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Chapter 1

Introduction

The systematic study and classification of phase transitions has become a pop-
ular research area in physics over the past decades (see, e.g., [24]). The most
familiar phenomena associated to the concept of phase transition are the ones
giving rise to macroscopic changes in the properties of strongly correlated many-
body systems due to thermal fluctuations. Prominent examples of this kind of
behaviour are the ferromagnetic-paramagnetic transition in lattice spin models
and the liquid-gas transition.

On the other hand, when dealing with quantum-mechanical systems, matter
can change from one state to another as the result of the variation of parameters
other than temperature. In particular, as extensively explained in [23], when
a given many-body quantum problem is studied at zero temperature, thereby
suppressing thermal fluctuations, it is the interplay between kinetic energy and
interactions that can cause the system to be into different phases as the model
parameters are varied, contrarily to what occurs in classical systems, whose
zero-temperature behaviour can be characterized as a fluctuationless ground
state configuration. Phase transitions occurring at zero temperature are widely
known as quantum phase transitions.

In the framework of the physics of phase transitions, the role of dimensional-
ity is a noticeable one. The major challenge in this perspective is the treatment
of low dimensional systems, where standard mean-field treatments and ordi-
nary perturbation theory are known to fail due to the enhancement of quantum
fluctuations. The need for a description of collective behaviours in reduced di-
mensionality is unavoidable in one-dimensional (1D) systems (see [1]), which
turn out to be simple enough to be studied in an effective way through both nu-
merical and analytical techniques, while exhibiting a rich and deeply fascinating
phenomenology.

Intuitively, since particles confined to one dimension cannot avoid interac-
tions among each other, the typical low energy excitations of the system are
represented by collective density waves, which substitute the nearly free quasi-
particle excitations characterizing the behaviour of three-dimensional Fermi liq-
uids in the description of the effects of the interplay between kinetic fluctuations
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4 CHAPTER 1. INTRODUCTION

and interactions.
On the other hand, the tools employed in the activity of tackling 1D many-

body problems are efficient and well developed. The analytical approaches are
mainly based on the bosonization technique ([12], [15], [13]), which allows for the
reformulation of strongly correlated 1D systems onto free bosonic theories, which
can then be analyzed by means of standard path integral techniques. Meanwhile,
the density matrix renormalization group (DMRG) algorithm represents the
state-of-the-art numerical machinery in the study of 1D physics ([6], [7]), since
it allows to efficiently extract the low energy properties of the model Hamiltonian
and consequently characterize the corresponding phase diagram by means of the
behaviour of properly chosen order parameters.

As a final remark pointing out the relevance of the research effort in the
direction of a better understanding of 1D many-body quantum systems, it is
worth noticing that 1D systems do not represent only a playground for theo-
rists, but have been experimentally realized by means of, e.g., setups with ions
and cold atoms trapped in optical lattices ([9], [11], [8], [10], [26]), where the ex-
perimentalist is able to tune the model parameters by varying the characteristic
features of the trapping laser beams and meanwhile has a comfortable access
to the most relevant observables. The mission on experimental side consists
therefore in the implementation of quantum simulation, i.e. the ability to tran-
scribe the dynamics of an arbitrary many-body Hamiltonian into an engineered
cold-atoms platform in such a way that it can be reproduced and easily studied
by means of the high degree of control exerted by the experimentalist on the
system.

A further platform where the effects of quasi-1D confinement of electrons
can be experimentally investigated is represented by the so called nanowires, as
briefly discussed in [13]. Those can be defined as metallic or semiconducting
structures with a length to width ratio typically of the order of or larger than
103 and where the electrons are effectively confined in a cylindric-like region
whose transverse diameter has a value of the order of a nanometer, whereas the
length of the system can range from hundreds of nanometers to over a hundred
of micrometers. At the nanometric scale associated to the transverse confine-
ment quantum effects become overwhelmingly important and the resulting phe-
nomenology gives insights into the nature of collective phenomena in quasi-1D
regimes, whose peculiarity is witnessed by, e.g., the realization of conductance
quantization in the framework of the nanowire transport properties (see, e.g.,
[25]).

After having briefly discussed why 1D physics has raised such a huge amount
of interest among physicists around the world, let us discuss the concrete goals
of the present work. It is widely known that a great part of the short-range
interacting systems falls into the Tomonaga-Luttinger liquid universality class,
for it is characterized by means of a universal quadratic bosonic massless field
theory dependent on two phenomenological parameters which are functions of
the microscopic model. The main features of the aforesaid phase are the gapless
density wave excitations and the quasi-long-range order, defined by the power
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law decay of the correlators. Hence, short-range interactions in one dimension
are pretty well understood in their generality, even though, of course, the Lut-
tinger liquid picture is still too restrictive to capture their whole phenomenology:
as an example of the possible complications one can face, it is worth reminding
us of the Berezinskii-Kosterlitz-Thouless (BKT) transition from the Luttinger
liquid phase to a Mott insulating regime exhibited by the XXZ model (see [27]),
which we are going to recharacterize during the work thesis.

On the other hand, when one adds interaction terms going beyond the stan-
dard on-site and nearest-neighbour contributions to the Hamiltonian of the sys-
tem under analysis, the resulting phenomenology gets way much richer and has
not been fully characterized by the scientific community yet. However, there
exist hints that the Tomonaga-Luttinger liquid paradigm is not as ubiquitously
valid in such a setting. For example, Dalmonte et al. have argued in [5] that a
system of hard-core bosonic particles away from half-filling interacting through
a long-range soft-shoulder potential exhibit a transition from a Luttinger liquid
phase to a cluster Luttinger liquid one triggered by the increase in the interac-
tion strength. The main point of the characterization of such an exotic quantum
liquid phase is the observation that the fundamental granularity of the system
is represented by mesoscopic ensembles of particles instead of individual ones,
as it is the case for standard Luttinger liquids.

The model Hamiltonian considered by the authors reads:

H = −t
∑
j

[
b†jbj+1 + h.c.

]
+ V

∑
j

rc∑
l=1

njnj+l (1.1)

where bj , b
†
j are bosonic creation and annihilation operators, nj = b†jbj and t is

the tunneling rate. The shape of the interaction potential, assumed to exhibit a
soft-core profile with depth V and radius rc, is an approximation to the effective
interaction potential between two atoms in Rydberg-dressed cold gases, where,
in the case of a weak dressing regime, the atomic systems in their ground states
are off-resonantly coupled to a high-lying Rydberg state by means of a laser field.
In such an experimental setting, the aforesaid effective interaction potential has
the following expression as a function of the relative distance x:

V (x) =
Ω4

8∆3

r6
c

r6
c + x6

(1.2)

where the parameters Ω,∆ and the characteristic radius rc depend, broadly
speaking, on the laser field frequency as well as on the atomic system spectrum
and on the properties of the addressed Rydberg level with respect to the van
der Waals interaction. Hence, while for x� rc one recovers the usual repulsive
van der Waals interaction between Rydberg atoms ∝ x−6, in the regime x <
rc the interaction potential saturates to a constant value as a result of the
dipole blockade mechanism, thereby justifying the form of the interaction term
introduced in (1.2).

Meanwhile, the experimental machinery required for the purpose of the quan-
tum simulation of systems equipped with long-range interactions has been the
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focus of most of the recent research on experimental cold-atoms physics. One of
the first milestone works in this direction is [26], whose key idea is the intuition
that the pathway to the realization of long-range interactions in ultracold atomic
gases relies heavily on the properties exhibited by the Rydberg atoms, as the
van der Waals forces between them are many orders of magnitude larger than for
the corresponding ground state atoms. Hence, the authors exploited the mere
laser excitation of a two-dimensional gas of alkali atoms prepared in a Mott
insulating configuration to couple the atomic ground and Rydberg states with
the goal of measuring the resulting strong correlations and spatial excitation
patterns.

As witnessed by works such as [8], the opportunity of employing Rydberg
atoms for quantum simulation purposes has pushed forward the research efforts
towards the optimal way to exploit their unique properties. E.g., the aforesaid
paper formulates the proposal that the best-suited physical units to be used
in the quantum simulation of long-range interacting systems are the so called
circular Rydberg atoms, i.e., atoms in a Rydberg state with maximum angular
momentum whose distinctive feature is an intrinsically longer lifetime of the
corresponding Rydberg state with respect to non-circular states. The latter
feature depends crucially on the fact that the main decay channel of the circu-
lar level is spontaneous emission on the microwave transition towards the next
lower circular level.
The present work is ideally divided into four parts. The first one deals with
the definition of the problem with reference to some of the most relevant scien-
tific publications on the topics discussed in the remainder of the thesis report.
The included experimental contributions ([8], [9], [26], [11], [28]) involve the
definition and main features of a quantum simulator, whereas the theoretical
works ([2],[4]) dwell into the exploration of the zero-temperature phase diagram
of lattice models containing interaction potentials extending beyond nearest-
neighbour sites.

In the second chapter, the bosonization method is developed in great detail
by introducing the crucial idea at its foundation and, subsequently, establish-
ing the main formal results employed in the rest of the work while applying the
method to the study of 1D lattice models. The bosonization prescription is then
applied to the characterization of the spin- 1

2 XXZ model, so that a firm theoret-
ical foundation to the transition from a Luttinger liquid phase to a long-range
antiferromagnetic order the model exhibits can be established. Meanwhile, the
analytical results are complemented by numerical evidences of the aforesaid
phases obtained by means of original DMRG simulations.

Afterwards, in the third portion of the work we are going to recharacterize
the phase diagram of the model discussed in [2] by performing DMRG simu-
lations in all phases exhibited by the model as a function of the parameters
contained in the Hamiltonian parameters. In such a setting, we will be looking
at the behaviour of the most noticeable ground state observables, such as cor-
relators, density profiles and local kinetic energy plots, in order to phenomeno-
logically detect the different kinds of collective behaviours emerging from the
numerical data. These results will then be complemented by the acquisition of
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the finite-size scaling of more fundamental order parameters such as the gap
in the single-particle excitation spectrum and the bond-order parameter, which
will be discussed in more detail while presenting the related numerical results.

The fourth step of the analysis is then directed towards a first introductory
understanding of the features of the phase diagram of the very same theoretical
model at a lower density with respect to the half-filled case. The reasons for
such a choice are deeply rooted in a pioneering idea brought about by Ruhman
et al. in [3]. The authors of the work demonstrated in the case of a spinless
fermion model with both single-particle and pair hopping the appearence of
quasi-degeneracies in the low energy spectrum associated to the emergence of
Majorana-like zero-energy modes at the interfaces between a weak pairing liquid
phase and a strong pairing one.

Hence, armed with perfectly analogous goals in mind, the ambition of an
ideal subsequent development of the project relies on the expectation that it is
possible to stabilize a liquid phase of strongly bound pairs by decreasing the
density of the overall system in the framework of the model whose properties
are going to be the main focus of our investigation. Such an intuition depends
crucially on the hope that the aforementioned exotic liquid phase with strong
superconducting fluctuations may derive either from a charge-ordered precursor
phase whose unit cell is represented as (• • ◦◦), where the black dots indicate
occupied sited and the white dots refer to empty ones, or could be realized
by switching on attractive nearest-neighbour interactions. We hope the conse-
quences of more accurate simulations and deeper analytical calculations in this
direction could lead to original and fascinating consequences in the world of
topological condensed matter physics.
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Chapter 2

One-dimensional systems
with long-range interactions

2.1 Quantum simulation

The study of quantum many-body physics has always posed serious challenges
to theoretical physicists since its birth. Indeed, on one side the analytical ap-
proaches and exactly solvable models, despite being relevant to the understand-
ing of the processes undelying the phenomenology of various observed collec-
tive effects, are strongly limited to the investigation of few relevant scenarios,
whereas on the other the huge number of degrees of freedom and the resulting
exponentially large Hilbert space dimension make brute-force exact diagonaliza-
tion methods on classical computers unapplicable to most interesting setups in
condensed matter physics. The density matrix renormalization group (DMRG)
algorithm, despite having proven to be extremely successful in the study of one-
dimensional physics, still exhibits efficiency performances which depend strongly
on the entanglement properties of the system and make it practically useless
when dealing with higher-dimensional quantum many-body dynamics.

The ideal tool envisioned from experimental side in order to overcome the
aforesaid limitations take the name of quantum simulator and was first pro-
posed by R. P. Feynman (see [29]) in 1982. The key idea of the aforesaid device
consists in the proper engineering of a technological instrument which actively
exploits quantum mechanics to solve quantum mechanical problems. As far as
the computational power of such an approach is concerned, a milestone the-
orem was proven by S. Lloyd in 1996 ([30]). Its statement reads as follows:
the complicated many-body dynamics of a local Hamiltonian can be efficiently
simulated inducing on a controllable quantum system a reduced number of el-
ementary time-evolutions to be engineered from outside. This digital quantum
simulator is said to be universal, since, once reprogrammed, it allows for the
simulation of an arbitrary local Hamiltonian.

Unfortunately, the difficulty of realizing such a powerful experimental plat-
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form forces the formulation of a less demanding but still ambitious concept,
traditionally referred to as analog quantum simulator. The latter is a purpose-
built setup whose range of applicability is limited to the quantum simulation of
a limited class of theoretical models.

General and overall accepted criteria to answer the question whether a given
quantum system can be exploited for quantum simulation purposes have not
been formulated yet, but some key properties to be fulfilled can be anyway
identified. In first instance, the microscopic theoretical knowledge of the system
must be detailed enough to allow for the understanding of the simulation with
an ab− initio approach. Additionally, the system must contain a large number
of elementary constituents, since the ultimate goal of quantum simulation is the
efficient study of many-body physics, and the experimentalist is expected to
be able to manipulate it by, e.g., varying the couplings between its constituent
units and initializing it in a range of different initial states, as the concept of
simulation itself implies. Finally, the desired information should be extracted
from the setup via a measurement of the system, carried out with high fidelity.

Many possible realizations of a quantum simulator have been proposed and
explored with the help of cold atoms in optical lattices, trapped ions, pho-
tons, superconducting circuits and arrays of quantum dots. The physical units
employed in quantum simulation setups we will focus on are the well known
Rydberg atoms.

These represent highly excited atoms where one electron occupies a high
principal quantum number n state, such that it spends statistically most of its
time far away from the atomic nucleus, thereby permitting a description of their
properties by means of a hydrogen-like picture. The huge dipole operator ma-
trix elements emerging from their quantum-mechanical characterization makes
them extremely sensitive to the presence of external electromagnetic fields and
is responsible for the strong dipole-dipole interaction among Rydberg atoms,
whose characteristic order of magnitude is overwhelmingly larger than the stan-
dard induced dipole-induced dipole van der Waals interaction between neutral
atoms in their ground state configurations, as it can be shown to scale as n4 (see
[31]). In order to complete the phenomenological characterization of Rydberg
states, let us mention the Rydberg excitation blockade effect: when an atom is
excited to a Rydberg state, the Rydberg excitation of other atoms separated
from the excited one by a characteristic distance Rb, called blockade radius,
is strongly inhibited by virtue of the atomic energy level shift induced by the
strong interatomic interaction.

Their susceptibility to be employed for quantum simulation purposes origi-
nates in first instance from the observation that the most fundamental require-
ment for the excitation of atomic systems to Rydberg states is a technologically
accessible laser driving of an ultracold atomic gas trapped in an optical lattice.
Apart from the latter, purely technical argument, Rydberg atoms raise addi-
tional scientific interest in view of the long-range interaction properties they
display, which are expected to represent the key ingredient to the foundation of
the realm of the highly controlled quantum simulation of long-range interacting
systems.
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2.2 Quantum simulation with Rydberg atoms

As briefly discussed in the precedent section, Rydberg atoms are particularly
well suited for the purpose of simulating long-range interacting systems and
have been therefore extensively studied in the framework of quantum simula-
tion. A first, pioneering paper which points out that neutral atoms excited to
Rydberg states are a promising platform for quantum simulation and quantum
information processing is [26].

The authors, who already envisioned the realization of quantum simulation
setups inspired by their work, devoted their attention to the experimental char-
acterization of a two-dimensional gas of alkali atoms trapped in a rotationally
invariant harmonic confinement potential and pinned in a square optical lattice.
The atoms, initially in their ground state energy level, are resonantly coupled to
a Rydberg state, so that the Hamiltonian governing the dynamics of the system
takes the form:

H =
~Ω

2

∑
j

(|gj〉〈rj |+ |rj〉〈gj |) +
∑
i<j

Vijninj (2.1)

having denoted the ground state at site j as |gj〉, the Rydberg state at site j as
|rj〉 and the projector |rj〉〈rj | onto the Rydberg state at site j as nj . The Rabi
frequency associated to the coherent coupling of the ground and excited states
is indicated as Ω, whereas the repulsive van der Waals potential between two
Rydberg atoms takes the asymptotic form Vij ∝ |i− j|−6.

