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Abstract 

The employment of Fiber Reinforced Concrete (FRC) in the building industry is becoming 

more and more prominent as numerous research have demonstrate its effectiveness in 

many structural applications. FRC has been particularly used in structural elements when 

crack propagation control is of primary importance. The role of fibers is essentially to 

arrest any advancing cracks and increase the ductility and post-cracking stiffness of the 

structural element right up to failure, which results in narrowed crack widths and 

substantially less deformation. The secondary phase provides crack control and improves 

the fracture toughness of the brittle matrices, by means of a bridging action affecting the 

matrix macro- and micro-cracks. In the micro-cracked process zone, ahead of the matrix 

macro-crack, the bridging action affects the propagation and coalescence of the micro-

cracks, thus controlling the macro-crack extension. In the wake of the macro-crack, a real 

stitching action prevents the crack face opening and control the crack growth. This 

mechanism increases the energy demand for the crack advancement.  

Several guidelines and codes for FRC structures are under development in different 

Countries. Moreover, several models have been recently developed in order to predict 

the flexural behavior of the FRC. The present Master Thesis focuses on Bridged Crack 

Model (Carpinteri, 1981). The results of several numerical analyses, and of some 

experimental campaigns carried out by international research groups, are compared in 

order to validate the proposed model. In order to enhance the analytical model validation, 

an experimental campaign on FRC beams in bending has been carried out at Fracture 

Mechanics Laboratory of Politecnico di Torino during the past months. 

In the first part of this work, the Bridged Crack Model is described. This model takes into 

account both compatibility and equilibrium equations, and it allows to clearly explore the 

influence of several different parameters in fibre reinforced brittle matrix composites. The 

problem of a composite rectangular-section beam subjected to bending is analysed. The 

matrix is elastic-perfectly brittle, whereas the fibres are characterized by a rigid-perfectly 

plastic law, that can represent either yielding or reinforcement slippage. The value of the 

moment that produces the fibre plasticization and the one that causes the crack 

propagation are evaluated. The crack propagation is taken into account assuming an 

approach based on Linear Elastic Fracture Mechanics, and a review of stress intensity 

factors formulas is carried out in order to check their influence on the result. Then, the 

Bridged Crack algorithm is illustrated in detail, and it is utilized in order to perform the 

present study. 

The second part of this thesis consists in a detailed review of the results of several 

experimental campaigns aimed at studying the effects of fibre reinforcements on the 

flexural behaviour of full scale concrete beams. Then, these experimental results are 

used to validate the Bridged Crack Model. 

In the third part of this work, the details of the experimental campaign carried out during 

the past months at Fracture Mechanics Laboratory of Politecnico di Torino, in partnership 

with AZICHEM srl and FABLAB TORINO, are described in detail. The flexural response 
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of 24 FRC beams is investigated through Three Point Bending (TPB) tests, varying the 

beam sizes and the fiber volume fraction in the concrete matrix. 

The experimental campaign has been carried out in two different stages. The first stage 

involves 12 FRC beams made of normal concrete (Rck = 30 N/mm2). Three beam sizes 

have been considered: 5 x 5 x 30 cm; 10 x 10 x 60 cm; 20 x 10 x 120 cm. Three different 

lengths of steel fiber reinforcement are considered in the first stage: Lf=1.5 cm; Lf=3.5 cm; 

Lf=5 cm. A specific yield strength equal to 1100 N/mm2 characterizes these fiber 

reinforcements, in order to have an efficient control of the cracking process. Fiber 

reinforcements have been added to the concrete matrix in four different volume fractions: 

0.08%; 0.20%; 0.96%; 1.28%. 

The second stage of the experimental campaign involves 12 FRC beams made of high 

performance concrete (Rck > 120 N/mm2). Also in this case, three beam sizes have been 

considered: 5 x 5 x 30 cm; 10 x 10 x 60 cm; 20 x 10 x 120 cm. Brass fiber reinforcements 

have been adopted in this case. Due to their enhanced high-bonding capability, brass 

fibers are supposed to increase the load carrying capacity of FRC members. Brass fibers 

substantially reduce the brittleness of the concrete matrix, and improve its engineering 

properties, such as tensile, flexural, impact resistance, fatigue, load bearing capacity after 

cracking, and toughness. 

The experimental results show how the effect of the size scale, as predicted by the 

Bridged Crack Model, is found to be fundamental for the global or local structural 

behavior of the FRC beams, which can range from ductile to catastrophic simply with the 

variation of the brittleness number, NP. The brittleness number is function of the 

toughness of the matrix, of the yielding or slippage limit of the fiber-reinforcement, of the 

fiber volume fraction, and of the characteristic structural size. Moreover, the minimum 

reinforcement condition of the structural FRC element is investigated both theoretically 

and experimentally: it allows the crack propagation phenomenon to be globally stable, 

i.e., when the fracturing moment is equal to the ultimate resistance developed by the FRC 

beam, and it leads to an optimization of the structural components.  
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Introduction 

This dissertation deals with the behavior  of the fiber reinforced concrete materials 

subjected to monotonic loads. In particular, the aim of this investigation is to verify if the 

Bridged Crack Model can be used to analyse a FRC materials.  

The first part is focused on the modelling of these materials. In section [1.1] a description 

of their improved mechanical properties is given and in section [1.2] the different models 

used to study their behaviour are reviewed. In section [1.3] the Bridged Crack model is 

chosen to perform the analysis and it is described in detail regarding the problem of 

monotonic loading. Section [1.4] is about In section the numerical algorithms and the 

results of the parametric analysis. 

The second part presents the results of the bibliographic research performed during this 

Thesis work. Experimental campaigns aimed at studying the effects of fibre reinforcements 

on the flexural behaviour of full scale concrete beams are reviewed: Plizzari et al. [2.1]; 

Carpinteri et al. [2.2]; Swamy et al. [2.3]; Olivito et al. [2.4]; Kang et al. [2.5]. 

In the third part of this work, the details of the experimental campaign carried out during 

this Master Thesis, at Fracture Mechanics Laboratory of Politecnico di Torino, are 

described in detail. In section [3.1] a description of materials and mix design is given and 

section [3.2] presents the result of the three-point bending tests. Finally, a discussion 

about the results achieved and the concluding remarks are provided in section [3.3] and 

[3.4] respectively.  
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1. Modelling of fiber reinforced materials 

In this chapter the characteristics of fiber reinforced materials and the models used for 

their analysis are illustrated in section [1.1] and [1.2]. Then the Bridged Crack model is 

chosen to study their behaviour and it is explained in detail in section [1.3] and [1.4]. 

1.1 Fiber reinforced materials 

A composite material is obtained through the combination of two or more different 

constituents, whose interfaces remain recognizable. The properties of the composite are 

usually enhanced in comparison with the ones of the initial materials. They are used in 

many different applications and they are usually optimized to achieve a particular balance 

of properties for a given range of applications. 

From a mechanical point of view, it is possible to distinguish a matrix in which a 

reinforcement material is spread. 

Different classifications of composite materials are possible. One of the most used is that 

based on the matrix characterization. In this case three different groups are identified: 

polymer, ceramic and metal matrix composites. Another one is based on the shape of the 

strengthening phase and it is possible to distinguish three classes: grained composites, 

fiber reinforced composites and laminar composites. 

In this dissertation only the case of fibrous composite with brittle matrix is considered. The 

presence of fibers improves strength, ductility, cracking resistance and fatigue strength. 

Reinforced concrete is a well-known example of this class of composites. The matrix is 

characterized by low tensile strength and poor fracture toughness, but the presence of 

reinforcements acts against the nucleation of cracks thanks to their bridging action. At the 

same time the matrix offers resistance to the corrosion of reinforcements. 

1.2 Review of the models 

Independently of the matrix, fibrous composites present a common feature: the bridging 

action exerted by the fibers. This behaviour is the focus of the mechanical models used for 

the analysis of these materials on the basis of fracture mechanics. 

There are several ways to classify the models: for example those based on the fiber type 

(continuous or discontinuous fibers), on the cracking regime (multiple cracking or single 

crack), on the crack opening conditions (steady-state or non steady-state cracking), on the 

matrix properties (perfectly brittle or strain-softening), on the bridging actions (continuous 

or discontinuous), on the loading condition (tensile loading, compressive loading, bending). 

The models based on interface mechanics and fracture mechanics are the most common.  
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In the first case the focus is on the interface between the matrix and the fibers. The bond is 

studied with micromechanical models, that sometimes take into account the principle of 

fracture mechanics too. 

The second family can be divided into two types: the Bridged Crack model and the 

cohesive crack model. They have been unified in a single formulation (Carpinteri, 

Massabò, 1996) and it has been demonstrated that they predict the same overall 

behaviour.  

The cohesive crack model, in accordance with the ones proposed by Barenblatt (1962) for 

the analysis of brittle heterogeneous materials and then by Dugdale (1960) for the analysis 

of ductile materials, replaces the bridging zone by a fictitious crack, where a closing action 

is present (cohesive law). 

On the contrary the Bridged Crack model considers localized closing tractions. 

The first model assumes a finite stress field at the crack tip, while in the second case the 

stress field is singular. 

1.3 Bridged crack model 

The Bridged Crack model was proposed initially for the case of a monotonic loading 

applied to beams with a single reinforcement (Carpinteri, 1984). Later it was extended to 

the case of multiple reinforcements (Carpinteri, Massabò, 1996, 1997) and to the one of 

cyclic loading with a single reinforcement (Carpinteri, 1984) or two reinforcements 

(Carpinteri, Puzzi, 2003). 

1.3.1 Geometry and hypotheses 

The Bridged Crack model considers a fiber reinforced rectangular-section beam subjected 

to the bending moment   and with an edge crack. The dimensions of the beam ( ,  ), the 

initial crack depth   and the position of the fibers    are shown in Fig. (1.1). Only the fibers 

crossing the crack are active and their number is equal to  . 

 

Figure 1.1: Geometry of the fiber reinforced beam 
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It is possible to define the normalized crack depth, Eq. (1.1), and the normalized position 

of a generic reinforcement, Eq. (1.2), with respect to the bottom of the beam. 

       (1.1) 
   
         (1.2) 

   

The reinforcements exert a bridging action across the crack described by the forces   . 

The matrix is assumed elastic-perfectly brittle and it is described by the fracture toughness 

    and by the Young Modulus  , while the reinforcements are considered rigid-perfectly 

plastic and their ultimate force is equal to     . The rigid-perfectly plastic law of the fibers 

can describe either their slippage or their yielding. In the first case the value of      is 

related to fibre circumference,   , fibre length,     and to frictional bonding force between 

the matrix and the reinforcement,      , according to Eq. (1.3). Where, the peak value of 

the bond strength in a pull-out failure mode,       is function of the concrete strength,      

according to Model Code 2010, Eq. (1.4).  

                 (1.3) 

              (1.4) 

While in the second case it represents the force that makes the fiber plastically flow. This 

force is proportional to the area of the reinforcement    and to the yielding stress      of its 

material, Eq. (1.5). The same value is assumed both in tension and in compression.  

