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Abstract

The progression of a population of cancer cells is studied under the assumption that a small
sub-population of them co-exists with cells in the usual differentiated state. This sub-population
is characterised by the properties of a very peculiar state of cells: the stem state, with high
proliferation rate, capacity of self-renewal and strong therapy resistance. Moreover, based on
recent considerations, transitions between the two co-existing states (stem and differentiated)
is allowed from stem cells to differentiated cells, but also in the reverse direction. The two
transitions will however occur with different probabilities. They are governed by chemical
activators and are assumed both to happen in tumours as well as in healthy tissues. Based
on these considerations a model of cancer progression will be presented and simulated. It will
require a sophisticated treatment of population dynamics, that will admit three fixed points.
Various dynamical phenomena will be studied, and a preliminary study of the effects of a
noisy environment on it will be sketched. The hope of this work is that some of the dynamical
behaviours of such model will suggest good therapeutical strategies. These effects will be looked
for both analytically and numerically.

Keywords : cancer stem cells, population dynamics, extrinsic noise

1 Introduction

1.1 About Cancer

Advances in the understanding of biological systems, in scientific knowledge and in technology have
throughout the eras influenced the way of diagnosing and curing cancer. For instance the discovery
in 1895 of X-ray radiations by German Physics professor Wilhelm Conrad Roentgen allowed, within
a few years, the development of a new treatment for cancer called radiation therapy.

Cancer is a very devastating disease: it is the first cause of death worldwide. ”The global cancer
burden is estimated to have risen to 18.1 million new cases and 9.6 million deaths in 2018. One in
5 men and one in 6 women worldwide develop cancer during their lifetime, and one in 8 men and
one in 11 women die from the disease” [1]. Cancer consists in the alienancy of a number of cells of
the organism. Its origin is not well understood as yet, but is mostly considered to be due to genetic
mutations. ”Hallmarks [of cancer cells] include self-sufficiency in growth signals, insensitivity to
anti-growth signals, evasion of apoptosis, and limitless replicative potential. Typically, this acquired
characteristic leads to an abnormal increase in cells proliferation rates. Also, tumor cells can usually
sustain angiogenesis and, in mid or late stages, invade other tissues and metastasize” [2]. Apoptosis
is a property of cells meant to regulate their life-time, and avoid uncontrolled growth through
programmed death of cells. Angiogenesis is a physiological property of cells that allows them to let
veins and capillaries grow within the population itself, in order to have an easy access to nutrient and
help proliferation. The self-sufficiency in growth signals is the capacity of cancer cells to regulate,
through the sending of chemical signals, their capacity of renewing themselves, i.e. of generating
other cells of their own kind. Once the first property is undermined and the second is active,
tumour progression is ineluctable, with the activation of the third capacity. In the same way as
for any healthy tissue, cancer growth depends on various environmental factors - physiological or
external conditions of the body - and in the secretion of chemical substances by the cells themselves
[2]. All these considerations applied to cancer make tumour progression a complex system to model:
a non-monotonous behaviour, non-linearity, a high number of independent parameters and multi-
dimensionality will appear to be key ingredients for its description, and make it a very striking
example of complex system. It seems that a science of complexity such as the Physics of complex
systems is idoneous or very welcome to address this societal and health problem. In the past few
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decades, the Physics of complex systems has largely addressed ecological questions with methods of
population dynamics. It was born as a science that would aim at describing collective behaviours
that cannot be predicted simply on the basis of the nature of its constituents. It studies for example
the evolution of an ecosystem, where species interact. The problem of cancer progression seems to
have a lot to share with growth and extinction of interacting species, as various kinds of cells and
chemical activators interact with one another. It therefore seems that tools coming from ecology and
the science of complexity could find a very privileged place in the study of a complex mechanism
such as cancer.