The description of the strongly correlated excitation dynamics of a reso-
nantly driven Rydberg gas yields the emergence of spatially ordered excita-
tion patterns in the high-density components of the prepared many-body state.
These form mesoscopic crystals of Rydberg excitations with random orientation
but well defined geometry, which demonstrate the potential of Rydberg gases
to give rise to exotic phases of matter, thereby suggesting that they can serve
as a basis for the quantum simulation of long-range interacting models.

On the other hand, one of the studies which give direct evidence of the
scientific relevance of Rydberg atom quantum simulators with programmable
interactions is presented in [28], where such an experimental platform is realized
and employed to characterize the quantum critical dynamics associated to the
quantum phase transitions occurring in the model defined by the Hamiltonian:

H =
Ω

2

∑
j

(|gj〉〈rj |+ |rj〉〈gj |)−∆
∑
j

nj +
∑
i<j

Vijninj (2.2)

where nj = rj〉〈rj | is the projector onto the Rydberg state at site j, ∆ and Ω
are the detuning and Rabi frequency of the coherent laser coupling between the
ground state |g〉 and the Rydberg state |r〉, and Vij is the interaction strength
between atoms in the Rydberg state at sites i and j, which decays as |i− j|−6.
The experimental system described by (2.2) is realized by a reconfigurable one-
dimensional array of 87Rb atoms with tunable interactions.
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Their investigation proceeds by noticing that, while the condition ∆ < 0
enforces a many-body ground state in which all atoms occupy the ground state
|g〉, for ∆ > 0 the competition between the detuning term, which favors a
large Rydberg fraction, and the Rydber blockade mechanism, which prohibits
the simultaneous excitation of atoms within a characteristic length scale called
blockade radius, gives rise to a rich variety of spatially ordered ground state
configurations separated by quantum phase transitions.

By studying the growth of spatial correlations while crossing the correspond-
ing phase diagrams, the authors achieve ambitious goals such as the exploration
of scaling universality and the experimental verification of the quantum Kibble-
Zurek mechanism, whose classical counterpart describes nonequilibrium dynam-
ics and the formation of topological defects in a second-order phase transition
driven by thermal fluctuations, for an Ising-type quantum phase transition.

A further noticeable effort in the field of quantum simulation is represented
by the results shown in [11], which offer great insights into the extraordinary
opportunities offered by such an approach to the many-body problem. Indeed,
their work exploited the deterministic preparation of a 51-atom array and the
coupling of neutral atoms to highly excited Rydberg states to simulate a very
general model Hamiltonian of the form:

H

~
=
∑
i

Ωi
2
σix −

∑
i

∆ini +
∑
i<j

Vijninj (2.3)

where ni = |ri〉〈ri|, σix = |ri〉〈gi|+|gi〉〈ri| and |ri〉 and |gi〉 represent respectively
the ground state and the Rydberg state of the atom sitting at position i. The
parameters of the model depend on the frequency of the lasers driving the
atomic excitations of the elementary constituents of the setup and on the energy
spectrum of the atomic systems.

Thanks to the aforesaid experimental platform, the remarkable achievement
of observing various phase transitions to spatially ordered states that break
different discrete symmetries has been accomplished, allowing for the detailed
description of the phase diagram of the model defined by (2.3) as a function
of the interaction range. Furthermore, the authors of [11] turn out to be able
to characterize the dynamics of the system after a quantum quench across a
phase boundary, thereby monitoring, e.g., the density of domain walls separating
spatially ordered configurations, as better discussed in figure (2.1).

A fascinating work with the purpose of improving the performances of quan-
tum simulation platforms based on Rydberg gases is presented in [8], where the
authors propose an innovative paradigm for the quantum simulation of spin
Hamiltonians based on the so called circular Rydberg atoms. Among their
main distinctive features, it is useful to recall that their outer electron occupies
a state of maximum angular and orbital quantum numbers, i.e. l = |m| = n−1,
and the corresponding electronic wavefunction resembles a thorus of major ra-
dius Rn = a0n

2 and thickness dispersion ∆r
r ∼

1√
2n

, representing therefore the

closest analogue of a semiclassical orbit of the Bohr-Sommerfeld model in a
rigorously quantum treatment.
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Figure 2.1: The transition into a spatially ordered configuration where sub-
sequent atoms in the 1D array alternate between Rydberg and ground state is
characterized by computing mean and variance of the domain wall density while
varying the control paramenter across the phase boundary. As the system enters
the ordered phase, the ordered domains grow in size, leading to a substantial
reduction in the domain wall density. The experimental data points show a
nice agreement with the outcome of matrix product state simulations with the
same setting as the performed experiments. On the other hand, the peak in
the variance of the domain wall density signals the presence of domains with
fluctuating lengths at the transition point, consistently with the expectation of
a scale-free behaviour of the system at criticality. The figure is taken from [11].

The n = 50 resp. n = 48 circular levels of a given species of Rydberg atoms
allow to treat the elementary constituents of the quantum simulator as effective
spin- 1

2 systems, while the dipole-dipole interactions provide with a spin-1
2 XXZ

chain Hamiltonian, defined by the relation:

H

h
=

∆
′

2
(σz1+σzN )+

∆

2

N−1∑
j=2

σzj+
Ω

2

N∑
j=1

σxj +

N−1∑
j=1

[
Jzσ

z
jσ

z
j+1 + J(σxj σ

x
j+1 + σyj σ

y
j+1)

]
(2.4)

and whose parameters can be tuned at will over a wide range of values by
manipulating control electromagnetic fields. The whole simulation platform is
placed in between the two parallel plates of a capacitor hosting no field modes
with a frequency close to the one associated to the spontaneous emission decay
channel of the circular levels involved in the proposed quantum simulator design,
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Figure 2.2: Pictorial representation of the proposed circular-state quantum sim-
ulator. The figure is taken from [8].

thereby increasing their characteristic lifetime. The latter, intrinsically longer
in the case of laser-trapped circular atoms with respect to non-circular states
and combined with the inhibition of their microwave spontaneous emission and
their low sensitivity to collisions and photoionization, make trapping lifetimes
in the minute range realistic with state-of-the-art techniques.

Finally, as a technical remark, the realization of quantum simulators requires
high-level technical prerequisites ensuring the high-fidelity preparation of the
system in a given state and the fine tuning of the interatomic interactions.
Such goals are only achieved by implementing an experimental platform with an
outstanding level of precision in the atomic positioning and an excellent degree
of isolation, which allows for the investigation of nonequilibrium phenomena one
cannot access in traditional condensed matter settings.

As a consequence, the opportunity of increasing the accuracy in the simul-
taneous control over many quantum objects has been explored by a rich variety
of experimental groups. A representative study in this direction is the one pre-
sented in [9], where Barredo et al. demonstrate how to prepare user-defined
geometric configurations of the ultracold atoms under analysis starting from
a stochastically-loaded array of traps with the help of rapidly moving optical
tweezers under real-time control.

Since the problem of finding the optimal sequence of moves which minimizes
the time it takes to reorder the initial, random configuration into the target one
is a hard computational task, the authors developed a heuristic path-finding
algorithm which results in ∼ N

2 required moves, where N is the number of
trapped atoms. The typical times needed to complete the procedure for the
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Figure 2.3: Gallery of user-defined geometries (bottom images) obtained from
the initial, random configurations (top images). The number of elementary
moves needed to achieve the sorting is also indicated. The figure is taken from
[9].

largest arrays at their disposal (N ∼ 50 atoms) turned out to require less than
50ms, which represents a timescale still shorter than the lifetime of the initial
configuration. A gallery of user-defined geometries together with the initial
randomly loaded arrays from which these are obtained is shown in figure (2.3).

2.3 Phase diagram of the half-filled t − U1 − U2

model

Motivated by the recent experimental efforts in the study of lattice systems char-
acterized by dipole-dipole interactions, the purpose of this thesis is to study
one-dimensional systems with long-range interactions. We will mostly use a
fermionic notation, but, thanks to the Jordan-Wigner transformation, our re-
sults can be easily transferred to the spin language that is most appropriate
for the discussion of arrays of Rydberg atoms. We are now ready to tackle the
problem of investigating the zero-temperature phase diagram of the following
model Hamiltonian in half-filling conditions:
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H = −t
∑
i

[
c†i ci+1 + h.c.

]
+ U1

∑
i

nini+1 + U2

∑
i

nini+2 (2.5)

where the creation and annihilation operators obey canonical anticommutation
relations, i.e.:

{ci, c†j} = δij (2.6)

{ci, cj} = {c†i , c
†
j} = 0 (2.7)

and t represents the hopping amplitude between neighbouring sites, while U1 ≥
0 and U2 ≥ 0 give rise to repulsive nearest-neighbour and next-to-nearest-
neighbour density-density interactions, respectively. The phase diagram of the
model, whose recharacterization will be the main focus of many subsequent ef-
forts of the current thesis work, has already been proposed on purely numerical
grounds in [2], where density matrix renormalization group (DMRG) simulations
have been performed in order to determine an accurate picture of the different
phases emerging from the interplay between the Hamiltonian parameters.

2.3.1 Phases and order parameters

The final result of the investigations in [2] is shown in figure (2.4).
The model exhibits four distinct phases: the Luttinger liquid (LL), the (•◦)

charge-density wave (CDW-I), the (••◦◦) charge-density wave (CDW-II) and the
bond-order (BO) phases. Here, the black dot has been used with the meaning
of an occupied site, whereas the white dot is associated to an empty one.

Before moving on to the summary of the technical aspects that are necessary
to discriminate the aforementioned phases, a first quick look at the phase dia-
gram shows its consistency with the naive physical intuitions that one may have
about it: in particular, one might expect that, when either U1 or U2 is much
larger than the other parameters of the model, then the energy minimization
task is achieved by rearranging the fermions in the charge-ordered configuration
which allows to remove the contribution of the dominant interaction to the en-
ergy of the associated ground state. On the other hand, it is equally reasonable,
at least on a purely intuitive level, that the system will settle down to a liquid
phase with prevailing kinetic fluctuations in the case of interaction strengths
U1 and U2 whose value is negligible with respect to the hopping amplitude
parameter t.

LL to CDW-I transition

Formally speaking, the richness of the phase diagram in figure (2.4) requires
a hard technical work in order to obtain a proper description of it. We begin
the analysis with the study of the transition from the LL phase to the CDW-
I phase, which is in first instance signaled by a finite non-zero value in the
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Figure 2.4: Phase diagram of the half-filled t − U1 − U2 model as proposed in
[2].The hopping amplitude has been set to t = 1. The figure is taken from [2].

thermodynamic limit of the structure factor S(k = π), defined in its generality
by the formula:

S(k) =
1

L2

∑
l,j

eik(l−j) (〈nlnj〉 − 〈nl〉〈nj〉) (2.8)

The latter has been evaluated at the wavevector associated to the characteristic
spatial modulation of the density profile. The result, shown in figure (2.5),
provide evidence for the emergence of charge order across the LL-CDW-I phase
boundary, even though the precise location of the transition point turns out to
be unfeasible with such a characterization procedure.

Further refinements on the precise determination of the phase boundary
between the two aforesaid phases are better achieved by introducing the single-
particle excitation gap ∆(N,L), defined by the relation:

∆(N,L) = E(N + 1, L) + E(N − 1, L)− 2E(N,L) (2.9)

where E(N,L) indicates the ground state energy of the model with N particles
on al lattice of length L. Then, a more precise characterization of the phase
boundary between the LL phase and the CDW-I phase is recovered through the
analysis of the exponential opening of a non-zero single-particle excitation gap
in the CDW-I phase, as predicted from the observation that such a transition
is known to belong to the Berezinskii-Kosterlitz-Thouless (BKT) universality



18 CHAPTER 2. 1D SYSTEMS WITH LONG-RANGE INTERACTIONS

Figure 2.5: Finite-size scaling of S(π) for different values of U2, for U1 = 4,
across the CDW-I to LL phase.The figure is taken from [2].

class, combined with the use of a finite-size-scaling relation for the very same
quantity. Interestingly, as the phase diagram proposed in figure (2.4) shows, by
increasing the value of U2 to strictly positive values, the transition point from
the LL phase to the CDW-I phase is shifted to higher values of U1, consistently
with the expectation that the competition between the charge orders favored by
the two interactions terms stabilizes the liquid phase through a gain in kinetic
fluctuations.

LL to BO phase transition

Moving on to the characterization of the transition from the LL phase to the
BO phase, the relevant observable turns out to be the so called BO parameter,
defined through the relation:

OBO =
1

L

∑
i

(−1)i
[
〈c†i ci+1 + h.c.

]
(2.10)

with the goal of measuring the local kinetic energy inhomogeneities and the
dimerization level of the system. By crossing the corresponding phase boundary,
the finite-size scaling of the BO parameter is employed in order to roughly
locate the transition point, as reported in figure (2.6). As in the previous case,
predictions obtained by means of a finite-size-scaling relation for the gap in the
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Figure 2.6: Finite-size scaling of OBO for different values of U2, for U1 = 4,
across the LL to BO phase.The figure is taken from [2].

single-particle excitation spectrum support the findings obseerved by looking
at the extrapolated value of the BO parameter. Interestingly, as unveiled by
the phase diagram of the model in figure (2.4), when a strictly positive value of
U1 is superimposed to the system, it starts competing with the bond-ordering
induced by the presence of U2, hence resulting in a stabilization of the LL phase
up to a larger critical value of U2 with respect to the one observed in absence
of the nearest-neighbour density-density interaction, i.e. U1 = 0.

BO to CDW-II phase transition

Finally, the transition from the BO phase to the CDW-II phase is formally de-
scribed by the emergence of a finite non-zero value of S(π2 ) in the extrapolation
to the thermodynamic limit, as expected from the wavelength associated to the
spatial density modulation of the CDW-II. The corresponding results, displayed
in figure (2.7), are again complemented with a more sophisticated analysis based
on scaling theory for S(π2 ), thereby obtaining numerical evidence that the crit-
ical exponents found at the critical point belong to the 2D universality class.
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Figure 2.7: Finite-size scaling of S(π2 ) for different values of U2, for U1 = 4,
across the BO to CDW-II phase.The figure is taken from [2].

2.4 Longer-range interactions

2.4.1 Model and motivations

The work presented in [4] represents a research effort in the further development
of the current understanding of one-dimensional fermionic physics. The authors
of the paper aim at a comprehensive investigation of the rich phase diagram
emerging in presence of competing finite-range interactions together with kinetic
energy fluctuations. In order to achieve such an ambitious goal, the focus of
their investigation are one-dimensional fermionic models with even longer-range
interaction contributions with respect to the ones included in [2]. The scenarios
emerging from their numerical results imply the appearance of direct transitions
between different charge orders, as well as mediating liquid behaviour in between
the insulating regions of the phase diagram. The investigations are based on
a model of spinless fermions on a lattice of size L interacting through a finite-
range repulsive potential of maximal range p. The Hamiltonian of the model is
written as:

H = −t
∑
i

[
c†i ci+1 + h.c.

]
+
∑
i

p∑
m=1

Umnini+m (2.11)

where ci, c
†
i are fermionic creation and annihilation operators, ni = c†i ci, t is

the hopping amplitude and Um gives the interaction energy contribution for
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Figure 2.8: Ground state unit cells and corresponding energy content in the
atomic limit of half-filled systems with interaction range p = 2 and p = 4.
The degeneracy f accounts for the translational freedom of each charge-ordered
phase.The figure is taken from [4].

particles that are m sites apart.

2.4.2 Classification and phenomenological characterization

The starting point of the analysis relies on the systematic classification of the
allowed charge-ordered configurations as a function of the interaction range p
and of the available commensurable particle densities in the atomic limit, i.e.
when t = 0. In such a case, the derivation of the form of the ground state
configuration is entirely based on combinatorial energetic considerations, shows
abrupt transitions between the different insulating phases and gives results such
as the one displayed in figure (2.8).

