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ABSTRACT

Influenza is viral disease characterized by a sudden onset of fever, cough,
headache, muscle and joint pain, severemalaise, sore throat and a runny
nose. While most people recover from these symptoms in about a
week without medical attention, there are cases with complications
where the illness is severe and can cause death. Influenza spreads
around the world in yearly outbreaks, causing about 3 to 5 million cases
of severe illness and about 290,000 to 650,000 deaths due to respiratory
complications [11]. TheWorldHealth organization suggests vaccination
to protect the people at higher risk (very young children and elderly
people, for example), but the immunity given by the vaccine is not
lifelong and vaccinations of one year could be ineffective even the next
year.

This is due to the highlymutating nature of the influenza virus, which,
following a mutation, can change the antigens that it presents and thus
be recognized as of a different “type” by the immune system with re-
spect to its previous configuration. This process, called viral emergence,
effectively creates a new viral strain, and leads to the huge immuno-
logical variability of influenza. The newly created emerging strain can,
in some cases, infect individuals that were protected to the previous
strain, thus becoming the dominant strain during an epidemic season.
This process thus heightens the risk of failure of the influenza vaccine,
which, every season, requires the identification of the dominant strain
of influenza for each region of the world: in case of a mistake in its
prediction, the disease would be able to infect a significantly higher
fraction of the population of a country, resulting in greater risks for
more susceptible individuals and economic losses due to a drop in pro-
ductivity. This phenomenon has thus come under strict observation
from public health institutions, yet the conditions under which it hap-
pens are not fully understood.

This thesis tries to address this problem by developing a model of
the spreading of two strains of the influenza virus in a population of
hosts. Since this process is influenced by the interplay of within-host
factors and the between-host transmission, both these scales have been
accounted in the model. Because of the resulting complexity of the
model, a numerical approach has been devised in order to study the
outcomes of the epidemics, averaging the results over many numerical
simulations. This required transforming the within-host model, origi-
nally deterministic, into a stochastic simulation, and implementing a
set of rules for the transmission of the two strains between individual
hosts.
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The model has been studied first with only one viral strain, exploring
the space of the parameters of the model, both at the within-host and
between-hosts scales. This first stage was required in order to under-
stand the outcomes produced by the model and reproduce realistic
outcomes of influenza epidemics. Afterwards, the second strain was in-
troduced in the simulations, and the effect of parameters of this emerg-
ing strain was studied by exploring their possible values. As one of the
results of this analysis, it was found that the frequency on which the
hosts contacted each other played an important part in the selection of
the dominant strain.
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1
INTRODUCT ION

The Cambridge English dictionary defines a disease as “(an) illness of
people, animals, plants, etc., caused by infection or a failure of health
rather than by an accident”. This definition encompasses a wide range
of conditions that can be very distinct, such as osteoporosis, malaria or
smallpox. One important distinction that can be made about diseases
is whether they can be transmitted between individuals or not: the
ones that can are classified as infectious, while the others are called
non-infectious. Infectious diseases can be distinguished by the type
of infectious pathogen which transmits the illness, thus defining viral,
bacterial or parasitic diseases, for example. Also, another important
distinction is based on the typical duration of the infection, which
separates diseases in essentially two classes, either acute, which have
rapid recovery, and chronic, which last longer and may also be recurrent.

1.1 the immune response

As the pathogen infects an individual and starts reproducing itself,
the infected individual’s immune system develops what is generally
called an immune response to fight the infection. This process is quite
articulated, as it involves first the activation of the innate immune system,
and later of the adaptive immune system. While the former is a general
response and is not very efficient in eliminating the infectious disease,
it has a faster activation time, and is useful to keep the infection at bay
while the adaptive immune system develops a more tailored response.
The activation of the adaptive immunity involves the recognition of
the antigens, which are proteins on the surface of the cells, which are
presented by the pathogen. The immune system is able to recognize
and keep track of the antigens and produces antibodies, which can bind
only to the targeted antigens. In this way the immune system is able to
distinguish the pathogen cells (or the cells infected by it) and destroy
them without harming its own healthy ones.
After an infection, the antibodies previously created are kept circu-

lating in the body in reduced numbers: this leads to immunological
memory and is the process upon which vaccination is built. A sub-
sequent infection of the same pathogen takes a much shorter time to
eradicate, because the antibodies already present are replicated upon
encountering the antigens, and the immune system doesn’t need to
create them again.
A mutation of the pathogen that manages to change its antigens

makes it able to escape recognition by preexisting antibodies and thus
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2 introduction

produce a more sustained infection of a hosts. In this case the immune
system will need to produce new antibodies to target the new strain,
while it will be able to fight and eliminate efficiently the previous one.
In this way, the pathogen is forced to mutate in order to survive.

1.2 an overview of influenza

Influenza is viral disease characterized by a sudden onset of fever, cough,
headache, muscle and joint pain, severemalaise, sore throat and a runny
nose. While most people recover from these symptoms in about a
week without medical attention, there are cases with complications
where the illness is severe and can cause death. Influenza spreads
around the world in yearly outbreaks, causing about 3 to 5 million
cases of severe illness and about 290,000 to 650,000 deaths due to
respiratory complications [11]. The disease is caused by the influenza
virus, which has a very highmutation rate, and this characteristic makes
it possible to see a huge variability of the virus in antigenic terms:
currently, four types of the virus are known, named alphabetically
from A to D. Among these, only types A, B and C are known to infect
humans, and type C has not been known to cause epidemics [15, 11].
Therefore, the globally circulating types are only A and B, and these
are divided into subtypes (for A) and lineages (for B). Influenza A is
the viral type evolving most rapidly among the two, and has already
caused numerous pandemics (the 1918 Spanish Flu, for example, or the
recent 2009 Avian Flu epidemic, caused by a new strain of H1N1 [10]).

