

(public and private key on the Edwards curve, respectively) through

the function calculate-key-pair ;

• A randomly generates a 64-bytes sequence Z;

• A computes the digest l = hash1(g||M||Z) and then computes r = l

mod q;

• A computes the Edwards curve point R = rB;

• A computes the digest t = hash(R||G||M) and then she gets h = t

mod q;

• A computes s = r + hg mod q;

• The signature is the sequence R||s: it has 2b bits, b for the encoding

of the elliptic curve point R (b − 1 bits for the integer and 1 bit for

the sign) and b bits for the integer s;

The other user B can verify the signature with the following veri�cation

procedure:

• B takes A's Montgomery public key u (byte sequence of b bits), re-

trieves the plaintext M from the ciphertext he got from A, together

with the signature R||s;

• He gets the corresponding number u, the y-coordinate of R and the

corresponding number s;

• B does some preliminary computations: if u ≥ p or if Ry ≥ 2|p| or if

s ≥ 2|q|, he stops the procedure;
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• B computes the point G of the Edwards curve corresponding to the

coordinate u with the function convert and check if the point is really

a point of the curve: if it isn't, he aborts the procedure;

• B �nds the digest t = hash(R||G||M) and then he computes h = t

mod q;

• B computes the Edwards curve point Rcheck = sB − hG;

• B compares the bytes of R and Rcheck: if they are the same, he

accepts the signature, otherwise he aborts the procedure.

This works because

Rcheck = sB − hG⇒ Rcheck = sB − hgB = (s− hg)B = rB = R.

Let's see why the randomization is important. Suppose a deterministic

procedure is followed, where the same nonce r is used multiple times for

di�erent messages. Consider two XEdDSA signatures R||s1 and R||s2. By
the de�nition of s, we have the following system of two equations:


s1 = r + h1g mod q

s2 = r + h2g mod q
(h1 and h2 change because they depend on M).

This sistem has only two unknowns, r and g, because any person (B can as

well) can compute h and already has s if it is in possess of the signature.

This completely destroys XEdDSA, because we can e�ciently compute the

private key g solving the system; an inverse is required but we know the

extended Euclidean algorithm is e�cient. If r is instead obtained from the

same Hash function, but without Z, the probability that di�erent plaintexts

give the same r is small. However, if the same message is signed repeatedly,

there is a sort of bug which a�ects the calculation of h, which could cause

this to happen.

3.6.2 VXEdDSA

VXEdDSA extends XEdDSA transforming it into a Veri�able Random

Function (VRF). VRF is a pseudo-random function that provides publicly

veri�able proofs of its output's correctness. The VRF output for a given

message and public key is indistinguishable from random to anyone who has
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not seen a VXEdDSA signature for that message and key. Using the VRF

output and the public key, everyone can check that the value was indeed

computed correctly, yet this information cannot be used to �nd the secret

key.

VXEdDSA requires mapping an input message to an elliptic curve point.

ECC protocols naturally send elliptic-curve points in the clear as long-term

public keys, ephemeral public keys, etc. These points, even in compressed

form, are obvious: they are easy to distinguish from uniform random strings.

For example, an attacker can check if these sequences are squares modulo a

prime. This has chance 1/2 of occurring for a uniform random string, but if

it occurs repeatedly then the attacker is reasonably con�dent that the user

is sending public keys. This is solved using the Elligator2 map and Hash

functions. Elligator2 maps an integer r in some u for which u3 + Au2 + u

has a square root v modulo p. We need the following Lemma.

Lemma 3.6.1. If u1 and u2 are integers modulo p such that u2 = −A− u1
and u2

u1
= nr2 for any r and for a �xed nonsquare n, then the Montgomery

curve v2 = u3 + Au2 + u has a solution for u = u1 or for u = u2.

Proof. Let's de�ne w1 = u31 + Au21 + u1 and w2 = u32 + Au22 + u2. We want

to prove that either v2 = w1 or v2 = w2 has a solution (modulo p). Let's

compute w2/w1 :

w2

w1

=
u32 + Au22 + u2
u31 + Au21 + u1

=
u2(u

2
2 + Au2 + 1)

u1(u21 + Au1 + 1)
.

By hyphotesis, u2 = −A−u1: substituting this value in the prior expression,
we get

w2

w1

=
(−A− u1)(A2 + u21 + 2Au1 − A2 − Au1 + 1)

u1(u21 + Au1 + 1)
=

=
(−A− u1)(u21 + Au1 + 1)

u1(u21 + Au1 + 1)
==
−A− u1

u1
=
u2
u1

= nr2,

where the last passage follows by the other hyphotesis. Now, we distinguish

between two cases:

• Case r = 0: it must be w2 = 0, and 0 is always a square modulo p;

• Case r 6= 0: in this case, since n is not a square by hyphotesis, then

nr2 is not a square and so w2

w1
is not a square. By the Euler's Theorem,
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we have
Ä
w2

w1

ä p−1
2 ≡ −1 mod p . This implies that one number between

w1 and w2 is a square. In fact, if both of them are squares, then by the

Euler's Theorem we have w1
p−1
2 ≡ 1 mod p and w2

p−1
2 ≡ 1 mod p,

so the ratio equals 1, which is against the hypothesis. The same

reasoning can be done if both quantities are equal to −1 mod p. The

only possibility left is that one quantity equals 1 mod p, while the

other quantity equals −1 mod p: we can easily conclude that w1 or

w2 is always a square modulo p.

We can �nd an exact expression for u1 and u2. In fact, by the hyphotesis

of the Lemma, we have 
u2 = −A− u1
u2

u1
= nr2

Solving the system, we get

u1 = − A

1 + nr2
, u2 = − Anr2

1 + nr2
.

So, given r, we can compute u1 and u2 and then we can use the Legendre

symbol to �nd which number is a square.

Remark 3.6.2. Let p be an odd prime number. An integer a is a quadratic

residue modulo p if it is congruent to a perfect square modulo p; otherwise,

we say that a is a quadratic nonresidue modulo p. The Legendre symbol is

a function of a and p de�ned asÇ
a

p

å
=


1 if a is a quadratic residue modulo p and a 6≡ 0 mod p

−1 if a is a non quadratic residue modulo p

0 if a ≡ 0 mod p

This de�nition is equivalent to
Ä
a
p

ä
≡ a

p−1
2 mod p with

Ä
a
p

ä
∈ {−1, 0, 1}. The

following properties ease the computations of the Legendre symbol:

•
Ä
a
p

ä
≡
Ä
b
p

ä
if a ≡ b mod p;

•
Ä
ab
p

ä
=
Ä
a
p

äÄ
b
p

ä
(it is a completely multiplicative function of its top

argument);

•
Ä
x2

p

ä
is equal to 1 if a6 |p, and it is equal to 0 if a|p;
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• if q is an odd prime with p 6= q, we have the quadratic reciprocity law:Ç
q

p

åÇ
p

q

å
= (−1)

p−1
2

q−1
2 .

The Elligator2 function implements this map from any integer r to an in-

teger u which is a square modulo p:

Function Elligator2 (r)

u1 = − A
1+nr2

mod p;

w1 = u31 + Au21 + u1 mod p;

if w
p−1
2

1 ≡ −1 mod p {
u2 = −A− u1 mod p;

return u2

}
return u1

We have to map a byte sequenceX onto an Edwards point: we hash the byte

sequence and parse the hash output to get a �eld element r and a sign bit s.

Through the Elligator2 map, we convert r to a Montgomery u-coordinate.

Then, the birational map converts the Montgomery u-coordinate to an Ed-

wards point. Finally, we multiply the Edwards point by the cofactor c to

be sure the point belongs to the subgroup generated by the base point B.

The hash-to-point function implements these steps.

Function hash-to-point(X)

h = hash2(X);

r = h mod 2|p|;

s = bh mod 2b

2b−1 c;
u =Elligator2 (r)

Py =u-to-y(u);

Ps = s;

return cP

VXEdDSA signature is more convoluted. It takes the same inputs of

XEdDSA but uses them in a di�erent way. If A wants to add a VXEdDSA

signature, then:
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• A takes her Montgomery private key k mod q and computes G and g

(public and private key on the Edwards curve, respectively) through

the function calculate-key-pair ;

• A maps the byte sequence G||M onto an Edwards point with the

function hash-to-point. She gets the point Bv;

• A computes the Edwards curve point V = gBv;

• A randomly generates a 64-bytes sequence Z;

• A computes the digest l = hash3(g||V||Z) and then computes r = l

mod q;

• A computes the two Edwards points R = rB and Rv = rBv;

• A computes the digest t = hash4(G||V||R||Rv||M) and then she gets

h = t mod q;

• A computes s = r + hg mod q;

• A computes the digest x = hash5(cV) and then computes v = x

mod 2b;

• The signature is the couple (V||h||s),v, where (V||h||s) is a byte

sequence of length 3b bits and v is a VRF output byte sequence with

b bits, formed by multiplying the V output by the cofactor c.

The other user B can verify the signature with the following veri�cation

procedure:

• B takes A's Montgomery public key u (byte sequence of b bits), re-

trieves the plaintext M from the ciphertext he got from A, together

with the �rst part of the signature V||h||s;

• B gets the corresponding number u, the y-coordinate of V and the

corresponding numbers h and s;

• B does some preliminary computations: if u ≥ p or if Vy ≥ 2|p| or if

h ≥ 2|q| or if s ≥ 2|q|, he stops the procedure;
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• B computes the point G of the Edwards curve corresponding to the

coordinate u with the function convert and checks if the points G and

V are really points of the curve; if at least one of them isn't, he aborts

the procedure;

• B computes Bv = hash-to-point(G||M);

• B checks if cG = I, if cV = I and if Bv = I and in that case he stops

the algorithm;

• B computes R = sB − hG and Rv = sBv − hV ;

• B computes the digest t = hash4(G||V||R||Rv||M) and then he gets

hcheck = t mod q;

• B checks if the bytes of h and hcheck are the same: if they are not, he

aborts the procedure;

• If h = hcheck, B computes the digest x = hash5(cV) and then com-

putes v = x mod 2b;

• Finally, he checks if v equals the second term of the signature.

The veri�cation algorithm works because

R = sB − hG = sB − hgB = (s− hg)B = rB

and

Rv = sBv − hV = sBv − hgBv = (s− hg)Bv = rBv.

The rest of the signature is always correct: he gets V from the �rst part of

the digital signature (and he also veri�es it is the real V with the VRF), he

gets M decrypting the associated ciphertext and G is simply the public key

of A on the associated Edwards curve.

Both EdDSA schemes require two calls to the Hash function (the only

exception is the EXdDSA veri�cation). A priori, we have not limited the

length of the message M to be processed, and this can be expensive if the

message is really long. The easier solution would be the introduction of a

cap to the maximal length of the message.

