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Abstract

Since the pioneering work of Griffith (1920), it is clear that in order to study the

strength of materials it is necessary to take into account the fracture toughness, and

the structural scale, in addition to tensile strength. In this way, some short-comings

due to traditional structural mechanics models based on stress-strain constitute

laws have been understood, and the necessity of a step forward has been pointed

out. The Fracture Mechanics approach is a considerable consequence of the design

and safety assessment of structures. In the present Thesis, the Cohesive Crack

model has been numerically implemented in a new program code in order to study

the size effects and the ductile-to-brittle transition of concrete members. More

precisely, the cohesive crack model has been adopted to simulate the crack opening

in plain or steel bar reinforced concrete elements, whereas the overlapping crack

model has been used to simulate the crushing failure of the concrete brittle matrix.

Furthermore, in order to take into account the role of the reinforcement layer, a

bond-slip law has been utilized referring to considerations reported in Model Code

90.

The present Thesis is divided into five main parts. In the first part, the pecu-

liar aspects and the characteristic parameters of the cohesive crack model and of

the overlapping crack model are presented. Numerical algorithms based on these

models are described, and some simple applications are illustrated. In the sec-

ond part, the new program code is introduced and its most important routines

are presented in details. In the third part, numerical investigations obtained by
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the cohesive/overlapping crack model are presented. Hence, load-deflection curves

for several geometries are reported, both for plain or steel bar reinforced concrete

elements. Furthermore, in order to assess the algorithm accuracy, a numerical

vs. experimental comparison is illustrated. The application of dimensional anal-

ysis, which allows to evaluate the minimum and maximum reinforcement ratios,

and the rotational capacity of RC beams is recalled: some results obtained by

numerical investigations are compared with Code provisions. In the fourth part,

a suitable modification of the cohesive/overlapping crack model for pre-stressed

concrete structures is introduced, and some numerical case-studies are reported.

Finally, some future developments and applications of the cohesive/overlapping

crack model are briefly presented.
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Chapter 1

Introduction

Figure 1.1: Liberty ship com-
pletely divided into
two parts

The failure of a material may occur in two dif-
ferent ways and indeed, it is possible to distin-
guish between a ductile failure in which mate-
rial is subjected to plastic, i.e. permanent,
deformations or brittle failure in which the
material breaks itself in a sudden way when
it is still within the elastic field. In the re-
cent years, it has been worked out that the
behaviour of a material depends also on its
size and a new scientific discipline has been
setting up to study this topic: the fracture
mechanics.

Inglis may be considered the father of this
new study field putting out firstly the short-
comings of the classical strength of material
theory. Indeed, he solved the problem of an
infinite plate having within an ellipsoidal cav-
ity [1]. He observed that the stress approaches
infinity at the corners of the cavity, if the ratio

of the two ellipse axes tend to infinity i.e. he worked out that the ellipse gener-
ates a stress intensity factor tending to a crack. A big step forward was made by
Griffith [2] who studied the problem of a hole in an infinite plate subjected to an
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1 – Introduction

isotropic stress state. Applying the first law of thermodynamics, he demonstrated
that the crack propagates in an unstable manner if the energy variation due a
unit propagation of the crack itself overcame the surface energy of the material,
i.e. GF . The work of Griffith represented a revolution in the strength of materials
because he highlighted, for the first time, that in order to study the proprieties of
a mechanical system is no longer necessary to take into account only stress, but
also energy and scale. The note presented at the London Engineering Society was
widely appreciated but not completely understood and indeed researches continued
to focus their attention on the reconstruction of the stress field around the crack
tip by means of the stress intensity factor KIC (see [3, 4]) until the World War II
and the sudden failure of liberty ships. During this period, the german submarines
were sinking the american ships, sent to Allies for supplies, at a rate higher than
the speed used by shipyards to construct them. Hence, the American Navy decided
to change the construction process changhing from a riveting solution to a welding
one. However, due to variations in manufacturing techniques, about 400 of 2700
built ships faced fracturing (fig: 1.1). The unexpected failure was caused by several
reason [5]:

• weldings were made by a non-professional work force and contained already
defects;

• the biggest part of the fractures initiated in correspondence of the hatched
corner were stress concentration is maximum;

• the steel used was quite poor and did not have high mechanical characteristics.

The liberty ships failure remained a mystery and unresolved for many years and only
recently the scale problem has been investigated deeper by means of the definition of
the stress brittleness number s, by Carpinteri [6, 7] demonstrating that a mechanical
systems, having a large characteristic dimensions, tends to behave in a more brittle
way. Hence, the strange failure of liberty ships could be understood: plates that
are welded together behave as a unique large one and consequently in a more brittle
way.

The role of the size effect on the mechanical behavior of a structural system have
been nowadays accepted and, more precisely the dependency of the stability of the
post peak branch on a characteristic length of the system has been highlighted.
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1 – Introduction
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Figure 1.2: Specimens of different length subjected to a tensile test

As an example, it is possible to consider three specimens made of the same
material and having three different length as depicted in fig. 1.2 subjected to a
tensile test up to their rupture. The load-deflection curves of the specimens are
reported in a plane σ − δ where some invariants may be identified:

• the ultimate tensile strength σt;

• the dissipated energy Wd = GF · A, since the specimens have the same cross
sectional area;

• the critic displacement value wt
cr for which the rupture occurs.

Hence, the area below the σ − δ curve has to remained constant. However, the
specimens present a different rigidity, having a different length, and it is possible
to observe a linear positive slope loading path up to σt and a post-peak branch
depending on the specimen size. Indeed, since the total area described by the three
curves is the same, the specimen (a) shows a softening behavior with a decrease
in the loading carry capacity while, the specimen (b) presents a limit condition for
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1 – Introduction

which once σt is reached, there is a vertical dropping for the external load. Mean-
while, the third slab, due its bigger size, exhibits a snap-back branch with a decrease
both for displacements and load. These three different conditions correspond to a
more and more unstable way of acting and, indeed, in order to follow laboratory
tests in a stable manner, in the first case the driving parameter has to be the dis-
placement δ while, in the case of the snap-back, the test has to be controlled by the
crack mouth opening (CMOD).

The size effect is caused by the post-peak strain concentration in a narrow band
zone while the other remained part of the specimen is still within the elastic field
and, in concrete and more generally concrete-like materials, non-linear phenomena
such as detachments, coalescence of micro-voids, microcracking occur [8–11]. The
post-peak branch typology and slope is, hence, an essential behavior of the mechan-
ical system and represents a delicate issue in the framework of the the Continuum
Mechanics [12–16]. Indeed, it implicates:

• violation of Drucker’s Postulate;

• loss of stability in the controlled load condition (snap-through);

• loss of stability in the displacement control condition (snap-back);

• bifurcation of the equilibrium path;

• loss of the solution in the incremental elasto-plastic response;

• loss of convergence in the numerical analysis.

As regard numerical analysis, attempts to manage these issues were made through
the "smeared crack model" [17] in which the stress of the material is limited within
the FEM element by the tensile strength. Beyond this threshold value, a drop to
zero or a gradually decrease of stress by means of a softening law that depends on
the crack opening wt is introduced. A constitutive law of this typology and defined
in the plane σ − wt is called cohesive law and, indeed in the zone where strain
concentration and energy dissipation occur, material keeps its ability to transfer
stress and hence, the fractured band may be modeled assuming a fictitious crack,
bigger than the real one, on which faces forces are applied in order to simulate
the residual resources of the material. The cohesive model was introduced by
Barenblatt [18, 19], reproposed by Dugdale [20] to study the yielding of metals and

4



1 – Introduction

Hillerborg et al. [21] to study the fracturing process of plain concrete members. In
the model proposed by Dugdale constant forces were applied on crack faces while in
the Hillerborg one, they decrease as the crack width wt increases and vanish when
a threshold value wt

cr is reached.
In the present work, the overlapping model that is formally similar to the co-

hesive one, is adopted to simulate the compressive failure of concrete and both
cohesive and overlapping are adopted to realize a program that is able to simulate
the transition in failure mechanisms in concrete structures (plain concrete, rein-
forced concrete with bars and prestressed members) according to beam depth and
steel ratio.

An algorithm built on the integration of the two models has been proposed
firstly by Carpinteri et al. [22–28] and Corrado [29] and herein the numerical results
presented through years by these two authors are recalled and adopted to validate
the new presented algorithm.
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Chapter 2

The cohesive model

2.1 Basic model concepts
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(a) Classical σ − ε constitu-
tive law in tension
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(b) Cohesive constitutive law

Figure 2.1: Couple of constitutive laws adopted for undamaged (a) and damaged
material (b) in tension

The cohesive model has been introduced by Hillerborg et al. [21] and improved by
Carpinteri [7, 30] to study the crack formation and growth in concrete. It belongs to
strain deformation family models and the assumptions on which it is built are [31]:

• the fracture starts to develop at one point of the specimen when the first
principal stress reaches the tensile strength σt;

• the fracture grows perpendicular to the first principal stress;
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2 – The cohesive model

Figure 2.2: Cohesive crack schematization

• the fracture zone is divided into two parts: the zone where the material albeit
damaged is still able to transfer stress is called fictitious crack and, in the
calculation it is replaced by a crack on which faces forces are applied according
to a σ − wt relation, i.e. cohesive law as depicted in fig. 2.1b. Meanwhile, the
zone on the rear point where the width of the crack reaches the threshold width
wt

cr is called real crack. Here, the crack faces are in a stress free condition.

• the material outside the fractured zone is assumed to be in the elastic field
and a classical σ − ε law is adopted (fig. 2.1a).

In fig. 2.2 a cohesive crack growing within an elastic material in a mode II condi-
tion is pictured (shear stress on crack faces are neglected for sake of simplicity).
According to model terminology, it is called:

• fictitious crack tip, the point where the ultimate tensile strength σt of the
material is reached;

• real crack tip, the point where the threshold value wt
cr is gained;

• process zone, the length of the crack along which forces are applied.

8



2.2 – Uniaxial tensile test of a specimen
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Figure 2.3: Different stages of the loading process of a slab subjected to a tensile
test

2.2 Uniaxial tensile test of a specimen

It is possible to consider a specimen made of a quasi-brittle material having the
constitutive laws reported in fig. 2.1 that is subjected to a tensile test1.