Since the influenza virus mutates rapidly, at any moment during the
course of a seasonal outbreak one of the subtypes could change the
antigens it presents. This leads, as explained before, to the creation of a
variant, or strain, of the virus (called emerging) which is novel for the
immune system. If the antigens of the new strain do not vary much
from the previous viral variant, and are still keeping a similarity to
it1, it can happen that the antibodies for the previous strain (which in
this case is called wildtype) will still recognize, if present, the emerging
strain and begin to fight it. When this happens there is a so-called cross-
reactivity of the antibodies or cross-immunity. This phenomenon has
been shown to happen in the case of influenza [12]. The antibodies
may be able to counteract the emerging strain as well as the wildtype
one, but it could also happen that they are less efficient with the new
strain. Considering the second case leads to a phenomenon called
immune escape, as the new virus can thus elude the immune system
and spread to more individuals, potentially infecting a large part of the
hosts population and becoming the dominant strain.

This process of creation of new viral strains, called viral emergence, has
important implications for public health, mainly in the development

1 The reasons for this similarity are biological. A more detailed explanation is given in
[5]
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of the vaccine against influenza, where, from the many strains of the
subtypes that are circulating in the season, the dominant ones have
to be selected for the targeting of the vaccine. Given the previously
mentioned variability of the subtypes, one strain has to be chosen for
each subtype/lineage in circulation (A/H1N1, A/H3N2, B/Victoria and
B/Yamagata are the ones currently in circulation [11]). This step is very
important, because if the targeted strain does not become dominant,
the vaccine could fail in protecting the population and there would be
an increase in the incidence of the disease during the epidemics.
Therefore, it becomes crucial to understand the conditions upon

which an emerging strain can overcome the wildtype strain and infect
a large part of the population. This is the aim of this thesis, in which a
metapopulation model has been designed and implemented to describe
the spreading of two strains (wildtype and emerging) of influenza
virus in a population of hosts.





2
MODEL ING WITH IN -HOST DYNAMICS

The model describes the diffusion of two strains (wildtype, W, and
emerging, E) of influenza at different scales, including both the within-
host dynamics and the between-host dynamics, the latter of which
accounts for the spreading of the viruses from person to person. The
within-host part describes the interaction of the viral strains with the
immune system inside each individual.

2.1 deterministic model

In the model, the dynamic of the infection has been derived from equa-
tions 2.1 to 2.4, taken from [13], which describe the evolution of the
viral load of the two viruses and the respective immune response of
the individual, tailored to each strain.

𝑉̇𝑊 = 𝜌𝑊𝑉𝑊 (1 − 𝑉𝑊 − 𝑉𝐸) − 𝑉𝑊 (𝐼𝑊 + 𝜖𝑊𝐼𝐸) (2.1)

̇𝐼𝑊 = 𝐼𝑊 (𝑉𝑊 + 𝜖𝐸𝑉𝐸) (2.2)

𝑉̇𝐸 = 𝜌𝐸𝑉𝐸 (1 − 𝑉𝑊 − 𝑉𝐸) − 𝑉𝐸 (𝐼𝐸 + 𝜖𝐸𝐼𝑊) (2.3)

̇𝐼𝐸 = 𝐼𝐸 (𝑉𝐸 + 𝜖𝑊𝑉𝑊) (2.4)

These equations are deterministic and it can be seen that they contain
terms of growth and decrease which describe the following processes:

viral replication The first terms in equations 2.1 and 2.3 model
the replication of the virus, as depending on a parameter 𝜌, the
replication rate, times a factor (1 − 𝑉𝑊 − 𝑉𝐸) which limits the
total quantity of viruses in the host, imposing the condition that
𝑉𝑊 + 𝑉𝐸 < 1 for the replication of any of the two strains to pro-
ceed. Otherwise, this factor is negative and the viral population
decreases. Therefore, this term describes the direct competition
of the two viruses, as there is a finite amount of cells they can
possibly infect.

viral elimination The second term in the equations for 𝑉𝑊 and 𝑉𝐸
accounts for the viruses that are killed by the immune response.
While the immune quantity responsible for this is, for the most
part, of the same strain as the the virus, there is also the one
related to the opposite strain that contributes. This term thus

5



6 modeling within-host dynamics

describes the cross-immunity and is mediated by the parameters
𝜖𝑊 and 𝜖𝐸, which can have values between 0 and 1.

immunity buildup The immune response in an individual grows af-
ter the encounter of the virus by the immune system of the hosts.
This is modeled by equations 2.2 and 2.4, that show a growth
term of the immunity which depends not only on the same-strain
viral quantity but also on the opposite strain, as one would expect
from the cross-immunity. Because of this link, this extra growth is
mediated by the 𝜖 parameters.

The model, as previously mentioned, is deterministic, and describes
the interaction of the two viral strains in a symmetric way between viral
variants. To properly describe the interaction between the emergent
and wildtype strains, one has to account for the fact In terms of the
model’s parameters, this means that since the 𝜖𝑖 factor describes the
strength of the interaction between 𝑉𝑖 and 𝐼𝑗 ().
The cross-immunity parameters are present both in the viral and

immune equations, but they are exchanged between the equations
of 𝑉 and 𝐼 of same strain. Upon close inspection, it can be seen that
each 𝜖𝑖 is tuning the strength of the interaction of the viral quantity
of the same strain 𝑉𝑖 with the immunity of the opposite kind 𝐼𝑗(𝑖 ≠ 𝑗,
𝑖, 𝑗 ∈ {𝑊, 𝐸}). Therefore, the higher 𝜖𝑖, the higher the number of viruses
of strain 𝑖 killed by the immunity 𝐼𝑗, and the higher the growth of 𝐼𝑗 upon
encounter of 𝑉𝑖. Since it has been found that the antibodies produced
for the emerging strain are more cross-reactive with the wildtype than
the opposite [5], the value of the cross-immunity parameters is chosen
such that 𝜖𝑊 > 𝜖𝐸.
In order to describe different cases of infection and co-infection, dif-

ferent kinds of individual hosts are defined in [13] based on their initial
condition of immune quantities described by the model (𝐼0

𝑊, 𝐼0
𝐸): a naive

individual has very low initial values (10−3) of both immune responses,
while an experienced one has already encountered the wildtype virus,
having thus a strong immune response to the wildtype, 𝐼0

𝑊 = 1, while
𝐼0
𝐸 = 10−3.
The replication rate is an important parameter of the viruses, and

while in the aforementioned work the model was studied both with
𝜌𝑊 < 𝜌𝐸, where themutated virus has a replication advantage, andwith
𝜌𝑊 > 𝜌𝐸, where the emerging has a replication deficiency, only latter
case has been considered in this thesis, since the mutations conferring
immune escape to the virus are often detrimental to viral replication
[2].

