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Abstract

The development of autonomous and intelligent vehicles is increasing continuously
in the aim to reach a reliable and secured transportation system. Indeed, au-
tonomous navigation include three main steps: perception and localization, plan-
ning and control.
This thesis covers essentially the study of the vehicle modeling and the vehicle
control, focused on the coupled lateral and longitudinal control of the autonomous
racing vehicle. Three different control strategies are considered: First one based on
coupled control while the second one is decoupled control. In coupled controller,
adaptive model predictive control (MPC) is used which handles both lateral and
longitudinal control. In the decoupled control strategy, longitudinal dynamics is
controlled with the help of a PID and Lateral dynamics is controlled first with
MPC and second with Lateral controller.
The proposed strategy utilizes an adaptive MPC to perform lateral guidance and
speed regulation by acting on the front wheel steering angle and acceleration/de-
celeration to minimize the vehicle’s lateral deviation and relative yaw angle with
respect to the reference trajectory, while driving the vehicle within the limits of
adherence conditions.
While designing the Adaptive-MPC, the internal plant model for MPC is modeled
using a linear bicycle model, while dynamics of the vehicle is modeled using a 3 de-
gree of freedom dual-track rigid vehicle model considering the non-linear tire forces
derived from a Pacejka model taking into account the slip ratio.
The objective is to develop and analyse the three different control strategies and
evaluate their design and performance through path following, speed tracking, and
ease of implementation. The overall system has been developed using MATLAB®
and Simulink®.
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Chapter 1

Introduction

1.1 Thesis motivation

The traffic in the world and the number of cars is rapidly increasing. At present,
there are roughly a 1.2 billion cars in the world. Yet within twenty years, the num-
ber will double to 2 billion [1]. Every year the lives of approximately 1.35 million
people are cut short as a result of a road traffic crash. Between 20 and 50 million
more people suffer non-fatal injuries, with many incurring a disability as a result
of their injury [2]. Transport is responsible for nearly 30% of the EU’s total CO2
emissions, of which 72% comes from road transportation. As part of efforts to re-
duce CO2 emissions, the EU has set a goal of reducing emissions from transport
by 60% by 2050 compared to 1990 levels. This all has led to new challenges such
as passenger safety and comfort, fuel consumption optimization and the reduction
of pollutant emissions.
Autonomous cars can help to reduce these problems, as they can achieve better
traffic flow and to be more efficient, this gives a high potential to reduce fuel con-
sumption and emissions caused by traffic and reduce the risk of accidents among
other benefits. Autonomous control is an important new subfield in the automo-
tive sector as commercial autopilots and driver assistance systems become more
and more popular. While a large portion of autonomous vehicle research and de-
velopment is focused on handling routine driving situations, achieving the safety
benefits of autonomous vehicles also requires a focus on automated driving at the
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Introduction

limits of tire friction. The need for an automated vehicle to fully utilize its ca-
pability can arise when avoiding a collision with human-operated vehicles. This is
crucial from an automotive safety standpoint as human error accounts for over 90 of
automobile accidents [3], and there will likely be a significant period of time where
autonomous vehicles must interact with human-operated vehicles [4]. Furthermore,
successful handling at the friction limits will be required where environmental fac-
tors are involved, such as unpredicted natural obstructions and poor tire friction
caused by inclement weather (e.g. ice, rain). The potential for technology to assist
in friction-limited situations has already been demonstrated by electronic stability
control (ESC) systems, which reduced single-vehicle accidents by 36% in 2007 [5]
and are now standard on all passenger cars.
Autonomous racing is an emerging field within autonomous driving. In the last
years, a few self-racing vehicles have been developed, both in academic and in the in-
dustrial research. The first known autonomous vehicle competition was the DARPA
Grand Challenge, [6] which motivated the development of several autonomous cars
in a two-year period. These cars had to compete in a desert environment and drive
through a way-point corridor given shortly before the race. In this sense, it is like
FSD since a short period for mapping is allowed just before the race. They how-
ever differ in that the FSD track is asphalt, the vehicles are designed for racing
and reached over 90km/h and 10m/s2 accelerations. Other autonomous racecars
were developed afterwards [7], but their main goal was vehicle dynamic control. In
addition, several scaled racecars were developed [8] but they focus on control and
have an external localization system. Others were developed with on-board sensors
only [9] but the focus also lied on control.
Given the highly visible marketing opportunity provided by racing, several automo-
tive companies have made notable attempts at racing-inspired automated driving.
In 2008, BMW introduced the "Track Trainer", which records race data collected
from a professional driver. To "replay" the professional’s driving autonomously, the
vehicle tracks the pre-recorded speed and racing line with a proportional-derivative
controller for throttle and brake and a dynamic programming algorithm for steering
[10]. Using pre-recorded inputs allows the controller to naively account for non-
linear vehicle dynamics at the handling limits, although this approach limits the
exibility of the controller to respond to unpredicted events.
A second German luxury brand, Audi AG, also launched a collaborative research
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effort with Stanford University in 2008. The collaboration, with which this doc-
toral research is affiliated, resulted in the development of Shelley, an autonomous
Audi TTS. Doctoral work by Stanford students Theodosis [11] and Kritayakirana
[12] provided initial forays into racing line generation and trajectory-following al-
gorithms. Notable early accomplishments include autonomous driving at speeds of
190 mph at the Salt Flats in Utah and an autonomous drive up the Pikes Peak In-
ternational Hill Climb in 2009[13][14]. More recently, Audi has incorporated results
from the collaboration to build a demonstration vehicle for media events, Bobby, an
autonomous RS7 which debuted at Germany’s Hockenheimring [15]. The primary
focus for the RS7 vehicle was robustness, enabling the vehicle to be demonstrated
at a public event with journalists inside the vehicle at high speeds.
Finally, Autonomous car racing is a challenging task for automatic control systems
due to the need for handling the vehicle close to its stability limits and in highly
nonlinear operating regimes. In addition, dynamically changing racing situations
require advanced path planning mechanisms with obstacle avoidance executed in
real-time. Fast dynamics constrain the sampling time to be in the range of a few
tens of milliseconds at most, which severely limits the admissible computational
complexity of the algorithms.

1.2 Driving at the Handling Limits

Each of the four tires on an automobile contacts the road surface over a contact
patch, an area roughly the size of a human hand. As shown in Figure 1.1 these
contact patches generate the friction forces between the tire and road that are
necessary for both vehicle longitudinal acceleration (braking and acceleration) as
well as lateral acceleration (turning). Because the available friction between the
tire and road is limited, each of the four tires is limited in the turning, braking,
and accelerating forces they can produce. This relationship is given for each tire
by the commonly known "friction circle" equation:

√︂
F 2

x + F 2
y < µFz (1.1)
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Figure 1.1: Friction circle

where µ is the friction coefficient between the tire and the road, Fz is the normal
force acting on the tire, and Fy and Fx are the lateral and longitudinal forces,
respectively Figure 1.1. One key insight from Figure 1.1 is that the cornering and
braking ability of the car is heavily determined by the amount of friction. On a
dry, paved asphalt surface, values of µ are typically equal to 1.0. However, on wet
or rainy asphalt, µ can decrease to 0.7, and in snow or ice, the value of µ can be as
low as 0.2 [16]. Another insight from Figure 1.1 is the coupled relationship between
vehicle lateral and longitudinal forces. If the vehicle is braking (or accelerating)
heavily, the value of F 2

x will be large and there will be less friction force available
for turning.

1.2.1 Exceeding the Friction Limits: Understeer and Over-
steer

In normal driving situations, the forces required for turning, braking, and acceler-
ating will be much smaller than the available friction force. However, in rainy or
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icy conditions, accidents frequently occur when the driver enters a turn too fast or
when the driver attempts to turn too quickly while already applying the brakes. In
these situations, the tire forces at either the front or rear axle become saturated,
resulting in one of two distinct scenarios.

Figure 1.2: (a) Vehicle understeering at the limits of handling. (b) Vehicle
oversteering at the limits of handling

When the front tires forces become saturated, the vehicle will understeer, as illus-
trated in Figure 1.2. The steering actuator of a vehicle only has direct control of the
front tire forces. As a result, additional turning of the steering wheel will not gen-
erate additional lateral force or acceleration when the front axle is saturated. The
vehicle therefore becomes uncontrollable and has no ability to reduce the radius of
its turn.For the converse scenario where the rear tire forces become saturated, the
vehicle enters an oversteer condition, as illustrated in Figure 1.2.
In this situation, the vehicle loses stability and begins to spin. An oversteer situ-
ation tiers from an understeer because the front tire forces are not saturated, and
the steering actuator can therefore be used to fully control the vehicle. As a result,
it is possible to apply a countersteer maneuver to reverse the vehicle spin and gain
control of the vehicle without deviating from the desired path.
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1.3 State of the art