1.2 Approach

”The exact mechanism of spontaneous tumor remission or complete response to treatment are phe-
nomena in oncology that are not completely understood” [3]. This clearly puts an accent on the
fact that if such positive situations are not well understood and are not the most studied ones, the
same uncertainty holds true for dangerous behaviours of tumours which gather most of the urgent
attention of scientists. For instance, cases of tumour resumption are important to be understood.
In some cases, tumour may indeed start growing dangerously after a period of quiescence. In order
to explain resumption one calls forward the hypothesis that cancer cells with high proliferation rate
just as if they were stem cells are present in the tumour. This is the so-called stem cell assumption.
In a first moment, one will set up a deterministic model, that will be based on it, for a solid tumour
that has already undergone chemotherapy. The model will allow a small sub-population of cancer
cells (about 1% of the full population) to exist in the self-renewable stem state, in order to take into
account cancer ”self-sufficiency in growth signals” [2]. Apoptosis will play a role in the evolution of
the rest of the cancer cell population, which will be found in the differentiated state. The model will
only be dynamical and will not allow the tumour to spread in space, for example by flowing into
veins. The tumour under study will be confined to a finite region of space, such as an organ. For this
reason the model will only be addressing the behaviour of solid tumours, which are organ tumours.
Organ tumours can spread, as long as they are confined to the organ. In this case, they spread in
the so-called stroma or micro-environment. Within this deterministic model, one will show that the
dynamics undergone by such a two-phase population of cancer cells is quite complex. The system
will have to be highly non-linear and in the present case will be four-dimensional. Bringing the
system to low values of the concentration of cancer stem cells will appear not necessarily to imply
that the tumour will get extinct. For some values of physiological parameters, tumour may indeed
start growing again. In practice, chemotherapy does sometimes have the opposite effect as the hoped
and meant one: the amount of cancer stem cells might grow instead of shrinking. One will explore
various cases, and will try to put forward a strategy for leading tumour to extinction, by driving
it in the basin of attraction of a fixed point of the dynamical system that would correspond to an
optimistic situation. ”Treatment [will] not need to kill all the [cancer stem cells] to be successful in
eradicating a tumor” [3].

Moreover, stochastic fluctuations of the environment surrounding the population may be impor-
tant to be taken into consideration. There is experimental evidence that noise is present in cases
of cancer progression [4]. The quantities that describe the physiological conditions of the region
surrounding the solid tumour do fluctuate. For instance, even the simple fact that physiological
temperature is different from zero, implies that there are necessary fluctuations of the system, and
constant exchange with a thermal bath. Also the fact that mutations occur at different times with
randomly distributed events could be a reason for the presence of noise into the system. This being
said, noise may have a noteworthy impact on the system, and fluctuations due to it may be relevant
for therapeutic purposes. One will therefore start exploring, in a second moment, a trivial effect
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of this environmental noise on the deterministic description of the system. A striking phenomenon
that could be arising, is the appearance of noise-induced jumps from one fixed point of the system
to another one. Indeed, if one fixed point corresponded to tumour extinction and one corresponded
to tumour survival at dangerous concentrations of cancer cells, this possibility could have positive
as well as negative implications for therapy, depending on the direction of the jump. This work will
bring very preliminary considerations on this stochastic part.

1.3 The Role of Stem Cells

Stem cells are characterised by high proliferation rate, capacity of self-renewal and immortality [5].
They are very present during the early stages of the development of an organism. They however do
not disappear completely from the organism at the end of its development, but survive in a small
percentage and play a key role in the reparation of damaged tissues. Another important characteristic
of stem cells is indeed that they are toti-potent. As such, they have the power to transform into
very diversely-specialised cells, through the so-called differentiation process. These specialised cells
will be programmed to perform all the specific functions required by the particular tissue or organ
they belong to. Biologists distinguish various steps within the differentiation process: toti-potent,
pluri-potent, multi-potent and uni-potent. By sake of simplicity, one will not consider intermediate
steps. Once differentiated, cells loose toti-potence and become uni-potent, or differentiated. Stem
cells undergo what will be referred to as ”mitosis”, in reference to the proliferation process that cells
normally undergo, but in a broader sense. It will indeed gather in it two of the properties of stem
cells which were mentioned above: capacity of self-renewal and differentiation -the former describing
the normal occurrence of mitosis. After such a generalised ”mitosis”, daughter cells will be either
stem or differentiated ones. In the former case, the mother stem cell has renewed itself, in the latter
case it has undergone differentiation.

Observations show that cells exhibiting a cancerous behaviour are cells that belong to a given
tissue and that are thus generally specialised. But these observations do not necessarily imply that
stem cells cannot be present in tumours. Indeed, a reason for the lack of observations thereof could
be that stem cells are not only usually present in a low percentage but also very difficult to detect [5].
Anyways, the idea that cancer cells may be found in the stem state is still the matter of heavy debate.
The assumption that tumours do contain cancer stem cells could however explain the development,
by some of them, of therapy resistance as well as uncontrolled growth in quasi-homeostatic cancers.
Indeed, in quasi-homeostatic cancers, differentiated cells do not have particularly strong growth rates.
Therefore, in these conditions, the uncontrolled growth of the tumour could well be explained by
the presence in the population of special cells with high proliferation rate. Their presence could also
explain several biological facts such as the relapse of tumour post-surgery or the ability to generate
tumours in xeno-transplantations, depending on the injected mass [5]. Leukemia, pancreatic cancer,
squamous cell carcinoma, colon cancer and melanoma are examples of tumours which seem to contain
sub-populations of cancer cells in the stem state [6]. However, leukemias will not be the matter of
this work, since they are blood tumours and hence not solid.

In this work, the approach to the problem of cancer progression will be made within the assump-
tion that some small percentage of the full population will be composed of cancer cells in the highly
proliferating stem state.