The dynamics for the replication deficiency case are shown in Figure
2.1 for a naive host and in Figure 2.2 for an experienced host, with
common parameters 𝜖𝑊 = 0.8, 𝜖𝐸 = 0.28, 𝜌𝑊 = 2, 𝜌𝐸 = 1.8, and
initial condition on the viral quantities 𝑉0

𝑊 = 10−2, 𝑉0
𝐸 = 10−4. In

the first case, the wildtype virus is dominating over the emerging,
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and it manages to create a sustained infection. The hosts develops
immunities for both strains, but in an asymmetrical way because of
the cross-immunity parameters. In the experienced host case there is a
very short infection from the wildtype, as expected, and a quite long
infection of the emerging strain. It is curious to see that, in contrast to the
previous case, the host doesn’t develop an immunity for the emerging
strain, but fights the infection with the wildtype antibodies, and ends
up at a very high immune level for that strain. This is a mechanism
called Original Antigenic Sin, and a detailed discussion can be found in
[5].

Figure 2.1: Within-host dynamics from integration, naive case

Figure 2.2: Within-host dynamics from integration, experienced host

2.2 stochastic variant

The model described in the previous section has been translated into a
stochastic simulation for thewithin-host dynamics. Introducing stochas-
ticity is essential, because, in general, in many biological processes
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the number of degrees of freedom are so high that in order to get to a
tractable representation it becomes necessary to coarse-grain the de-
scription of the system, therefore losing some information about its
state. This uncertainty is modeled by adding some degree of stochastic-
ity in the model.
In order to create a stochastic variant of the model, the quantities

whose evolution is described in equations 2.1 to 2.4, where they vary
from 0 to 1, need to be scaled up in order to find the number of viruses
varying from 0 to 𝐾. By defining ̃𝑉𝑖 = 𝑉𝑖 ⋅ 𝐾 and ̃𝐼𝑖 = 𝐼𝑖 ⋅ 𝑁 and inserting
these equalities into the equations 2.1 to 2.4, we find (removing the
tildes):

𝑉̇𝑊 = 𝜌𝑊𝑉𝑊 (1 −
𝑉𝑊 + 𝑉𝐸

𝐾 ) − 𝑉𝑊 (
𝐼𝑊 + 𝜖𝑊𝐼𝐸

𝑁 ) (2.5)

̇𝐼𝑊 = 𝐼𝑊 (
𝑉𝑊 + 𝜖𝐸𝑉𝐸

𝐾 ) (2.6)

𝑉̇𝐸 = 𝜌𝐸𝑉𝐸 (1 −
𝑉𝑊 + 𝑉𝐸

𝐾 ) − 𝑉𝐸 (
𝐼𝐸 + 𝜖𝐸𝐼𝑊

𝑁 ) (2.7)

̇𝐼𝐸 = 𝐼𝐸 (
𝑉𝐸 + 𝜖𝑊𝑉𝑊

𝐾 ) (2.8)

where the viral and immune quantities now represent the number of
viruses and immune particles.

The dynamical processes described by this system of equations,
which are the same as those identified in the previous section, can
also be described in probabilistic terms. For each of them, a probability
of that phenomenon happening to one viral (or immune) particle can
be defined starting from the above system of equations.
For example, let’s take the viral replication term 𝜌𝑖𝑉𝑖 (1 − 𝑉𝑊+𝑉𝐸

𝐾 )
(where 𝑖 indicates one of the strains). The process modeled here is
the creation of a new virus from a preexisting virus. There are 𝑉𝑖
such viral particles, and we can say that from each one of them, a
new one can be created at any instant in time with probability rate
𝑝𝜌. After looking at the term, we can identify 𝑝𝜌 = 𝜌𝑖 (1 − 𝑉𝑊+𝑉𝐸

𝐾 ), as
on average the number of new viruses created per unit time is exactly
𝜌𝑖𝑉𝑖 (1 − 𝑉𝑊+𝑉𝐸

𝐾 ).
The destruction of viral particles, which is modeled by the term

𝑉𝑖 (
𝐼𝑖+𝜖𝑖𝐼𝑗

𝑁 ), happens after a viral particle of strain 𝑖 encounters an im-
mune particle of either strain (𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {𝑊, 𝐸}). Therefore, the prob-
ability rate of this event is proportional to the probability of one viral
particle finding an immune particle, that is 𝐼𝑖

𝑁 for the same strain and
𝐼𝑗

𝑁 for the other strain. In the latter case, the interaction is mediated by
the parameter 𝜖𝑖. Therefore, we find that the probability rate for the
destruction of viral particles is

𝐼𝑖+𝜖𝑖𝐼𝑗

𝑁 . Again, there are 𝑉𝑖 such viral
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particles which have share this probability of encountering the immu-
nity. It is straightforward to apply the same reasoning to the immunity
buildup term, finding a probability rate 𝑉𝐸+𝜖𝑊𝑉𝑊

𝐾 .
The processes thus identified can be treated, for a small interval of

time Δ𝑡, as homogeneous Poisson point processes for the number of
events (of the same type) 𝑁𝑘, with probability rates 𝜆𝑘 (found above),
and probability law:

ℙ [𝑁𝑘(Δ𝑡) = 𝑚] =
(𝜆𝑘Δ𝑡)𝑚

𝑚! 𝑒−𝜆𝑘Δ𝑡

At first order, there are only two possible outcomes which could
happen in a very small Δ𝑡: either 𝑁𝑘 = 0 , with ℙ(0) = 𝑒−𝜆𝑘Δ𝑡, or
𝑁𝑘 = 1 , with ℙ(1) = 𝜆𝑘Δ𝑡 𝑒−𝜆𝑘Δ𝑡. Expanding the expressions for the
probabilities, we get that