In recent years a lot of researches have been focused on autonomous racing and,
for this reason, an overview of the existing projects has been done at the beginning
of this work. In particular, the state of the art regarding the development of the
vehicle control for autonomous racing has been analysed.
The design of MPC-based controllers for racing applications have been described
on a 1:43 RC cars platform [17]. The work focuses on providing two approaches
for the design of real-time optimal racing controllers: a 1-layer MPC and a 2-layers
MPC formulation. The setup consists in a controller-equipped car placed in a de-
fined racing track, both previous formulations being implemented and compared
in two scenarios: with and without obstacles on the track. The 2-layers approach
combines a path planner relying on a car model derived with simplifying assump-
tions providing both optimal path and associated car velocity, and a path tracker
steering the car towards the previously generated path. Both tasks use a MPC
formulation: the path planner optimizes the progress along the centerline and the
path tracker minimizes the deviation of the car from the optimal path. The 1-layer
approach defines a contouring error whose minimization results in maximizing the
progress along the centerline. The conclusion of this study suggests that both ap-
proaches have pros and cons. The 2-layers approach being sensitive to unfeasible
path generation because of the path planner relying on a simplified car model, and
the 1-layer approach tendency to track the centerline are amongst the known issues.
A different design is suggested in [18], taking advantage of a reformulation of the
whole racing problem to set the racing time as the objective function. The results
suggest that this method allows for both an optimal racing behaviour and the tun-
ing of holistic driving strategy variables such as the aggressivity of the driver. Other
nonlinear optimal formulations are described in [19]. The goal is to design a side
wind rejection feature using a MPC controller relying on an advanced car model in-
tegrating tyre modelling to control the car even in a low adherence scenario (drift).
Conclusions indicate that the real-time implementation of such complex formula-
tions is however hard to achieve.
A solution to that issue is suggested in [20]. A simple dynamic model using a second
order integrator dynamics is designed and scaled to specific actual vehicles using a
sequence of experiments to derive the set of model parameters by curve fitting. The
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authors indicate that this model can be used for near-limits path planning applica-
tions and the conclusions of the study suggest that the accuracy provided by this
approach would be sufficient. Another approach is taken in [21], where kinematic
and dynamic bicycle models are compared taking into account the discretization
phenomena. Results suggest that a controller using the discrete kinematic (simpler)
model would perform similarly to its counterpart using a dynamic model, at the
condition of using a lower sampling rate.
The topic of vehicle stabilization around a path is addressed in [22], model lin-
earization is used to achieve the same goal as the previous study in a lane-change
scenario. Physical limits of the car are taken into account to provide a stable con-
trol. Near-limits dynamic control offer serious challenges because of the complex
dynamics of a car tyre in case of adherence loss. Classic control methods are used to
tackle this issue in [23]. Combining lateral (path tracking) and longitudinal (speed
profile generation) controllers, both taking advantage of feedback and feed-forward
schemes, real-time asymptotically stable controllers are designed. Conclusions sug-
gest that it is possible to drive a car at its friction limits using this controller.
Offline methods are suggested in [24] for the path tracking task. A Linear Quadratic
Regulation (LQR) controller is derived and implemented to minimize the path
tracking error in a lane-change situation. A comparison is made between this
methods and other classic designs. The results suggest that a fine tuning of such
controllers can provide satisfactory results for different applications such as slow
driving or highway driving.
Instead, in [20], a computationally light way of sampling feasible acceleration re-
gions for the car. Starting from a known state, the future car positions can be
computed through numerical integration. The first step is to compute a set of fea-
sible longitudinal, lateral and angular accelerations for various initial states of the
vehicles in an off-line fashion. This region is then approximated to a linear convex
one. The Figure shows the result of such computation. One of the perks of this
approach is not to be limited to stationary trajectories. Finally, an original bicycle
kinematic model is derived using a road-aligned approach [25]. The obtained linear
system is then used to derive an obstacle avoidance car controller.
In this thesis, a coupled lateral and longitudinal controller for autonomous racing
based on an adaptive MPC is proposed. The proposed control strategy maximizes
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the longitudinal speed while remaining in constrained speed range and without ex-
ceeding the adherence condition. At the same time, it eliminates the path error
between the actual location and the desired path in terms of lateral deviation and
desired yaw angle, assuring the handling stability during the motion. The com-
mand signals generated by MPC and provided to the vehicle are the front wheel
steering angle and actuation of throttle/brake pedals.

Figure 1.3: Global architecture of control strategy for autonomous driving
presented in this thesis

The overall autonomous racing system has been implemented with MATLAB and
Simulink1. The technique exploits a simulated stereo camera that utilizes the syn-
thetic data coming from the simulated driving scenario for lane detection, as shown
in Figure 1.3. In the real implementation, this information is obtained from a
lane detection algorithm based on the real-time streaming of a stereo-camera data.
Since, in our case the simulations are conducted in MATLAB/Simulink, the lane
boundaries information is extracted from simulated racing scenarios. Dynamics of
the vehicle is modeled using a 3 degree of freedom rigid vehicle model.

1https://it.mathworks.com/
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1.4 Thesis outline

The thesis is organized as follows:

• Chapter 2 : It presents the vehicle modeling used for the validation and control
synthesis. In particular, a 3 degree of freedom rigid vehicle model, tire model,
driveline dynamics and a linearized vehicle model for MPC control design are
discussed in detail.

• Chapter 3 : First, Preception, Refernce trajectory and spped profile genera-
tion presented. Later MPC control design explined in detail and discussed
about other two controler.

• Chapter 4 : Three different controllers are presented to evaluate the perfor-
mance by means of simulations. The results are presented and discussed.

• Chapter 5 : In the final chapter conclusions and future works are reported.

9



Chapter 2

Modelling

There are different types vehicle models, each meant for a specific purpose. The
system elements or components of the vehicle model governs its behaviour. For
example, a quarter model (one or two degrees of freedom (DOF) vertical model),
for studies towards vertical dynamics, like active suspension as in[26] or 14DOF
model that is suitable for Roll dynamics study [27]. There are other detailed vehicle
models with 38 DOF [28] or multibody models available within commercial software
packages with more than 100 DOF. The degree of detail required on the model is
determined by the application. Before looking into different types of vehicle models
it is important to know the various system elements that compose a complete vehicle
model. They are: 1. Vehicle body 2. Wheel and Tires 3. Powertrain 4. Suspension
5. Steering 6. Brakes 7. Vehicle control

As discussed previously, vehicle models serve a certain purpose based on which
they are classified as follows:

• Vertical dynamics model

• Longitudinal and lateral dynamics model

• Full dynamics model

For this thesis, we are considering the Longitudinal and lateral dynamics model.
in which, the motion of the vehicle is investigated in the yaw plane mainly describing
the longitudinal and lateral vehicle motion. In the description of the vehicle motion,
different longitudinal and lateral dynamic couplings must be considered:
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• Dynamic and kinematic couplings are due to the motion in the yaw plane
caused by wheels steering.

• The interaction between tyre and road is at the origin of another important
coupling. In fact, the maximal available tyre-road friction is distributed be-
tween lateral and longitudinal tyre forces. This distribution is governed by
the well known friction ellipse [29].

• The longitudinal and lateral accelerations cause a load transfer between the
front and rear axles as well as the right and left wheels. These load transfers
affect the vertical dynamics as well as the lateral and longitudinal ones due
to the modification in the normal tyre forces.

Model-based control is highly affected by the quality of the models provided. On
the one hand, accurate models are typically computationally expensive and provide
accurate predictions. On the other hand, simple models are less computationally
demanding, but provide less accurate predictions. Since the MPC will be evaluated
through simulations, a validation model is needed. The validation model needs to
well describe the behaviour of a real vehicle. So, for this thesis, dynamics of the
vehicle is modeled using the 3 degree of freedom rigid vehicle model (dual Track),
which is imported from Vehicle dynamics Blockset in Simulink®. The derivation
of the kinematic and the dynamic vehicle model is described in Section 2.1.1 and
2.1.2. For this thesis we used a linearized dynamic model of the vehicle, derived in
Section 2.3, as the prediction model.

2.1 Vehicle model for validation and simulation

In this section, both kinematic and dynamic models of the vehicle are presented
with their assumptions and constraints.

2.1.1 Kinematic model

The simplest approach to the vehicle motion is to consider a vehicle moving on
a horizontal plane with 3 Degree of Freedom (DOF), the two displacements on
the plane (longitudinal and lateral) and the rotation around an axis normal to that
plane (yaw rotation). By controlling these 3 DOF over time, the vehicle’s trajectory
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will be known, so the path described by the vehicle can be studied. If additional
simplifications are made, considering that the vehicle travels at constant speed and
the trajectory radius when turning is much larger than the vehicle’s track width,
this model can be represented by a two-wheeled vehicle model, usually known as
Single-track. Bicycle model The model’s equations are derived from[32].
As shown in Figure 2.1, the following kinematic model of the vehicle has been
considered [30].

Figure 2.1: Vehicle kinematic model

The image presents a bicycle model in which the two front wheels and the two rear
wheels are represented by one single central tires at points A and B, respectively.
The steering angle for the front wheel is indicated with δf , while δr refers to the
steering angles for the rear wheel. In this work, the vehicle model is assumed as a
front-wheel-only steering, therefore the rear steering angle δr is set to zero.
The point C in the figure represents the center of gravity (c.g.) of the vehicle.
The distances from this point to the points A and B are indicated with lf and lr

respectively. The sum of these two terms corresponds to the wheelbase L of the
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vehicle:

L = lf + lr (2.1)

Since the vehicle is assumed to have planar motion, three coordinates are necessary
to describe the vehicle motion: X, Y and Ψ . (X, Y) represent the inertial coordi-
nates of the location of the center of gravity of the vehicle, while Ψ indicates the
orientation of the vehicle an it is called yaw angle. The vector V in the model refers
to the velocity at the c.g. of the vehicle. This vector makes an angle β, called slip
angle, with the longitudinal axis of the vehicle.
The point O refers to the instantaneous center of rotation of the vehicle and it is
defined by the intersection of lines AO and BO. These two lines are drawn perpen-
dicular to the orientation of the two wheels. The length of the line OC corresponds
to the radius of the vehicle trajectory R, and it is perpendicular to the velocity
vector V.
Applying the sine rule to triangles OCA and OCB, remembering that δr is equal
to zero, it is possible to define the following equations:

sin(δf − β)
lf

=
sin(π

2 − δf )
R

(2.2)

sin(β)
lr

= 1
R

(2.3)

After some manipulation and multiplying by lf
cos(δf ) , equation 2.2 becomes:

tan(δf ) cos(β) − sin(β) = lf
R

(2.4)

Likewise, multiplying by lr, equation 2.3 can be re-written as:

sin(β) = lr
R

(2.5)
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Adding equations 2.4 and 2.5, the following relation has been obtained:

tan(δf ) cos(β) = lf + lr
R

(2.6)

This formula allows to write the radius R of the vehicle trajectory as a function of
the front steering angle δf , the slip angle β, and lf .
If the value of radius R changes slowly due to low velocity, the yaw rate Ψ̇ of the
vehicle can be assumed equal to the angular velocity ω that is defined as:

ω = V

R
(2.7)

Therefore, the yaw rate Ψ̇ can be described as follows:

Ψ̇ = V

R
(2.8)

Using formula 2.6, the equation 2.8 can be re-written as:

Ψ̇ = V cos(β)
lf + lr

tan(δf ) (2.9)

After all these assumptions, the overall equations of the kinematic model can be
defined as:

Ẋ = V cos(Ψ + β) (2.10)

Ẏ = V sin(Ψ + β) (2.11)

Ψ̇ = V cos(β)
lf + lr

tan(δf ) (2.12)

14



Modelling

2.1.2 Dynamic model

A kinematic model offers satisfactory results when the vehicle speed and steering
angle are low enough, but it becomes inadapted when the vehicle is brought to
its limit of adherence and tires start to lose grip on the road (this is referred as
drifting). To simulate a realistic vehicle behaviour, it is necessary to integrate
these complex dynamics in our simulation model. Moreover, a simplified version of
these dynamics can be integrated to the prediction model to allow the controller to
predict when the tires are about to lose grip..
In this thesis, dynamics of the vehicle is modeled using the 3 degree of freedom rigid
vehicle model (dual Track), which is imported from Vehicle dynamics Blockset
in Simulink [31]. This model accounts for the two displacements on the plane
(longitudinal, depicted by subscript x and lateral depicted by subscript y) and the
rotation around an axis normal to the plane (yaw motion). It implements a rigid
two axle vehicle body model. So, As our test vehicle is only steerable from the front
wheels, the test vehicle is modeled to be only steerable from the front wheel.
Let x and y respectively be the longitudinal and lateral directions in the vehicle
frame, X and Y the longitudinal and lateral directions in the absolute frame, phi

the yaw angle in the x, y frame and the heading angle in the X, Y frame.