The characterization of the system at finite kinetic energy, where the transi-
tions can be mediated by liquid and BO phases, as observed in the t−U1 −U2

model, proceeds with the help of DMRG simulations. With particular reference
to the results found in [4] for the t− U1 − U2 model at half-filling, which is the
one of interest for the purpose of the current thesis work, the authors exam-
ine the behaviour of the fermionic system for U1 = 10, t = 1 and varying U2.
The findings are consistent with previous works on the very same model and
show the well known transition from the (•◦) configuration to the (• • ◦◦) one,
mediated by the emergent LL and BO phases.
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Armed with the goal of summarizing the technical expedients employed in
getting to such results, it is worth mentioning in the first place that the aforesaid
phases are discriminated on a purely phenomenological level by looking at the
kinetic energy density T and the BO parameter OBO, defined respectively as:

T =
1

L

∑
i

〈c†i ci+1 + h.c.〉 (2.12)

OBO =
1

L

∑
i

(−1)i〈c†i ci+1 + h.c.〉 (2.13)

Figure (2.9) shows that, while the kinetic energy profile only captures the tran-
sition from the BO phase to the (••◦◦) phase through a discontinuity in its first
derivative, the BO parameter captures all three transitions, carrying hence in
this case more information. In particular, even though the BO parameter van-
ishes in the thermodynamic limit both in the LL phase and in the (•◦) phase, its
different scaling with increasing bond dimension of the DMRG simulation in the
two phases still allows to discriminate them. Furthermore, in order to achieve
a more detailed description of the aforementioned phases, the density-density
correlation function is introduced:

Nm =
1

L

∑
i

〈nini+m〉 (2.14)

so that it is possible to probe the emergence of ordering phenomena in the
system. Indeed, by introducing the extrapolated correlator:

lim
k→+∞

Nm+kP = N∞m , m = 1, . . . , P (2.15)

where P is the largest unit-cell size among the ones exhibited by the different
charge orders of the model, long-range ordering effects can be detected. As
shown in figure (2.10), it is noticeable that all charge-ordered configurations are
indeed captured by looking at the behaviours of the extrapolated correlators in
a way consistent both with the naive expectation of their values solely based on
the ground state configuration and with the results obtained from the analysis of
the kinetic energy density and the BO parameter. Finally, one should recognise
that such an observable cannot be employed to discriminate between the LL
phase and the BO phase, since in liquid-like phases the extrapolated correlators
are easily seen to become trivial, as shown by the following trivial computation:

lim
k→+∞

Nm+kP = lim
k→+∞

1

L

∑
i

〈nini+m+kP 〉 (2.16)

Since 〈nini+r〉 ≈ 〈ni〉〈ni+r〉 for large values of r and by using 〈ni〉 = 1
2 at half-

filling in a liquid phase, then the extrapolated correlators are easily seen to take
the value:
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Figure 2.9: Phenomenological signatures of phases and transitions in the kinetic
energy density and BO parameter for the model (2.11) in half-filling conditions
with t = 1, U1 = 10 and varying U2. χ denotes the bond dimension in the
corresponding DMRG simulation.The figure is taken from [4].

N∞m =
1

4
(2.17)
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Figure 2.10: Extrapolated correlators N∞m for p = 2 and system parameters as
in figure (2.9).The figure is taken from [4].



Chapter 3

Review of bosonization

3.1 Introduction and bibliographic references

The goal of the present chapter is the presentation of the most crucial infor-
mations concerning the bosonization technique, whose intensive and successful
application to the theoretical characterization of the phases and the critical
properties of one-dimensional (1D) systems make it an essential tool to their
analysis. The subsequent material has no claim of originality and has become
by now standard textbook material. The main sources of knowledge I have been
employing are [1], [12], [13] and [15], together with unpublished lecture notes
kindly made available by prof. G. Roux. The motivated reader is invited to
refer to the aforementioned material if interested in further and more detailed
discussions and calculations.

3.2 Conceptual framework

The key idea of the bosonization technique is the construction of an effective
low-energy field theory for 1D strongly correlated fermionic many-body systems
with quartic interaction terms in the associated second-quantized Hamiltonian.
Since the model Hamiltonian cannot be easily diagonalized through standard
techniques in such settings, the bosonization prescription aims to reexpress the
fermionic degrees of freedom in terms of appropriate bosonic fields, which allow
for a more convenient representation of the system.

The starting point of the standard scenario used to introduce bosonization
is the following model Hamiltonian:

H = H0 +HU (3.1)

where:

H0 = −t
∑
i

[c†i ci+1 + h.c.] (3.2)

25
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is the kinetic energy term associated to the hopping processes between neigh-
bouring sites and HU represents the contribution coming from the interactions
between the fermions, whose strength is parametrized by the energy scale U .
The model is defined on a 1D lattice of L sites and periodic boundary condi-
tions are considered, i.e. cj+L = cj . For the sake of completeness, the cj , c

†
j are

fermionic creation and annihilation operators and obey the following canonical
anticommutation relations:

{ci, c†j} = δij (3.3)

{ci, cj} = {c†i , c
†
j} = 0 (3.4)

In the limit where U = 0, the interaction term vanishes and one is left with
the free Hamiltonian H0, which can be easily diagonalized by means of Fourier
transformation, defined by the following relation :

ck :=
1√
L

L∑
j=1

cje
−ikj (3.5)

with inverse transformation:

cj :=
1√
L

∑
k

cke
ikj (3.6)

where L represents the number of sites and, supposing to work with periodic
boundary conditions, the sum over k runs over the associated first Brillouin
zone, defined by :

k =
2π

L
n (3.7)

with n given by:

n = −L
2
,−L

2
+ 1, . . . ,

L

2
− 1 (3.8)

assuming an even number of sites . After such a transformation, the Hamiltonian
takes the diagonal form :

H0 = −2t
∑
k

cos (k) c†kck (3.9)

The ground state will then be represented by a Fermi sea, in which all the lowest
energy states will be occupied up to the energy level EF , known as Fermi energy.

When turning on the interaction term, one may suppose on an intuitive and
purely qualitative level that, at least in the perturbative regime U � t, only
the low energy excitations involving states lying very close to the Fermi points
are expected to occur in the dynamical evolution of the system. Hence, since
we expect to deal mainly with scattering events around the Fermi points, it
looks natural to linearize the dispersion relation around the Fermi momenta
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Figure 3.1: Non-interacting Fermi sea.The image shows a pictorial representa-
tion of the ground state configuration, where the lowest energy states of the
system are filled up to the so called Fermi momentum kF , whose value de-
pends linearly on the fermionic density in the system. The corresponding energy
EF = E(±kF ) is known as Fermi energy. The image is taken from [12].

and, consequently, to extend the linear approximation to the whole real axis,
which amounts to taking an appropriate continuum limit and turns out to be
mathematically convenient to make further progress. By such a procedure, it is
meant that the linearized version of the dispersion relations around the Fermi
points replaces the original form of the spectrum in an effective way and is now
defined over the set {kn = 2π

L n | n ∈ Z}, thus extending to the entire real axis
and amounting to taking the limit of infinite number of sites while sending the
lattice spacing to zero, so that the (finite) length of the system is kept constant.

3.3 Effective field theory formulation

3.3.1 Hilbert space

Having introduced an infinite number of degrees of freedom, we have effectively
switched to a field-theoretical description where the Hilbert space is defined as
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Figure 3.2: Linearization of the spectrum around the Fermi points.Since the
only relevant scattering events take place close to the Fermi points, one may
equivalently study the properties of the effective linear dispersion model shown
in figure. The increasing branch of the spectrum is called right-moving branch,
while the decreasing one is referred to as left-moving branch, with reference to
the orientation of the mean velocity of the fermions occupying the corresponding
energy states. The figure is taken from [12].

the Fock vector space spanned by all states generated through the action of a
finite number of creation and annihilation operators ck and c†k on the vacuum
state, in which all states up to the Fermi energy are occupied. From now on,
unless in case of explicit reference to a different framework, all results will be
derived for the case of a right-moving branch of the spectrum, but the generaliza-
tion to the case of left-moving branches turns out to be pretty straightforward.

Formally, the vacuum state |0〉0 of the branch is defined by the relations:

ck|0〉0 = 0, k > 0 (3.10)

c†k|0〉0 = 0, k ≤ 0 (3.11)

where the wavevector belongs to the set {kn = 2π
L n | n ∈ Z} (resulting from

the continuum limit in the finite interval
[
−L2 ,

L
2

)
in a real space formulation)

and has been appropriately shifted in such a way that the Fermi level intersects
the dispersion relation at k = 0.
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Figure 3.3: Vacuum state of the right-moving branch as defined by the equations
(3.10) and (3.11). Figure from [12].

The Fock space of the many-body problem can then be formally decomposed
as a direct sum of Hilbert spaces with fixed particle number. Such a quantum
number is defined in terms of its deviation from the one computed in the vacuum
state as:

N :=
∑
k

[
c†kck − 〈c

†
kck〉0

]
=
∑
k

: c†kck : (3.12)

where the normal-ordered version of a string of creation and annihilation oper-
ators ABCD has been denoted by : ABCD : and is defined by the operation of
moving all operators that destroy the vacuum state to the right of the expres-
sion while multiplying by −1 at each transposition, which is equivalent to the
subtraction of the vacuum expectation value of the very same operator in the
case of products of two fermionic operators.

The N-particle Hilbert space HN is then equipped with a corresponding
N -particle ground state |N〉0, generated by adding N fermions on top of the
vacuum state |0〉0 in case of positive N and by removing the N highest en-
ergy fermions from the vacuum state in case of negative N , and is spanned
by the states resulting from the application of a finite number of particle-hole
excitations to |N〉0.
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3.3.2 Density fluctuation operators

A key role in the bosonization formalism will be played by the so called density
fluctuation operators, which are defined as follows:

ρ(q) =
∑
k

c+k+qck (3.13)

with q 6= 0.
In order to understand the framework they originate from, we introduce the

fermionic field operator:

ψ(x) =
1√
L

∑
k

cke
ikx (3.14)

satisfying canonical anticommutation relations over the interval
[
−L2 ,

L
2

)
, i.e.:

{ψ(x), ψ†(x′)} = δ(x− x′) (3.15)

{ψ(x), ψ(x′)} = {ψ†(x), ψ†(x′)} = 0 (3.16)

whenever x, x′ ∈
[
−L2 ,

L
2

)
. The convenience of such a mathematical object will

emerge as it turns that the creation and annihilation operators of fermionic
discrete lattice models we will be interested in will be expressible in terms of
such operators in the framework of a low energy effective field theory.

Given the above definitions, the reason for the name given to the operators
{ρ(q)} is shown by the following simple manipulations of the expression of the
normal-ordered density operator:

: ψ†(x)ψ(x) :=
1

L

∑
k,p

ei(k−p)x : c†pck := (3.17)

=
1

L

∑
k,q

e−iqx : c†k+qck := (3.18)

=
1

L

∑
k

: c†kck : +
1

L

∑
q 6=0

e−iqx
∑
k

: c†k+qck := (3.19)

=
N

L
+

1

L

∑
q 6=0

e−iqxρ(q) (3.20)

In the last step of the calculation, the normal-ordering sign has been removed
due to its redundancy in the case of a product of two fermionic operators labeled
by different quantum numbers.

Turning to the discussion of the properties of the density fluctuation opera-
tors, it is clear from their definition that they represent a linear combination of
operators that create particle-hole excitations . By computing the commutator:

[ρ(p), ρ(q)] =
∑
k

[c†k+p+qck − c
†
k+qck−p] (3.21)
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one recognizes that, if p 6= −q, the result is trivially shown to be zero by a simple
shift in the summation index of the second term, whereas the case p = −q
requires more care because it forces us to deal with operators having infinite
matrix elements due to the unbounded number of states introduced in our low-
energy effective treatment. Indeed, one cannot simply shift the summation index
and split the sum in two parts as in the previous case because it would lead to
the subtraction of two infinite quantities, which is of course ill-defined.

By introducing the rewriting of the occupation number operator for state k
as:

c†kck = 〈c†kck〉0 + : c†kck : (3.22)

where the first term is the vacuum expectation value of the aforesaid operator
and the second term represents its normal-ordered version, the commutator can
then be rearranged as :

[ρ(−q), ρ(q)] =
∑
k

[: c†kck : +〈c†kck〉0− : c†k+qck+q : −〈c†k+qck+q〉0] (3.23)

The first and third term then cancel each other after splitting the two sums and
shifting the summation index, which is now legitimate because the divergencies
have been removed by normal-ordering the operators and therefore we are not
dealing anymore with the undefined subtraction of two infinities. The second
and fourth term instead give the following as a result:

[ρ(−q), ρ(q)] =
Lq

2π
(3.24)

where the expectation value is taken over the Fermi sea. Finally , the following
relation holds:

[ρ(p), ρ(q)] =
Lq

2π
δp,−q (3.25)

By defining :

bq :=

√
2π

Lq
ρ(−q) (3.26)

b†q :=

√
2π

Lq
ρ(q) (3.27)

for q > 0 only , one recovers the standard bosonic commutation relation:

[bq, b
†
q′ ] = δq,q′ (3.28)

[bq, bq′ ] = [b†q, b
†
q′ ] = 0 (3.29)

Remembering relation (3.12), the first consequences of the above definition
are the following relations:

[bq, N ] = [b†q, N ] = 0, ∀q > 0 (3.30)

bq|N〉0 = 0, ∀N ∀q > 0 (3.31)
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where the first relation expresses the fact that particle-hole excitations do not
change the number of fermions and the second one signals the absence of any
particle-hole excitation in the N -particle ground states, which represent the
vacuum states for the aforementioned bosonic excitations. Furthermore, it is
useful to express the normal-ordered density operator in terms of the bosons as
follows:

: ψ†(x)ψ(x) :=
N

L
+

1√
2πL

∑
q>0

√
q
[
eiqxbq + e−iqxb†q

]
(3.32)

As a final remark, the normal-ordering operation is defined as well for bosonic
creation and annihilation operators by transposing the bq’s to the right and the
b†q’s to the left without any accompanying sign at each trasposition.

3.3.3 Completeness of the bosonic representation

A crucial theorem due to Haldane (see [16]) ensures the completeness of the
bosonic representation of the N -particle Hilbert space HN , formally expressed
by the following condition:

∀|ψN 〉 ∈ HN ∃ f({b†q}) s.t. |ψN 〉 = f({b†q})|N〉0 (3.33)

Such a powerful statement is indeed guaranteeing that the N -particle Hilbert
space HN , which is known to be spanned by the states generated through the
action of particle-hole excitations on the corresponding ground state, can be
equally spanned by the states resulting from the action of a finite, arbitrary
number of b+q ’s on |N〉0, which is of course not obvious at all if one consid-
ers the fact that the bq’s represent infinite linear combinations of particle-hole
excitations.

3.3.4 Klein factors

The last ingredient one needs to actively perform bosonization is a pair of oper-
ators connecting Hilbert spaces with different particle number, which of course
cannot be accomplished by the bosonic operators we have just defined in (3.26)
and (3.27), since they cannot change the particle number. Such operators are
called Klein factors, are denoted by F and F † and are defined by the properties:

[F, b] = [F, b†] = [F †, b] = [F †, b†] = 0 (3.34)

F |N〉0 = |N − 1〉0 (3.35)

F †|N〉0 = |N + 1〉0 (3.36)

It follows from the definition that F is unitary, i.e. F † = F−1 and that the
following commutation rules with the total number operator can be established:

[F,N ] = F (3.37)

[F †, N ] = −F † (3.38)
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Finally, by acting with the Klein factors on a general N -particle many-body
state, which can be always expressed in the form |ψ〉 = f(b†q)|N〉0 thanks to
(3.33), one obtains:

F |ψ〉 = Ff({b†q})|N〉0 = f({b†q})F |N〉0 = f({b†q})|N − 1〉0 (3.39)

F †|ψ〉 = F †f({b†q})|N〉0 = f({b†q})F †|N〉0 = f({b†q})|N + 1〉0 (3.40)

where in the second equality the commutation properties of the Klein factors
reported in (3.34) have been used. Such relations are telling us that the action
of Klein factors on a general N -particle state generates a new state in which
the same set of particle-hole excitations is imposed on the ground state of the
Hilbert space space with 1 particle more in the case of F † and 1 particle less in
the case of F .

3.3.5 Useful relations

We are now in a position to give an expression of the fermionic field operator
ψ(x) entirely in terms of the number operator, Klein factors and bosonic ladder
operators, so that the foundations of the bosonization technique can finally be
established and then concretely applied to the study of the systems we will be
interested in. The crucial starting observation arises from the computation of
the commutator between the bosonic creation and annihilation operators bq, b

†
q

and the fermionic field operator ψ(x), which gives:

[bq, ψ(x)] = −
√

2π

Lq
e−iqxψ(x) (3.41)

[b†q, ψ(x)] = −
√

2π

Lq
eiqxψ(x) (3.42)

where the definitions of bq and ψ(x) in terms of fermionic creation and annihi-
lation operators have been used.

