
POLITECNICO DI TORINO

Master Degree in Electronic Engineering

Master Degree Thesis

Artificial Intuition

Supervisor:
Professor Mariagrazia Graziano

Candidate:
Gianluca Leone

April 2019

Table of contents

1 Abstract 1

2 Introduction 2

3 A psychological point of view 4
3.1 Thinking Fast and Slow . 4

3.1.1 System 1 . 4
3.1.2 System 2 . 5
3.1.3 Intuitive Prediction . 6

4 Reinforcement Learning 8
4.1 Survey . 8

4.1.1 Find a Policy Given a Model 9
4.1.2 Model-Free Methods . 11

4.2 DeepMind . 13
4.2.1 Human-level control through deep reinforcement learning . . . 13
4.2.2 Deep Reinforcement Learning in Large Discrete Action Spaces 15

5 Associative Memory 17
5.1 A Spiking Neuron Associative Memory Example 17

5.1.1 Associative Memory Architecture 18
5.2 Latent Semantic Analysis . 20

5.2.1 Association Matrix . 20
5.2.2 Singular Value Decomposition 21

5.3 Word2Vec . 23
5.3.1 Training and Architecture . 23
5.3.2 From Words to Phrases . 25
5.3.3 LSA and W2V comparison . 26

6 Visual Embedding Space 27
6.1 DeViSE . 27
6.2 ConSE . 28

7 Algorithm Overview 30
7.1 Q-network Implementation with Matlab 32
7.2 Associative Machine Implementation with Matlab 36
7.3 Intuitive Machine Eyes Implementation with Matlab 40

I

8 Methods 42
8.1 Q-network Architecture . 42
8.2 Relevant Transitions . 46
8.3 Training Episodes . 47
8.4 Visual Embedding Neural Network 47

9 Results 48
9.1 Associative Machine . 48

9.1.1 Single Application Field Without Initial Training 48
9.1.2 Single Application Field With Initial Training 50
9.1.3 More Than One Application Fields 51

9.2 Visual Embedding Neural Network 53
9.2.1 Caltech 101 . 54
9.2.2 Untrained Class Recognition 54

10 Discussion 55

11 Conclusion 58

Appendices 60

A Algorithms 60
A.1 Q-network Class . 60
A.2 Association Engine Class . 67
A.3 Visual Embedding Neural Netowrk Class 72
A.4 Associations Reformat - Python Script 79

B Methods 80
B.1 Q-network Architecture: Exhaustive Test 80

C Agent responses to common problems 82
C.1 Single Application Field Without Initial Training 82
C.2 Single Application Field With Initial Training 83
C.3 More Than One Application Fields 84
C.4 Visual Embedding Neural Network 85

Bibliography 87

Acknowledgments I

II

List of figures

4.1 Reinforcement Learning Architecture. Agent receives as input the
state of the environment and generates an output action. The ac-
tion changes the state and a reward is received to improve the agent
behaviour. 9

4.2 A simple graph representing environment states. 10
4.3 A forked graph representing environment states. 10
4.4 Simple environment graph to express bondage between state-value

functions of neighbour states in eq 4.6. 11
5.1 Graphical illustration to clarify the equal dimension of A and Â . . . 22
7.1 Graph of transitions and rewards starting from the cue word hat with

width equal to two and depth equal to three. 34
7.2 Associative Machine Class loop body flowchart. It is executed a num-

ber of times equal to depth. 39
8.1 The exhaustive test didn’t give deterministic results due to initial

weights distributions: in the figure the test is run three times with
the same training set but the results are quite different. 43

8.2 The image shown how the inner loop introduced, which repeat the
training of every architecture multiple times, permits to find deter-
ministic results by running the exhaustive test. 45

III

Chapter 1

Abstract

The aim of this thesis is to explore a new field of Artificial Intelligence. The scientific

literature is rich of systems able to emulate the logic human reasoning, although they

are not proficient in answering by intuition, like humans continuously do. In the

first chapters an investigation is carried out to understand what intuition is, and

thanks to psychological researches the ambiguity around this term is clarified. The

psychologists point of view show us a mind behavioural model, composed by two

subsystems, which perform different tasks. The so called System 1, responsible of

the intuition, is described as an associative machine, which surfs in an ocean of

linked ideas. The approach of this thesis is so to implement both the ocean and

the navigator: by this perspective the knowledge becomes a series of points of a

semantic significant space, and the navigator an agent who learns which routes lead

to the best results. The found outcomes show that this agent can move in the

semantic space and recognizes valuable points, based on its past experience, getting

intuitions.

1

Chapter 2

Introduction

Artificial Intelligence

Artificial Intelligence explores the implementability of human cognitive functions.

The most popular applications, such as learning, decision-making, image processing

and language understanding are studied since AI birth. A huge amount of materials

has been produced up to date and scientific literature is rich of studies and working

implementations of systems capable to satisfactorily emulate human features.

Human brain is the main character, responsible of all human-being’s skills. It is

not surprisingly that to reproduce brain capabilities, the architectures implied are

inspired from brain structure. It is a made of fact that neural networks (NN) are the

main engine of AI. Algorithm NNs implement are not write from developers, NNs

learn how to behave starting from labelled examples (supervised learning) or with

only a positive or negative feedbacks as consequence of their actions (unsupervised

learning).

Recent examples of AI goals are DeepMind’s Wavenet [1], which improves Google

Assistant voice synthesis with deep neural networks (DNN); [2] automatically gen-

erates captions to describe images; [11] play to 49 different games of the Atari 2600

console with impressive results. A less recent example is [4], capable to extract

subject, object and action from a rich number of different grammatical structures.

AI products are so successful to cover important roles in the ranks of economic

giants. For instance, YouTube recently published and introduced a new algorithm

for video recommendation based on DNNs which try to maximize the time users

spent inside the platform [5].

2

Intuition

Our lives are continuous streams of new experiences. We learn to grab, to speak,

to walk, to run... More we learn, more our background become useful to solve

problems we will face. The most is copied, observed and replicated, but something,

sometimes, it’s new.

Understanding and reasoning are the main and most unknown human mind ca-

pabilities. But, even if they are largely studied by AI, they aren’t the only way we

use to solve problems, maybe not even the most frequently used. Intuition is ”The

ability to understand something instinctively, without the need for conscious reason-

ing” [6]. It’s more and more quicker than logic reasoning and also powerful, under

a certain point of view, because in zero time it jumps the unknowns and reaches

the solution. Zero or almost zero time implies zero or almost zero computation, i.e.

reasoning for humans. Therefore, seems to be acceptable the definition of intuition

given by Herbert Simon in [7]: ”intuition is simply a form of recognition”. An in-

tuition is not endorsed by rationales, it only comes to suggest a solution, based on

our past experiences, without certainty for its correctness.

Summarizing, intuition is the ability to appreciate resemblance among the prob-

lem we are facing and problems we are faced, and reapply solutions we just saw in

the past in similar, but non identical way.

3

Chapter 3

A psychological point of view

Intuition is poor studied from Artificial Intelligence communities. Therefore, to

implement an intuitive network seems to be necessary to start from a psychological

analysis of what intuition is. The analysis is based on the book Thinking Fast and

Slow [8], written by the Nobel Prize Daniel Kahneman.

3.1 Thinking Fast and Slow

The book gives a behavioural model of the human mind. Kahneman agrees with

the Dual Process Theory, according to which it is possible to divide the cognitive

functionalities of the brain in two large sets, implemented by two different systems:

� System 1: fast, involuntary. It is responsible of intuitive understanding.

� System 2: slow. it is in charge to logically analyse thoughts and facts and to

allocate attention, e.g. to solve complex computation.

The most interesting chapters of the book, by the point of view of our research,

are summarised in the following.

3.1.1 System 1

The associative machine Every type of input the mind receives turn on an

automatic mechanism of associations which links what we see, listen or touch to

ideas, memories or others.

Associations are waked up quickly and uncontrollably. May be caused by a

combination of many inputs and System 1 try to use them to make sense to the

situation we are facing on, to prepare us to what come next. Every net activation

provokes a big activity of which we aren’t completely conscious.

4

3.1 – Thinking Fast and Slow

Psychologists think our memory is like a network where objects are connected

to their characteristics, causes to effects, facts to its habits [8].

Ease, Mood, and Intuition Sarnoff Mednick, around 1960, supposed the cre-

ativity is like an associative memory which works extremely well. He creates a test

still used nowadays: the Remote Associate Test (RAT). The RAT consists in to find

a word linked to other three words, e.g. given cottage, Swiss and cake guess cheese.

People mood, it has to be noticed, influences the test results. Good mood dou-

bled the answer accuracy, instead, bad mood caused a very low correctness. Seems

creativity and intuition work well during happy periods. Contrary, System 2, is

easily kept off. So, logical errors become easier.

A machine for jumping to conclusions System 1 tries to guess responses and

solutions when it faces problems. If the guess is easy and the prediction correct, the

computation time is avoided, but sooner or later errors will come. The predictor

learns from previous errors and gains experience. It bases its bets on recent events

when available or on less recent contexts. In section 3.1.3 intuitive predictions are

discussed more in depth.

3.1.2 System 2

Attention and effort System 2 operations need attention and effort, they are

poorly executed when attention is missed or effort is low.

Attention and effort are allocated voluntary and have an upper limit. When

System 2 has to deal with too many tasks, it gives priority to the most important,

e.g. just think to be the passenger during a road trip, the driver is able to have

a conversation with you but during a tough road, probably, it stops to talk so

animately.

The lazy controller System 2 has to supervise actions hinted by System 1. Some

actions may be executed exactly as come, others need to be modified or suppressed.

System 1 is often leaved uncontrolled by System 2 and people answers become

unchecked products of System 1. An example is the bat and ball puzzle proposed

by [8]:

5

3 – A psychological point of view

A bat and ball cost $1.10.

The bat costs one dollar more than the ball.

How much does the ball cost?

The first answer come to everyone mind is 10 cents. It arrives without reasoning

or computations. It is an intuitive and wrong answer. In fact, if the price of the

ball was 10 cents, the total would be 1.20$. The correct answer is 5 cents. Some

people directly answer ten, others resist and start reasoning. In the latter, System

2 is prone to be activated, in the former is lazier. While System 1 is ever active,

System 2 in general is not. For this reason, and for its role of controller, it takes the

name of Lazy Controller.

3.1.3 Intuitive Prediction

Humans are able to forecast. Many examples exist, e.g. ”Economist forecast infla-

tion” [8], ”publishers and producers predict audiences” [8]. Two main categories of

predictions may be identified:

� Engineering Prediction: After several observations a mathematical model can

be build and used to predict what will happen.

� Intuitive Prediction: After several observations the gained experience permits

to predict what will happen.

We will focus on the latter one, in fact, this type of prediction come to mind

without reasoning and are a type of intuition. Chess masters, doctors, and others,

are able to predict intuitively the best play or the disease, respectively, simply taking

a look to the board or to the patient, most of the times. It’s not a trick, during years

of practice, they gain a lot of experience and when face a new problem they are able

to recognize the situation and automatically gets the answer thanks its System 1:

”The situation has provided a cue; this cue has given the expert access to

information stored in memory, and the information provides the answer. Intuition

is nothing more and nothing less than recognition” - H. Simon [7]

6

3.1 – Thinking Fast and Slow

When the intuition is valid? It depends from who formulates the intuition, from

its level of expertise and trustworthiness. But certainly, the environment in which

the intuition is expressed has a main role. More an environment is predictable, more

an intuition is reliable.

Summarize

Thinking, Fast and Slow [8] analyses human intuitions from different point of view,

starting from the Dual Process Theory. We believe the associative memory and the

intuitive prediction are the most promise types of intuition to be implemented.

In the following two chapters interesting materials from scientific literature will

be explored, for both associative memory and intuitive prediction.

7

Chapter 4

Reinforcement Learning

Reinforcement learning is a technique to train neural networks. The net aims to

maximise a score, but to improve its behaviour, labelled examples are not pro-

vided, it get better by analysing the system response to its actions. By observing

reinforcement learning applications, like [11] and [12], it’s clear how the networks

learn by attempts, and gradually start to recognize just seen, or similar to just seen

situations. So, it starts to select actions which get the highest scores.

We notice a similarity with intuitive prediction (3.1.3) in which the answer to a

problem is automatically fetched from memory after a rapid look to the problem.

For this reason Reinforcement Learning is analysed in this chapter.

4.1 Survey

Reinforcement Learning is a way to train agents by positive and negative feedbacks in

response to agent behaviour. The feedbacks are named rewards or reinforces. Agents

are usually implemented by NNs and its training don’t need labelled examples, only

rewards for its actions. The aim of the agent is to maximize the sum of received

rewards along every episode. This survey section is based on [9].

Markov Decision Process The agent received the state of the environment s

as input and produces an action a as output. The action changes the state and a

scalar reward signal r is generated from the environment. The reward signal is used

to train the agent. See image 4.1.

Formally the model is named Markov Decision Process (MDP) and consists of:

� A discrete set of states S;

� A discrete set of actions A;

8

4.1 – Survey

ActionState

Agent

Environment

Reward

Figure 4.1: Reinforcement Learning Architecture. Agent receives as input the state
of the environment and generates an output action. The action changes the state
and a reward is received to improve the agent behaviour.

� A set of scalar reinforcement signals.

Agent aims to maximize the State-Value function V :

V (s) = E
(∞∑
t=0

γt · rt
)

(4.1)

Where γ ∈ (0,1) is a discount factor, introduced to bound the infinite sum.

Other interpretations are given in [9]. rt is the reward signal received at time t.

Therefore, the state-value function is the discounted sum of all the rewards received

along an episode. Maximize V means correctly choose the best possible action in

every visited state looking for a long term maximization instead of the short term

best possible rt.

The chosen actions are suggested from an agent, implemented by a function

π : S → A named policy. Following the optimal policy, the optimal state-value

function, i.e. the highest, is reached:

V ∗(s) = max
π

V (s) = max
π

(
E
(∞∑
t=0

γt · rt
))

(4.2)

4.1.1 Find a Policy Given a Model

The model may be represented by the next two functions:

9

4 – Reinforcement Learning

1. T : S × A × S → <: the probability to arrive in a state s′ starting from s

executing action a;

2. R : S × A→ <: the reward given by executing the action a in the state s.

Hence, the optimal state-value function 4.2, may be rewritten as following:

V ∗(s) = max
a
E

(
R(s,a) + γ ·

∑
s′∈s

T (s,a,s′) · V ∗(s′)
)

(4.3)

Given images 4.2 and 4.3 it’s easier to explain eq 4.2 and eq 4.3.

A B C
rab rbc

D
rcd

Figure 4.2: A simple graph representing environment states.

A B
rab

Crbc

Drbd

E

F

rce

rdf

Figure 4.3: A forked graph representing environment states.

Every node of the graphs of images 4.2 and 4.3 are a state and every arch

represent a transition. State to state transitions are rewarded. To estimate V (A),

in the case of graph 4.2, means to estimate the discounted sum of the rewards rab,

rbc and rcd:

V (A) = rab + γrbc + γ2rcd (4.4)

In image 4.3 there are two different possible paths among states of the environ-

ment. Actions determine the next state with a certain probability T . Knowing the

probability of the states transitions T and the immediate reward R, it is possible to

find V applying eq 4.3:

V (B) = R(B,a) + γ

(
T (B,a,C)V (C) + T (B,a,D)V (D)

)
(4.5)

10

4.1 – Survey

Eq 4.2 and eq 4.3 may be used to find indirectly the optimal policy. For every

state s, the state-value function is evaluated for all the possible actions. The argu-

ment of the higher state-value function is the same action the optimal policy would

have chosen.

4.1.2 Model-Free Methods

Reinforcement Learning agents ”must learn behaviour through trial-and-error in-

teractions with a dynamic environment” [9]. In fact, when RL is applied, usually

the mathematical model is not available and then, section 4.1.1 hypotheses are not

helpful. In the following, temporal difference (TD) model-free method is briefly

explained, then Q-networks are introduced.