Figure 2.2: Model Coordinate Systems

The nomenclature refers to the model depicted in Figure 2.3. denote by Fl, Fc

the longitudinal (or “tractive”) and lateral (or “cornering”) tire forces, respectively,
Fx, Fy the longitudinal and lateral forces acting on the vehicle center of gravity,
Fz the normal tire load, X, Y the absolute car position in inertial coordinates, lf ,
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lr (distance of front and rear wheels from center of gravity), g the gravitational
constant, m the car mass, Izz the car inertia, α the slip angle, δ the wheel steering
angle and Ψ the heading angle. The lower scripts f and r particularize a variable
at the front wheels and the rear wheels, respectively, e.g. Flf is the front wheel
longitudinal force. we will use two subscript symbols to denote variables related
to the four wheels.In particular the first subscript denotes the front and rear axles,
the second denotes the left and right sides of the vehicle. As example, the variable
(.)f, l is referred to the front left wheel.

Newton Euler equations (2.13), (2.14) denote the longitudinal and lateral mo-
mentum with respect to CG in the vehicle reference frame while yaw dynamics
are considered by (2.15). the following dynamic model of the vehicle has been
considered [33][34].

Figure 2.3: 3 DoF rigid vehicle model

mVẋ = mVyΨ̇ + Fxf,l + Fxf,r + Fxr,l + Fxr,r + Fx,ert (2.13)
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mVẏ = −mVxΨ̇ + Fyf,l + Fyf,r + Fyr,l + Fyr,r + Fy,ext (2.14)

IzzΨ̈ = a(Fyf,l + Fyf,r) − b(Fyr,l + Fyr,r) + c(−Fxf,l + Fxf,r − Fxr,l + Fxr,r) + Mz,ext

(2.15)

The vehicle’s equations of motion in an absolute inertial frame are

Ẋ = ẋ cos Ψ − ẏ sin Ψ (2.16)

Ẏ = ẋ sin Ψ + ẏ cos Ψ (2.17)

The longitudinal and lateral forces generated by the four tyres lead to the following
components along the lateral and longitudinal vehicle axes:.

Fx = Fl cos δ − Fc sin δ (2.18)

Fy = Fl sin δ + Fc cos δ (2.19)

For the sake of simplicity, the steering angles of the left and right front wheels
are supposed to be equal. Assuming front wheels drive, the dynamic of the wheels
involving front and rear axle can be described as below:

Jw,f ẇf = Tw − Tb − rw Fl,f (2.20)

Jw,rẇr = −Tb − rw Fl,r (2.21)

where Jw is moment of inertia of the wheels,ẇis the angular acceleration of the
wheel, Tw is the wheel torque and Tb is brake torque. The subscript r and f denote
the rear and front wheel respectively.
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2.2 Tire models

Several years an impressive amount of research has been done regarding tire behav-
ior and modeling, ending up with several different types of tire models with different
characteristics[35]. An extended classification of tire models is based on the differ-

Figure 2.4: Classification of tire models

ent approaches used to develop the models, which can go from a completely empiric
view, mainly fitting full scale tire test data by regression techniques, to fully the-
oretical tire models, usually based on its structural behavior study through finite
element simulations. Between these two extremes, a bunch of models combining
theoretical solutions with empirical measurements in different levels have been de-
veloped. Typically, empirical models are over parameterized and as a consequence
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it is hard to use them in domains where there are no measurements available, e.g.
when using in combined slip situation a tire model fitted with pure lateral and
longitudinal measurement data. On the other hand, these models are often very
compact,usually some analytical equations, and computationally fast, which can
be a great advantage for real-time simulation. Theoretical models describe the tire
behavior in great detail, usually including most of the steady-state and transient
phenomenon affecting the tire response, but this level of detail means that sim-
ulating these models is a computational heavy task. Full theoretical models are
often used to develop new tires but they have no practical application for complete
vehicle simulation.
Finally, one can identify the middle ground in the so-called Semi-empirical tire
models, which include tire models specially developed to represent the tire as a
component of a vehicle in a simulation environment. These models are based on
measured data but also may contain structures and strategies used in theoretical
models, presenting a good balance between accuracy and computation speed [35].

Figure 2.5: Illustration of the tire model

The tire forces have highly nonlinear behavior when slip ratio or slip angle is large.
Thus it is of extreme importance to have a realistic nonlinear tire force model for
the vehicle dynamics when operating the vehicle in the tire nonlinear region e.g.
during racing. In such situations, large slip ratio and slip angle can happen simul-
taneously and the longitudinal and lateral dynamics of the vehicle is highly coupled
and nonlinear due to the nature of the tire forces. Similar situation can occur even
with small inputs when the surface friction coefficient µ is small.
Tires are one of the most important components of vehicles, since they are the
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only component keeping the vehicle in contact with the ground. The primary force
generated between the tire and the road interface push the vehicle forward during
acceleration(traction force) and reduces the speed of the vehicle during braking
(braking effort). This force is known as the longitudinal force. Except for aero-
dynamic, gravity and rolling resistance forces, all of the other forces which affect
vehicle handling are produced by the tires as depicted in Figure 2.5
Before introducing sophisticated tire model, firstly some terms related to tire model
have been defined in following. The front and rear tire speeds along x-axis and y-
axis are calculated as below

vx,i = vi cosαi (2.22)

vy,i = vi sinαi (2.23)

where vf and vr are the front and rear tire speed, αf and αr are the front and rear
tire slip angle. The correlation between tire speeds and host vehicle speed is given
below

vx,f = vh,x (2.24)

vx,r = vh,x (2.25)

vy,f = vh,y + lf Ψ̇ (2.26)

vy,r = vh,y − lrΨ̇ (2.27)

The slip angle represents the angle between the wheel velocity and the direction of
the wheel itself [6]. Then tire side-slip angles are computed as

αf = δf − vy,f

vx,f

(2.28)
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αr = δr − vy,r

vx,r

(2.29)

The tire forces depend on the tire side-slip values and on the friction charac-
teristics between the road and the tires. The longitudinal wheel-slip ratio, which
refers to the difference in angular speed between a purely rolling wheel and a wheel
that also slides, is defined for each tire as

σi = r wi − vx,i

vx,i

r wi < vx,i Braking (2.30)

σi = r wi − vx,i

r wi

r wi > vx,i driving (2.31)

where wf and wr are the angular velocities of front and rear tires, r is the radius
of wheels and i = f, r.

The maximum function in the denominator of the above equation allows its use
for both acceleration and braking models. A slip ratio equal to zero means that the
forward velocity and tire rolling speed are equal, which implies an absence of either
engine or brake torque. A positive slip ratio implies that the tire has a positive finite
rolling velocity, and the vehicle posses a greater finite forward velocity. A negative
slip ratio implies that the vehicle has a finite forward velocity and the tire has a
greater equivalent positive rolling velocity. At each extreme, i.e. +1 and - 1, the
wheel is either "locked" at zero speed, or "spinning" with the vehicle at zero speed.
When both tire and vehicle velocity are equal to zero, the slip is mathematically
undefined, and is taken to be zero for simulation purposes. Experimental studies
have produced several clearly defined friction/slip characteristics between the tire
and road surface for a variety of different driving surfaces and conditions[36]

2.2.1 Pacejka tire model

It is a complex nonlinear semi-empirical model being able to describe the nonlinear
and coupled behavior of tire forces under wide operation range. Pacejka model
describes the tire forces as functions of the tire normal force, slip ratio, slip angle
and surface friction coefficient [37].
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It is critical to have a realistic tire model to take the slip phenomenon into account,
without that it would not be possible to drive the car at its limits of handling and
race efficiently. It is valuable to calculate the lateral and the longitudinal forces
acting as a function respectively of the lateral slip angle α and slip ratio,

2.2.2 Logitudinal Tire Forces

In this model the longitudinal forces are assumed to depend on the normal force,
surface friction, and longitudinal slip ratio as shown below

Fx,i = Fx(σi, µ, Fz,i) (2.32)

Pacejka tire model is utilized to calculate longitudinal force based on the percent
longitudinal slip.The Pacejka model which was applied to calculates the friction
coefficient as a function of logitudinal slip ratio:

µ(σ) = D sin(C tan−1(Bσ − E(Bσ − tan−1(Bσ)))) (2.33)

The value of B, C, D and E for different road types are shown in Table 2. The
model defines in excess of 40 constants that are determined from the given set
of experimental data, and the overall model coefficients B, C, D and E are then
calculated from a combination of these constants. Having the friction coefficient

Figure 2.6: Coeffients of the Pacejka model for different road condition

µ(σ) and the normal force Fz exerting on the wheel, the longitudinal traction force
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Fx is then calculated as follows:

Fx = µ(σ) Fz (2.34)

2.2.3 Lateral Tire Forces

Highly nonlinear behavior of tire forces cause the large variation in vehicle handling
properties throughout the longitudinal and lateral maneuvering range. In some
literature, Lateral tire forces which are crucial for maneuvering capability of the
vehicle are assumed to depend on the normal force, surface friction, and slip angle.

Fy,i = Fy(αi, µ, Fz,i) (2.35)

This is due to the experimental data obtained from the vehicle tires as shown in 2.7.
It can be seen that at low slip angles (which is found to be 5 deg or less by [39] and
[40]), the lateral forces Fy vary proportionally to the slip angle α. The transitional
region is the region where maximum tire forces exist (usually 4 deg 6 deg). Typical
Anti-Lock Braking Systems (ABS) try to keep slip angle with-in this maximum
force region to obtain maximum possible braking force. In the frictional region,
the tire starts skidding and it can not provide as much lateral force. Cornering
Stiffness Cf is defined as the ratio between Fy and α. Subscript f and r denote
front and rear tire respectively. SAE defines cornering stiffness as modulus of the
slope which means it can never be negative [41]. Cornering stiffness depends upon
the manufacturing features of the tire e.g., radius, width, tread, inflation pressure
etc. In this research, this linear model of tire lateral dynamics will be used since it
is very simple (hence suitable for online application) as compared to complex tire
models and at the same time sufficiently accurate. Slip angle commutes in linear
region as shown in Figure 2.7, lateral tire forces are linear functions of slip angles,
cornering stiffnesses of the tire [42]:

Fy,i = 2Cy,iαi (2.36)

where Cy,i are the cornering stiffness. The factor 2 in Equation accounts for the
fact that there are 2 tires per axle in the bicycle model adopted. The cornering
stiffness are defined for the front and rear tires based on the static distribution of
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weight between the front and rear axles as [43].