σ = Eε ε ≤ εt (2.1a)

σ = σt

⎛⎝1 − wt

wt
cr

⎞⎠ w ≤ wt
cr (2.1b)

σ = 0 w > wt
cr (2.1c)

Hence, the specimen will undergo to three different stages as seen in fig. 2.3. In
the first step, the mechanical system is within the elastic field and the deformation
is proportional to the applied stress by means of the elastic modulus E and the
Hook’s law. Hence, it is possible to calculate the displacement of the upper edge

1For sake of simplicity the cohesive law is assumed linear, even though other shapes are possible
(e.g. the Model Code 90 [32] suggests to adopt for concrete a bi-linear law).
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2 – The cohesive model

as:

δ = σ

E
l ε ≤ εt (2.2)

At the peak load, in the weakest section of the system, a fracture develops and a
cohesive band is formed while the load decreases. The specimen behaves elastically
only outside the fractured zone and thus, the displacement in this stage may be
evaluated as:

δ = σ

E
l + wt w ≤ wt

cr (2.3)

Substituting the eqn 2.1b in eqn. 2.3 it is possible to obtain:

δ =
⎛⎝ l

E
− wt

cr

σt

⎞⎠σ + wt
cr w ≤ wt

cr (2.4)

In a δ−σ plane, the eqn. 2.4 represents a straight line and many cases may occur
depending on its slope. Indeed:

• if wt
cr > σt

E
l the slope is negative and a strain softening branch is described

(fig. 2.4a);

• if wt
cr = σt

E
l a vertical drop in the load carrying capacity occurs since the slope

of the loading path is infinite (fig. 2.4b);

• if wt
cr < σt

E
l a more severe phenomena, i.e. snap-back, takes place decreasing

both load and displacement (fig. 2.4c).

The slope that gives the snap-back may be rewrite as:

sE

εtλ
≤ 1

2 (2.5)

where sE = GF

σtb
is the energy brittleness number, λ is the slenderness ratio of the

specimen and b its width.
The eqn. 2.5 highlightes a strong relationship between the size of the element

and its mechanical behavior and indeed, when the slenderness ratio is larger, the
behavior of the system is more brittle. Furthermore, the eqn. 2.5 demonstrates that
not the single value of sE, εu and/or λ are responsible of the global behavior of the
system but their combination.
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2.2 – Uniaxial tensile test of a specimen

Using the previous conditions and assuming for σt, E, wt
cr typical average values

of concrete, e.g. σt = 3 MPa, Ec = 30000 MPa, wt
cr = 0.1 mm it is possible

to calculate the minimum length of the concrete specimens corresponding to the
softening branch:

l = wt
crE

σt
= 0.1 mm · 30000 MPa

3 MPa
= 1000 mm (2.6)
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(a) Strain softening behaviour
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(b) Limit condition
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(c) Snap-back behaviour

Figure 2.4: Different post peak stress-displacement response of the specimen. The
point U represents a break point for the loading path
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2 – The cohesive model
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Figure 2.5: Limit condition for a beam in a three points bending test

2.3 Three point bending of beams

From the classical elastic theory, it is known that for a beam in bending the law
that relates the load P and the deflection δ is:

δ = Pl3

48EI
(2.7)

It is possible to rewrite the eqn. 2.7 in a non-dimensional form:

P̃ = 4
λ

δ̃ (2.8)

where the dimensionless load and deflection are respectively:

P̃ = Pl

σttb2 (2.9)

δ̃ = δl

εtb2 (2.10)

During the loading process, the ultimate tensile strength σt is reached at the
soffit of the beam and a cohesive crack starts to develop. If the loading process
continues, an ultimate condition for the system will be achieved: the beam will

12



2.3 – Three point bending of beams

be divided completely in two parts and a cohesive zone of length x will extends
towards the extrados of the member as depicted in fig. 2.5 . In this condition, the
equilibrium of the system is guaranteed by the external load, the reactions of the
bearings and the cohesive forces.

Furthermore, it is possible to write a similitude relation among the triangles
ABC and AB′C ′ in order to find the extension of the process zone x:

x = wt
crl

4δ
(2.11)

In order to relate the cohesive forces and the external load P , it is possible to
write an equilibrium equation to rotation around the point A for one of the two
beams parts:

P

2
l

2 = σtxt

2
x

3 (2.12)

Hence, entering the eqn. 2.11 in eqn. 2.12, it is possible to obtain:

P = σtt/wt
cr

24
1
δ2 (2.13)

which may be expressed in a non-dimensional form by means of eqn. 2.9, 2.10:

P̃ = 1
6

⎛⎝sEλ2

εtδ̃

⎞⎠2

(2.14)

Hence, it is possible to work out two different behaviour for the beam: the
eqn. 2.8 is valid until the specimen is within the elastic field, while the hyperbolic
eqn. 2.14 represents the asymptotical condition for which the crack propagates
through all the beam ligament. According to the classical theory of elasticity, the
eqn. 2.8 is valid until:

P̃ ≤ 2
3 (2.15)

that may be entered in eqn. 2.8, giving:

δ̃ = δ1̃ ≤ λ3

6 (2.16)
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2 – The cohesive model
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(a) Stability condition
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(b) Unstable condition

Figure 2.6: Loading-deflection diagrams for a ductile and brittle condition in a three
point bending geometry

Whereas, for the application of eqn. 2.14, the following condition should be re-
spected:

x ≤ b (2.17)

Entering the eqn. 2.17 in eqn. 2.12, it is possible to obtain the eqn. 2.15 also for
the hyperbolic branch. Entering the eqn. 2.15 in eqn. 2.14, it is possible to have:

δ̃ = δ2̃ ≥ sEλ2

2εt

(2.18)

It is possible to find out a stability criterion comparing the eqn. 2.16 and eqn. 2.18:
if the linear and hyperbolic branches are separated, it is possible to assume that they
are connected by a parabola-like curve representing a stable behavior (fig. 2.6a).
On the other hand, if the two branches are partially superimposed, it is possible
to assume that they are interconnected by a curve having a positive slope, i.e. a
snap-back (fig. 2.6).

Hence, the brittleness condition for three point bending loading condition be-
comes:

sE

εuλ
≤ 1

3 (2.19)

which is a more severe than eqn. 2.5.
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2.4 – Carpinteri algorithm
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(a) Considered load case
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(b) Considered nodal forces and numer-
ical discretization

Figure 2.7: Physical and numerical schemes considered by Carpinteri

2.4 Carpinteri algorithm

The numerical algorithm herein presented is based on a FEM approach and, has
been proposed by Carpinteri [7, 30] to study the post-peak behavior of plain concrete
beams.

The loading process is simulated by means of the incremental advancement of
the fictitious crack tip and, hence, the load-deflection curves are obtained through
a step-by-step procedure. Moreover, at each step the real crack tip, the external
load P and the deflection δ are computed through an iterative computation.

The choice of the discretization domain has to be done according to the analyzed
problem in order to avoid numerical and resolution problems. More precisely, as
suggested by the author, the condition:

m ≤ 600 · wt
cr (2.20)

where m is the finite element dimension, should be respected.
Considering a three point bending test, the crack opening may be expressed as:

{w} =
[︂
K
]︂

{F} + {C}P + {Γ} (2.21)

where:
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2 – The cohesive model

• {w} is the vector containing crack opening displacements;

•
[︂
K
]︂

is the matrix containing the nodal displacements for a unit applied force;

• {F} is the vector containing the nodal forces;

• {C} is the vector containing crack displacements for a unit external load;

• P is the external load;

• {Γ} is the vector containing the crack opening due specimen weight;

Assuming that the initial crack tip is positioned in the node k and that the
cross section of the element is discretized by means of n nodes, at the first step the
following conditions have to be taken into account:

Fi = 0 i = 1, 2, ..., (k − 1) (2.22a)
wi = 0 i = k, (k + 1), ...., n (2.22b)

The eqn. 2.21 and eqn. 2.22 constitute an algebraical system of 2n equations and
2n unknown, i.e. n value of forces and n values of displacements. If the load P is
known, the deflection δ of the system may be calculated as:

δ = {CF }T {F} + DP P + Dγ (2.23)

being:

• {CF } the vector containing the displacements generated by unit nodal force;

• DP the value of displacement generated by a unit value of the external load;

• Dγ is the external displacement generated by the weight of the specimen.

It is worth noticing that the matrix [K], the vectors {C}, {Γ}, {CF } and the DP ,
Dγ values are computed once for all by means of a FEM procedure and conveniently
scaled according to the analyzed problem.

After the first step, a cohesive zone develops and, in the general case of fig. 2.8,
it may be included between the node j and m. Hence, eqs. 2.22 are replaced by:
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2.4 – Carpinteri algorithm
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Figure 2.8: Generic situation for the algorithm

Fi = 0 i = 1, 2, ..., (j − 1) (2.24a)

Fi = Ft

⎛⎝1 − wi

wt
cr

⎞⎠ i = j, (j + 1), ...., m (2.24b)

wi = 0 i = m, (m + 1), ...., n (2.24c)

where Ft is the ultimate nodal tensile strength and is calculated as:

Ft = b · σt

n − 1 (2.25)

At the first step, the cohesive zone is missing and the load P1 that is able to
generate the ultimate tensile nodal force Ft in the node k is computed. Thus, by
means of eqn. 2.23 it is possible to calculate δ1. The couple (δ1, P1) constitute the
first point of the load-deflection curve. At the end of the first step, the fictitious
tip is moved in the node (k + 1) and the cohesive zone extends between the node k

and (k + 1). Hence, the value of the load P2 that is able to generate the ultimate
force Ft in the node (k + 1) is computed and applying eqn. 2.23, 2.21, 2.24, nodal
displacement {w}, nodal forces {F} and deflection δ2 are computed. The couple
(δ2, P2) constitute the second point of the load-deflection diagram. At the third
step, the fictitious tip is moved forward, and so on.

The numerical procedure stops when the fictitious tip reaches the node n and
all the other nodes of the middle cross section get untied. Furthermore, it is worth
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2 – The cohesive model

noticing that in each step a control is made on the {w} displacement solution in
order to calculate the position of the real crack tip.

In fig: 2.9, fig:2.10, fig:2.11 (σu is the ultimate tensile strength in the original
notation of the author) are reported the numerical investigations carried out by
Carpinteri for plain concrete members [33, 34] having the energy brittleness num-
bers sE reported in tab. 2.1 and for initial notch dimension: a0/b = 0.1, 0.3, 0.5
respectively.