ℙ (𝑁𝑘 = 0) = 1 − 𝜆𝑘Δ𝑡

and
ℙ (𝑁𝑘 = 1) = 𝜆𝑘Δ𝑡

which means that 𝑁𝑘 is now a Bernoulli random variable with proba-
bility 𝑝 = 𝜆𝑘Δ𝑡.
Taking into account that each of the possible type of event can hap-

pen to any particle (viral or immune, depending on the event), we can
say that the total number of particles which undergo the same process
follows a binomial distribution. Therefore, we find the following map-
ping:

𝜌𝑖𝑉𝑖 (1 −
𝑉𝑊 + 𝑉𝐸

𝐾 ) ⟶ Δ𝑉(+)
𝑖 ∼ 𝐵𝑖𝑛 (𝜌𝑖, Δ𝑡 (1 −

𝑉𝑊 + 𝑉𝐸
𝐾 ))

𝑉𝑖 (
𝐼𝑖 + 𝜖𝑖𝐼𝑗

𝑁 ) ⟶ Δ𝑉(−)
𝑖 ∼ 𝐵𝑖𝑛 (𝑉𝑖, Δ𝑡 (

𝐼𝑖 + 𝜖𝑖𝐼𝑗

𝑁 ))

𝐼𝑖 (
𝑉𝑖 + 𝜖𝑗𝑉𝑗

𝐾 ) ⟶ Δ𝐼𝑖 ∼ 𝐵𝑖𝑛 (𝐼𝑖, Δ𝑡 (
𝑉𝑖 + 𝜖𝑗𝑉𝑗

𝐾 ))

where 𝑋 ∼ 𝐵𝑖𝑛 (𝑁, 𝑝) denotes a random variable 𝑋 that follows a bino-
mial distribution with 𝑁 as the number of trials and 𝑝 the probability
of success, and 𝑖, 𝑗 ∈ {𝑊, 𝐸} correspond to different strains (𝑖 ≠ 𝑗). In
the mapping the random variables Δ𝑉(+)

𝑖 , Δ𝑉(−)
𝑖 and Δ𝐼𝑖 have also been

defined, and 𝑉𝑖 and 𝐼𝑖 have become natural numbers which describe
the number of viral and immune particles present.
Therefore, during a simulation, at each time step Δ𝑡 the viral and

immune quantities, which are now natural numbers, are updated as
follows:

𝑉𝑊 ⟵ 𝑉𝑊 + Δ𝑉(+)
𝑊 − Δ𝑉(−)

𝑊 (2.9)
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𝐼𝑊 ⟵ 𝐼𝑊 + Δ𝐼𝑊 (2.10)

𝑉𝐸 ⟵ 𝑉𝐸 + Δ𝑉(+)
𝐸 − Δ𝑉(−)

𝐸 (2.11)

𝐼𝐸 ⟵ 𝐼𝐸 + Δ𝐼𝐸 (2.12)

2.3 implementation of the stochastic model

The simulation of the model has been implemented using the C++
programming language, because of its very high speed of execution.
This was the only choice as the simulations have been intended to run
with a very high number of individual hosts and a small time step Δ𝑡
in the update to the within-host dynamics. In order to be able to draw
from random variables with constantly changing parameters, the GNU
Scientific Library [9] has been used extensively in the simulation.

In order to run the simulations, the scale of the virus counts and the
immunities needs to be defined. Since the number of viruses inside
an individual can become very high, the values 𝐾 = 108and 𝑁 = 105

have been chosen and kept fixed in all successive steps, except when
explicitly noted. One example of the dynamics from the simulation,
compared to the numerical solution of the deterministic system of
equations, is shown in Figure 2.3, where the viral quantities are scaled
by 1/𝐾 in order to make the comparison.

2.3.1 Plotting the dynamics

The convention that, in the viral quantity axis, the value 1 corresponds
to having 𝐾 viral particles will be kept in future plots, except when
otherwise noted, as it helps understanding the dynamics. It will also
be used in future plots of the immunity, where from now on a value of
1 will corresponds to 𝑁 viral particles.

The semi-log plot is essential to observe the whole viral dynamics,
since a virus can start infecting an host even from a very small number
of particles, and eventually reach 𝐾, which usually happens with an
exponential growth.
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Figure 2.3: Within-host viral dynamics from integration and stochastic simu-
lation, naive host





3
INCLUDING THE BETWEEN-HOST INTERACT ION

During the course of an epidemics, pathogens are able to move from
one host to another. This happens when a contact between the hosts
occurs, and since influenza virus is transmitted through the air, excreted
by infected individuals via coughs and sneezes, any kind of contact
could potentially spread the virus. Therefore, it is crucial to find a good
description of the contacts between individuals in the course of the
infection.
In the thesis’s model, the description of the contacts between hosts

is based on a network, or graph, where the nodes represent the hosts
and the edges represent all the possible contacts between the hosts.
Following this network, hosts interact with each other, and during said
interaction they exchange viral particle. Each of the hosts is modeled as
described in the previous chapter, therefore there is a dynamic which
involves not only a single individual, but the whole population.

3.1 transmission of the virus

During contacts between individuals, viral particles might jump from
an infected host to another one, where they might start a new infec-
tion. In the model, this is represented by a certain probability 𝑝𝑏 (called,
for historical reasons, the bottleneck factor) for each virus to go from
its current host to a new one. Thus, in the simulation, since all the vi-
ral particles of the individual in question have the same probability 𝑝𝑏
and all the receiving hosts are independent, the number of particles
transmitted from one infected host to each neighbor follows a multi-
nomial distribution (whose random sampling has been implemented
according to [7]).