A recent perspective also considers that, in healthy cells, the transition from stem state to dif-
ferentiated state is not the only one to occur. Cells may also undergo the opposite transition ;
differentiated cells thus recovering their toti-potence, with some rate. There is strong experimen-
tal evidence that such a reverse process occurs [7]. It is called de-differentiation, as opposed to
differentiation. This perspective was envisaged after Gurdon’s and Yamanaka’s works leading to a
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technique bringing differentiated cells back to their stem state. The resulting cells are called induced
stem cells (iSC). By transplanting mouse differentiated cells (fibroblasts) into a mouse embryo, they
discovered that all the genetic material necessary for recovering the toti-potence of stem cells does
not get lost along the differentiation process. In particular, Yamanaka discovered that four genes
are alone responsible for toti-potence of cells, meaning that this capacity of stem cells is carried
by a support, genes, that does not get lost during differentiation. In fact, fibroblasts would start
contributing to the formation of various tissues inside the hosting embryo.

De-differentiation in healthy cells, is a strategy of survival for the population. Stem cells are
able to self-renew as well as to differentiate. They are thus capable of letting a population grow or
of keeping it in a homeostatic state, in which population’s size is pretty much constant in time. This
being said, there may arise situations that would let the number of stem cells significantly decrease
and may even threaten their survival. In order to avoid this, the differentiated cells are capable of
undergoing a de-differentiation process, which will let the sub-population of stem cells recover its
initial size, against dramatic damages done on the tissue. As an example of what happens in healthy
populations of cells, in cases of strong diarrhea, a large portion of the intestinal cells may be lost
through it, thus threatening the integrity and the reconstruction of the intestinal wall. Thankfully,
in this case, some of the differentiated cells left are allowed to switch back to the stem state, in
order to recover a minimum size for the sub-population of stem cells. Once this minimal size has
been reached, the population of healthy stem cells will possibly be able to efficiently reconstruct the
damaged tissue.

Recent works have also shown that this backward process not only occurs in healthy cells, but
may also occur in cancer ones too [4]. Although de-differentiation is much less common compared
to the differentiation process, it may play a key role in the creation of a feedback which could for
example explain the occurrence of tumour resumption.

Because of the inclusion of the de-differentiation process, the present model lies in between two
already-existing models: the hierarchical and the stochastic one. The former does not consider
de-differentiation, so that eventually, complete extinction of the cancer stem cells will eradicate the
tumour. It however takes self-renewal of cancer stem cells into account. On the other hand, the
latter, the so-called stochastic model, considers that any kind (stem or differentiated) of cells can
possibly be a tumour-initiating one. It thus does consider de-differentiation but not self-renewal.

As for the initial conditions of the population under study, if concentrations are initially already
important, the uncontrolled growth of the tumour seems unavoidable. In order to have a chance of
escaping the case of uncontrolled growth, the model will therefore have to consider cases in which
initial concentrations are relatively low. This way, one will be able to describe tumour extinction as
well as tumour resumption and other behaviours. Such an initial condition on the concentrations of
cancer cells can for instance occur after a treatment by chemotherapy, or at an early stage of tumour
growth.

In short, the model which will be presented hereafter will be based on the cancer stem cell
assumption according to which tumours contain a sub-population of stem cells. In particular three
of the characteristics of stem cells will be relevant: their capacity of self-renewal, differentiation and
de-differentiation. In the case of low initial concentrations, these aspects aim at explaining various
behaviours of tumours.
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2 Deterministic Model

As mentioned above, the model consists in letting cells of the system be found into two different
states: the stem and the differentiated ones. It is a dynamical model of the ecological kind, in
the continuous limit for the variables S,D, a and m. Variables in fact are discrete quantities as
they describe population concentrations. They evolve in time in a way that depends on various
regulation quantities. The growth and decay of the cancer cell concentrations is for instance governed
by chemical activators responsible for either self-renewal of cancer stem cells or de-differentiation
undergone by differentiated cancer cells. The model overall follows the time-evolutions of the four
variables (S,D, a and m), in a coupled way and according to the following set of nonlinear differential
equations [5]: 

dS

dt
=
( 2ηa

(1 + ηa)(1 + ψD)
− 1
)
S +

q0

2
(1 + tanh(

m−m0

σ
))D,

dD

dt
= 2
(

1− ηa

(1 + ηa)(1 + ψD)

)
S − (d+

q0

2
(1 + tanh(

m−m0

σ
))D,

da

dt
= a(βS

a

1 + a
− α),

dm

dt
= γe−

S
S0 − αm.

(1)

(2)

(3)

(4)

S is the concentration of cancer stem cells, D is that of cancer differentiated cells. ”In practice,
in vivo and in vitro, the population of cancer stem cells is always a tiny fraction of the entire tumour
population (few percents)”[5]. Both quantities being concentrations, their sum must always stay
below unity: S +D < 1. The remainder to unity will constitute a third phase of the model, which
has not been mentioned yet. This third phase contains quiescent, dead and immune T cells [5]
that are present in tumours although in a passive way. It in fact does not appear explicitly in the
present model. The variables a and m are the concentrations of both chemical activators governing
self-renewal and de-differentiation respectively. One will now proceed to the listing of the main
physical properties included in this model.