Cy,i = Cs
Fz,i,static

2 (2.37)

where Cs is the cornering stiffness coefficient

Figure 2.7: Lateral tire force regions

As shown in Figure 2.8, the front wheel slip angle αf can be defined as the differ-
ence between the steering angle δ of the front wheel and the orientation angle of
the tire velocity vector θV f with respect to the longitudinal axis of the vehicle.

αf = δ − θV f (2.38)

In a similar way, the rear wheel slip angle is defined as:

αr = −θV r (2.39)

Therefore, the lateral tire forces for the front and rear wheels of the vehicle is
obtained as:

Fyf = 2Cαf (δ − θV f ) (2.40)

Fyr = 2Cαr(−θV r) (2.41)
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Figure 2.8: Tire slip angle

where Cαf and Cαr are proportional constants. These constants are called cornering
stiffness of front and rear wheel respectively. The factor 2 in the equations refers
to the fact that there are two wheels for each axle.
In order to calculate the velocity angle of the front wheel θV f and the rear wheel
θV r, the following formulas have been used:

tan(θV f ) = Vy + lf Ψ̇

Vx

(2.42)

tan(θV r) = Vy − lrΨ̇

Vx

(2.43)

Assuming small angle approximations, the equations 2.42 and 2.43 can be re-written
as:

θV f = Vy + lf Ψ̇

Vx

(2.44)

θV r = Vy − lrΨ̇

Vx

(2.45)
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Substituting above set of Equations in 2.46 and 2.47 gives us the final relation-
ship of tire longitudinal forces:

Fyf = 2Cαf (δ − Vy + lf Ψ̇

Vx

) (2.46)

Fyr = 2Cαr(−
Vy − lrΨ̇

Vx

) (2.47)

The longitudinal and lateral tire force Fx,i , Fy,i are limited physically by the
adhesion limit between tire and road [32].Because the contact patch can induce a
maximum force, if a certain force is applied in longitudinal direction the maximum
possible force in lateral direction is reduced. Therefore, the tire forces always
lie inside the following ellipse. Therefore, during combined slip conditions the
maximum transferred force is given by

√︂
F 2

x + F 2
y < µFz (2.48)

2.3 Vehicle model for MPC

In this thesis work, the goal is to implement a combined lateral and longitudinal
control system based on MPC for autonomous racing. For this purpose, a 2 de-
gree of freedom vehicle model is used to define the lateral dynamics of the vehicle
for controller internal plant model in terms of error with respect to the reference
trajectory. The two errors are lateral displacement error e1 , which is defined as
the lateral distance between center of gravity of vehicle and the center line of the
reference trajectory. Yaw angle error e2 is defined as the difference between the yaw
angle of the vehicle and desired yaw angle as dictated by the reference trajectory,
as represented in Figure 2.9. The rate of change of lateral displacement error and
yaw angle error are given by the equations.

e1̇ = Vxe2 + Vy (2.49)

e2 = Ψ − Ψdes (2.50)
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Figure 2.9: Bicycle model in terms of lateral deviation and relative yaw angle
with respect to the center line of the lane

The desired yaw angle rate is given by:

Ψ̇des = Vxκ (2.51)

Where, κ denotes the the road curvature.

The state-space model for lateral dynamics can be obtained by linearizing the
bicycle model described in section 2.1.2. ẋ = Ax + Bu is represented as:

⎡⎢⎢⎢⎢⎢⎢⎣
ẏ

ÿ

Ψ̇

Ψ̈

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
0 −2Cαf +2Cαr

mVx
0 −Vx − 2Cαf Lf −2CαrLr

mVx

0 0 0 1
0 −2Lf Cαf −2LrCαr

IzVx
0 −2Lf

2Cαf +2Lr
2Cαr

IzVx

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y

ẏ

Ψ

Ψ̇

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0

2Cαf

m

0
2Lf Cαf

Iz

⎤⎥⎥⎥⎥⎥⎥⎦ δ (2.52)

For the longitudinal dynamics, the plant model used for control design is the transfer
function between desired acceleration and actual vehicle speed and is given by[32]:

P (s) = 1
s(τs + 1) (2.53)

Where, τ is the time constant. Due to the finite bandwidth associated with the
lower controller, the vehicle is expected to track its desired acceleration imperfectly.
Thus there is a first order lag in the lower level controller performance and hence the
use for the upper controller which incorporates a lag in tracking desired acceleration.
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The lag in the performance of the lower controller comes from several sources,
accumulating brake or engine actuation lags and sensor signal processing lags.

• The pure time delay in the engine response (60 milliseconds at 2000rpm),

• The bandwidth of the lower level multiple-sliding-surface controller that tracks
acceleration

• The bandwidth of low pass filters used for other sensors such as engine man-
ifold pressure sensor, wheel speed sensor, etc

• The bandwidth of the throttle actuator

• The lag due to discrete sampling at 50 Hz (20 ms sampling)

• The 200 ms lag due to the radar filter

• When braking, the brake actuator lag instead of engine time delay.

overall time constant of the lower level controller could be as much as 500 millisec-
onds.

A traditional MPC controller includes a nominal operating point at which the
plant model applies, such as the condition at which you linearize a nonlinear model
to obtain the LTI approximation. If the plant is strongly nonlinear or its character-
istics vary dramatically with time, LTI prediction accuracy might degrade so much
that MPC performance becomes unacceptable. Adaptive MPC can address this
degradation by adapting the prediction model for changing operating conditions.
As described in the Model Predictive Control Toolbox™, adaptive MPC uses a
fixed model structure, but allows the models parameters to evolve with time. Ide-
ally, whenever the controller requires a prediction (at the beginning of each control
interval) it uses a model appropriate for the current conditions. So, in an adaptive
MPC, the plant model is updated at each time step as the operating point keeps
changing. i.e. Vehicle longitudinal speed. The plant model used as the basis for
adaptive MPC is an LTI discrete-time, state-space model with a sampling time Ts

= 100 ms. The combined state space model for lateral and longitudinal dynamics
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which is used as the internal plant model for MPC is represented below:

x(k + 1) = Ax(k) + Buu(k) + Bdv(k)

z(k) = Cx(k)
(2.54)

Where:

• k is time index (current control interval).

• x are plant model states.

• u are manipulated inputs. These are the one or more inputs that are adjusted
by the MPC controller.

• v are measured disturbance inputs.

• A is the state matrix.

• Bu and Bd are the input matrices corresponding to inputs u and v respectively

• C is the output matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vẍ

Vẋ

Vẏ
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(2.55)

The inputs for the plant are separated to indicate that u correspond the fornt
wheel steering angle and acceleration/deceleration command of the vehicle (con-
trolled output of MPC), while v indicates the longitudinal velocity multiplied by
the curvature κ (it is the disturbance). The inputs to the MPC y corresponds to
the lateral deviation e1 , relative yaw angle e2 and velocity of the vehicle Vx. In
the state vector, Vy denotes the lateral velocity, Vx denotes the longitudinal veloc-
ity and ϕ denotes the yaw angle. The vehicle model refers to a high-performance
autonomous car characterized by the parameters listed below.
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• m = 275 kg, the total vehicle mass;

• Iz = 104.8 Nms2, the yaw moment of inertia of the vehicle;

• lf = 0.824 m, the longitudinal distance from the center of gravity to the front
wheels;

• lr = 0.702 m, the longitudinal distance from the center of gravity to the rear
wheels;

• Cαf = 44222 N/rad, the cornering stiffness of the front tires;

• Cαr = 44222 N/rad, the cornering stiffness of the rear tires.

• A = 1.2 m2, Frontal area.

• Cx = 1.03, Drag coefficient.

2.4 Driveline dynamics

Generally, a lower level controller is implemented to calculate the throttle input,
to track the desired acceleration determined by the MPC, which uses a simplified
model of longitudinal vehicle dynamics. This simplified model is typically based on
the assumptions that the torque converter in the vehicle is locked and that there is
zero-slip between the tires and the road.
For this thesis, based on the same assumptions of a simplified longitudinal dynamics
model, a first order dynamics with a time constant of τ = 0.5s, for the driveline is
used. Which provides the required engine torque to track the desired acceleration.
So, the engine torque required to track the desired acceleration is first calculated.
This calculation is described in this section. Once the required engine torque has
been obtained, engine maps and nonlinear control techniques are used to calculate
to the throttle input command that will provide the required torque. The part for
throttle input calculation has not been discussed in this thesis, and the reader can
refer to [32] for more information on this topic.

30



Modelling

Figure 2.10: Driveline dynamics architecture

The required engine torque is given by:

Tengine = rw(max + 0.5ρACxVx
2) (2.56)

The wheel torque for a given gear ratio i is given by:

Twheel = Tengine.i (2.57)

The front and Rear wheel angualr velocity is calacualted:

Jw,f ẇf = Tw − Tb − rw Fl,f (2.58)

Jw,rẇr = −Tb − rw Fl,r (2.59)

Wheel slip calcuated based on Braking/Driving:

σi = r wi − vx,i

vx,i

r wi < vx,i Braking (2.60)

σi = r wi − vx,i

r wi

r wi > vx,i driving (2.61)

Friction coefficient as a function of logitudinal slip ratio is given by:

µ(σ) = D sin(C tan−1(Bσ − E(Bσ − tan−1(Bσ)))) (2.62)
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Finally, the longitudinal force developed in the tires based on percent longitudinal
slip is given by:

Fx = µ(σ) Fz (2.63)

This force is given as an input to the vehicle dynamics model to accelerate and
reach the reference longitudinal speed Vref , as depicted in Figure 2.10. The actual
lower dynmaics of model as shown below

Figure 2.11: Lower dynamics architecture
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Control design

The aim of the controller is to safely achieve autonomous racing. The control
strategy proposed here is considered in the global guidance architecture depicted in
Figure 1.3. The architecture can be decomposed into three levels called Perception,
Reference generation and Control:

• The Perception of the vehicle environment is of the utmost importance in
the guidance architecture as it defines the environment in which the vehicle
evolves. Its role is to provide the Reference generation with the necessary
information.

• The Reference Generation provides reference signals. It allows the calculation
of the geometric trajectory which defines the path to be followed as well as
the reference speed profile. These two different reference signals calculated at
this level are used by Control.

• The Control ensures the automated vehicle guidance along the generated tra-
jectories providing the appropriate control signals, here the acceleration, the
deceleration and the steering angle of the front wheel. Simultaneous longitu-
dinal and lateral control is necessary to guarantee efficient vehicle guidance.