As a consequence, one can argue that:

bqψ(x)|N〉0 = [bq, ψ(x)]|N〉0 = βq(x)ψ(x)|N〉0 (3.43)

where βq(x) has been introduced as:

βq(x) = −
√

2π

Lq
e−iqx (3.44)

and equation (3.31) has been used. Hence, ψ(x)|N〉0 is an eigenstate of the
bosonic annihilation operator bq for every value of q > 0 with eigenvalue βq(x).
Such states are called coherent states and a detailed calculation presented in [12]
shows that their form in terms of Klein factors, bosons and number operator is
given by the following equation:

ψ(x)|N〉0 =
F√
L
e
i2πNx
L exp

(∑
q>0

βq(x)b†q

)
|N〉0 (3.45)
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By means of the property (3.33), relation (3.45) can be generalized to an arbi-
trary N -particle state |ψN 〉 as:

ψ(x)|ψN 〉 =
F√
L
e
i2πNx
L exp

(∑
q>0

βq(x)b†q

)
exp

(
−
∑
q>0

β∗q (x)bq

)
|ψN 〉 (3.46)

which now acquires the status of an operator identity over the entirety of the
Fock space. Equation (3.46), also known as Mattis-Mandelstam formula, lies at
the heart of the bosonization prescription.

Let us present a sketch of the proof of the validity of equation (3.46), given
its outstanding importance. Since any state |ψN 〉 ∈ HN can be expressed by
means of equation (3.33), then:

ψ(x)|ψN 〉 = ψ(x)f({b†q})|N〉0 (3.47)

holds. By exploiting the commutation relation reported in (3.42), one has:

ψ(x)f({b†q}) = f({b†q − α∗q(x)})ψ(x) (3.48)

which in turn can be plugged into equation (3.47) to obtain:

ψ(x)|ψN 〉 = f({b†q − α∗q(x)})ψ(x)|N〉0 (3.49)

Finally, if one rewrites the term ψ(x)|N〉0 thanks to (3.45), reorders the resulting
terms and exploits the identities:

exp

(
−
∑
q>0

β∗q (x)bq

)
f({b†q}) exp

(∑
q>0

β∗q (x)bq

)
= f({b†q − α∗q(x)}) (3.50)

exp

(∑
q>0

β∗q (x)bq

)
|N〉0 = |N〉0 (3.51)

the expression reported in (3.46) is indeed recovered.
Finally, by introducing the bosonic fields:

ϕ(x) = − i√
2π

∑
q>0

β∗q (x)e−
βq
2 bq (3.52)

ϕ†(x) =
i√
2π

∑
q>0

βq(x)e−
βq
2 b†q (3.53)

φ(x) = ϕ(x) + ϕ†(x) (3.54)

one can rewrite equation (3.46) in the compact form:

ψ(x) =
F√
2πα

e
i2πNx
L exp

(
−i
√

2πφ(x)
)

(3.55)

where the positive real parameter α has the role of a convergence factor which
allows to define a proper bosonic theory in 1D. The latter, which did not appear
in equation (3.46), is instead needed in equation (3.55) because the expression
it contains is not normal-ordered and hence needs to be regularized in order to
avoid dealing with unphysical divergencies.
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3.4 Bosonization of the XXZ model

3.4.1 Effective field theory for the XXZ model

After having reviewed the most crucial steps toward the definition of a bosoniza-
tion dictionary that allows to map systematically 1D fermionic systems into
auxiliary bosonic ones, we are now going to apply such a technique to the study
of the well known 1D spin- 1

2 XXZ model, defined by the following Hamiltonian:

H = J

M∑
j=1

[
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

]
(3.56)

where M denotes the number of sites belonging to the underlying lattice, J > 0
is the characteristic energy scale of the system and periodic boundary conditions
of the form ~SN+1 ≡ ~S1 have been enforced. The spin operators {~Si}Mi=1 are
defined by the relation:

~Si =
~
2
~σi (3.57)

where ~σi = (σxi , σ
y
i , σ

z
i ) is a three-dimensional vector whose component are given

by the celebrated Pauli matrices:

σxi =

[
0 1
1 0

]
i

, σyi =

[
0 −i
i 0

]
i

, σzi =

[
1 0
0 −1

]
i

(3.58)

acting on the local Hilbert space at site i. The commutation relations satisfied
by the spin operators are the usual angular momentum commutation relations:[

Sαi , S
β
j

]
= i~δijεαβγSγi (3.59)

where it is to be noted that spin operator components at different sites commute
between each other and εαβγ is the Levi-Civita symbol.

A first noticeable feature of the above Hamiltonian is the fact that it com-
mutes with the total magnetization along the z-axis, i.e.:H,∑

j

Szj

 = 0 (3.60)

meaning that such an observable is a good conserved quantum number. Addi-
tionally, the XXZ model has been widely studied and is known to exhibit three
different phases depending on the values of J and ∆, as displayed in figure (3.4).
When |∆| > 1, then either ∆ < 0, resulting in a ferromagnetic ordering in the
ground state of the system, or ∆ > 0, giving rise instead to antiferromagnetic
long-range order. In both these two regions of the phase diagram the low en-
ergy excitations are gapped. On the contrary, when |∆| < 1, then the system is
in the so called critical region of the phase diagram, where spin configurations
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Figure 3.4: Phase diagram of the XXZ model in an external magnetic field h
along the z-axis. As far as the purpose of the present work is concerned, our
focus will be the line h = 0, where, as mentioned in the main text, the segment
|∆| < 1 is associated to the critical, liquid phase, whereas the regions defined by
∆ < −1 resp. ∆ > 1 host a ferromagnetic resp. antiferromagnetic phase.The
image is taken from [32].

along the x-y plane dominate over the ones along the z-axis and the low energy
excitations are gapless.

Armed with the purpose of achieving a correct description of the low energy
properties of the XXZ spin chain, it is natural to assume that, in the limit of
weak interfermion interactions, the only interaction-induced scattering processes
which are expected to modify the physics of the system withrespect to the non-
interacting point are the ones taking place close to the Fermi points, so that a
straightforward weak-coupling bosonization approach can be adopted. In order
to make the problem suitable to the bosonization technique, it is useful to map
the spin Hamiltonian in (3.56) to a spinless fermion model with the help of the
so called Jordan-Wigner transformations, defined through the relations:

Szj → c†jcj −
1

2
(3.61)

S+
j → c†je

iπ
∑j−1
l=1 c

†
l cl (3.62)

S−j → cje
−iπ

∑j−1
l=1 c

†
l cl (3.63)

where e±iπ
∑j−1
l=1 c

+
l cl represent non-local string operators, whose presence is
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strictly necessary to ensure the spin commutation relations to be satisfied by the
fermionic representation of the spin operators, and S+

j = Sxj + iSyj , S−j = (S+
j )†.

The key idea behind the clever mapping is the correspondence between the two
Szi eigenstates {|− 1

2 〉i, |
1
2 〉i} and the two fermionic Fock space states {|0〉i, |1〉i},

as follows from (3.61). The naive transformation:

Szj → c†jcj −
1

2
(3.64)

S+
j → c†j (3.65)

S−j → cj (3.66)

turns out to reproduce the usual spin-1
2 commutation relations:[

S+
j , S

z
j

]
= −S+

j (3.67)[
S−j , S

z
j

]
= S−j (3.68)[

S+
j , S

−
j

]
= 2Szj (3.69)

in the case of a single-site problem. On the other hand, when one tries to directly
generalize (3.64), (3.65) and (3.66) to different sites, the mapping is incorrect
because, whereas spin operators at different sites commute, fermionic operators
anticommute. The cure to such a problem is provided by the aforesaid string
operators, whose introduction gives rise to the correct commutation relations:[

S+
j , S

z
l

]
= −δjlS+

j (3.70)[
S−j , S

z
l

]
= δjlS

−
j (3.71)[

S+
j , S

−
l

]
= 2δjlS

z
j (3.72)

By reexpressing the x-component and the y-component of the spin operator
~Sj by their expression in terms of S+

j and S−j and performing the Jordan-Wigner
transformation on the resulting Hamiltonian, the final expression one gets turns
out to be:

H = −t
N∑
j=1

[c+j cj+1 + h.c.] + V

N∑
j=1

(
nj −

1

2

)(
nj+1 −

1

2

)
(3.73)

with nj = c+j cj , t = J
2 and V = J∆ and where the additional minus sign in

front of the kinetic term appears as a result of the canonical transformation
cj → eiπjcj , which reveals that the physics of the model is invariant under the
replacement J → −J . Thus, the fermionic representation of the model consists
of a standard hopping term associated to the kinetic energy contribution and of
a nearest-neighbour density-density interaction. Furthermore, as [H,

∑
j nj ] =

0, the conserved quantity of the model has now become the total number of
particles, related to the z-component of the magnetization through

∑
j S

z
j =∑

j nj−
M
2 , where L represents the total number of sites of the lattice structure

underlying the 1D system under analysis.
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In order to make connection with the bosonization prescription, the lattice
fermionic creation and annihilation operators can be manipulated as follows:

cj =
1√
M

∑
k∈BZ

eikjck =
√
a

1√
Ma

∑
k∈BZ

eikjck → (3.74)

→
√
a

1√
L

+∞∑
k=−∞

eikxck ≡
√
aψ(x) (3.75)

where a represents the lattice constant, N is the number of lattice sites and the
continuum limit M � 1, a� 1 such that Ma = L is fixed to the length L of the
system has been taken, so that the first Brillouin zone can be extended to an
infinite set of discrete values of k over the whole real axis. If one wants to make
further progress, the field operator ψ(x) defined above can then be recasted in
a more convenient form by performing the following steps:

ψ(x) =
1√
L

+∞∑
k=−∞

eikxck =
1√
L

∑
k<0

eikxck +
1√
L

∑
k≥0

eikxck = (3.76)

= e−ikF x

(
1√
L

kF∑
k=−∞

eikxck−kF

)
+ eikF x

(
1√
L

+∞∑
k=−kF

eikxck+kF

)
(3.77)

where a simple shift by ±kF in the two summations has been performed, so
that k = 0 corresponds to the Fermi points.

In the end, by letting kF → +∞ in both summation, which amounts to
introducing an infinite number of unphysical ”positron states” for mathematical
convenience while keeping the low energy physics unchanged because of the high
energy scales required to excite them, and after performing some clever change
of variable, the final result can be summarized as follows:

ψ(x) = eikF xψR(x) + e−ikF xψL(x) (3.78)

ψR,L(x) =
1√
L

+∞∑
k=−∞

e±ikxcR,Lk (3.79)

where the summation over k runs over the countable set of values {kn = 2πn
L |n ∈

N}, two different fermionic branches labeled by the index ν ∈ {R,L} have
been introduced and the corresponding field operators ψR,L(x), whose long-
wavelength Fourier components represent the only physically relevant degrees
of freedom in the framework of a low energy approximation, have been defined
in (3.79).

Coming back to the problem of formulating an effective bosonic low energy
field theory for the XXZ model, it suffices now to plug the expansion (4.2) back
into the last expression of (3.75) and expand the various terms appearing in the
model Hamiltonian (3.73) to obtain the final result. The kinetic contribution,
corresponding to the XX part of the starting spin Hamiltonian, is easily seen to
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take the form:

Hkin = −t
N∑
j=1

[c†jcj+1+h.c.] ≈ vF
∫ L

2

−L2
dx
[
ψ†R(x)(−i∂x)ψR(x) + ψ†L(x)(i∂x)ψL(x)

]
(3.80)

having denoted the Fermi velocity as vF . By employing then the fundamental
bosonization relation (3.55), which in the case of two different branches gener-
alizes to:

ψR,L(x) =
FR,L√

2πα
e±

i2πNx
L exp

(
−i
√

2πφR,L(x)
)

(3.81)

the terms of the form ψ†R,L(x)(∓i∂x)ψR,L(x) are consequently defined by means
of a careful regularization procedure: first one has to normal-order the expres-
sions ψ†R,L(x+ a)(∓i∂x)ψR,L(x), then expand the result to sub-leading order in
a and in the end subtract the divergent constant terms representing the vac-
uum expectation values of the products of field operators we are attempting to
regularize. Finally, by introducing the fields:

φ(x) :=
1√
2

(φL − φR) (3.82)

θ(x) :=
1√
2

(φL + φR) (3.83)

Π(x) := ∂xθ(x) (3.84)

it is possible to express the result as:

Hkin =
vF
2

∫ L
2

−L2
dx
[
Π2(x) + (∂xφ(x))

2
]

(3.85)

[φ(x),Π(x′)] = iδ(x− x′) (3.86)

i.e., the bosonization representation of the kinetic energy contribution amounts
to a bosonic quadratic massless field theory associated to the canonically con-
jugated fields φ(x) and Π(x) and known in 1D many-body quantum physics as
Luttinger liquid Hamiltonian.

Moving on to the bosonization of the nearest-neighbour density-density in-
teraction term, it can be shown by means of a trivial computation that it takes
the form:

Hint = V
∑
j

njnj+1 ≈ V a
∫ L

2

−L2
dx [ρ(x)ρ(x+ a)−M(x)M(x+ a)] (3.87)

where the additional terms arising from the expression of the interaction as
reported in (3.73) are neglected since the ground state is assumed to belong to
the zero magnetization sector, which is a valid working hypothesis as long as
the critical and the antiferromagnetic phase are concerned, and the following
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quantities have been introduced:

ρ(x) = ψ†R(x)ψR(x) + ψ†L(x)ψL(x) (3.88)

M(x) = ψ†R(x)ψL(x) + ψ†L(x)ψR(x) (3.89)

As the formulas defining the fields ρ(x) and M(x) clarify, the former intro-
duces low energy intrabranch scattering processes in the interaction Hamilto-
nian (3.87), whereas the latter gives rise to interbranch scattering events around
the Fermi points, where the involved electrons change their wave vector by an
amount ±2kF . By expressing the fermionic fields in terms of the bosonic ones,
the final result turns out to be:

Hint ≈
2V a

π

∫ L
2

−L2
dx (∂xφ(x))

2 − 2V a

(2πα)2

∫ L
2

−L2
dx cos

[
4
√
πφ(x)

]
(3.90)

In the end, collecting all terms together and properly rescaling the fields
through a canonical transformation, the final expression for the bosonized ver-
sion of the model Hamiltonian takes the form:

H = H0 +Hint =
u

2

∫ L
2

−L2
dx

[
πKΠ2(x) +

1

πK
(∂xφ(x))

2

]
− g

∫ L
2

−L2
dx cos [4φ(x)]

(3.91)
where g = 2V a

(2πα)2 and an effective velocity v and a dimensionless parameter K,

also known as Luttinger parameter, have been defined as:

u = vF

√
1 +

4V a

πvF
(3.92)

K =
1√

1 + 4V a
πvF

(3.93)

Hence, the XXZ model in the zero magnetization sector turns out to be de-
scribed by the celebrated sine-Gordon model in bosonization language. Before
presenting any rigorous result, it is quite clear on an intuitive level that, while
the quadratic terms of the Hamiltonian enhance fluctuations of the field φ(x),
the cosine term will instead promote its ordering by locking it into one of the
maxima of the cosine, resulting in a competition between the two aforemen-
tioned terms. Formally, the standard approach one employs to tackle the study
of the criticality of the model relies on the application of renormalization group
(RG) techniques to the action deriving from (3.91). In particular, a first or-
der perturbative RG calculation shows the validity of the following RG flow
equation for the coupling constant g:

dg(l)

dl
= (2− 4K(l)) g(l) (3.94)

Hence, even the first order result for the renormalization of the coupling g
captures the most crucial feature of the critical behaviour of the model.
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As a matter of fact, when K > Kc = 1
2 , which is verified as long as the

interaction strength V is not too large, as shown by the perturbative expression
(3.93) for the Luttinger parameter found by means of the bosonization tech-
nique, the parameter g is driven towards a zero value by the RG flow, certifying
the irrelevance of the cosine term in such a regime: the phase described in this
region of the phase diagram is the critical one, in which kinetic fluctuations
dominate over the charge ordering effects induced by the interaction. A more
complicated second order RG computation (see, e.g., [1]) shows that in this
case the low energy, long wavelength physics is governed by a purely quadratic
Hamiltonian with a renormalized Luttinger parameter K∗ whose value depends
on the values of K and g in the original model Hamiltonian.