A : sE = 2.09 · 10−5 E : sE = 10.45 · 10−5 I : sE = 83.59 · 10−5 O : sE = 6.27 · 10−3

B : sE = 4.18 · 10−5 F : sE = 20.90 · 10−5 L : sE = 1.04 · 10−3 P : sE = 8.36 · 10−3

C : sE = 6.27 · 10−5 G : sE = 41.80 · 10−5 M : sE = 2.08 · 10−3 Q : sE = 10.45 · 10−3

D : sE = 8.36 · 10−5 H : sE = 62.70 · 10−5 N : sE = 4.18 · 10−3 R : sE = 20.90 · 10−3

Table 2.1: Energy brittleness number sE investigated by Carpinteri

Testo
Figure 2.9: Dimensionless load vs. deflection diagrams by varying the brittleness

number sE (λ = 4, ao/b = 0.1, εt = 0.87 · 10−4)

It may be seen that for low sE numbers, i.e. high tensile strength and high
beam depth, a snap-back branch is revealed. More precisely, for sE ≤ 8.36 · 10−5 a
catastropical branch with a positive slope is obtained (fig. 2.9). Moreover, compar-
ing the three diagrams, it may be seen that increasing the dimension of the initial
notch, albeit a lower maximum load is achieved, the post-peak branches exhibit a
more stable behavior.

18



2.5 – Smeared tip algorithm

Testo
Figure 2.10: Dimensionless load vs. deflection diagrams by varying the brittleness

number sE (λ = 4, ao/b = 0.3, εt = 0.87 · 10−4)

Figure 2.11: Dimensionless load vs. deflection diagrams by varying the brittleness
number sE (λ = 4, ao/b = 0.5, εt = 0.87 · 10−4)

2.5 Smeared tip algorithm

The smeared tip algorithm has been proposed by Planas et al. [35, 36] and improved
by Bǎzant [37, 38] and Bǎzant et al. [39]. It is based on the superposition of LEFM
cases carrying to triangular systems of equations that may be solved by means of
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2 – The cohesive model
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Figure 2.12: Basic linear elastic case for the smeared-tip superposition

a forward substitution. In each case a stress free cracked beam portion having the
tip in the node j (j = 1,2, . . . , n − 1) and subjected to the load ∆Pj is considered
as depicted in fig. 2.12. Hence, the forces Fi, crack openings wi and the external
load P are written as:

Fi =
(n−1)∑︂
j=1

Rij∆Pj (2.26)

wi =
(n−1)∑︂
j=1

Dij∆Pj (2.27)

P =
(n−1)∑︂
j=1

∆Pj (2.28)

where:

• Rij is the force at the node i generated by a unit external load when the tip
of the crack is positioned in the node j;

• Dij is the crack opening at the node i generated by a unit external load when
the tip of the crack is positioned in the node j.

Since the crack faces are in a stress free condition, the Rij and Dij may be stored
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2.5 – Smeared tip algorithm

in triangular matrices:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 0 0 . . . 0
R21 R22 0 . . . 0

... ... ... ... ...
R(n−2)1 R(n−2)2 . . . R(n−2)(n−2) 0
R(n−1)1 R(n−1)2 . . . R(n−1)(n−1) R(n−1)(n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.29)

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 D12 D22 . . . D1(n−1)

0 0 D23 . . . D2(n−1)
... ... ... ... ...
0 0 . . . 0 D(n−2)(n−1)

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.30)

In order to compute [R] and [D], it is necessary to perform (n−1) analysis through
a FEM program simulating the central beam part having a crack tip in the node
1,2, . . . , (n − 1).

Hence, assuming a generic cohesive zone between the nodes p and m and a
softening law F = f(w), it is possible to write:

i∑︂
j=1

Rij∆Pj = 0 i = 1, 2, ..., c − 1 (2.31a)

i∑︂
j=1

Rij∆Pj = f

⎛⎝(n−1)∑︂
j=i+1

Dij∆Pj

⎞⎠ i = c, . . . , m (2.31b)

i∑︂
j=1

Dij∆Pj = 0 i = (m + 1), . . . , (n − 1) (2.31c)

The eqn. 2.31a and 2.31c give immediately

∆Pj = 0 j /= c, . . . , m (2.32)

Thus, the problem is reduced to the solution of the non-linear system composed
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2 – The cohesive model

by (m − c + 1) equations:

i∑︂
j=c

Rij∆Pj = f

⎛⎝ m∑︂
j=i+1

Dij∆Pj

⎞⎠ i = c, . . . , m (2.33)

The eqn. 2.33 may be solved iteratively and once the difference between a com-
putation step and the previous one is lower then a prefixed tolerance, the crack
faces forces, the crack openings and the external load may be computed through
eqns. 2.26 - 2.28
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Chapter 3

The crushing failure

The most used constitutive law for concrete in compression, e.g. the parabolic-
perfectly plastic, the elastic-perfectly plastic and the Sargin’s parabola, are defined
in a stress-strain plane and are not able to take into account the size effects con-
sidering energy dissipation only over a volumetric domain. However, the size-effect
in compression has been demonstrated widely in literature and has important con-
sequences on the design of structures [40, 41]. Indeed, the compressive behavior of
the material is evaluated by means of laboratory tests on specimens that may have
a different scale order of magnitude compared to the real structures and hence, a
different behavior. The strain localization in compression has been observed in the
softening post peak branch [42] similarly to tensile softening. Hence, the introduc-
tion of constitutive laws that takes into account of the energy dissipation over an
area rather than a volumetric domain may be able to predict the real behavior of
the material [43–45]. In this chapter, the pioneering work of Hillerborg who consti-
tute a first attempt to evaluate size-effect for concrete in compression is introduced.
Hence, the overlapping crack model proposed by Carpinteri et al. [46–48] is treated
and the parameters that constitute this model are widely explained.

3.1 The Hillerborg model

A first model for the compressive failure of concrete has been formulated by Hiller-
borg [49] for reinforced concrete beams, moving from the classical bending theory,
to study the rotational capacity of these structures. Indeed, the main hypothesis

23



3 – The crushing failure

of his model are:

• plane sections remain plane after the deformation;

• the tensile strength of the material is completely neglected.

Hence, in order to explain energy dissipation, he introduced a strain localization
zone having a width:

h = ηx (3.1)

where x is the depth of the neutral axis of the section and η is a coefficient that
may be determined by means of experimental tests (however, its mean value is 0.8).
The softening law in compression is defined in the plane σ − wc and has a slope
depending on the depth of the section. Thus, assuming the classical stress - strain
relationships for steel and the elastic-softening law aforementioned for concrete in
compression, Hillerborg was able to calculate the moment-curvature diagrams as is
commonly done in reinforced concrete structures theory. The essential difference
from the classical moment-curvature diagrams is that the Hillerborg ones are size
dependent since the constitute law adopted is defined by means of section depth.

The model proposed by Hillerborg is quite rough but represented a first attempt
to take into account of size-effects for concrete in bending.

3.2 The overlapping model

The overlapping model has been introduced by Carpinteri et al. [46–48] in order
to simulate the damage of concrete in compression, i.e. crushing. It is formally
comparable to the cohesive model and indeed, the damage process is performed
through an interpenetration zone growing during the loading process. When the
model is adopted, the following assumptions are made:

• the overlapping zone develops at one point of the specimen when the second
principal stress reaches the compressive strength σc;

• the crushing zone grows perpendicular to the second principal stress;

• the overlapping zone is divided into two parts. The zone where the mate-
rial, albeit damaged, is still able to transfer stresses constitutes the process
compressive zone and for this region an overlapping law defined in the plane
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3.2 – The overlapping model
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Testo

(a) Classical σ − ε constitu-
tive law in compression
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(b) Overlapping constitutive
law

Figure 3.1: Couple of constitutive laws adopted for undamaged (a) and damaged
material (b) in compression

σ −wc
cr is adopted (fig. 3.1b). Meanwhile, the zone on the rear point where the

interpenetration reaches the threshold width wc
cr, constitutes the stress free

area of the crushing zone.

• the material outside the overlapping zone is assumed to be in the elastic field
and a classical σ − ε law is adopted (fig. 3.1a).

In the present work a linear overlapping law is adopted, although more complicated
shapes could be used:

σ = σc

⎛⎝1 − wc

wc
cr

⎞⎠ (3.2)

The area below the σ − wc curve defines the crushing energy GC and, it may
considered a true material parameter if the specimen is quite large [50].

In order to validate this assumption, the experimental compression tests taken
by Ferrara and Gobbi [45] may be considered . They analyzed specimens varying
both slenderness λ from 0.5 to 2, and scales (1,2,4). The non-dimensional loading
curves obtained by the tests are depicted in fig. 3.2a where S, L, M identify three
different dimension classes. It may be seen that the elastic branch is independent
by the size of the specimen and, indeed, the slope is only a function of the elastic
modulus of the material. Nevertheless, the post-peak is widely affected by the size
and, indeed the curves are quite scattered which imply that a stress-strain law may
not be assumed as a material property when the maximum load is overcame. On
the other hand, it is possible to take into account of the interpenetration wc of the
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3 – The crushing failure

c

(a) σ − εc relationship

c [mm]

(b) σ − wc post-peak relationship

Figure 3.2: Uniaxial compression test on specimens with different dimension and
slenderness. S, M , L, denote respectively, small, medium and large
specimen

material in the softening regime.
The material overlapping is calculated subtracting the elastic expansion gener-

ated by the reduction of the stress to the shortening of the specimen.
In fig. 3.2b the dimensionless load is plotted against wc and it may be seen that

the several curves are restricted within a limited zone demonstrating that a σ − wc

law may be assumed as a real constitutive law of the material. The experimental
results obtained by Ferrara and Gobbi have been confirmed by several authors [50,
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3.2 – The overlapping model

51] allowing to assume the compressive dissipated energy GC as a real material
parameter.