It's also important that signing algorithms are performed in constant time,

to not give additional informations (e.g. this avoids the infamous timing
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attack). This is easily achieved for most functions there, exluded for the

ones with an "if" statement, which have to be treated carefully.
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Chapter 4

The Signal Protocol

The Signal Protocol is a non-federated cryptographic protocol that can

be used to provide End-to-End Encryption (E2EE) for voice calls, video

calls and instant messaging conversations. The protocol uses, among other

things, prekeys, Curve25519, AES-256 and HMAC-SHA256. At a high level,

Signal is an asynchronous channel protocol, between an initiator Alice and

a recipient Bob, with the help of a key distribution server which only stores

and relays information between parties, but does not perform any computa-

tion. When Alice wants to send a message, she obtains Bob's keys from an

intermediate server, and performs a protocol to compute a message encryp-

tion key. Signal's goals include end-to-end encryption as well as advanced

security properties such as forward secrecy and future secrecy: if we haven't

forward/future secrecy properties, then we are not sure that, if an identity

key is compromised, past/future session keys remain safe from an attacker.

The Signal protocol can be roughly divided into four steps:

• Registration: Every user, when installing the application, generates

the keys and independently registers her identity with a key distribu-

tion server and uploads various kinds of public keys;

• Session setup: Alice asks and gets from the server a set of Bob's

public keys and uses them to setup a messaging session. The session

lasts for a long time. This is known as the Extended triple DH key

agreement protocol (X3DH), and it is described in Section 4.1;

• Synchronous messaging: this situation happens when Alice wants

to send a message to Bob and has just received a message from him.

57
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In this case, she exchanges a new Di�e�Hellman value with Bob, de-

riving a new shared secret and then she uses it to start a new chain of

Message Keys. Each Di�e-Hellman operation is a step of the asym-

metric ratchet algorithm;

• Asynchronous messaging: this situation happens when Alice wants

to send a message to Bob but has not received a message from him

since her last sent message. In this case, she derives a new symmet-

ric encryption key from the symmetric ratchet (known also as Hash

ratchet) algorithm.

Both synchronous and asynchronous messaging are handled thanks to the

Double Ratchet algorithm, which is described in Section 4.2. Each message

sent by an user is encrypted using a new Message Key, which attempts to

provide a higher degree of forward secrecy and future secrecy.

Finally, Section 4.3 describes the Sesame algorithm, which is used by Sig-

nal to guarantee perfect messaging not just between Alice and Bob, but

between multiple users and multiple devices.

It's worth noting that, while Signal code is open source, WhatsApp code is

not. They claim to use a speci�c implementation of the Signal protocol, and

advanced reverse engineering tests done from experienced cryptographers

all conclude this is indeed true. All considerations which will be done in

this Chapter and in the next one are based on these conclusions, on Signal

documentation and on the o�cial WhatsApp white paper.

4.1 Extended triple DH key agreement proto-

col

Extended triple DH key agreement protocol (X3DH) establishes a shared

secret key between two parties who mutually authenticate each other based

on public keys. It doesn't only allow the two parties to communicate, but it

also allows a secure communication. X3DH protocol involves 3 parties: two

users (Alice and Bob) and a trusted server. Their roles are the following:

• Alice: she wants to send to Bob some initial data using encryption

and she wants to establish a shared secret key which may be used to
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communicate between them;

• Bob: he wants to allow parties like Alice to send encrypted data and

to establish a shared key with him. Bob might be o�ine when he

receives data from Alice. For this reason, Bob has a relationship with

a server;

• The server: it can temporarily store messages from Alice to Bob which

Bob can later retrieve, and it can also let Bob publish some data.

The server will provide these data to other parties like Alice. The

server must be trusted: a malicious server could cause communication

between Alice and Bob to fail, for example it could manipulate their

messages.

X3DH is designed for asynchronous settings where one user (let's say Bob)

is o�ine but has published some information to a server. If Alice wants to

contact Bob, she can use that information to send him encrypted data,

and they can also establish a shared secret key for future communication.

WhatsApp has decided the following parameters for the usage of X3DH:

• Curve25519 and X25519;

• The Hash function SHA-256;

• info, an ASCII string identifying WhatsApp.

The protocol additionally de�nes an encoding function Encode(PK), where

PK is a public key for X25519. It encodes the public key into a byte se-

quence. The recommended encoding consists of some single-byte constant to

represent the curve, followed by little-endian encoding of the u-coordinate.

We'll also use the following cryptographic notation:

• DH(PK1, PK2) represents a byte sequence which is the shared secret

output from X25519 involving the private key associated to the public

key PK1 and the public key PK2;

• Sig(PK,M) represents a byte sequence which is an XEdDSA signa-

ture on the byte sequence M . It is created using together the byte

sequence M with the private key associated to the public key PK,

and it can be veri�ed thanks to PK;
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• KDF (KM) represents the output of the HKDF algorithm with in-

puts:

� Input Key Material F ||KM , where F is a byte sequence con-

taining 32 0xFF bytes (the number 255) and it is used for cryp-

tographic domain separation together with the digital signature

XEdDSA, while KM is an input byte sequence containing the

secret key DH(PK1, PK2);

� salt, a zero-�lled byte sequence with length equal to the hash

output length (= 32 bytes): we are using the default salt value

here;

� info, which is an ASCII string identifying the application, as

described before.

� the sequence is L = 32 bytes long.

Every user U has the following public keys (of course, every public key has

an associated private key):

• A long-term Curve25519 key IKU , generated at install time. "Long-

term" means they are static: they are not session keys, they are used

multiple times and never refreshed. It is used to sign the Signed Pre

Key and to compute the shared secret;

• A medium-term Curve25519 key SPKU , generated at install time,

signed by IKU , and rotated on a periodic timed basis. When a new

key is signed, it will replace the previous one. The user may keep

the private key corresponding to the previous signed key around for

some period of time, to handle messages which used it that have been

delayed. After they are handled, U should delete this private key for

forward secrecy. This key is "medium term", so it is not deleted after

a single protocol call: it is shared between multiple users who want

to contact Bob. This means that even if there are no more one-time

keys stored at the server (see the next point), the session will go ahead

using only a medium term key. This key is also used to generate the

master secret;

• A queue of Curve25519 keys OPK1
U , OPK

2
U , . . . for one time use, gen-

erated at install time, and replenished as needed, e.g. when the server



4.1. EXTENDED TRIPLE DH KEY AGREEMENT PROTOCOL 61

informs the user that the server's store of one-time prekeys is getting

low. Like the previous keys, they are used to generate the master

secret.

In a protocol run, X3DH uses �ve Curve25519 public keys:

• Two long-term Identity Keys, IKA and IKB, for Alice and Bob re-

spectively;

• Alice's ephemeral key EKA. A cryptographic key is called ephemeral

if it is generated for each execution of a key establishment process. In

some (rare) cases, ephemeral keys are used more than once, within a

single session (e.g., in broadcast applications);

• Bob's Signed Prekey SPKB: "prekeys" are so named because they

are essentially protocol messages which Bob publishes to the server

prior to Alice beginning the protocol run. They are used to guarantee

asynchronicity, they allow Alice to establish a session even if Bob is

o�ine;

• One of Bob's Onetime Prekeys OPKi
B. If no one-time keys are used,

Alice would employ only Bob's medium and long term keys: this

setting doesn't guarantee good forward secrecy. Adding this key allows

the shared secret to be based on truly ephemeral key on both sides of

the communication. One-time prekey private keys will be deleted as

Bob receives messages using them.

After a successful protocol run Alice and Bob will share a 32-byte secret

key SKAB.

X3DH has essentially three phases:

• Phase 1: Publishing Bob's keys to the server

At registration time, Bob (a WhatsApp user, with at least a device)

publishes the following keys, called the �prekey bundle�, to the server:

� A "long term" Identity Key IKB;

� A "medium term" Signed Key SPKB;

� A set of "short term" OneTime prekeys OPK1
B, OPK

2
B, . . . ;
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� His Prekey XEdDSA signature Sig(IKB, Encode(SPKB)). Bob

will upload a new prekey signature when he changes SPKB: the

new key will replace the previous value.

The WhatsApp server stores these public keys associated with the

Bob's identi�er. WhatsApp guarantees that all the keys are generated

client-side, so its server should have no access in any moment to any

of the Bob's private keys.

• Phase 2: Sending the initial message

Alice wants to talk to Bob, which means they need to do a X3DH key

agreement. Upon request the server provides her the Bob's �prekey

bundle�, which contains IKB, SPKB, Sig(IKB, Encode(SPKB)) and,

if it exists, a one-time prekey OPKB. If the server provides OPKB

to Alice, it deletes that key from the server storage. Alice and Bob

might �rst want to compare their identity keys through a QR code

mechanism. Some additional information will be given in Chapter 5,

but QR code's functioning is out the scope of the thesis. More infor-

mations can be found on [21].

First of all, Alice veri�es the XEdDSA signature and aborts the proto-

col if the veri�cation algorithm fails. Instead, if the check has success,

she generates an ephemeral key pair, with public key EKA.

If a onetime key is not provided, Alice computes

DH1 = DH(IKA, SPKB),

DH2 = DH(EKA, IKB),

DH3 = DH(EKA, SPKB),

SKAB = KDF (DH1||DH2||DH3) = HMACsalt(F ||DH1||DH2||DH3).

SKAB is the shared secret key, also called master key.

Instead, if OPKB is provided, after the �rst three steps she addition-

ally computes

DH4 = DH(EKA, OPKB),

and then the shared secret key is

SKAB = KDF (DH1||DH2||DH3||DH4) =
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= HMACsalt(F ||DH1||DH2||DH3||DH4).

DH1 and DH2 provide mutual authentication: they are necessary to

provide a secure encrypted channel between the users. DH3 and DH4

provide forward secrecy: the absence of DH4 is not optimal because it

lowers forward secrecy, which is quite important in instant messaging

applications. Moreover, the same message may be replayed to Bob and

he won't refuse it: he could receive from Alice the same message two

times. This can be resolved updating the one-time keys more rapidly,

or with the double ratchet protocol, which will be described in the

next Section. If the attack has success, Bob computes the same master

key in di�erent protocol calls. The ratchet protocol also provides a

randomization of the encryption key, combining SKAB with a freshly

generated DH output, to avoid this security fall. It also seems that

the prekey signature of Bob is not necessary for mutual authentication

and forward secrecy. This is not true, in fact if Alice doesn't check

Bob's signature, a corrupted server could give to Alice malicious keys

and then retrieve Bob's private keys from Alice's message.

The following diagram summarises these computations.

Figure 4.1: X3DH: computation of the shared key

After the computation of SKAB, Alice deletes the ephemeral private

key and every DH output she got during the algorithm run.

Then, Alice calculates an Associated Data byte sequence AD that
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contains identity information for both parties:

AD = Encode(IKA)||Encode(IKB).

Alice can add more personal informations to AD, like an ID or an

username.

Finally, Alice sends to Bob an initial message containing IKA, EKA,

the ID of the Bob's prekey used (if she used one) and an initial ci-

phertext encrypted with the AEAD encryption scheme using AD as

associated data and using as encryption key either SKAB or a key

derived from SKAB. Some examples of derived keys can be a KDF

or a pseudorandom function PRF, which is a collection of e�ciently-

computable functions that emulate a random oracle in the following

way: no e�cient algorithm can distinguish (with signi�cant advan-

tage) between a function chosen randomly from the PRF family and

a random oracle. For the AEAD scheme, WhatsApp uses AES256 in

CBC mode and HMAC-SHA256.

Bob receives the message even if he is o�ine. Alice attaches these

values to all messages she sends, until she receives an answer from

Bob, because at that point she is sure Bob received EKA.