Temporal Difference Methods: TD(0) and TD(λ) Without a model are just

known the states, before and after action execution and the reinforce signal.

Temporal difference Method exploits relationships between state-value functions

of neighbour states to improve state-value function estimation accuracy. Equation

4.6, referred to image 4.4, clarify the bound:

V̂ (S) = E
[
r + γr′

]
V̂ (S ′) = E

[
r′
]

V̂ (S) = E
[
r + γV̂ (s′)

] (4.6)

S S' S''
r r'

Figure 4.4: Simple environment graph to express bondage between state-value func-
tions of neighbour states in eq 4.6.

Starting from an arbitrary distribution of the state-value function, it’s possible

to use the received reinforce signal of a state transition to improve the accuracy of

11

4 – Reinforcement Learning

V in the following way:

V (s) = V (s) + α(r + γV (s′)− V (s))

= (1− α)V (s) + α(r + γV (s′))
(4.7)

Equation 4.7 is simply a weight average in α between the direct and indirect

estimations of V (s). The indirect evaluation involves the guess of V(s′) and r. r is

a correct value given from the environment, it’s not a guess. Therefore, thanks to r

the accuracy of V slowly increases. Algorithm 4.7 implements the TD(0) method.

The more general class of TD(λ) algorithm, introduce a lambda factor which mod-

ulate the state value functions update frequency. The eligibility is a measure which

determines the state significance in terms of number of visitations, giving higher

weights to the more recent:

e(s) =
t∑

k=1

(λγ)t−kδs,sk (4.8)

Where δ is one iff s = sk.

Q-Networks and Deep Q-networks Q-networks are actually the most common

used form of RL algorithms. They are based on the computation of the Q-value,

close relative of the state-value function:

Q∗ : S × A→ <.

Q is the expected discounted sum of the rewards starting from state s, choosing

action a and then acting following the optimal policy π∗. But by initially selecting

the best possible action a, the optimal policy is followed just from the beginning, so

the Q-value becomes equal to the optimal state-value function:

V ∗(s) = max
a
Q∗(s,a) (4.9)

A typical Q-networks training strategy may be the temporal difference method,

12

4.2 – DeepMind

seen in section 4.1.2:

Q(s,a) = Q(s,a) + α(r + γmax
a′

Q(s′,a′)−Q(s,a))

= (1− α)Q(s,a) + α(r + γmax
a′

Q(s′,a′))
(4.10)

RL agents may be used as standard controllers. They generate a control action

starting from the system state. Nowadays, thanks to deep neural networks, the

class of the possible states belong to a wider range. It’s in fact possible to use

images, audio, video and text in addition to common state vectors. This new form

of Q-networks are named deep Q-networks.

4.2 DeepMind

DeepMind is one of the leaders in the field of artificial intelligence in the world [10].

It was born in 2010 and it has been acquired by Google in 2014. In the following

sections two works of DeepMind are reported as examples of reinforcement learning

agents implementation.

4.2.1 Human-level control through deep reinforcement learn-

ing

A demonstration of deep-RL effectiveness is given in [11]. An agent becomes capable

to play 49 different games of the console Atari 2600 with impressive results. By

receiving the raw video frames and the game score it outperforms the results of all

existing RL agents in all the 49 games, reaching at least the 75% of professional play

testers scores in 29 games. A video demonstration of the agent ability is available

at this link.

Strategy and Architecture The raw video frames are took 4 by 4, they are

compressed in terms of dimensionality (from 210x160 pixels to 84x84 pixels) and

colours (from a 128-colour palette to the only luminance) and used as state s of the

network.

13

https://www.youtube.com/watch?v=TmPfTpjtdgg

4 – Reinforcement Learning

The agent selects the action to perform starting from the 4x84x84 data packet,

the Atari state. Multiple action selection strategies are possible. The one imple-

mented in [11] is explained in the following. The preprocessed image feeds three

convolutional and two fully connected layers:

1. Convolutional layer (CL) with 32 8x8 filters with stride 4 and a rectifier of the

type max(0,x).

2. CL with 64 4x4 filters with stride 2 and a rectifier of the type max(0,x).

3. CL with 64 3x3 filters with stride 1 and a rectifier of the type max(0,x).

4. Fully connected linear layer with 512 rectifier units.

5. The output layer is another fully connected linear layer which computes the

Q-value for all the 18 possible actions.

Therefore, at every time step, eighteen Q-values are computed and the action of

the higher one is chosen.

Training During episodes, at every state transition, the agent action is stored

together with state, next state and the reinforce signal. This type of records are

named tuples: 〈st,at,rt,st+1〉. Tuples are stored inside Replay Memory (RM). Be-

tween games, random tuples are sampled from RM and used to train the network

with a TD-like method, analysed in section 4.1.2.

The policy is determined indirectly, the eighteen Q-values are evaluated and the

action which lead to the highest one is selected. The agent choice is followed with a

probability 1− ε. To ensure state-space exploration a random action is taken with

a probability equal to ε. ε starts from a value of 0.9 and linearly decreases down to

0.1.

Discussion DeepMind work [11] demonstrates the effectiveness of reinforcement

learning agents and their flexibility to different environments. It proves how a

model-free controller may learn how to behaves simply receiving a feedback from

the environment for its actions, like humans do.

14

4.2 – DeepMind

4.2.2 Deep Reinforcement Learning in Large Discrete Ac-

tion Spaces

In the previous case at issue (4.2.1), the action space is small and a Q-value based

approach, where the Q-value is evaluated for every possible action, it’s possible. The

complexity scale linearly with actions, so, the approach shown, become impractical

where the actions are one thousand, or one million, or even more. The work [12]

proves and shows how to deal with larger action spaces. Three cases are taken under

examination and it is shown the agent needs a different implementation to work with

respect to [11].

Strategy The policy π is directly implemented, instead to be extracted indirectly

selecting the higher Q-value. Hence, a neural network implementing π is used. The

NN produces actions in a continuous space. It’s easy for the continuous actions to

be out of the discrete action space. Therefore, it’s necessary to select a discrete

action from the discrete space, starting from the continuous action given by the

NN implementing the policy π. Nearest Neighbour algorithms are used to solve

the problem. If only the nearest discrete action is taken, the algorithm may not

converge: the dynamics of the system under control with respect to input actions

may be very varying. So, the best approach consists in to select a certain number

k of actions, and then to start a Q-value based approach with the reduced action

space with dimensionality k.

Experiments and Results In the following three cases of study with different

actions spaces and dynamics are reported. The main agent parameters are the

number k of actions selected from the Nearest-Neighbour algorithm and the type

of Nearest-Neighbour algorithm used: exact or approximated (slow-99% accuracy,

medium-90% accuracy, fast-70% accuracy).

1. Cart-Pole The agent has to balance a pole attached to a cart by applying

force to the cart. The action, therefore, is the force intensity and there are 1

million possibilities. To verify the performance of a Q-values based approach

it’s possible to set k equal to the action space dimension, so, 1 million. With

this setting the algorithm doesn’t converge. The pole responses to similar

15

4 – Reinforcement Learning

actions, it’s only slightly different. So, it’s possible to set k at 1 and skip the

Q evaluations. For the same reason a fast-70% accuracy nearest neighbour

algorithm demonstrates to be sufficient. A video demonstration of the agent

behaviour is available here.

2. Multi-Step Plan Environment The agent has to plan a path to arrive

to a goal position. The number of possible movements i: up, down, right

and left or only down and left, is a parameter of the algorithm. Moreover,

the number of actions to plan n is an extra parameter. The Q-value based

approach should tract with a complexity of in, and quickly diverges. With n

equal to 1, the algorithm still diverges. It’s necessary to increase n up to 20

to met the optimal policy. k equal to 1 is sufficient but with a slow-70% or

exact nearest neighbour algorithm.

3. Recommender Environment The agent has to recommend items to the user

on the basis of the object currently in use. Three item sets of different size

are taken into account. For every set it has proved to be necessary increases

k with respect to the Cart-Pole and Multi-step Plan Environment cases (k =

1). The Recommender Environment dynamics is quite irregular. The agent

converges for k equal to 20, 83 and 656, for action spaces of 49, 835 and 13138

items respectively.

Discussion It has been shown by [12] reinforcement learning agent efficacy in

large action spaces. [12] gives the green to a new class of problems for RL agents.

Summarize

Reinforcement Learning seems to be particularly interesting to emulate human-like

learning and behaviour when unknown problems are faced. In fact, the aptitude to

learn without examples it’s a fundamental human ability.

16

https://www.youtube.com/watch?v=0IWt2_2HxXg&feature=youtu.be

Chapter 5

Associative Memory

According to the Associative Machine theory (3.1.1): knowledge, ideas, words, mem-

ories, dreams are stored in a network in which they are heavily interconnected: ob-

jects to their characteristics, causes to effects, facts to its habits [8]. Inside this net,

some nodes may be activated from the outside from images, sounds, perceptions

and in turn they activate other nodes, to whom they are connected, and so on. This

structure explains why we remember something we had forgot thanks to a small cue.

It is moreover responsible of the majority of actions we do, especially when lost in

thought (and system is 2 shut off or completely busy). The chapter starts analysing

the associative memory implementation [13], then it focuses on Latent Semantic

Analysis, a way to represent words and phrases which gives similar representations

to words with similar meanings. Finally the Word2Vec project is described. It is

a step forward with respect to Latent Semantic Analysis. In fact, thanks to it, it

become possible to express analogies among words.

5.1 A Spiking Neuron Associative Memory Ex-

ample

A spiking neural network associative memory, powered by the Neural Engineering

Framework (NEF), is introduced by [13]. The system was developed to have an

estimation of the internal biological mechanisms who regulate associations in the

human brain. Given that, spiking neurons are used and also, some constraints are

introduced in the synapses and post-synapses current models to respect biological

structures and behaviours. The system is tested on the Remote Associates Test

(RAT), a practice still used by psychologists to measure people creativity. Subjects

under examination have to identify the word which connects three other words, given

17

5 – Associative Memory

by the test, under a certain time limit. To meet the goal an associative memory

is essential, to connect words among them and consequently to generate the puzzle

answer. The words associations database, provided by [14], is used from [13] to

generate words associations.

5.1.1 Associative Memory Architecture

Inside the Neural Engineering Frameworks words are represented by vectors, in-

put stimuli are sensed by the network and they activate groups of neurons which

represent data entries. The NEF, furthermore, encodes associations among words

as synapses between groups of neurons. Therefore, neurons trigger in turn other

neurons areas generating associations.

Word Representation Word-vector pairs are generated off-line and mapped into

the network. Differently from Latent Semantic Analysis (LSA) [18] or Word2Vec

[20], analysed later in the chapter, encodings are not based on semantic similarities

among words because the highly noisy spiking networks may easily confuse inputs

among each others. For this reason words are encoded as almost orthogonal vectors.

To achieve this purpose the vectors dimension rapidly raise; to correctly solve the

RAT, vectors of 2048 dimensions are used to represent 5018 words.

Imagine a surface of neurons, where each neuron is connected to the same in-

puts. If the input vector is normalized, and the weight vectors are normalized, the

activation will be higher where the alignment between input and weights is greater.

In fact, neuron activation is proportional to the product:

wti · x(t) (5.1)

Where wi is the weight vector of the ith neuron and x(t) the input vector at time

t.

Starting from this simple principle the NEF is able to represent each word as a

neural activation.

Making Associations Neural response to input stimuli has to be some way elab-

orated to trigger associated neurons. Then, neuronal activities has to be decoded.

18

5.1 – A Spiking Neuron Associative Memory Example

Skipping the decoding phase, because closely related to the type of neurons used

by [13], it’s possible to express associations starting from the following definitions:

� The Dictionary D, an NxD matrix. Where N is the number of words and D

the vectors dimensionality.

� The Associations Matrix A, an NxN matrix of normalized real numbers.

Thanks to the NEF it’s possible to implement the output activity y(t) = Âx(t)

where:

Â = DtAD (5.2)

Hence, the output activity y(t) may be rewritten as:

y(t) = (DtAD)x(t) (5.3)

By analysing one by one the partial products, some truths may be inferred:

� Dx(t) return a N dimensional vector where, the i-th element gives the align-

ment between the word x(t) and the word D(i) of the dictionary.

� A(Dx(t)) generates a vector of real numbers of dimension N, where both align-

ment with the input and associations strength among words are taken into

account.

� Dt(ADx(t)) remaps back the informations in a vector of dimension D, like the

dictionary. The i-th element is the activation of the word D(i).

Summarize

The implementation [13] is an example of associative memory selected among many

others present in literature ([16], [17]). They prove the possibility to implement

an associative memory: a system which stored data and link among data. The

behaviour implemented from this networks seem to be the basic kernel to arrive

to create an artificial intuition system according to the theories of Kahneman and

Simon.

19

5 – Associative Memory

5.2 Latent Semantic Analysis

Words may be represented as vectors of a multidimensional space, as shown in [13]

and explained in sec 5.1. Latent Semantic Analysis (LSA) studies semantic similar-

ities among words and suggests similar encodings for words with similar meanings.

The advantages and the applications of this technique range from the language

processing ([19]) to the database query ([18]) and in this section they will be in-

vestigated. The first step consists into create a matrix of associations among the

objects of interest, e.g. words. The second step instead, it’s the Singular Value

Decomposition (SVD).

5.2.1 Association Matrix

An association matrix is a collection of association strengths between object pairs.

Starting from a dictionary of N words, it’s possible to define an Association Matrix

A, of dimension N × N , where each element aij represents the strength of the

association between the word i and the word j [19].

We use a free available associations database of 5019 words [15]. Informations

are collected by asking to more than 6,000 participants to write the first word come

to his mind by reading a cue word, e.g. the volunteer read ”dog” and write ”cat”.

But, if the word ”dog” often produces the word ”cat”, the opposite is not necessary

true. So, the matrix isn’t symmetric and reasonably full of quasi-zero numbers. It

is similar in shape to what reported in table 5.1.

human interface computer user
human 1 0.8 0 0.6
interface 0.8 1 0.9 0.9
computer 0.2 0.6 1 0.7
user 0.7 0.9 0.8 1

Table 5.1: Example of Word Associations Matrix

Diagonal values may be set to one or to zero, it depends by the application.

The main assumption in LSA is that similar words are supposed to have similar

representative rows. The study [19] shows association matrix manipulations starting

20

5.2 – Latent Semantic Analysis

from the data collected in the free associations database [15]. Starting from a matrix

like 5.1 it is possible to get other association matrices:

� S ′ matrix: its elements are obtained by adding forward and backward associ-

ation strength for each and every element:

s′ij = aij + aji (5.4)

Therefore, S ′ become symmetric.

� S ′′ matrix: for every connection are taken into account backward and forward

strength, like for S ′, but also indirect connections:

s′′ij = s′ij +
N∑
k=1

s′iks
′
kj (5.5)

5.2.2 Singular Value Decomposition

The core of the LSA is the Singular Value Decomposition (SVD). The algorithm

starts from an arbitrary matrix of associations A, of dimension N × N , where N

is the length of the dictionary, arrives to the Word Association Space (WAS) [19].

The WAS is a k -dimension space where words are represented according to its sim-

ilarity. An example of Singular Value Decomposition is available in [18]. With the

purpose to construct queries which go beyond common strings comparisons, an as-

sociation matrix is constructed to bound documents stored in the database with all

the words contained inside the texts. A matrix, quite similar to that shown in tab

5.1, is constructed. However, words are arranged along the rows and documents

along the columns. Every item of the matrix is a count of how many times such

word appears inside each document, a frequency measure, then the items are nor-

malized. Hence, words which appeared in common documents have similar rows

and documents which contain similar words have similar columns. Singular Value

Decomposition reduces the matrix dimensionality from N to k. To accomplish this

dimension lowering the A matrix is decomposed into the product of three matrices:

A = T0S0D
′
0 (5.6)

21

5 – Associative Memory

Such that T0 and D0 have orthonormal columns and S0 is diagonal. Then, all

the singular values of S0 are ordered by size and only the k highest are kept. If

all the other values are set to zero and the multiplication executed a new matrix

Â is obtained. It can be demonstrated that Â is the least square approximation of

A and it has rank k. By removing rows and columns of the set to zero elements

in S0 and the corresponding column in T0 and D0 three new simplified matrix are

obtained: T , D and S. By multiplying T , D and S is still obtained Â [18]. Rows of

Â may be used as vectorial representation of the words and its columns as vectorial

representation of the documents. Although, Â is obtained by an approximation of

A it still maintains the same dimensionality as illustrated by image 5.1.