Thus, the resulting correlation functions, which can be computed exactly
thanks to the quadratic form of the action corresponding to the Luttinger liquid
Hamiltonian, display a power law decay governed by exponents exhibiting a non-
universal dependence on the microscopic interactions, establishing a form of
quasi-long-range order in the system. As an example, the following expressions
of spin correlators are reported:

〈Sz(x)Sz(0)〉 =
C1

x2
+ C2

cos(2kFx)

x2K
(3.95)

〈S+(x)S−(0)〉 = C3

(
1

x

)2K+ 1
2K

+ C4
cos(2kFx)

x2K
(3.96)

where the multiplicative factors Ci are non-universal amplitudes and x = ja is
the value of the spatial coordinate on the underlying lattice. The derivation of
the expression of the spin correlators proceeds by expressing the spin operators
in terms of the fermionic lattice operators thanks to the Jordan-Wigner trans-
formations. These are then rewritten as functions of the bosonic fields through
the bosonization prescription, so that the aforesaid correlators can be computed
with the help of standard path integral techniques as averages of functions of
bosonic fields over a quadratic bosonic Hamiltonian. The Szi operator, being
nothing but the normal-ordered density, takes the form:

Szj = nj −
1

2
≈ 1

π
∂xφ(x) +

(−1)
x
a

πα
cos [2φ(x)] (3.97)

whereas the term in the exponent of the string operator can be manipulated as
follows:∑
j

c†jcj ≈
∫ x

−L2
dy

[
1

2a
+ ψ†R(y)ψR(y) + ψ†L(y)ψL(y) + e−i2kF yψ†R(y)ψL(y) + h.c.

]
≈

(3.98)

≈
∫ x

−L2
dy

[
1

2a
+ ρ(x)

]
=

x

2a
+

1

π
φ(x) + const. (3.99)

where the oscillating factors have been dropped out after the first (approximate)
equality and the constant contribution is to be regarded as a boundary effect
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which disappears in the thermodynamic limit. Thus, the string operator is
wonderfully local in bosonization language and, by plugging its expression into
(3.62) and (3.63), one obtains (see [1] for details):

S+(x) ∝ e−iθ(x){(−1)
x
a + cos [2φ(x)]} (3.100)

Turning our attention back to the physical implications of the Luttinger
liquid Hamiltonian, it is worth noticing that the Sz − Sz correlation function
contains both a q ∼ 0 Fourier component, characterizing nearly ferromagnetic
correlations, and a q ∼ 2kF term, describing the nearly antiferromagnetic ones:
in the case K > 1, corresponding to the presence of attractive interactions be-
tween the fermions or, equivalently, to ferromagnetic interactions in the spin
chain formulation, the antiferromagnetic correlations are suppressed with re-
spect to the ferromagnetic ones, whereas the opposite scenario is realized in the
case K < 1, which is instead associated to repulsive fermion-fermion interac-
tions or antiferromagnetic spin-spin coupling. The results are confirmed by the
outcome of the numerical simulations carried out by means of the density ma-
trix renormalization group (DMRG) algorithm in the liquid phase, as shown in
the section dedicated to the numerical characterization of the phase diagram of
the model. As a final remark concerning the critical, quasi-long-range ordered
phase, it is worth mentioning that the corresponding low energy excitations, de-
scribed by density fluctuation modes whose collective nature is consistent with
the expectation that the enhancement of fluctuations in reduced dimensional-
ity enforces the replacement of the single-particle picture of excitations valid in
higher-dimensional systems with a multiparticle one, exhibit a gapless spectrum.

Instead, when K < Kc = 1
2 , which occurs when the interaction parameter

V exceeds a critical value Vc, the coupling constant g flows to infinity, meaning
that the cosine term is relevant: the phase described in this case corresponds
to a Mott insulator, defined as an insulating state driven by electron-electron
interactions whose density profile shows a periodic modulation arising from the
particle localization on the lattice sites, which is the most convenient configura-
tion from the energetic point of view in order to minimize repulsion. The Mott
insulator is in turn described in a field theoretical treatment by the locking of
the field φ(x) into one of the values φn = 0 + πn

2 , chosen in such a way to
minimize the dominant interaction term in the sine-Gordon Hamiltonian.

A first striking consequence of the aforementioned ordering is the opening of
a gap in the excitation spectrum, as a straightforward derivation of the Hamilto-
nian governing the behaviour of the small oscillations of the field δφ(x) around
the ordered configuration φ(x) = 0 shows. Indeed, by writing φ(x) = 0 + δφ(x)
and expanding up to second order the resulting cosine term, the Hamiltonian
takes the form:

H[δφ(x)] = H0[δφ(x)] + 8g

∫ L
2

−L2
dx δφ2(x) (3.101)

where H0 denotes the standard quadratic Luttinger liquid Hamiltonian. Hence,
even at the level of a straightforward analysis of the strong coupling limit, one
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captures the emergence of a mass term associated to the aforesaid excitations,
which results in the finite energy cost required to excite them. In conjunction to
the gapped nature of the charge ordered state, the correlation functions turn into
exponentially decaying functions, whose decay takes place over a characteristic
length scale, widely known as correlation length in the statistical physics lan-
guage, which, contrarily to what happens in the Luttinger liquid phase, is finite
in the Mott insulating state and inversely proportional to the mass coefficient
in a strong coupling regime.

As a final concluding remark, one can observe that there exist also different
kind of low energy excitations, called solitons, that take the field φ from one of
the prescribed ordering values to another one and can form non trivial bound
states between each other, exhibiting a rich and fascinating physics. We will
not anyway dwell on their properties any further in the remainder of the text.
The whole contents of the physics of the Mott insulator is again recovered by
a numerical treatment of the system in the gapped phase by means of DMRG
simulations, as will be discussed in the next section.

3.5 Numerical results

The numerical characterization of the XXZ model has been carried out by per-
forming DMRG simulations with the help of the ITensor C++ library (see [17])
on the fermionic formulation of the original lattice Hamiltonian for lattice sizes
comprised between L = 61 and L = 111 sites and in presence of open boundary
conditions, those being the ones which maximize the efficiency of the DMRG
algorithm. As a technical remark, it is worth mentioning that the DMRG sim-
ulations on the fermionic formulation of the XXZ model involve the proper
tuning of two simulation parameters, namely the number of of lattice sites and
the associated filling of the system, in order to satisfy precise commensurability
conditions of the underlying lattice to the charge density wave configuration
appearing in the gapped phase and whose unit cell is represented as (•◦), where
the black dot represents an occupied site and the white dot is associated to an
empty one. Indeed, due to the tendency of particles on a finite lattice to stick
to the boundary sites in order to minimize the repulsive interaction contribu-
tion to the energy of the ground state configuration, it is easy to realize that
the only way to accomodate the aforementioned crystalline configuration on a
finite lattice while placing a pair of particles on the right resp. left boundary
site consists in choosing the number of lattice sites as Lp = 2p + 1 and the
corresponding filling as Np = p+ 1, where p is a non-negative integer.

As far as the characterization of the Luttinger liquid phase is concerned, the
values of the model parameters have been chosen to be t = 1, V = 0.5, thus
satisfying J = 2 and ∆ = V

J = 0.25 < ∆c = 1 in terms of the spin model
parameters, so that the exploration of the physics of the critical phase is made
possible. As shown in figure (??), the absence of long range order for values
of the anisotropy parameter satisfying |∆| < 1 is witnessed by a density profile
which closely resembles the uniform average site occupation characteristic of
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Figure 3.5: Fermionic density profile for J = 2,∆ = 0.25 on a lattice of L = 111
sites.

the Luttinger liquid phase, as will be formally proven in the next chapter. The
presence of small oscillations around the 0.5 filling and the enhancement of the
density at the edges of the lattice for energy minimization purposes are due
to unavoidable finite-size effects whose manifestation can be attenuated in the
bulk by increasing the system size. Additionally, by recalling (3.61), it is trivial
to see that a uniform density in the fermionic model corresponds to the average
magnetization being equal to zero, which in turn agrees with the intuitive idea
that small values of ∆ make the exchange interaction along the z-axis negligible
with respect to the couplings along the x-axis and the y-axis, thus leading to
the absence of long-range order in the magnetization profile along the z-axis.

A further reassuring result is presented in figure (3.6), where the density-
density correlation function (Sz − Sz correlation function in the spin language)
of the XXZ model in the critical phase is seen to display the characteristic power
law decay predicted in the framework of Luttinger liquid theory, whose results
can be directly compared to the numerical ones in order to test the agreement
between the two approaches to tackle the study of the system. In particular, a
trivial curve fitting procedure of the spin correlations to the bosonization predic-
tion (3.95) allows to extract numerically the value of the Luttinger parameter,
which is in turn compared to the perturbative expression (3.93) obtained by
means of bosonization, showing thereby an agreement up to discrepancies of
the order of at most 5%.

As a concluding remark with regard to the characterization of the Luttinger
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Figure 3.6: Density-density correlation function for J = 2,∆ = 0.25 on a lattice
of L = 111 sites. The fitting of the numerical data to the field-theoretical result
gives an estimate Kest ≈ 0.803, hence showing an excellent agreement with the
analytical prediction K ≈ 0.782 given by (3.93).

liquid phase, the gapless nature of its excitation spectrum has been investigated
by examining the finite-size scaling of the so called energy gap the single-particle
excitation spectrum, defined by the relation:

G(N,L) = E(N + 1, L) + E(N − 1, L)− 2E(N,L) (3.102)

where E(N,L) indicates the ground state energy of the system in presence of
N particles on a lattice of size L. Indeed, as indicated in figure (3.7), the latter
quantity has been computed in half-filling conditions for lattice sizes ranging
from L = 61 to L = 111, so that its value in the infinite-size limit could be
estimated by fitting the data points to a power law of the form:

f(L;G∞, A,m) = G∞ +
A

Lm
(3.103)

where G∞, A,m are the fitting parameter and the aforesaid estimate of the
energy gap in the single-particle excitation spectrum is given by G∞. The
obtained value turns out to be of order 10−3, which, given the presence of
finite-size effects and the limited number of data points available for the fitting
procedure, is in perfect agreement with the absence of a gap in the Luttinger
liquid phase.
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Figure 3.7: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for J = 2,∆ = 0.25 for lattice sizes ranging from L = 61 to L = 111
sites.

On the other hand, the outcomes of the DMRG simulations confirm the
emergence of a pronounced charge-density wave order in the case t = 1 and
V = 4, corresponding in turn to an evident antiferromagnetic ordering of the
z-component of the lattice spins when the model parameters are set to J = 2
and ∆ = V

J = 2 > ∆c = 1. In fact, the density profile presented in figure (3.8)
can be thought of as being generated by the periodic repetition in space of the
primitive unit cell (•◦). The resulting picture of the system is a Mott insulating
state, where the fermions are strongly localized on a specific pattern of sites in
a way that they give rise to a crystalline configuration. Once again, thanks to
(3.61) it is possible to reinterpret the result obtained in the fermionic setting
with reference to the spin system, where the z-axis magnetization will exhibit
the long-range staggered behaviour which identifies an antiferromagnetic-like
ordering.

Furthermore, as expected, the finite-size scaling of the energy gap in the
single-particle excitation spectrum exhibited in figure (3.9) shows, by means of
the very same fitting procedure as the one employed in the case of the char-
acterization of the point in the Luttinger liquid phase, a value G∞ ≈ 1.465 of
the same order of the sampled finite-size values and manifestly larger than zero,
thereby strongly suggesting that the numerical data are in good agreement with
the field-theoretical prediction of the opening of a finite gap in the low energy
excitation spectrum.
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Figure 3.8: Fermionic density profile for J = 2,∆ = 2 on a lattice of L = 111
sites.

The statement concerning the appearence of a finite correlation length is re-
ported as well in numerical results such as the one shown in figure (??), where
the exponential behaviour which identifies the behaviour of the correlation func-
tions in the gapped Mott insulating state can be observed directly. In particu-
lar, fitting the numerically obtained profile of the density-density correlator as
a function of the distance to an exponential curve of the generic form:

f(x;A, b, l) = Ae−( xl )
b

(3.104)

where A, b, l are fitting parameters, demonstrates the exponential decay of the
aforementioned quantity.
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h

Figure 3.9: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for J = 2,∆ = 2 for lattice sizes ranging from L = 61 to L = 111
sites.

Figure 3.10: Density-density correlation function for J = 2,∆ = 2 on a lattice
of L = 111 sites..



Chapter 4

t− U1 − U2 model at
half-filling

4.1 Introduction

The goal of the present chapter is the recharacterization of the zero-temperature
phase diagram of the t − U1 − U2 model in half-filling conditions. The model
Hamiltonian we are going to refer throughout the exposition is reported here
for reference purposes:

H = −t
∑
i

[
c†i ci+1 + h.c.

]
+ U1

∑
i

nini+1 + U2

∑
i

nini+2 (4.1)

The analysis proceeds both on analytical and numerical grounds: a low energy
effective field theory will be derived by making use of the bosonization technique
and its results will be confirmed and complemented by the outcomes of the
numerical simulation.

4.2 Phase diagram characterization

The starting point of our analysis will be the bosonization of the Hamiltonian
of the model, whose only difference with respect to the fermionic version of the
XXZ model lies in the presence of the long-range interaction term represented
by the next-to-nearest-neighbour density-density term. Hence, let us try to
write its bosonized expression and then add it to the result obtained for the
XXZ model at half-filling or, equivalently, in the zero magnetization sector of
the corresponding spin model.

In a weak-coupling bosonization approach, the fermionic lattice operator is
expanded around the two Fermi points of the spectrum of the non-interacting
system in terms of the slowly varying field operators ψR(x) and ψL(x) as:

cj ≈
√
a
[
eikF xψR(x) + e−ikF xψL(x)

]
|x=ja (4.2)

49
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having denoted the lattice spacing as a and the Fermi wavevector as kF .

The expansion in (4.2) is then plugged into the long-range density-density

interaction term U2

∑
j njnj+2 = U2

∑
j c
†
jcjc

†
j+2cj+2 to give:

U2

∑
j

njnj+2 ≈ (4.3)

U2a
2
∑
j

[
ρ(x) + e−i2kF xψ†R(x)ψL(x) + ei2kF xψ†L(x)ψR(x)

]
× (4.4)

×
[
ρ(x+ 2a) + +e−i2kF xψ†R(x+ 2a)ψL(x+ 2a) + ei2kF xψ†L(x+ 2a)ψR(x+ 2a)

]
|x=ja

(4.5)

where we have introduced the field ρ(x) as:

ρ(x) = ψ†R(x)ψR(x) + ψ†L(x)ψL(x) (4.6)

While the former induces intrabranch scattering events, the subsequent terms
in (4.3) are associated to interbranch processes.

Multiplying all terms together and neglecting the ones containing rapidly
oscillating terms on a length scale of the order of the lattice spacing, one gets
to the expression:

U2

∑
j

njnj+2 ≈ U2a

∫ L
2

−L2
dx [ρ(x)ρ(x+ 2a) +M(x)M(x+ 2a)] (4.7)

having set:

M(x) = ψ†R(x)ψL(x) + ψ†L(x)ψR(x) (4.8)

It is worth mentioning that, in order to write down a proper bosonized version
of the interaction term, it is important to bear in mind while performing the
calculations leading to the expression in (4.7) that, since we are working at
half-filling (kF = π

2a ), the following relations hold:

e±i2kF a = −1 (4.9)

e±i4kF x|x=ja = 1 (4.10)

Hence, while multiplying all terms arising from the expression of the interaction
contribution we are trying to bosonize, it is crucial to be careful not to neglect
the ones containing the complex exponential in (4.10) as a factor.

The final step of the recipe requires the application of the Mattis-Mandelstam
formula, which allows for the representation of the Hamiltonian of the theory
in terms of bosonic continuous degrees of freedom. By plugging the relation:

ψR,L(x) =
FR,L√

2πα
e±i

2πNR,L
L xe−i

√
2πφR,L(x) (4.11)
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into (4.7) and working without loss of generality in the subspace NR = NL =
0, the terms in the continuum limit of the lattice long-range interaction give
respectively:

ρ(x)ρ(x+ 2a) ≈ 1

π
(∂xφ(x))

2
(4.12)

M(x)M(x+ 2a) ≈ 1

2(πα)2
cos
[
4
√
πφ(x)

]
− 4

π
(∂xφ(x))

2
(4.13)

where constant, though divergent, terms arising from the introduction of an
infinite number of states in the field-theoretical treatment have been discarded
due to their unphysical origin and the field φ(x) has been defined as:

φ(x) =
1√
2

(φL(x)− φR(x)) (4.14)

Inserting the obtained expressions in (4.7), the long-range interaction con-
tribution to the bosonized version of the model Hamiltonian reads:

U2

∑
j

njnj+2 ≈
U2

2π2a

∫ L
2

−L2
dx cos

[
4
√
πφ(x)

]
− 3U2a

π

∫ L
2

−L2
dx (∂xφ(x))

2
(4.15)

where the inverse cutoff in momentum space has been replaced on physical
grounds by the lattice spacing a. By adding it to the result previously obtained
for the XXZ model, the final expression of the Hamiltonian defining the effective
bosonic theory for the t− U1 − U2 model takes the form:

H =
u

2

∫ L
2

−L2
dx

[
πKΠ2(x) +

1

πK
(∂xφ(x))

2

]
+ g

∫ L
2

−L2
dx cos [4φ(x)] (4.16)

where the reader is referred to the chapter dedicated to the review of the
bosonization technique for the definition of the conjugate momentum field Π(x).