The architecture shown in Figure 3.1 highlights the interaction between the different
blocks and present a combined controller for autonomous racing. Indeed, the lat-
eral control is designed following a path tracking approach which helps to decouple
the speed tracking and the vehicle positioning problems. However, the coupling of
the longitudinal and lateral dynamics is handled by the MPC using the constraints
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defined later in this section. The prediction model used here has two control in-
puts, i.e. the steering angle of the front wheel and the acceleration/deceleration.
The steering angle is the variable of interest for lateral control and constitutes the
optimization vector in the MPC problem. While, the applied acceleration/deceler-
ation is used to track the reference velocity provide by the speed profile generator.
Which is then used to calculate the required torque for the desired acceleration. In
this way, MPC based lateral and longitudinal controller ensure the coupled path
and speed tracking. Note that no active lateral stabilisation aspect is considered
in the control design. In extreme lateral manoeuvres, vehicle stability may then be
lost, e.g. when large steering manoeuvres are performed at high speed. In order to
preserve vehicle lateral stability during guidance, the longitudinal reference speed
should be adapted. To do so, a reference speed profile generator has been adopted,
described in section 3.3.

Figure 3.1: Detailed architecture of the control strategy

As mention in section 1.1, the overall system has been implemented in MATLAB
and Simulink.
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3.1 Lane detection

According to the the block scheme in Figure 3.1, in this section the stereo camera
and lane detection block has been presented. In this work, the stereo camera is im-
plemented in Simulink using the Vision Detection Generator block from Automated
Driving Toolbox. Which generate vision detections from simulated scenarios at the
intervals of 100ms. Therefore, simulated driving scenarios are used to simulate the
environment and generate the synthetic data required for the control algorithm of
the vision detection. In particular the detection of road lanes has been performed
following a visual perception example included in the MATLAB documentation
[44].
The vehicle position, velocities, yaw angle and yaw rate is feed to the sensor reader.
A Scenario Reader block reads the actors and roads from the specified Driving
Scenario Designerr file. The block outputs to Vision Detection Generator sensor
blocks.

Figure 3.2: Sensor Simulation

Vision Detection Generator sensor blocks consist of a monocular camera sensor.
Camera configuration information includes the intrinsic (Focal length and optical
center of the camera)and extrinsic parameters (Orientation (pitch, yaw, and roll)
and the camera location within the vehicle to define the camera orientation with
respect to the vehicle’s chassis) in the Vision Detection Generator block. The cam-
era is mounted on top of the vehicle at a height of 1.5 meters above the ground and
a pitch of 1 degree toward the ground. This information is later used to establish

35



Control design

camera extrinsics that define the position of the camera coordinate system with
respect to the vehicle coordinate system. Focal length = [800, 800]; Optical center
of the camera = [320, 240];
In this thesis, monocular camera sensor uses the built-in findParabolicLaneBound-
aries function has been used to fit the lane line model. This function uses RANSAC
algorithm to find the lane line boundaries. As the function name suggests, the model
created is a parabolic model that fits a set of boundary points and an approximate
width. The selected boundary points correspond to inliers only if they fall into the
boundary width. The final parabolic model has been obtained using a least-squares
fit on the inlier points.
The function receives in input the candidate points in vehicle coordinate from the
features extraction phase and it provides array of parabolicLaneBoundary objects
for each model. The returned array includes the three coefficients [a b c] of the
parabola, like a second-degree polynomial equation ax2+bx+c, and in addition the
strength, the type, and the minimum and maximum x positions of the computed
boundary. The last three parameters are used to reject some curves that could be
invalid using heuristics. For example, in order to reject short boundaries, the dif-
ference between the minimum and maximum x positions has been compared with
a specific threshold, if the minimum threshold is not reached, the found boundaries
are rejected; or, to reject weak lines, the value of the strength has to be higher than
another threshold set ad hoc.

3.2 Reference trajectory generation

The trajectory generation phase consists to find the trajectory and compute its
curvature based on the information of the lane line model coming from the previous
step. This phase refers to the problem of trajectory planning, also called motion
planning, in automotive context, that has the purpose to find a trajectory feasible
for the vehicle, and safe and comfortable for the passenger.
The motion planning for an autonomous vehicle is based on the same theory handled
in robotics area. In fact, as in the field of robotics, it is necessary to provide
and distinguish some definitions such as path and trajectory, and global and local
planning.
Firstly, it is significant to give the definitions of path and trajectory and underline
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that they have two different meanings:

• Path is the pure geometric description of motion;

• Trajectory is the merge of the path and the time laws (velocities and acceler-
ations) required to follow the path.

The other significant definitions are global and local planning:

• Global planning means the generation of the path or trajectory knowing the
entire environment and its information such as the position of the obstacle
and the lane boundaries;

• Local planning means, instead, the computation of the path according to
sensor data that represent local environment information.

In this thesis, for the sake of simplicity, no strict distinction has been adopted to
distinguish path and trajectory when needed.
Moreover, the indication of the trajectory (or similarly path) is defined as a local
path as mention in the previous definitions.
The trajectory computed for this work consists of the center line of the lane. It is
computed like the average between the left line of the lane and the right ones.

3.2.1 Trajectory curvature computation

The controller of the lane keeping needs to receive the curvature of the trajectory
like input to perform the control action on the steering angle.
“The curvature of a curve parametrized by its arc length is the rate of change of
direction of the tangent vector [45]”.

Considering a curve α(s), where s is the arc length and the tangential angle ϕ,
computed counterclockwise from the x-axis to the tangent T = α′(s), as shown in
Figure 3.3, the curvature κ of α is defined, following the definition, as:

κ = dϕ

ds
(3.1)

37



Control design

Figure 3.3: Curve α and tangential angle ϕ

The curvature can be also defined as the value of the turning of the tangent T(s)
along the direction of the normal N(s), that is:

κ = T ′ · N (3.2)

It is easily to derive the first definition 3.1 from the second 3.2 (Figure 3.4), as
follows:

κ = T ′ · N = dT

ds
· N = lim

∆s→0

T (s + ∆s) − T (s)
∆s

· N = lim
∆s→0

∆ϕ · ∥T∥
∆s

= dϕ

ds
(3.3)

Figure 3.4: Demonstration that the definition 3.1 can be derived from the
definition 3.2
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To perform the measure of how sharply the curve bends, the absolute curvature of
the curve at a point has been computed and it consists of the absolute value of the
curvature |κ|.
A small absolute curvature corresponds to curves with a slight bend or almost
straight lines. Curves with left bend have positive curvature, while a negative cur-
vature refers to curves with right bend.

With the second definition 3.2 it is possible defined that the curvature of a cir-
cle is the inverse of its radius everywhere. For this reason, the radius of curvature
R has been identified as the inverse of the absolute value of the curvature κ of the
curve at a point.

R = 1
|κ|

(3.4)

The circle with radius equal to the curvature radius R, when κ /= 0, and positioning
at the center of curvature is called osculating circle, as shown in Figure 3.5. It allows
to approximate the curve locally up to the second order.

Figure 3.5: Osculating circle and radius of curvature

The curvature can be expressed in terms of the first and second derivatives of the
curve α for simplicity in the computation, by the following formula:

κ = |α′′|
[1 + (α′)2]

3
2

(3.5)

In order to compute the curvature in this thesis work, the Geom2d toolbox in MAT-
LAB has been used. This toolbox provides the polynomialCurveCurvature function
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that allows to compute the local curvature at specific point of a polynomial curve.
It receives in input the curve in parametric form x = x(t) and y = y(t) and the
point in which the curvature has to be evaluate.
The function polynomialCurveCurvature computes the curvature following the for-
mula 3.5 that becomes:

κ = |x′y′′ − x′′y′|
[(x′)2 + (y′)2]

3
2

(3.6)

3.2.2 Computation of vehicle model dynamic parameters

The last phase of the lane detection algorithm refers to the computation of vehicle
model dynamic parameters. These values are necessary in order to achieve the goal
of the control stage for the lane keeping. The controller has to minimize the values
of lateral deviation and relative yaw angle in order to compute the optimal steering
angle.
Lateral deviation and relative yaw angle are defined as follow:

• Lateral deviation is the distance of the center of mass of the vehicle from the
center line of the lane;

• Relative yaw angle is the orientation error of the vehicle with respect to the
road.

These parameters are computed geometrically after a 2D reconstruction of the road
(Figure 3.6): the lateral deviation is considered the distance between the camera
mounted at the center of the vehicle that is become the origin of the new reference
frame created by monoCamera object, and the center line computed in the previous
phase; while, the relative yaw angle is identified as the angle between the vector of
the longitudinal velocity and the tangent to the center line. With the information
about the lane line model, the function performs a reconstruction of the road in
order to computes the center line of the lane and the relative curvature, as specified
in the previous section. Based on the computed trajectory, the lateral deviation and
the relative yaw angle of the vehicle has been calculated as described in this section.
Figure 3.7 shows an example of the plot in MATLAB about these computations.
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Figure 3.6: Definition of lateral deviation and relative yaw angle with respect the
center line of the lane

Figure 3.7: Center line, curvature, lateral deviation and relative yaw angle
computation

3.3 Reference speed profile generation

The following subsections are devoted to determine the reference speed profile, two
different criteria are considered here, which are available in literature. First one is
based on the geometry of the road and the second one is based on the lateral comfort
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of the vehicle. So, maximum admissible longitudinal speed is estimated based on
the road information and the speed for lateral comfort is calculated based on the
information about the desired lateral acceleration. Both of them are exploited to
calculate the reference speed profile by the speed profile generator.
Road information criteria: the performance of the path-following depends on the
speed with which this following is done. The cruise speed is also important for
the stability of the vehicle on the road. In fact, no controller can ensure the path-
following if the cruise speed is excessive. Thus, the speed of the vehicle should be
reduced when approaching a bend. This adaptation of the cruise speed depends on
the difficulty to cross the bend. There are several systems designed by automakers
for assisting driver when approaching a bend, like those developed by Daimler-
Chrysler defining the maximum admissible speed based on the curvature of the
road:

Vmax =
√︃

gµ

κ
(3.7)

where g, µ and κ are respectively the gravity, the friction coefficient and the road
curvature. The description given by the model (3.7) is incomplete and may be
inappropriate to determine the maximum admissible speed in some situations. In-
deed, the only parameter considered in this model is the road curvature. However,
other characteristics of the road can be considered. For this reason, more sophis-
ticated models are proposed. The National Highway Traffic Safety Administration
(NHTSA) recommends for the calculation of the maximum entry speed in bends
the following model:

Vmax =
√︄

g

κ
( ϕr + µ

1 − ϕrµ
) (3.8)

where ϕr is the road camber angle.
Then, the acceleration a that should be applied to bring the speed of the vehicle
to the maximum admissible speed given by (3.8) should be less then:

amax =

⌜⃓⃓⎷ V 2 − V 2
max

2(d − trV ) (3.9)
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where V is the current vehicle speed, d distance to the summit of the bend and
tr the time-delay due to driver reaction. The purely geometric models (3.7) and
(3.8) can be evaluated in real-time and can be used in a predictive way as the road
data are already employed in the MPC strategy. Notice that these criteria do not
handle the vehicle lateral dynamics. Thus, in our work these criteria are combined
with other indicators on the lateral stability presented in the following section.
For lateral stability of the vehicle an additional condition is applied to improve the
lateral motion. So, a desired longitudinal acceleration is calculated from physical
limitation in braking with cornering.

ax =

√︂
(µgm)2 − ∑︁(Fy)2

m
(3.10)

√︂
F 2

x + F 2
y < µFz (3.11)

In this way, a constrain on the longitudinal acceleration is imposed using the Kamm
inequality, which keeps the forces developed in the tires within the physical limi-
tations of the tire-road friction. Where, Fy can be either estimated or it can be
measured using recently developed technology like smart tires or load sensing bear-
ings to compute the ax in real time.