• The activator a is responsible for the self-renewal of cancer stem cells. It indeed appears in the
growth term of S in eq. 1. It is produced by cancer stem cells themselves. This justifies the
linear dependence of the growth term of a on S (eq.3). This growth however saturates with a
saturation coefficient a

1+a . ”Candidate self-renewal promoters include Wnts, BMP, Shh, and
Notch” [8].

• The activator m, on the other hand, is responsible for the de-differentiation process, i.e. for the
re-population of S. Since S undergoes a proliferation process that one decided to hereafter call
”mitosis”, through which differentiated cells D can be born, the re-population of S ultimately
implies that of D [5]. Above a value m = m0, m strongly contributes to the growth of the
concentration of cancer stem cells, through a sigmoid function q(m) = q0

2 (1 + tanh(m−m0

σ )).
This function describes the de-differentiation rate as a function of the activator m and carries
its main action on the system. The sigmoid appears in the positive contribution to the growth
of cancer stem cells S (eq. 1), and to the negative term in the growth of differentiated cells
D (eq.2). The value of S

S0
regulates the growth of m. The quantity m may represent the

concentration of the protein survivin which has been shown to promote de-differentiation in
cell lung cancer of mice [3], but also ”a network of miniRNA” [5]. The latter ”promote[s] the
awakening of quiescent breast cancer stem cells from a mesenchymal to an epithelial state” [9].
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• q0 is the maximum rate at which de-differentiation happens, when it does occur (i.e. if σ << 1,
this happens approximately when m > m0). In fact, when m > m0, q(m) → q0, whereas in
the opposite case, q(m)→ 0.

• S0 is a critical value for the growth of m. For values of S that are very large compared to

S0, the growth term (γe−
S
S0 ) in the evolution of m will go to zero, so that only the death

term will drive its evolution (eq. 4). In cases of very large S >> S0 there will therefore be an
effective decay of the concentration of m. In other words, when many stem cells are present,
the chemical activator responsible for the de-differentiation process is not called forward. On
the other hand, for concentrations of cancer stem cells very small compared to S0, the positive
contribution will tend to its maximum value γ, in order to re-populate S. In short, for very
low concentrations of cancer stem cells (S << S0), the de-differentiation activator m will have
a non-vanishing growth term, and may even effectively grow. The overall variation of m is

very sharp around S ∼ S0. The γe−
S
S0 term finally carries what has been described above as

the survival strategy of the population.

• d carries the effective death rate of differentiated cells: it contains both proliferation and death
of D. It in fact appears as a coefficient in the negative contribution to their growth (eq.2).
Examples of processes of cellular death are apoptosis, senescence and autophagy. ”The case
where d < 0, due to proliferation of differentiated cells via nutrients is not considered, since
it leads to an exponential growth in the population of both stem and differentiated cells” [5].
For this reason, the present model describes a quasi-homeostatic tumour. Cancer stem cells
are not assumed to undergo similar spontaneous death process: they are immortal. Hence, the
absence of death rate in the equation for the evolution of S (eq.1).

• α represents the death rate of both chemical activators (see equations 3 and 4). It is by sake
of simplicity that they were chosen to take the same value.

• d, q0, α, β, η, ψ,m0, σ, γ, S0 > 0. All parameters are positively defined. They are related to
physiological quantities which can be measured in experiments.

For what concerns the coefficients of S in the first two equations of the system, one should consider
in greater detail the cell division process. A cancer stem cell divides into two daughter cells through
mitosis. As anticipated, in this model one will consider a very schematic and generalised division
process which will include processes that are not present in simple mitosis, such as differentiation.
One will hereafter call it ”mitosis”, into quotes. Based on the state in which the daughter cells are
found, one may distinguish three different cases. There are two cases of symmetric ”mitosis”. In the
one case, the two daughter cells are both born in the stem state. In the other case, they are both
born in the differentiated one. The asymmetric situation, on the other hand only counts one case:
one daughter cell is in the stem state and the other one is in the differentiated state.