             (1.5) 

   

In other words this means that the elastic deformation of the fiber is disregarded. 

The beam is made of a composite material, but its matrix is homogeneous and isotropic if 

it is considered isolated. 

The model takes into account both equilibrium and compatibility equations. If the beam 

section length vanishes, its compliance is due only to the cracked section. So, it is 

necessary to evaluate the compliance of a cracked element in order to calculate the 

openings of the crack and the rotation of the section. The model disregards the 

contribution to the deformability given by the beam which the cracked section belongs to. 

1.3.2 Shape functions and stress intensity factor 

In this section the formulas of the stress intensity factor are reported. They are a measure 

of the singular stress field in the crack tip proximity. They will be needed to calculate the 

compliances of a cracked element and to take into account the crack propagation based 

on linear elastic fracture mechanics. Only the crack opening (Mode I) is considered while 

the problem of the shear and the crack sliding (Mode II) is disregarded.  

The stress intensity factors due respectively to the bending moment and to a concentrated 

force applied on the crack face (Tada, Paris Irwin, 1985) are: 
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      (1.6) 

   
 

    
 

     
         (1.7) 

   

In the previous equations the shape functions    and    appear. They depend on the 

crack depth and their value can be found in different stress intensity factors handbook.For 

example, the shape function for the bending moment    is defined by different authors in 

various way. 

Tada, Paris, Irwin (1985) 

 
       

                                                 

             
       

     
     

 (1.8) 

   

Wilson (1970) (          ) 

 
      

   

        
  

(1.9) 

   
         (1.10) 
   

Paris, Sih (1965) (   ) 

 
      

   

        
  (1.11) 

   
 

  
      

       
 

(1.12) 

   

Sinclair, Messner, Meda (1996) (   ) 

 
      

   

        
  (1.13) 

   
 

        
     

   
  
   

 
 
    

     
(1.14) 

   

Guinea, Pastor, Planas, Elices (1998) (   ) 

 
      

   

              
    (1.15) 

   
                             (1.16) 

   

A comparison between Eq. (1.8) and (1.15) is shown in Fig. (1.2). It can be noticed that the 

values of the shape functions are almost identical for       and in any case the little 

difference does not affect the numerical results of the analysis. The shape function    has 

a vertical asymptote at    . 
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Figure 1. 2: Shape function       according to Eq. (1.8) and (1.15) 

The other equation graphs are very similar to the one of Eq. (1.8), even if they are valid 

only for a limited range of crack depth values. All the results shown in the present analysis 

are attained using Eq. (1.15). Eq. (1.8) should not be used because of its discontinuity in 

     , that gives rise to numerical problems. 

Regarding the shape function for the load    only the following expression is considered in 

the analysis (Tada, Paris, Irwin, 1985): 

 
         

 

   

 

            
  
 
 
 

                
(1.17) 

   
 

                   
  
 
       

  
 
 
 

       
  
 
 
 

 
(1.18) 

   
                           

               (1.19) 

   
             

  (1.20) 

   
                         

                             

              
(1.21) 

   
                          

                              

              
(1.22) 
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In Fig. (1.3) the graph of    is shown for different positions of the fiber. It is characterized 

by two vertical asymptotes: one located at the position of the fiber and another one located 

at    . 

 

Figure 1. 3: Shape function          according to Eq. (1.17) 

1.3.3 Compliances of a cracked beam element 

If the beam has only one fiber, the rotation   and the crack opening   are connected to 

the bending moment   and the reinforcement reaction   by the compliance matrix. 

 
 
 
 
   

      
      

  
 
 
  (1.23) 

   

The matrix in Eq. (1.23) is symmetric because         for the Betty’s theorem. 

By using Clapeyron’s theorem and superposition principle it is possible to evaluate the 

energy variation. 

 
    

 

 
   

 

 
   (1.24) 

   
 

    
 

 
    

  
 

 
    

        (1.25) 

   

Then, the strain energy release rate and the relation between    and    are introduced. 

 
    

  

  
 (1.26) 
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 (1.27) 

   

Now the energy variation can be expressed by: 

 
           

 

 

  
  
 

 
    

 

 

  
           

    

 
    

 

 

  
   
 

 
    

 

 

  
   
 

 
    

 

 

   
      
 

    
 

 

 

(1.28) 

   

Then using Eq. (1.6) and Eq. (1.7) 

 
    

  

    
   

       
 

 

 
  

  
   

       
 

 

 
   

   
               
 

 

 (1.29) 

   

The expressions of the compliances are attained by comparing Eq.(1.25) and Eq. (1.29) 

and using the identity principle of polynomials. 

 
    

 

    
   

      
 

 

 (1.30) 

   
 

    
 

   
           
 

 

   (1.31) 

   
 

    
 

  
   

    
 

 

   (1.32) 

   

In the case of more than one fiber the following relations can be obtained (Massabò, 

1997). 

 
    

 

    
   

      
 

 

 (1.33) 

   
 

    
 

   
              
 

  

   (1.34) 

   
 

    
 

  
                 
 

          

   (1.35) 

   

The integral of Eq. (1.34) and Eq. (1.35) are improper because the integrand has a 

singularity at the lower bound of integration. In the first case the singularity is only 

apparent, while in the second it is not removable when    . However, in this second case 

it is possible to consider a distribution of stresses instead of a concentrated force to model 

the fiber action (Massabò, 1997) achieving the following equation:  

 
    

 

  
   

       
 

    

            (1.36) 
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Where   is a cut-off distance that can be assumed equal to     . 

1.3.4 Crack openings 

The crack openings at the level of the reinforcements can be evaluated by using the 

superposition principle: it is necessary to sum the contribution due to the bending moment 

and the one due to the concentrated forces applied on the crack faces [Eq. (1.37)]. 

 
              

 

   

 (1.37) 

   

In the previous equation the minus sign is related to the fact that a positive bending 

moment tries to open the crack, while a positive force tries to close the crack. The 

compliance     is the displacement at the fiber level   due to a unit bending moment, while 

the compliance     is the displacement at the fiber level   due to a unit force applied at the 

fiber level  . 

Equation (1.37) can be rewritten in matrix form:  

                  (1.38) 
   

where     is the vector of the crack openings at the level of the reinforcements,      is the 

vector of the compliance    ,     is the symmetric square matrix of the compliance     and 

    is the vector of the fiber reactions. 

It is also possible to evaluate the crack opening at the generic level  , Eq. (1.39), and it 

can be useful to draw the entire profile of the crack faces.  

 
                

 

   

 (1.39) 

   

1.3.5 Rotation 

The rotation of the section is calculated in the same way as the crack openings: 

 
             

 

   

 (1.40) 

   

where the compliance     is the rotation due to a unit bending moment, while the 

compliance     is the rotation due to a unit force applied at the fiber level  . 

Again Eq. (1.40) can be written in matrix form: 

            
     (1.41) 

   

where      is the vector of the compliance     and     is the vector of the fiber reactions. 
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1.3.6 Compatibility equation 

The problem is statically indeterminate because the forces in the fibers are unknown and 

so the compatibility equation is introduced to solve it. 

Because of the hypothesis of rigid-perfectly plastic law of the fibers, the crack openings at 

their level remain equal to zero until the ultimate force      is reached in one of them. 

These   conditions are expressed by: 

                      (1.42) 
   

If the bending moment is known, the reactions in the reinforcements     can be calculated 

by solving the linear system: 

              (1.43) 
   

When a generic fiber   reaches its ultimate force, the crack openings at its level starts 

increasing and the previous compatibility equation is not valid any more. The force in the 

fiber becomes known and equal to     , while the corresponding opening displacement    

becomes unknown. However, the compatibility equation is valid for the     fibers, that 

are not yielded, and also the number of static unknowns is equal to     . So, it is 

possible to solve again the problem whose size is reduced by one. 

Considering a generic situation and naming   (free displacements) the plasticized fibers 

and   (constrained displacements) the elastic fibers, it is possible to split the problem in 

two parts: one statically indeterminate and one statically determinate. 

 
 
  
  
   

   
   

    
      
      

  
  
  
  (1.44) 

   

The displacements of the elastic fibers      and the ultimate forces of the yielded fibers 

     are known and equal respectively to     and       . 

If the second equation of (1.44) is considered: 

                                         (1.45) 

   

it is possible to find the value of the forces in the elastic fibers      by solving the linear 

system: 

                              (1.46) 

   

Then, considering the first equation of (1.44) with the conditions             and            

         and substituting the value of      from (1.46), it is possible to compute the 

displacements of the plasticized fibers     . 

                                     (1.47) 
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In any case it is necessary to know the plasticized reinforcements a priori and this means 

that the problem should be solved step by step. The procedure used in this analysis will be 

explained in the section of the numerical algorithm. 

From an overall point of view the problem presents    unknowns in a first stage:   static 

unknowns, the reactions    , and   kinematic unknowns, the displacements    . Thanks 

to the   compatibility conditions all the kinematic unknowns become known and so the 

problem can be solved using the   equations of system (1.43). At a subsequent stage 

characterized by the yielding of one fiber, the number of static unknowns is reduced by 

one, because the force in this fiber becomes known and equal to its limit value. The 

number of compatibility conditions is reduced by one too, because the yielded fiber 

displacement starts increasing and it remains unknown. Anyway, the problem can be 

solved using the     equations of system (1.46) to find the reactions and Eq. (1.47) to 

find the only unknown displacement. 

1.3.7 Plastic moments 

If all the fibers are still in the elastic field, the bending moment value, that makes only one 

fiber yield, can be calculated by imposing each reinforcement reaction equal to its ultimate 

force. The first fiber, that plasticizes, is the one corresponding to the minimum bending 

moment. In order to find this value, the ultimate forces      are substituted in each equation 

of (1.43) and then the bending moments are computed. The first plastic moment is the 

minimum. 

First of all, the reactions are calculated from Eq. (1.43). 

                (1.48) 

   
        

        (1.49) 

   

Then the condition         is considered and the correspondingly bending moment is 

evaluated. 

          
           (1.50) 

   
 

     
    

    
      

 
(1.51) 

   

As previously remarked the first plastic moment is the minimum among these values. 

 
        

     

    
    

      
   (1.52) 

   

In the previous equations the subscript   of the matrix       indicates that only the   row is 

considered. 

At a following stage, when at least one fiber is yielded, it is possible to do the same but 

considering Eq. (1.46) instead of Eq. (1.43).  
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                       (1.53) 

   
          

                       (1.54) 

   

Then the condition         is considered and the correspondingly bending moment is 

evaluated. 

            
                          (1.55) 

   
 

     
           

             

      
       

 
(1.56) 

   

So, the  -th plastic moment is given by the equation: 

 
        

      

           
             

      
       

            (1.57) 

   

1.3.8 Crack propagation condition 

The crack propagation condition is evaluated regarding linear elastic fracture mechanics. 

The crack propagates when the stress intensity factor    reaches its critical value, that is 

the fracture toughness of the material    . 