Also, the exchange of viruses is instantaneous, lasting a time step Δ𝑡
of the simulation. Hosts have been defined as infected if the total viral
load is larger than a predefined value 𝑉𝑚, and only infected individuals
transmit viral particles to others, therefore it must happen that 𝑉𝑊 +
𝑉𝐸 ≥ 𝑉𝑚.
Since there are indications that there is a latent period in the course

of influenza infection [6], meaning that the diffusion of viral particles
is not immediate after infection of a host, it seemed reasonable at the
beginning to add another constrain in the model on the transmission of
viral particles, that is the existence of an higher threshold level on the
total viral load of an individual. This can be again written as 𝑉𝑊 +𝑉𝐸 ≥
𝑉𝑡ℎ, thus defining this particular threshold. In the rest of the thesis,
indication of a value of 𝑉𝑡ℎ means that this threshold has been used
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14 including the between-host interaction

Figure 3.1: General overview of the model

during the simulations. When studying the full model with two strains,
the threshold has been removed, because it was deemed unnecessary
after the single strains tests.

3.2 contact selection

During the simulations, hosts contact each with a frequency 1
Δ𝑡𝑇

, where
Δ𝑡𝑇 is the contact interval (also called transmission interval). During
each transmission step, every individual chooses the person to reach
out to with a probability 𝑝𝑐 among his/hers neighbors on the interaction
network. This randomization of the interaction has been included in
order to account for the variation of the contacts during the course of
the epidemic.

The network containing all the possible interactions between individ-
uals in the epidemics has been generated using the 𝐺(𝑛, 𝑝) procedure
from the Erdős–Rényi model [8]. Initially, community networks ,gen-
erated using a procedure derived from the configuration model, were
also used, but because this kind of modeling is novel, it was decided to
concentrate on simple homogeneous networks such as Erdős–Rényi.
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Figure 3.2: Test of the dynamics on the star graph 𝑆20

3.3 a first look at the dynamics

The model now contains both a within-host dynamics and the exchange
of viruses. This already produces complex patterns of infection, and as
the number of individual grows, it becomes very difficult to understand
what happens. A simple test case of a graph with 21 hosts can be seen
in Figure 3.2. In the plots, the color of the line represents the dynamics
of a particular host.





4
S INGLE STRA IN CAL IBRAT ION

The model presented so far is complete, but it is very difficult to un-
derstand what happens during an epidemic. In order to simplify the
picture, the model has been studied with a single strain (the wildtype)
first. At this stage, the influence of the parameters has been observed
through the analysis of the epidemics simulated by the model. This re-
quired the definition of both host-level and population-level statistical
quantities which are of significance in the characterization of infectious
diseases. The model parameters have been therefore tuned in order to
reproduce the outcomes of influenza epidemics.

4.1 host-level statistics

During the course of an epidemics, there are several important quanti-
ties that are used to characterize a disease, among them, the following
have been introduced and measured:

peak time In viral diseases, the peak time is the time that it takes for
the virus to reach the maximum load in the individual. It is an
important parameter of models for viral dynamics, as the peak
of the disease is associated to the onset of the symptoms [3],
meaning that it is available experimentally.

generation time The generation time is defined as the time interval
between primary case and infection of a secondary case caused by
the primary case [14]. This definition is clearer when looking
at Figure 4.1, where it can be seen that the generation time is
measured by looking at the intersections on the green dashed
line. The value of this line corresponds to the threshold at which
the host becomes infected, which is called 𝑉𝑚. As can be seen in
Figure 4.2, the measure of the generation time does not change
when changing the value of 𝑉𝑚. This quantity, therefore, has been
set to 𝑉𝑚 = 2 ⋅ 10−4 ⋅ 𝐾 to avoid having a too large value, which
would have been deceptive of the its role, and a too small value,
which would have caused errors in the recognition of the infected
status of the host (see the small “reinfections” shown in Figure
4.3).

active time The time of activity, or active time, of an infected host
is the time that it stays infectious, meaning the time interval be-
tween the moment when the total viral load surpasses 𝑉𝑚 and
the moment when it become lower than 𝑉𝑚. Since the dynamic

17



18 single strain calibration

of infection is primarily driven by the internal dynamics, when a
host’s total viral load starts declining and goes below 𝑉𝑚,it rarely
goes upwards again (if the value of 𝑉𝑚 is well-determined in or-
der to avoid spurious reinfections).

W, host 1
W, host 2

gen. time

Figure 4.1: Generation time between two individuals (1 infects 2)

Figure 4.2: Measure of the generation time as function of the value of the
threshold 𝑉𝑚, which is plotted here divided by 𝐾 (as explained in
section 2.3.1)

4.2 mapping the times

The measures defined above play an important role in tuning the model.
In order to compare find the outcomes of the model with real-world
epidemics, since the time of the simulations is in arbitrary units, it be-
comes essential to find a “translation” of an unit of simulation time into
days or hours. To tackle this problem, we observe the average values of
the viral peak time, the generation time and their ratio as the parame-
ters of the simulations are changed. The heat maps in Figure 4.4 and
4.5 have been produced running many simulations with different val-
ues of the replication rate 𝜌𝑊, the bottleneck factor 𝑝𝑏, the transmission
interval Δ𝑡𝑇 (in simulation time) and the infectiousness threshold 𝑉𝑡ℎ.
From these results, a few important considerations can be made.

First, the viral peak time, as one could expect, does not depend on
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Figure 4.3: Viral kinetics of a single host under different values of the parame-
ters ( 𝜌, 𝑝𝑏). The small jump upwards at the end of the infection
are not due to the internal dynamics, but to the transmission of
viruses from other hosts. As it can be seen, they are not able to
“restart” the infection, as by this point the host has already pro-
duced a significant immunity.

the bottleneck factor, and as a matter of fact it depends only on the
replication rate, as neither the transmission interval or the threshold
level for the transmission of viruses have any effect on it.