The encrypted ciphertext has another role too: it serves as the �rst

message for the double ratchet algorithm. After sending this message,

Alice may continue using SKAB or keys derived from SKAB in the

ratchet scheme to communicate with Bob.

• Phase 3: Receiving the initial message Bob retrieves IKA and

EKA from the message sent from Alice and adds his identity private

key, the private key corresponding to his signed prekey and the private

key corresponding to his one-time prekey Alice used, if she used one.

Bob repeats the same DH and KDF calculations Alice did to retrieve

SKAB, and then deletes the corresponding DH values. After that, he

computes AD too, in the same way Alice did. Now Bob can decrypt

the ciphertext using SKAB and AD. If the decryption fails, Bob

aborts the protocol and deletes SKAB. If the decryption has success,

Bob deletes the private key corresponding to the one-time key used, for

forward secrecy. If for some reason Bob's identity key is compromised,

the deletion of private keys prevents the recovery of the old master
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keys. Bob may continue using SKAB or keys derived from SKAB

within the post-X3DH protocol to further communicate with Alice.

Once the session is established, Alice and Bob do not need to rebuild a

new session with each other until the existing session state is lost through

an external event such as an app reinstall or a device change. X3DH is

summarised in the Figure 4.2.

X3DH doesn't give to people who use the protocol a publishable proof of

the contents of their messages or of their communication. An attacker could

compromize the private key of Alice (or Bob) and start a conversation with

Bob (Alice, respectively) pretending to be Alice. This limitation is intrinsic

to the asynchronous setting.

Figure 4.2: The X3DH protocol.
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4.2 Double Ratchet

The Double Ratchet algorithm is used by two parties to exchange encrypted

messages based on a shared secret key. After the agreement of a shared key

through the X3DH protocol, Alice and Bob are now ready to exchange

messages. Every time a new message is written, a new key is derived so

that, if it is comprimised from an attacker, he can't retrieve old keys to

read old conversations; moreover, the computations done to compute the

new key is mixed into it so that noone can predict a new key starting from

older ones. The algorithm is called Double Ratchet because it combines a

Di�e-Hellman (so, asymmetric) key exchange ratchet with a symmetric-key

ratchet.

The most important concept of the Double Ratchet algorithm is the KDF

chain. We have already discussed KDF in Chapter 2: its output is a

"strong" cryptographic key. In this context, strong means the KDF out-

put is indistinguishable from random for any user who doesn't know the

KDF key, i.e. KDF acts like a PRF; however, if the key is known or at

least partially known, the KDF should still act like a secure cryptographic

Hash. This is indeed always the case if the KDF is used with a secure Hash

function like SHA-256.

De�nition 4.2.1. Let's consider a standard KDF algorithm. If part of its

output is used to build the strong cryptographic key and the other part

of its output is used to replace the current KDF key for a new call of the

algorithm, we have a KDF chain.

To be more clear about its functioning, the Figure 4.3 represents a KDF

chain.

A KDF chain, like every pseudorandom generation algorithm, should satisfy

the following properties (they were introduced in [27]):

• Resilience: every KDF output key is indistinguishable from random

for every user/attacker without the KDF key, even if the KDF input

is known;

• Forward security : if at some point an attacker gets a KDF key, he still

has no way to distinguish between a past KDF output and random;
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Figure 4.3: A KDF chain with 3 inputs and 3 outputs.

• Break-in recovery : if at some point an attacker gets a KDF key, he still

has no way to distinguish between a future KDF output and random

(provided that future inputs have su�cient entropy to do that);

Each user has a KDF key for three chains: a root chain, a sending chain

and a receiving chain. Of course, if Alice sends a message to Bob, then

Alice's sending chain is equal to Bob's receiving chain for that message. In

the asymmetric ratchet, every time Alice and Bob exchange a message, they

also generate a new Di�e-Hellman key pair and exchange the DH public

key to derive a new DH secret: this output secret is the input of the root

chain, and the output of the root chain is a new KDF key for both sending

and receiving chains.

Every time a message is sent or received, the sending chain and the re-

ceiving chain advance ("ratchet" forward): their output key is used to en-

crypt/decrypt the message. This part of the algorithm is the symmetric

ratchet.

Let's analyze the two ratchet's phases in detail.

In the symmetric ratchet, every message sent or received is encrypted and

authenticated with an unique Message Key, which is the output of the
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sending chain and of the receiving chain. A Message Key is 32 bytes long.

The KDF keys for the sending and receiving chains are called Chain Keys :

they are 32 bytes long and their purpose is the generation of Message Keys.

The KDF inputs of these two chains are constants: they don't provide any

entropy, so these two chains haven't the break-in recovery property. Indeed,

these two chains are there just to be sure an unique Message Key is used for

every message, and that this key can be freely deleted after the encryption

or the decryption. So, a step of the KDF algorithm for the symmetric

ratchet can be reassumed in this way:

• Inputs are the Chain Key CK of the earlier call of the algorithm as

the KDF key, and a constant C as the KDF input;

• Outputs are a new Chain Key CK, which will be used in the next

round of the algorithm, and a Message Key MK. Message keys are

not used again to compute new keys and for this reason they can

be stored without a�ecting the security of new Message Keys. This

is useful because it allows the management of lost or out-of-order

messages, which will be analyzed later.

WhatsApp uses HMAC-SHA256 for the KDF algorithm. Since the input is

a constant, this phase is usually referred as Hash ratchet. CK is used to

derive the onetime use MK with the following formula:

MK = HMACCK(0x01)(4.2.1)

Then, the Chain Key is updated with the next constant:

CK = HMACCK(0x02).(4.2.2)

The second formula could seem an useless passage because from the �rst

Hash we already get a new Chain Key together with the Message Key, but

there could be correlation between the two keys and, since we are allowed to

preserve the Message Key, an attacker could utilize this property to get the

corresponding Chain Key as well. For this reason, we exploit Hash proper-

ties to "ratchet forward" the Chain Key. Two symmetric ratchet steps are

represented in Figure 4.4.

The Hash ratchet has optimal forward secrecy: if for some reason a Mes-

sage Key or a Chain Key is compromised, the attacker can't retrieve old
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Figure 4.4: Two symmetric ratchet steps

messages since keys are ratched forward thanks to a Hash function, which is

di�cult to invert. However, the symmetric ratchet has not future secrecy:

if an attacker steals the Chain Key of an user, then he can compute every

future Chain Key and Message Key, and so he can decrypt every message,

since the input of the KDF is a constant.

In the asymmetric ratchet, before sending a message every user generates

a Curve25519 key pair: these keys are the current ratchet key pair of the

user. Every exchanged message begins with a header containing an informa-

tion about the current ratchet public key of the sender. When Alice receives

Bob's new ratchet public key, she performs a new Di�e-Hellman ratchet

step, which replaces her current ratchet key pair with a new Curve25519

key pair. When she answers the message, Bob will do the same. If an eaves-

dropper compromises the current ratchet private key, he can't do much with

it because in a relatively short amount of time this key will be replaced with

an uncompromised one and a new, unknown to the attacker, Di�e-Hellman

output is generated.

Let's see how the Di�e-Hellman ratchet produces a shared sequence of DH

outputs.

• Alice starts an algorithm's step with Bob's (ephemeral) ratchet public

key and with the shared secret key SKAB, obtained in the X3DH

protocol, which is used as the initial Root Key RK. The Root Key is

32 bytes long and it is used to generate a new Chain Key. SKAB and
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Bob's public key must be agreed before: the starting Bob's ratchet

public key is his signed prekey SPKB. Bob still doesn't know Alice's

ratchet public key. We assume Alice is the �rst one sending a message:

Bob doesn't send messages until he has received one from Alice;

• Alice does a DH computation with Bob's ratchet public key and with

her ratchet (ephemeral) private key. The DH output is used as the

KDF input of the root chain, whose outputs are a sending Chain Key

CK and a new Root Key RK;

• Alice sends a message A1 to Bob containing her ratchet public key.

This message is usually the "initial ciphertext" described in the X3DH

protocol;

• Bob receives the message and performs a Di�e Hellman ratchet step

with Alice's ratchet public key and his ratchet private key (the key

associated to SPKB). Of course, this DH computation output equals

the output got from Alice. He uses it as the KDF input of a root

chain, whose outputs are a receiving Chain Key CK and a new Root

Key RK;

• Bob replaces his ratchet key pair and performs again a DH computa-

tion with Alice's public ratchet key and his new private ratchet key.

He uses it as the KDF input of a root chain, whose outputs are a

sending Chain Key CK and a new Root Key RK;

• Bob sends a message B1 to Alice containing his new public ratchet

key;

• Alice receives the message and performs a Di�e Hellman ratchet step

with Bob's ratchet public key and her ratchet private key. Of course,

this DH computation output equals the second output got from Bob.

She uses it as the KDF input of a root chain, whose outputs are a

receiving Chain Key CK and a new Root Key RK;

• Alice replaces her ratchet key pair and performs again a DH compu-

tation with Bob's public ratchet key and her new private ratchet key.

She uses it as the KDF input of a root chain, whose outputs are a

sending Chain Key CK and a new Root Key RK; Alice then sends a

message A2 to Bob. From now, steps 4-8 are continuously repeated.
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The Figure 4.5 reassumes the asymmetric ratchet from Bob's point of view.

Figure 4.5: Bob's Di�e Hellman ratchet step

The asymmetric ratchet has optimal future secrecy properties, because ev-

ery time a message is sent a new ephemeral key pair is generated, so if a

message is compromised the attacker can't get the next one because he can't

know the new randomly generated Curve25519 keys. However, forward se-

crecy leaves something to be desired: in fact, asynchronous chat sessions are

extremely long-lived, as we have described during the X3DH protocol. If

Alice sends a message to Bob, but he doesn't answer, the new Curve25519

key pair is not generated. If Alice sends to Bob multiple messages in a

row, she always uses the same DH output: if this key is compromised, the

attacker can derive all the messages sent with this key.

Perrin and Marlinspike, two Signal protocol founders, had the brilliant

idea to put together the two ratchets, to combine future secrecy of the

asymmetric ratchet and forward secrecy of the Hash ratchet, with as little

of the negatives of both as possible.

Every time a new message is sent or received, the Hash ratchet is performed

to derive a new Message Key. For example, when Alice sends her �rst mes-

sage A1, she applies a symmetric-key ratchet step to the sending Chain Key
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CK, obtaining a new Message KeyMK. The new Chain Key is stored, but

the Message Key and the old Chain Key can be deleted (the Message Key

can be kept if needed). There can be many messages exchanged within the

same DH ratchet round. Without the symmetric-key ratchet, as we have

already observed, all messages encrypted based on the same DH key can be

revealed. Every time a new Curve25519 public key is received, a DH ratchet

step is performed prior to the symmetric-key ratchet to replace the Chain

Keys. In this way, if the Chain Key is compromised it can't be used to de-

crypt future messages, since it is updated with a new, random Curve25519

key pair.