Suzuki et al. [52] have proposed an empirical equation, obtained through com-
pression tests carried on both plain and transverse reinforced concrete specimens,
that is able to compute the crushing energy taking into account the concrete con-
fined compressive strength, stirrups yielding stress and stirrups volumetric content:

GC = GC,0 + 10000k2
ape

σc

(3.3)

where σc is the average concrete compression strength and GC,0 is the crushing
energy for unconfined concrete:

GC,0 = 80 − 50kb (3.4)

ka depends on stirrups strength and volumetric percentage:

ka = 1 + ke
fsy − fs,c

fsy

(3.5)

and pe is the effective lateral pressure:

pe = keρwfs,c (3.6)

the parameter kb depends on concrete strength σc:

kb = 40
σc

≤ 1.0 (3.7)

fs,c is the stress in the transverse reinforcement at the peak strength:

fs,c = Es

⎡⎣0.45εc0 + 6.8
⎛⎝keρw

σc

⎞⎠9/10⎤⎦≤ fsy (3.8)

ke is the effective confinement coefficient:

ke =
⎛⎝1 −

∑︂ (w′
i)2

6bcdc

⎞⎠⎛⎝1 − s′

2bc

⎞⎠⎛⎝1 − s′

2dc

⎞⎠/(1 − ρcc) (3.9)

The units of measure in eqn. 3.3 - 3.9 are N and mm.
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3 – The crushing failure
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Figure 3.3: Stages of loading process of a specimen in compression

Furthermore, ρw is the geometric ratio of transverse reinforcement, Es is the
modulus of elasticity of transverse steel, εc0 = (0.0028 − 0.0008kb), fsy is the steel
yielding strength, w′

i is the spacing between longitudinal bars, s′ is the spacing
between transverse reinforcement, bc and dc are the dimensions of the compressed
concrete area whereas ρcc is the longitudinal compressed steel percentage.

Using Suzuki formula and varying the concrete compressive strength between 20
and 90 MPa, it is possible to observe that GC ranges from 30 to 58 N/mm. Hence,
GC is bigger than GF of 2-3 orders of magnitude, meanwhile, wc

cr ≈ 1 mm that is
one order of magnitude higher than wt

cr.

3.3 Uniaxial compression test of a specimen

The behavior of a plain concrete specimen subjected to uniaxial compression test
may be characterized by three different stages as done for the slab subjected to a
tensile test reported in the section 2.2.

Hence, referring to fig. 3.3 it is possible to observe that:

• In a first step, the specimen is within the elastic field and the displacement of
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3.3 – Uniaxial compression test of a specimen

the upper edge may be calculated as:

δ = σ

E
l ε ≤ εc (3.10)

• Once the ultimate resistance strength σc is achieved, a crushing band starts
to develop as depicted in (a). In this phase, the material outside the damaged
band has still an elastic behavior and, hence, the displacement of the upper
side may be calculated as the sum of the specimen shortening and of the
interpenetration displacement:

δ = σ

E
l + wc ε ≤ εc (3.11)

Taking into account of eqn. 3.2, it is possible to rewrite the eqn. 3.11 as

δ = σ

E
l + wc

cr

(︄
1 − σ

σc

)︄
wc ≤ wc

cr (3.12)

In this phase, the elastic zone expands while the stress decrease. Hence, the
loading process may be carried in a stable manner only if the displacement
control technique is used (however, a more severe unstable phenomena may
occurs);

• In the stage (c), the strain concentration zone is heavily damaged and it is no
longer able to transfer stresses:

δ = 0 δ ≥ wc
cr (3.13)

It is possible to rearrange eqn. 3.12 obtaining:

δ = wc
cr + σ

⎛⎝ l

E
− wc

cr

σc

⎞⎠ (3.14)

The eqn. 3.14 inside a plane δ −σ represent a straight line with a slope depending
on the sign of the term:

l

E
− wc

cr

σc

(3.15)
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3 – The crushing failure

Hence, softening occurs when:

l

E
− wc

cr

σc

< 0 (3.16)

on the other hand, a snap-back post-peak branch is described when:

l

E
− wc

cr

σc

≥ 0 (3.17)

which may be expressed as:
wc

cr/2b

εcλ
≤ 1

2 (3.18)

The ratio wc
cr/2b is the energy brittleness number in compression sc

E. Hence, the
eqn. 3.16 demonstrates that the brittleness of the specimen depends on the com-
bination of low crushing energy, large scale and/or slenderness. Furhermore, the
eqn. 3.18 has the same meaning of eqn. 2.5 defined for tensile tests and the graphs
of fig. 2.4 may be consequently traced also in compression.
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Chapter 4

The cohesive/ overlapping
algorithm

This numerical algorithm has been proposed by Carpinteri et al. [22–28] and Cor-
rado [29] and may be considered a development of the original numerical procedure
recalled in section 2.4.

The numerical resolution is a step-by-step procedure in which the driving pa-
rameters are the positions of the cohesive fictitious crack tip and of the overlapping
fictitious crack tip: starting from their initial positions, the tip that reaches the
ultimate condition, corresponding to the achievement of the ultimate strength, is
computed and only this tip is moved forward in the next step. At each step, reso-
lution is governed by the equation:

{w} = [KF ]{F} + {KM}M (4.1)

being:

• {w} the opening/ overlapping displacements vector;

• [KF ] a matrix containing nodal displacements generated by a unit force;

• {F} vector containing nodal forces;

• [KM ] the matrix containing nodal displacements for a unit applied bending
moment;
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4 – The cohesive/ overlapping algorithm
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Figure 4.1: Forces distribution considered by the cohesive/ overlapping algorithm

• M value of the applied bending moment.

According to the cohesive and overlapping models, in the general case of fig. 4.1, it
is necessary to take into account of the following conditions:

Fi = 0 i = 1, 2, ..., (j − 1), i /= r (4.2a)

Fi = Ft

⎛⎝1 − wi

wt
cr

⎞⎠ i = j, . . . , (m − 1) (4.2b)

wi = 0 i = m, . . . , p (4.2c)

Fi = Fc

⎛⎝1 − wi

wc
cr

⎞⎠ i = (p + 1), . . . , q (4.2d)

Fi = 0 i = (q + 1) . . . , n (4.2e)
Fi = f(wi) i = r (4.2f)

where:

• j: real cohesive crack tip;

• m: fictitious cohesive crack tip;

• p: fictitious overlapping crack tip;

• q: real overlapping crack tip;

• r: reinforcement node position.

32



4 – The cohesive/ overlapping algorithm

The eqn. 4.2b and eqn. 4.2d represent the softening cohesive and overlapping laws,
while the eqn. 4.2f is the equation that is able to relate the crack opening value with
the reaction exerted by the reinforcement layer. This equation will be discussed in
details at the end of this paragraph.

The eqn. 4.1 and 4.2 constitute a system of 2n equations and (2n + 1) unknowns
i.e. n displacements, n forces and the external load. In order to close the problem,
it is necessary to calculate two potential value of M imposing the achievement of
the ultimate strength in the two fictitious crack tips as aforementioned. The actual
external load is fixed according to a minimum condition.

Hence, rotation is computed as

ϑ = {DF }T {F} + DMM (4.3)

where:

• ϑ is the rotation of the analyzed beam portion;

• {DF } is the vector containing the rotation generated by unit nodal forces;

• DM is the rotation generated by a unit applied bending moment;

The matrix [KF ], the vectors {KM} {DF } and the DM value, have been com-
puted by means of the software FEAP [53] developed by the Berkeley University
analyzing a beam portion having a length of 200 mm and a depth of b = 400 mm

as depicted in fig. 4.2.

As regarding steel, the classical σ − ε constitutive law may not be used for the
purpose of the program since the kinematical behavior of the mechanical system is
described by means of crack openings. Hence, a law that is able to relate the force
exerted by the reinforcement layer and the crack opening has been obtained by
means of bond-slip considerations reported in Model Code 90 [32, 54–56]. Indeed,
the bond stresses τ that exchange concrete and steel may be calculated as a function
of the relative slip s:
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4 – The cohesive/ overlapping algorithm

b/2

b

Figure 4.2: Numerical simulation scheme used to compute elastic coefficients of the
algorithm

Figure 4.3: Bond-slip law assumed by MC90

τ = τmax(s/s1)α 0 ≤ s ≤ s1 (4.4a)
τ = τmax s1 < s ≤ s2 (4.4b)

τ = τmax − (τmax − τf )
⎛⎝ s − s2

s3 − s2

⎞⎠ s2 < s ≤ s3 (4.4c)

τ = τ1 s > s3 (4.4d)

The eqns. 4.4 are represented in fig. 4.3. The values of s1, s2, s3, α, τmax, τf
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4 – The cohesive/ overlapping algorithm
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(a) σ − w law originally obtained
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(b) Constitutive law actually con-
sidered by the algorithm

Figure 4.4: Constitutive laws of steel

depend on concrete confinement and bond conditions. In order to obtain a bond-
slip relationship for reinforcement, the following calculation steps have been carried
out [29]:

• It is assumed that the slip, in the section where the fracture is present, is equal
to half the fracture width itself;

• It is assumed that the slip s may be described by a linear function over the
transferring length Lτ i.e., length along which concrete and steel exchange
stresses;

• According to the slip s law assumed in the aforementioned point, τ stresses
are calculated by means of eqn. 4.2;

• Integrating τ along Lτ , the value T of the force exerted by the reinforcement
layer is obtained. The value of this force depends on the value of the total slip
assumed at the beginning of this procedure and, hence on the crack width.

Once the value of the crack width that is able to generate steel yielding wy is gained,
the force T is set equal to T = fy · As for whichever value of the crack opening.

Hence, the typical curve for steel in fig. 4.4a has been obtained assuming fy =
430 MPa, Es = 210 GPa, ϕ = 16 mm, Lτ = 20ϕ, τmax = 11 MPa, τf = 1.6 MPa,

s1 = 0.6 mm, s2 = 0.6, mm, s3 = 1.0 mm, α = 0.4. The application of the law
reported in fig. 4.4a may be troublesome due non linearity of the first branch. Hence,
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4 – The cohesive/ overlapping algorithm

the simpler bi-linear law of fig. 4.4b is effectively considered inside the algorithm
and the value of wy is fixed to 0.4 mm.
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Chapter 5

The new cohesive/
overlapping algorithm

In this part of the work, the new cohesive/ overlapping algorithm will be presented
and its routines will be discussed in details.

The program has been written using Matlab ver. 2019a and keeps the original
theoretical background of that presented by Carpinteri et al. albeit there are many
differences, which will be outlined, referring to equations management and the
evaluation of the effects of the reinforcement layer.

Furthermore, in order to test the applicability of the program also to pre-stressed
concrete beams, an additional routine that is able to take into account of the
presence of an axial force has been written.