The value of the phenomenological parameters u and K attached to the
quadratic massless part of the bosonized Hamiltonian take in the present case
the following form as a function of the microscopic interaction parameters:

u = vF

√
1 +

2a

πvF
(2U1 − 3U2) (4.17)

K =
1√

1 + 2a
πvF

(2U1 − 3U2)
(4.18)

having indicated the Fermi velocity as vF . The expressions (4.17) and (4.18)
are of course reliable only in the perturbative limit U1, U2 � 1. On the other
hand, the coefficient in front of the cosine interaction term reads:

g =
U2 − U1

2π2a
(4.19)

making it evident that the two microscopic interaction mechanisms are compet-
ing against each other.
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4.2.1 Luttinger liquid phase

Let us now turn our discussion towards the physical implications of the Hamilto-
nian (4.16). Of course, when both U1 and U2 are negligibly small, the Luttinger
parameter has a value which is larger than Kc = 1

2 and the cosine term turns out
to be irrelevant in the low energy limit. Such a regime describes the standard
Luttinger liquid phase adiabatically connected with the non-interacting point.

The aforementioned phase exhibits quasi-long-range-order, defined by the
scale-free power law decay of the correlators. The associated exponents are
highly non-universal functions of the microscopic interaction parameters through
the Luttinger parameter K. As an example, the behaviour of the density-density
correlation function is reported:

〈ρ(x+ r)ρ(x)〉 =
C1

r2
+ C2

cos(2kF r)

r2K
(4.20)

where C1 and C2 are non-universal amplitudes which do not affect the large
distance behaviour of the density-density correlation function.

At the same time, the system does not exhibit a spontaneous breaking of the
discrete translational symmetry, typical instead of the charge-ordered phases,
as the subsequent cumbersome calculation shows. Quantitative informations
concerning the density profile of the system can be obtained in the framework
of the bosonization recipe by computing the ground state expectation value 〈nj〉
as:

〈nj〉 −
1

2
∝ 〈ρ(x) + e−i2kF xψ†R(x)ψL(x) + ei2kF xψ†L(x)ψR(x)〉 = (4.21)

=

〈
∂xφ(x)

π
+

(−1)
x
a

πa
cos [2φ(x)]

〉
(4.22)

Since the field configuration weights are generated according to a quadratic
action, the various averages can be computed by carefully exploiting Wick’s
theorem. The derivative term gives trivially a zero contribution to the average,
since, as established by the aforementioned Wick’s theorem, averages of products
of an odd number of gaussian fields are equal to zero. The average of the cosine
term requires instead, contrarily to the preceding contribution, more care and
a deeper treatment.

Let us consider:

〈cos [2φ(x)]〉 =

+∞∑
n=0

(−4)n

(2n)!
〈φ2n(x)〉 (4.23)

where the Taylor expansion of the cosine function has been written down. Wick’s
theorem prescription for the 2n−th power of the field φ(x) demands:

〈φ2n(x)〉 =
(2n)!

2nn!
〈φ2(x)〉n (4.24)

where the n−dependent factor in front of the n−th power of the average of the
square of the field accounts for the multiplicity associated to the number of ways
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in which the 2n field factors in the product we have to average can be regrouped
in distinct pairs. By plugging the result (4.24) in (4.23), the expression takes
finally the form:

〈cos [2φ(x)]〉 =

+∞∑
n=0

[
−2〈φ2(x)〉

]n
n!

= e−2〈φ2(x)〉 (4.25)

Thus, the problem has reduced to the computation of the expectation value
〈φ2(x)〉, which is known to be the zero value of the correlator G of the field
theory, defined through the relation:

G(x− y) = 〈φ(x)φ(y)〉 (4.26)

In the framework of a quadratic massless action in 1 + 1 dimension, as it is
the case for our problem, it is a textbook exercise to show that it only depends
logarithmically on the distance r = ||x − y||, as opposed to what occurs in
higher spatial dimensions, where it exhibits a power law decay as a function
of the separation between the two points where the fields are evaluated. In
symbols:

G(x− y) = C0 −
K

4
log r (4.27)

where C0 is an irrelevant constant and the result rigorously holds in the infinite
size, zero temperature limit.

Turning our attention back to the determination of the density profile in the
Luttinger liquid phase, the average of the cosine term can be rewritten in the
end as:

〈cos [2φ(x)]〉 = lim
r→0+

e−2G(r) = 0 (4.28)

by making use of the behaviour reported in (4.27). Hence, the expected value
of the density fluctuations on top of the homogeneous profile of the half-filled
system is identically zero, consistently with the behaviour expected for a quasi-
long-range-ordered liquid phase.

As fas as the numerical characterization of the Luttinger liquid phase is
concerned, the most interesting results have been obtained, inspired by [2],
by performing DMRG simulations at the point U1 = 4, U2 = 2 of the phase
diagram in presence of open boundary conditions and for lattice sizes ranging
from L = 38 to L = 110. The density profile, shown in figure (4.1), seems to
support the analytical prediction: indeed, despite the strong finite-size effects
arising from the relatively small lattices we have considered, one can argue
that the thermodynamic limit is reproduced in the bulk of the system, where
the density oscillations are strongly suppressed and a perfectly homogeneous
configuration is observed.

The power law behaviour of the correlation functions is equally well evi-
dentiated in the outcome of the aforesaid simulations. In particular, the single-
particle correlation function 〈c†i ci+r〉, the pairing correlation function 〈c†i c

†
i+1ci+rci+r+1〉

and the density-density correlation function 〈nini+r〉 − 〈ni〉〈ni+r〉 have been
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Figure 4.1: Fermionic density profile exhibited by the system for U1 = 4, U2 = 2
on a lattice of L = 110 sites.

measured by the DMRG simulation, giving reassuring results. As a reference,
the behaviour of the single-particle correlation function is reported as a function
of the distance in figure (4.2), where the power law functional form is further
supported by a trivial curve fitting procedure of a function of the form reported
below to the numerical data:

f(x;A, b, C, ω, e) =
A

xb
+ C

cos (ωx)

xe
(4.29)

where A, b, C, ω, e are fitting parameters.
An additional information made available by the numerical outcomes ob-

tained by analysing the aforesaid phase diagram point belonging to the Lut-
tinger liquid phase region concerns the absence of a gap in the single-particle
excitation spectrum in the thermodynamic limit. The latter is defined as:

∆(N,L) = E(N + 1, L) + E(N − 1, L)− 2E(N,L) (4.30)

where E(N,L) represents the ground state energy of the system with L lattice
sites and N fermionic particles. The aforesaid quantity has been computed for
lattice sizes ranging from L = 38 to L = 110 sites, so that its finite-size scaling
has been determined with the goal of extrapolating its value in the infinite size
limit. The resulting data points are fitted to a first order polynomial in the
inverse system size, expressed in symbols as:

∆fit(L; ∆∞, A) = ∆∞ +
A

L
(4.31)
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Figure 4.2: Single-particle correlator as a function of the distance for U1 =
4, U2 = 2 on a lattice of L = 110 sites.

where A and ∆∞ are the fitting parameters and the latter yields the numerical
estimate of the gap in the single-particle excitation spectrum in the Luttinger
liquid phase. The outcome, shown in figure (4.3), seems to suggest the gapless
nature of such a phase, as the extrapolated value ∆∞ ≈ 0.009 turns out to be
two orders of magnitude smaller than the finite-size values, contrarily to the
results obtained in the gapped phases to be analyzed later.

4.2.2 Charge-density wave (•◦) phase (CDW-I)

Let us now turn our attention to the strong coupling limits of the Hamiltonian
(4.16) by addressing first the one we already know in more depth. If we assume
that the microscopic interaction parameters take values such that the cosine
term becomes relevant in the sense of the renormalization group (RG) flow, i.e.
K < Kc = 1

2 , and that U1 > U2, so that g < 0, then the nature of the resulting
collective behaviour becomes clear: indeed, if the RG flow for the parameter in
front of the cosine interaction term drives it to strong coupling, then its effect
in the framework of the low energy physics of the model consists in ordering the
field around the value that minimizes the contribution of the aforesaid cosine
of the field to the ground state energy of the system. The sequence of values
fulfilling this condition is given by:

φn =
πn

2
, n ∈ Z (4.32)
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Figure 4.3: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for U1 = 4, U2 = 2 and lattice sizes ranging from L = 38 to L = 110
sites.

term
As a result, the computation of the properties of the phase of the model

currently under analysis can be sketched in order to gain intuition with regard
to its features. As a special case, let us consider once again the density profile,
determined according to equation (4.22). Since the field is pinned on a constant
value with arguably small fluctuations around it, the derivative term can be
neglected in a first rough approximation, whereas the term cos [2φ(x)] can be
estimated as ±1, depending on the exact value of the ordered field configuration.
The final result yields:

〈nj〉 −
1

2
∝ (−1)

x
a (4.33)

witnessing thereby the emergence of a characteristic oscillation of the average
density on the scale of the lattice constant.

Such a feature is reminiscent of the charge-ordered configuration generated
by the periodic repetition of the unit cell (•◦), whose appearence in the phase
diagram of the t−U1−U2 model should not surprise our intuition: indeed, the
Hamiltonian (4.1) reduces to the one of the XXZ model on the line U2 = 0, where
we know with certainty that the collective behaviour for U1 > 2 is described
by the aforementioned charge-ordered configuration, whch we expect to survive
even at finite, sufficiently small values of U2.

The analytical hints are reassuringly confirmed by the data produced through
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Figure 4.4: Fermionic density profile for U1 = 4, U2 = 0.5 on a lattice of L = 111
sites.

DMRG simulations, which confirm the existence of the CDW-I phase. Once
again, the most fruitful results have been produced by characterizing the phe-
nomenology of the system at a point predicted to belong to theCDW-I region
by [2], i.e. U1 = 4, U2 = 0.5, in open boundary conditions with lattices whose
dimensions vary between L = 61 and L = 111 sites. In first instance, the density
profile presented in figure (4.4) shows the crystalline order characteristic of the
Mott insulating state expected from the analytical treatment, for it manifestly
displays a tendency towards the oscillation of the average site occupation num-
ber from an almost zero value to approximately unity when considering neigh-
bouring sites. The deviations from the ideal picture of the crystalline phase we
have depicted observed in figure (4.4) are due to the presence of non-negligible
kinetic fluctuations and finite-size effects.

Simultaneously, the single-particle excitations develop a gap, which, as noted
in the section devoted to the characterization of the phase diagram of the XXZ
model, bosonization predicts to be related to the appearence of a mass term
when studying field fluctuations around the ordered configuration. The result
emerges in the outcome of the numerical simulations as well: as demonstrated
in figure (4.5), the very same finite-size scaling of the aforesaid spectral property
as the one performed in the Luttinger liquid phase results in an extrapolated
value ∆∞ ≈ 0.373 of the same order as the data points sampled at finite sizes
and significantly different from zero.

In the end, consistently with emergence of massive terms in the field-theoretical
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Figure 4.5: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for U1 = 4, U2 = 0.5 and lattice sizes ranging from L = 61 to L = 111
sites.

description of the CDW-I phase, the correlators exhibit an exponential decay
over a finite length scale, called correlation length, inversely proportional to the
finite gap observed in the data acquired via DMRG simulations. In order to
support the above statement, figure (4.6) shows the form of the single-particle
correlation function as a function of the distance, which has been fitted to a
function of the form:

f(x;A, b, l) = A exp

[
−
(x
l

)b]
(4.34)

having denoted by A, b, l the fitting parameters. The nice agreement between
the numerical data and the proposed fitting curve demonstrates the exponential
trend of the single-particle correlator in the present phase, which decays over
the characteristic length l ≈ 5.704 in the case proposed in figure (4.6).

4.2.3 Bond-order (BO) phase

The last strong coupling limit of the field theory defined by (4.16) is taken into
consideration by assuming not only to be in a region of the parameter space such
that the cosine term is relevant, but additionally examining the case U2 > U1,
which implies g > 0. In order to interpret the physics captured in this setting, it
is worth noticing that the effect of the relevant interaction term consists again
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Figure 4.6: Single-particle correlator as a function of the distance for U1 =
4, U2 = 0.5 on a lattice of L = 111 sites.

in the realization of the pinning of the bosonic field φ(x), but the change in
the sign of g with respect to the previous case results in new and unexpected
properties arising from the observation that the allowed ordered configurations
are now given by the sequence:

φn =
π

4
+
πn

2
, n ∈ Z (4.35)

Hence, following the same reasoning purposed in the previous section for
the computation of the density profile, we conclude immediately that, while the
derivative term in the expression of the density fluctuations in bosonization lan-
guage gives roughly a zero contribution due to the ordering effect of interactions,
the term cos [2φ(x)] now vanishes as well, producing thereby the result:

〈nj〉 ≈
1

2
(4.36)

The above result does not differ from what has been obtained in the case of Lut-
tinger liquids and hence arises the question on how to get the physical content
of this limiting behaviour.

The answer to the aforesaid question comes from the description of the
behaviour of the observable:

Oj = (−1)j
[
c†jcj+1 + h.c.

]
(4.37)
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in the bosonization language. The computation is readily done by plugging
the expansion (4.2) into expression (4.37), expressing the fermionic field op-
erators by means of the bosonic ones thanks to (4.11) and remembering that
e±i2kF x|x=ja = (−1)j because kF = π

2a in half-filling conditions, the final for-
mula one arrives to can be written as:

Oj ∝ cos
[
2φ(x)− π

2

]
|x=ja (4.38)

Let us take a look at the value taken by its ground state expectation value in the
different phases captured by the low energy theory (4.16). On one hand, in the
Luttinger liquid and CDW-I phases it can be set to zero to a first approximation.
In fact, the allowed ordered configurations of the field in the CDW-I phase are
chosen in such a way that cos

[
2φ(x)− π

2

]
|φ(x)=φn ≈ 0, where φn denotes the

sequence of ordered fields for the CDW-I phase, whereas in the case of the
Luttinger liquid phase it is immediate to realize that, since cos

[
2φ(x)− π

2

]
=

sin [2φ(x)] and the Taylor expansion of the sine function contains only products
of an odd number of fields that do not contribute when averaged over a quadratic
action by virtue of Wick’s theorem, the ground state average of the observable
Oj will result in a zero value in this case as well.

Instead, by plugging the ordered configurations of the field given by equation
(4.35) in the expression for Oj , it is trivial to realize that this time the result
appears to be finite. Therefore, we are now in the position to introduce the
following order parameter:

OBO =
1

L

∑
j

Oj (4.39)

which we are going to denote as bond-order (BO) parameter. Since its expecta-
tion value is finite and different from zero only in the phase we now identify as
the BO phase, it encodes the physical content of such state of matter. Indeed,
as one can argue from its definition, 〈OBO〉 measures the level of dimerization
developed by the system, defined by the alternation of subsequent strong and
weak links, where the strength of a given link is to be intended in terms of the
effectiveness of the realization of hopping processes on it, quantified by means
of the expectation value of the local kinetic energy operator.

Such a mysterious and counterintuitive phase can be interpreted as an ener-
getic compromise between a Luttinger liquid and a charge-density wave (• • ◦◦)
phase, which will be characterized later. The transition from the former to
the latter is not abrupt, but instead mediated by a so called BO phase, whose
density profile still resembles the one of a standard Luttinger liquid, despite
the fact that the system starts the process of dimerization and crystallization
of the kinetic energy profile which results, upon further increasing the long-
range interaction term U2, in the establishment of the charge-ordered (• • ◦◦)
configuration.