Let's analyze the steps of the Double Ratchet protocol from Alice's point

of view. Suppose that, after the two messages A1 and B1, Bob sends her a

new message B2, then she answers with three messages, A2, A3 and A4. In

this case, Alice's sending chain will ratchet three steps, and her receiving

chain will ratchet once. Then, if Bob writes two new messages B3 and B4

with his new public ratchet key and Alice answers with a single message

A5, she performs two ratching steps in her receiving chain and then a single

ratchet step in her sending chain.

The Figure 4.6 represents the tool situation we have just described: in the

picture, Message Keys are labelled with the name of the message they en-

crypt or decrypt, and Bob's public keys are labelled with the message when

they were �rst received.

If the message has been sent by Alice but still has not been received by

Bob, she will see a single checkmark in the WhatsApp GUI; if Bob has re-

ceived the message, Alice has two checkmarks instead. Alice can also send

a message highlighting an old message: the content of the old message,

together with its ID (every message has one; more informations are given

in Section 4.3) are concatenated to the new message and all parts are en-

crypted. Messages can be deleted from the sender after they have been sent:

the recipient is not able to read its content, receiving a WhatsApp notify

("This message has been deleted"), but this has not implications crypto-

graphically.

Messages can arrive delayed, out of order, or can be lost entirely without
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Figure 4.6: Alice's point of view in a message exchange

any implication as well. To keep track of them, in the header of every mes-

sage, together with the new DH ratchet public key, there are two additional

values: N , which indicates the number of the message in the current sending

chain (the counter starts from N = 0) and PN , the length of the previous

sending chain. PN gives to the receiver the number of Message Keys of the

last chain: by this approach, he can now store the Message Keys of these

messages. We distinguish now between two situations, where we describe

what happens if Alice is the initiator and Bob is the recipient:

• A new DH ratchet key pair is generated: then, in the header there is

an info about the new public ratchet key. In this case, the number of

skipped messages in the previous chain is

SkipSMS = PN −RecSMS,

where RecSMS is the length of the current Bob's receiving chain. The

received N is the number of skipped messages in the new receiving
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chain, i.e. the one which starts after the DH ratchet. Bob must create

it since he receives a new DH ratchet public key.

• If Alice keeps using the old public ratchet key, then

SkipSMS = N −RecSMS.

Consider the sequence of the previous example and suppose Alice doesn't

receive B2 and B3 from Bob. She should have started a new DH ratchet

with message B3, but obviously she can't now so she starts it with B4.

The message B4 will have in its header N = 1 (it's the second message of

that sending chain, since B3 is missing) and PN = 2 (the length of the

previous chain, which contains B1 and B2). We are in the �rst case, since

she receives a new public ratchet key. Then,

SkipSMS = PN −RecSMS = 2− 1 = 1,

because the length of her current receiving chain is 1 (she only received B1)

and N = 1, so she knows she also misses a message from the new receiving

chain. Alice will then store Message Keys for B2 and B3 so they can be

decrypted in the case they arrive.

The �rst message A1 is important because it contains the initial ciphertext

for X3DH, and for this reason it is necessary this information doesn't get

lost. We can't stop messages to go out-of-order, arrive late or never ar-

rive, so, to handle this possibility, the recommentended pattern is for Alice

to repeatedly send the initial message until she receives Bob's �rst Double

Ratchet response message.

We discuss now how the algorithm is instantiated. Some pseudocode

functions are used to ease the description of the protocol.

Every user tracks the following variables:

• DHs: a DH ratchet key pair. With the letter "s" we state this key

pair is created by the user, and it is used to send messages;

• DHr : a DH ratchet public key. With the letter "r" we indicate this

public key is received when someone writes us a message, it is one of

the variables in the header;

• RK: a 32 bytes Root Key;
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• CKs: a 32 bytes Chain Key, used for the sending chain;

• CKr: a 32 bytes Chain Key, used for the receiving chain;

• Ns,Nr: Number of the message in the sending chain or in the receiv-

ing chain, respectively;

• PN : number of messages in the previous sending chain;

• MKSKIPPED: number of skipped Message Keys (= number of lost

or out-of-order messages). They are indexed by DHr and Nr.

Then, we de�ne a constant MAX_SKIP , which speci�es the maximum

number of Message Keys that can be skipped in a single chain. Setting

a good number is not easy: it should be set high enough to allow lost

or delayed messages, but it should also be low enough to avoid excessive

receiver computations: in fact, a malicious sender could induce recipients

to store large numbers of skipped Message Keys, causing a DoS attack.

Finally, we need to de�ne some functions:

• GENERATE_DH(): this function returns a new Di�e-Hellman

Curve25519 key pair;

• DH(priv,DHr): this function takes as input the private key priv of

the DH key pair DHs and the DH public key DHr and returns the

output from the X25519 Di�e-Hellman calculation;

• KDF_RK(RK,DHout): this function takes as input a 32 bytes Root

Key RK, which is used as the HKDF salt, and the DH calculation

output DHout (used as the HKDF input key material), performs a

HKDF step and returns a 32 bytes Root Key and a 32 bytes Chain

Key. The recommended choice is HKDF with SHA-256, and it uses a

WhatsApp speci�c byte sequence as info:

CK,RK = HKDFRK(DHout).

Usually HMAC is the standard, but other algorithms can be used

there as well;

• KDF_CK(CK): this function takes as input 32 bytes Chain Key CK,

together with some constant, and returns a 32 bytes Chain Key and

a 32 bytes Message Key. HMAC with SHA-256 is recommended with

CK as HMAC key, while constants are the input key material;
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• ENCRYPT(MK,M,AD): it takes as input a Message Key, a plain-

text M and some associated data AD and performs an AEAD en-

cryption/authentication. It only encrypts M , while AD is used for

authentication and not included in the ciphertext. AD is obtained

during the X3DH protocol run. MK changes at every iteration of the

algorithm and for this reason it can be seen as a nonce. For this rea-

son, the nonce in AEAD (see Chapter 2) can be �xed to a constant or

derived from MK. WhatsApp uses AES in CBC mode with HMAC,

because this scheme is resistant to attacks in the case a key is used

two or more times in a row. For WhatsApp, the encryption scheme

works as follows:

� First, a HKDF with SHA-256 is used to produce a 80 bytes out-

put, where the salt is the default value, the input key mate-

rial is MK and info is a WhatsApp speci�c byte sequence (it

MUST be di�erent from the info sequence used for the function

KDF_RK);

� Then, the HKDF output is divided in this way: 32 bytes for an

encryption key, 32 bytes for an authentication key and 16 bytes

for an initialization vector IV;

� At this point,M is encrypted thanks to AES, with the encryption

key and IV of the step before;

� Finally, HMAC-SHA256 is performed with the authentication

key and with the additional data as input. The output can be

truncated up to 64 bits in some situations, to reduce message

size.

• DECRYPT(MK,C,AD): it takes as input a Message Key, a cipher-

text C and some associated data AD and performs an AEAD deryp-

tion. The AD used there is the same used in the ENCRYPT function.

If the authentication fails, the function returns an exception. The

nonce is treated like in the ENCRYPT function;

• HEADER(pk, PN,N): this function takes as input the public key pk

of the DH key pair, the number of the message in the current sending

chain N and the length of the previous sending chain PN and creates

a new message header;
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• CONCAT(AD, header): this function takes as input the output of the

function HEADER header and some associated data AD. It encodes

header into a byte sequence and prepends, if possible, the ad bytes

sequence. If it's not possible, AD is substituted by a length value.

The output must always be a byte sequence AD||header.

The pseudocode of Figure 4.7 reassumes the start of the algorithm for both

Alice and Bob. Here, SK = SKAB and in the class "state" we save all the

informations of an user.

Figure 4.7: Double Ratchet initial conditions for both Alice and Bob

To encrypt a message, we call a function calledRatchetEncrypt, which takes

as inputs the class state, the plaintext and the additional data AD, com-

putes a new Chain Key and a Message Key with the function KDF_CK,

computes the header with HEADER, updates the counter Ns and returns

the header and the output of the ENCRY PT function. AD is not used

alone, but it is �rst concatenated with the header.

To decrypt a message, we call instead another function, RatchetDecrypt. It

takes as input the class state, the header, the ciphertext and the associated

data AD. This function does multiple actions: if the message received corre-



78 CHAPTER 4. THE SIGNAL PROTOCOL

Figure 4.8: Double ratchet encryption

sponds to a skipped message (it is in MKSKIPPED), then this function

decrypts the message, deletes the old Message Key, and returns the cor-

responding plaintext. If a new ratchet key has been received this function

stores any skipped Message Keys and performs a DH ratchet step to replace

the sending and receiving chains. Then, it stores any skipped Message Keys

from the current receiving chain, performs a symmetric-key ratchet step to

derive the Message Key and next Chain Key, and decrypts the message.

The Figure 4.9 reassumes the decrypting function.

4.2.1 Double ratchet with header encryption

We have seen that every message has a header which contains three informa-

tions: the current public ratchet key of the sender, the number of messages

N in the current sending chain and the length of the previous sending chain

PN . In the algorithm we just described, only the plaintext is encrypted,

while the header is returned from the function HEADER and nothing is

done to hide its content. If an attacker intercepts a message, he can gain

informations about the order of messages or the number of messages in the

current chain.

A variant of the Double ratchet allows to handle this lack adding two keys.

This adjustment is still not operative: neither Signal nor WhatsApp uses

it. For this reason, only a brief description of the algorithm is given. The

two keys are:

• A symmetric Header Key HK;

• A symmetric Next Header Key NHK.

The two keys are used for the sending chain and the receiving chain, but

they di�er, depending on which chain we are. So, in reality, there are four

new keys. HK is used to encrypt/decrypt a message header of the current
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Figure 4.9: Double ratchet decryption

chain, while NHK is utilized for the same reason but in the new chain,

which will be created if a new public ratchet key is received.

After a recipient receives a message, �rst of all she tries to decrypt the header

with HK, NHK or any header keys corresponding to skipped messages.

One of these keys must work, so she gets informations about the chain. For

example, if the key which works is NHK, then the recipient knows he must

also perform a DH ratchet step to generate a new ratchet key pair. The

DH ratchet step has now an additional phase: NHK replaces HK, and a

new sending NHK is derived from the root KDF, while the sending chain

NHK is calculated from the root Chain Key and the DH values, while the

receiving chain NHK is negotiated directly as a shared secret. Alice and

Bob must also initialize the protocol following these two rules, otherwise

the two parties can't encrypt/decrypt:
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• Alice sending HK is equal to Bob's receiving NHK, so Alice's mes-

sage A1 triggers a Bob Di�e Hellman step;

• Alice's receivingNHK must be equal to Bob's (initial) sendingNHK,

so Bob's message triggers Alice's Di�e Hellman ratchet step.

Suppose now Alice is the initiator and Bob is the recipient. She has been

initialized with Bob's ratchet public key, the shared secret SKAB which is

used as the �rst Root Key, the sending HK and the receiving NHK. Alice

generates her ratchet key pair and updates the root chain to derive a new

Root Key RK, the (sending) Chain Key CK, and the sending NHK. Alice

then sends her �rst message A1: the header is encrypted with the initial

shared sending HK. If Bob answers with a message B1, the header will be

encrypted with the initial receiving NHK. Alice does a DH ratchet step,

which will also shifts the header keys/ create new next header keys. Instead,

if Bob sends a new message B2 with the same DH ratchet public key of B1,

Alice only performs the symmetric-ratchet with the current sending header

key.