5.1 The routine GUI.mlapp

The GUI.mlapp constitutes the user interface of the algorithm and, it is made of
three different "faces": the first one is dedicated to the data input of the problem,
the second one is able to show the results for each computation step, while in the
third one P − δ or M − ϑ curves are plotted inside a dedicated environment.

In the first face (fig. 5.1), the user is able to decide if the analysis has to be done
taking into account only the crack opening or both crack opening and concrete
crushing. The choice is memorized inside the variable crushing. Furthermore, the
user may choice also the initial notch tip and the value of a possible prestressing
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5 – The new cohesive/ overlapping algorithm

Figure 5.1: User interface of the new algorithm

force which quantities are memorized inside initipt, Fp, respectively. In the central
column it is possible to enter the mechanical properties of the concrete matrix such
as tensile and compressive ultimate strengths and critic displacements wt

cr and wc
cr

for cohesive and overlapping softening laws. The current version of the program is
able to deal only with linear softening σ − w curves and, hence the fracture energy
GF and the crushing energy GC , that are showed as first outputs, are computed
through the triangle area formula.

On the right part of the current face there is the reinforcement table in which
the user may decide the node where to place a reinforcement layer, the nominal
bars diameter and the number of bars. The reinforcement table has been created
thinking of future developments of the algorithm and, although the GUI allow to
insert more levels of reinforcement, the actual version of the program is able to
manage only one bars layer. The information about reinforcement is memorized
inside the matrix data.
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5.2 – The routine ReinforcementData.m
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Figure 5.2: Steel-concrete interaction

[coer,fo,wy,IndexAs,...
thickness,Ast,I] = ReinforcementData(data,high,thickness,...

I,Es,E,fus,fo1,Fp,tau,nnod,pres)

Figure 5.3: Variables managed by ReinforcementData.m

5.2 The routine ReinforcementData.m

This routine is able to evaluate both the effect of a reinforcement layer and of a
prestressed straight cable. As regarding classical reinforcement, a study on bond-
slip relationship [57, 58] has been done. Indeed, the classical σ − ε constitutive law
usually adopted for steel cannot be used for the purpose of this work because the
kinematic of the structural system is characterized by the crack opening wt.

It is possible to consider a tensed member as depicted in fig. 5.2 and to apply an
axial force Ncr generating the cracking of the middle cross section.

In correspondence of the fracture, the force is carried only by the steel layer while
at a distance Lτ , the stress is equal to σt due τ stresses that exchange concrete and
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5 – The new cohesive/ overlapping algorithm
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Figure 5.4: Pre-stressed steel-concrete interaction

steel. Hence, it is possible to find out Lτ writing the equilibrium equation:

σs0As =
∫︂ Lτ

0
πϕτ(x) dx (5.1)

Since the τ stresses variation description is quite complicated (for more details
see [58]) it may be possible to assume an average value τm (the Model Code 2010
suggests to adopt τm = 1.8σt) and the 5.1 may be rewrite as:

Lτ = σs0As

πϕ τm

(5.2)

Along Lτ the stress inside steel varies linearly (τ stresses have been assumed con-
stant) from a maximum value σs0 in correspondence of the fracture to a minimum
one that may be assumed, for sake of simplicity, null. Therefore:

σs(x) = σs0

(︄
1 − x

Lτ

)︄
(5.3)

Fracture opening may be calculated as two times the integral of the strain dif-
ference between steel and concrete along Lτ . However, the deformation of concrete
is negligible and taking into account of eqn. 5.2, 5.3 it is possible to obtain:

wt = σ2
s0As

Esπϕ τm

(5.4)

In the case of a pre-stressed reinforcement layer, all the aforementioned consid-
erations may be repeated.

It is possible to imagine a prestressed part of a beam of length Lτ at the first
crack formation stage as depicted in fig. 5.4. Along the distance Lτ , concrete and
steel exchange τ stresses and hence, imposing equilibrium it is possible to find out
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5.3 – The routine master.m

the new expression of Lτ for pre-stressed members:

LT =
(σp − σp0)Asp

πϕ τm

(5.5)

where (σp − σp0)Asp represents the increasing of force inside steel due cracking.
It is worth noticing that the eqn. 5.5 is equal to the formula provided in clause
7.4.3.2. by Model Code 90.

The crack width, due symmetry, is equal to twice the integral of the deformation
difference between concrete and steel along Lτ . Nevertheless, the deformation of
concrete may be neglected and, it is possible to write:

wt = 2
∫︂ LT

0
[εs (x) − εc (x)] dx ≈

(σp − σp0)2A
sp

Esπϕ τm

(5.6)

The implementation of eqn. 5.4 and 5.6 may be quite troublesome and thus, these
laws have been used only to calibrate simpler expressions. More precisely, the 5.4
and 5.6 have been used to calculate wy and an elastic-perfectly plastic constitutive
law in the plane σ−wt, as the original algorithm, as been assumed. Furthermore, for
sake of simplicity, the hardening branch of the prestressing steel has been neglected.

The information on the steel effect is memorized in the variable coer and is
elaborated by the routine coerNoPres.m and the routine coerPres.m depending on
the value assumed by the flag pres end hence, depending on the presence of a pre-
stressing force. Furthermore, it is worth noticing that the effects of a reinforcement
layer are evaluated on the homogenized section of the analyzed beam.

5.3 The routine master.m

[fs,ws,thetas,Ms,deltas,fos,ntipts,ntipats,ntipcs,...
ntipacs,nstep,inoda,Ast]=master(initipt,ft,fc,wct,wcc,...
data,span,thickness,...

high,E,I,crushing,rein,Fp,pres,nodes)

Figure 5.5: Variables managed by master.m

The function master.m is the main routine of the algorithm and it manages the
calling of other routines and the handover of variables. Furthermore, it controls
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5 – The new cohesive/ overlapping algorithm

Figure 5.6: Function scheme of the routine master.m

the cycles that are made according to the desired analysis and indeed it is divided
into two parts; the first one consists in a loop (always performed) that is able to
move the tensed or compressed fictitious crack tip, while the second cycle is able
to move the two tips towards the soffit of the beam. This last loop is done only if
it is required to take into account of the concrete crushing and if the two tips meet
themselves at the end of the previous loop.

In fig. 5.6 is depicted a flow chart showing the operations that are made by this
routine and the other functions that are called.

5.4 The routine LoadComputation.m

This routine is able to calculate the external bending moment M generating the
ultimate strength in the cohesive fictitious crack tip ntipt or in the overlapping
fictitious crack tip ntipc.
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5.5 – The routine soluz.m

[M,cru,IndexYielded]=LoadComputation(ntipt,ntipat,ncort,...
ntipc,ntipac,ncorc,...

M,fut,wct,fuc,wcc,nnod,...
coe,coer,fo,c,dcoe,dc,wy,flag,crushing,rein,...
IndexAs,IndexYielded,pres)

Figure 5.7: Variables managed by LoadComputation.m

The routine exploits the solution calculated in the previous step calculation and,
hence, the behavior of the system due a unit increment of M is measured. Then,
two values of ∆M that are able to generate the conditions aforementioned are
computed and the actual value of M is fixed according to a minimum condition.
This minimum condition is set in order to work with the absolute value of ∆M

taking into account that in the post-peak branch a softening or a snap-back may
occur. If the analysis is set to take into account of a reinforcement layer, a third
value of ∆M that is able to generate steel yielding is considered.

5.5 The routine soluz.m

[f,w, theta,IndexYielded]=soluz(ntipt,ntipat,ncort,ntipc,ntipac,ncorc,...
M,fut,wct,fuc,wcc, nnod,...

coe,coer,fo,c,dcoe,dc,wy,flag,crushing,...
rein,IndexAs,IndexYielded,pres)

Figure 5.8: Variables managed by soluz.m

The routine is able to build a linear system of the type [a]{x} = {b} according to
the positions of both cohesive and overlapping cracks tips. The unknowns involve
both forces and displacements and hence, it is no longer necessary to perform loops
in order to obtain {F} and {w} separately, as done by the original program. As a
matter of fact, the algorithm is not set to work with the eqn. 3.17 but:

{F} = [Kw]{w} + {KM}M (5.7)

being:

• [Kw] the matrix containing nodal reactions generated by a unit nodal force;
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5 – The new cohesive/ overlapping algorithm

• {KM} the vector containing nodal reactions generated by a unit external bend-
ing moment.

Hence, the general following linear system is constructed:
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(5.9)

Once {F}t and {F}c are calculated, the crack opening and the interpenetrations
values in the process zones are computed by means of eqn. 4.2b and eqn. 4.2d.

If the numerical analysis is done for a reinforced or pre-stressed member the
eqn. 5.8 and eqn. 5.9 are modified by the routine SystemModRein.m. The manipu-
lation that has to be performed, depends on the crack zone in which the node r is
positioned and on which branch of the elastic-perfectly plastic law has to be taken
into account.
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5.6 The routine RealTipAdvancement.m

[f,w,theta,ntipat,ntipac,ncort,ncorc,M,cru] = ...
RealTipAdvancement(f,w,theta,...

ntipt,ntipat,ncort,ntipc,ntipac,ncorc,...
M,fut,wct,fuc,wcc, nnod,coe,coer,fo,c, dcoe,...
dc,flag,crushing,cru,rein,IndexAs,wy,IndexYielded,pres)

Figure 5.9: Variables managed by RealTipAdvancement.m

This routine is able to perform a control on the displacements solution calcu-
lated in the current cycle. More precisely, it is able to check the displacements in
both cohesive and overlapping zones and if solutions overcame wt

cr or wt
cr, real tip

positions are moved forward, the extension of the processes zones are recalculated
and a new solution is computed.

The routine is composed by several cycles as the real cohesive crack tip and the
real crushing crack tip are moved alternatively of a unit position according to the
minimum load condition. At the end of each cycles, control functions are recalled
in order to check the convergence of the solution just performed.

If controls are successful, the cycles are broken and the algorithm memorize the
new results.
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Chapter 6

New algorithm results

In this chapter some numerical investigation carried through the new cohesive/
overlapping algorithm will be presented and numerical vs. experimental curves will
be plotted in order to validate the new numerical procedure.

6.1 Numerical investigation

In fig. 6.1 some dimensionless load vs. deflection diagrams are reported [59] varying
the energy brittleness numbers sE of the specimens. More precisely, the sE numbers
considered in the simulations are the same of tab. 2.1. The curves are obtained for
Ec = 30000 MPa, ν = 0.1, εt = 0.87 · 10−4, t = b for two slenderness ratio λ: 4, 16.
In order to recognize the role of the initial notch, two values of the ratio ao/b have
been considered: 0.0 and 0.5.