A0 T0 D0

NxN

=

NxW
WxW

WxN

S0

A T D

NxN NxK
KxK

KxN

S ^ = x

x x

x

Figure 5.1: Graphical illustration to clarify the equal dimension of A and Â

So, new queries may be processed differently. Each word is substituted by its

vectorial representation and an average vector obtained by the query’s entries is used

to match results inside the database. The query is compared with the documents

by a scalar product. Indeed, scalar products among normalized vectors return the

cosine of the angle between the vectors which states how much the two elements

are superimposed. A query example is reported in [18]. It shows how the query

”human computer interaction” without SVD doesn’t return two important matches

22

5.3 – Word2Vec

which are instead returned thanks to SVD query improvements. The same SVD

technique may be applied to any association matrices, like for example S ′ and S ′′.

[19] reports how semantic similarities between words may be enhanced thanks to

SVD and simple scalar products.

Summarize

Latent Semantic Analysis permits to assign meaningful vectorial representations to

words but, as seen in [18], also to more complex entities. Is it possible to represent

thoughts, concepts and memories inside the word association space and then build

an associative memory using the resulting vectors as nodes?

5.3 Word2Vec

Latent Semantic Analysis and Singular Value Decomposition are not the only way to

find meaningful vectorial representations for words. Word2Vec (W2V) [20] project

aims to reach the same goal but with a totally different approach. Several types

of neural networks are trained to guess next words given a phrase context. When

training ends, the encodings built inside the inner layers of the NNs are taken and

used as vectorial representation of the words. W2V is not only another way to

achieve the same targets, its encodings are near for words of similar meanings but,

furthermore, distances among encodings have as well importance. Semantic and

syntactic properties are extracted, e.g. the difference between vectorial representa-

tions of king and man summed to the vector woman return something very close to

queen in the semantic space [21].

5.3.1 Training and Architecture

Different classes of NNs are trained to extract vectorial representations of words,

also named embeddings, with slightly different characteristics.

Feed-Forward Model Let’s start talking about the Feed-Forward Model pro-

posed in [23]. The following points shed light on its architecture:

23

5 – Associative Memory

� Input layer: T words are encoded using one of the N possible coding (N is the

size of the vocabulary);

� Projection layer: the T words input produces an output of T × D (D is the

word-vector dimension);

� Hidden layer: Compute probability distribution over all the N words in the

vocabulary (N is the output dimension);

� Output layer: the output word is selected.

Recurrent Neural Network Model The Recurrent Neural Network (RNN),

presented in [24], it is made up by:

� Input layer: a single word is encoded.

� Inner layer: thanks to the recursive connections the network earn a memory

and the input words received previously play a role in the output evaluation,

jointly to the actual input word.

The probability of each word to be the next with respect to the context is

given.

� Output layer: the output word is selected.

The recursive network general equation are reported in the following:

s(t) = f
(
Uw(t) +Ws(t− 1)

)
y(t) = g

(
V s(t)

) (5.7)

Where:

� s: state; y: output; w: input;

� U,W,V: weights matrices.

� f(z) = 1
1+e−z and g(zm) = ezm∑

k e
−zk

: Sigmoid and Softmax non-linear functions

respectively.

24

5.3 – Word2Vec

Thanks to recursive connections, fixed length context of Feed-Forward Model is

overcome.

Continuous Bag-of-Words Model The Continuous Bag-of-Words (CBW), pre-

sented in [21], it’s similar to the Feed-Forward model. Even though, the projection

layer is missing. The architecture:

� Input layer: it receives T words as input;

� Hidden layer: the T words are averaged and the probability of the next word

computed for each and every words of the dictionary.

� Output layer: It selects the output word.

The name comes from the fact that the averaging delete words order. It’s like

they are putted inside a bag.

Continuous Skip-gram Model Continuous Skip-gram Model (CSG) operates

differently from other models. It receives only a word as input and guesses previous

and future words, it guesses the k words context of the input word. Its architecture:

� Input layer: A single word of dimension D is received;

� Projection layer: It predicts the probability of each word of the dictionary, for

every possible position in the context.

� Output layer: It selects the k words of the context.

5.3.2 From Words to Phrases

The main limitation of previous presented works is the impossibility to represent

something more complex than single word. Not always the sum of the single words

meanings correctly represent a more complicated concept. This limitation brought

to new studies, ideas and results, like [22]. Here, to solve the problem, the texts used

for the NN training are pre-analysed and the most common phrases are treated as

”individual tokens” [22]. In this way the dictionary size increases, but more complex

25

5 – Associative Memory

concepts may be correctly represented. Furthermore, the [22] study, presents a new

characteristic of W2V encodings. The normalized sum of two vectors permits to

obtain interesting results, for instance the sum between the vector river and Russia

returns the vector Volga river.

5.3.3 LSA and W2V comparison

Latent Semantic Analysis and Word2Vec projects are quite similar and it’s difficult

to decide at priori who to bet on. [25] compares the encodings under several expects:

1. Semantic relatedness: the cosine distance among words is compared with an

average votes on relatedness expressed from people.

2. Synonym detection: the synonym has to be detected among four words. The

answer is chose by means of scalar product.

3. Concept categorization: space items have to be clustered in natural categories.

4. Selectional preferences: the most common noun as subject or object of the

action described by the given verb have to be supplied. Answers are compared

with people’s answers.

5. Analogy: an example pair and a test word are assigned, e.g. brother, sister as

example pair and granddaughter as test word, the word grandson is expected.

W2V approach outperforms LSA in almost all the tasks. Only in the Selectional

preferences task LSA approach W2V achievement.

Summarize

Techniques described in this chapter show as words may be represented in a vector

space in which relatedness, semantics and syntactic properties may be embedded.

Especially [22], which introduces phrase encodings, transforms from a word to a

concept space, it seems to be a good starting point to build an intuitive architecture.

26

Chapter 6

Visual Embedding Space

Figured out a way to implement intuitive reasoning, it’s necessary to equip the

system with human senses to initially excite the associative machine. Common

visual classifiers ([28], [29]) are trained to recognize a certain number of different

categories of objects. Real word is not so rigid partitioned and it’s common to find

items for which the classification is ambiguous. A way to address the problem is

to represent classifier categories as point in a semantic space ([19], [22], [20]) and

classify input objects as points in the same space. Thanks to the properties of

semantic spaces it’s possible to correctly classify categories of objects never seen

during the training. This feature is called Zero-Shot Learning. Two examples of

Visual Semantic Embeddings (SE) classifiers are reported in this chapter [26], [27].

This systems cover a fundamental gap arisen during the conceptual developing of

the intuitive network, i.e. how to shift from a visual to a semantic space, inside

which associations are possible?

6.1 DeViSE

The Deep Visual Semantic Embedding (DeViSE) is a visual classifier which takes

advantage of semantic analysis of textual data. It uses the embeddings to give a

semantic representation of its categories and attributes a new embedding to each

visual input it receives.

Architecture DeViSE is obtained by two distinct systems, i.e. the Mikolov’s

neural language model [21] and a deep convolutional neural network AlexNet able

to classify up to 1000 classes of objects [28]. The two networks are distinctly pre-

trained. Then, the last softmax layer of the visual classifier is removed and the

resulting 4096 floating point vector is attached to a new block, which apply a linear

27

6 – Visual Embedding Space

shift from 4096 to 1000, the output dimensionality of the embeddings. The projec-

tion layer has to be trained to reduce mapping errors. The loss functions introduced

in [26] aims to maximise the difference among the scalar product between the image

and its label and the image and all the other labels:

loss(image,label) =
∑
j 6=label

max[0;margin− tlabelMv(image) + tjMv(image)] (6.1)

Where:

� tlabel is the embedding of the classifier label corresponding to the image and tj

the embedding of a generic label. All the embeddings are unit normed;

� v(.) is the classifier output, removed the softmax layer.

� M is the projection layer matrix, it contains the parameters that have to be

tuned to reduce the mapping error.

� The margin is set to 0.1 and avoid the loss is equal to zero for tjMv(image)

products equals to tlabelMv(image).

As mentioned previously, classifiers which embeds semantic labels may correctly

classify never seen categories of objects: Zero-Shot Learning. Indeed, for example,

DeViSE is able to give an optimal semantic response to images of sharks, even

thought it was never trained to recognize images labelled as shark, but only more

specific categories like tiger shark, bull shark, and blue shark [26].

6.2 ConSE

The CONvex combination of Semantic Embeddings (ConSE), to be precise is not

a Visual Semantic Embeddings classifier but a method to implement them. In [27]

is explained how to create SE classifiers starting from whatever visual classifier and

embedding vectors. The only necessary condition is that the classifier labels have

to be contained among the embedding space.

28

6.2 – ConSE

ConSE method Consider an N-way visual classifier which returns a probability

p0, for an image x, to be a member of a class y ∈ Y , and
∑

y∈Y p0(x|y) = 1. The t

highest p0(x|y) are expressed as p0(x|t) with t ∈ T < Y and are considered to map

the images into the embedding space:

s(x) =
1

Z

T∑
t=1

p0(x|t) · s(t) (6.2)

Where:

� s(·) returns the embedding of its argument;

� Z =
∑T

t=1 p0(x,t) is a normalization factor.

Therefore, 6.2 is simply a convex combination of the T labels of the classifier

with highest probabilities. The coefficients are the same probabilities.

ConSE implementation and comparison ConSE method is applied to the

AlexNet [28] classifier and [21] embeddings to be directly comparable with DeViSE

[26] on the ImageNet dataset [30]. Comparison among the two networks shown how

DeViSE successes in the classification of the trained classes but ConSE performs

better in the Zero-Shot task, more details are available in [27].

29

Chapter 7

Algorithm Overview

The algorithm working principles heavily weights on the ideas of Simon and Kah-

neman [7], [8]. The associative structure which permits to surf among past and

conscious experiences in an unconscious and uncontrollable flow precisely hit our

idea of what intuition is. We discover a way to represent human knowledge in the

vectorial representation of words. It maps thousands of words and phrases in sig-

nificant points of the space [22]. Thanks to this basic alphabet becomes possible to

represent new concepts as convex combination of the others.

The free association database [15] permits to set up a reasonable associative

structure, since associations to 5019 words are collected with the support of 6000

participants. The database is free available and associations are given in different

formats. We chose for Appendix B which order alphabetically the words and gives

all the associated words for each and every entry. The database of Appendix B is

used after a minimal reformatting made by a Python script.

Once the associative skeleton is set up, it becomes necessary to surf on its paths.

With infinite resources, starting from a cue word would be possible to take all

the associations as next states, and in turn recurs on all of them. In this way

resources soon terminate, it’s necessary to define both a width and a depth for the

research. The width determines how many words are evaluated at every step, the

depth instead, establish after how many steps the algorithm is stopped. They define

the research space. Set a limit on the width lead to select the best associations to

kept and the worst associations to thrash. We decide to insert an agent, Q-network

based, which receives words pairs in input and returns a measure of the transition

quality, the Q-value. The agent filters the new states.

Algorithm outputs are also based on the agent, in fact, when the Q-value between

the starting word and one of the arrival states of the algorithm is sufficiently high,

the state becomes an output. The algorithm, which implements the System 1 of

30

the Dual Process Theory [8] suggests words, phrases, ideas to the listener, the logic

System 2 in the theory. The suggestions are called intuition when System 2 believes

they solve the problem faced.

In the following sections the algorithm is explained in-depth, meanwhile the

Matlab code is available in Appendix A. The first section 7.1 clarifies Q-agent im-

plementation, then the associative machine algorithm is described in section 7.2.

Last, a way to map images on word embeddings is investigated in section 7.3.

31

7 – Algorithm Overview

7.1 Q-network Implementation with Matlab

The Q-network agent is fundamental to filter among associated words and to select

which associations suggest to a hypothetical System 2 of the Dual Process Theory

[8]. As explained in section 4.1.2 the agent receives in input the system state and the

action and returns an estimation of the final score given by executing that specific

action and then the optimal policy. The state of the system, initially is the cue

word, after the first iteration w words among the associated words are kept. The w

words are the new state of the system.

Thinking about the DeepMind examples, shown in section 4.2, it’s possible to

analyse the architecture of the agent with respect to known and working schemes:

1. The states and actions sets are superimposed, just like in the Recommender

Environment example, section 4.2.2, then the chosen actions coincide with the

system next state.

2. Differently from the Atari example, reported in section 4.2.1, where the pos-

sible actions are only eighteen and the Q-agent directly returns in parallel the

eighteen Q-values given by following action ai with i ∈ [1 : 18], in our case the

actions are many more, so the agent takes as input the couple state-action,

just like in the reinforcement learning theory in section 4.1.2, and evaluates

transition quality one by one. It has to be noted that the evaluations may be

performed in parallel.

3. The case of study is close to the large discrete action space example of section

4.2.2, but it is simplified by the restricted number of actions available in every

state. For this reason it’s not necessary to implement a policy π and then a

near neighbour algorithm to arrive at the Q-value estimation. It makes sense

to limit the agent evaluations to the words associated to the current state or

to its subset.

String words are substituted by their embeddings. So, the agent input is a

couple of embeddings of which it estimates the transition quality. Therefore, if a

state transition receives good or bad rewards, similar state transitions are trained

automatically.

32

7.1 – Q-network Implementation with Matlab

Matlab Implementation

Network Structure Deepmind Atari research [11] shown its Q-agent structure,

as recap in section 4.2.1. Skipping the first convolutional layers which have the

role to extract the features of the console raw frames, to implement the Q-values

computation are left two fully connected layers. So, thanks to the Matlab Deep

Learning Tool Box a feed-forward neural network is implemented by means of the

fitnet Class. The Q-network internal structure is made up by 2 fully connected

layers, exactly as the Atari-net [11]. Input size changes according to the embedding

size, the output width is constantly kept to one. The number of hidden units per

layer is a very critical parameter which has to be tuned very carefully (see Methods

ch.8).

Reply Memory Like in [11] a Reply Memory is used to keep track of the system

transitions and to train the net among episodes. In this case starting and arriving

states are saved as strings and only when the training time comes they are converted

to embeddings with the word2vec method. In this way a big amount of memory is

saved but, most of all, the Reply Memory access time is reduced moving all the

strings to embeddings conversions in a not real time environment, among episodes,

when training is performed. Moreover, the Q-values estimated by the net are stored

together with the states. Summarising, each entry of the Reply Memory is made up

by tuples with the following structure:

〈 current state, next state, Q(current state, next state) 〉

Training Phase At training time, temporal difference method TD(0), readapted

to Q-networks and described by equation 4.10 is used to update the agent. Looking

at 4.10, some informations are missing to apply temporal difference method:

1. The discount factor γ is a parameter tuned very close to one according to the

Deepmind directives [10], [12];

2. The learning rate α, to be tuned during algorithm testing phase;

3. The reinforce signal r possible values are two: +1 for positive rewards and −1

for negative rewards. In this way the feedback is straightforward: it becomes

33

7 – Algorithm Overview

a simple thumb signal and after the training phase the network outputs stays

very near the range [-1,+1] since all the training set entries are bound in the

range.

Rewards are not stored inside Reply Memory, in fact they are not even known

during an episode, they are discovered only when some suggestions is proposed as

output. Or also, as it is explained in section 7.2, when some of the suggested words

proposed from the outside have be found during special training episodes. Long story

short, the training function reads the Reply Memory and receives an array of thumb

up strings. It looks for this words and follows all their paths updating their Q-values

positively, meanwhile all the other transitions are negative rewarded. Anyway, also

the negative rewarded paths have to be followed to apply TD(0) method and to

update the Q-values.