The implementation is similar to the standard double ratchet: we just

need to keep track of four additional variables (the header keys) and to

de�ne three new functions, two for the encryption/decryption of the header

and one which modi�es the KDF_RK function de�ned above, such that

it generates a next header key too.

The Di�e Hellman ratchet algorithm is designed to give security against

passive attackers who just observe encrypted messages after compromising

a session, because it keeps generating new DH secrets. Despite this security,

a compromise of secret keys can destroy the security of future communica-

tions. For example, the attacker can impersonate the compromised party,

or could modify the user's Random Number Generator to predict the fu-

ture ratchet keys. If an user suspects one of her keys or devices has been

compromised, she must generate new keys.

4.2.2 Double ratchet and attachments

The double ratchet algorithm can also be used to end-to-end encrypt or

decrypt message which contains attachments of any type, like video, audio,
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images or �les. Let's see the procedure:

• Alice, the sender, generates an ephemeral encryption key of 32 bytes,

an ephemeral authentication key of 32 bytes and a random initializa-

tion vector IV. This can be safely done exploiting the KDF properties,

as described in the prior Section;

• Alice encrypts/authenticates the attachment like a normal message,

using AEAD with AES in CBC mode, then she appends the HMAC

of the ciphertext;

• Alice uploads the encrypted attachment to a Binary Large OBject

(BLOB) store. BLOB is a collection of binary data stored as a single

entity in a database management system, typically images and audio.

Attachments are stored there and not on WhatsApp servers, otherwise

we'd lose the E2EE property (WhatsApp never stores messages in its

servers);

• Alice encrypts a normal message and sends it to Bob: it contains

the encryption key, the HMAC key, a SHA-256 hash of the encrypted

BLOB, and a pointer to the BLOB in the BLOB store;

• Bob decrypts the message, retrieves the encrypted BLOB from the

BLOB store, veri�es the SHA-256 hash of it, veri�es the MAC, and

decrypts the plaintext. Bob has received an attachment!

Attachments are sent to a BLOB store and not directly to the recipient

because they could require some time to upload: in this way, the upload is

done only once by the sender, then a simple message containing the data to

retrieve the attachment is sent to every recipient. This also explains why

the �rst time we send an attachment to one of our contacts, the upload

requires some time, but if we send the same attachment to another contact,

the upload is immediate.

4.3 The Sesame algorithm

The Sesame algorithm manages message encryption sessions in an asyn-

chronous and multi-device setting. It is a generic algorithm which applies

to any session-based message encryption algorithm, in particular it works
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with Double Ratchet and X3DH. We have seen that X3DH allows an user to

create an encrypted session where she can communicate with another user

even if the latter is o�ine; then, Double Ratchet updates their session keys

after every message. On paper, these two algorithms are enough to perfectly

manage the communication between Alice and Bob, while in practice there

are still many problems which are not handled. For example:

• Alice and Bob can have multiple devices, so a single session is not

enough. There must be a session between every Alice's device and

every Bob's device, because both of them must receive the message

or see the sent message in every device they can login. For this rea-

son, there must also be sessions from a device to the other devices of

the same user. Moreover, they can add or remove a device in every

moment, so sessions must be added or removed in the same instant.

Usually, a device is the phone of the user or a personal computer;

• Alice and Bob could start the X3DH protocol in the same moment,

creating two di�erent sessions. Double ratchet performs better if they

use the same session to communicate, so they must agree on which

session they have to use if this "accident" happens;

• Alice or Bob could decide to restore a backup, in which case the new

session doesn't match anymore the session of the other user.

These three problems are the main cause of lost or out-of-order messages.

Sesame manages all these requirements, de�ning the state of each device

and the algorithms which utilize this state to exchange encrypted messages.

The main idea is the following: each device remembers an active session

for each other device it is communicating with, and uses this session to

send to that device. Usually, every device has a single active session (and

no inactive sessions) with every device it is communicating with: however,

multiple sessions between the same devices can raise in the case one user

restores a backup. In this case, when a message is received on an "inactive"

(old) session, that becomes the new active session.

We need to do some assumptions on server, users and devices:

• The server: it always has in memory every user and every device.

Moreover, it can store temporarily messages, until the other device

receive them (see X3DH). We assume there is just one server, but
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of course any real app (WhatsApp included) has more than a server

to keep track of everything: for example, there could be a server to

handle users/devices and another server to manage mailboxes;

• Users: there is always at least an user which utilizes the application,

and they can be added or deleted in any moment. Every user has a

di�erent UserID: usually, an username, or directly the phone number.

Signal and WhatsApp use the phone number as the UserID. When an

user is removed, his ID can be taken from a new user;

• Devices: each registered user has always at least a device, and he can
add or remove a device in any moment. Each device has an unique

DeviceID and an identity key pair (i.e., a public and a private key).

If Sesame is used with X3DH, every device also has a signed prekey

and a queue of one-time prekeys. A device can ask to the server

informations about other users and devices and keep track of a state.

This state could be deleted or rolled back if a backup occurs. Every

device has a clock to track the passed time;

• Mailboxes: every device has a mailbox, which holds messages sent

to that device: they are stored in the server. The message is deleted

from the mailbox when it is received. If Alice (who has a device) sends

a message to Bob (who has another device), the server stores in Bob's

mailbox the message together with Alice ID and device. The recipient

Bob can retrieve from his mailbox the message, the Alice's ID and the

Alice's device used. Messages could be corrupted, attacked, delayed or

out-of-order; moreover, if they don't arrive after a �xed time period,

they are considered lost. We call this time period MAXLATENCY ;

• Sessions: A session is indexed by an unique SessionID and it is used

to encrypt and decrypt the messages; it is secret and it is stored in

a device. If a message is encrypted in a session, it can be decrypted

only in a matching session. Data in a session continuously change

after a successful encryption/decryption (new keys are generated and

old ones are deleted, for example). A device can create a new session

in any time through the X3DH protocol, if the public key of the re-

cipient device is given. All messages encrypted by the new session are

initiation messages, and they contain in the unencrypted header in-
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formations about the sender's identity public key. When it is received

from the recipient, the matching session is created. After the �rst de-

cryption, the session becomes regular and it stops sending initiation

messages.

Let's analyze how Sesame works. Each device communicates with multiple

users, so it stores a list of UserRecords, indexed by their UserID. Each

UserRecord has a list of DeviceRecords, indexed by their DeviceID. Each

DeviceRecord may contain an active session or a list of inactive sessions.

The list of inactive sessions must be kept ordered: in the head there is the

last active session (now inactive), at the end of the list there is the oldest

active session. It's important to note that a device stores UserIDs, but it

does NOT store DeviceRecords for its DeviceIDs: the UserRecord enables

a device to send a copy of each message to the other devices of the user.

An UserRecord or DeviceRecord might be marked stale: this corresponds

to a deleted user or device which is not deleted from the device to allow

the decryption of delayed messages. The stale record contains a timestamp

which saves the moment when it was marked stale: if the clock passes the

�xed MAXLATENCY , the stale record can be deleted. The identity key

pair is used for cryptographic authentication, and it is never replaced, unless

the device is logically deleted and then readded with new values (we have

already discussed about it, it's a long term key pair). Key pairs can be

derived in two ways:

• per-user identity keys : all devices of the same user have the same

identity key pair. In this case, the key pair is stored in UserRecord;

• per-device identity keys : each device of the same user has a di�erent

identity key pair. The key pair is stored in DeviceRecord. WhatsApp

derives the key pairs with this technique.

Devices can modify their local state in various ways. For example, they can

delete, if necessary, sessions, DeviceRecords or UserRecords. If a device re-

mains without sessions or an user remains without devices, they are deleted

as well. Sessions can also be added in a DeviceRecord: when this happens,

it becomes the active session. The old active session goes into the inactive

list. The list could have a number of maximum entries: if the number of ses-

sions exceeds this number, they are deleted from the tail of the list. There



4.3. THE SESAME ALGORITHM 85

is only ONE active session for each device we are communicating with: if a

session in the inactive list goes active again, the current active session goes

in the list instead.

Finally, devices can receive as an input the three values UserID, DeviceID

and PublicKey, and upgrade their records in this way:

• if the corresponding UserRecord doesn't exist or if it has a di�erent

public key value, a new record is added to handle it. The old one is

deleted. The input public key is stored in this new record in the case

of per-user identity keys;

• if the corresponding DeviceRecord doesn't exist or if it has a di�erent

public key value, a new, empty, record is added to handle it. The old

one is deleted. The input public key is stored in this new record in

the case of per-device identity keys. The device where this check is

done does not add a new DeviceRecord for itself (i.e., if the inputs are

UserID and DeviceID of the device which is doing the operation, noth-

ing happens). A device can preps for encrypting to the tuple (UserID,

DeviceID, public key): in this process, �rst of all the UserRecord and

the DeviceRecord are marked stale, if necessary. Then, the device

updates its record based on the tuple. Finally, if the relevant De-

viceRecord doesn't have an active session, then the device creates a

new session using the relevant public key for the DeviceRecord. The

new session is inserted into the DeviceRecord.

Let's describe the Sesame sending process. The sending device wants to

send a message M . Let's denote with ID1, . . . , IDN the userIDs of the list

of recipients linked to her device, plus her own UserID. To encrypt and to

send M to each linked user, for each IDi this algorithm is followed:

• the sending device checks if there exists a relevant non stale User-

Record for the user IDi, then it searches and gets all active sessions

(with respect to the sending device) for each non stale DeviceRecord

in this UserRecord. The sending device encrypts M (through the

Double Ratchet) using the active sessions;

• IDi is sent to the server with the list of encrypted messages and the

list of DeviceIDs of the user IDi. The list of DeviceIDs indicates
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the recipient mailbox for each message. Lists are empty if no active

session exists;

• The server checks if IDi exists and if it has the declared list of Devi-

ceIDs. In this case, the server accepts the encrypted messages, which

are sent to the mailboxes linked to the DeviceIDs;

• If something is wrong, the server rejects the messages and informs the

sending device about what did not work. If the UserID doesn't exist,

the sending device marks the UserRecord as stale and passes to the

next user. If the DeviceID is old, the sending device gets informed

about the new DeviceID and the new associated public key. Old

devices are marked as stale, while new devices are prep for encrypting

to the tuple (UserID, DeviceID, relevant public key).

If some error occurs in encrypting to an user, the sending device should

avoid to communicate with the relevant UserRecord. It's up to the user to

decide if it's better to stop the whole process or to continue the encryption

with other users. There should also be a limit to the number of times the

user tries to send a message to a recipient's mailbox, to avoid the possibility

of bugged server or malicious attacks.

The other Sesame algorithm is the receiving process. The sending process

has sent the encrypted message C to the relative mailbox. Now, inputs

are C, the sender's userID uIDS and the sender's deviceID dIDS. The

algorithm gets all the inputs from the server. Then, C is decrypted in this

way:

• If C is an initiation message and the recipient device does not have

a session that can decrypt the message, then additional steps are re-

quired:

� the relevant public key is taken from the message header;

� the device updates its record with uIDS, dIDS and the relevant

public key;

� the device creates the new session with the initiation message

and insert it into the DeviceRecord.