Let p be the probability that a cell division originates one stem cell. The contribution to the
growth of S, as a result of the division of S itself, also called self-renewal coefficient, will therefore
simply be (2p−1). Indeed, one is trying to determine how ”mitosis” lets the number (concentration)
of cancer stem cells grow in time. It replaces one mother cancer stem cell by two daughter cells. If
the daughter cells are both stem, ”mitosis” will enable a net increase of the number of cancer stem
cells: from one to two. The probability that two stem cells are born through ”mitosis” will trivially
be twice the probability p that one stem cell is. However, since the mother stem cell disappears in
the process, one must subtract it, as it will no longer be able to contribute to the growth of the S
population. The stem cell self-renewal coefficient is finally (2p− 1) [3].
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When it comes to the growth of D, as a consequence of the mitosis of S one will show that the
contribution is simply 2(1 − p). Indeed, it can happen either when one differentiated cell is born
through ”mitosis” (asymmetric case), or when two differentiated cells are (symmetric case). In the
former case, the net growth of D will be by one unity, and will happen with probability (1−p). The
latter, will be associated to a net growth by two unities, thus with probability 2(1− p). Overall, the
differentiation will contribute to the growth of D with the following coefficient: (1−p)+ 1

2×2(1−p) =
2(1−p). Since mitosis, in the narrow sense of self-renewal, in our model is only undergone by cancer
stem cells, there is no disappearance term for D. One can also check that the total probability is
well normalised to 1: 2p− 1 + 2− 2p = 1.

The shape of p can be taken as follows [8]:

p = p(D, a) =
ηa

(1 + ηa)(1 + ψD)
(5)

As mentioned above, the quantity a is responsible for the self-renewal of S. For this reason p
must be proportional to a. As the population cannot grow indefinitely a saturation term is included.
Saturation will be regulated by both the amount of activator a and the concentration of differentiated
cells D. The larger the amount of differentiated cancer cells, the less the need of the cancer stem
cells population to let itself get bigger. One has thus shown that the coefficients of s are indeed
( 2ηa

(1+ηa)(1+ψD) − 1) and 2(1− ηa
(1+ηa)(1+ψD) ) in equations 1 and 2, respectively.

The proliferation of differentiated cells does not appear in the model. In fact one considers that,
in the absence of external action, the differentiated cells are found in a quasi-homeostatic state.
All the energy they consume would be sufficient and just enough for keeping themselves in a stable
situation, in which individuals do not die nor divide with a particularly high rate. Homeostasis is the
”tendency to [stay in] a relatively stable equilibrium between interdependent elements, specially as
maintained by physiological processes. The regulation of [...] homeostasis involves the competition
for a limited supply of diffusible factors” [10].

Chemotherapy targets cancer stem cells S, as these drugs are meant to attack rapidly dividing
cells [3]. In a model where differentiated cells are taken in a quasi-homeostatic state, they cannot
be the target of chemotherapy. The effects of chemotherapy will moreover only be taken into
consideration as possibbly responsible for the low initial values of the concentrations of cancer cells,
required by the model. Indeed, the goal of this work is to study the free evolution of cancer from
such an initial condition.

To summarize, the model has incorporated dynamical statements which were previously made in
a qualitative way, on cancer. Among these statements, one has shown that the dynamics contains
the differentiation of cancer stem cells, its self-renewal and the activation of the de-differentiation
process above a small threshold value S0 for the concentration S of cancer stem cells. Whereas stem
cells do not die, differentiated cells undergo apoptosis. An activator (a) is involved in the regulation
of cancer stem cell self-renewal. Another activator (m) will govern de-differentiation. Both evolve
as functions of the concentrations of cancer stem cells. One is interested in understanding the
behaviour of such a system depending on the values of the parameters, which can be determined
experimentally. The study of its dynamics therefore starts with the determination of the fixed
points of the system. Fixed points are meaningful because they correspond to conditions for which
the system stops evolving in time. They are stationary and homogeneous solutions of the system.
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2.1 Fixed Points

Four quantities have been pointed as involved in the process of tumour growth. The system of
equations describing their coupled time-evolutions has been presented. The vector describing the
evolution of the system lives in a four-dimensional space, whose axes are (S,D, a,m). In the same way
as for any dynamical system, the fixed points of this particular one can easily be determined. Fixed
points are defined by the coordinates that let the system’s motion (carried by the time derivative)
vanish. Since we deal with a four-dimensional system, each fixed point will be defined through four
coordinates. By imposing da

dt = 0 in the set of equations of paragraph 2, one agrees that there are
two solutions for a:

a(βS
a

1 + a
− α) = 0 ⇒ a = 0 and a

.
= a3,

where a3 is the solution for βS a
1+a − α = 0. In order to determine the coordinates of the fixed

points one will proceed in two steps. One will first determine all the fixed points satisfying to the
condition a = 0 and then determine the ones that satisfy to the complementary one a = a3. One
will finally have covered all possible cases. The expression S = dD is true whichever the value of a
(see Appendix .1).

• In the case where the activator responsible for self-renewal of cancer stem cells is totally absent,
i.e. a = 0, putting the left-hand-sides in the system of equations in paragraph 2 equal to zero
leads to the following two fixed points (see Appendix .2):

F1 =


S1 = 0,

D1 = 0,

a1 = 0,

m1 = γ
α ,

F2 =


S2 = −S0log(αm2

γ ),

D2 =
[
− S0log(αm2

γ )
]

1
d ,

a2 = 0,

m2,

with m2 = σtanh−1(2 d
q0
− 1) + m0, obtained by plugging S = dD in eq. 2 of the system of

equations and by recalling that a = 0.