In fig. 6.1a, it may be seen that the mechanical system exhibits an unstable
behavior for sE < 10.45 · 10−5 and, hence, a snap-back post-peak branch is traced.
On the other hand, for curves F − R the slope in the softening regime appear to
be more and more stable as sE becomes bigger. In fig. 6.1b the same geometry of
fig. 6.1a are considered but an initial notch equal to one half of beams depths have
been set in the numerical simulations. It may be worked out that, however this
initial damage reduces the peak load for all the specimens, it changes the shape of
the curve and, indeed, no snap-back is described even for low sE numbers.

In fig. 6.1c, a slenderness ratio equal to 16 has been considered and a general
embrittlement for all the specimens may be pointed out and, indeed, the curves
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Figure 6.1: Dimensionless load vs. deflection diagrams of plain concrete beams for
different geometries, crack lengths and sE numbers

A − D present a severe instability.
As referring to fig. 6.1c and fig. 6.1d, what have been indicated for fig. 6.1a and

fig. 6.1b may be repeated.
In fig. 6.2 a numerical investigation carried on reinforced beams varying the depth

b is presented. The results have been obtained assuming the following mechanical
parameters: σt = 4 MPa, GF = 0.08 N/mm, σc = 40 MPa, GC = 30 N/mm. The
yielding stress σy for steel has been assumed equal to 400 MPa and the d/b ratio
has been fixed to 0.9 for all the specimens. In order to investigate size-effects the
depths of the beams have been varied between 0.1 m and 2.0 m and two different
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Figure 6.2: Dimensionless load vs. rotation diagrams for different geometries and
reinforcement ratio

steel percentage have been taken into account.
It may be seen in fig. 6.2a, that the ductility exploited by the mechanical system

is inversely proportional to its own size: the beam having a depth equal to 0.1 m

presents a high rotational capacity (for the definition of rotational capacity see
fig. 8.1) while the beam with b = 2.0 m shows a minimum plasticity resources. At
the same time, for large beam depths, the crushing failure of concrete assume a more
important role while, for small scale this phenomenon is neglectable. Hence, it is
possible to assume that keeping the reinforcement ratio ρ constant, the behavior of
the system is more unstable for large b.
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In fig. 6.2b, it is possible to appreciate a general reduction on the plasticity
resources of the mechanical systems albeit higher peak-loads are reached. The beam
having b = 2.0 m presents the most severe response and, indeed, once the maximum
load is gained an almost vertical dropping occurs due unstable overlapping crack
propagation.

6.2 Parametric analysis and experimental com-
parison

The experimental tests herein proposed, have been carried out by Carpinteri et
al. [60] at the Department of Structural Engineering and Geotechnics of the Po-
litecnico di Torino in order to investigate the size effects and the transition be-
tween failure mechanisms. Hence, specimens were prepared varying section depth
b, slenderness ratio λ and steel percentage ρ.

Originally, 45 beams were casted however due laboratory movements, 10 beams
cracked and consequently only 35 beams have been really tested. Beams were col-
lected and labelled in three different classes according to cross sectional dimensions:
(A) 100x100 mm, (B) 100x200 mm, (C) 200x400 mm. The slenderness ratio λ con-
sidered were λ = 6 ,12 , 18 and the effective depth to total depth ratio d/b has been
fixed for all the specimens to 0.9.

The geometric and reinforced parameters of the tested specimens are reported
in tab. 6.1.

In order to follow the tests in a stable manner, a closed-loop servo-controlled
machinery has been adopted; the loading has been applied by means of displace-
ments control for beams having a steel percentage larger than 0.50% while for the
others the crack mouth opening displacement (CMOD) has been used. The test
layout and machinery is reported in fig. 6.3.

The used steel bars had a diameters of 5, 8, 16, 20 mm having a yielding stress
equal to 604, 643, 518, 567 MPa respectively. The average value of concrete com-
pression strength fcm has been assumed equal to 48.2 N/mm2 and has been deter-
mined by means of eight cubic specimens. On the other hand, the elastic modulus
of concrete has been determined on four specimens of 100x100x300 mm and a mean
value of 35000 MPa has been assumed. The fracture energy GF had been measured
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Beam Tension reinforcement As/(tb) NP

A012-06 1ϕ5 0.20% 0.187
A025-06 2ϕ5 0.39% 0.374
A100-06 2ϕ8 1.00% 1.019
A200-06 4ϕ8 2.00% 2.038
A012-12 1ϕ5 0.20% 0.187
A025-12 2ϕ5 0.39% 0.374
A050-12 1ϕ8 0.50% 0.510
A100-12 2ϕ8 1.00% 1.019
A200-12 4ϕ8 2.00% 2.038
A025-18 2ϕ5 0.39% 0.374
A050-18 1ϕ8 0.50% 0.510
A100-18 2ϕ8 1.00% 1.019
A200-18 4ϕ8 2.00% 2.381
B012-06 2ϕ5 0.20% 0.265
B025-06 1ϕ8 0.25% 0.360
B050-06 2ϕ8 0.50% 0.721
B100-06 4ϕ8 1.00% 1.441
B200-06 2ϕ16 2.00% 2.322
B025-12 1ϕ8 0.25% 0.360
B100-12 4ϕ8 1.00% 1.441
B200-12 2ϕ16 2.00% 2.322
C012-06 2ϕ8 0.12% 0.255
C025-06 4ϕ8 0.25% 0.510
C050-06 2ϕ16 0.50% 0.821
C100-06 4ϕ16 1.00% 1.642
C200-06 4ϕ20 2.00% 2.810
C012-12 2ϕ8 0.12% 0.255
C100-12 4ϕ16 1.00% 1.642
C200-12 4ϕ20 2.00% 2.810
C012-18 2ϕ8 0.12% 0.255
C050-18 2ϕ16 0.50% 0.821
C100-18 4ϕ16 1.00% 1.642
C200-18 4ϕ20 2.00% 2.810

Table 6.1: Geometrical characteristics and steel percentages of tested beams

according to the RILEM reccomendation [61] on six specimens and a mean value
GF = 0.115 N/mm has been obtained. Hence, the stress intensity factor has been
fixed to KIC =

√
GF Ec = 63.4 Nmm−3/2.
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Figure 6.3: Test machinery adopted by Carpinteri et al.

From fig. 6.4 to fig. 6.11 a numerical vs. experimental comparison is made. Gen-
erally, it is possible to observe a good agreement of the numerical prediction with
the experimental behavior proving the program to be capable of grasp the snap-
back due concrete cracking, the steel yielding and the concrete crushing effectively.
More precisely, for low steel percentage, the steel yielding precedes the concrete
failure in compression and, hence, large plateau are described while for high steel
amount, the plateau wide is strongly reduced due concrete crushing. The bigger
differences between numerical and experimental results are outlined for high steel
percentages; for these cases, indeed, the hypothesis of damage concentration in the
middle cross section of the beam is quite unrealistic since it is more spread along
beam length.

Nevertheless, the diagrams highlight a clear variation in failure mechanisms ac-
cording to reinforcement area As, span and scale:
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• Increasing the reinforcement area As and keeping the other parameters con-
stant, there is a change from a flexural failure to a crushing one;

• Increasing the span and keeping the other parameters constant, there is a
change from a compressive failure of concrete to a flexural one;

• Increasing the scale and keeping As constant there is a variation from a crush-
ing failure to a flexural one.
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Figure 6.7: Numerical (thick curve) vs. experimental curves for specimens from
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Figure 6.8: Numerical (thick curve) vs. experimental curves for specimens from
B200-06 to B200-12
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Figure 6.9: Numerical (thick curve) vs. experimental curves for specimens from
C012-06 to C100-06
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Figure 6.10: Numerical (thick curve) vs. experimental curves for specimens from
C200-06 to C200-12
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Figure 6.11: Numerical (thick curve) vs. experimental curves for specimens from
C012-18 to C200-18
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Chapter 7

Minimum reinforcement

In this chapter, the new numerical algorithm based on the cohesive and overlapping
models will be used to estimate the minimum reinforcement percentage. Hence,
national and international Code provisions are reported and compared, their short-
comings are underlined and a new formulation is proposed based on studies on this
topic, carried by Carpinteri et al. [62, 63], by means of dimensional analysis.

7.1 Codes provisions

The tensile strength of concrete is usually neglected in the limit analysis of rein-
forced concrete beams. In the case of members having a large cross sectional area
with a low steel percentage, this assumption may not lead to a safe design: if a
section of the beam cracks, the force that prior to cracking was born partially by re-
inforcement and partially by concrete is forced to exploit steel and if the resistance
of the cracked section is lower than the resistance of the uncracked section, the
brittle failure of the structural member occurs [64] . Hence, national and interna-
tional Codes impose to respect a minimum steel percentage which usually depends
on concrete grade and steel yielding point. Thus, it is possible to find the minimum
steel percentage as:

γMu = Mcr (7.1)

where γ is a resistance factor, Mu and Mcr are the ultimate bending moment
and the cracking bending moment, respectively. Hence, using the classical beam
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7 – Minimum reinforcement

theory, it is possible to rewrite the eqn. 7.1 as:

γAsfykd = fctm
tb2

6 (7.2)

Assuming a ratio b/d = 1.2 and γ = 0.9, it is possible to obtain the minimum
reinforcement provision according to Model Code 2010 [58] and Eurocode 2 [65]:

As,mim = 0.26fctm

fyk

bt ≥ 0.0013bt (7.3)

Other Codes provisions are based on the same assumptions [66–70] and some
relations are reported:

BS8110 − 1 : 1997 As,mim = 0.13bt (7.4a)

ACI318 − 11 As,mim = 0.25
√

fck

fyk
bt ≥ 1.4 bt

fyk
(7.4b)

AS3600 − 2001 As,mim = 0.22
(︃

b

d

)︃2 fctm

fyk
bt (7.4c)

IS456 : 2000 As,mim = 0.85fykbt (7.4d)

NS3473 As,mim = 0.35kwAcfctk,005fyk (7.4e)

with kw = (1.5 − b) ≥ 1 in 7.4e.
In fig. 7.2 a comparison between national and international Codes provisions is

provided. It may be seen that only the NS3473 E takes into account the size effect
and indeed, it imposes a decreasing steel amount up to b = 0.6 m and a constant
value equal to ρ = 0.23% beyond this limit. The national Code that requires the
highest minimum steel percentage is the ACI318-11 while the IS456:2000, the AS
3600-2011, the MC10 impose an almost equal quantity.