• If no session in the DeviceRecord can decrypt C, then C is discarded;
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• If the right session exists but it was inactive, it is activated, then C is

decrypted (through the double ratchet algorithm). If any error occurs

in the procedure, including cryptographic errors, then it's better if

the device discards all state changes and C, ending the decryption

process.

If a device has been deleted or rolled back, some (valid) message could

not be decrypted. To not lose any message, an user could save in her send-

ing device a set of MessageRecords, indexed by an unique MessageID. The

same message could be sent to more than a person. In this case, every

message is treated like a di�erent one, and will have its own MessageID.

The MessageRecord stores the plaintext M , the recipient UserID and the

SessionID where M was encrypted.

If the recipient device has troubles in the decryption, it sends to the original

sending device mailbox (i.e., the device which sent the "problematic" mes-

sage) an unencrypted retry request with the MessageID of the message. The

sending device also retrieves the UserID and the DeviceID of the recipient

device. Then, the original sending device does a resending process:

• if the MessageID doesn't exist, the process stops;

• if the received UserID is not equal to the MessageRecord UserID, the

process stops. There is NOT a control for the device, because if this

situation occurs, the device could have been changed;

• the original sending device checks about the session. If the relevant

DeviceRecord has not an active session, or if it has one but it is the

same session located into the MessageRecord, a new session must be

created. The original device asks the server about the relevant public

key, then it preps for encrypting to the tuple (UserID, DeviceID, public

key) if the DeviceRecord doesn't have an active session, otherwise, if

the session exists but it matches the one in the MessageRecord, a new

initiating session is created and inserted into the DeviceRecord, to

avoid a resending process into an orphaned session.

• M is encrypted in the new session of the relevant DeviceRecord;

• C (the encrypted message) is sent to the server together with UserID

and DeviceID of the recipient. The server stops the process if it hasn't

saved that particular UserID or DeviceID in its memory;
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• The server accepts the message, which is sent to the recipient's mail-

box. The old MessageRecord is deleted, a new one for this new mes-

sage is created.

A MessageRecord may be deleted after some time or if the plaintext has

been erased from the sending device. WhatsApp uses delivery receipts to

notify the successful decryption: they refer to some MessageID and notify

the sender that the MessageRecord may be deleted. Devices should impose

a limit on the number of times they're willing to resend a message, to avoid

attacks like DoS.

For security, sessions might be replaced after some time.

4.3.1 Sesame's security

Let's brie�y discuss the security of the protocol. Sesame relies on users

authenticating each other before using it. They can use a QR code, as

discussed in the X3DH Section. When dealing with a message, the sender

could notice a change of the recipient's identity public key. This could mean

that the UserID was deleted and taken from another user, a new device has

been added, or someone is impersonating the recipient's device. In any of

these cases, the users MUST perform again the authentication process and

stop the sending, receiving or resending process.

The user with the compromised device must replace it and the associated

key pair; then, it should notice every user he is in contact with of the change.

In fact, suppose an attacker compromises Bob's device. Then, he can send

a message to every UserID linked to Bob's device, impersonating him; or

he could be a passive attacker, who just reads all messages. The attacker

could also gain access to old plaintexts archived in the device. Finally, the

attacker might try to use the keys for passive decryption, decrypting old

communications or future communications. He could also try to reveal the

device's state of some past moment (e.g. he can �nd an old backup) and

then use this state to decrypt old messages. The security against passive

decryption completely relies on the long term, medium term and ephemeral

keys used during X3DH and double ratchet. A server could be corrupted

too: it can send to the device what it wants to compromise new X3DH

initial messages without a one-time prekey: if it owns the signed prekey's

private key, it can also decrypt all messages sent during the cycle of the



4.3. THE SESAME ALGORITHM 89

medium-term key pair. This explains why signed prekey should be changed

regularly.

There is a last kind of attack which can be performed against Bob: the

server could impersonate other users with a contact with Bob (e.g., he

could impersonate Alice). When Sesame uses X3DH, the server can use a

compromised signed prekey with X3DH to create sessions with the target:

in poor words, it can create a fake session, where Bob thinks he is com-

municating with Alice. Even then, the replacement of the signed key from

time to time is necessary, or there will be risks until the session is deleted.

The compromission of a private key is always possible, in the sense that

no protocol can o�er 100% security: anyway, every user should follow these

recommendations because they highly mitigate the risk of an attack.

If the communication is authenticated but an attacker still manages some-

how to impersonate Bob, he can't decrypt messages but he can get sender's

UserID and DeviceID. He could also register to the server with Bob's pa-

rameters, e�ectively deleting Bob's account. The server must mitigate this

attack, and it usually has two ways to do it: either DeviceID is assigned

from the server, so they are random, or the server can require a code which

requires the possession of Bob's private key too (with this attack, he does

NOT have the private key, he is just impersonating Bob with his UserID

and DeviceID).

We have seen how Sesame manages the deletion of old messages. If the

clock is not perfectly synchronized, it could result in the recipient deleting

the sessions too early and not being able to decrypt some delayed messages.

In the other way, if clock errors prevent the recipient's clock from advanc-

ing, these older sessions might never be deleted. Clocks should be reliable

and impossible to manipulate. They can be combined with other forms of

security, to provide crossed checks.

Finally, some attention should be taken against messages which were not

delivered to every user. This is a problem especially in group chats, where

it's important every user receives the message. One option would be to add

a function which committes messages to mailboxes only if sending succeeds

for all users.
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Chapter 5

Additional WhatsApp features

We have seen how messages can be exchanged between two users in an

E2EE application. WhatsApp is much more than a simple instant messag-

ing app between two people: it allows chat groups, voice and video calls,

statuses and live location in an authenticated environment. Section 5.1 de-

scribes WhatsApp group chats, and it focuses on the algorithm as well as

on the limitations of this protocol, like the lack of future secrecy. Section

5.2 describes the encrypted calls on the app, while Section 5.3 and 5.4 talk

about features derived from group chats, like statuses and live locations.

Section 5.5 tells something more on security and QR code, while Section

5.6 explores one of the extra applications of the latter, explaining how it

can be used to establish a twin session of WhatsApp in the browser.

Finally, we give an idea in Section 5.7 and in Section 5.8 on how the commu-

nication between WhatsApp clients and WhatsApp servers works, on the

importance of metadata and on how backups are treated.

5.1 WhatsApp group messages

WhatsApp o�ers to its users the possibility to have end-to-end encrypted

messages not just between two people, but between multiple users as well.

The Signal protocol doesn't work quite as well for group messaging, primar-

ily because it's not optimized for broadcasting messages to many users. To

handle groups, WhatsApp doesn't faithfully follow Signal and adds a key

for every user, denoted Sender Key, which this member will use to encrypt

all of her messages to the group.

Traditionally, unencrypted messenger applications used �server-side fan-out�

91
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for group messages: with this method, if Alice wants to send a message to

a group of users, she only has to transmit a single message, which is then

distributed to every di�erent group member by the server. This is di�erent

from the method �client-side fan-out,� where Alice would transmit a single

message to every di�erent group member herself.

Messages to WhatsApp groups are based on the pairwise encrypted sessions

outlined in Chapter 4. The strategy chosen is the "server-side fan-out", but

Signal provides also end-to-end encryption.

A WhatsApp group is identi�ed by IDgr, which contains the ID of the

group creator (her phone number) and a timestamp. A group can contain

up to 256 members, and the number of administrators (i.e., users which

have the power to add or remove other users from the group, and so on) is

a subset of the users in the group. The group creator is always an adminis-

trator. Although WhatsApp integrates X3DH, keys in groups are used very

di�erently: instead of sending encrypted messages to each group member

separately, each user generates a Chain Key for encrypting only her mes-

sages to the group. The key is then immediately sent to the other members

of the group using the Double Ratchet algorithm. The group key is updated

only with the symmetric ratchet : this is a signi�cative di�erence with re-

spect to the communication between just two users.

There is a distinction between the �rst message sent in a group from an

user and every other message sent by the same user after that. Let's see

how it works in both cases: we suppose only text messages are exchanged,

for simplicity. The �rst time a WhatsApp group member sends a message

to a group, then:

• she generates a random 32 bytes Chain Key. This key is separated

from the Chain Key used for direct messaging, the two chains have

nothing in common. Every group has its own chain;

• she generates a random Curve25519 key pair: we denote this pair

Signature key. The current signature key for the respective group is

used to sign the ciphertext;

• she combines the 32 bytes Chain Key and the public key from the

Signature Key into a Sender Key (for example they may just be con-

catenated);
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• she individually encrypts the Sender Key to each member of the group,

using the X3DH protocol.

So, each group participant has her own Sender key. Whenever a new mem-

ber joins the group, it generates her own Chain key and a Signature key

pair. The Sender key is distributed to all the group participants using the

pairwise direct messaging. All the other group participants already have

their own Sender key and they share it with the new participant through

pairwise messaging as well. In this way, everyone keeps the Sender key of

each other. Sender key is then decomposed to Chain key and public Signa-

ture key once it is exchanged.

Now, for all subsequent messages to the group:

• she derives a Message Key from the Chain Key through the sending

chain, and updates the Chain Key, with formulas 4.2.1-4.2.2 and the

Hash ratchet;

• she encrypts the message using AES256 in CBC mode and authenti-

cates it using HMAC;

• she signs the ciphertext using its private Signature Key with XEdDSA;

• she transmits the single ciphertext to the server, which does server-

side fan-out to all group participants. The encrypted message will also

contain IDgr and an IDMessage IDm. The server adds the sender ID,

a sender name and a timestamp to the message for the receivers.

When group members receive the message, they use the sender's public Sig-

nature key (received in the �rst message) to verify the signature, then they

derive the Message key and update the Chain key in the same way as the

sender did. Finally, they decrypt the message and delete the Message key.

As soon as all members in a group have received the message from the

sender, the successful delivery is displayed by a double checkmark. Users

can also send a new message while highlighting a reference to a previous

message, similarly to direct messaging.

If the sender wants to send another message, she will derive a new Message

Key from the updated Chain key. The earlier Message Key is deleted.

This design has a �aw: it does NOT o�er perfect future secrecy. If an

attacker compromises the Chain Key of a group member, then any future
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message which is sent by that particular member will also get compro-

mised. This happens because the group messaging algorithm uses only the

symmtric ratchet: the Di�e-Hellman ratchet is skipped!

Whenever a group member leaves, all group participants clear their Sender

Key and start the protocol again: this is a must because otherwise people

who leave the group still have with them Sender Keys of every other mem-

ber.

If an administrator inserts a new person in the group, all devices in the

group chat must send their keys to this new group member, with the X3DH

protocol. Administrators send group modi�cations to the server: if the

server accepts the request, the trigger is implemented using a message de-

noted group management message, which has the format "Alice added Bob",

"Alice removed Bob", and so on.

However, both Signal and WhatsApp fail to properly authenticate group

management messages: they are not end-to-end encrypted or signed by the

administrator. At least in theory, this makes it possible for a malicious

server to silently add an in�ltrator in the group chat. WhatsApp group

chats were discussed the last year because a cryptographic analysis showed

a potential �aw, where an in�ltrator was added from the server, and then

he could add more users to the chat or read old messages ([30], [31]). The

WhatsApp server plays a signi�cant role in group management, because it

has in memory the list of the administrators in a group. When an adminis-

trator wants to add a member to the group, it sends a message to the server

identifying the group and the member to add. The server checks if that

user is an administrator, and then it sends a message to every member of

the group indicating that they should add that user.