Whereas F1 is always defined, F2 is only defined for d < q0 and m2 < γ
α . One can prove

these statements analytically by observing the expression for m2. Because of the domain of
the inverse hyperbolic tangent, m2 is in fact only defined for 2 d

q0
− 1 < 1, so indeed for d < q0.

As for the second condition of existence, one needs to impose that the concentrations of cells
S2 and D2 will only admit positive values - otherwise leading to unphysical results. As a
consequence, the argument of the logarithm in the expressions for the concentrations will have
to be always larger than one:

αm2

γ
> 1 ⇒ m2 >

γ

α
(6)

• As for the case where a = a3, there is only one corresponding fixed point (Appendix .3):

F3 =



S3 = α
β

1+a3

a3
,

D3 = 1
d (αβ

1+a3

a3
),

a3 = 1
2

1+ Ψα
dβ (1+η)

η(1−Ψα
dβ )

(
1 +

√
1 +

4 Ψα
dβ η(1−Ψα

dβ ))

(1+ Ψα
dβ (1+η))2

)
,

m3 = γ
αexp(−

S3

S0
).
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Similarly to the second fixed point F2, F3 does not exist for all values of d and q0. It is only
defined for d > ψα

β . Indeed, the value of a3 would be negative if Ψα
dβ were larger than 1 and a

negative concentration of chemical activator would be unphysical. The requirement of having
a3 > 0 therefore yields the following condition on the death rate d, for the existence of F3:

Ψα

dβ
< 1 ⇒ d >

Ψα

β
. (7)

The line d = Ψα
β is the horizontal one appearing in the (d, q0)-phase-diagramme in Fig.1. For

Fig. 1’s specific choice of parameters, its value is Ψα
β = 5.

As for the physical interpretation of these points, the first fixed point F1 corresponds to the most
optimistic situation in which concentrations of cancer cells in both states -S and D- are strictly equal
to zero. The second one, F2, too, is associated to an optimistic situation. Indeed, once the values of
the parameters chosen, the concentrations S and D are not exactly vanishing, yet, they are generally
quite low. On the other hand, the third fixed point F3 is a very pessimistic one. Even though tumour
converging to F3 stabilises to a steady state and does not further proliferate, the steady state is
associated to high concentrations of cancer cells, which makes the situation dangerous.

One has obtained the coordinates of the points of parameter space for which the dynamics of the
system vanishes. The model will then be based on the study of their stability for the construction
of what could be a good therapeutic strategy: one will study the basins of attraction of each of the
three fixed points, in order to find the regions of the (d, q0)-parameter-space to which it would be
sufficient to lead the system, in order for it to converge to either of the optimistic fixed points, F1

or F2. One will see that this region is the blue region in the phase-diagramme of Fig. 1.
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2.2 Stability Analysis

Once the fixed points determined, one is interested in studying the stability of the system around
them. The stability analysis is done locally by linearizing the system around each of the fixed points
and calculating the eigenvalues. One can extract the eigenvalues of the system around each fixed
point by:

• Treating one fixed point at a time.

• Evaluating the Jacobian at the chosen fixed point.

• Calculating the corresponding characteristic polynomial.

• Finding its roots. Roots are the eigenvalues of the chosen fixed point.

The Jacobian has matrix coefficients given by:

∂eq1
∂S

∂eq2
∂S

∂eq3
∂S

∂eq4
∂S

∂eq1
∂D

∂eq2
∂D

∂eq3
∂D

∂eq4
∂D

∂eq1
∂a

∂eq2
∂a

∂eq3
∂a

∂eq4
∂a

∂eq1
∂m

∂eq2
∂m

∂eq3
∂m

∂eq4
∂m ,


where eq1, eq2, eq3 and eq4 are the right-hand-sides of the differential equations in the system of
paragraph 2. It becomes:

2p(D, a)− 1 2S ∂p(D,a)
∂D + q(m) 2S ∂p(D,a)

∂a
∂q(m)
∂m ·D

2(1− p(D, a)) −2S ∂p(D,a)
∂D − (d+ q(m)) −2S ∂p(D,a)

∂a −∂q(m)
∂m ·D

βa2

1+a 0 βSa(a+2)
(a+1)2 − α 0

− γ
S0
exp(−S

S0
) 0 0 −α.

 (8)

where:

p(D, a) =
ηa

(1 + ηa)(1 + ψD)
and q(m) =

q0

2
(1 + tanh(

m−m0

σ
))

∂p(D, a)

∂D
=

−ηψa
(1 + ηa)(1 + ΨD)2

and
∂p(D, a)

∂a
=

η

(1 + ηa)2(1 + ψD)

∂q

∂m
=
q0

σ
(1 + tanh(

m−m0

σ
))
[
1− 1

2
(1 + tanh(

m−m0

σ
)
]
.