        (1.58) 
   

The stress intensity factor is the sum of two contributions: one due to the applied bending 

moment and another due to the reactions of reinforcements. 

 
             

 

   

 (1.59) 

   

The minus sign is related to the fact that a positive bending moment acts opening the 

crack, while a positive force acts closing it. Eq. (1.59) can be rewritten taking into account 

the expressions of the stress intensity factors for the moment and the force given in [1.3.2] 

and by using the scalar product for the summation. 

 
   

 

     
   

    
    

     
     (1.60) 

   

where      is the vector of the shape functions related to the concentrated forces. 

The stress intensity factor due to bending moment is only function of the normalized crack 

depth, while the one related to the forces is function of the normalized position of the fiber 

too. 

          (1.61) 
   
               (1.62) 
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The value of the moment, that makes the crack propagate, is: 

 
   

     

  
     

    
    

     
  

     

  
    

 

  
    

              
     (1.63) 

   

In the previous equation the parameters    and    are introduced in order to write the 

relation in a more compact way. 

1.3.9 Forces and bending moment at crack propagation 

The value of the moment    causing fracture propagation is function of the reinforcement 

reactions    , Eq. (1.60), but these forces are function of the applied bending moment 

because of the compatibility equation. 

So, by imposing the condition      it is possible to calculate the values of the fiber 

reactions at crack propagation. 

If all the fibers are in the elastic field, this result can be attained substituting the value of 

the moment from Eq. (1.63) in Eq. (1.43). 

                      
      (1.64) 

   

Then the following linear system is obtained: 

                
             (1.65) 

   

If at least one fiber is plasticized, it is necessary to use Eq. (1.46) instead of Eq. (1.43). 

                          
                  (1.66) 

   

In order to obtain a linear system, the vectors      and     are split into two parts as done 

before in the case of Eq. (1.44). 

                             
 
             

 
                   (1.67) 

   

Eventually the following linear system is achieved: 

                     
 
                       

 
                    (1.68) 

   

By solving system (1.65) or (1.68) the values of the forces at crack propagation are found. 

In the second case the condition             is still valid and it lets calculate all the 

reactions and not only the ones of the elastic fibers     .Then, by substituting back the 

values of the forces     in Eq. (1.63), it is possible to attain the value of the applied 

bending moment, that makes the crack advance. 

1.3.10 Brittleness number and dimensionless analysis 

If all the reinforcements are equal, Eq. (1.60) can be rewritten in the following form: 
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          (1.69) 

   

where 
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The non-dimensional parameter    is named brittleness number (Carpinteri 1981, 1984) 

and its value is responsible for the behaviour of the system. The higher    is, the more 

ductile the behaviour of the structure will be and vice versa.  

In the results of the present work also the following quantities will be sometimes 

normalized. 

    
 

    
    

 (1.74) 
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 (1.77) 

   

If the properties are different from one reinforcement to another, Eq. (1.70) can be 

generalized in the following way: 

    
     
 
   

    
    

 (1.78) 

   

1.3.11 Ultimate bending moment 

When the section is completely cracked and the depth of the fracture is equal to the beam 

height, it is possible to compute the ultimate bending moment the structure is able to bear. 
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At this final stage characterized by large displacements all the fibers are plasticized in 

tension, while the resultant of compressions is applied in a single point as shown in       

Fig. (1.4). 

If all the fibers are equal and    is the normalized depth of their barycentre, the ultimate 

bending moment is given by: 

                           
           (1.79) 

   

This value is slightly overestimate because the arm reduction due to the rotation   is 

disregarded. In any case this situation is only hypothetical because the point of the matrix, 

where the reaction is applied, should bear an infinite stress. 

 

Figure 1.4: Geometry corresponding to the ultimate bending moment 

   can be computed also with different types of fibers, considering the equilibrium around 

the point of the matrix where the compression reaction is applied. 

1.4 Monotonic loading  

In this section the numerical algorithm is described in detail for the case of a monotonic 

loading applied controlling the crack length is analysed. Using this technique, it is possible 

to describe completely the softening branches even with a positive slope of the moment-

rotation response of the system.  

1.4.1 Crack Length Control Scheme (CLCS) 

The presented procedure is based on the fact that the value of the applied bending 

moment should be equal to the cracking moment in order to make fracture advance. So, 

for each value of the crack depth, starting from an initial value and up to a stopping value 

fixed in advance, the cracking moment is computed using the expressions shown in 

[1.3.9]. The relation between the bending moment and the crack depth is obtained. Then, 

to describe the moment-rotation response it is necessary to notice that a fiber can attain its 

ultimate force even if the crack is not advancing and this changes the stiffness of the 

system and the slope of the graph. So, the plastic moments of all the reinforcements 

should be computed for a given depth of the crack, but only the ones lower than the 

cracking moment and higher than one computed for the previous depth should be taken 
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into account. These values of moments and their respective rotations are added to the 

graph. The plastic moments are evaluated regarding [1.3.7]. 

Now the numerical algorithm is described in detail. The following input parameters have to 

be considered:  

 Beam geometry 

o   – section thickness 

o   – section depth 

o        – crack initial depth (or        - normalized initial crack depth) 

 Reinforcements geometry 

o   – number of fibers 

o      – position of first fiber (or      – normalized position of first fiber) 

o      – position of last fiber (or      – normalized position of last fiber) 

 Matrix material 

o   – Young Modulus 

o     – matrix fracture toughness 

 Reinforcement material 

o      – fiber ultimate force 

The value of the ultimate force of the fiber can be given directly or it can be computed 

starting from these additional parameters (round fiber): 

o    – fiber radius 

o      – fiber yielding tension 

          
                                (1.80) 

   

The fibers are considered equally spaced between      and     , but it is possible to 

define the position of each reinforcement too. 

Further parameters are necessary to define the crack depths for which the cracking 

moment will be computed: 

       – stopping crack depth (or       - normalized stopping crack depth) 

    – normalized crack depth increment at each calculation step 

For each value of the crack depth it is necessary to find the active fibers crossing the 

crack. If the crack tip is too close to a fiber, the crack length should be increased of a 

fraction of    in order to avoid numerical issues because of the shape function          

singularity in correspondence of a fiber. The active fibers are identified by the following 

relation: 
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    (1.81) 

   

Where the apex   indicates the generic calculation step. 

Then, using Eq. (1.15) and (1.17) the shape functions for the bending moment     
      

and for the reactions     
         are attained.  

The compliances are evaluated with Eq. (1.33), (1.34), (1.35) and (1.36) considering only 

the active fibers and if necessary they are arranged in a matrix or in a vector. 

    
   

            
     (1.82) 

   
    

   
             

         
(1.83) 

   
                            (1.84) 

   

The problem partition described in [1.3.6] is introduced using two vectors     and     

containing respectively the indexes of the elastic and plasticized fibers. At the beginning of 

each step   all the reinforcements are in the elastic field. So     is the vector of the active 

fibers, while     is empty. Hence it is possible to obtain       ,       ,      ,             

and      .  

The values of the reactions at crack propagation are attained solving linear system (1.65). 

If at least a force in one fiber is higher than its ultimate value, the most loaded fiber is 

considered yielded, its force is set equal to     ,     and     are update and consequently 

the partitioned matrix or vector of compliances are updated too. The reactions at crack 

propagation are calculated again, but now using Eq. (1.68).  Until all the forces are lower 

or equal to their ultimate value, it is necessary to repeat the calculation, updating the 

yielded fibers. At the end the bending moment   
   

 and the rotation   
   

 are achieved with 

Eq. (1.63) and (1.41). 

Now using a similar iterative procedure, the plastic moments and the respective rotations 

are evaluated by using Eq. (1.52), Eq. (1.57) and Eq. (1.41). Only the moments, that 

respect the following condition, are taken into account: 

   
     

     
   

   
   

 (1.85) 

   

Then the crack length can be updated and the procedure can be repeated with the new 

value. 

                (1.86) 

   

At each step the crack openings could be computed too. This can be done with Eq. (1.39). 

It is possible to summarize the algorithm in the following way: 
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1. Initialization 

2. For each value of crack depth      

      a. Calculation of shape functions and compliances 

      b. Initialization of     and     

      c. Iterative procedure to find the cracking moment   
   

 

      i.  Computation of cracking forces with Eq. (1.65) or (1.68) 

      ii. Update     and    , partitioned matrix and vector and reactions of yielded         

          fibers 

      iii. Stop if all the reactions are lower or equal to their ultimate value 

       d. Computation of   
   

 and   
   

 with Eq. (1.63) and (1.68) 

       e. Computation of plastic moments with Eq. (1.52) and (1.57) and rotations with Eq.      

 (1.41) 

       f. Add plastic moments that satisfy Eq. (1.85) 

3. Update crack depth according to Eq. (1.86) and return to 2 if              

4. Plot     values 

1.4.2 Parametric study 

In this paragraph, the results of several parametric studies that have been made by means 

of the algorithm will be commented. 

First , there is a clear transition in the failure phenomena from brittle to ductile as the fiber 

content increases, whatever the constitutive law adopted. It can be clearly seen in Fig. (1.5 

and 1.6), where the curves have been obtained by varying the fiber content, Vf, and all 

other parameters stay the same. 

Moreover, particular importance has been given to the minimum reinforcement purpose, 

marked in red in Figs. (1.5 and 1.6), The parametric studies reveals that using a yielding 

constitutive law for the fiber, when the structural size decreases the percentage of fibers, 

ρ, to get the minimum reinforcement increases, Fig. (1.5). This can be explained by the 

Brittleness Number (Eq. 1.71). On the other hand, it has be noted that using a slippage 

constitutive law for the fiber, when the structural size ( ) decreases the fiber percentage, 

ρ, to get minimum reinforcement remains almost constant Fig. (1.6). This can be explained 

by substituting the Eq. (1.3) in the Eq. (1.70), in order to show that the Brittleness Number 

is not related to  , Eq. (1.87). 

 

   
   
      

       
 

     

       
 
           

       
 

     
 
 
 
 

       

       
 
                

       

 
             

   
 

       
   

   

 
 
    

   
   

 

 

 

(1.87) 
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Yielding Law for fiber reinforcement 

 

 

 

Figure 1.5: Fiber content influence in the failure phenomena. Figures have been obtained by implementing a Slippage 

constitutive law for the fiber reinforcement and by setting: KIC=60 daNcm
-1.5
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Yielding Law for fiber reinforcement 

 

 

 

Figure 1.6: Fiber content influence in the failure phenomena. Figures have been obtained by implementing a yielding 

constitutive  law for the fiber reinforcement and by setting: KIC=60 daNcm
-1.5

, ao=5 cm, E=31500 MPa, fcm=33 MPa, 
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As regards the critic value of the Stress Intensity Factor, the load peak moves up and to 

the right when KIC increases in the load versus deflection diagram, Fig. (1.7). At the same 

time, the asymptotic behavior doesn’t change. In the case of strong hardening behavior, 

the role played by KIC is negligible. Fig. (1.7) has been evaluated by setting :b=10 cm; 

h=20 cm; L=120 cm; ao=5 cm; E=31500 MPa; fcm=33 MPa; fy=1100 MPa; m=20 and by 

assigning a constitutive yielding law to the fiber content. However, this claim is still valid 

with the variations in dimension scale and in the constitutive law adopted. 