Based on these results, and on empirical data which shows that the
generation time of influenza is≈ 2.3−3.4days and the average peak time
of the virus is ≈ 2 days [4], it can be seen that the region corresponding
to realistic dynamics of infection is on the bottom left corner, for 𝜌𝑊 ≤
1.0 and 𝑝𝑏 ≤ 10−6. Using this empirical information we are able to
define the length of a day in simulation time as half the viral peak time,
thus finding a link between the units of measurements of the time.
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(a) Peak time

(b) Generation time over peak time

Figure 4.4: Heat maps of the relevant times with a 𝐺(𝑛, 𝑝) network of 1000
individuals and ⟨𝑘⟩ = 20, with 𝑝𝑐 = 0.18, 𝑉𝑡ℎ = 0.1 ⋅ 𝐾, Δ𝑡𝑇 = 1.0
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Figure 4.5: Heat map of the generation time over peak time, with a 𝐺(𝑛, 𝑝)
network of 1000 individuals and ⟨𝑘⟩ = 20, with 𝑝𝑐 = 0.18, 𝑉𝑡ℎ =
0.1 ⋅ 𝐾, Δ𝑡𝑇 = 3.0

4.3 tuning the dynamics at the population level

The generation time and viral peak time are important statistics of
influenza, but there are other quantities which are also important in
the characterization of the disease.
The first is the attack rate, which is the percentage of individuals of

a population infected by the virus during the epidemic. If the total
number of individuals is fixed and known, an equivalent statistic is the
number of cases in the course of the epidemics. Another important
quantity is the basic reproductive ratio 𝑅0, which is the average number
of secondary infections per primary infection. In other words, it is the
number of hosts who, on average, contract the disease from the same
infected host.
Initial analysis of the model showed that the attack rate was too

high for influenza, as almost all individuals were infected by the virus.
Therefore, a few changes to the model are needed, with the aim of
modeling the spreading of the virus in a more realistic way.

4.3.1 Experienced hosts

Upuntil this point, during the simulation all hosts have been considered
naive (as defined in subsection 2.1) to the virus. This is not realistic,
since during an epidemic there is always a fraction of the population
which has contracted the disease beforehand and is therefore immune.
To include this in the model, experienced individuals are introduced by
adding a probability 𝑝𝐼 of the host being experienced to the wildtype
virus since the beginning of the simulation.
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4.3.2 Contact probability

Having a fixed probability of contact for any kind of network of interac-
tion (used in the simulation) does not seem realistic. In order to find a
better estimation of the probability 𝑝𝑐 that is dependent of the network,
a data-based approach has been devised. The statistics upon which
this approach has been built is the number of people contacted in a day
by an individual, which will be called 𝑐 in the rest of the thesis. In [1]
this quantity has been estimated, for the first time, using a large scale
survey in France, finding an average number of contacts ⟨𝑐⟩ = 8.

In order to include this information in themodel, it is necessary to find
an expression for ⟨𝑐⟩ as a function of the parameters used. Focusing for a
moment on a single individual and his/her neighbors in the graph, we
can say that, since different neighbors are independent, the probability
of reaching 𝑚 individuals during a day will follow a binomial law
𝐵𝑖𝑛 (𝑘, 𝑝𝑑), where 𝑝𝑑 is the probability of contacting an individual at
least once in a day and 𝑘 is the number of neighbors. From simple
probabilistic reasoning, it follows that

𝑝𝑑 = 1 − (1 − 𝑝𝑐)
𝑇

where 𝑇 is the number of trials of contact per day, and can be expressed,
given the duration of the day 𝐷 and the contact interval Δ𝑡𝑇, as 𝑇 = 𝐷

Δ𝑡𝑇
.

Since the neighbors are independent, for a single individual the
average number of contacts will be:

⟨𝑐⟩ = 𝑘 [1 − (1 − 𝑝𝑐)
𝐷

Δ𝑡𝑇 ]

Inverting this formula, and considering the whole network of indi-
viduals we find the wanted probability of contact:

𝑝𝑐 = 1 − (1 −
⟨𝑐⟩
⟨𝑘⟩

)

Δ𝑡𝑇
𝐷

(4.1)

where ⟨𝑘⟩ is the average degree of the network. This last step is valid
only in networks with homogeneous degree of nodes, like the ones
used in this model.
Using equation 4.1, it becomes possible to determine a value for 𝑝𝑐

in an automated way, as Δ𝑡𝑇, ⟨𝑐⟩ and 𝐷 are input parameters of the
simulation, by calculating the average degree of the network at the
beginning. The value for 𝐷 in simulation time can be found using the
correspondence drawn in the section 4.2, where the information that
the viral peak time of influenza corresponds to 2 days has been used.

4.3.3 Bottleneck factor

In the model so far, the bottleneck factor 𝑝𝑏 has been kept fixed for
all the events of viral transmission. This has been changed for suc-
cessive epidemic simulations in order to account for the variability of
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the contacts between individuals. Thus, at this point we introduce a
log-normal distribution for the bottleneck factor 𝑝𝑏 (so that 𝑙𝑛 (𝑝𝑏) is
normally distributed), so that

𝑓𝑝𝑏
(𝑥) =

1

𝑠𝑥√2𝜋
exp⎛⎜

⎝
−

(ln 𝑥 − 𝜇)2

2𝑠2
⎞⎟
⎠

is the probability density function. Here, 𝜇 and 𝑠 are parameters of
the distribution which are linked to the mean and variance through
these equations:

𝔼 [𝑝𝑏] = exp(𝜇 +
𝑠2

2 )

𝕍 [𝑝𝑏] = [exp (𝑠2) − 1] exp (2𝜇 + 𝑠2)

Since these relations are quite complicated and cannot be inverted
(a numerical attempt to find 𝜇 and 𝑠 given 𝔼 [𝑝𝑏] and 𝕍 [𝑝𝑏] did not
converge), the mode 𝑚 of the distribution has been used as parameter
instead of 𝜇:

𝑚 (𝜇, 𝑠) = exp (𝜇 − 𝑠2)

Inverting this relationship leads to 𝜇(𝑚, 𝑠) = ln𝑚 + 𝑠2, allowing for
the parametrization of 𝑓𝑝𝑏

(𝑥) in 𝑚 and 𝑠. Since 𝑠 is the variance of the
distribution of 𝑙𝑛 (𝑝𝑏), it will be called log-variance in the rest of this
thesis.
Different values of the mode and log-variance have been evaluated

by checking the outcomes of the simulations (the ones for one couple of
values of 𝑚 and 𝑠 is shown in Figure 4.7). As a result of the exploration
of these parameters, the values 𝑚 = 10−8 and 𝑠 = 0.5 have been deter-
mined as final, as they lead to a large variation of the attack rate when
the transmission interval Δ𝑡𝑇 is changed. The results with the final pa-
rameters are shown in Figure 4.8, and the corresponding distribution
can be seen in Figure 4.6.
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Figure 4.6: Plot of the distribution of 𝑝𝑏 chosen for the model