With the eigenvalues in hand, the stability of the fixed points will then be controlled by the signs
of the eigenvalues and the amplitude of their imaginary part. If all eigenvalues are positive, the fixed
point will be repulsive. If all eigenvalues are negative, it will be attractive. In mixed cases, it will be
saddle. Each eigenvalue is associated to an eigenvector. The eigenvector, carries the direction along
which the system shows the stability described by the corresponding eigenvalue. It is straight if the
imaginary part is zero and spiraling otherwise.

One will analyse the stability numerically. Analytical stability analysis can be found in appen-
dices.
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2.3 Stability of F1

One recalls that the first fixed point takes coordinates F1 = (0, 0, 0, γα ). One may check that
S1 + D1 = 0 ≤ 1. What remains in the body when tumour cells disappear are cells of the third
phase mentioned in section 2 : quiescent, dead and immune.
• In a case for which d > q0 (red region of the phase diagramme in fig. 1) :

For:


d = 2

q0 = 1

α = 1

β = 3

⇒ Eigenvalues are:


λ1,2 = −1

λ3 = −3.7

λ4 = −0.27

(9)

All four eigenvalues are negative. Hence, F1 is stable.
• In a case for which d < q0 (green region) :

For:


d = 0.2

q0 = 1

α = 0.5

β = 5

⇒ Eigenvalues are:


λ1,2 = −0.5

λ3 = −2.52

λ4 = 0.32

(10)

For this second choice of parameters, the first fixed point is saddle. λ4 is in fact positive.
One can show analytically (Appendix .4) that more generally, the first fixed point is stable as

long as d > q0, and saddle otherwise. Biologically, the condition d > q(m) means that the death rate
of the differentiated cancer cells is shorter than the time-scale for de-differentiation. Differentiated
cells die much more quickly than the time necessary to let them transform back to stem cells. As
a consequence, it does not seem surprising that both cancer stem and differentiated cells vanish in
the first fixed point.

In both cases, the values of the missing parameters were the following: η = 1, ψ = 0,m0 = 0.5,
σ = 0.05, γ = 1, S0 = 0.038.

2.4 Stability of F2

The second fixed point is only defined for d < q0 (green region).

For:


d = 0.2

q0 = 1

α = 0.5

β = 5

⇒ Eigenvalues are:


λ1,2 = −0.81± 3.24i

λ3 = −0.5 + 0i

λ4 = −0.19 + 0i

(11)

For this choice of parameters, the second fixed point takes coordinates F2 = (0.05, 0.27, 0, 0.46).
(S2 + D2 = 0.05 + 0.27 = 0.32 ≤ 1 is respected.) The values of the missing parameters were the
following: η = 1, ψ = 1,m0 = 0.54, σ = 0.05, γ = 1, S0 = 0.038. When it exists, F2 is attractive,
with two spiraling directions for each of the two eigenvectors corresponding to λ1,2. Indeed all four
real parts are negative, and two of the imaginary parts are non-vanishing. An analytical proof of
the attractiveness of F2 can be found in Appendix .5.
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2.5 Stability of F3

The stability of the third fixed point F3 is particularly relevant as it is the one fixed point that
therapies urge to avoid.
• In a case where d > q0 (red region) :

For:


d = 2

q0 = 1

α = 1

β = 3

⇒ Eigenvalues are:


λ1,2 = −1.01± 0.28i

λ3 = −1 + 0i

λ4 = 0.81 + 0i

(12)

For this choice of parameters, the third fixed point takes coordinates F3 = (0.53, 0.26, 1.72, 9.3 ×
10−7). S3 +D3 = 0.79 ≤ 1
• In a case where d < q0 (green region) :

For:


d = 0.2

q0 = 1

α = 0.5

β = 5

⇒ Eigenvalues are:


λ1,2 = −0.23± 0.18i

λ3 = −0.5 + 0i

λ4 = 0.47 + 0i

(13)

For this second choice of parameters, the third fixed point takes coordinates F3 = (0.15, 0.73, 2.15, 0.042).
S3 +D3 = 0.88 ≤ 1 in this case too.

In both cases, the values of the missing parameters are the following: η = 1, ψ = 1,m0 = 0.5,
σ = 0.05, γ = 1, S0 = 0.038.

For both d < q0 and d > q0 cases, two eigenvalues have a non-vanishing imaginary part, meaning
that the dynamics around the third fixed point will be spiraling along two directions. However, since
the real parts of these eigenvalues are negative, both the corresponding directions will be attractive.
The same will hold true for the direction associated to the fourth eigenvalue, i.e. the one which had
a negative real part and no imaginary part at all. There will overall be three attractive directions for
the system around the third fixed point F3, and a repulsive one. The repulsive one will be given by
the eigenfunction associated to the last eigenvalue λ4, which has a positive real part and a vanishing
imaginary part.