If for instance the cue word, i.e. the starting word, is hat and the width and

the depth are set respectively to two and three, a possible system evolution may be

given by image 7.1.

hat

helmet head

hair tail

shampoo cut

-1 -1

-1
+1

Figure 7.1: Graph of transitions and rewards starting from the cue word hat with
width equal to two and depth equal to three.

Such graph leads to the Reply Memory state given by table 7.1. Where cs and

ns stay for current state and next state.

If we ask for a single suggestion, the algorithm output is hair, since it has the

higher Q-value in the column Q(hat,ns). Filled the Reply Memory, it is possible

to apply the TD(0) method, implemented by equation 4.10. In order to correctly

update the net it’s necessary to start from the bottom. The first step consists in

to check if the last ns is a positive rewarded word. If it is, its Q(cs,ns) is set to

34

7.1 – Q-network Implementation with Matlab

cs ns Q(cs,ns) Q(hat,ns)
hat helmet 0.43 0.92
hat head 0.71 0.90
head hair 0.59 0.96
head tail 0.84 0.31
hair shampoo 0.40 0.20
hair cut 0.57 0.31

Table 7.1: Reply Memory status given graph 7.1

1, otherwise to -1. Then, the associated cs has to be found in the ns column to

reconstruct the path and to apply equation 4.10. So, Q(hair,cut) is updated to -1,

then the algorithm looks for hair in the ns column. It founds head-hair transition,

positive rewarded, so the negative updates are stopped because all the previous

transitions have led to arrive to a thumb-up state: hair. The algorithm restarts

from the last but one transition: hair-shampoo. Negative rewarded as well. It sets

Q(hair,shampoo) to -1 since it is at the end of the graph. Then the algorithm

starts looking for hair in the ns column. It founds head-hair transition, positive

rewarded. As previously, the negative updates are stopped. The algorithm restarts

from transition head-tail and negatively updates Q(hat,head). Then restart from

head-hair which positively updates Q(hat,head) deleting all the previous negative

updates. Last, hat-head transition updates Q(hat,helmet).

Every fork in a path produces a collision, i.e. in the example both head-hair

and head-tail transitions have to update Q(hat,head), which is the collision policy?

Among thumb-up and thumb-down rewards, as seen in the example, thumb-up wins,

otherwise a good suggestion is negative rewarded. Instead, who wins between two

negative updates? Is qi updated by qj or by ql? Theoretically the answer is from

both, and given that both the path have proven useless, qi is doubled decreased by

the effects of qj and ql as in equation 7.1.

qi = (1− α)qi + α(rj + rk + γqj + γqk) (7.1)

We will see in chapter 8 that the neural network doesn’t fit well such strategy,

so countermeasures have to be adopted.

35

7 – Algorithm Overview

7.2 Associative Machine Implementation with Mat-

lab

The Associative Machine Class retains control of the entire system. It supplies Q-

network and Reply Memory inputs and read the net responses to the input stimulus.

It receives a cue word from outside to run the simulation and reads the free associa-

tion database [15] to pick the associated states to submit to the Q-network as next

possible states. It implements a set of three filters:

1. Among all the associated words, only that present inside the embedding dic-

tionary are kept. In fact, if not present it is impossible to evaluate the Q-values

in which the words are involved.

2. To avoid to lose algorithm cycles bouncing among two bonded states, a list of

the just visited states is saved and the associations list is lighten by them.

3. Finally, after the Q-values computation, only w next state are kept. The w

with the highest Q-value. w stays for the width of the research.

The class implements two different kinds of episodes, normally the simulation

starts with a cue word and it lasts for a number of iterations given by the depth of the

research and with a parallelism given by the width of the research, as explained in

sec 7.1. In this case, the highest Q-values among the cue word and the visited states

become the System 1 suggestions. However, another kind of episode is available: the

training episode. In such episodes, it’s added a training phase in which good System

1 outputs are directly trained thanks to a list of final words received in inputs. More

details are available in Methods, chapter 8.

Association Database reformatting with Python

The type of associations of our interest are given by [15] in the Appendix B. A list

of all the words is given in alphabetical order in eight files:

� A-B.html

� C.html

36

7.2 – Associative Machine Implementation with Matlab

� D-F.html

� G-K.html

� L-O.html

� P-R.html

� S.html

� T-Z.html

Inside the files, for each and every entry a table with all its associated words is

given, like in table 7.2.

A FSG BSG
GRADE 0.270.0590
VITAMIN 0.060.0000
ALPHABET 0.040.0660
TYPE 0.030.0000
ACHIEVEMENT 0.020.0000
OUTSTANDING 0.010.0000
LOT 0.010.0000

Table 7.2: Table example from [15] Appendix B. Entry: A, on the left column the
list of associated words, on the right forward and backward association strength:
0.Forward.Backward → 0.Forward, 0.Backward.

Where the first word is A, the owner of the table, while the left column host the

list of associations. In the right column the encoded values of the backward and

forward associations strength respectively, formatted as follow:

0.Forward.Backward → 0.Forward, 0.Backward.

A Python script, available in Appendix A, has been developed to convert the

eight files in a set of files, one for each entry, with the list of the associations in the

first row and a table with forward and backward associations strength starting from

the second row. In this way is straightforward for the Associative Machine class to

extract the needed informations thanks to the fgetl and readcsv Matlab embedded

methods.

37

7 – Algorithm Overview

Matlab Implementation

The Matlab implementation of the Associative Machine class is quite simple and is

available in the appendix A. It consists mainly in a for loop, whose iterations are

dependent. So, no optimization such like unrolling or Matlab parfor are possible

to speed up the simulation. However a certain parallelism, of which the width of

the research is an indicator, exists inside every iteration and it is then possible to

increase performances of the loop body. The gains will be multiplied by the number

of iterations, i.e. the depth of the research. Let’s start to analyse the steps of the

algorithm by its flowchart shown by figure 7.2.

The first computational block, get associations, reads from the files the as-

sociations of the current state, keep in mind the current state may be composed by

up to width words. Therefore, it isn’t matter of a simple file reading. To maximise

the parallelism of the readings a Matlab parfor statement is used. In fact, given

that the readings are independent, it’s possible to avoid to waste time waiting for

the completion of the previous loop iterations.

The first filter remove from the list of associations, given by the files reading, all

the entries which are not present in the embedding dictionary, for reasons explained

before. Then the second filter delete all the entries just visited before. Random

actions are taken with a probability equal to epsilon, if it is the case the Q-values

among the chosen words and their previous states are computed, otherwise the Q-

values are evaluated for all the couples and only the highest are kept. Last, the Reply

Memory is updated and Q-values among the cue word, i.e. the starting word, and

the next state, i.e. the chosen associations, are computed. The highest are stored

and suggested. For all this computational blocks it’s possible to exploit Matlab

methods embedded parallelism. Loops are avoided where possible so computational

time decreases.

38

7.2 – Associative Machine Implementation with Matlab

START

GET ASSOCIATIONS

FILTER 1
remove words not

present in the
embeddig dictionary

FILTER 2
remove from the list

just visited states

Computes the Q-
values for all the
associated words

Takes
random

action with
probability

epsilon

Takes w random
action and computes

the Q-values of
the transitions

FILTER 3
keep w associations
with highest Q-value

STORE CS, NS, Q
IN THE REPLY MEM

COMPUTE
Q(starting word, ns)

STORE ns with Q
grater than
the treshold

RANDOM

REPEAT

Figure 7.2: Associative Machine Class loop body flowchart. It is executed a number
of times equal to depth.

39

7 – Algorithm Overview

7.3 Intuitive Machine Eyes Implementation with

Matlab

In line with the zero-shot classifiers [26] and [27], taken as an example of how to

shift from images to word embeddings, a visual embedding neural network object is

designed for the Matlab platform. The VENN (Visual Embedding Neural Network)

Matlab class is highly inspired from DeViSE [26]. The choice to adopt it as a model,

instead of ConSE [27], it is justified because we are not interested in the zero-shot

learning feature, but into recognize images as points of the embedding space.

Matlab Implementation

The implemented VENN class, as suggested in [27], starts from a pretrained image

classifier and a ready embedding dictionary; it’s possible to work with whatever clas-

sifiers and embeddings dictionaries. Every image classifier final layers are composed

by a fully connected layer and a softmax layer. This two layers are substituted by

a fully connected layer with a number of outputs equal to the embedding vectors

dimensionality followed by an output regression layer. Only this two layers need to

be trained, so, the training is very fast. This technique known as transfer learning

is the same adopted by [27]. Furthermore, a very small set of images per class is

sufficient, then the training time is even more reduced.

Untrained Class Recognition We choose to implement a new architecture for

our image classifier, but it was also possible to use a common classifier with fully-

connected and softmax layers. In fact, after the classification, it would be very

simple to get the embedding of the class by the embedding dictionary. Anyway, also

this structure needs to retrain its final layers to classify the classes of our interest.

However, there is a reason for which we decide for this solution. Actually, thanks

to the output type of our classifier, becomes possible to obtain the classification

of untrained classes by a manipulation of the embedding dictionary. Let’s explain

with an example, if the classifier is trained to recognize the classes: man, woman

and king among the others, it generates their embeddings when images of these

classes are supplied in input. Even if a non trained class is supplied, the classifier

40

7.3 – Intuitive Machine Eyes Implementation with Matlab

anyway generates an embedding. If the input image belong to the class queen, out

of the instructed classes, unsurprisingly the output embedding will be something

between king and woman. Therefore, by applying a sufficient number of images

and computing the average of the classifier outputs, it’s possible to obtain a new

embedding that, if saved in the dictionary, permits to recognize a class for which

the classifier is never trained.

41

Chapter 8

Methods

This chapter aims to shed light on the methods used to solve the issues encountered

during the algorithm development. Such parameters tuning strategies, network ar-

chitectures choice and results accuracy improvement.

8.1 Q-network Architecture

Deepmind studies, in particular the Atari project [11], suggests the agent could be

implemented by two fully-connected layers. The number of neurons of such layers

is not revealed but, actually, it’s not a useful information. In fact, the number

of neurons per layer highly depend by the training set and the number of output

[39]. There exist different methods to identify the best architecture, some are based

on heuristics, others to genetic algorithms [40]. The easiest one to implement is

the exhaustive test, unfortunately very time-consuming. Anyway, [39] presents two

equations, which give the number of neurons for both first and second hidden layers

beyond which the neural network precision stop to increase. So, equations 8.1 gives

un upper bound to the exhaustive test, making it possible:

N1 =

√
m+ 2

N
+ 2

√
N

m+ 2

N2 = m

√
N

m+ 2

(8.1)

Where N1 and N2 are the number of hidden neurons, respectively for the first

and second layers, m is the number of outputs and N is the training set size.

So, in Appendix B is available the Matlab script which tests and compares the

architectures in terms of mean square error by a double loop which iterates up to

42

8.1 – Q-network Architecture

the two hidden neurons bound N1 and N2 given by eq 8.1.

To better understand the problem let’s try to run the exhaustive test. The

training set is generated from the Association Machine Class, by setting width and

depth the same and equal to twelve. Finally, the training set size N is of forty

entries. Then, the outer and the inner loop iterate up to eight and four respectively,

in fact by applying equation 8.1 with m = 1 and N = 40:

N1 = 7.45 → 8;

N2 = 3.65 → 4.

Unfortunately in this way the method is not deterministic. Due to the initial

random distributions of weights and biases. By running three times the exhaustive

test the mean square errors are different, as depicted by image 8.1.

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First Run
Second Run
Third Run

Figure 8.1: The exhaustive test didn’t give deterministic results due to initial weights
distributions: in the figure the test is run three times with the same training set but
the results are quite different.

Note that the architectures are enumerated along the horizontal axis according

to the iteration in which they are tested. To clarify, look at table 8.1 in which is

written the architecture to iteration mapping.

43

8 – Methods

(N1,N2) iteration (N1,N2) iteration (N1,N2) iteration (N1,N2) iteration
(1,1) 1 (3,1) 9 (5,1) 17 (7,1) 25
(1,2) 2 (3,2) 10 (5,2) 18 (7,2) 26
(1,3) 3 (3,3) 11 (5,3) 19 (7,3) 27
(1,4) 4 (3,4) 12 (5,4) 20 (7,4) 28
(2,1) 5 (4,1) 13 (6,1) 21 (8,1) 29
(2,2) 6 (4,2) 14 (6,2) 22 (8,2) 30
(2,3) 7 (4,3) 15 (6,3) 23 (8,3) 31
(2,4) 8 (4,4) 16 (6,4) 24 (8,4) 32

Table 8.1: Horizontal axis mapping among architectures and iterations.

To exclude weights and biases initial state from the measure, another loop is

added. In this very inner loop the same architecture is tested L times and then the

mean square error is considered as the average of the L mean square errors. The

exhaustive test now implies L times more but the results accuracy justify the time

impact. The triple inner loop effect is evident in image 8.2. We discover in L equal

to twenty a good compromise between accuracy and waiting time.

Looking at image 8.2 it’s possible to observe how the mean square error changes

suddenly among very near architectures. The last configuration with layers of N1

and N2 neurons is the best one only in the third run. Therefore, given an initial

arbitrary distribution of the weights, the best architecture isn’t the bigger one at

all. The trend seems to be unpredictable a priori. Furthermore, the dataset size is

not known due to the constraints of our application, in which the net has supposed

to be retrained during its life. The constraint makes very difficult to understand

which architecture is a good choice. The nets which well fit the training set are

many, but as the dataset size changes, the accuracy is no more guaranteed. So,

we decide to keep a net until it’s mean square error and variance are under certain

limits. Then, we substitute the net when it starts to be too much inaccurate with

another architecture which better fit the new dataset.

Since the exhaustive test needs a lot of runs to complete the exploration we choose

to implement a very simple heuristic. The starting point is the (N1,N2) architecture,

it is tested H times and if it doesn’t satisfy the requirements of mean square error

and variance the hidden neurons number is slightly modified by decreasing it. The

44

8.1 – Q-network Architecture

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
First Run
Second Run
Third Run

Figure 8.2: The image shown how the inner loop introduced, which repeat the
training of every architecture multiple times, permits to find deterministic results
by running the exhaustive test.

H parameter and the mean square error and variance are selected very carefully:

� We set H in the range [8, 16], it’s a good compromise among heuristic conver-

gence and waiting time, especially when the training set dimension increases.

� We leaved the mean square error unconstrained and decide to check the vari-

ance of the Q-value computations. Actually, we use the standard deviation,

very close to the variance, set in the range [0.18, 0.20], about the 10% of the

output range, i.e. [−1, + 1]. This range permits to meet sufficiently precise

results avoiding too restrictively requirements for the training, which lead to a

long waiting time for the heuristic convergence. Lower the standard deviation,

higher the H parameter to converge.

45

8 – Methods

8.2 Relevant Transitions

Every transition of the system is stored inside the Reply Memory in a tuple with

the following structure:

〈 current state, next state, q(current state, next state) 〉

At training time, as explained in section 7.1, the memory is processed and TD(0)

method is applied. Given that the space exploration maintains an high degree of

parallelism, it is not unusual which a single transition generates up to 64 or 128

transitions. By choosing to keep in consideration all the transitions, TD(0) method

returns values very far from the minus and plus one range in which we try to trap

the network results. In fact, by looking at equation 7.1, it’s clear how if the received

rewards are 64 or 128, it’s very easy to exceed those bounds.

The number of rewards received is a very simple index of the transition impor-

tance, indeed, it permits to identify the main hubs, which are the most important

transitions to update. It’s crucial to understand how to train the net, in fact, tran-

sitions with too few negative rewards are not sufficiently explored to understand if

they are really bad transitions or if some more explorations may lead to find good

results. This fact brought us to choose to updates only the main transitions of each

episode, by using as discriminant the number of received rewards per transition.