The information on lateral dynamics is of capital importance as it helps to de-
termine loss of control and help to preserve the lateral stability[46]. In this work,
following criteria is used, which gives the βlimit:

βlimit < 10◦ − 7◦ (Vx)2

(40m/s)2 (3.12)

where, β is the sideslip angle of the vehicle and Vx is the vehicle speed.
The Reference Generation provides the lateral deviation and relative yaw angle to
be minimized by the vehicle and a speed profile taking legal speed limits and vehicle
comfort into account.
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3.4 Model Predictive Control

In this section, theory behind Model Predictive Control will be explored together
with the derivation of the Adaptive MPC, used to control the vehicle.
The aim of this thesis is to design a controller that allows autonomous driving.
We decided to use Model Predictive Control, due to its abilities to work with con-
straints both on the states and the control signals. This is crucial for the control
of a vehicle since it is constrained not only by mechanics of the vehicle but also
by the environment. For example, a vehicle should not exceed the speed limits or
drive too close to other vehicles.

3.4.1 Overview of MPC

Model Predictive Control (MPC) is an advanced control method that works in dis-
crete time. From a set of state values, and with respect to a model, it optimizes
a problem around an objective and gives a sequence of control signals as outputs.
The first set of control values are then used as inputs to the system plant, and after
a short period, set as the system time step, the new state values are measured and
the process is repeated. In this section we will shortly describe the history of MPC
and give some basic examples of its structure and the theory behind it.

The beginning of MPC was at Shell Oil Company in 1979 where an idea named as
"Dynamic Matrix Control" was presented by Cutler and Ramaker [47]. DMC was
the first type of predictive control that could be applied in industry. The idea was
to handle multi variable control systems without any constraints and predict future
values for linear systems. The idea that the algorithm would predict future plant
behavior was discovered to lead to a less aggressive output and a smoother con-
vergence to the target set point. Throughout the 80s MPC was popular mainly in
industries such as chemical plants and oil refineries [48], i.e. in slow processes where
the computational time of the solvers would not be a problem. In the 90s the the-
ory of MPC matured and with faster solvers and computers the algorithm was now
feasible for faster, more demanding systems. Today MPC has many applications,
and as we will demonstrate in this thesis, one of them is in autonomous driving.
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According to Qin and Badgwell [49], the overall objectives of a MPC controller are:

1. Prevent that input and output constraints are violated;

2. Optimize some output variables, while others outputs are kept in a specified
ranges;

3. Prevent that the input variables have excessive movement;

4. Control the major number of process variables when a sensor or actuator is
down or is not available.

Three critical steps affect the process of a MPC controller: prediction model, opti-
mization solution and feedback correction.

A general architecture of a Model Predictive Control used for autonomous driv-
ing vehicle is given by Figure 3.8.

Figure 3.8: Block diagram for Model Predictive Control
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MPC controller has two main functional blocks: the optimizer and the vehicle
model. The dynamic optimizer allows to find the optimal input that gives the min-
imum value of the cost function taking into account all the constraints. The vehicle
and the plant model refers to the 3DoF rigid vehicle model and a linearized state
space model, described in the section 2.3. Generally, a non linear model is used
for the validation of the controller, while the plant model used for the MPC is a
linearized version of the actual plant.
The MPC controller provides the optimal output to send to a plant based on a
finite horizon using an iterative approach. Its main goal is to calculate a sequence
of control moves, that consist of manipulated input changes, so that the predicted
output moves to the set point in an optimal manner.
Referring to Figure 3.9, y is the actual output, ŷ is the predicted output and u
consists of the manipulated input. At the current sampling time k, the initial value
of the plant state is known and the MPC computes a set of M values of the input
u(k+i-1), i = 1, 2, ..., M , where M is called control horizon. This set refers to
the current input u(k) and to (M - 1) prediction inputs, and it is held constant
after the M control moves. The inputs are computed so that a set of N predicted
outputs ŷ(k + i), i = 1, 2, ..., N reaches the set point in optimal manner. N is
called prediction horizon and consists of the number of future steps to look ahead
[51].

When we are driving we never look straight down at the road, but farther ahead.
The reason is of course so that we can plan our driving. When a sharp turn ap-
proaches we need to brake ahead of time. A driver always looks far enough to
ensure safe driving, so called minimum braking distance, in case of an unexpected
obstacle on the road. This should also apply in control. In Model predictive con-
trol there is a finite prediction horizon set for each optimization, i.e., how far the
controller looks into the future. To decide the length of the horizon we can again
draw an analogy to human driving. While driving at high speeds you need a longer
prediction horizon since the minimum breaking distance is also longer. The pre-
diction horizon must be long enough such that distance between the two cars are
larger than the minimum braking distance. A longer horizon is usually ideal but is
often limited by sensor limitations. The computational complexity also increases
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Figure 3.9: Basic concept for Model Predictive Control

for longer horizons, mainly for complex non-linear systems. So, the values of con-
trol horizon M is usually kept lower than the prediction horizon N as the controller
apply only first control step and solves the optimization problem again. In practical
situations, only the first value of the whole set of M values is implemented as the
input of the system because the model of the process is simplified and inaccurate.
Moreover, this set can add disturbances or noises in the process that could produce
an error between the actual output and the predicted one.
For this reason, the plant state has to be measured again to be adopted as the initial
state for the next step. The re-measurement of the information state is reported
with a feedback to the dynamic optimizer of the MPC controller and adds robust-
ness to the control [50]. When the plant state is re-sampled, the whole process
computes again the calculations starting from the new current state. The window
of the prediction horizon shifts forward at every time step. This is the reason why
the Model Predictive Control is also called Receding Horizon Control.
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3.4.2 MPC problem formulation

The MPC controller implemented in this thesis is based on the method of multiple-
step optimization and feedback correction. Thanks to this method, the controller
has good performances of control.
Lateral control deals with the actuation of the steering of the vehicle to keep it
in the center of the lane and follow the curved road. It is modeled as a reference
path tracking problem for the MPC with the objective of minimizing the lateral
deviation e1 and relative yaw angle e2. While, the longitudinal control deals with
the actuation of the throttle/brake to control the longitudinal speed of the vehicle.
It is modelled as a reference speed tracking problem, which is generated using the
reference speed profile calculated using (3.12). Based on the reference velocity
MPC computes the desired acceleration command to attain it. In other words,
the objective of the MPC is to converge the speed of the vehicle to the desired
reference speed. The inputs for the MPC are actual longitudinal velocity Vx, lateral
deviation e1 and relative yaw angle e2, which are the outputs of the actual plant
model. i.e. 3DoF rigid vehicle model. Based on these three inputs the MPC solves
the optimization problem as reference tracking. The reference variables are given
by reference velocity Vref , while e1 and e2 are set equal to zero. So, The goal of
the MPC controller is to compute the optimal steering angle and throttle/brake
command to perform the autonomous driving. In order to achieve this goal, the
controller calculates the steering angle and throttle/brake by minimizing its cost
function.
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The description of the Adaptive MPC has been divided two parts:

• Problem formulation in which is explained how the MPC problem has been
formulated;

• Output prediction in which is defined how the predicted output has been
computed.

Problem formulation

The formulation of the MPC problem developed in this thesis starts defining a
linear state-space model derived in section 2.3, which is represented as:

x(k + 1) = Ax(k) + Buu(k) + Bdv(k)

y(k) = Cx(k)
(3.13)

Where:

• A is the state matrix;

• Bu and Bd are the input matrices corresponding to inputs u and v respectively;

• C is the output matrix.

Given the linear model defined in equation 3.13, the Model Predictive Control al-
gorithm is implemented as solving the following optimization problem at each time
step:

min
u

J =
N∑︂

j=1
||yp(k + j|k) − yref (k + j|k)||Qy +

M−1∑︂
j=0

||u(k + j|k)||Ru

s.t. x(k + j + 1|k) = Ax(k + j|k) + Buu(k + j|k) + Bdv(k + j|k)

x(k|k) = x(k)

y(k + j|k) = Cx(k + j|k)

|u(k + j|k)| ≤ ulimit

(3.14)
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Where u is the manipulated variable. Qy and Ru are weights for outputs and ma-
nipulated variables respectively. This optimization problem refers to find the value
of input u that minimizes the sum of the weighted norms of the error between
the predicted output vector yp and the reference vector for those states yref and
the input vector u for a defined prediction horizon N and control horizon M. The
predicted output y has to satisfy the linear model, while the value of u should not
exceed a specified limit ulimit.
The state vector y is given by:

[︂
Vx e1 e2

]︂T

While, the state vector yref is given by:

[︂
Vref 0 0

]︂T

Vx is directly taken from the vehicle dynamics block as an output while e1 and
e2 are taken from the reference trajectory block. These three states are sent as
feedback to the MPC controller in order to correct the control variables in the fu-
ture step time with respect to the reference states.
The weighted norm of the vector y =

[︂
y1 y2 y3

]︂T
corresponds to:

||y(k + j|k)||Qy =
[︂
y1 y2 y3

]︂ ⎡⎢⎢⎢⎣
q11 0 0
0 q22 0
0 0 q33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y1

y2

y3

⎤⎥⎥⎥⎦ (3.15)

where the weights q11, q22 and q33 are tuned to provide the needed damping on the
corresponding output. The same definition is applied to the weighted norm of u

given by:

||u(k + j|k)||Ru =
[︂
u1 u2

]︂ ⎡⎣r11 0
0 r22

⎤⎦ ⎡⎣u1

u2

⎤⎦ (3.16)
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Output prediction

The values of the predicted output y(k + j|k), j = 1, 2, ..., N , where N is the pre-
diction horizon, have been computed using the linear state-space model described
by the formula 3.13.
In particular, in order to make the computation, the following values have to be
known:

• Present output measurement y(k|k) = y(k);

• Applied input u(k|k) = u(k);

• Entire set of predicted input values v(k + j|k), j = 0, 1, 2, ..., N .