 

Figure 1.7: Results of the parametric study related to KIC 

The yielding stress,   , or the frictional bonding force between the matrix and the 

reinforcement,     , also affect the shape of the curves. In particular, the load peak and 

asymptote move up when    or      increases, as shown in Fig (1.8). As in the case of 

KIC, this assertion is true whatever the dimensional scale.  

 

Figure 1.8: Results of the parametric study related to      
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The last to remarks are related to the initial crack length. First, for m > 20, the condition of 

complete diffusion of the fibers is represented (m =  ). Np value involving a ductile-to-

brittle transition depends on the initial crack length a (concrete cover). i.e. for m>20: when 

       , we get       ; when        , we get       . 

Second, when the initial crack length, a, is small compared to the beam height, h, the 

global structural behavior is brittle. Consequently, the ductile-to-brittle transition arises for 

high values of NP, and hence also of ρ. On the other hand,  when a is large, the structural 

behavior appears to be ductile. Consequently, the ductile-to-brittle transition arises for low 

values of NP. In conclusion, we need to set an initial crack length larger than 
 

 
 

 

 
  in 

order to have a ductile behavior. 

1.4.3 Numerical errors  

The value of the increment    and the distance between the crack tip and the closest 

active fiber have a strong influence on the numerical results. 

In particular is    is too high, the graph     loses its meaning and it is not possible any 

more to identify the peaks due to the bridging action of the fibers. On the contrary, if its 

value is too small, the graph is described accurately, but computational time increases. 

As seen in section [1.3.2], the shape function          has a singularity for     , in 

correspondence of the position of the fiber. Fig (1.3) shows that the function tends to 

infinity very quickly and this causes the numerical issues. It is sufficient that      

       to observe the peaks of the curve rising very much losing their meaning. 

In the present analysis the following values are normally used: 

          (1.88) 

              (1.89) 

These issues are showed in Fig. (1.9) and Fig. (1.10) using a beam with the following  

characteristics: 
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Figure 1.9: Moment-rotation diagram affected by the numerical singularity 

 
Figure 1.10: Moment-rotation diagram affected by an insufficient number of points 

 
Figure 1.11: The correct moment-rotation diagram 



24 
 

The first picture is obtained with a value of    lower than usual and equal to 0,0005. In this 

case it is possible to notice the peaks becoming too high because of the shape function 

         singularity when the crack tip is too close to a fiber. On the contrary in the second 

picture the interval    is too high (0,05) and the peaks are not any more recognizable. The 

right     response is the one showed in Fig. (1.11) achieved with a    equal to 0,005. 
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2. Experimental campaigns critical review 

A lot of effort, during this work, has been put to make a bibliographic research for the 

purpose of  collecting data to check and validate the Bridged Crack Model. In this chapter 

search results are reviewed. In particular, the following experimental campaigns aimed at 

studying the effects of fibre reinforcements on the flexural behaviour of full scale concrete 

beams are presented: Plizzari et al. [2.1]; Carpinteri et al. [2.2]; Swamy et al. [2.3]; Olivito 

et al. [2.4]; Kang et al. [2.5]. 

2.1 Plizzari experimental work 

Based on the idea of taking simultaneous advantage of the effects of different types of 

fibers, new materials called hybrid fiber reinforced concretes have been developed by 

combining fibers of different geometry and material. In the paper, authors evaluate the 

benefits in terms of concrete toughness from a combination of micro- and macro-steel 

fibers, under both bending and uniaxial tensile tests on specimens of different sizes. 

Concrete toughness is better determined by performing uniaxial tensile tests but the 

experimental difficulties related to these tests suggested several code makers to propose 

bending tests instead (either with three or four point loading).  

The aim of the present work is to investigate the possibility of optimizing concrete 

toughness by combining steel fibers of two different sizes. Concrete toughness was 

determined by means of both uniaxial and bending tests on notched specimens. Freely 

rotating platens with spherical hinges were adopted as boundary conditions in the uniaxial 

tests to better control the crack development. Bending tests were carried out on beam 

specimens having two different geometries and different notch length/beam depth ratios. 

Moreover, authors worked on the determination of a good approximation of the post-

cracking behavior based on a polylinear law and the suitability of adopting a bilinear law 

(for concrete with a single type of fiber) and a trilinear law (for concrete with two types of 

fiber) has been studied. In fact, since fibers of different lengths become efficient at different 

stages of the cracking process, the smaller fibers control the microcrack growth whereas 

the longer fibers become active for larger crack openings.  

Below, a synthetic description of the authors experimental tests is followed by the 

comparison of experimental figures and numerical analysis carried out by the Bridged 

Crack Model. 

2.2.1 Material and experimental setup 

Experiments were carried out on specimens made of a normal strength concrete with 355 

kg/m3 of cement [CEM II/A-LL 32.5R according to UNI-EN 197 (CEN 2000)], 180 kg/m3 of 

water (water-cement ratio of 0.55), 3.9 L/m3 of superplasticiser, and 1,900 kg/m3 of 

aggregates with a maximum size of 15 mm. A grain size distribution close to the Bolomey 

curve was used. Two different types of steel fibers were adopted: the first one had a length 

(Lf) of 30 mm and a diameter (ф) of 0.6 mm whereas the second one was a shorter fiber 

having a length of 12 mm and a diameter of 0.18 mm; these fibers will be named as 
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“macrofiber” and “microfiber,” respectively. The geometrical and mechanical 

characteristics of the fibers used in the present work are reported in Table 2.1. Fibers were 

added to the concrete matrix in four different combinations as shown in Table 2.2: one 

plain concrete and three concretes having a volume fraction of fibers often used in 

practice, equal to 0.38% (30 kg/m3), in all cases. Table 2.2 also shows concrete 

compressive strength measured after 28 days of curing on cube specimens (150 x 150 x 

150 mm) and the slump of the fresh concrete; the slight decrease of workability of FRC 

can be observed. The specimens were cured in a fog room until the time of the test and a 

vaseline layer was applied on the crack section in order to limit shrinkage cracking. 

 
Table 2.1: Proprieties of Steel Fibers 

 
Table 2.2: Fiber Combinations, Compressive Strength, and Workability (Slump) for the Concrete 

In order to investigate the fiber effects on concrete behavior, fracture tests should be 

performed and a stable control of the test is necessary. For this reason, a 500 kN hydraulic 

testing machine (Instron 8500+) with a proportional integrative derivative (PID) closed loop 

control that permits to compensate the finite stiffness of the load system was adopted. The 

crack mouth opening displacement (CMOD), measured by a clip gauge, was adopted as 

feedback signal in both the uniaxial and the bending tests. Uniaxial tests with freely 

rotating platens were performed on specimens having a size of 100 x 200 x 40 mm [Fig. 2. 

1(a)] that were sawn from concrete prisms having a size of 100 x 200 x 400 mm to favor a 

three-dimensional distribution of the fibers. A single notch with a depth of 15 mm, a width 

of 4 mm and a tip with a triangular shape was sawn with a diamond blade. Four linear 

variable differential transducers (LVDTs) with a base length of 45 mm were located across 

the notched section to evaluate the relative displacement and rotation of the sections at 

each side of the crack surface [Fig. 2.1(a)]. In order to reduce undesired eccentricities, the 

specimens were carefully positioned (and then glued) on steel platens by adopting 4 

instruments with a precision of 0.01 mm; this gave good alignment of the specimen along 

the loading axis [Fig. 2.1(b)]. The free rotation of the platens was obtained by means of 

two spherical hinges placed at 150 mm from the glued surface: in this way it was possible 

to localize the center of rotation at the specimen ends.  
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Figure 2.1: (a) Tensile test specimen instrumented with four linear variable differential transducers and one clip gauge; 

(b) setup for positioning the steel platens; and (c) fiber distribution from a x-ray picture 

 
Figure 2. 2: (a, b) Specimen geometry and (c, d) testing setup for the larger and smaller beams, respectively 

The tests were carried out by imposing a CMOD rate of 1 μm/min until the load–

displacement curve had passed the peak and the fiber started activating. Afterwards, the 

CMOD rate was set to 2 μm/min. Although it includes the elastic deformations of concrete, 

the average value of the displacement measured by the two LVDTs astride the notch was 

conventionally assumed as the crack tip opening displacement (CTOD) [Figure 2.1(a)]. 

The fiber distribution in a few specimens were checked before testing by means of x ray. 

From the x-ray image [Figure 2.1(c)] it is possible to observe the random distribution of 

fibers with the shadows of the macrofibers and the faint traces of the microfibers. Four 

point bending tests were performed on two different specimen sizes. The first one had a 

size of 150 x 150 x 600 mm with a notch depth of 45 mm and was tested according to the 

Italian Standard [Figure 2. 2(a)] (UNI 2003). The second one had the same crack surface 

as the uniaxial tensile test specimen to study the strain gradient effects: these beams had 

a size of 100 x 320 x 40 mm and were tested with a span length of 300 mm and a distance 
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between the load points of 100 mm [Figure 2. 2(b)]. Three LVDTs were used to measure 

the vertical displacement at mid-span and under the load points whereas two LVDTs were 

placed at the notch tip to measure the CTOD [Figure 2. 2(c and d)]. Further, a clip gauge 

was placed across the notch to measure the CMOD [Figure 2. 2(c)]. The CMOD rate was 

50 μm/min for the larger beams (UNI 2003) and 2.5 μm/min for the smaller beams.  

2.1.2 Results and discussion 

Now we show the experimental test results and then apply the Bridged Crack Model to the 

study of these concrete beams. In order to obtain a clearer comparison between the 

different specimen geometries, experimental results from the bending tests are reported in 

terms of nominal stress (  ) given by: 

 
   

     
         

 
 

(2.1) 

 where   = force;    and    = beam thickness and depth, respectively;     = span length; 

and    = notch depth [Figs. 2.2(a and b)]. At least four specimens for each material and 

each specimen geometry were tested.  

Figs. 2.3 and 2.4 compares analytical (thicker curves) versus experimental results, 

showing the nominal stress versus the CTOD. The average values of   =25127 N/mm2 

and    =38 N/mm2 were utilized in all cases for the Bridged Crack simulations. Meanwhile 

the value of the critical stress intensity factor varies from 45 to 70 daN/cm3/2, as shown in 

Table 2.3. The fibres length was assumed to be 3, 1.2 and 2.8 for macrofibres, microfibers 

and hybrid fibres respectively. One should remember that all the fiber reinforced 

specimens were characterized by the same volume fraction of fibers (0.38%).  