This choice greatly decreases the size of the training set and highly reduces the

number of times it’s necessary to instance another Q-network which better fit the

dataset. Moreover, we fix a maximum dimension for the training set equal to 512

and 1024 entries during the experiments. By applying equation 8.1, it’s visible how

the maximum size of the network able to handle these datasets changes:

� 512 Entries Dataset: N1 = 26 and N2 = 13

� 1024 Entries Dataset: N1 = 37 and N2 = 19

46

8.3 – Training Episodes

8.3 Training Episodes

Training episodes are introduced to get examples to the agent and speed up the

training. The structure of the episode is quite similar but no suggestions are gen-

erated and an array of good suggestions is given in input. All the Q-value among

the array elements and the starting word are trained to one then, the Associative

Machine is run and also all the found paths which connect the cue word with the

array elements are automatically good rewarded.

A new memory called Reply Buffer is added with the only role to store cue word

and array element couples to update those transitions to one and to not affect the

Reply Memory which is processed to apply the TD(0) method.

8.4 Visual Embedding Neural Network

The Visual Embedding Neural Network is tested to evaluate both its accuracy as

classifier and its capability to recognize new classes without training, but thanks

only to dictionary manipulations. As explained previously VENN needs a trained

classifier, from which it’s possible to observe the inputs of the fully-connected layer.

We instance a pretrained Googlenet, since it works better than the Alexnet [29] used

in both DeViSE and ConSE [26], [27].

Moreover it’s necessary an embedding dictionary to complete the architecture.

Many free works are available, like Word2Vec [21] or FastText [37]. We choose for

GloVe [38] since it is made available in different sizes, both for the dictionary entries

and the space dimensionality. Especially the space dimension is a very critic factor

by the point of view of the processing time. Usually the dictionaries are released en-

coding words in a 300-dimension space. GloVe releases also a 50-dimension database

which we will use to test the classifier.

The datasets on which we perform the test is the Caltech 101 [31].

47

Chapter 9

Results

9.1 Associative Machine

In this chapter the Associative Machine is tested, the system parameters are set like

explained in Methods, chapter 8. The algorithm is undergoing to three different

tests to understand the agent capabilities:

1. Single Application Field Without Initial Training: The algorithm is trained to

get suggestions in a single application area without any initial training episode;

2. Single Application Field With Initial Training: Differently from the previous

test, the agent is initially trained with four user examples;

3. More Than One Application Fields: it is asked the agent to learn to suggest

in different set of domains with initial user examples.

Every test is considered passed when at least eight suggestions are pertinent to

the starting cue word. Pertinent means a system response like China if the theme

are Where to go for the holidays? Furthermore, Chinese si also accepted since

in the embedding dictionary the two words are very close, so it’s very difficult to

distinguish the cases.

9.1.1 Single Application Field Without Initial Training

In this section the algorithm is trained to suggest the user in specific and unique

application field. Different domains are investigated and results are reported in the

following.

48

9.1 – Associative Machine

Travel Idea In a series of episodes the agent are asked for suggestions about where

to go for holidays. Every Associative Machine response is rewarded in the view of

the user and the interview continues until the system recommends eight pertinent

suggestions.

As starting point is considered an untrained instance of the agent which casually

suggests a single pertinent word. In the example the agent satisfy the test require-

ments after six attempts. The entire system evolution is available on table C.1 in

Appendix C. It is here shown the array of suggestions which conclude the test:

island, California, Japan, bay, glacier, coast, sea, castle.

Furthermore, in 9.1 is reported the number of times the heuristic iterates to

find an agent architecture which fit the dataset and satisfy the deviation standard

requirement of 0.18 given in Methods, chapter 8.

Episode #architectures tested Q-net structure N1,N2

1 12 14,7
2 28 17,9
3 8 23,12
4 0 23,12
5 0 23,12
6 0 23,12

Table 9.1: In order from left to right the episode index, the number of architectures
tested before to converge and the architecture structures.

For every episode, identified by the left column, the table 9.1 shows the number

of architectures trained before the required standard deviation is met on the new

dataset on the second column. The right column shows the neurons number in the

first and second layer, N1 and N2 respectively. Zero architectures tested means that

the previous trained Q-network, retrained on the new transitions, still fits the new

dataset under the given accuracy requirements.

What to play? With the same structure of the previous example here it is asked

the agent suggestions to which instrument to play. Table C.2 in Appendix C shows

49

9 – Results

the list of suggestions among the episodes. The test finishes at the fifth episode with

the following array of suggestions:

Keyboard, drum, guitar, saxophone, trumpet, cello, clarinet, string.

Table 9.2 reports the iteration of the heuristic to converge at every episode and

the architecture structure, like before.

Episode #architectures tested Q-net structure N1,N2

1 8 14,7
2 29 17,9
3 0 17,9
4 0 17,9
5 0 17,9

Table 9.2: In order from left to right the episode index, the number of architectures
tested before to converge and the architecture structures.

9.1.2 Single Application Field With Initial Training

The same tests, previously accomplished without initial training, was here repro-

duced but four words are suggested to the agent before the first episode, just like

they was a set of user preferences.

Travel Idea The travel destination test was reproduced training the system to

four good types of destinations:

Africa, mountain, sea, Italy.

The test was stopped at the fifth attempt. The full system evolution is available

in table C.3, in Appendix C. Conversely, the final suggestions are reported below:

mountain, Chinese, Russia, Asia, sea, China, Japan, coast.

Finally, the table 9.3 reports the heuristic iterations count to converge.

50

9.1 – Associative Machine

Episode #architectures tested Q-net structure N1,N2

1 13 19,10
2 10 23,12
3 19 24,12
4 0 24,12
5 0 24,12

Table 9.3: In order from left to right the episode index, the number of architectures
tested before to converge and the architecture structures.

What to play? During the last single field experiment was reproduced the in-

strument problem with an initial training on the following four user examples:

Guitar, trumpet, drum, piano.

The agent satisfied the test requirements at the second run, with the following

array of suggestions:

saxophone, tenor, guitar, organ, cello, viola, flute, trumpet.

The first try of the agent is reported in table C.4, in Appendix C. As in the

previous cases the table 9.4 shown the heurstic iterations per episode and the network

final structure.

Episode #architectures tested Q-net structure N1,N2

1 4 18,9
2 0 18,9

Table 9.4: In order from left to right the episode index, the number of architectures
tested before to converge and the architecture structures.

9.1.3 More Than One Application Fields

The experiment investigates if a single agent is able to correctly operates in two

different domains. The first test is performed by training sequentially the agent in

the two operating fields. In the second test instead, the training is performed in

parallel. The training sets generated by the two previously trained agents 9.1.1, are

joined and used to train the Q-network.

51

9 – Results

Serial Training The test starts from an architecture trained to operate in a sin-

gle application field. Then, the agent is trained in another domain. Later, the

suggestions of the Q-network in both the domains are observed.

Initially the network is able to suggest travel ideas. Actually, the network trained

previously in the example 9.1.2 is taken. Then, the agent is trained to suggest an

instrument to play. The complete list of training episodes is shown in table C.5, in

Appendix C. The heuristic report, as usual, is available below, in table 9.5.

Episode #architectures tested Q-net structure N1,N2

1 1 27,14
2 1 27,14
3 1 27,14
4 1 27,14
5 2 27,14
6 1 27,14
7 1 27,14
8 0 27,14
9 1 27,14

Table 9.5: In order from left to right the episode index, the number of architectures
tested before to converge and the architecture structures.

The training elapses for nine episodes. At the ninth attempt the network gener-

ates the following results for the starting cue word play :

saxophone, tenor, guitar, organ, cello, viola, flute, trumpet.

If the agent is run with the cue word travel, after the second training, it generates

the following array of suggestions:

rim, Asia, thick, China, crater, Russia, waves, slope.

Parallel Training Conversely from all the previous cases, here it was tested the

agent behaviour with two different training set sizes. The former one has a training

set of 512 entries, the latter 1024 entries. To train the Q-network the training sets

of the two agents trained in 9.1.2 are joined. Especially for the 512 entries dataset

52

9.2 – Visual Embedding Neural Network

a lot of items are dropped, since the two dataset joined are both of 512 entries. In

the second case no items are dropped.

To find a neural network structure which fit the dataset, the heuristic is run. In

both the cases the heuristic doesn’t converge until the deviation standard require-

ment is increased from 0.18 to 0.20. Table 9.6 shown the heuristics iterations and

the final network structure.

#architectures tested Q-net structure N1,N2

512 Entries Dataset 13 27,14
1024 Entries Dataset 60 32,16

Table 9.6: Parallel training heuristic report. Two different agents are trained, in the
first row the agent own the same 512 entries dataset size of the previous examples
but the standard deviation is increased from 0.18 to 0.20, to allow the heuristic
convergence. In the second row the size of the dataset is increased to 1024 and the
standard deviation is also increased to 0.20.

Finally, the agent results for the cue words travel and play are shown below:

� 512 Entries Dataset travel Suggestions: moth, bark, glacier, Russia, swimmer,

Arctic, volcano, tropical;

� 512 Entries Dataset play Suggestions: bark, moth, swimmer, singer, chart,

royal, glacier, trumpet;

� 1024 Entries Dataset travel Suggestions: tongue, earthquake, rim, canyon,

snake, mouth, snail, typhoon;

� 1024 Entries Dataset play Suggestions: cyclone, tissue, pour, minute, metal,

alto, blow, bottle.

9.2 Visual Embedding Neural Network

The classifier is tested to prove its accuracy on the Caltech 101 image dataset [31].

It is trained on 30 images per each classes and tested on 10. The VENN instance is

than tried against untrained classes to see if the dictionary manipulations discussed

in Methods are effective, chapter 8.

53

9 – Results

9.2.1 Caltech 101

The Caltech 101 dataset test is reduced from 101 categories to 68 (the full list is

available in table C.6, Appendix C) because some classes are not present inside the

GloVe dictionary [38], others has too few images to both train and test the classifier

in line with our parameters. The classifier trained on 2040 images and tested on 670

images reach an accuracy of 88.66%.

9.2.2 Untrained Class Recognition

The classes excluded by the training, because with too few images, are here intro-

duced in the dictionary, as explained in Methods, chapter 8, and classified. The

number of untrained classes is 10 (as well listed in table C.7, in Appendix C) and

the new test set is made of 354 images. The classifier accuracy just in the untrained

classes is about 81.92%.

54

Chapter 10

Discussion

Associative Machine The core of the system is based on a neural network,

trained with the Reinforcement Learning technique, which has to surf among all

the known points of the embedding dictionary to meet the best answers to a cue

word. The tests performed have the purpose to investigate the agent capability to

effectively carry out the job. By looking at the single application field experiments is

clear how te agent operates inside the embedding space. All the suggestions received

are semantically near to the good rewarded words or to the words suggested by the

user, in the last two tests, where user preferences are taken into account. To verify

the assumption it’s sufficient to check if the semantic closeness is maintained among

the embeddings by looking at the results of the normalized scalar products between

couples of words. Let’s start to multiply the user preferences in the travel problem,

Africa, mountain, sea and Italy, to the agent suggestions:

Africa Mountain Sea Italy
Mountain 0.1035 1.0000 0.4337 0.0903
Chinese 0.3764 0.0685 0.2300 0.3192
Russia 0.3072 0.0379 0.2923 0.4542
Asia 0.6526 0.1384 0.3582 0.3587
Sea 0.3039 0.4337 1.0000 0.2451
China 0.5535 0.1010 0.3031 0.4656
Japan 0.3479 0.0407 0.2677 0.4332
Coast 0.4657 0.4175 0.7634 0.3147

Table 10.1: Scalar product among the training words and the agent outputs in the
travel problem.

The highlighted values propose a possible association among hint words and algo-

rithm outputs. Blue results point out user preferences arrived in output, red results

demonstrate closeness among training word and algorithm suggestions embeddings.

55

10 – Discussion

This result explain how the algorithm is able to extend the outputs set coherently

with the examples received.

Given that the training of the play test has demonstrated to be very easy, in fact

the training elapses for only two episodes, it’s interesting to see if the embedding

closeness among examples and outputs is higher or lower with respect to the previous

case.

Guitar Trumpet Drum Piano
Saxophone 0.8602 0.8971 0.6837 0.8058
Tenor 0.6727 0.8183 0.4378 0.7779
Guitar 1.0000 0.8145 0.7434 0.7172
Organ 0.4346 0.5496 0.4807 0.5542
Cello 0.6831 0.7596 0.4545 0.9098
Viola 0.4938 0.6502 0.3068 0.7914
Flute 0.6566 0.8398 0.5940 0.8125
Trumpet 0.8145 1.0000 0.7534 0.8053

Table 10.2: Scalar product among the training words and the agent outputs in the
play problem.

By evaluating the average values of the tables 10.1 and 10.2 are obtained 0.3649

and 0.7054. Therefore, in the play test the net outputs are closer to the examples

and probably this fact leads to a faster training. The reason for which the average

values are so different has to be inspected starting from the origin of the data, the

embeddings. The vec2word Matlab method permits to obtain the vocabulary entry

much close to the vector passed in input. If of interest, it’s possible to specify the

number of vocabulary entries to return. Thanks to this feature it’s possible to obtain

an arbitrary number of close words, not only the most. So, by asking for the closest

embeddings to our example words in both the travel and play cases it’s possible to

evaluate the average distance among every example word and it’s neighbourhood.

Finally, by taking the average values of all the evaluated distances it’s possible to

define a value which denotes the richness of similar words given a set of example

words. With a number of neighbours equal to ten, for each and every example word,

the indexes of similarity with the neighbourhood in the travel test is 0.7851, in the

play test instead is greater and equal to 0.8306. These values justify the assumption,

56

i.e. the net converges quicker if the example words have a multitude of similar words

inside the embedding dictionary. However, it’s also true that since the agent finds

the suggestions by surfing along the links given by the association database [15],

non connected or very far words are difficult to suggest, even if the agent response

to the word is very high. It’s simply possible that it doesn’t reach such word.

The last set of tests investigate the capacity of the net to be used in very far do-

mains. During the first attempt the agent is serially trained to different application

fields and it demonstrates to have the potentiality to operate in both, even if not

perfectly.

The second training strategy was unsuccessful. In fact, just from the beginning,

it has proven necessary to accept an architecture with an higher output variance to

permit the heuristic to converge. Probably, if the heuristic which looks for the new

neural network architectures has convergence problems, even though [39] demon-

strates the number of neurons in the hidden layers are sufficient, the training set

includes contrasting entries, collected among the training episodes on different do-

mains.

Visual Embedding Neural Network The classifier experiment aims to un-

derstand if it were possible to get embeddings starting from images. The VENN

outperforms the accuracy of many other classifiers tested on the Caltech 101 dataset

([34], [35], [36],), even thought all the convolutional layers are leaved untouched. In

fact, DeViSE [26], which inspire VENN, raises its accuracy by partially retraining

the convolutional layers. The classifier reaches an accuracy of 88.66% meanwhile

state of the art result is 93.42% [33]. It is better than expected. Furthermore,

the untrained classes recognition strategy has demonstrated to work satisfactory

achieving an accuracy of 81.92%.

57

Chapter 11

Conclusion

The work had the purpose to implement an algorithm able to emulate human in-

tuition. We found out that a dual layers neural network can accomplish the space

exploration, bringing out the most significant points it crossed. The studies proved

that the training set needs a special attention, since contradictory entries may lead

to convergence problems. Moreover, we explores the possibility of achieving em-

beddings by considering no longer words, but for instance images, sounds, tastes or

smells. We focused on images, modifying the standard images classifier final layers.

It was obtained a system able to map images in the vectorial space in which the

agent works. The training was accelerated thanks to the transfer learning technique,

and in addition, a method to identify untrained classes were successfully exploited.

The final results explained how, thanks to the support of the embedding space, the

agent other than suggesting past solutions, pushes itself over the boundaries of what

it has learned. Actually, the intuition described by the System 1 model ”is nothing

more and nothing less than recognition”, [7]. This sentence reflects our founding,

and if the Dual Process Theory is right about that, i.e. respecting the biological

processes, the difference between intuition and suggestion stays in the latter quality.