7.2 Numerical models for minimum reinforcement

The bridged crack model, based on LEFM, has been significantly used in the esti-
mation of the minimum reinforcement [60, 71, 72]. The model considers a cracked
RC element with a reinforcement layer and, by means of the superposition principle,
defines the critic value of the stress intensity factor KIC for which crack propagates.
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7.2 – Numerical models for minimum reinforcement
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Figure 7.1: Comparison between minimum reinforcement Codes provisions

Furthermore, the value of the force exerted by steel is calculated assuming a kine-
matical condition on crack faces: the crack opening is assumed null up to steel layer
yielding.

The global behaviour of the mechanical system is completely described by the
reinforcement brittle number NP :

NP = ρ
σyb0.5

KIC

(7.5)

The value of NP for which the minimum reinforcement condition is reached is
called NP C and, it is a function of the concrete grade:

NP C = 0.1 + 0.0023fcm (7.6)

Equalling the eqn. 7.5 and eqn. 7.6, it is possible to calculate the minimum rein-
forcement according to the bridged crack model:

As,mim = KIC

fyk

(1 + 0.0023fcm) tb0.5 (7.7)
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7 – Minimum reinforcement

Other formulations that it is possible to find in literature [57, 73–77] based on
several models are reported:

Hawkins and Hjorteset ρs,mim = 0.183
(︃

1 + 1
0.85 + 2.3b/lch

)︃
fctmb

fyk(b − c) (7.8a)

Ruiz et al. ρs,mim = 0.175
1 − γ

· 1 + (0.85 + 2.3β1)−1

f∗
yk − η1φ

(7.8b)

Gerstle et al. ρs,mim = Ec

Es

(︄√︄
0.0081 + 0.0148 fctmb

Ecwt
cr

− 0.0900
)︄0.5

(7.8c)

Baluch et al. ρs,mim = 1.9134KIC

fyk
0.9922 (1.7 − 2.6c/b)

(7.8d)

Appa Rao et al. ρs,mim =
(︃

−0.01 + 40.10
d

)︃
f1.14

ck

fyk
0.57 (7.8e)

Shehata et al. ρs,mim = 0.5f0.67
ck (1 + 1.5b)

fykb0.7 (7.8f)
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Figure 7.2: Minimum reinforcement vs. effective beam depth according to various
models

being: lch = EcGf/f 2
ctm, β1 = b/(αlch), α = (65 + 15dmax/8)/170 with dmax

maximum aggregate size, f ∗
y = fyk/fctm, η1 = 15, φ = (β0.25

1 − 3.6c/b · β1) ≥ 0.
In fig. 7.2 the eqn. 7.14 refers to a new formulation that will be presented in the

next section. It may be seen that apart from Gerstle et al., all the formulations
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furnish a minimum reinforcement that is inversely proportional to the beam depth.
More precisely, it i possible to work out as the relations of Hawkins and Hjorteset,
Ruiz et al. and eqn. 7.11 provide a minimum reinforcement that is quite similar
since they are based on the same model, i.e. the cohesive model. Shehata et
al. and Appa Rao et al. formulations presents a minimum reinforcement that is
highly dependent on the beam depth, while Bosco et al. provides a reinforcement
percentage below 0.1% for large size beams.

7.3 Dimensional analysis approach

It is possible to use the Buckingham’s theorem [78] to point out the quantities that
contribute in the definition of the minimum reinforcement. Hence, it is possible to
write:

M = g (fctm, GF , Ec, fyk, As, b; ϑ) (7.9)

where fck and GC are neglected since in lightly reinforced beam the crushing
of concrete does not take place. Hence, assuming KIC and b as fundamentals
parameters and minimizing the problem space it is possible to obtain:

M

b2.5KIC

= g1

(︄
fctmb0.5

KIC

,
As

bt

fykb0.5

KIC

, ϑ
Ecb

0.5

KIC

)︄
(7.10)

where it is possible to recognize the stress brittleness number s and the reinforced
brittleness number NP .

Thus, a numerical investigation may be carried out in order to identify the
relationship between the two non-dimensional numbers.

The concrete grades that have been simulated are reported in tab. 7.1: the mod-
ulus of elasticity Ec has been varied between 2.2 to 4.8 GPa, the tensile strength
of concrete has been calculated as:

fctm =0.3f
2/3
ck ≤ C50/60 (7.11a)

fctm =2.12 · log

(︄
1 + fcm

10

)︄
> C50/60 (7.11b)
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Figure 7.3: Minimum reinforcement condition for a beam: b = t = 400 mm, λ = 4,
fctm = 2.2 mm, GF = 0.062 N/mm, Ec = 30 GPa, ρ = 0.124%, d/b =
0.9

while the energy release rate GF has been computed through the relation pro-
vided by Model Code 90:

GF = GF 0 ·

⎛⎝ fcm

fcm0

⎞⎠0.7

(7.12)

where GF 0 is the base value of the fracture energy that depends on the maximum
size of the aggregate (which has been fixed to 16 mm) and fcm0 = 10 MPa. The
numerical simulations have been carried fixing the ratio d/b = 0.9, a square cross
sectional area and a slenderness ratio equal to 4.

The numerical studies have been carried varying the steel percentage until the
equalling between the cracking load Pcr and the ultimate load Pu, as reported in
fig. 7.3, has been found.

The resulted As/(tb) ratios, the values s and NP C are reported in tab. 6.1.
It is possible to realize a plot of NP C vs. s in order to find a trend for minimum

reinforcement percentage as suggested by eqn. 7.10. Thus, the numerical results are
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Figure 7.4: Best-fit relationship of numerical results in the plane s-NP C

reported in fig. 7.4 and it may be seen that the following hyperbolic curve represents
the best-fit of the numerical simulations1:

NP C = 0.26s−0.7 (7.13)

Hence, substituting the definition of NP C and s in eqn. 7.13, it is possible to
obtain:

As,min = 0.26fctm
0.7K0.3

IC

fyk

tb0.85 (7.14)

1In fig. 7.4, black dots refer to minimum reinforcement percentages experimentally observed
[73, 79].
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fck fctm GF Ec b As/bt NP C s
(MPa) (MPa) (N/mm) (GPa) (mm) (mm) (−) (−)

20 2.2 0.062 30

25 0.207 0.108 3.921
50 0.181 0.134 2.772
100 0.161 0.168 1.960
200 0.140 0.207 1.386
400 0.124 0.259 0.980
800 0.111 0.328 0.693
1600 0.100 0.417 0.490
3200 0.093 0.549 0.347

35 3.2 0.083 34

25 0.281 0.119 3.921
50 0.248 0.149 2.772
100 0.216 0.183 1.960
200 0.191 0.229 1.386
400 0.171 0.290 0.980
800 0.153 0.367 0.693
1600 0.140 0.474 0.490
3200 0.131 0.628 0.347

50 4.1 0.103 37

25 0.350 0.128 3.921
50 0.300 0.156 2.772
100 0.266 0.194 1.960
200 0.242 0.243 1.386
400 0.220 0.308 0.980
800 0.200 0.392 0.693
1600 0.183 0.513 0.490
3200 0.173 0.672 0.347

65 4.5 0.120 40

25 0.384 0.125 3.921
50 0.338 0.155 2.772
100 0.296 0.192 1.960
200 0.261 0.240 1.386
400 0.234 0.304 0.980
800 0.210 0.386 0.693
1600 0.194 0.504 0.490
3200 0.180 0.661 0.347

80 4.8 0.137 42

25 0.419 0.124 3.921
50 0.366 0.154 2.772
100 0.321 0.190 1.960
200 0.283 0.237 1.386
400 0.252 0.299 0.980
800 0.228 0.383 0.693
1600 0.208 0.494 0.490
3200 0.194 0.651 0.347

Table 7.1: Mechanical parameters for the beams considered in the numerical sim-
ulations 70



Chapter 8

Rotational capacity of
beams

The ductility of a structure may be evaluated as the rotational capacity ϑP L of the
plastic hinges, calculated as the rotation difference between the ϑ beyond which a
drop in the load carry capacity is registered, and the θ corresponding to steel yield-
ing as depicted in fig. 8.1. Between the years 1960 and 1965, a C.E.B. Commission
supported a long series of tests on reinforced concrete beams in order to highlight
the fundamental parameters that influence the rotational capacity of concrete mem-
bers. The results of these tests have been numerically studied and Siviero [80] has
proposed the following formulation:

ϑP L = 0.004x

d
(8.1)

being x/d the relative neutral axis depth at the ultimate limit state. In the same
years, other authors proposed to calculate ϑP L referring to the definition of length
of plastic hinge and first attempts to take into account also the shear contribution
were proposed.

Nevertheless, the most important problem of all the numerical models proposed
in that years is the overestimation of ϑP L since they assumed always the concrete
failure in compression; only the research group headed by Prof. Eligehausen [81]
formulated an analytical model that was able to take into account both steel and
concrete failure: for low values of x/d the rupture of steel occurs whereas for large
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Figure 8.1: ϑP L definition

Figure 8.2: ϑP L-x/d relation according to Eurocode 2

x/d values, the concrete crushing becomes more and more important. This concept
has been accepted by Eurocode 2 [65] which proposes the diagram depicted in fig. 8.2
to calculate the plastic resources of a structure.