Since the group management messages are not signed by the administrator,

a malicious WhatsApp server could add any user it wants into the group.

We have to trust the WhatsApp server to not be corrupted, which seems

a fair assumption, but it goes against the entire purpose of end-to-end en-

cryption. The easiest �x here, which is still not available, is to let the

administrators sign the group management messages.

One of the creators of Signal, Moxie Marlinspike, claimed that this attack

is not possible: the attacker will not see any past messages to the group be-

cause the keys are protected from the Hash ratchet, which provides forward
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secrecy. Moreover, all group members will see that the attacker has joined,

and no one, not even the server, can suppress this message. The notify will

always be present because it's an instruction for the key exchange.

Group chats (and, in a minor measure, direct messaging) are also victims

of another attack. We have said how a double checkmark appears when

the message sent is received from every other user in the group. This in-

formation can be faked by the WhatsApp server. A malicious server can

manipulate the transcript between sender and receivers, dropping a message

and sending a fake noti�cation to the sender. The attack works in this way:

when the sender writes a message in the group, the attacker intercepts a

group message (for example, the one directed to Bob) and replies with a

fake acknowledgment. In this way, the sender thinks every user has received

the message, even though Bob never saw it! WhatsApp could �x this prob-

lem treating receipt messages like normal messages, end-to-end encrypting

them. This would guarantee the authenticity of these messages.

5.2 SRTP and WhatsApp calls

Similarly to messages, WhatsApp video and voice calls are also end-to-end

encrypted. To manage them, WhatsApp relies on Signal and on the Real-

time Transport Protocol (RTP). RTP provides end-to-end network trans-

port functions suitable for applications transmitting real-time data, such

as audio or video. The data transport is augmented by a Control protocol

(RTCP) to allow the supervision of the data delivery to large networks, and

to provide minimal control and identi�cation functionality. A variant is the

Secure Real-time Transport Protocol (SRTP), which can also provide con-

�dentiality, message authentication, and replay protection. SRTP aims at

a low bandwidth cost and a framework that allows for upgrades with new

cryptographic transforms. SRTP provides some additional features over

RTP:

• a "master key", to provide keying material for con�dentiality and

integrity protection. They are used in a key derivation function, which

gives as output some session keys securely derived from the master key.

By using an unique session key for every di�erent session, each of them
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can be secured. In this way, if one session is compromised, all other

sessions will still be safe;

• KDF can periodically refresh the session keys, so if one is compromised

the amount of information the attacker can get is �xed;

• Salting keys could also be used to protect against pre-computation

and time-memory attacks. To achieve this, the use of a master salt is

recommended. This value must be random but can be public.

So, SRTP uses two types of keys: session keys and master keys. The session

key is used directly in a cryptographic application, while a master key is a

random bit string from which session keys are derived. Master keys must

be random and kept secret. In the algorithm, the master key has usually

128 bits, while the master salt has 112 bits. WhatsApp doesn't follow this

default because it uses AES256 instead of AES128. The rest of this Section

will describe the algorithm with the default key lengths: just double every

key length to get what WhatsApp does. Each SRTP stream requires the

sender and receiver to maintain a cryptographic state information, named

cryptographic context. There is also a corresponding of the RTCP protocol,

named SRTCP. An accurate description of RTP and SRTP protocols is

beyond the scope of the thesis; however, the interested reader can check

[32], [33].

What is important for WhatsApp is that SRTP provides con�dentiality by

encrypting the RTP payload (i.e., the data transported by the RTP in a

packet, for example audio samples). They encrypt data using AES with a

particular mode, known as Segmented Integer Counter Mode (CTR), which

handles tra�c over an unreliable network with a possible loss of packets.

A more known alternative, even if it is outdated, is the f8-mode, used for

3G mobile networks, which is a variation of Output FeedBack mode (OFB).

Let's describe the two alternatives. In both modes, the encryption key ke

has length 128 bits, while the salting key ks has length 112 bits and they

are based on a block cipher, where the message is divided into blocks of 128

bits.

• CTR mode: nowadays, it is the default encryption algorithm mode.

It consists in the encryption of successive integers. Each packet is en-

crypted with a distinct keystream segment, which is the concatenation
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of the 128 bits AES outputs. For each block, a new integer is added

to an initalization vector IV. IV is 128 bits long and it is de�ned as

IV = (ks ∗ 216)⊕ (SSRC ∗ 264)⊕ (i ∗ 216),

where SSRC is contained in the RTP header and i is the SRTP packet

index. Each term in the IV de�nition is padded with leading zeros to

make the operation well de�ned.

Then, in formulas, the keystream is

Eke(IV )||Eke(IV + 1 mod 2128)||Eke(IV + 2 mod 2128)||. . .

• f8 mode: in this mode, the Initialization Vector (IV) is determined

in the following way:

IV = 0x00||M ||PT ||SEQ||TS||SSRC||ROC,

where M , PT , SEQ, TS and SSRC are informations contained in

the RTP header, while ROC comes from the cryptographic context.

IV is not used directly, but it is the input of the block cipher (i.e.,

AES) under another key to produce an internal value: this is done

to prevent an attacker from gaining known input/output pairs. In

formulas,

IV ′ = Eke⊕m(IV ),

where m is a constant string with length 128 bits, usually de�ned as

m = ks||0x555 . . . 5.

Finally, let S(j) be a 128 bits string (j is a counter) and let L = d N
128
e,

where N is the required length of the message. Then,

S(0) = Eke(IV
′),

S(j) = Eke(IV
′ ⊕ j ⊕ S(j − 1)) if j > 1.

The keystream is S(0)||. . . ||S(L− 1).

For both modes, HMAC-SHA1 is instead the algorithm used as the basis

for ensuring message integrity. We call M the data which will be authenti-

cated. In the case of SRTP, M should consist of some speci�c data which
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were not encrypted, concatenated with the ROC. We call ka the authen-

tication key for HMAC. ka has usually 160 bits, while the tag has 80 bits.

SHA1 is an outdated Hash function: it could be safer to swap it with a

more modern one, like SHA2 or SHA3.

All three session keys are derived from a Key derivation algorithm: at

least a step of the algorithm is required, never use directly the master key.

More details of this algorithm can be found in [33].

WhatsApp handles calls over their app in this way:

• The initiator (Alice) uses the X3DH protocol to establish a session

with the recipient (Bob), if it still doesn't exist;

• Alice generates a random 256 bits SRTP master secret key;

• Alice transmits an encrypted message C to Bob that indicates an

incoming call. C also contains the SRTP master secret key;

• If Bob answers the call, a SRTP encrypted call starts.

WhatsApp allows people to have an end-to-end encrypted phone call

through the app until a maximum of four people. One of pitfalls on the basic

SRTP protocol is that it only encrypts the payload, leaving the header plain.

We have already seen in Chapter 4 how a header usually contains important

informations about the information �ow. A more recent implementation of

the algorithm allows the encryption of the header too.

5.3 Statuses

WhatsApp status is a way to share our thought or point of view through the

form of image, text or video. An user can choose to show their statuses to

every contact or to a subset of contacts: from a cryptographic point of view,

it's exactly the same of a group message, because we are essentially sharing a

message into a �nite group. For this reason, they are treated and encrypted

exactly as group messages. The �rst status sent to the recipients (either all

the contacts or a subset) follows the same sequence of steps as the �rst time

a WhatsApp group member sends a message to a group. In the same way,

new statuses sent to the same set of recipients follow the same sequence of
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steps as all subsequent messages to a group. The management of removed

members from the subset of recipient is equal to the removal of an user

from a group: the status sender clears their Sender Key and starts over. An

user can be blocked from receiving a status either removing him from the

list of valid receivers, or deleting his phone number/address. Statuses also

su�er of every problematic we have discussed during the discussion of group

chats, but in a minor measure: the lack of future secrecy doesn't provide

security for the future statuses if the Chain Key is compromised, but the

other two described attacks are not a real threat. In fact, given the nature

of statuses, they are usually not used as a way to communicate, they are

just a way to represent what we are doing in a certain moment or to share a

memory. If an attacker compromises the device and is able to see statuses,

probably she learns something about the hobbies of the victim, and that's

all; if she doesn't allow Bob to receive the status, it is also usually not a big

deal. Another WhatsApp parent company, Instagram, allows statuses (also

known as stories) to be visible to every user of the application, if the sender

wants to. It's clear that statuses content is in most cases of public domain.

5.4 Live location

Live location feature is real-time and dynamic. It allows users to share their

location update in real-time. Users have the option to share their location

with an individual as well as a group. They can also view the location of

multiple people at the same time. The location will be shared depending on

the selected time, it goes from 15 minutes until a maximum of 8 hours. An

user can choose to stop the live location sharing in any moment. Like every

other WhatsApp feature, Live Location supports end-to-end encryption. It

is encrypted similarly to group messages and statuses.

The �rst live location sent follows the same sequence of steps as the �rst time

a WhatsApp group member sends a message to a group. The management

of new live locations after the �rst one is di�erent instead. In fact, live

locations require a high number of position updates, and for this reason

receivers expect a large number of ratchet steps. The ratcheting algorithm

described in the Signal protocol is too slow for this process. We need a new,

faster, ratcheting algorithm. We denote CK(i) the Chain Key at iteration

i and MK(i) the Message Key at iteration i. In the classic double ratchet,
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Chain Keys were one-dimensional: there was a single chain and the output

of every step was a new Chain Key and a Message Key. If we did N ratchet

steps, we did N computations, getting CK(N − 1) and MK(N − 1) (the

iteration count starts from zero).

We can extend this algorithm, keeping track of more di�erent chains of

Chain Keys. Suppose we have two chains: denote them CK1(i) and CK2(i).

Let M be a positive integer constant. Suppose also that Message Keys are

derived from CK2 only. A receiver who needs to ratchet by a large amount

can skip M iterations at a time by ratcheting CK1 and generating a new

CK2. In this way, a single iteration from CK1(0) to CK1(1) gives as output

a Chain Key CK2(0) (it can be derived in many ways, the common choice

is the use of a one-way function as we have seen during the Double Ratchet

description), which then gives as output the Message Key MK(M). CK2

can be ratcheted too, until a maximum of M times.

Di�erently from the N steps we had to perform with just the Chain Key

CK1, now the number of steps is reduced up to a maximum of
†
N
M

£
+M

steps.

Figure 5.1: Ratcheting with two Chain Keys

After a sender creates a new Message Key and encrypts a message with

it, she has to delete all Chain Keys she generated to obtain it: taking

as example the Figure 5.1, if the Message Key is MK(M), then she has

to delete CK1(0), CK1(1) and CK2(0). This is done to preserve forward

secrecy.