58

Appendices

Appendix A

Algorithms

A.1 Q-network Class

1 classdef Qnetwork < matlab.mixin.SetGet

%QNETWORK: implements a typical qnetwork trained with the TD(0) method.

3 %State transitions are stored inside a Reply Memory and the

%training method rewards all the transition stored in the Reply Memory

5 %starting from the last one.

properties

7 emb % embedding dictionary

replyMem % to store transitions

9 replyBuf % to store transition to reward directly to +/- 1

qnet % Qnetwork

11 n1n2 % number of neurons in the 2 layers [N1 N2]

TS % Training Set to retrain a new network when accuracy decreases

13 max_err % max standard deviation

n_of_shift % reduce the number of transitions to train

15 try_per_arch % architecture heuristic: training per arch before to change

arch

half_TS_size % half dimension of the training set

17 end

19 methods

function obj = Qnetwork(emb)

21 % Qnetwork: initializes propoerties to standard values.

% It receives emb to set the net inputs.

23 obj.emb = emb;

obj.n1n2 = [4 2];

25 obj.max_err = 0.18;

obj.CreateQnet(obj.n1n2);

27 obj.n_of_shift = -4;

obj.try_per_arch = 16;

29 obj.half_TS_size = 128;

end

31

function CreateQnet(obj , n1n2)

33 % CreateQnet: instances the agent.

60

A.1 – Q-network Class

% input width: emb.Dimension *2 (current and next word , aka current and

next state)

35 % 2 fully connected layers , see CheckAccuracy method

% output width: 1, the Q-value

37 width = 2*obj.emb.Dimension;

obj.qnet = fitnet(n1n2); % 2 hidden layer

39 obj.qnet = init(obj.qnet);

obj.qnet.trainFcn = 'trainlm '; % otherwise 'trainbr ';

41 % the input width is setted here

obj.qnet = configure(obj.qnet ,rand(width ,2),rand (1,2));

43 end

45 function qvalue = Q_value(obj ,cs,ns)

%computes q value starting from current state

47 %and next state , which is also the action

cs_emb = word2vec(obj.emb ,cs);

49 ns_emb = word2vec(obj.emb ,ns);

51 input = [cs_emb ,ns_emb]';

53 qvalue = obj.qnet(input);

end

55

function ReplyMem(obj ,cs,ns ,q)

57 %store cs, ns/action in string format and q estimation

%to train the network once the reward comes.

59 if isempty(obj.replyMem)

obj.replyMem = [cs ns q];

61 else

obj.replyMem = [obj.replyMem; cs, ns, q];

63 end

end

65

function ReplyBuf(obj ,cs,ns ,r)

67 %store cs, ns/action in string format and the reward

%to train the passed transition directly.

69 if isempty(obj.replyBuf)

obj.replyBuf = [cs ns r];

71 else

obj.replyBuf = [obj.replyBuf; cs, ns, r];

73 end

end

75

function HandleTS (obj ,cs ,ns,td0 ,r)

77 % HandleTS: keeps only 2* TS_half_size transitions. The most

% significant are considered the most negative rewarded and the

79 % positive rewarded.

81 if isempty(obj.TS)

obj.TS = [cs ns td0 r];

61

A – Algorithms

83 else

obj.TS = [obj.TS; cs , ns , td0 , r]; % add all the new transitions

85 [~, ii] = unique(flipud(obj.TS(:,1)+obj.TS(:,2))); % remove

equal transition , keep the newer

obj.TS = flipud(obj.TS);

87 obj.TS = obj.TS(ii ,:); % unique

%obj.TS = flipud(obj.TS);

89

i_1 = find(str2double(obj.TS(:,4)) > 0); % takes thumb up

transitions

91 residual = obj.half_TS_size - length(i_1);

[~, i_2] =

mink(str2double(obj.TS(:,4)),obj.half_TS_size+residual); %

takes worst rewarded transitions

93 i_new = [i_1;i_2];

obj.TS = obj.TS(i_new ,:);

95 i_new = randperm(length(obj.TS));

obj.TS = obj.TS(i_new ,:);

97 end

end

99

function ResetReplyMem(obj)

101 % ResetReplyMem: Reset ReplyMem.

obj.replyMem = [];

103 end

105 function ResetReplyBuf(obj)

% ResetReplyBuf: Reset ReplyBuf.

107 obj.replyBuf = [];

end

109

function [training_set] = TrainNetwork(obj ,alpha ,gamma ,suggestions ,rewards)

111 % TrainNetwork: train the net using the Reply Memory and

% TD(0) method: q(cs,ns)=reward(cs,ns)+gamma*max_q

113 % it directly trains the transition stored in the ReplyBuf

115 % get data from replyMem

cs = obj.replyMem (:,1); %[cs,ns]

117 ns = obj.replyMem (:,2); %[cs,ns]

q = str2double(obj.replyMem (:,3));

119

% TD(0)

121 rm_length = length(q);

td0 = zeros(rm_length ,1);

123 r = zeros(rm_length ,1);

for kk=1: rm_length

125 k = rm_length + 1 - kk;

w = cs(k);

127 % training episode: if ns(k) is a leaf of the path q <- r

% which is 1 if is a finalWord , -1 otherwise

62

A.1 – Q-network Class

129 if td0(k) == 0

l = find(strcmp(suggestions , ns(k)));

131 if ~isempty(l)
q_old = rewards(l);

133 td0(k) = rewards(l);

r(k) = rewards(l);

135 r_old = rewards(l);

else % maybe useless

137 q_old = -1.0;

td0(k) = -1.0;

139 r(k) = -1;

r_old = -1;

141 end

% otherwise update using TD(0) equation

143 else

td0(k) = (1-alpha)*q(k) + alpha*(gamma*td0(k)+sign(r(k))); %

TD(0) equation

145 q_old = td0(k);

r_old = r(k);

147 end

% start find the previous transition along the ReplyMem

149 for ii=kk:rm_length -1

i = rm_length + 1 - ii - 1;

151

% walking up the path ... when the connection is found

153 % if it's a suggestion break , it 's found in future

% iterations and set to 1. Stop the TD(0) propagation

155 % on the path.

% if it is to update positevly set +1 both q and r

157 % otherwise substitute the q (or take the average of

% the q received , better) and increment r to understand

159 % how many paths cross the state and negative reward it

if ns(i) == w

161 if ismember(ns(i),suggestions)

break;

163 else

if r_old > 0

165 r(i) = r_old;

td0(i) = q_old;

167 break;

else

169 if r(i) > 0

break;

171 end

end

173 r(i) = r(i) + r_old;

td0(i) = q_old;

175 end

break;

177 end

63

A – Algorithms

end % for ii

179 end % for kk

181 % reduce the number of transition to update

s = bitshift(rm_length , obj.n_of_shift);

183 if s == 0

s=1;

185 end

fprintf ("RM size: %i, TS size: %i (n_of_shift =

%i)\n",rm_length ,s,obj.n_of_shift)

187

[~, i_1] = mink(r,s); % takes worst rewarded transitions

189 [~, i_2] = find(r>0);% takes good rewarded transitions

i_s = [i_1;i_2];

191

r_s = r(i_s);

193 td0_s = td0(i_s);

cs_s = cs(i_s);

195 ns_s = ns(i_s);

q_s = q(i_s);

197

% insert replyBuf transition in the training set

199 if (~isempty(obj.replyBuf))
cs_s = [cs_s;obj.replyBuf (:,1)];

201 ns_s = [ns_s;obj.replyBuf (:,2)];

rb_r = str2double(obj.replyBuf (:,3));

203 r_s = [r_s; rb_r];

q_s = [q_s; rb_r];

205 td0_s = [td0_s; rb_r];

end

207

ts_length = length(cs_s);

209 fprintf (" training set: %i\n",ts_length);

211 % mix the training set

rp = randperm(ts_length);

213

r_s = r_s(rp);

215 td0_s = td0_s(rp);

cs_s = cs_s(rp);

217 ns_s = ns_s(rp);

q_s = q_s(rp);

219

input_s (: ,1:50) = word2vec(obj.emb ,cs_s);

221 input_s (: ,51:100) = word2vec(obj.emb ,ns_s);

223 %train the net

obj.qnet = train(obj.qnet ,input_s ',td0_s ','showResources ','yes');

225

new_q = obj.qnet(input_s ') ';

64

A.1 – Q-network Class

227 err = td0_s -new_q;

disp(table(cs_s ,ns_s ,q_s ,r_s ,td0_s ,new_q , err));

229

% update TS

231 obj.HandleTS(cs_s ,ns_s ,td0_s ,r_s);

233 training_set = [input_s ,td0_s];

% check if the agent accuracy is sufficient , run until a good

235 % agent is found. Time consuming.

obj.CheckAccuracy ();

237 end

239 function CheckAccuracy(obj)

% CheckAccuracy: heuristic to find an agent architecture which

241 % fit the training set with standard deviation constraint

243 % take the training set

cs = obj.TS(:,1); %[cs,ns]

245 input (: ,1:50) = word2vec(obj.emb ,cs);

ns = obj.TS(:,2); %[cs,ns]

247 input (: ,51:100) = word2vec(obj.emb ,ns);

t = str2double(obj.TS(:,3));

249 ts_size = length(cs);

% compute std deviation and mean error

251 q = obj.qnet(input ');

err = t'-q;

253 me = mean(err);

ds = std(err);

255 % set the threshold above which the agent is not accepted

e = obj.max_err;

257 e_neg = -1*e;

% If it is not necessary to change the net

259 if and(ds > e_neg , ds < e)

fprintf ("Still good , unchanged (%i,%i):\nmean err:\t%i\nstd

dev\t%f\n\n",obj.n1n2 , me,ds);

261 return;

end

263

% compute theoric number of neurons per layer , check thesis

265 [N, ~] = size(obj.TS);

m = 1;

267 N1 = ceil(sqrt((m+2)/N) + 2*sqrt(N/(m+2)));

N2 = ceil(m*sqrt(N/(m+2)));

269 fprintf ("N1 = %i, N2 = %i\n", N1 , N2);

obj.n1n2 = [N1,N2];

271 % run the heuristic to find a good agent

maxitr = N2*obj.try_per_arch;

273 fprintf (" maxitr: %i\n",maxitr);

for i=1: maxitr

275 % after some iterations change the architecture

65

A – Algorithms

if and(mod(i,obj.try_per_arch) == 0, N2 >1)

277 N1=N1 -2;

N2=N2 -1;

279 end

281 net = fitnet ([N1,N2],'trainlm '); % otherwise 'trainbr '

net = init(net);

283

net = configure(net ,input ',t');

285 net = train(net ,input ',t','showResources ','yes');

% compute the error

287 q = net(input ');

err = t'-q;

289 me = mean(err);

ds = std(err);

291 %check the net

if and(ds > e_neg , ds < e)

293 fprintf ("#%d Good performances on %i entries

(%i,%i):\ nmean err:\t%i\nstd dev\t%f\n",i,ts_size , N1 ,

N2, me ,ds);

obj.qnet = net;

295 return;

end

297

fprintf ("#%d Bad performances on %i entries (%i,%i):\ nmean

err:\t%i\nstd dev\t%f\n",i,ts_size , N1, N2, me ,ds);

299 end

fprintf (" failed\n");

301 end

303 end

305 end

66

A.2 – Association Engine Class

A.2 Association Engine Class

classdef AssociationEngine < matlab.mixin.SetGet

2 %ASSOCAITION ENGINE: it uses free -associations to move from a starting

%state. The free associations are collected by University of South

4 %Florida. Association engine uses Appendix B, reformatted thanks to a

%Python script.

6 %It takes associations and choose the w most signficant transitions

%using a qnetwork as discrimant.

8

properties

10 emb %embedding dictionary

qnet %qnetwork

12 reward %reward

startingWord %cue word

14 suggestions %suggestions/intuitions/outputs

last_training_set % last transitions used to train the net

16 ts %training set

n_suggestions %number of suggestions

18 end

20 properties (Constant)

alpha = 0.1; %bellman learning parameter

22 gamma = 0.9999; %discount factor

n = 100; %number of associated words

24 eps = 0.1; %probability to take random cues independetly from qvalues

end

26

methods

28

function obj = AssociationEngine(emb)

30 %ASSOCAITIONENGINE: instances the Q-network , stores the emb

%dictionary.

32 obj.emb = emb;

obj.qnet = Qnetwork(emb);

34 obj.n_suggestions = 8;

end

36

function Episode(obj ,maxItr ,w,startingWord ,finalWord)

38 % starting from startingWord the network has to reach one of

% the finalWord. The Q-Network is trained to achieve desired

40 % connections -path.

obj.startingWord = startingWord;

42 obj.qnet.ResetReplyMem ();

obj.qnet.ResetReplyBuf ();

44 %if starting word isn 't inside emb dictionary: premature

%finishing

67

A – Algorithms

46 if ~isVocabularyWord(obj.emb ,startingWord)
disp("The starting cue isn 't a vocabulary word");

48 return;

end

50

% if some finalword isn 't known exit

52 if ~isempty(finalWord)
to_exit = isVocabularyWord(obj.emb ,finalWord);

54 if any(to_exit == 0)

disp(" missing words :"); disp(finalWord(~to_exit));
56 return;

end

58

%if finalword is not empty , we are in a training episode.

60 %Therefore , we have to train the qnet to consider

%every finalword as a goal for the startingword

62 % store inside ReplyBuf training suggestions , they are

% trained as q=1 and are stored here because ReplyMem

64 % transition are post processed with TD(0) method

obj.qnet.ReplyBuf(repmat(startingWord ,[length(finalWord) 1]) ,...

66 finalWord ', ones(length(finalWord) ,1));

end

68

cs = startingWord; % cs = current state

70 old_states = cs; % just visited states

obj.suggestions = []; % suggestions found list

72 qvalue_suggestions = []; % qvalues of the suggestions

74 for i=1: maxItr

fprintf('### Iteration %i ###\n',i);

76 %get possible actions/nextstate

[input ,~] = obj.FindAssociations(cs ',obj.n);

78 cs = input (1,:);

cues = input (2,:);

80 % filter1 removes old states from possible new states

filter1 = ~ismember(cues ,old_states);
82 cues = cues(filter1);

cs = cs(filter1);

84 % filter2 removes missing vocabulary words

filter2 = isVocabularyWord(obj.emb ,cues);

86 cues = cues(filter2);

cs = cs(filter2);

88

% if all the possible next states were just visited or are

90 % not present inside vocabulary: premature finishing

if (isempty(cues))

92 fprintf (" premature finishing , zero cues\n");

break;

94 end

68

A.2 – Association Engine Class

96 % with a ceratin probability epsilon takes random actions.

% otherwhise computes Q value for each and every cues and

98 % choose the w highest

if(obj.eps > rand)

100 filter3rand = randperm(length(cues), min([w,length(cues)]));

cs = cs(filter3rand);

102 cues = cues(filter3rand);

max_q = obj.qnet.Q_value(cs,cues);

104 else

% q values evaluation

106 qvalue = obj.qnet.Q_value(cs ,cues);

% filter3: selects the w highest q values

108 [max_q , filter3] = maxk(qvalue ,min([w,length(cues)]));

cues = cues(filter3); %next state takes the action with the

best qvalue

110 cs = cs(filter3);

end

112

% assign next states after 3 level of filters

114 ns = cues;

116 % Update Reply Memory to update the net once rewards come

obj.qnet.ReplyMem(cs ',ns ',max_q ');

118

% Check if qvalue(startingword ,cues(i)) it's greater than

120 % the saved thumb up states. if it is save it here.