 
Table 2.  3: Fiber Combinations, Compressive Strength, and Workability (Slump) for the Concrete 

The experimental versus numerical comparisons demonstrate that the proposed model 

can be successfully applied to the study of fibre-reinforced concrete, showing the key 

aspects. Indeed, it can be clearly seen that the fiber geometry has a marked influence on 

concrete toughness. Peak stress (      ) is only moderately influenced by the presence of 

macrofibers. Microfibers increase the peak and the post-peak strength for small crack 

openings but this residual strength rapidly decreases since fibers are pulled out from the 

matrix. On the other hand, macrofibers become efficient for larger crack openings. In the 

hybrid FRC, however the residual strength is enhanced for both smaller and larger crack 

openings. The same behavior can be observed in small beams tested under four point  

b h L a0 lf Vf E fcm KIC

cm cm cm cm cm % daN/cm 2 daN/cm 2 daN/cm 3/2

15 15 60 4,5 3 0,38 251270 36 45

1,2 70

2,8 60

4 10 32 1,5 3 0,38 251270 36 45

1,2 55

2,8 50

large specimen

small specimen
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Small Specimen 

 

 (a)  

 

(b) 

 

(c) 

Figure 2.3: Experimental (grey) and Numerical (black) nominal stress versus crack tip opening displacement (CTOD) for 

(a) macro-FRC; (b) micro-FRC; (c) hybrid FRC from bending tests on small specimens 
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Large Specimen 

 

(a) 

 

(b) 

 

(c) 

Figure 2.4: Experimental (grey) and Numerical (black) nominal stress versus crack tip opening displacement (CTOD) for 

(a) macro-FRC; (b) micro-FRC; (c) hybrid FRC from bending tests on large specimens 
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bending [Figs. 2.3(a and b)]. Also in this case, a small increase in the peak stress of 

concrete specimens with microfibers can be observed. Figs. 2.4(a and b) show curves 

from the larger beam specimens. An increase of about 15% in average peak strength will 

be noted in the hybrid specimens [Figs. 2.3(c) and 2.4(c)] compared to specimens with 

only macrofibers. 

2.2 Carpinteri experimental work 

This paper present a study where the analysis of fibre-reinforced concrete taking into 

account the nonlinear behavior of the material in tension and compression was addressed 

by a numerical approach based on the Cohesive–Overlapping Crack Model, in order to 

reveal the influence of fibre content in the flexural behavior of beams. Then the results of a 

numerical analysis and of an experimental campaign were compared in order to validate 

the proposed model.  

Even then, the following is a description of the authors experimental tests. Last, results of 

this experimental campaign are compared to the numerical curves obtained through the 

Bridged Crack Model. 

2.2.1 Material and experimental setup 

The experimental investigation herein considered was carried out by Ventura and 

colleagues in 2003 at the Department of Structural Engineering and Geotechnics of the 

Politecnico di Torino. Four contents of steel fibres (from 0 kg/m3 (no fibres) to 40 kg/m3) 

and five contents of traditional steel bar reinforcement (from zero to 2Ø20) have been 

considered. For each case, four specimens have been tested for a total of 80 tests.  

 
Table 2.  4: Material tensile strengths, ft, by varying the fibres content (see text) 
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The beams, characterized by a depth         , a thickness         , and a length   

         , have been subjected to a three-point bending test. The concrete cover was       

       . A high performance concrete C60/75 with a maximum aggregate diameter   

           and steel fibers Bekaert Dramix RC-80/50-BN was utilized. Further tests 

were carried out in order to characterize the cementitious material: four concrete beams  

80x150x700 mm3 for each fibres content were subjected to a RILEM standard test and 

several concrete cubes 150x150x150 mm3 were subjected to a standard test of 

compression.  

 
Table 2.5: Values of Ec obtained in accordance with RILEM TC89 

 
Table 2.6: Average values of the material compressive strength, fc, for each fibres content 
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Beams 80x150x700 mm3 were tested according to RILEM TC89-FMT, which recommends 

the use of three-point bending notched beams, and the relative load–displacement curves 

were obtained. From the maximum elastic load of the experimental curves,   , the material 

flexural strength,   , was determined according to the expression:  

 
   

   

       
 
 

(2.2) 

 

where    =   l/4, with the bean span l = 600 mm, b is the thickness of the cross-section, h 

is the beam depth and a0 is the initial notch depth. The average values of each fibre 

content are reported in Table 2.  .   

The notation CCxx refers to fibre contents in kg/m3. Fracture energy was evaluated 

according to RILEM Technical Committee 50-FMC and the critical stress intensity factor 

was set to     = 60 daN/cm3/2. The values of    have been obtained on concrete beams 

without fibres and are reported in Table 2.. The average value of    = 22,199 N/mm2 was 

utilized for the numerical simulations. The material compressive strength,   , for each fibre 

content was obtained from compression standard tests on concrete cubes 150 x 150 x 150 

mm. The single and average values are reported in Table 2.6, where    is the resistant 

crushing force,    is the cube crosssection area,    is the cubic compressive strength and 

   is the cylindrical compressive strength, with            . As regards the ordinary steel 

bar reinforcement, the yielding strength,   , has been assumed equal to the ultimate 

strength,   , and has been varied with the bars diameter according to Table 2.. 

 
Table 2.7: Average values of steel yielding strength, fy, and ultimate strength, fu, by varying the bar diameter 

2.2.2 Results and discussion 

Now we discuss the results of the experimental campaign, then we check against the 

Bridged Crack Model. In order to compare the results, the analytical moment M versus 

rotation φ curves have been expressed as load P versus middle-span deflection   curves, 

through the following relationships:  

 
  

  

 
 

   

     
 

(2.3) 

   
 

  
  

 
 

(2.4) 

where J is the moment of inertia of the beam cross section. The former equation adds the 

elastic and localized contributions of the beam deflection.  
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As=1ф8 

 

 

 

 
Figure 2.5: Numerical (thicker curve) versus experimental results for a traditional steel bar reinforcement of 1ф8 
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As=2ф8 

 

 

 

 
Figure 2.6: Numerical (thicker curve) versus experimental results for a traditional steel bar reinforcement of 2ф8 
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As=2ф12 

 

 

 

Figure 2.7: Numerical (thicker curve) versus experimental results for a traditional steel bar reinforcement of 2ф12 
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The influence of the beam weight has been taken into account by considering the 

contribution of an equivalent applied load of constant value. The experimental values of 

the deflection had to be purified by the crushing of both the supports at the ends of the 

beam, by subtracting to the measured value of deflection the mean of the supports 

settlements, obtaining in this way the true deflection, purified from rigid body motion 

displacements.  

Figs. (2.5), (2.6) and (2.7) represent the experimental versus numerical comparison. 

Generally, the numerical curves show a good approximation to the experimental results. 

Depending on the reinforcement percentage, it is possible to observe a transition from a 

pure flexural collapse to a crushing collapse of concrete in compression. In general, for low 

reinforcement percentages, such as q = 0.25 and 0.50 %, steel yielding precedes crushing 

of concrete in compression. 

The first peak in the moment, M, versus rotation,  , curve corresponds to the first crack 

formation, the concrete tensile strength being reached, while the second peak corresponds 

to steel yielding, which is always followed by a plastic plateau. On the other hand, for high 

reinforcement percentages, such as q = 1.13 and 3.14 %, crushing of concrete in 

compression precedes steel yielding in tension. In these cases, in fact, the moment, M, 

versus rotation,  , curves show a descending branch that indicates the crushing 

phenomenon. 

In the final analysis, the Bridged Crack Model is applied to the study of the flexural 

behavior of fibre reinforced concrete beams with the concurrent presence of ordinary 

reinforcement. The experimental versus numerical comparisons demonstrate that the 

proposed model can be successfully applied to the study of fibre reinforced concrete, 

revealing the influence of fibre content in the mechanical behavior of the beams in flexure. 

In fact, a more ductile behavior is evidenced by increasing the fibre content, however there 

is a threshold over that a further increment in the fibre content is no more favourable. 

Moreover, a transition in the failure phenomena, from a tensile collapse to a crushing 

collapse, is revealed by increasing the steel reinforcement. 

2.3 Swamy experimental work 

Tests are reported on the influence of fiber reinforcement on the deformation 

characteristics and ultimate strength in flexure of concrete beams made with 20 mm 

maximum size of aggregates and rein-forced with bar reinforcement with specified 

minimum yield strengths of 460 and 617 N/mm2, respectively. The fiber concrete was 

provided either over the whole depth of the beam or in the effective tension zone only 

surrounding the steel bars. It is shown that while ultimate strength is increased only 

marginally, the fibers arrest advancing cracks and increase post-cracking stiffness at all 

stages of loading up to failure which results in narrower crack widths and substantially less 

deformation. Last, authors include an ultimate strength theory based on British and 

American codes and taking into consideration the increased steel strains at failure.  
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We present below a synthetic overview of the experimental test and we use it to check 

Bridged Crack Model. 

2.3.1 Material and experimental setup 

The experimental work consisted of flexural tests on 15 reinforced concrete beams. All the 

beams were of the same size, 130 x 203 x 2500 mm. The main variables in the tests were 

the type and amount of tension steel (bar) reinforcement, and the volume and location of 

fibers in the concrete (Table 2.). Beams DR10 to DR14 and DR20 to DR24 were 

reinforced with hot-rolled steel reinforcement with a specified minimum yield strength of 

460 N/mm2. Beams DR10 to DR14 had a steel ratio of 0.99 percent which corresponds to 

about 50 percent of the balanced steel ratio; Beams DR20 to DR24 had steel ratios of 1.78 

percent corresponding to about 90 percent of the balanced steel ratio. Beams DR30 to 

DR34 were provided with 0.99 percent of cold-worked high tensile steel with a specified 

minimum yield stress of 617 N/mm2. The actual yield strengths of the bars varied from 460 

to 470 N/ mm2 for the 460 steel and from 615 to 617 N/mm2 for the 617 steel. The volume 

of fibers and location of the fiber concrete in the beams were also varied. Two fiber 

volumes, 0.5 and 1.0 percent, were used. Fibers were used either over the whole depth of 

the beam or over the effective tension zone of the beam only (i.e., over an area with the 

steel bars as centroid). All the beams were provided with 6 mm diameter stirrups at 125 

mm centers over the whole of their length. Hot-rolled reinforcing bars with a specified 

minimum yield strength of 410 N/mm2 were used for the stirrups. The tie bars for the 

stirrups at the top of the beams consisted of 10 mm diameter bars of 460 N/mm2 specified 

minimum yield strength.  

 

Table 2.8: Details of test beams 
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Figure 2.8: Details of test beams and strain measurements 

Both the plain and fiber concrete mixes used in the beams were identical except for the 

presence of fibers in the latter. All concrete mixes contained fly ash, and consisted of mix 

proportions of 1 (cement + fly ash):2.0 (sand):2.5 (aggregate) with a water (cement + fly 

ash) ratio of 0.52, all by weight. Ordinary port-land cement was used in all the mixes; the 

fly ash had a specific surface of 3690 cm2/g and complied with British Standard BS 

3892:1965" in chemical composition. The fly ash was used to substitute 30 percent by 

weight of cement. This ratio has been shown to give the optimum strength and elasticity 

properties." Natural river sand with a fineness modulus of 2.78 was used in all the mixes. 