If the prediction state is defined as follows:

x(k + 1|k) = Ax(k) + Buu(k|k) + Bdv(k|k)

x(k + 2|k) = Ax(k + 1|k) + Buu(k + 1|k) + Bdv(k + 1|k) =

= A2x(k) + ABuu(k|k) + ABdv(k|k) + Buu(k + 1|k) + Bdv(k + 1|k)
...

x(k + N |k) = Ax(k + N − 1|k) + Buu(k + N − 1|k) + Bdv(k + N − 1|k) =

= ANx(k) + AN−1Buu(k|k) + AN−1Bdv(k|k) + AN−2Buu(k + 1|k)+

AN−2Bdv(k + 1|k) + ... + Buu(k + N − 1|k) + Bdv(k + N − 1|k)
(3.17)

The prediction output can be identified by the following equations:
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y(k|k) = Cx(k)

y(k + 1|k) = Cx(k + 1|k)

y(k + 2|k) = Cx(k + 2|k)
...

y(k + N |k) = Cx(k + N |k)

(3.18)

Using the equations 3.17 and 3.18, it is possible to express the predicted outputs
y(k + 1|k), ..., y(k + N |k) as a function of the predicted inputs u(k|k), ..., u(k + N −
1|k), noted that the other signals are assumed to be known as stated above.

In order to make the relation between the equations 3.17 and 3.18 clearer, the
prediction output of the future can be defined as follows:

Z(k) = Gx(k) + HU(k) + EV (k) (3.19)

Where:

• Z(k) is the augmented vector of the predicted outputs;

• U(k) is the augmented vector of the computed future inputs;

• V(k) is the augmented vector of the predicted disturbances.

These vectors are obtained by the chaining of the input and the output vectors in
the present time until the future N vectors (N - 1 vectors for the input u and v),
and they are defined as follows:

Z(k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
z(k|k)

z(k + 1|k)
...

z(k + N |k)

⎤⎥⎥⎥⎥⎥⎥⎦; U(k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + N − 1|k)

⎤⎥⎥⎥⎥⎥⎥⎦ and V (k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
v(k|k)

v(k + 1|k)
...

v(k + N |k)

⎤⎥⎥⎥⎥⎥⎥⎦
The matrices G, H and E are determined in the following way:
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...
CAN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CB1 0 0 . . . 0

CAB1 CB1 0 . . . 0
... ... ... ...

CAN−1B1 CAN−2B1 CAN−3B1 . . . CB1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CB2 0 0 . . . 0

CAB2 CB2 0 . . . 0
... ... ... ...

CAN−1B2 CAN−2B2 CAN−3B2 . . . CB2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As mentioned before, the proposed control strategy maximizes the longitudinal
speed while remaining in constrained speed range and without exceeding the ad-
herence condition. At the same time, it eliminates the path error between the
actual location and the desired path in terms of lateral deviation and desired yaw
angle, assuring the handling stability during the motion.

Figure 3.10: Architecture of MPC Controller
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3.5 Decoupled Controler

The conventional theory on decoupling control describes how a system with multiple
inputs and outputs (MIMO) can have a controller that isolates the inputs and
outputs so that one input affects only one output instead of multiple. The act of
doing so is called decoupling. In vehicle control, the vehicle models have coupled
kinematic and dynamics which means that lateral and longitudinal dynamics may
affect each other.
Decoupled control of a vehicle means that the longitudinal and lateral dynamics of
the vehicle are handled separately by two different controllers. In [52], the authors
state that the dynamical forces of a vehicle must be kept low in order to have lateral
and longitudinal dynamics controlled separately. This means that the decoupled
control may be limited by the dynamics of the vehicle.
In practice, a decoupled control strategy uses two different control approaches for
the lateral and longitudinal dynamics. Generally, the longitudinal control will be
first to optimize the acceleration and speed of the vehicle before it feeds the lateral
controller with the current speed of the vehicle. The lateral controller then uses
the information about the speed in order to output a suitable steering angle [53].
A simplified drawing of the decoupled control system is shown in Figure 3.11.
In this thesis, the two decoupled control strategy MPC-PID Controller and PID
Controller are used. In MPC-PID controller, PID-controller for the longitudinal
controller and an MPC controller for the lateral control. To handle longitudinal
constraints, the PID-controller will be subject to control input saturation to avoid
too large vehicle accelerations. In second controller, PID Stanley controler are used
for logitudinal and lateral control.
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Figure 3.11: Architecture of MPC-PID controller

Figure 3.12: Architecture of PID-Stanley controller
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3.5.1 PID Controller

Proportional-Integral-Derivative controller, known as PID, is a widely used tech-
nique in feedback control applications. The PID controller, despite its simplicity, is
a potent controller and have been used in applications where a vehicle is supposed
to track a specified path. PID output depends on an input error signal and three
tunable gains changing the response of the system. A major advantage is that it
reduces the steady state error through the integral action; in addition, derivative
gain allows predicting future actions. 3.20 shows the general formula for a discrete
time PID controller using the forward Euler method.

uz = Kp + Ki
Ts

z − 1 + Kd
z − 1
Ts z

(3.20)

Figure 3.13: PID feedback loop

where uz is the control output and Kp, Ki and Kd represent the proportional, inte-
gral, and derivative gains, respectively; Ts corresponds to system sample time. PID
controllers have been used for different automated driving longitudinal applications
and appear as a practical solution for ACC applications where control signals can
be modified according to the speed error and selecting the proper gains.
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3.5.2 Stanley Controller

Gabriel M. Hoffmann [54] presents the Stanley controlling method, developed and
used by Stanford Racing Team in DARPA Grand Challenge 2005. Asymptotic
stability is proven for the controller using the kinematic equations of motion and
the controller is extended with dynamic models for the pneumatic tires and the
servo actuated steering wheel. Stanley controller have shown great potential for
lateral control off road vehicles in rough environments. The controller uses the
lateral error, orientation error and the velocity of the vehicle as input.
The controller on standard form can be written as

δ = e2 + κe1

Vx

(3.21)

where κ is a gain variable, Vx is the velocity of the vehicle, e1 is the lateral error
and e2 the orientation error of the vehicle.
The control method uses a similar structure to the PID controller, but Stanley is
a MISO system and uses the lateral error, orientation error and velocity as input
parameters. Stanley uses the nonlinear feedback function arctan, for which ex-
ponential convergence can be shown [39]. The controller structure is depicted in
Figure 3.14

Figure 3.14: Stanley controller

The basic Stanley controller has, only one gain, κ. This leaves the user with a lim-
ited possibility for adjusting and tuning. Therefore, it might not be optimal when
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tuning the controller for a specific vehicle, as few gains will limit the controllers
possibility for optimal performance. The controller performance can be improved
signifcantly by adding additional parameters, extended controller formula, defined
as[38]

δ = e2 − ess + κ e1

κsoft + Vx

+ κd(rmean − rtraj) (3.22)

e2 = Ψ − Ψdes (3.23)

ess = m Vx rtraj

Cy(1 + a/b) (3.24)

rtraj = Vx

R
(3.25)

where κ is a tuned gain and κsoft is a tuned gain, permitting the control to be soft
at low velocities. κd is a tuned gain which adjusts to what extent the subtraction
of the measured yaw rate of the vehicle and the trajectory yaw rate will affect the
control. The purpose of this term is to create an active damping as the velocity
increases. κd is a tuned gain which adjusts to what extent previous steering angle
will affect the control. This term will limit the issues in the steering, such as time
delay and overshoot. e1 is the lateral error, e2 is the orientation error and ess is the
steady state yaw. rmean is the orientation of the vehicle and rtraj is the orientation
of the nearest perpendicular trajectory.
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Results and discussions

In this chapter racing simulation are presented for different type of controller and
later the simulation results are presented and discussed.

4.1 Setup

In order to implement the controller, a simulation environment has been developed
in MATLAB. It consists of user-defined race track. We have considered racing
scenarios represented in Figure 4.1 to validate the proposed control strategies.

4.1.1 Racetrack and The Car

The racetrack is the centerline of the track defined by the user as the racing road. It
can be generated by fitting a spline to a set of waypoints. The track length is around
2555m and width is 6m. overall system has been implemented in MATLAB and
Simulink and the racing scenarios are created using the Driving scenario designer
application in the Automated driving toolbox.
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In the figures below, the racetrack scenarios with their road curvature are rep-
resented. The racetrack scenarios Figure 4.1 is characterized by a typical racetrack.
The vehicle data are collected from SquadraCorse racing team, SquadraCorse is a

Figure 4.1: (a)Racetrack scenario (b) Detected road curvature k

student racing team of the Politecnico di Torino, the data as show below

• m = 275 kg, the total vehicle mass;

• Iz = 104.8 kgm2, the yaw moment of inertia of the vehicle;

• lf = 0.824 m, the longitudinal distance from the center of gravity to the front
wheels;

• lr = 0.702 m, the longitudinal distance from the center of gravity to the rear
wheels;

• Cαf = 44222 N/rad, the cornering stiffness of the front tires;

• Cαr = 44222 N/rad, the cornering stiffness of the rear tires.

• A = 1.2 m2, Frontal area.

• Cx = 1.03, Drag coefficient.
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4.2 Results and discussion

In this section the results from the simulations are presented and discussed.
For validation purposes speed tracking, lateral deviation and steering angle is con-
sidered. It gives information about how much the vehicle deviates in the lateral
direction from the center line of the lane and the latter how much the vehicle’s
yaw angle deviates from the desired yaw angle. i.e relative yaw angle. A lateral
deviation limit value equal to ±0.10 m is considered as acceptable. Similarly, the
relative yaw angle should be limited to ±0.10 rad. Lateral acceleration is limited
using the formula in equation(3.11), which keeps it in the adherence limit of (±9
m/s2) as seen in GG plot.

4.2.1 Sensitivity Analysis of MPC

Sensitivity analysis is the study of how the uncertainty in the output of a mathe-
matical model or system (numerical or otherwise) can be divided and allocated to
different sources of uncertainty in its inputs. In this analysis, by adjusting Weights
and constrians of Manipulated variable(MV) and Measured Output to improve
model predictive controller performance.
A model predictive controller uses linear plant, disturbance, and noise models to
estimate the controller state and predict future plant outputs. Using the predicted
plant outputs, the controller solves a quadratic programming optimization problem
to determine optimal manipulated variable adjustments.