% Only if finalword is empty , otherwise it's a training

122 % episode and the aim is to reach finalword.

if (isempty(finalWord))

124 qvalue_startingword = obj.qnet.Q_value(repmat(startingWord ,[1

length(cues)]),cues);

qvalue_suggestions = [qvalue_suggestions;

qvalue_startingword '];

126 [qvalue_suggestions , ll] = maxk(qvalue_suggestions

,obj.n_suggestions);

obj.suggestions = [obj.suggestions; cues '];

128 obj.suggestions = obj.suggestions(ll);

end

130

%disp([cs', ns', max_q ']);

132

% Set current state as next state

134 cs=ns;

% Add old states to avoid returning on it

136 old_states = unique ([old_states cs], 'stable ');

138 end

140 if isempty(finalWord)

disp(" suggestions :");

69

A – Algorithms

142 disp([obj.suggestions qvalue_suggestions]);

else

144 obj.TrainQnet(finalWord , ones(1,length(finalWord)));

end

146 end

148 function TrainQnet(obj , suggestions , rewards)

%TrainQnet: for training episodes. It runs TD(0) method

150 %on the Reply Memory and also trains suggested transitions

%stored in the ReplyBuf.

152 obj.last_training_set = obj.qnet.TrainNetwork(obj.alpha ,obj.gamma ,

suggestions , rewards);

obj.qnet.ResetReplyMem ();

154 obj.qnet.ResetReplyBuf ();

end

156

function Reward (obj ,rewards)

158 %Reward for non -training episodes. Suggestions are rewarded and

%TD(0) method is applied starting from the ReplyMem. The

160 %suggestions are trained to +1/-1 thanks to the ReplyBuf , it

%depends by the rewards content.

162 obj.qnet.ReplyBuf(repmat(obj.startingWord ,[length(rewards) 1]) ,...

obj.suggestions , rewards ');

164 obj.TrainQnet(obj.suggestions , rewards);

end

166 end

168 methods(Static)

170 function [cues ,fas] = FindAssociations(word ,n)

% FindAssociations: returns the vector of the n most associated

172 % words to each word inside the input vector. Every output words

% is coupled with the input word.

174

% free -associations appendix -B reformatted in Python directory

176 path = "C:\ Users\gianl\Documents\Python\lsa\data";

wordPath = fullfile(path ,word + ".csv");

178

% since every word(i) produces potentially a different number

180 % of associations to parallelise the for loop a cell matrix of

% length(word)*n is used. In this way every iteration is

182 % independet from the others.

parfor i=1: length(word)

184 if isfile(wordPath(i))

186 %how to takes forward associations , for the moment

%useless.

188 %%M = csvread(wordPath(i) ,1,0);

%%nmax = min([n length(M(:,1))]);

190 %%fas(i,:) = M(1:nmax ,1); %forward association strenght

70

A.2 – Association Engine Class

192 % associated words loading , inside files are ordered by

% forward association value. The stronger the upper.

194 fid = fopen(wordPath(i),'r');

words = lower(string(strsplit(fgetl(fid) ,",")));

196 nmax = min([n length(words) -1]);

cues_cell{i,:} = words (2: nmax +1);

198 cs_cell{i,:} = repmat(word(i) ,[1 nmax]);

fclose(fid);

200 else

cues_cell{i,:} = "";

202 cs_cell{i,:} = "";

%fas(i,:) = 0;

204 end

end

206 % now parfor output has to be reformatted ...

cues = zeros(2,numel(cues_cell));

208 for i=1: length(cues_cell)

cues = [cues (1,:), string(cs_cell{i,:}); ...

210 cues (2,:), string(cues_cell{i,:})];

end

212 %fas = rmmissing(fas(:));

cues = cues(:,length(word)+1:end);
214 [~, i_temp] = unique(cues (2,:)); % remove equal outputs

cues = cues(:,i_temp);

216 fas = 0;

end

218

end

220 end

71

A – Algorithms

A.3 Visual Embedding Neural Netowrk Class

1 classdef Venn < matlab.mixin.SetGet

%VENN classifies images , to be initilized needs an embedding dictionary

3 %and pretrained classifier

5 properties

emb % embedding dictionaries

7 pretrained_net % pretrained classifier (googlenet , alexnet , etc..)

9 nImgs % training images per class

classes % classes to train took from the rootFolder

11 residual_classes % classes with too few images: img < nImgs +10

classes_to_remove % classes of the rootFolder not present as embedding

13 imageSize % pretrained net input image size

15 trainingSet % for final layers

finegrainTrainingSet % for final layers and pretrained net

17 testSet % to test the net

19 trainingImages

finegrainTrainingImages

21 testImages

23 trainingEmb

finegrainEmb

25 testEmb

27 testNetEmbOutput

29 threeLayerGraph % layer graph of the 3 final layers

threeLayerNet % 3final layer trained

31 end

33 methods

function obj = Venn(emb ,pretrained_net)

35 %VENN basic initialization

obj.emb = emb;

37 obj.pretrained_net = pretrained_net;

obj.imageSize = pretrained_net.Layers (1).InputSize;

39 obj.threeLayerGraph = obj.BuildThreeLayerGraph ();

end

41

function lgraph = BuildThreeLayerGraph(obj)

43 % buildThreeLayerGraph returns the 3 layers

% with regression output equal to the emb dimension

45 InputLayer = imageInputLayer ([1 1 1024] , 'Name', 'vennInput ');

72

A.3 – Visual Embedding Neural Netowrk Class

FCLayer = fullyConnectedLayer(obj.emb.Dimension , ...

47 'Name','fc300out ', ...

'WeightLearnRateFactor ',10, ...

49 'BiasLearnRateFactor ' ,10);

RegressionOutputLayer = regressionLayer('Name','routput ');

51 layers = [InputLayer , FCLayer , RegressionOutputLayer];

lgraph = layerGraph(layers);

53 end

55 function residual_classes = TrainingSettings(obj ,rootFolder ,nImgs)

%trainingSettings set training and test sets

57

% get valid classes from the image folder

59 obj.classes = Venn.GetValidClasses(rootFolder ,obj.emb);

imds = imageDatastore(fullfile(rootFolder , obj.classes),

'LabelSource ', 'foldernames ');

61

% set number of images for each training classes

63 tbl = countEachLabel(imds);

c = tbl{tbl{:,2}> nImgs +9,1};

65 obj.residual_classes = tbl{tbl{:,2}< nImgs +10 ,1};

residual_classes = obj.residual_classes;

67 obj.classes = c;

imds2 = imageDatastore(fullfile(rootFolder , string(c)), 'LabelSource ',

'foldernames ');

69 imds2 = splitEachLabel(imds2 , nImgs +10, 'randomize ');

71 r = nImgs/(nImgs +10);

%Split images in Training and Test Sets

73 [obj.trainingSet ,obj.finegrainTrainingSet ,obj.testSet] =

splitEachLabel(imds2 , r, 0.00001 ,'randomize ');

75 %resize images ...

obj.trainingImages = obj.ResizeImages(obj.trainingSet);

77 obj.finegrainTrainingImages =

obj.ResizeImages(obj.finegrainTrainingSet);

obj.testImages = obj.ResizeImages(obj.testSet);

79 %get classes labels

obj.trainingEmb = obj.GetEmb(obj.trainingSet);

81 obj.finegrainEmb = obj.GetEmb(obj.finegrainTrainingSet);

obj.testEmb = obj.GetEmb(obj.testSet);

83 end

85 function imageSet = ResizeImages(obj ,set)

%resizeImages: prepare an image set

87

imgs_temp = readall(set);

89 imageSet = uint8(zeros(obj.imageSize (1), obj.imageSize (2),

obj.imageSize (3), length(imgs_temp)));

for i=1: length(imgs_temp)

73

A – Algorithms

91 img=imgs_temp{i};

[~,~,c] = size(img);

93 if c == 1

img = cat(3,img ,img ,img);

95 end

imageSet (:,:,:,i) = imresize(img ,obj.imageSize (1:2));

97 end

end

99

function embSet = GetEmb(obj ,set)

101 %get embeddings

103 labels_string = strrep(string(set.Labels),'_','');

embSet = zeros(length(labels_string),obj.emb.Dimension);

105 for i = 1: length(labels_string)

embSet(i,:) = word2vec(obj.emb ,labels_string(i,:));

107 end

end

109

function net = TrainFinalLayer(obj ,imageSet ,embSet)

111 %TrainFinalLayer: train final layers

113 % get activations of the pretrained classifier fc layer

PNet_layer_of_interest = obj.pretrained_net.Layers(end -3).Name;

115 PNout = activations(obj.pretrained_net ,imageSet ,...

PNet_layer_of_interest ,'OutputAs ','channels ');

117

% Train the Network

119 options = trainingOptions('sgdm', ...

'MaxEpochs ' ,20,...

121 'InitialLearnRate ',1e-4, ...

'Verbose ',false , ...

123 'Plots ','training -progress ');

125 obj.threeLayerNet =

trainNetwork(PNout ,embSet ,obj.threeLayerGraph ,options);

net = obj.threeLayerNet;

127 end

129 function [stringResults , embResults] = TestNet(obj ,imageSet ,embSet)

%TestNet: tests the trained net on the test set

131

% get activations

133 PNet_layer_of_interest = obj.pretrained_net.Layers(end -3).Name;

PNout = activations(obj.pretrained_net ,imageSet ,...

135 PNet_layer_of_interest ,'OutputAs ','channels ');

% test net

137 prediction = predict(obj.threeLayerNet ,PNout);

obj.testNetEmbOutput = prediction;

139 embResults = prediction;

74

A.3 – Visual Embedding Neural Netowrk Class

prediction_string = strings(length(prediction (:,1)) ,1);

141 for i=1: length(prediction (:,1))

prediction_string(i) = vec2word(obj.emb ,prediction(i,:));

143 end

145 emb_string = vec2word(obj.emb ,embSet)';

stringResults = [prediction_string ,emb_string];

147 end

149 function [images , emb ,str] = GetNewSet(obj , rootFolder , class)

%GetNewSet: useful to prepare new single class test set

151 imds = imageDatastore(rootFolder);

str = string(imds.Labels);

153 images = obj.ResizeImages(imds);

emb = repmat(word2vec(obj.emb ,class),[imds.numpartitions , 1]);

155 end

end

157

methods(Static)

159 function [vennObj , results , residual_classes] = Example0 (emb , n)

% run an example on caltech 101

161 v = Venn(emb ,googlenet);

residual_classes =

v.TrainingSettings(fullfile('C:\Users\gianl\Documents\MATLAB\img',

'101 _ObjectCategories '),n);

163 v.TrainFinalLayer(v.trainingImages ,v.trainingEmb);

[results , ~] = v.TestNet(v.testImages ,v.testEmb);

165 vennObj = v;

end

167

function [vennObj , results] = ExampleBasic (n)

169 % run an example on caltech 101 with the matlab emb

emb = readWordEmbedding('exampleWordEmbedding.vec');

171 [vennObj , results , ~] = Venn.Example0(emb ,n);

end

173

function [vennObj , results , qResults , qImg] = ExampleNewDict (emb ,n)

175 % Create a new reduced dictionary with only the entries which

% represent the class to recognize.

177 % Then run ExampleBasic and test the net on the residual

% classes , i.e. classes with too few images to be trained.

179

% to save the dictionary

181 rootFolder = 'C:\Users\gianl\Documents\MATLAB ';

[newDicPath ,~] = Venn.StoreNewEmbDB(rootFolder ,emb);

183

% get new dictionary

185 emb = readWordEmbedding(newDicPath);

187 % run example0

75

A – Algorithms

[vennObj , results , residual_classes] = Venn.Example0(emb ,n);

189

% get the embedding for each untrained class (residual classes)

191 for i=1: length(residual_classes)

c = string(residual_classes(i));

193 [im , em] = vennObj.GetNewSet(fullfile(...

'C:\Users\gianl\Documents\MATLAB\img \101 _ObjectCategories ',c),c);

195 [~, qResultsEmb] = vennObj.TestNet(im ,em);

% find the average prediction for the untrained class

197 newEm = sum(qResultsEmb);

newEm = newEm/norm(newEm);

199 % store it

[newDicPath ,~] = Venn.AddEmbsToEmbDB(newDicPath ,c,newEm);

201 end

203 % get new dictionary

vennObj.emb = readWordEmbedding(newDicPath);

205 qResults =[];

% for every untrained class

207 for i=1: length(residual_classes)

c = string(residual_classes(i));

209 % get test set

[qImg , qEmb , str] =

vennObj.GetNewSet(fullfile('C:\Users\gianl\Documents\MATLAB\img \101 _ObjectCategories ',c),c);

211 % test on the class

[qResults2 , ~] = vennObj.TestNet(qImg ,qEmb);

213 % append

qResults = [qResults;qResults2];

215 end

217 end

219 function [filePath ,emb2store_string] = StoreNewEmbDB(rootFolder ,emb)

%get all the valid classes of a folder and store its embedding

221 %in a new dictionary

223 imgPath = fullfile(rootFolder ,'img \101 _ObjectCategories ');

embPath = fullfile(rootFolder ,'emb\embDB.txt');

225 classes = Venn.GetValidClasses(imgPath ,emb);

227 emb2store_string = classes;

emb2store = word2vec(emb ,classes (:));

229

% no duplicates , alphabetical order

231 [emb2store_string ,index] = sort(emb2store_string);

emb2store = emb2store(index ,:);

233 [emb2store_string , index] = unique(emb2store_string , 'rows');

emb2store = emb2store(index ,:);

235 %emb2store = normalize(emb2store ','norm ') '; %normalize , its

%correct but performance decreases so, we can avoid it

76

A.3 – Visual Embedding Neural Netowrk Class

237 emb2store = rmmissing(emb2store);

emb2store_string = rmmissing(emb2store_string);

239 fid = fopen(embPath ,'w');

for ii = 1:size(emb2store ,1)

241 fprintf(fid ,'%s %g ',emb2store_string(ii),emb2store(ii ,:));

fprintf(fid ,'\n');

243 end

fclose(fid);

245 filePath = embPath;

end

247

function [filePath ,emb2store_string] =

AddEmbsToEmbDB(embPath ,str2store ,emb2store)

249 % AddEmbsToEmbDB: Starting from the embedding dictionary stored at

the path

% 'rootFolder ' add a new entry

251

emb = readWordEmbedding(embPath);

253 strVoc = emb.Vocabulary ';

embVoc = word2vec(emb ,strVoc (:));

255

for ii = 1:size(emb2store ,1)

257 if (isVocabularyWord(emb ,str2store(ii)))

embVoc(strVoc == str2store(ii) ,:) = emb2store(ii ,:);

259 str2store(ii) = "";

end

261 end

263 index = str2store (:) ~= "";

str2store = str2store(index);

265 emb2store = emb2store(index ,:);

strVoc = [strVoc; str2store];

267 embVoc = [embVoc;emb2store];

[strVoc , index2] = sort(strVoc);

269 embVoc = embVoc(index2 ,:);

271 fid = fopen(embPath ,'w');

for ii = 1:size(embVoc ,1)

273 fprintf(fid ,'%s %g ',strVoc(ii ,:),embVoc(ii ,:));

fprintf(fid ,'\n');

275 end

277 fclose(fid);

filePath = embPath;

279 emb2store_string = str2store;

end

281

function classes = GetValidClasses(rootFolder ,emb)

283 % GetValidClasses: get valid classes from rootFolder

% Remove classes not present as embeddings

77

A – Algorithms

285

classes = categorical(cellstr(ls (rootFolder)));

287 classes_to_remove = {'.','..'};

j=3;

289 for i=1: length(classes)

if(isVocabularyWord(emb ,strrep(string(classes(i)),'_','')))

291 continue

else

293 classes_to_remove{j} = char(classes(i));

j=j+1;

295 end

end

297 % get string array of valid classes

classes = string(categories(removecats(classes ,classes_to_remove)));

299 end

301 end % end static methods

end % end class

303

305

%

78

A.4 – Associations Reformat - Python Script

A.4 Associations Reformat - Python Script

-*- coding: utf -8 -*-

2 def takeTables(inputFile ,outputFile):

fin = open(inputFile)

4 buf = fin.read()

buf = buf.split("\n")

6

i = 0

8 while i<len(buf):

#row = buf[i].split(" ")

10 #splittedRow = filter(None , row)

name = buf[i][0:13]. strip ()

12 values = buf[i][13:33]

words = []

14 strenght = []

i+=1

16 if "FSG" in values:

words.append(name)

18 i+=1

name = buf[i][0:13]. strip ()

20 values = buf[i][13:33]

while len(name):

22 words.append(name) # associated element

newStrenght = values.split(".")