On the other hand, the size effect is completely neglected. In fig. 8.3 are plotted
rotational capacity results obtained by the application of the new cohesive/ over-
lapping algorithm for several beam depths, steel percentage and the Eurocode 2
prediction. In this figure, it is possible to observe that the numerical results provide
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8.1 – Dimensional analysis approach

a lower ϑP L values suggesting that rotations assumed by the Code are not always
conservative. This conclusion is confirmed by the fig. 8.4 in which are reported ro-
tations provided by the numerical algorithm and Eurocode 2 for the experimental
test of beams reported in tab. 6.1. It is worth noticing that except for beams A050-
12, B025-12, B050-06, the numerical procedure provide values that are nearer the
experimental results than the Code predictions.
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Figure 8.3: Rotation for different beam heights compared with Eurocode 2 predic-
tions

8.1 Dimensional analysis approach

In order to outline the fundamental parameters influencing ϑP L, it is possible to
adopt the dimensional analysis approach [82, 83]. Hence, it is possible to write the
following relationship:

M = g1

(︄
fctm, GF , fc, GC , Ec, fyk, ρ, b; t

b
,

l

b
, ϑ

)︄
(8.2)

Since we are are interested in the study of over-reinforced beams in bending (it
has been demonstrated that low reinforced beams have wide plastic plateau), it is
possible to neglect in the eqn. 8.2 the terms fctm and GF . Thus, assuming b and
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Figure 8.4: Rotational capacity comparison

√
GCEC as fundamental variables, it is possible to write:

M√
GCEcb5/2 = g1

(︄
fcb

1/2
√

GCEc

, ρ
fykb1/2
√

GCEc

, ϑ
b1/2EC√

GCEc

)︄
(8.3)

where it is possible to recognize similar quantities defined in the eqn. 7.10 for
the study of the minimum reinforcement ratio.

The eqn. 8.3 has been used to define through numerical simulations with the
original cohesive/overlapping algorithm (for more details see the articles cited at
the beginning of the present section) a relation that is able to define the maximum
steel percentage in a structural member. The ρmax percentage depends on the beam
depth and is defined as the maximum steel beyond which no plastic resources are
exploited due concrete failure in compression.
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Chapter 9

The effect of a pre-stressing
force

The numerical algorithm presented in chapter 5 may be modified conveniently in
order to take into account the presence of a pre-stressing force. More precisely, the
eqn. 5.7 may be modified as:

{w} = [KF ]{F} + {KM}M + {F0} (9.1)

where {F0} represents the nodal forces generates by FP .

The {F0} vector is calculated by means of the Naviér formula. More precisely,
the routine ReinforcementData.m is able to calculate the σ generated by the pre-
stressing force and integrate them by means of the midpoint rule. Due the inability
of the current version of the algorithm to take into account the full-span behav-
ior of the members, pre-stressing losses are neglected and the pre-stressing force
is assumed to enter completely in the beam. Furthermore, the increase of force in
the cable due crack opening is assumed as a concentrated force directly applied on
crack faces.

In the following section several rotation vs. non-dimensional load diagrams will
be presented for pre-stressing members varying both pre-stressing steel percentage
and beam depth.
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9 – The effect of a pre-stressing force

9.1 Numerical investigation

From fig. 9.1 to fig. 9.5, non-dimensional load vs. rotation diagrams for different pre-
stressing steel ratio and beam heights are plotted. The steel constitutive law has
been assumed elastic-perfectly plastic with f01 = 1640 MPa, the ratio d/b has been
set equal to 0.9 and the pre-stressing force FP has been assumed FP = 1/3f01Asp

for all the numerical simulations.
It may be seen that for low pre-stressing steel percentages, the behaviour is quite

similar to reinforced beams: there is an ascending branch up to concrete cracking,
a snap-back and then, a second ascending branch up to steel yielding. At the end of
the plastic plateau, a snap-back in compression is revealed even for low structural
scale.

In case of pre-stressed steel percentage bigger than 0.2% as depicted in fig. 9.2-
9.5 there is no steel yielding and the failure that prevails is the crushing one and,
the snap-back in compression appears to be more severe for bigger scale and larger
pre-stressed beam reinforcement.
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Figure 9.1: Non-dimensional load vs. rotation for pre-stressing steel having
ρp = 0.1% (a) and ρp = 0.2% (b)
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Figure 9.2: Non-dimensional load vs. rotation for pre-stressing beams having
ρp = 0.4%
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Figure 9.3: Non-dimensional load vs. rotation for pre-stressing beams having
ρp = 0.6%

79



9 – The effect of a pre-stressing force

0 5 10 15
0

20

40

60

80

θ (millirad)

M
/G

c
tb

(−
)

(a) Beam depth: b = 400 mm

0 2 4 6 8 10
0

20

40

60

80

100

θ (millirad)

M
/
G

c
tb

(−
)

(b) Beam depth: b = 600 mm

0 2 4 6 8
0

50

100

150

θ (millirad)

M
/G

c
tb

(−
)

(c) Beam depth: b = 800 mm

0 2 4 6 8
0

50

100

150

200

θ (millirad)

M
/G

c
tb

(−
)

(d) Beam depth: b = 1000 mm

0 2 4 6
0

100

200

300

400

θ (millirad)

M
/G

c
tb

(−
)

(e) Beam depth: b = 1500 mm

Figure 9.4: Non-dimensional load vs. rotation for pre-stressing beams having
ρp = 0.8%
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Figure 9.5: Non-dimensional load vs. rotation for pre-stressing beams having
ρp = 1.0%
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Chapter 10

Future algorithm
developments

The present work demonstrates the capability of the algorithm and, of the inte-
gration of the cohesive and overlapping crack models to be able to describe some
non-linearities, such as crack opening, steel yielding and/or slippage and concrete
crushing, that may occur during the loading process of a reinforced concrete beam.
Furthermore, the numerical procedure herein proposed, is able to simulate the size-
effect of concrete structural members that is often observed experimentally and
neglected, in the design procedures and structures security assessment, for sake of
simplicity. The current version of the program is able to simulate only Mode I
crack propagation and, hence, the role of shear is completely neglected. In order to
fill this gap, the numerical procedure may be improved and generalized considering
the crack growing also in a Mode II condition allowing to simulate the beam in its
full span. In this way a comprehensive representation of the transitions between
structural collapse mechanisms will be given.

Indeed, as showed in fig. 10.1, the crack propagation (flexural failure), the dam-
age in compression of concrete (crushing failure), and the shear failure with the
propagation of inclined cracks may interact between each others or a failure may
predominate over the others depending on scale, beam span and reinforcement area.

Furthermore, the routine ReinforcementData.m may be modified in order to take
into account multiple layers reinforcement dispositions with the aim to simulate a
more actual steel bars layout.
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10 – Future algorithm developments

Figure 10.1: Fundamental collapse mechanisms of reinforced concrete beams

As regarding pre-stressed concrete beams, several hypothesis have been intro-
duced, in the present work, since the cohesive crack model and the overlapping
crack model have never been used to analyze this type of structures. The results
herein presented, however, demonstrate the necessity and the deserving of further
detailed studies and a better evaluation of the pre-stessing effect by means of Codes
suggestions.
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Appendix A

Algorithm Variables

• fs: matrix containing, for each step calculation, nodal forces;

• ws: matrix containing, for each step calculation, opening/overlapping dis-
placements;

• thetas: vector containing, for each step calculation, beam rotations;

• Ms: vector containing, for each step calculation, external bending moment;

• deltas: vector containing, for each step calculation, beam displacements;

• fos: vector containing, for each step calculation, external loads;

• ntipts: vector containing, for each step calculation, fictitious cohesive tip po-
sitions;

• ntipats: vector containing, for each step calculation, real cohesive tip positions;

• ntipcs: vector containing, for each step calculation, fictitious overlapping tip
positions;

• ntipacs: vector containing, for each step calculation, real overlapping tip po-
sitions;

• nstep: vector containing the number of steps used in the calculation;

• inoda: vector containing the nodes positions;
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A – Algorithm Variables

• Ast: vector containing the reinforcement/ pre-stressing steel area;

• ft: tensile strength of concrete;

• wct: threshold fracture opening value;

• fc: compressive strength of concrete;

• wcc: threshold overlapping value;

• data: if the flag press = 0, it is a matrix containing in the first column the
node list, in the second column the reinforcement diameter and in the third
column the number of bars. If the flag press = 1, it is a vector containing in
the first position the node number where tendon is placed and in the second
position the value of the pre-stressing force;

• span: beam span value expressed in mm;

• thickness: beam thickness value expressed in mm;

• heigh: beam depth value expressed in mm;

• E: concrete modulus of elasticity expressed in MPa;

• I: beam inertia expressed in mm4;

• crushing: flag that is equal to 1 if the user selects to take into account the
concrete crushing otherwise it is equal to 0;

• rein: flag that is equal to 1 if a reinforced element is analyzed otherwise its
value is equal to 0;

• Fp: variable containing the value of the pre-stressing force expressed in N ;

• pres: flag that is equal to 1 if a pre-stressing force is present otherwise its
value is fixed to 0;

• wy: variable containing the value of the crack opening generating the steel
yielding;

• IndexAs: variable containing the reinforcement layer nodal position;
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• fut: ultimate tensile nodal strength;

• fuc: ultimate compressive nodal strength;

• IndexY ielded: flag containing the steel layer status. It is equal to 0 if in the
current step calculation, reinforcement does not reach yielding; it is qual to 1
if in the current step calculation, steel reachs yielding; it is equal to 2 if the
steel is yielded;

• Es: steel modulus of elasticity;

• tau: stresses that exchange concrete and steel;

• diameter: vector containing the diameter of bars located in each layer;

• numbar: vector containing the number of bars located in each layer;

• n: homogenization coefficient;

• A: cross sectional area of the beam;

• S: first moment of the section;

• y_g: centroid position of the cross section;

• coer: variable that contains the reinforcement effect. In the case of a pre-
stressing force, it is a vector containing the nodal forces generated by Fp;

• coe: matrix containing the elastic coefficients for nodal displacement due a
unit force;

• c: vector containing the elastic coefficients for nodal displacement due a unit
external bending moment;

• dcoe: vector containing the rotation generated by a unit nodal force;

• dc: variable containing the rotation generated by a unit bending moment;

• ncort: variable containing the length of the cohesive process zone;

• ncorc: variable containing the length of the overlapping process zone;
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• fold: variable containing the nodal forces value calculated in the actual crack/overlapping
configuration with the load of the previous step calculation;

• flag: flag that if equal to 0 does not allow the calculation of the crack open-
ing/ overlapping by the routine soluz.m. This flag is used by the function
LoadComputation.m to save time machine. Consequently, the flag is set equal
to 1;

• cru: flag that is equal to 0 if, in the actual step calculation, the ultimate
tensile strength is reached and equal to 1 if the ultimate compressive strength
is reached;

• M : variable containing the external bending moment of the actual step calcu-
lation;

• theta: variable containing the rotation for the actual step calculation;

• f : vector containing nodal forces values for the actual step calculation;

• w: vector containing the opening/ overlapping displacements for the actual
step calculation;

• del: vector containing the step calculations for which the convergence of the
solution has been lost.
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