Figure 4.2: Basic workflow for designing traditional model predictive controllers

For this theis , we have considered fallowing variables
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• Reference = Speed profile

• Manipulated variable(MV)= Acceleration and Steering Angle

• Measured Output(MO)= Lateral deviation, relative Yaw angle and Longitu-
dinal velocity

4.2.2 Weights and Constraints

Constraints:it is possible to define maximum and minimum values for each one of
the MV’s and OV’s, including their maximum down and up rates. This is a very
important component when designing a controller for the MPC approach can deal
with process constraints in an optimal fashion, so one may feel free to test and
evaluate closed-loop responses with different constraints.
For this thesis, there is input constraints on manipulated variable to limit the max-
imum acceleration and steering angle.
Tune Weights for optimization: A model predictive controller design usually re-
quires some tuning of the cost function weights. choose values for input and output
weights according to their desired closed-loop response. If the system is multivari-
able, it is possible to set a tight control routine over a certain OV by tuning output
weights, or if the controller is being too aggressive or too sluggish when dealing
with MV’s, tuning the input weights may turn to be a good option. Moreover,
tuning weights is a quick way to choose between a more robust or faster response
by managing the “Overall weight” (upper slide bar); one can designate values be-
tween 0 (more robust response) and 1.0 (faster response), being aware that overall
weight’s values close to one may destabilize the system depending on which values
were set to prediction and control horizons.
in this thesis,there is weight constraints on manipulated variable, which is Robust-
ness for acceleration and steering to minimize jerk (derivative of acceleration) and
derivative of steering. and also on measured Output to minimize error against mea-
sured velocity and lateral deviation and yaw angle.
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To improve model predictive controller performance, by adjusting Constraints and
weights different simulation are executed as show in Figure 4.3 to get optimized
result for MPC.

Figure 4.3: MPC Constraints and Weights

Finally, we have selected the optimized parameters for MPC, which as show bwlow

• Sample Time= 0.1

• Prediction horizon = 10

• Control horizon = 2

• Acceleration(MV1) = 8

• Steering angle(MV2)= 15

• Acceleration(Weights.MV1Rate) = 0.4

• Steering angle(Weights.MV2Rate)= 0.1

• Logitudinal Velocity(Weights.OV1) = 3

• Lateral Velocity(Weights.O2) = 1

• Relative Yaw angle(Weights.OV3) = 0.1
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4.2.3 Coupled Controller: MPC

For this thesis, we have considered The maximum longitudinal speed is 25m/s2 and
lateral acceleration is 9 m/s2. The vehicle executes some maneuvers at Low speed
with large curvature and some at high speed with very low curvature. In otherwords,
the vehicle navigates within a very narrow turn at low speed then it accelerates to
reacha high speed on a low curvature road. The longitudinal speed reference Vref

is accurately tracked by the car Figure 4.4. A maximum lateral deviation e1 in
Figure 4.5 equal to 0.15m is detected in regions with high curvature turns, while
it assumes small values in the remaining part of the simulation ranging from ±0.1
m. The error of the relative yaw angle e2 in Figure 4.6 remains in the admissible
range ranging from ±0.10 rad. The value of the δ in Figure 4.7 varies between
±1.5 degree to follow the center line of the lane. The GG diagram in Figure 4.13
confirms that the car is driving within the limits of adherence conditions.

Figure 4.4: Measured vehicle’s longitudinal speed Vx (dashed) vs. vehicle’s
longitudinal speed reference Vref (solid)
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Figure 4.5: Lateral deviation e1

Figure 4.6: Relative yaw angle e2
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Figure 4.7: Front wheels steering angle command δ

Figure 4.8: GG plot with the ellipse representing the adherence limits-MPC
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4.2.4 Comparision with decoupled controller: MPC+PID
and PID+P

In this section, the adaptive MPC is compared with decoupled controller MPC+PID
and PID+P. Later, the results are compared and the advantages of the coupled lat-
eral and longitudinal controller respect to the decoupled one are discussed.
The decoupled controller developed for autonomous racing uses a MPC/P for the
lateral control, while for the longitudinal control a PID controller is used. Which
tracks the reference velocity generated using only the road geometry and try to
maximize it without any consideration of lateral stability. It can be seen that the

Figure 4.9: Measured vehicle’s longitudinal speed Vx (dashed) vs. vehicle’s
longitudinal speed reference Vref (solid

coupled MPC controller and decoupled controller tracks speed profile better com-
pared to decoupled controller MPC+PID and PID+P, but in decoupled controller
the speed profile tracing is comes with cost of large variation in lateral deviation.
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Figure 4.10: Lateral deviation e1

Figure 4.11: Relative yaw angle e2
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In coupled controller the lateral stability of the vehicle is mainatined within lim-
its. Maximum lateral deviation Figure 4.10 is 0.10m but for decoupled controller
it reaches around 0.4m, and the relative yaw angle Figure 4.11 is within limit of
±0.10 rad for both controller.

Figure 4.12: Front wheels steering angle command δ

From Figure 4.12, the steering angle is ±1.5 degree in coupled ctroller. while in
decoupled controller case, steering angle has higher frequency of oscillation and will
cause the lot of jerk.
The lateral and logitudinal acceleration for three different controller are shown
Figure 4.13-4.15.For MPC controller the logitudinal acceleration is 0.6g and lateral
acceleration 0.9g, witin the limit of driving condition. For MPC+PID and PID+P,
the lateral acceleration is varying continuously due to oscillation in steering angl
and logitudinal accelaration is aroud 0.5g.
Overall, the MPC controller perform quite well compare to decoupled one, by track-
ing the reference velocity accurately and keeping the errors, in terms of lateral de-
viation and relative yaw angle in the admissible limits. It also preserves the lateral
stability of the vehicle and keeps the acceleration with in the range.
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Figure 4.13: GG plot with the ellipse representing the adherence limits MPC

Figure 4.14: GG plot with the ellipse representing the adherence limits
(A)MPC+PID (B)PID+P
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4.3 Validation of Controller

The performance of the car on the racetrack is evaluated. Each dynamic tests
different features of the vehicles. In addition to the maximum longitudinal and
lateral acceleration, race performance, efficiency and endurance of the race car will
be examined and evaluated. For this thesis, the Acceleration and Skid Pad are
considered to evaluate the longitudinal and lateral acceleration.

4.3.1 Acceleration Test

The acceleration test evaluates the car’s acceleration in a straight line on flat pave-
ment. The vehicle‘s acceleration from a standing start is measured over a 75 metre
straight. In addition to traction, the correct engine design is especially important,
either in terms of greater power or for the highest possible torque. The accelera-

Figure 4.15: Acceleration Test Track

tion course length will be 75 m from starting line to finish line. The course will
be at least 4.9 m wide as measured between the inner edges of the bases of the
course edge cones. Cones are placed along the course edges at intervals of about 5
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paces. As we see from Figure 4.17, the logitudinal acceleration is quite same for all

Figure 4.16: Acceleration Test Data

the controller, the controllers reaches 100 kmph within 4.6 seconds with maximum
logitudinal acceleraiton is avout 0.7 g as shown in Figure 4.16

Figure 4.17: Logitudinal veocity

4.3.2 Skid Pad Test

The objective of the skid-pad test is to measure the racecar cornering ability on
a flat surface while making a constant radius turn. During the Skid Pad test, the
cars must drive a figure of 8 circuit lined with track cones, performing two laps of
each circle. In each case, the second lap will be measured. The lap time gives a
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comparative value for the maximum possible lateral acceleration of the car. Most
of the cars use aerodynamics to raise the contact pressure and thus, increase lateral
acceleration. There will be two pairs of concentric circles in a figure of eight pattern.

Figure 4.18: Skid-Pad Test Track

The centers of these circles will be 18.25 m apart. The inner circles will be 15.25
m in diameter, and the outer circles will be 21.25 m in diameter. The driving path
will be the 3.0 m path between the inner and outer circles. The cars will enter and
exit through gates on a 3.0 m wide path that is tangential to the circles where they
meet. The lateral acceleration for three different controller are shown Figure 4.19.

Figure 4.19: Skid-Pad Test Data
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the maximum velocity was calculated from the equation 3.1 for a constant radius
of curvature. MPC controller enters the track with maximum velocity of 40kmph
and lateral accelration 0.6g but in decoupled controller at 40kmph vehicle losses
it control and enters into instability, for this speed is reduced to 34.5kmph and
25kmph for MPC PID and PID+P respectively with lateral acceleartion about
0.5g and 0.3g.

Figure 4.20: Skidpad MPC

Figure 4.21: Skidpad (A)MPC+PID (B) PID+P

74



Chapter 5

Conclusions and future works

In this study, lateral and logitudinal control strategies for racing applications has
been explored. A coupled model predictive controller is exploited, allowing to min-
imize the errors on the controlled variables, which are the lateral deviation, the
relative yaw angle and the longitudinal speed of the vehicle w.r.t the reference
longitudinal speed by acting on the steering angle of the front wheels and throt-
tle/brake pedals, while driving the vehicle within the limits of adherence conditions.
Three different control strategies have been tested through simulation on MATLAB
and Simulink and MPC provides good performance for lateral guidance and accu-
rately follows the reference speed profile. The lateral deviation was kept within
the acceptable range of ±0.1 m and also relative yaw angle was within the limit
of ±0.15 rad. Finally, it was compared to another controller based on MPC-PID
and PID-Lateral control, which tackle the problem in decoupled way. From the
results, it was seen that coupled MPC controller was able to control the car in a
much better way and kept the lateral deviation and the relative yaw quite small
compared to the other decoupled controller while maintaining the lateral stability
of the vehicle.

In regards to future work, the focus will be on improvement of current work and
development of system with new functions and technologies.
More precise tire model which yields higher control precision is essential. The cou-
pled longitudinal and lateral tire forces with non-linearities can be considered.
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Although assuming that friction coefficient is constant, the fact exists that fric-
tion coefficient changes slightly based on different road and weather conditions etc.
Since friction coefficient is crucial for controlling of vehicle in both longitudinal
and lateral planes, a function for friction coefficient estimation can be appended to
control system.
Vehicle ride quality and handling performance can be improved through modifi-
cation of vehicle dynamics in vertical directions and by integrating a suspension
controller. Longitudinal dynamics can be modelled by adding driviline and tire
forces with non-linearities to the prediction model. Also, actuator dynamics can be
considered to make the controller more robust and to take into account the delays
during actuation. Validation of 14 DOF Full Vehicle Model, should be tested in
the simulations before testimg on the actual model.
Some other future works can also be done to improve and extend this thesis work in
the field of perception. First of all, in order to overcome the limitation of the lane
detection function using the camera (crossroads or roads without lane marking),
data coming from others sensors will be added, such as the data coming from a
LiDAR and GPS. Making sensor fusion between camera and LiDAR, the detection
will be improved in challenging scenarios. For the development of an autonomous
racing vehicle.

To conclude, this thesis has contributed for autonomous vehicle research at Mecha-
tronics Laboratory LIM (Laboratorio Interdisciplinare di Meccatronica) and the
developed project can be used by future students to improve and continue the work
in this interesting field.
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