Figure 4.7: Statistics of a simulation on a 𝐺(𝑛, 𝑝) random graph with 𝑁 = 4000
nodes and average degree ⟨𝑘⟩ = 20. Here, the parameters of 𝑝𝑏
are 𝑚 = 3 ⋅ 10−8 and 𝑠 = 1.2, while 𝑝𝐼 = 0.4. The results are all for
naive hosts, except for 𝑅0 which is for the whole epidemic, and are
averaged on 120 simulations for each set of parameters, showing
the mean and the variance.
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Figure 4.8: Same plot as the previous figure, but with 𝜌𝑊 = 1 fixed, changing
Δ𝑡𝑇, and with 𝑚 = 10−8 and 𝑠 = 0.5 as the parameters for the dis-
tribution of 𝑝𝑏 . The results are all for naive hosts, except for 𝑅0
which is for the whole epidemic, and are averaged on 120 simula-
tions for each set of parameters, showing the median and the 80%
confidence interval.





5
INTRODUCING THE EMERG ING STRA IN

After the calibration stage of the model has been completed, the emerg-
ing viral strain has been included in the simulations. As a first scenario,
it has been introduced at the start of the epidemic season, in a host cho-
sen with uniform probability among the population. As in previous
analysis, there is a fraction of the hosts that are experienced (𝑝𝐼 = 0.4),
the average number of neighbors contacted in a day by an individual
⟨𝑐⟩ is set to 8 [1], and the bottleneck factor is extracted for each contact
from a log-normal distribution with mode 𝑚 = 10−8 and log-variance
𝑠 = 0.5. In the following, the replication rate of the wildtype strain 𝜌𝑊
has been fixed to 1.0, and the replication rate of the emerging strain has
been always considered lower then the wildtype (𝜌𝐸 ≤ 𝜌𝑊) because of
previously mentioned fitness considerations. The network of contacts
has been generated once with the Erdős–Rényi model, with number of
nodes (individuals) 𝑁 = 1000 and average degree ⟨𝑘⟩ = 20, and then
used in all the simulations.

5.1 exploring the space of parameters of the emerging strain

As in the previous chapter, a few key measurements of the epidemics
have to be defined. Focusing on the infection status of the hosts, the
following quantities have been measured: the attack rates of the two
strains (along with the total one) and the number of hosts which have
been infected by both strains. As previously explained, the attack rate
of a strain is the number of individuals infected by the strain during
the epidemic. It is important to mention that the last measure does
not indicate the cases where the two infections happen simultaneously
(called co-infection), but it can only be an upper bound to the number
of such co-infections of the two strains.

This time, the space of parameters of has been explored by changing
the values of 𝜌𝐸, the replication rate of the emerging strain, and of the
cross-immunity parameters 𝜖𝑊 and 𝜖𝐸. In order to avoid having too
many parameters, and since 𝜖𝑊 and 𝜖𝐸 are linked, two different kinds
of parametrization have been run, one where the parameters 𝜖𝑊and 𝜖𝐸
are varied together as their ratio 𝜖𝐸

𝜖𝑊
is kept fixed, and the other where

𝜖𝑊 is fixed while 𝜖𝐸 is changed, thus changing their ratio.
In both cases the transmission interval has been fixed to Δ𝑡𝑇 = 3.0

(which, after the mapping done in the previous chapter, corresponds
to 12 hours). The results have been averaged over 100 simulations.
These investigations produced heatmaps of themedian valuemeasured
quantities, such as in Figure 5.1 and 5.2. Showing the median instead

27



28 introducing the emerging strain

of the mean value makes a big difference for the attack rates, whose
empirical distribution appeared skewed in previous plots (see Figure
4.8 for an example of the variability in different simulation runs).

5.1.1 Fixed ratio of cross immunity

A few remarks have to be made for the case of fixed cross immunity
rate (Figure 5.1) . First, when the cross immunity factors 𝜖𝑊 and 𝜖𝐸
are very low (≤ 0.2), the two viral strains are almost separate diseases,
and this can be seen by noticing that they have approximately the same
attack rate, and that the fraction of hosts infected by the two is very
high (≈ 0.6). This happens independently of the replication rate of the
emerging strain. The generally higher attack rate of emerging strain
can be explained by the fact that there is a fraction of the hosts who are
immune to the wildtype, where the emerging strain is favored.
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(a) Ratio of the attack rates, emerging over wildtype

(b) Fraction of hosts infected by both strains

Figure 5.1: Heatmap of the relative attack rate, while changing 𝜖𝑊 and keeping
the ratio fixed 𝜖𝐸/𝜖𝑊 = 0.35

5.1.2 Fixed wildtype cross immunity

Other epidemics runs have been launched with fixed cross-immunity
for the wildtype strain, setting 𝜖𝑊 = 0.8. The resulting plots are shown
in Figure 5.2. Here, a transition is clearly visible in both the total attack
rate and the ratio of attack rates: as the former approaches 1, there
is a rapid increase in the latter. Looking at Figure 5.2b, we can see
that, for the range of parameters corresponding to the region in the
bottom right corner, the emerging strain overcomes the wildtype and
becomes dominant. There is also a region in the top left corner where
the converse happens, and the wildtype strain is dominant.

By looking at Figure 5.2a, we can see that where the emerging strain
is dominating the total attack rate reaches very high values (≈ 0.8 −
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0.9), while in the opposite region it is much lower (≈ 0.4 − 0.5). This
difference can be explained by reminding the role of the parameters 𝜖𝑖,
who are tuning the strength of the within-host interaction between 𝑉𝑖
(the same viral variant as the parameter) and 𝐼𝑗 (the immunity for the
other strain, following the same convention as before 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {𝑊, 𝐸}).
In this investigation, 𝜖𝑊 has been fixed to a high value while 𝜖𝐸 is
changed. This means that when an host develops an immunity for
the emerging strain, he/she is also protected from the wildtype strain,
but when he/she has an immunity for the wildtype (as is the case of
experienced hosts), its effect on the emerging strain will depend on the
value of 𝜖𝐸. Therefore, when 𝜖𝐸 takes high values, it will be much more
difficult for the emerging virus to infect experienced hosts, and this will
result in a lower attack rate for the emerging.