The coarse aggregate was graded river gravel with a 20 mm maximum size; it varied from 

rounded to angular in shape and had a fineness modulus of 6.52 to 6.65. The steel fibers 

used in this study were low carbon crimped steel 0.50 x 50 mm with a tensile strength of 

1050 N/mm2 and an elastic modulus of 210 kN/mm2. A water-reducing agent was used 

with the fiber concrete mixes at a dosage of 3.2 cc per kg of (cement + fly ash). Typically, 

the plain concrete mixes had a slump of 130 mm while the fiber concrete mixes with 0.5 

and 1.0 percent fiber volumes had slumps of 100 mm and 80 mm, respectively. The fly ash 

concrete mixes were designed to give about the same one day compressive strength as 

mixes without fly ash; this one day strength varied from 8.0 to 10.0 N/mm2. The plain and 

fiber concrete mixes were designed to give 35 N/mm2 at 28 days. The development of 

compressive strength with time was investigated, and this showed that the strength 

stabilized at about 500 to 600 days, and that the ratio of the strength at this age to that at 

28 days ranged from 1.58 to 1.60. At 1000 days the compressive strength aver-aged 60 

N/mm2. The compressive and flexural strengths at 28 days of the concrete in the beams 

are shown in Table 2.. The compressive strength of the plain and fiber concretes varied 

from 37.0 to 41.5 N/mm2 while the modulus of rupture varied from 4.4 to 5.2 N/mm2 and 

5.9 to 6.4 N/mm2 for concretes with 0.5 and 1.0 percent fiber volumes, respectively. The 
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28 day static modulus of the plain and fiber concretes was, respectively, 28.13 kN/ mm2, 

28.35 kN/mm2 (0.5 percent fiber volume), and 29.82 kN/mm2 (1.0 percent fiber volume).  

The beams were cast in steel molds and compacted by internal vibration. They were 

cured, along with control specimens, under uncontrolled internal environment. The beams 

were tested at 28 days under center point loading over a span of 2250 mm. Extensive 

measurements of concrete strain, steel strain, deflection, and rotation were taken at 

various sections of the beam throughout the loading range. Typical location of the various 

measurements, are shown in Figure 2.8. Therefore a large amount of data was obtained 

from the tests. Only load-deflection graphs are relevant to this paper and are presented 

here.  

2.3.2 Results and discussion 

As shown in Figure 2.9, the increase in the experimental ultimate flexural strength of the 

beams due to the presence of steel fibers was only marginal, the maximum increase being 

10.5 percent, probably due to the very high yield strength bars used in the beams. This is 

very much less than the reduction in deformation and increase in flexural rigidity obtained 

with the fibers.  

 

 

Figure 2.  9: Analytical (thicker curve) versus experimental results, for beams DR11, DR12, DR31 and DR32 
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It is thus clear that the value of fiber reinforcement lies not so much in strength 

improvement as in controlling cracking and deformation at all stages of loading, particularly 

at service loads, and increasing the post-cracking stiffness right up to failure. Since 

ultimate strength increments are only modest, the use of fibers may not be the most 

economical means of achieving high ultimate strengths in conventional reinforced concrete 

beams. 

2.4 Olivito experimental work 

This paper deals with steel fiber reinforced concrete mechanical static behavior and with 

its classification with respect to fibers content and mix-design variations. A number of 

experimental tests were conducted to investigate uniaxial compressive strength and 

tensile strength. Different mixtures were prepared varying both mix-design and fiber 

length. Fibers content in volume was of 1% and 2%. Mechanical characterization was 

performed by means of uniaxial compression tests with the aim of deriving the ultimate 

compressive strength of fiber concrete. Four-point bending tests on notched specimens 

were carried out to derive the first crack strength and the ductility indexes. The tensile 

strength of steel fiber reinforced concrete (SFRC) was obtained both from an experimental 

procedure and by using an analytical modelling. The experimental tests showed the 

different behavior of SFRC with respect of the different fiber content and length.  

2.4.1 Material and experimental setup 

The mixtures adopted for the present work were prepared to provide a cubic compressive 

strength for concrete higher than 30 N/mm2, taking into account all factors affecting the 

mechanical behavior of fiber reinforced concrete, such as dosage and mechanical 

properties of components, fibers type, water-to-cement ratio, aggregates quality and 

dosage, and taking into account the current codes. Six different mixtures were prepared, 

Tab. (2.9), varying the following parameters: fiber content in volume, fiber length, 

aggregate fractions and cement content. The aggregates added to the mix were sharp 

edge type. An accurate sieving has been done by means of square net sieves to obtain 

the material granulometric curve. In particular, aggregate maximum size was equal to 4 

mm and 15 mm for fine and course aggregate respectively. According to CNR DT 

204/2006 Guidelines, mixtures granulometric curve has been designed with respect to 

fiber length: in fact, fiber length and the maximum aggregate size are closely connected to 

assure a uniform and effective fiber distribution. For this reason, maximum aggregate size 

should not exceed 0.5 times the fiber length. Portland cement type CEM I, strength class 

42.5R, has been used;. Steel fibers were type II supplied from FIBROCEV, Fig. (2.10). 

Their aspect ratio lf/df (ratio between fiber length and its equivalent diameter) was equal to 

50 and their length equal to 22, 30 and 44 mm, Tab. (2.10). Fibers content in volume has 

been set equal to 1% and 2%, corresponding to 78 and 157 kg/m3 respectively. Water-to-

cement ratio has been set equal to 0.55, such as to provide good mechanical strength and 

adequate workability of the mixtures. Tab. (2.9) shows the SFRC mix-design, while      

Tab. (2.10) shows steel fibers properties. 
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Table 2.9: Mix-design of SFRC 

 
Table 2.10: Steel fibers properties 

Specimens have been prepared using metallic moulds properly designed. According to  

the following specimens have been realized: 

 Twenty four cubic specimens having dimensions 150 x 150 x 150 mm3, four 

specimens for each mixture, designated for compressive tests. 

 Twenty four prismatic specimens having dimensions 150 x 150 x 600 mm3, four 

specimens for each mixture, to be subjected to four-point-bending tests. 

 Eight prismatic specimens having dimensions 30 x 80 x 350 mm3, only types B and 

C mixtures with 1% fiber content in volume, at present, to be subjected to direct 

tensile tests. 

 
Figure 2.10: Steel fibers adopted for the experimentation 

Tab. (2.11) shows the number and types of specimens prepared. Mixtures and specimens 

preparation followed the current codes, both during the mixing and moulds filling phases 

and during the compaction phase occurred by means of a vibrating board. The slump of 

fresh reinforced concrete was also measured by means of Abrams cone method (Slump 

Test) to define its consistency class and designation. Twenty-four hours after the mixtures 

preparation, the specimens were taken out of the moulds and cured in standard 

conditions, covering them with damp sand in a closed room at 20 °C temperature and 
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relative humidity of 90%. Specimens were taken out of the curing room 48 hours before 

tests started.  

 
Table 2.31: Number and type of specimens 

Experimental tests were carried out at the Official Materials and Structures Testing 

Laboratory of University of Calabria. Three different tests were conducted: uniaxial 

compression tests, direct tensile tests and four-point-bending tests.  

In order to evaluate the influence of fibers on concrete strength, four-point-bending tests 

were conducted on prismatic specimens of dimensions 150 x 150 x 600 mm3, by means of 

a universal electro-mechanic testing machine with a capacity of 100 kN. The testing 

machine was connected to a data acquiring device and a personal computer. Load velocity 

has been set equal to 0.3 mm/min in order to simulate quasi-static conditions. The static 

scheme adopted allows the specimens to be subjected to bending moment only between 

loading points, and none shear force, Fig. (2.11a). Loads were disposed at a distance of 

150 mm from supports (1/3 of total span) and were applied by means of metallic cylinders 

of 24 mm diameter, on which a rigid metallic plate was positioned in order to equally 

distribute the applied load. Specimens were supported by means of other two identical 

metallic cylinders spaced 450 mm Fig. (2.11b). The whole system was fixed to a steel 

beam HE 160 A type, 2500 mm long, also fixed to the testing machine. Experimental tests 

were conducted in crack mouth opening displacement (CMOD) control dealing with steel 

fiber reinforced concretes. For this reason, after being cured, in the middle part of one side 

of the specimens, next to the casting surface, a V type notch was made by means of a 

diamond grinding wheel. The notch was 45 mm deep, such as to have a0/h ratio equal to 

0.3 ± 0.01, and width equal to 3–5 mm Fig. (2.11b). Four-point-bending tests were carried 

out on notched specimens in order to investigate crack opening both at the tip side, crack 

tip opening displacement (CTOD), and at the bottom side, CMOD, and to define first crack 

strength and material’s ductility indexes D0 e D1. Such indexes denote SFRC ductility in a 

defined range of crack mean opening displacement, included between (0–0.6 mm) 

relatively to D0 and (0.6–3 mm) for D1 index respectively, and are derived from the 

experimental load–CTOD diagram. For this reason, specimens were properly 

instrumented. In particular, CTOD was evaluated as the mean value between CTOD1 and 
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CTOD2 checked by means of two linear inductive displacement transducers W10, placed 

on both lateral sides of the specimens between two Plexiglas bases fixed to the specimens 

by means of glue as measuring base for strains. CMOD was evaluated by means of a 

linear inductive displacement transducer W10 placed on bottom side of the specimen. 

Loading point displacements were investigated by means of four linear inductive 

displacement transducers WA20, placed on a steel bar fixed to both sides of the specimen 

along loading direction Fig. (2.11a). All instruments were connected to a data acquiring 

device to record strains during the test Fig. (2.11b and 2.11c).  

 
Figure 2.  10: Four-point-bending test. (a) Static condition. (b) Geometry, support and load position 

 
Figure 2.11: Four-point-bending test. (a) Transducers position scheme. (b) Specimen. (c) Experimental equipment 

2.4.2 Results and discussion 

Four-point-bending tests were carried out on notched specimens in order to classify and 

characterize the SFRC tested. These kind of experimental tests are usually performed to 
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investigate fibers performances and to evaluate their possible use for the design of 

structural members, by means of the derivation of ductility and tenacity of the material. Fig. 

(2.12a and b) shows load–CTODm diagrams related to one specimen for each series 

tested: from the curves a different mechanical behavior between the series can be seen, 

due to the different SFRC mix-design.  