As far as the numerical characterization is concerned, the first remarkable
result is the agreement of the theoretical prediction concerning the density pro-
file with the data extracted from the DMRG simulation carried out in open
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Figure 4.7: Fermionic density profile for U1 = 4, U2 = 3 on a lattice of L = 110
sites.

boundary conditions and with a number of lattice sites ranging from L = 38
to L = 110 at the point U1 = 4, U2 = 3, which is predicted to belong to the
BO phase according to the phase diagram made available in [2]. The resulting
average occupation number profile as a function of the lattice site position is
proposed in figure (4.7), whose only purpose consists in making it evident that
nj does not represent the observable that allows to discriminate between the
standard Luttinger liquid phase and the BO phase.

The finite-size scaling of the gap in the single-particle excitation spectrum at
the aforesaid point is, on the other hand, shown in figure (4.8), whose contents
need to be discussed and deeply interpreted: indeed, on one hand, since the BO
phase is accompanied by the ordering of the field φ(x) in the corresponding field-
theoretical characterization, one expects, in the very same way as for the case of
the CDW-I phase, the emergence of mass terms responsible for the opening of
a gap; on the other hand, instead, since the transition from the Luttinger liquid
phase to the BO phase belongs to the Berezinskii-Kosterlitz-Thouless (BKT)
universality class, the aforementioned gap ∆ is known to open exponentially as
a function of the distance from the transition point as:

∆ ∼ exp

(
− A√

V − Vc

)
(4.40)

where A is a constant. Hence, it is reasonable that, while extrapolating to a
finite value being one order of magnitude larger than the one found in the point
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Figure 4.8: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for U1 = 4, U2 = 3 and lattice sizes ranging from L = 62 to L = 110
sites.

belonging to the Luttinger liquid phase, the gap in the single-particle excitation
spectrum still remains small when compared to the one found in the charge-
ordered configurations due to the narrow shape of the phase diagram region
reserved to the mediating BO phase, which forces its interior points to lie close
to the phase boundary.

As the last step of our discussion concerning the BO phase, we demonstrate
in figure (4.9) the crossover from the Luttinger liquid phase to the BO phase
by looking at the finite-size scaling of the BO parameter: the latter is seen
to gradually extrapolate to non-zero values as the transition line proposed in
the phase diagram presented in [2], thereby providing a very good agreement
with their numerical data. For the sake of completeness, the results shown in
figure (4.9) were obtained by performing DMRG simulations on systems with
sizes varying between L = 122 and L = 214 and for parameter values satisfying
U1 = 4, 2.3 ≤ U2 ≤ 2.7, whereas the fitting procedure has been carried out with
the functional form:

f(L;OBO,∞, B) = OBO,∞ +
B√
L

(4.41)

where OBO,∞ and B are fitting parameters and the x−
1
2 decay has been chosen,

following [20] and [21], by assuming that OBO scales as L−K , L being the system
size, in the Luttinger liquid phase and knowing that K = 1

2 at the transition
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Figure 4.9: Finite-size scaling of the BO parameter for U1 = 4, 2.3 ≤ U2 ≤ 2.7
and lattice sizes ranging from L = 122 to L = 214 sites.

line.

4.2.4 Charge-density wave (• • ◦◦) phase (CDW-II)

The last form of collective behaviour exhibited by the system is the charge-
ordered phase resulting from the periodic repetition in space of the unit cell
(• • ◦◦). Such a configuration is not captured by our weak-coupling bosoniza-
tion approach, which does not reproduce the aforesaid density profile and only
accounts for the dimerization process leading to the CDW-II when the interac-
tion term U2 reaches non-perturbative finite values. Hence, the data presented
for the CDW-II will be exclusively numerical.

The data have been obtained by characterizing the nature of the phenomenol-
ogy of the system at the point U1 = 4, U2 = 6 through DMRG simulations
on lattices whose size varies between L = 38 and L = 110 sites. The den-
sity profile, provided in figure (4.10), exhibits manifestly the periodic, Mott
insulating configuration described above, apart from the standard slight devi-
ations from the ideal behaviour due to the finite kinetic fluctuations and the
enhancement of the average occupation number at the edges of the system,
which does not fulfill the requirement of translational invariance as a result of
the adopted open boundary conditions. Additionally, the numerical simula-
tions show with outstanding evidence in figure (4.11) the opening of a gap in
the single-particle excitation spectrum, consistently with the expectation of a
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Figure 4.10: Fermionic density profile for U1 = 4, U2 = 6 on a lattice of L = 110
sites.

finite gap in a charge-ordered, Mott insulating state. The analysis proceeds, as
usual, through an extrapolation to the thermodynamic limit of the values ob-
tained in the finite-size sample, where the fitting procedure has been performed
via the expression (4.31), providing thereby an estimate ∆∞ ≈ 8.237. In per-
fect analogy with the behaviour emerged in the characterization of the CDW-I
phase, the long-range, discrete translational symmetry breaking order charac-
terizing the CDW-II phase is therefore equipped with short-range correlations,
as witnessed by the exponential decay of the single-particle correlation function
over a finite correlation length, as figure (4.12) shows explicitly by fitting the
numerical data to the exponentially decaying curve:

f(x;A, l, ω) = Ae−
x
l cos (ωx) (4.42)

having indicated the fitting parameters as A, l, ω.
As a last remark, it is worth investigating the finite-size scaling of the BO

parameter as a function of the system size in the CDW-II phase: as expected
on the ground of our physical intuition, the dimerization process is taken to its
extreme consequences by increasing U2 while fixing the other model parameters
to a constant value. The local kinetic energy profile exhibits an alternation from
finite to almost zero values over a 1 lattice constant step, as one can argue from
figure (4.13). Such a behaviour results quite obviously in a finite, comparatively
large value of the BO parameter, whose extrapolation to the thermodynamic
limit confirms the dimerized nature of the CDW-II phase, as shown in figure
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Figure 4.11: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for U1 = 4, U2 = 0.5 and lattice sizes ranging from L = 61 to L = 111
sites.

(4.14). The fitting curve, which shows an almost perfect agreement with the
experimental data, has been chosen on purely phenomenological grounds to take
the form of a decaying power law, i.e.:

f(L;OBO,∞, B,m) = OBO,∞ +
B

Lm
(4.43)

where OBO,∞, B,m are the fitting parameters and OBO,∞ is our estimate for the
infinite-size value of OBO. In the present case, it takes the value OBO ≈ 0.129,
which turns out to be of the same order of magnitude of the sampled data points
and confirms the presence of long.range order associated to the BO parameter
in the CDW-II phase.

4.2.5 Central charge

The concluding part of the work on the half-filled t−U1−U2 model concerns the
search for signatures of the occurence of phase transitions between the various
phases discussed above by means of the central charge profile. Roughly speak-
ing, the latter quantity is defined in the framework of conformal field theory,
where it enters the definition of the Virasoro algebra attached to a given field
theory. Without entering the discussion of further details which go beyond the
scope of the present work, the central charge can be related to the entangle-
ment properties of the system via the celebrated Cardy-Calabrese formula (see
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Figure 4.12: Single-particle correlator as a function of the distance for U1 =
4, U2 = 6 on a lattice of L = 110 sites.

[22]), which provides us with the scaling relation fulfilled by the bipartite von
Neumann entanglement entropy of a conformal field theory as:

SA = −Tr (ρA log ρA) (4.44)

where ρA refers to the density matrix of the subsystem A with respect to the
rest of the chain. The aforesaid Cardy-Calabrese relation reads:

S(l) ≈ c

6
log

[
L+ 1

π
sin

(
πx

L+ 1

)]
+ a0 (4.45)

where we have indicated the length of the whole system as L, the length of the
subsystem as l, the central charge as c and a0 represents a constant. Additional
finite-size corrections to (4.45) have not been reported.

As far as the numerical characterization is concerned, the DMRG simulations
were performed along the line U1 = 4, while varying U2 between the values
U2 = 0 and U2 = 6 and keeping the system size fixed to L = 61 lattice sites in
the phase diagram region interested by the CDW-I phase and to L = 62 lattice
sites when analyzing the CDW-II phase. The apparently bizarre change in the
number of lattice sites keeps track of the commensurability condition the lattice
has to satisfy in order to accomodate the corresponding charge-ordered phase
without introducing frustrated configurations. The central charge has been
extracted from the numerically obtained entanglement entropy profile by fitting
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Figure 4.13: Local kinetic energy profile for U1 = 4, U2 = 6 on a lattice of
L = 110 sites.

it to equation (4.45), thereby treating the central charge c and the constant a0

as fitting parameters.
The result one obtains is shown in figure (4.15). The findings exhibit a signif-

icantly good agreement with the phase diagram proposed in [2]. indeed, starting
from U2 = 0, where the system’s behaviour is the one in the CDW-I phase, the
central charge assumes at first values which are very close to zero; then, upon
further increasing the value of U2, the central charge starts increasing until it
reaches values close to unity in correspondence of the transition, approximately
located around U2 = 1.2 by such a treatment, from the CDW-I phase to the
Luttinger liquid phase, which is known to be described by a conformal field
theory with central charge c = 1. Subsequently, around the value U2 = 2.5,
a downward jump of the value of the central charge signals that the system is
entering the BO phase, whereas, when including even larger values of U2, a cusp
in the central charge profile around U2 = 4 followed by the subsequent decay
of the central charge to almost zero value signals the transition to the charge-
ordered CDW-II phase. The numerical values of the transition points along the
analyzed cut in the phase diagram turn out to be a posteriori close to the more
finely determined ones proposed in [2].
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Figure 4.14: Finite-size scaling of the BO parameter for U1 = 4, U2 = 6 and
lattice sizes ranging from L = 38 to L = 110 sites.

Figure 4.15: Central charge profile along the cut U1 = 4, 0 ≤ U2 ≤ 6 on lattices
of L = 61 and L = 62 sites.



Chapter 5

t− U1 − U2 model at n = 0.4
filling

5.1 Introduction

The general aim of the present chapter is the discussion of the first numerical
results obtained by moving away from the half-filling condition in the framework
of the t−U1−U2 model. The characterization of the behaviour of the system at
the density n = 0.4 that will be given in the following pages is still far from being
systematic and only represents a starting point for a future deeper analysis of
such a theoretical setup.

As mentioned in the introduction to the present thesis work, the scientific
literature has already started to deal with analogous problems. We remind, e.g.,
the argument presented in [5], where M. Dalmonte et al. showed, in the case of
bosonic hard-core particles, that the t−U1−U2 model exhibits a transition from
a standard Luttinger liquid phase to a cluster Luttinger liquid phase along the
line U1 = U2 = U > 0, where only repulsive interactions have been considered.

The long-term purpose of our decision of pursuing research activity in this
direction can be found in the pioneering idea brought about in [3] and [18], where
a first discussion of the topological physics aspects arising from the presence of
interfaces between weak and strong pairing liquid regions is presented. We
will therefore search for the aforementioned phases in the framework of the
t − U1 − U2 model by moving away from the half-filling condition with the
clue that the CDW-II phase will turn into a strong pairing liquid phase upon
decreasing the density, so that it will be possible to move on to the treatment of
theoretical models exhibiting signatures of topological physics such as Majorana
zero-energy modes.
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Figure 5.1: Fermionic density profile exhibited by the system for U1 = U2 = 1
on a lattice of L = 100 sites.

5.2 Numerical results

Let us now draw our attention to the description of the phenomenology observed
until now in the n = 0.4 fermionic t − U1 − U2 model. In first instance, the
analysis has been carried out by observing how the density profile of the system
changes along the lines U1 = U2 and U1 = U2

2 for positive interaction parameter
values, while the lattice size has been fixed to the value L = 100, enforcing
therefore the number of fermions to be N = 40.

For sufficiently small values of the interaction strengths, the system seems is
adiabatically connected to the non-interacting point U1 = U2 = 0, thereby ex-
hibiting the characteristic behaviour of a Luttinger liquid. Among its signatures,
we report here both the density profile and the single-particle quasi-long-range-
order.

The former exhibits the behaviour shown in figure (5.1), i.e. small oscil-
lations around the uniform configurations and a typical enhancement of the
average occupation number at the edges; both features are once again perfectly
reasonable in view of the fact that all DMRG simulations have been carried out
in open boundary conditions, thereby breaking translational invariance while
being far from the infinite-size limit.

The latter is instead demonstrated in figure (5.2) by the profile of the single-
particle correlator as a function of the distance, which has been fitted to a power
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Figure 5.2: Single-particle correlator as a function of the distance for U1 = U2 =
1 on a lattice of L = 100 sites.

law of the form:

f(x;A, b, C, ω, e) =
A

xb
+ C

cos (ωx)

xe
(5.1)

where A, b, C, ω, e are to be interpreted as fitting parameters.
The actual novelty with respect to the half-filled case arises when one tries

to increase further the value of the interaction parameters: as the central charge
profile extracted from the fit of the bipartite von Neumann entanglement entropy
as a function of the values of U1 and U2 and shown in figure (5.3) suggests,
the weakly-interacting regime is confirmed to behave as a standard Luttinger
liquid phase, since values of the central charge c close to unity agree with the
analytical finding that the Luttinger liquid Hamiltonian can be thought of as
a c = 1 theory in the framework of CFT. On the other side, around the value

U
(1)
c ≈ 5 in the case of the cut along the U1 = U2 = U line and U

(2)
c ≈ 4 with

regard to the line U2 = 2U1 = U , the entanglement entropy stops following
the behaviour predicted by the Cardy-Calabrese formula, thereby signaling a
transition to a different state of matter which is worth further investigation,
and the resulting values for the central charge obtained by means of a fit to the
aforesaid Cardy-Calabrese law become nonsensical.

Armed with the purpose of gaining some intuition with regard to the collec-
tive behaviour emerging above the aforementioned roughly determined critical
values of the interaction strength, the density profile of the system deep in the
strong-coupling regime is presented in figure (5.4) along the line U1 = U2 (the
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Figure 5.3: On the left: central charge profile for U1 = U2 = U varying between
U = 1 and U = 6.6 on a lattice of L = 100 sites. On the right: central charge
profile for U2 = 2U1 = U varying between U = 1 and U = 6.6 on a lattice of
L = 100 sites.

results in the other case turn out to be completely analogous). The system
develops a form of phase separation: by such an expression we mean that the
open boundary conditions enforce a local optimal configuration at the bound-
aries with the shape of a highly irregular crystal which extends over a finite,
presumably non-extensive distance from the edges; the profile in the bulk, in-
stead, can be approximately described as the periodic repetition of the unit cell
(• ◦ ◦), which can be trivially recognised as one of the charge-ordered configu-
rations whose structure is such that the contribution of the interaction energy
terms proportional to U1 resp. U2 to the ground state energy gets completely
suppressed. Of course, it cannot be extended over the whole system, since it
would require the filling to be n = 1

3 , contrarily to the present case n = 2
5 >

1
3 .

It is to be noticed that the above decribed configuration arises further ques-
tions concerning the convergence of the DMRG variational optimization proce-
dure, since it could eventually differ from the strict ground state of the system
and represent instead one of the possibly many metastable states of the DMRG
procedure characterized by pseudocrystalline arrangement and near-degeneracy
in the energy spectrum between each other and with respect to the true ground
state as well. The latter feature may make it hard to escape from the multi-
tude of metastable configurations and reach the global energy minimum of the
system by means of a local optimization procedure on the wavefunction.

The described picture of the energy landscape and the multitude of ener-
getically metastable configurations finds its foundations in the behaviour of the
model in the classical limit t = 0 (see [5]), which is expected to be approxi-
mated in the large interaction strength limit, i.e U

t � 1: the system exhibits
an exponentially large (in the system size) number of degenerate ground state
configurations realized by successions of NA blocks of the form (• • ◦◦) and NB
blocks of the type (• ◦ ◦), where the ratio NA

NB
takes the value 1

2 for a density

n = 2
5 . Interestingly, the density profile shown in (5.4) is not extremely far from
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Figure 5.4: Fermionic density profile exhibited by the system for U1 = U2 = 6.6
on a lattice of L = 100 sites.

the picture of the system in the classical limit, even if plagued by finite-size
effects and presumably affected by the convergence issues of the DMRG algo-
rithm in presence of kinetic fluctuations, which turn the exact degeneracy of the
classical grond states into a near-degeneracy condition which may be identified
as one of the most prominent reason for the metastability-related numerical
difficulties.