This reasoning explains the two distinct dominance regions, as once
an host has been infected with one strain, a subsequent infection of the
other strain is more difficult because of the cross-immunity. By looking
at Figure 5.2c we are able to confirm this intuition, as the fraction of
individuals who experience both infections is quite low far from the
boundary of the two dominance regions.

5.2 the effect of the contact frequency

After these first two investigations, we started to consider other factors
who might have an influence on the transmission of the two strains.
Since the case of fixed cross-immunity for the wildtype strain shows,
as explained above, a distinct transition between the two regions of
dominance of the strains, it has been decided to keep using the same
parametrization, while changing other parameters. Among them, the
transmission interval Δ𝑡𝑇, or contact frequency

1
Δ𝑡𝑇

, has been identified
as most promising.

5.2.1 Redrawing the picture

Before running other simulations with different contact frequencies,
a procedure has been devised to highlight the regions of dominance
of the two strains, in order to make the plot of the attack rates clearer.
One natural way to define such regions is by using the ratio of the
attack rates, which will be called 𝑟 from now on. As can be seen from
Figure 5.2b, this ratio goes from below 1, when the wildtype strain is
dominating, to values higher than 10 when it is the emerging virus to
dominate. While these two extrema are clear, the value at the boundary
isn’t so easy to find. To solve this problem, three regions have been
defined based on the value of 𝑟:

• for 𝑟 < 𝑟𝐿, we are in the wildtype dominant region (WD)

• for 𝑟 ≥ 𝑟𝑈, we are in the emerging dominant region (ED)
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• for 𝑟𝐿 ≤ 𝑟 ≤ 𝑟𝑈, we call this the co-dominance region.

The values of 𝑟𝐿 and 𝑟𝑈, the lower andupper bounds of the co-dominance
region, have been chosen to be 𝑟𝐿 = 0.5 and 𝑟𝑈 = 2 by visual inspection
of plots of the ratio of attack rates. The boundaries defined by these
values are shown in Figure 5.3 superimposed to the plot in Figure 5.2b.
In successive plots, such as in Figure 5.4, only the co-dominance region
is shown, implying that the region to the top-left is the WD and the one
to the bottom-right is the ED region.

5.2.2 Changing the contact frequency

The effect of different contact frequencies, or contact intervals, has been
investigated by repeating the procedure of section 5.1.2 for different
values of the contact intervals, then drawing the co-dominance region
as explained in the previous subsection. In this way, the plots in Figure
5.5 have been produced. From these figures, it is clear that changing the
frequency of contact between the hosts modifies the boundary of the
co-dominance region, which becomes larger with higher frequencies.
Since the lower limit of this region is related to where the emerging
strain becomes dominant, it follows that raising the contact frequency
makes the ED region shrink, yet it doesn’t change very much the WD
boundary. Therefore, we can say that the interval of contact between
hosts can influence the selection of the viral strain.
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(a) Total attack rate of the disease

(b) Relative attack rate

(c) Fraction of hosts infected by both strains

Figure 5.2: Heatmaps for the case of fixedwildtype cross-immunity parameter
𝜖𝑊 = 0.8, 𝜌𝑊 = 1
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Figure 5.3: Relative attack rate plot from previous figure with the boundaries
of the co-dominance region drawn in black

Figure 5.4: Relative attack rate plot from previous figure with co-dominance
region highlighted
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(a)With Δ𝑡𝑇 ≈ 3 hours in green and Δ𝑡𝑇 ≈ 12 hours in
red

(b)With Δ𝑡𝑇 ≈ 6 hours in orange, Δ𝑡𝑇 ≈ 12 hours in red

Figure 5.5: Relative attack rate plots, with co–dominance region (with 𝑟𝐿 and
𝑟𝑈 as defined in the text) drawn for different transmission intervals



6
CONCLUS IONS

This thesis has been centered on modeling the emergence of a new viral
strain of influenza at both the within-host scale and the between-host
scale. In order to explore the phenomenon and find possible outcomes,
a computational model based on stochastic simulations has been de-
veloped. This involved first adapting the within-host dynamic, trans-
forming a set of dynamical equations into a simulation with stochastic
update rules, than designing and implementing the between-host trans-
mission dynamic.

This expansion of the simple simulation which had been previously
built for an individual host required the use of networks for the descrip-
tion of the contacts of the population, and the definition of new rules
for the exchange of viral particles between individuals. At this stage,
the bottleneck factor, the transmission interval and the probability of
contact were introduced in order to describe the transmission of the
virus.

Afterwards, the model was characterized with a single virus. A great
time and effort have been devoted to this stage, to both understand the
dynamics of the model and tune it in order to recreate influenza dynam-
ics. To achieve this goal, a correspondence between simulation time
and real time needed to be found, as it was essential to understand the
significance of single-host statistical quantities that were measured dur-
ing the simulations. On the other hand, the measurement of population
level statistics showed that it necessary to introduce new features of
the model: a log-normally distributed bottleneck factor in the between-
host transmission, a probability of contact derived from the average
degree of an individual, and a fraction of the hosts immune to the wild-
type at the beginning of the simulation. At the end of this stage, the
parameters values were chosen in order to yield a realistic epidemic of
influenza.
Finally, the emerging strain was introduced into the model. After

an initial twofold exploration with different kinds of parametrization,
we have seen that changing together the replication rate of the emerg-
ing strain and the ratio of the cross-immunity parameters leads to the
model exhibiting twomain regions, one where the wildtype strain dom-
inates, and one where the emerging is dominating. We have showed
that changing the contact frequency leads to a change in the emerging
dominance region. This indicates that it is important to model the in-
teraction between individuals in a realistic way in order to understand
the mechanisms of viral emergence at the population level.
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