 
Figure 2.12: Load–CTODm diagram. (a) Mixtures with 1% fiber content in volume. (b) Mixtures with 2% fiber content in 

volume 

Such curves also show how A type mixtures, which were realized adding longer fibers to 

the mix, have a different post-cracking behavior: this can be evaluated in terms of the area 

under the curve, which is higher for A type specimens. According to the above mentioned 

codes, first crack strength and ductility indexes were evaluated for the different mixtures 

from experimental data and from load–CTODnet diagram; CTODnet indicates CTOD mean 

value deducted of CTOD0 value (CTOD0 = CTOD mean value relative to first crack 

formation for basic normal concrete). Because no experimental tests were conducted on 

basic normal concrete, CTOD0 was set equal 0.025 mm as a conventional value.          
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SFRC first crack strength, fIf, has been derived from the maximum load value(PIf) of load–

CTODm curve for CTOD included between 0 and CTOD0, see Fig. (2.13a), by means of 

the following relationship: 

 
    

     

       
 
       

(2.5) 

where PIf is first crack load (N), l is the spacing between supports (mm), b; the specimen 

base (mm), h; the specimen height (mm) and a0 is the notch depth (mm). Ductility indexes 

D0 and D1 were derived by means of the following equations: 

 
   

          

   
 

(2.6) 

where feq(0–0,6) is the equivalent strength (MPa) calculated when the mean crack opening 

value is included between 0 and 0.6 mm, feq(0.6–3) is the equivalent strength (MPa) 

calculated when the mean crack opening value is included between 0.6 and 3 mm, derived 

from the following relationships: 

 
   

          

          
 

(2.7) 

where U1 and U2 (10-3 J) are the areas under load–CTODm curve for CTODnet intervals 

equal to 0–0.6 mm and 0.6–3 mm respectively, Fig. (2.13b). Such areas are approximately 

proportional to the energy dissipated in the mean crack opening intervals considered. 

Table (2.12) shows the four-point-bending test results (A1% first specimen results were not 

considered due to the fact that the first test was used for the instruments setting 

operations).  

 
Figure 2.13: (a) Basic concrete load–CTODm diagram: CTOD0 meaning. (b) Load–CTOD diagram: U1 e U2 

determination 



47 
 

 
Table 2.42:  Four-point-bending test results 

In conclusion, the present experimental analysis was carried out in order to investigate 

steel fiber reinforced concrete mechanical behavior with respect to mix-design variations 

and different fiber content in volume values. From the experimental results, an important 

aspect could be noticed, which is the ductility and tenacity increase of SFRC when fiber 

content in volume increases and, at the same fiber content, when fiber length increases. 

This phenomenon is due to the higher deformability and energy absorption of SFRC during 

the cracking phase; SFRC shows a higher bending stiffness and a different cracking 

pattern than normal concrete. Moreover, post-cracking behaviour is affected by the 

different fiber length: in fact, specimens realized with short fibers showed a softening 

behaviour, while specimens realized longer fibers showed a plastic or a hardening 

behaviour as well as a maximum load increment. Therefore, an increment of fiber content 

in volume produces: ductility, first crack strength and flexural strength increase, but none 

indicative variation for compressive strength.  

2.5 Kang experimental work 

This paper presents a study of the tensile fracture properties of Ultra High Performance 

Fiber Reinforced Concrete (UHPFRC) considering the effects of the fiber content. To 

investigate the impact of fiber content, notched 3-point bending tests were executed, 

where the fiber volume ratio was varied from 0% to 5%. From the bending tests, it was 

found that the flexural tensile strength of UHPFRC linearly increases with increasing fiber 

volume ratio and the rule of mixture can be applied to UHPFRC. Furthermore, an inverse 

analysis was performed to determine the tensile fracture model of UHPFRC and a tri-linear 

tensile softening model is suggested. The suggested model successfully represents the 

increase of the stress-constant bridging zone and the decrease of the stress-resisting zone 

with increasing fiber content. The proposed model for various fiber content levels is simple 

and versatile and can be readily applied to structural design or numerical analysis of 

UHPFRC. 
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Table 2.53: Mix design of UHPFRC 

 
Table 2.14: Physical and chemical properties of cement and silica fume 

 
Figure 2.34: Specimen configuration and experimental setup 

 
Figure 2.45: Failure configuration after test 
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Figure 2.165: Load–displacement experimental results 
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2.5.1 Material and experimental setup 

The mix design of UHPFRC differs significantly from that of normal and high-strength 

concretes. UHPFRC mix compositions are characterized by high cement, superplasticizer, 

and silica fume content. The concrete mixture proportions applied in this study are 

tabulated in Tab. (2.13). The water–binder ratio is determined as w/b = 0.20, and a high 

percentage of silica fume (25% of cement weight) is implemented. Furthermore, in order to 

achieve sufficient strain-hardening behavior, various percentages of steel fibers in excess 

of 1% were incorporated. In this study, fiber content was selected as the main test variable 

and was classified into five groups corresponding to volume ratio, which was increased in 

increments of 1% from 1% to 5%. Generally, the use of filler through the partial 

replacement of cement provides enhanced strength at early age and durability. Therefore, 

siliceous filler was used in the concrete mix design. More specific material characteristics 

used in the concrete mix are as  

(1) Cement and reactive powder The cement and reactive powder adopted in this 

study are ordinary Portland cement (OPC) and silica fume, the physical and 

chemical properties of which are listed in Tab. (2.14).  

(2) Aggregates Fine aggregates with a density of 2.62 g/cm3 and sand with a mean 

particle size below 0.5 mm were utilized. Coarse aggregates were not used. 

(3) Superplasticizer Polycarboxylate superplasticizer (density 1.01 g/cm3, dark 

brown) was used. 

(4) Filler Siliceous filler with a mean particle size of 26.6 lm was applied. 

(5) Steel fibers High strength steel fibers (density 7.8 g/cm2, length 13 mm, diameter 

0.2 mm, tensile strength 2500 MPa) were selected to improve toughness with 

respect to the tensile and flexural behavior. 

The test methods employed to determine the tension softening property of UHPFRC are 

the bending test, uniaxial tensile test, and compact tension (CT) test, corresponding to 

those widely applied for ordinary concrete. Among them, the bending test is the most 

widely adopted method, owing to its simplicity. While the uniaxial tensile test offers the 

advantage of directly determining the tension softening curve, difficulties are encountered 

in securing accuracy. The CT test presents a noticeable advantage in being practically free 

from the effects of the self-weight of the specimen owing to the large failure area produced 

in specimens with small volumes. However, with this method the tension softening curve is 

determined indirectly, as with the bending test, and is rarely applied due to the need of 

special equipment. This study performed a 3-point bending test for the determination of the 

tension softening properties and curves of UHPFRC. For each concrete mixture shown in 

Tab. (2.13), five test specimens with dimensions of 100 mm x 100 mm x 400 mm are 

manufactured. The specimens were cut with a notch at mid-length using a diamond cutter 

prior to the execution of the test and after completion of concrete curing. The notch was 

set with a constant width of 4 mm. A universal testing machine with a capacity of 2000 kN 

was used for the bending test. Load was applied through displacement control at a speed 



51 
 

of 1/1500 of the specimen span length (300 mm) per minute. One LVDT with a capacity of 

10 mm was installed at both sides to measure the deflection of the center of the specimen 

during the test. A clip gage was attached at the bottom of the specimen to measure the 

crack width at the notch. Fig. (2.14) illustrates the characteristics of the bending test 

specimens and equipment. 

2.5.2 Results and discussion 

Fig. (2.15) shows a typical failure configuration after the 3-point bending test. After failure, 

it is shown that one large crack exists, accompanying fibers, which play an important role 

in bridging two crack faces. Due to the bridging mechanism of fibers, UHPFRC can 

provide superior performance especially under tension as compared to UHPC without 

fibers. Fig. (2.16) shows the experimentally obtained load–displacement curves with 

respect to fiber volume ratios. As seen in Fig. (2.16), higher fiber volume ratio results in 

larger scatter among the load–displacement curves for the same fiber volume. The large 

scatter with a high volume ratio is attributed to the intrinsic scatter at high strength levels 

and the degree of dispersion of fibers. Fig. (2.17) presents a comparison of load–

displacement curves for five fiber volume ratios. It is revealed that the initial stiffness does 

not undergo a significant change with an increase of fiber content, while the maximum load 

increases gradually together with a gradual change to brittle behavior in the softening 

section. Although the structural ductility increases with fiber content for FRC, the 

displacement at peak load does not have an obvious trend with the fiber volume ratios in 

the case of UHPFRC.  

 

Figure 2.176: Load–displacement curves with respect to fiber volume ratio 

However, it is seen that UHPFRC reflects the superior behaviors of both UHPC and FRC 

with respect to high strength and ductility, respectively. The flexural strength of UHPFRC 

was obtained by Eq. (2.8). 

 
   

      

        
 
 

(2.8) 
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where      is the maximum load;   and   the beam thickness and height, respectively;    

the notch depth and   is the span length. With the development of FRC, the tensile 

performance of FRC in comparison with that of ordinary concrete has been studied by 

many researchers. Shah and Rangan, Naaman, Swamy et al. and Mai suggested the rule 

of mixture to consider the fiber content in calculating the flexural strength for FRC, given 

below as Eq. (2.9). 

                            (2.9) 

where     and      is the flexural strength with fiber and without fiber, respectively;    the 

fiber volume ratio;    and    the length and diameter of fiber, respectively; and   and   is 

the experimental coefficients. Eq. (2.9) shows the linear dependence of the flexural 

strength (   ) of FRC on the fiber volume ratio (  ) and fiber shape (     ). Rearranging 

each term in Eqs. (2.9) and (2.10) can be obtained to clarify this linearity. 

                              (2.10) 

For a given fiber geometry (     ), the flexural strength (   ) is solely linearly dependent 

on the fiber volume ratio (  ). It should, however, be verified that Eq. (2.10) for FRC is 

directly applicable to UHPFRC, which has an ultra-high concrete matrix strength and a 

relatively lower contribution of fiber than conventional FRC. The experiments performed in 

this study cover a large range of fiber volume ratios, from 1% up to 5%, and therefore the 

fiber content contribution to flexural strength can be examined with this equation. 

 
Figure 2.18: Variation of flexural strength with respect to fiber volume ratio 

Fig. (2.18) shows the relationship between the average flexural strength and the 

corresponding fiber volume ratio obtained from the experiment. The flexural strength of 

UHPFRC is linearly dependent on the fiber content with high reliability, i.e. the coefficient 

of determination (R2) is 0.97.  
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Formularizing this relationship, Eq. (2.11) is obtained as follows: 

                 (2.11) 

where      = 8.88 (MPa) and    is the fiber volume ratio by percentage. 

For the same fiber geometry (            ) used in this study, comparing Eq. (2.11) with 

Eq. (2.10), the experimental coefficients A and B can be deduced as 1.0 and 0.307, 

respectively. From the above derivation of Eq. (2.11), it is concluded that the rule of 

mixture for flexural strength represented by Eq. (2.9) can be applied to UHPFRC with 

satisfactory confidence under the same fiber geometry conditions. 

In conclusion, this study investigated the effects of fiber content on the tensile fracture 

behavior of UHPFRC and a numerical model is suggested based on the experimental 

results.  

From notched 3-point bending tests, it is observed that the flexural tensile strength of 

UHPFRC linearly increases as the fiber volume ratio increases from 0% to 5% and the rule 

of mixture holds for the flexural strength of UHPFRC. 
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3. Experimental validation of the Bridged Crack Model 

Since the results of the bibliographic research have provided a limited number of figures, 

an experimental campaign has  been carried out in during my thesis. This work has been 

made possible through the collaborative effort with AZICHEM srl and FABLAB TORINO. In 

this chapter, the experimental work conducted during the past months at Fracture 

Mechanics Laboratory of Politecnico di Torino is described in detail.  