This scheme can be generalized to D dimensions, that is D di�erent Chain

Keys. Every Chain Key CKl is derived from CKl−1 through the use of

a Hash function (with di�erent inputs for every generated key), with the

exception of CK1, which is generated thanks to a random number generator.
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Keys are 32 bytes long and initialized as

CK1(0) = RNG(32) if j = 1,

CKj(0) = HMACCKj−1(0)(j + 1) if j > 1,

and ratcheted as

CKj(i) = HMACCKj(i−1)(j + 1),

where n denotes an array of bytes containing a single byte n.

Figure 5.2: Generation of D Chain Keys

The Message Key is derived from a Chain Key in the same way it was

derived during the Double Ratchet, so if we are at iteration i of the chain

j, the new Message Key is

MK = HMACCKj(i)(1).

The value D must be a power of two less than or equal to the number of

bits in the iteration counter. Common choices are D = 1, 2, 4, 8, 16 or 32.

D is accurately chosen from the implementer for the tradeo� between CPU

and memory. Every di�erent Chain Key has up to M iterations. If a Chain

Key reaches the M−th iteration, it can't be used anymore: there exists an

algorithm to restore it to an useful Chain Key, if all D are unusable.

Moving from one iteration count to another ratchets a single Chain Key a

maximum ofM times. There is then an obvious upperbound to the number

of ratcheting operations: DM .

5.5 Verifying keys

As already implied in the previous Chapter, every WhatsApp user can ver-

ify the keys of another user she is communicating with, to con�rm nobody

else is spying their conversations. This can be done by scanning a QR code

or by comparing a 60 digit number.
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The QR code contains a version (it refers to the number of modules con-

tained in a symbol, see [21]), the user identi�er for both parties (i.e., their

phone number) and the 256 bits public identity key of both users. When

Alice scans Bob's QR code, the public identity key into the code is com-

pared to the Bob's public identity key memorized in the WhatsApp server.

The 60 digit number is instead obtained concatenating the two numeric

�ngerprints for each user's identity key. A public key �ngerprint is a short

sequence of bytes used to identify a longer public key. Fingerprints are

created by applying a Hash function to a public key. Fingerprints are shorter

than the keys they refer to and for this reason they can be used to simplify

certain key management tasks. A WhatsApp user performs the following

operations to obtain her public key �ngerprint:

• The user identi�er is converted into a byte sequence. The encoding

must be deterministic, because the same �ngerprint must be recreated

in various occasions;

• the public identity key and the user identi�er are iteratively hashed

5200 times. The Hash function used is SHA-512;

• The �rst 240 bits = 30 bytes of the output is kept, the rest is discarded;

• The 30 bytes are divided into six parts, each containing 5 bytes;

• Every part is converted into a sequence of 5 digits: it is considered as

a big-endian (i.e. the most signi�cant value is stored �rst) unsigned

integer and it is reduced mod 100000;

• the six parts are again concatenated, obtaining the 30 digit numeric

�ngerprint associated to the user identity key.

Fingerprint security completely relies on the Hash function. If an attacker

�nds an identity key whose �ngerprint equals the �ngerprint of one of her

contacts, she could impersonate him. However, SHA-2 is considered secure,

so this attack is not reliable. The numeric �ngerprint is also known as

security code. Numeric security codes have some advantages over other

kinds of codes:
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• they are easy to localize. WhatsApp has more than 1.5 billions of

active users in the world, so using a code based on words was not

a good option. Similarly, hexadecimal representations are not com-

patible with all alphabets, so they were discarded in the process too.

Instead, all languages WhatsApp supports know what base 10 digits

are. That's why the obvious choice was a numeric code;

• they are visually and audibly distinct;

• they are compact.

WhatsApp users may get a notify every time the security code for a contact

changes.

It is likely that not every WhatsApp user veri�es safety numbers or safety

number changes. To prevent a potential pitfall, the WhatsApp server has

no knowledge of which users have veri�ed the security code. This feature

is necessary, otherwise, if the WhatsApp server is corrupted, it could start

a Man-In-The-Middle (MITM) attack directed to users who don't authen-

ticate each other, and the attack would have success. Without that knowl-

edge, a malicious server can always perform the attack, but it has to attack

users randomly: if it attacks an user who performed the authentication step,

it would be caught.

5.6 WhatsApp web

Whatsapp web is the WhatsApp application version which can be used in

a web browser. It can be used in the Google Chrome Browser on our per-

sonal computers. Users can send and receive messages directly from the web

browser. To guarantee end-to-end encryption, the web-client establishes a

secure connection to the phone. The messages we send through WhatsApp

Web are encrypted by the WebClient, decrypted by our phone, then en-

crypted again to satisfy the E2EE scheme and then sent to the recipient.

In this way, the message can be read or created by both mobile and web

clients. This means there is no E2EE between the two web clients. The

mobile clients can read all the messages.

When opening WhatsApp Web for the �rst time, a Curve25519 key pair is

generated and stored in the local storage of the browser. Then, the initial
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setup is completed when the mobile client scans the QR code of the web

client: this establishes trust between phone and browser installation, it im-

plies that the user trusts the browser. After the secure connection between

the web and mobile client is established, it can be used for all the commu-

nication between the two users. Basically the Web client is just a GUI for

our phone client, securely connected over the web thanks to the QR code.

WhatsApp Web requires our phone to be online during the entire session,

otherwise end-to-end encryption would not be possible. The phone must

also be connected because all messages (sent and received) are saved only

in a database of our phone. However, to let WhatsApp web work without a

lot of pending time, the browser caches some of these messages to be more

responsive, so that if we change the active chat in the web application we

don't have to wait for the request to go to our phone and then reply back

with the information.

5.7 Transport security

The communication between WhatsApp clients and WhatsApp servers is

layered within a separate encrypted channel. This framework uses Noise

Pipes from the Noise Protocol Framework for long running interactive con-

nections: it is based on Di�e-Hellman key agreement. It provides some

additional features for the clients:

• extremely fast connection setup and resume;

• metadatas are encrypted, to keep them hidden from unauthorized

observers: no information about the connecting user's identity is re-

vealed;

• no client authentication secrets are stored on the server. The server

only stores the client's public authentication key from the Curve25519

key pair. If the server's user database is ever compromised, no private

authentication credentials will be revealed.

A Noise protocol begins with two parties exchanging handshake messages

(i.e., they share the master key, WhatsApp does this with the X3DH algo-

rithm). After the handshake, each party can use this shared key to send
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encrypted transport messages - this is the role of the Double ratchet algo-

rithm. The Noise framework supports handshakes where each party has a

long-term static key pair and/or an ephemeral key pair. A Noise handshake

is described by a simple language, consisting of tokens which are arranged

into message patterns : they specify the DH public keys and the DH opera-

tions. Then, message patterns are arranged into handshake patterns, which

specify the sequential exchange of messages that comprise a handshake.

A handshake pattern can be instantiated by DH functions, cipher functions,

and Hash functions to give a Noise protocol. In particular, WhatsApp uses

Curve25519, AES with Galois Counter Mode (GCM, a mode where data are

not only encrypted, but also get a tag: it is similar to an AEAD algorithm)

and SHA-256. More details on the Noise protocol can be found in [41].

5.7.1 The role of Metadata

When talking about privacy, there have been concerns related to user meta-

data. Metadata include informations about who we are communicating

with, day and hour of the message/call, the length of the call, the dimen-

sion of a message. They also memorize when we are online, when we use

the phone or when we are inside WhatsApp. WhatsApp server must know

these basic informations, otherwise it can't know who is the sender, who is

the recipient, and so on.

The metadata of the user are also encrypted when she is communicating

with other parties. WhatsApp legal terms allow the application to store in-

formations about metadata for delivered messages or calls. WhatsApp also

asks the user to share her entire contact list with the app. In this moment,

there is no option to not give informations about the contact list, or to add

just some selected users. The implementation of this feature in the future

will be useless, because WhatsApp already has the list of contacts of every

user, so, even if a new member starts using the app, there is a big proba-

bility that her number and most of her contacts are already monitored by

WhatsApp. So, they are encrypted during transit, but metadata are also

stored on WhatsApp's servers. This is su�cient to create a pro�le and draw

links between the communicating parties. These data are useful in certain

situations, for example if the state or the government needs informations
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about communications of a "dangerous user". However, if a hacker puts her

hands in these data, she could easily trace a pro�le of every user.

Metadata may also be used from Facebook, the parent company of What-

sApp: they can be used to trace the user behaviour, which is used to target

the user with some speci�c ads. In this context, group chats are prob-

lematic, because metadata contain informations about a small community

which probably share an interest.

As of 2019, metadata are necessary to handle E2EE, but optimal forward

and future secrecy properties have a price.

5.8 Backups

An user can decide to save her conversations on another application in or-

der to keep old chats and at the same time to save memory space in the

device. They can be saved everywhere, but one of the most obvious choices

is Google Drive, since it is free and easy to use. In this case, users should

have care, because WhatsApp explicitly tells to the user "media and mes-

sages you back up are not protected by WhatsApp end-to-end encryption

while in Google Drive". While this is obvious, because data are now placed

outside the application and so out of control, there are repercussions if the

Google account is hacked, as the attacker would have access to our message

contents.

It's also worth noting that E2EE guarantees the message we send can only

be read by the recipient or vice versa, but it has no control over what the

recipient does with our chat. If the recipient publishes our conversation on

Google drive and then her account is compromised, our conversation with

her is compromised too. The recipient could also do some screenshots of

the conversations and put them somewhere else. For this reason, we have to

trust people we are talking with, because message content is completely out

of sender control or E2EE control after it is cached into the phone recipient.
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Conclusion

We have reviewed in detail the WhatsApp end-to-end encryption protocol,

describing every cryptographic primitive used and how they are assembled

to ensure security. The Signal protocol is open source and for this reason it

was widely studied during the last years: it is safe to say that, as of 2019,

it assures security for direct messaging in an asynchronous envinronment.

WhatsApp code is not known, but its white paper speci�es the technical de-

tails for most of its features (the only exception is WhatsApp web). While

the direct messaging can be considered secure, we can't say the same for

group messages. Some care should be taken when administrating groups

to avoid potential in�ltrations, but the real lack is the absence of future

secrecy. Other features like live location are derived from Signal, but the

protocol is reworked to keep care of the information �ow. There are still no

technical papers on the last added features, so users should have care with

their use, even though the basic primitives used to implement them are all

well known and considered secure.

Talking about cryptographic primitives, if one of them is discovered weak,

the user should not worry: there are a lot of possible options, so if a day, for

example, the discrete logarithm problem will be solved e�ciently, elliptic

curves will be forgotten and some di�erent mathematical trick will be used

to exchange keys, e.g. RSA. We have mentioned SHA-1 when describing

the Secure Real-time Transport Protocol: this is a �rst example of out-

dated Hash function. Modern WhatsApp implementations should abandon

it to use a more moden Hash function like SHA3, which has also a di�erent

structure with respect to SHA1 or SHA2.

We can safely claim end-to-end encryption is doing its job, and security can
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only become better if people keep testing and �xing possible new bugs in

the code. The only concern is the role of metadata: they are necessary to

allow the transit of messages, but they are also dangerous if they go into

the wrong hands. New developments of the protocol should �x some rules

on their use, so that they are used only for transit and not for advertising.

In any case, members who are using WhatsApp every day to keep in touch

with other users can be quiet: no one is spying the content of our conver-

sations, and the biggest security fall for an user remains the user himself.
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