As a concluding, fascinating remark, let us look at the spectral properties
of the system at the transition point between the two aforesaid collective be-
haviours along the cut U1 = U2. The simulations have been inspired by the
analysis performed in [5] on the quantities:

∆(N,L) = E(N − 1, L) + E(N + 1, L)− 2E(N,L) (5.2)

∆cl(N,L) = E(N − 2, L) + E(N + 2, L)− 2E(N,L) (5.3)

where, as usual, E(N,L) indicates the ground state energy of the system with
N particles on a lattice of L sites. While ∆(N,L) represents the energy gap in
the single-particle excitation spectrum, ∆cl(N,L) is defined in [5] as the cluster
gap and is intended to probe the nature of the low energy excitations of cluster
degrees of freedom across the transition point.

As demonstrated in figures (5.5) and (5.6), when considering the behaviour
of the quantities defined in equations (5.2) and (5.3) while varying U1 = U2 = U
across the critical value U1

c ≈ 5.605 (as accurately estimated in [5]), it emerges
that such a transition can be characterized by the opening of a finite non-zero
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Figure 5.5: Finite-size scaling of the energy gap in the single-particle excitation
spectrum for the values of U1 = U2 = U reported in the figure on lattices with
sizes ranging between L = 20 and L = 60.

energy gap in the single-particle excitation spectrum, while, on the other hand,
the cluster gap continues to extrapolate to an almost zero value in a way that
looks independent from the precise value of the interaction strength U close to
the phase boundary.

The data have been fitted to the power law functional form:

f(x; ∆∞, A,m) = ∆∞ +
A

xm
(5.4)

where ∆∞, A,m are the fitting parameters and ∆∞ has been taken as the esti-
mate of the corresponding gap in the infinite-size limit. On one hand, the cluster
gap values are seen to lose at least one order of magnitude when extrapolated to
the thermodynamic limit, reaching thereby values of order 10−2 − 10−3 which,
given the inclusion of finite-size effects and the limited number of data points,
can be safely assumed to demonstrate the absence of a cluster gap. On the other
hand, the single-particle gap starts to open, as captured by its infinite-size val-
ues, which moves upwards from values ∆∞ ≈ 0.02− 0.03 up to ∆∞ ≈ 0.07 and
is expected to increase further with the interaction strength U .
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Figure 5.6: Finite-size scaling of the cluster gap for the values of U1 = U2 = U
reported in the figure on lattices with sizes ranging between L = 30 and L = 50.
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Chapter 6

Conclusions

The present thesis work has been written with the main goal of tackling the phe-
nomenology resulting from the presence of long-range interactions in the frame-
work of strongly-correlated low-dimensional quantum systems. After a quick
review of the literature on the aforesaid topic, one immediately realizes that the
latter is not a merely speculative research field reserved to theorists only, but
instead raises the interest of the experimental groups working on cold-atoms
setups in effectively one-dimensional (1D) regimes, where long-range interac-
tions may be introduced by employing Rydberg atoms for quantum simulation
purposes.

Then, armed with the purpose of investigating the phase diagram of a many-
fermion lattice model, the report has moved on to the review of the state-of-the
art techniques for the study of 1D many-body quantum physics which have been
used in the remainder of the text. In particular, the numerical tool employed
for the characterization of the different phases of the model under investigation
by means of the computation of order parameters and correlation functions
is represented by the celebrated DMRG algorithm, whose working principle
consists in an optimal truncation of the full, exponentially large Hilbert space
of the many-body problem to a proper subspace of it, in such a way that the low
energy properties of the model remain largely unaffected by the approximation.

Simultaneously, the field-theoretical approach to the 1D many-body problem
has been introduced by proposing a derivation of the bosonization prescription.
The latter allows to formulate effective bosonic field theories describing the low
energy physics of,e.g., lattice models. In particular, once the bosonic represen-
tation of the system is known, the standard route to get both qualitative and
quantitative informations concerning the physics of the one-dimensional system
under analysis relies on the application of standard field-theoretical techniques,
such as path integral calculations and renormalization group (RG) analysis, to
the derivation of the large distance behaviour of the correlation functions and
the characterization of the critical properties of the system.

Then, both original DMRG simulations and bosonization calculations have
been performed with the goal of understanding the properties of the collec-
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tive behaviour displayed by the well known XXZ model. In more detail, the
transition from the Luttinger liquid phase to the antiferromagnetic long-range
ordering has been described by presenting a RG argument with reference to the
effective low energy theory formulated by means of the bosonization technique
and obtaining the functional forms of the various correlators in each of the two
phases, while presenting numerical evidence for the analytical findings through
the data analysis carried out on the outcomes of the DMRG simulations.

The focus of the thesis work has then been the recharacterization of the
phase diagram of the t − U1 − U2 model at half-filling, whose derivation from
a purely numerical point of view has already been proposed in [2]. Besides
crosschecking the accuracy of the phase diagram reported in [2], we achieved
in the formulation of a low energy effective theory which captures the main
qualitative features of the phase diagram of the model and gives a very great
deal of insight into the nature of the competing ordering mechanisms originating
from the simultaneous presence of the interaction parameters U1 and U2.

While being able to recover the transition already encountered in the study
of the XXZ model in the limit where the interaction strength U2 is negligible
when compared to U1, the opposite scenario shows instead that the ordering
mechanism induced by the next-to-nearest-neighbour interaction realizes a ten-
dency towards dimerization across the whole system, so that consecutive bonds
between contiguous lattice sites display a finite difference in the average local
kinetic energy content, while the uniform density profile typical of the Luttinger
liquid phase is still mantained. Such a scenario is complemented, in the limit
of even larger U2, by the numerical evidence of a charge-density wave configu-
ration with unit cell (• • ◦◦), which is to be intuitively interpreted as the phase
resulting from the long-range bond-order when driving the system towards the
non-perturbative regime of large values of the interaction strength U2.

Finally, the purpose of the concluding chapter of the thesis report consists
mainly in the presentation of the perspectives of the future research efforts we
envision on the path towards a more complete understanding of the role of
long-range interactions in the framework of the topological properties of one-
dimensional systems. Concretely, the results of the first DMRG simulations on
the t− U1 − U2 model at filling n = 0.4 have been presented, thereby pointing
out the most interesting observations we have been able to formulate and at the
same time enlightening the possibly severe computational difficulties emerging
at first sight.
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Appendix A

The density matrix
renormalization group

A.1 Historical remarks and general considera-
tions

The goal of the present section is a quick review of the key conceptual ideas
which represent the theoretical foundations of the celebrated density matrix
renormalization group (DMRG) algorithm. The latter represents the state-of-
the-art technique in the numerical characterization of the low energy properties
of one-dimensional (1D) systems. The purpose of this section does not consist
in giving an extensive review of the topic, but instead a quick introduction.
Further details can be found in the reviews by Schoellwock ([6], [6]).

It is well known that the main obstacle to the efficiency of the numerical
simulations of quantum many-body systems is the exponentially increasing size
of the Hilbert space as a function of the system size. As an example, a standard
spin- 1

2 model defined on a lattice of size L is endowed with a Hilbert space H
given by the tensor product of the local spin- 1

2 Hilbert spaces. The correspond-
ing basis is written formally as:

BH =

{
|σ〉1 ⊗ |σ〉2 ⊗ · · · ⊗ |σ〉L : σ = ±1

2

}
(A.1)

where L is the number of lattice sites. A trivial computation reveals that the
dimension of the aforementioned Hilbert space H equals 2L, thereby proving
the point made above with regard to the Hilbert space dimension. Hence, the
exact diagonalization routines turn out to suffer from unavoidable restrictions
in the limit of large systems, even though they have reached high levels of
sophistication and in certain circumstances represent the only way to tackle a
given physical problem.

In order to circumvent such a fundamental limitation which is intrinsic to
the nature of the many-body problem, the approach adopted by the DMRG
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procedure is variational in its essence, for it amounts to the computation of
the low energy properties of the system by performing computational steps and
optimization procedures in a proper subspace of the full exponentially large
Hilbert space.

Since its invention in 1992 by Steve White (see [33] and [34]), the DMRG
algorithm has become the most popular numerical technique in the study of
strongly correlated low-dimensional quantum systems. While initially its use
was limited to the study of static properties of the low-lying eigenstates of the
Hamiltonian of interest such as energy, order parameters and n-point correlation
functions, afterwards the method was extended to the computation of dynamical
and finite-temperature properties of the model.

A.2 The algorithm

In order to deal with the exponential growth of the Hilbert space dimension,
the core of the DMRG algorithm relies on the implementation of an efficient
truncation scheme of the Hilbert space by means of a local decimation procedure.
The crucial conceptual foundation of the current reasoning is the assumption
that the low energy properties of the system are captured by a numerically
manageable reduced state space identified by means of a rigorous criterion.

The first step of the DMRG procedure is traditionally denoted as infinite-
system DMRG and proceeds iteratively by growing a long chain through the ad-
dition of pairs of local degrees of freedom at each step. Formally, let us consider
two sublattices (blocks in the DMRG language) of size l, denoted respectively as
A and B, whose Hilbert spaces HA and HB are in principle equipped with the
bases BA = {|i〉A : 1 ≤ i ≤ dim(HA)} resp. BB = {|j〉B : 1 ≤ i ≤ dim(HB)}.
For efficiency purposes, let us suppose additionally that our numerical resources
allow us to deal with a truncated state space of dimensionD for the two aforesaid
blocks with basis B′A = {|α〉A : 1 ≤ α ≤ D} resp. B′B = {|β〉B : 1 ≤ β ≤ D},
so that we can at most achieve an effective description of the sublattices A and
B in a proper subspace of the full Hilbert space. Then, by enlarging the lattice
through the addition of two sites in the middle, the questions one should try
to answer to concern the determination of the ground state of the superblock
A • •B of length 2l+ 2 and the derivation of a reduced basis of dimension D for
the blocks A• and •B.

As a first remark, any state |ψ〉 defined on the superblock A • •B can be
expanded in the reduced basis of the Hilbert space of the superblock as:

|ψ〉 =

D∑
i=1

d∑
m=1

d∑
n=1

D∑
j=1

cimnj |α〉A|m〉l+1|n〉l+2|β〉B (A.2)

where |m〉l+1 and |n〉l+2 denote the basis elements of the Hilbert space attached
to the local degree of freedom. Hence, the ground state of the superblock, i.e.
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the state ψ minimizing the quantity:

E[ψ] =
〈ψ|HA••B |ψ〉
〈ψ|ψ〉

(A.3)

is found by numerical diagonalization of the Hamiltonian, whose matrix rep-
resentation has dimension d2D2 × d2D2, where d is the dimension of the local
Hilbert space. The numerical recipies typically employed to achieve such a goal
are iterative sparse matrix eigensolvers such as the ones provided by the Lanczos
and Jacobi-Davidson methods.

After having answered the first question, let us turn our attention to the
determination of a truncated basis of the Hilbert space of the enlarged block
A• and similarly of •B by means of a sensible criterion. Naively, if one takes
the set of states {|α〉A|m〉l+1} as the new basis for the Hilbert space of A•, it
is immediate to realize that its dimension has grown to dD, yielding thereby
exponential growth as a function of the number of iterations of the algorithmic
procedure. Hence, a cutoff procedure needs to be implemented in order to avoid
exponential growth.

By defining:

ρA• = Tr•B(|ψ〉〈ψ|) (A.4)

ρ•B = TrA•(|ψ〉〈ψ|) (A.5)

it is possible to state that the choice of the algorithm consists in retaining the
D eigenvectors of the reduced density matrix ρA• with largest eigenvalues as an
effective basis for the new block A•. The same reasoning applies of course for
the block •B with regard to the reduced density matrix ρ•B . The number D is
usually referred to as number of kept states or bond dimension in the scientific
literature. The justification for the aforesaid procedure can be understood by
considering the following optimization problem: since the wavefunction of a
quantum system encodes the whole amount of information about it, we may be
tempted to find the optimal wavefunction |ψ̃〉 in a subspace of given dimension
D that minimizes the L2-norm distance |||ψ〉 − |ψ̃〉||2 from the actual ground
state wavefunction |ψ〉.

The problem is equivalent to the well known low-rank approximation of a
matrix: indeed, interpreting the coefficients of the expansion of the ground state
wavefunction with respect to an orthonormal basis, the above problem reduces
to the determination of the matrix Ψ̃ of rank D that best approximates the
ground state matrix Ψ formed by the aforementioned coefficients with respect
to the Frobenius norm || · ||F , defined by the relation:

||M ||F =
∑
i,j

|Mij |2 (A.6)

where M is a generic matrix.
By applying the well known singular value decomposition (SVD) to the dD×

dD matrix Ψ, it can be rewritten in the form:

Ψ = UΣV † (A.7)
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where U and V are unitary matrices, Σ is a diagonal matrix with real non-
negative entries called singular values and all matrices have dimension dD×dD
in our specific setting. Then, the optimal choice of Ψ̃ is given by:

Ψ̃ = UΣ′V † (A.8)

where Σ′ is obtained from Σ by setting to zero all but the D largest singular
values.

Switching to the bra-ket notation, it means that, while the actual ground
state of the system can be expressed as:

|ψ〉 =

dD∑
a=1

sa|a〉A•|a〉•B (A.9)

its approximation reads:

|ψ〉 =

D∑
a=1

sa|a〉A•|a〉•B (A.10)

having denoted the singular values as sa and assumed them to be sorted in
decreasing order (s1 ≥ s2 ≥ · · · ≥ sdD) and defined:

|a〉A• =

dD∑
i=1

Uia|i〉A• (A.11)

|a〉•B =

dD∑
j=1

V ∗ja|j〉•B (A.12)

where |i〉A• and |j〉•B represent the dD basis elements of the blocks A• and •B,
respectively.

Finally, in order to make connection with the above reference to the reduced
density matrices of the bipartite system, it is sufficient to realize that, since
the states |a〉A• and |a〉•B are defined through the application of a unitary
transformation to the elements of a complete set of orthonormal states, they
represent themselves a valid basis choice. Therefore, the trace operation defining
the reduced density matrices of the two blocks is easily carried out and gives
the following as a result:

ρA• =

dD∑
a=1

s2
a|a〉A•〈a|A• (A.13)

ρ•B =

dD∑
a=1

s2
a|a〉•B〈a|•B (A.14)

Equations (A.13) and(A.14) clarify that the states defined in (A.11) and(A.12)
are the eigenvectors of ρA• resp. ρ•B , while the spectrum of the two operators
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coincides. Thus, the approximation made in (A.10) truly amounts to neglecting
the eigenvectors of the reduced density matrices associated to their smallest
eigenvalues.

After having performed the steps detailed above, the algorithm repeats them
in presence of two additional sites added in the middle of the system. Then,
once the desired system size is reached as a result of the application of the
infinite-system DMRG procedure, it is crucial to follow up on it by the so called
finite-system DMRG procedure. Roughly speaking, the finite-system DMRG
algorithm improves the choice of the reduced basis for superblocks being much
smaller than the desired system size.

Concretely, the algorithm works almost identically to the infinite-system one:
at each step, the ground state of the superblock is computed, the eigensystem
of the reduced density matrices are found and the D eigenvectors with largest
eigenvalues are retained for the characterization of the successive superblock.
The only difference with respect to the above procedure lies in the fact that the
growth of one of the two blocks by one site occurs at the expense of the other.
This continues until the shrinking block’s Hilbert space reaches a dimension
which does not exceed D and is followed by the reversal of the growth direc-
tion. The described sweeping procedure, when repeated until the wavefunction
converges, has been shown to radically change in most of the cases the results
given by the sole application of the infinite-system DMRG algorithm, so that
its implementation in the currently used DMRG codes is undeniable.

A.3 DMRG and matrix-product-states

As a last remark, it is worth remarking a different formulation of the whole
DMRG procedure entirely based on the matrix-product-state (MPS) represen-
tation of a quantum many-body state. The latter, in first instance, allows
for an exact description of a generic quantum state of a, e.g., lattice model
|ψ〉 =

∑
{si} cs1...sN |s1〉 . . . |sN 〉 by reexpressing it as:

|ψ〉 =
∑
{si}

∑
{αi}

A[s1]
α2
A[s2]
α2α3

. . . A[sL−1]
αL−1αLA

[sL]
αL |s1〉 . . . |sN 〉 (A.15)

The issue with the expression in (A.15) is the exponentially increasing dimension
of the A matrices when one tries to perform exact calculations. However, it turns
out that the formula presented in (A.15) yields an efficient parametrization of
the subspace the DMRG algorithm works on when the dimension of the aforesaid
matrices is reduced to a given cutoff value D, which coincides with the bond
dimension of the iterative update procedure. The unprecedented flexibility and
simplicity characterizing the art of manipulating MPS has made the formulation
and implementation of the DMRG code in the MPS formalism the choice of
preference in the scientific community.