It must be say that, not all the specimens made have yet been tested. Nevertheless the 

work will be continued in the future. 

3.1 Material  

The experimental work consisted on flexural tested on 24 fiber reinforce concrete beams 

(Fig 3.1): 12 FRC beams were made of pre-dosed concrete for structural use,               

BETONPIU’-GRAS CALCE srl, with an elastic modulus of 210 kN/mm2 and a compressive 

strength of 30 N/mm2 at 28 days.  

Steel fibers, supplied from AZICHEM srl, have been adopted in this case. In order to have 

an efficient control of the cracking process, three different type of steel fiber reinforcement 

have been considered (Fig 3.2): READYMESH MX-500, READYMESH MS-350 and 

READYMESH MM-150. A specific yield strength equal to 1100 N/mm2 and a diameter 

equal to 0,75 mm characterizes these fiber reinforcements. Length varies from 1,5 mm to 

5 mm. As shown in Tab. 3.1, fibers MX-500 and MM-150 have been used to carry out the 

20x10 mm and 10x10 mm beams. On the other hand, 5x5 mm beams have been provided 

with MS-350 and MM-150 fibers. 

 

Figure 3.1: Overview of some of specimens realized in this Master Thesis work 
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Figure 3.2: Detail of the steel fibers adopted for the sperimentation, from left to right: READYMESH MX-500, 
READYMESH MS-350 and READYMESH MM-150  

 

Table 3.1: Steel fibers proprieties  

The main variables in the tests were the beam size and the volume of the fibers in the 

concrete (Tab 3.2). Three beam sizes have been considered: 5 x 5 x 30 cm; 10 x 10 x 60 

cm; 20 x 10 x 120 cm. All the three were provided with initial notch (Fig. 3.3).  

Fiber reinforcements, with the aim of investigate the minimum reinforcement content, have 

been added to the concrete matrix in four different volume fractions: 0.08%; 0.20%; 0.96%; 

1.28%. In the notation FCR-xx-yy, xx and yy refer to the beam size and the fiber volume 

fraction respectively. 

 

Table 3.2: Mix design of Steel Fiber Reinforced Concrete 

MX-500 5 0,75 210000 1100

MS-350 3,5 0,75 210000 >1100

MM-150 1,5 0,75 210000 >1100

E                   

[N/mm2]

fy                              

[N/mm2]

Length                         

[mm]

Diameter                      

[mm] 

Heigth Depth Length Notch Fiber MX-500 Fiber MS-350 Fiber MM-150

h b L a Vf Vf Vf

[cm] [cm] [cm] [cm] [%] [kg/m 3 ] [kg/m 3 ] [kg/m 3 ] [kg/m 3 ]

FRC-5-04 5 5 30 1,5 0,08 6,2 - 4,2 2,1

FRC-5-15 0,20 15,6 - 10,4 5,2

FRC-5-75 0,96 74,9 - 49,9 25,0

FRC-5-100 1,28 99,8 - 66,6 33,3

FRC-10-04 10 10 60 3 0,08 6,2 4,2 - 2,1

FRC-10-15 0,20 15,6 10,4 - 5,2

FRC-10-75 0,96 74,9 49,9 - 25,0

FRC-10-100 1,28 99,8 66,6 - 33,3

FRC-20-04 20 10 115 5 0,08 6,2 4,2 - 2,1

FRC-20-15 0,20 15,6 10,4 - 5,2

FRC-20-75 0,96 74,9 49,9 - 25,0

FRC-20-100 1,28 99,8 66,6 - 33,3

Fibesr tot.
Vf

ID



56 
 

 
Figure 3.3: Specimens geometry 

The second stage of the experimental campaign involves 12 FRC beams made of high 

performance concrete (Rck > 120 N/mm2) and brass fiber reinforcements (fy =135 N/mm2), 

both provided by AZICHEM srl. Also in this case, three beam sizes have been considered: 

5 x 5 x 30 cm; 10 x 10 x 60 cm; 20 x 10 x 120 cm. Four specimens have been made for 

every size but the volume of the fibers in the concrete has been kept constant and equal to 

120 kg/m3 (1,54%) in this second batch. Due to their enhanced high-bonding capability, 

brass fibers are supposed to increase the load carrying capacity of FRC members. Brass 

fibers substantially reduce the brittleness of the concrete matrix, and improve its 

engineering properties, such as tensile, flexural, impact resistance, fatigue, load bearing 

capacity after cracking, and toughness. 

3.2 Experimental results and numerical simulations  

In order to evaluate the influence of fibers on the cracking of concrete, three point bending 

tests were conducted on specimens by means of a electro-mechanic testing machine with 

a capacity of 250 kN. The test machine was connected to a data acquiring device and a 

personal computer. Load velocity has been set equal to 0.4 mm/min in order to simulated 

quasi-static conditions. Loads were applied by means of metallic cylinder and specimens 

were supported by means of others two identical metallic cylinders. The span length has 

been set equal to            . Figs. (3.4) and (3.7) illustrate the various stages of the 

test, from the removal of the scaffolding to the end of the three-point bending test.  

Experimental tests were conducted in deflection control and the results have been 

expressed as load P versus middle-span deflection δ. In figs. (3.8) and (3.9), experimental 

results (grey curves) are reported and compared to analytical figures obtained by 

implementing a slippage constitutive law to the fiber content (black curves). In most cases 

analytical curves show a good approximation to the experimental ones. A less good 

approximation is evidence for small specimens, it might be due to dimensional scale effect 

Eq. (1.88). Nonetheless there has been success in predict the amount of fiber required to 

attain the minimum reinforcement condition in both cases, about 75 kg/m3. 

To sum up, the experimental versus numerical comparisons demonstrate that the 

proposed model can be successfully applied to the study of fiber reinforced concrete, 

revealing the influence of fiber content in the mechanical behavior of the beams in flexure. 

In fact, it can be clearly seen that the collapse mechanism shows a transition from brittle to 

ductile as the fibers content increases.  
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Figure 3.4: Process of the removal the scaffolding 

 

Figure 3.5: Three-point bending test setup 
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Figure 3.6: Detail of crack advancement  

 

Figure 3.7: Failure of the specimen  
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Small Specimens 

 

 

 

 

 

Figure 3.8: Experimental (grey) versus analytical results from bending tests on 5x5x30 cm specimens The Bridged Crack 
Model analysis has been performed by implementing both the yielding (red) and slippage (black) constitutive law to the 
fiber reinforcement 
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Medium Specimens 

 

 

 

 

 

Figure 3.9: Experimental (grey) versus analytical results from bending tests on 10x10x60 cm specimens; The Bridged 
Crack Model analysis has been performed by implementing both the yielding (red) and slippage (black) constitutive law 
to the fiber reinforcement 

0 

1 

2 

3 

4 

5 

0 1 2 3 4 

P
 [
k
N

] 

δ [mm] 

Vf=0.08%  
(6.1 kg/m3)  

0 

2 

4 

6 

8 

10 

0 1 2 3 4 

P
 [
k
N

] 

δ [mm] 

Vf=0.20%  
(15 kg/m3)  

0 

2 

4 

6 

8 

10 

12 

14 

0 1 2 3 4 

P
 [
k
N

] 

δ [mm] 

Vf=0.96%  
(75 kg/m3)  

0 

2 

4 

6 

8 

10 

12 

14 

0 1 2 3 4 

P
 [
k
N

] 

δ [mm] 

Vf=1.28%  
(100 kg/m3)  

  



61 
 

3.3 Discussion and conclusions 

The main issue during the test campaign design was understand which one constitutive 

law should be assigned to the steel fibers.  

 

 

 

Figure 3.10: Comparison of Plizzari experimental tests (grey), Bridged Crack analysis employing the slippage law (black) 
and Bridged Crack analysis employing the yielding law (red) 
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Figure 3.11: Detail of the fracture surface for specimens 5x5x30 cm at the end of the thee-point bending test 
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Figure 3.12: Detail of the fracture surface for specimens 10x10x60 cm at the end of the thee-point bending test 
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Fundamental for this purpose was the check with Plizzari experimental results, from which 

seemed clear that the slippage law mastered the problem Fig. (3.10).  

Nevertheless there was always the unknown factor linked to the shape of the MX-500 

fibers used in this experimental campaign, because they were designed to improve the 

grip. In the end, the fiber contents were chosen in such a way as to obtain  significant 

results, whatever the fibers failure mechanism. But, as with Plizzari et al., the slippage law 

best approximate the experimental results obtained in this master thesis work, see Figs. 

(3.8) and (3.9) whereas the red curves have been obtained by the Bridged Crack Model in 

case of yielding of the fiber reinforcement. This finding was also reinforced from watching 

the specimen fracture surface at the end of the three-point bending tests, in Fig. (3.11) and 

(3.12) shows the fracture surface of the tested specimens. It can be clearly seen that the 

fibers were intact. 

One should remember that the algorithm presented in this paper implements a 

simplification of the pull-out law proposed by Model Code 2010, (Fig. 3.13), as mentioned 

in [1.3.1]. Therefore the implementation of a constitutive slippage law more refined could 

cover further developments. 

 
Figure 3.13: Model Code 2010 constitutive law versus rigid-perfectly plastic simplified slippage law implemented in the 
Bridged Crack algorithm 

3.4 Concluding remarks 

In conclusion, this study investigated the effects of fiber content and dimensional scale on 

the bending fracture behavior of FRC. The results can be summarised as follows: 

 The slippage between the matrix and the reinforcement was the failure mechanism 

in all cases investigated in this paper 

 There is a clear transition in the failure phenomena from brittle to ductile as the fiber 

content increases 

 Using a yielding constitutive law for the fiber, when the structural size decreases the 

percentage of fibers, ρ, to get the minimum reinforcement increases. This can be 

explained by the Brittleness Number (Eq. 1.71) 
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 In the load versus deflection diagram, the load peak moves up and to the right when 

KIC increases. At the same time, the asymptotic behavior doesn’t change. In the 

case of strong hardening behavior, the role played by KIC is negligible 

 Load peak and asymptote move up when fy (or τ) increases 

 For m > 20, the condition of complete diffusion of the fibers is represented (m = ∞). 

Np value involving a ductile-to-brittle transition depends on the initial crack length a 

(concrete cover). i.e. for m>20: when        , we get       ; when        , 

we get       . 

 When the initial crack length, a, is small compared to the beam height, h, the global 

structural behavior is brittle. Consequently, the ductile-to-brittle transition arises for 

high values of NP, and hence also of ρ. On the other hand,  when a is large, the 

structural behavior appears to be ductile. Consequently, the ductile-to-brittle 

transition arises for low values of NP. In conclusion, we need to set an initial crack 

length larger than 
 

 
 

 

 
  in order to have a ductile behavior. 
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