24 newStrenght = [newStrenght [0]+ "." + item for item in newStrenght [1:]]

strenght.append(newStrenght)

26 i+=1

name = buf[i][0:13]. strip ()

28 values = buf[i][13:33]

with open(outputFile + words [0] + ".csv", 'w') as f:

30 print >> f, ','.join(words)

for item in strenght:

32 print >> f, ','.join(item)

f.write("\n\n")

34 print "Bye!"

79

Appendix B

Methods

B.1 Q-network Architecture: Exhaustive Test

% N number of samples

2 % m number of output

% first hidden layer max size : sqrt((m+2)/N) + 2*sqrt(N/(m+2))

4 % second hidden layer max size : m*sqrt(N/(m+2))

6 replyMem = ae.last_training_set;

[a, b] = size(replyMem);

8 input = zeros(a,b-1);

input (: ,1:100) = replyMem (: ,1:100);

10 target = replyMem (: ,101);

12 m = 1;

N = length(target);

14

f_size = ceil(sqrt((m+2)/N) + 2*sqrt(N/(m+2)));

16 s_size = ceil(m*sqrt(N/(m+2)));

18 y = zeros(a,f_size*s_size);

y_internal = zeros(a,10);

20 k=1;

index = zeros(f_size*s_size ,2);

22 for i=1: f_size

for j=1: s_size

24 for l=1:20

net = fitnet ([i,j]);

26 init(net);

net.trainFcn = 'trainlm ';

28

net = train(net ,input ',target ');

30 y_internal (:,l) = net(input ') ';

end

32 y(:,i*j) = mean(y_internal ') ';

index(k,1:2) = [i,j];

34 k = k+1;

80

B.1 – Q-network Architecture: Exhaustive Test

end

36 end

38 v = vecnorm ((repmat(target ,1,f_size*s_size)-y))/norm(target);

[min_v , ind] = min(v);

40 disp(v);

disp(index(ind ,1:2));

42 plot(v);

81

Appendix C

Agent responses to common

problems

C.1 Single Application Field Without Initial Train-

ing

suggestions rewards suggestions rewards suggestions rewards
hot −1 lap −1 commander −1
wife −1 cape −1 reserve −1
pack −1 glacier +1 command −1

trailer −1 freeway −1 golf −1
alley −1 california +1 battle −1

garage −1 telescope −1 bay +1
truck −1 bay +1 sailing −1

california +1 success −1 sea +1

california +1 california +1 island +1
glacier +1 glacier +1 california +1
therapy −1 island +1 japan +1

sea +1 bay +1 bay +1
island +1 castle +1 glacier +1
bay +1 sea +1 coast +1

traffic −1 japan +1 sea +1
boundary −1 lord −1 castle +1

Table C.1: Agent attempts to correctly suggest ideas for holidays without initial
training. Episodes order: left to right, up to down.

82

C.2 – Single Application Field With Initial Training

suggestions rewards suggestions rewards suggestions rewards
”children” −1 ”villain” −1 ”encyclopedia” −1

”instrument” −1 ”swamp” −1 ”synagogue” −1
”participate” −1 ”plot” −1 ”conquest” −1

”perform” −1 ”superman” −1 ”dictionary” −1
”performance” −1 ”monster” −1 ”jewish” −1

”practice” −1 ”beetle” −1 ”museum” −1
”program” −1 ”boulevard” −1 ”medieval” −1

”saxophone” +1 ”deputy” −1 ”history” −1

”away” −1 ”keyboard” +1
”keyboard” +1 ”drum” +1

”drum” +1 ”guitar” +1
”beat” −1 ”saxophone” +1
”pull” −1 ”trumpet” +1
”up” −1 ”cello” +1

”shop” −1 ”clarinet” +1
”back” −1 ”string” +1

Table C.2: Agent attempts to suggest which instrument to play without initial
training. Episodes order: left to right, up to down.

C.2 Single Application Field With Initial Train-

ing

83

C – Agent responses to common problems

suggestions rewards suggestions rewards suggestions rewards
weapon −1 crater −1 asia +1

wave +1 painter −1 chinese +1
drive −1 polish −1 america +1
jesus −1 astronomy −1 cape −1

dominant −1 geology −1 japan +1
fbi −1 asteroid −1 cinema −1

funeral −1 weather −1 africa +1
opponent −1 lava −1 china +1

mountain +1 mountain +1
japan +1 chinese +1
sea +1 russia +1

chinese +1 asia +1
hop −1 sea +1

russia +1 china +1
asia +1 japan +1

china +1 coast +1

Table C.3: The agent, initially trained on Africa, mountain, sea and Italy attempts
to suggest holiday destinations. Episodes order: left to right, up to down.

suggestions rewards suggestions rewards
act −1 saxophone +1

activity −1 tenor +1
actor −1 guitar +1

audience −1 organ +1
ballet −1 cello +1
band −1 viola +1
blocks −1 flute +1
card −1 trumpet +1

Table C.4: The agent, initially trained on guitar, trumpet, drum and piano attempts
to suggest which instrument to play. Episodes order: left to right.

C.3 More Than One Application Fields

84

C.4 – Visual Embedding Neural Network

suggestions rewards suggestions rewards suggestions rewards
”astronomy” −1 ”glacier” −1 ”typhoon” −1

”carrots” −1 ”flute” +1 ”tropical” +1
”earthquake” −1 ”keyboard” +1 ”cyclone” −1

”medal” −1 ”crater” −1 ”depression” −1
”waves” −1 ”earthquake” −1 ”carrots” −1

”physics” −1 ”monastery” −1 ”fever” −1
”greek” −1 ”alto” +1 ”crater” −1

”tropical” −1 ”chess” −1 ”saxophone” +1

”orchestra” +1 ”alto” +1 ”glacier” −1
”conductor” +1 ”flute” +1 ”politician” −1
”clarinet” +1 ”clarinet” +1 ”alto” +1

”flute” +1 ”communist” −1 ”moth” −1
”volcano” −1 ”tenor” +1 ”latin” −1
”waves” −1 ”saxophone” +1 ”viola” +1
”tenor” +1 ”trumpet” +1 ”cape” −1
”snail” −1 ”violin” +1 ”conductor” +1

”hop” −1 ”alto” +1 alto” +1
”jazz” +1 ”trumpet” +1 violin” +1
”choir” +1 ”bass” +1 viola” +1

”saxophone” +1 ”rhythm” +1 piano” +1
”painter” −1 ”drum” +1 saxophone” +1

”keyboard” +1 ”saxophone” +1 clarinet” +1
”drum” +1 ”tenor” +1 conductor” +1
”tenor” +1 ”hop” −1 flute” +1

Table C.5: The Q-network trained on the travel field is retrained for the domain
instrument to play. Episodes order: left to right, up to down.

C.4 Visual Embedding Neural Network

85

C – Agent responses to common problems

Table C.6: List of classes, taken by the Caltech 101 dataset [31], used to train the
Visual Embedding Neural Network.

accordion cup llama stegosaurus
airplanes dalmatian lobster sunflower
anchor dolphin lotus tick
ant dragonfly mandolin trilobite
barrel elephant mayfly umbrella
bass emu menorah watch
beaver euphonium minaret wheelchair
bonsai ewer nautilus
brain ferry pagoda
brontosaurus flamingo pigeon
buddha gramophone pizza
butterfly hawksbill pyramid
camera headphone revolver
cannon hedgehog rhino
cellphone helicopter rooster
chair ibis saxophone
chandelier kangaroo schooner
crab ketch scorpion
crayfish lamp stapler
crocodile laptop starfish

Table C.7: List of classes, taken by the Caltech 101 dataset [31], classified without
training by the Visual Embedding Neural Network.

binocular
garfield
metronome
octopus
okapi
panda
platypus
scissors
snoopy
strawberry

86

Bibliography

[1] Aaron van den Oord, Sander Dieleman, Heiga Zeny, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu.

Wavenet: A Generative Model for Raw Audio. 2016

[2] Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan. Show and Tell:

A Neural Image Caption Generator. 2015

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-

ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-

jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg &

Demis Hassabis. Human-level control through deep reinforcement learning. 2015

[4] Xavier Hinaut, Peter Ford Dominey. Real-Time Parallel Processing of Gram-

matical Structure in the Fronto-Striatal System: A Recurrent Network Simu-

lation Study Using Reservoir Computing. 2013

[5] Paul Covington, Jay Adams, Emre Sargin. Deep Neural Networks for YouTube

Recommendations. 2016

[6] Oxford Dictionary. URL: https://en.oxforddictionaries.com/

definition/intuition

[7] Herbert A. Simon. Explaining the Ineffable: Al on the Topics of Intuition,

Insight and Inspiration. 1995

[8] Daniel Kahneman.Thinking Fast and Slow. 2011

[9] Leslie Pack Kaelbling, Michael L. Littman, Anrew W. Moore. Reinforcement

Learning: A Survey. 1996

[10] DeepMind Web Site: https://deepmind.com/

[11] V.Mnih, K.Kavukcuoglu, D.Silver, A.Graves, I.Antonoglou, D.Wierstra,

M.Riedmiller. Human-level control through deep reinforcement learning. 2013

[12] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Tim-

othy Lillicrap, Jonathan Hunt, Timothy Mann, TheophaneWeber, Thomas

Degris, Ben Coppin. Deep Reinforcement Learning in Large Discrete Action

Spaces. 2016

87

https://en.oxforddictionaries.com/definition/intuition
https://en.oxforddictionaries.com/definition/intuition
https://deepmind.com/

Bibliography

[13] Ivana Kajic, Jan Gosmann, Terrence C. Stewart, Thomas Wennekers, Chris

Eliasmith. A Spiking Neuron Model of Word Associations for the Remote As-

sociates Test. 2017

[14] Douglas L. Nelson, Cathy L. Mcevoy, Thomas A. Schreiber. The University of

South Florida free association, rhyme, and word fragment norms. 2004

[15] Douglas L. Nelson, Cathy L. McEvoy, Thomas A. Schreiber. The University

of South Florida Word Association, Rhyme and Word Fragment Norms. http:

//w3.usf.edu/FreeAssociation/. 1998

[16] Kaoru Nakano. Associatron - A Model of Associative Memory. 1971

[17] Andrew G. Barto, Richard S. Sutton, Peter S. Brouwer. Associative Search

Network: A Reinforcement Learning Associative Memory. 1981

[18] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,

Richard Harshman. Indexing by Latent Semantic Analysis. 1990

[19] Mark Steyvers Richard M. Shiffrin Douglas L. Nelson. Word Association Spaces

for Predicting Semantic Similarity Effects in Episodic Memory. 2004

[20] Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig. Linguistic Regularities in Con-

tinuous SpaceWord Representations. 2013

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estima-

tion of Word Representations in Vector Space.2013

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.

Distributed Representations of Words and Phrases and their Compositionality.

2013

[23] Y. Bengio, R. Ducharme, P. Vincent. A neural probabilistic language model.

2003

[24] Tomas Mikolov, Martin Karafiat, Jan Cernocky, and Sanjeev Khudanpur. Re-

current neural network based language model. 2010

[25] Marco Baroni, Georgiana Dinu, German Kruszewski. Don’t count, predict! A

systematic comparison of context-counting vs. context-predicting semantic vec-

tors. 2014

[26] Andrea Frome, Greg S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey Dean,

Marc’ Aurelio Ranzato, Tomas Mikolov. DeViSE: A Deep Visual-Semantic Em-

bedding Model. 2013

[27] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon

88

http://w3.usf.edu/FreeAssociation/
http://w3.usf.edu/FreeAssociation/

Bibliography

Shlens, Andrea Frome, Greg S. Corrado, Jeffrey Dean. Zero-Shot Learning by

Convex Combination of Semantic Embeddings. 2013

[28] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep

convolutional neural networks. 2012.

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.

Going Deeper With Convolutions. 2015.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A

large-scale hierarchical image database. 2009

[31] L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from

few training examples: an incremental Bayesian approach tested on 101 object

categories. IEEE. CVPR 2004, Workshop on Generative-Model Based Vision.

2004

[32] Griffin, G. Holub, AD. Perona, P. The Caltech 256. Caltech Technical Report.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial Pyramid

Pooling in Deep Convolutional Networks for Visual Recognition. 2015

[34] Qun Li, Student Member, IEEE, Honggang Zhang, Senior Member, IEEE, Jun

Guo, Bir Bhanu, Fellow, IEEE, and Le An. Reference-Based Scheme Combined

With K-SVD for Scene Image Categorization. 2013

[35] Liefeng Bo, Xiaofeng Ren, Dieter Fox. Multipath Sparse Coding Using Hierar-

chical Matching Pursuit. 2013

[36] Matthew D. Zeiler, Rob Fergus. Visualizing and Understanding Convolutional

Networks. 2013

[37] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov. Enriching Word Vectors with

Subword Information. 2017

[38] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe:

Global Vectors for Word Representation. 2014

[39] Guang-Bin Huang. Learning Capability and Storage Capacity of Two-Hidden-

Layer Feedforward Networks. 2003

[40] D. Stathakis. How many hidden layers and nodes? 2008

89

Acknowledgments

Un ringraziamento sincero alla mia relatrice, per avermi coinvolto in questo progetto,

per essere rimasta sempre positiva durante ogni fase della ricerca e per avermi aiutato

a trovare la strada. Cos̀ı a tutto il VLSI Lab per avermi ospitato e per avermi fatto

sentire parte del team. Alla mia famiglia, sempre presente nonostante la distanza,

per non aver mai smesso di credere in me, rendendo tutto questo possibile. Ai miei

zii, che mi hanno accolto qui a Torino come un figlio. A Nicola, per aver condiviso

ogni nanometro di questo percorso, a Riccardo, per avermi convinto di potercela

fare e a Francesco, per non aver mai perso una chiamata. E a tutti gli altri amici,

vecchi, nuovi e ritrovati. Per concludere un grazie di cuore a Camilla, il meglio

arriva sempre alla fine, come il dolce a tavola. Mi hai sempre spinto a dare di più e

mi hai fatto sentire a casa. Sei uno spettacolo.

I

	Abstract
	Introduction
	A psychological point of view
	Thinking Fast and Slow
	System 1
	System 2
	Intuitive Prediction

	Reinforcement Learning
	Survey
	Find a Policy Given a Model
	Model-Free Methods

	DeepMind
	Human-level control through deep reinforcement learning
	Deep Reinforcement Learning in Large Discrete Action Spaces

	Associative Memory
	A Spiking Neuron Associative Memory Example
	Associative Memory Architecture

	Latent Semantic Analysis
	Association Matrix
	Singular Value Decomposition

	Word2Vec
	Training and Architecture
	From Words to Phrases
	LSA and W2V comparison

	Visual Embedding Space
	DeViSE
	ConSE

	Algorithm Overview
	Q-network Implementation with Matlab
	Associative Machine Implementation with Matlab
	Intuitive Machine Eyes Implementation with Matlab

	Methods
	Q-network Architecture
	Relevant Transitions
	Training Episodes
	Visual Embedding Neural Network

	Results
	Associative Machine
	Single Application Field Without Initial Training
	Single Application Field With Initial Training
	More Than One Application Fields

	Visual Embedding Neural Network
	Caltech 101
	Untrained Class Recognition

	Discussion
	Conclusion
	Appendices
	Algorithms
	Q-network Class
	Association Engine Class
	Visual Embedding Neural Netowrk Class
	Associations Reformat - Python Script

	Methods
	Q-network Architecture: Exhaustive Test

	Agent responses to common problems
	Single Application Field Without Initial Training
	Single Application Field With Initial Training
	More Than One Application Fields
	Visual Embedding Neural Network

	Bibliography
	Acknowledgments