To sum up, around the third fixed point, one direction is repulsive, one is attractive and two are
attractive along spirals.

The third fixed point will therefore be a saddle point. This is proven analytically in Appendix
.6. One may check this in the phase diagramme (Fig. 1) and in the streamline plots (Fig. 4 and
Fig. 5) as well. The point of coordinates (S, a) = (0.15, 2.15) in the left-hand-sided picture of Fig.
4 has both attractive and repulsive streamlines crossing it.
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Figure 1: [5]. Phase-diagramme for existence and stability of fixed points in the plane of parameters
d and q0 ([5]). Fixed points into boxes are stable. Fixed points into clouds are saddle. The equation
for the horizontal line is d = ψα

β = 5. The equation for the bisectrix is d = q0.

2.6 Global Dynamics

After having studied the local dynamics around the three fixed points of the system, one is ready
to get results from a less local point of view. One will first summarise all results mentioned in the
previous section within a phase-diagramme. One will then proceed to the study of some particular
cases of time-evolution of the variables of the system. One will finally look at the specific shape
and size of the basins of attraction around the fixed points. As an opening to future work, one will
expose some very preliminary considerations concerning noise-induced changes in stability.

2.6.1 Phase-Diagramme

In order to summarise what has been determined above concerning the existence and stabilities of the
three fixed points, one will plot the various regions delimited by the conditions of existence. However,
the amount of free parameters in the model is much too important to allow a full representation. One
will therefore have to discriminate relevant from irrelevant parameters. Among the 10 parameters
(d, q0, α, β, η, ψ,m0, σ, γ, S0), one may show that only 6 are relevant in the dynamics of the population
of cancer cells: d, q0, α, β, η and ψ.

One is in fact interested in those parameters which are relevant for the definition of regions of
parameter-space where the dynamics is not completely divergent. In fact, in diverging situations,
only relatively trivial therapeutic strategies can be extracted. For the same reason, our model
describes a population of cancer cells after chemotherapy, i.e. when tumour growth has already
been significantly controlled. For initial high concentrations of cancer cells, the dynamics will hardly
escape uncontrolled growth.

For instance, in the (d, q0)-two-dimensional sub-space shown in Fig. 1, two-to-three fixed points
are defined, and different sub-regions show different stability configurations. This particular sub-
space is strikingly relevant as conditions of existence for the fixed points could both be plotted.
Stability considerations made in the previous section are well summarised in this figure. One can
see that F2 is not defined above the bisector d = q0, and when it exists it is stable. In the region
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where this relatively optimistic fixed point does not exist, however, the very optimistic fixed point
F1 exists and is stable. The pessimistic third fixed point F3 is saddle whenever it exists (d < ψα

β ).
One easily observes that the blue region is a very optimistic one as the fixed point F1 associated

to vanishing concentrations of cancer cells is stable and is even the only one existing in it. An idea
would then be to base a therapeutic strategy on this result, by imposing that the system be in that
situation. A strategy that would first come to mind, and that reminds of the goal of chemotherapy
itself, is that of targeting cancer cells, by inducing their death. This would correspond in the model
to increasing the value of the death rate d of differentiated cells. However, the simple condition
of maximisation of d appears not to completely escape the possibility that tumour converges to a
steady-state with high concentration of cancer cells. Indeed, in the phase-diagramme of Fig. 1, the
red and the green regions have higher values of death rate d, but are regions in which the pessimistic
fixed point F3 exists and threatens the system.

If one wants to drive the system to the blue region, then, one needs to impose the following two
inequalities: q(m) < d < ψα

β (which define this region).

• One possibility is to have m < m0. This makes the hyperbolic tangent in q(m) = q0
2 (1 +

tanh(m−m0

σ )) go to −1 thus canceling the de-differentiation rate q(m)→ 0. The first inequality
defining the blue region will then automatically be satisfied, since, in the present model, d is
always positive. The second inequality on the other hand will suggest a strategy. If one
increases the value of α as much as to make the fraction ψα

β larger than the death rate d, the
second inequality will have good chances to be satisfied, thus imposing that the system be in
the optimistic blue region of the phase-diagramme. In other words, in the case where m < m0,
a strategy that seems promising for therapy is that of increasing the spontaneous death rate
α of both the activators a and m.

• In the case however where m > m0, the value of the hyperbolic tangent will be close to 1.
This will let the de-differentiation rate q(m) be approximately equal to q0. Since q(m) ≤ q0,
by definition, if d > q0, the same situation as above holds: the first inequality will be satisfied
and a promising strategy would be the action on the death rate α of the activators, in order
to let the second inequality hold true as well. On the other hand, if d < q0, the first inequality
will never be satisfied. But for d < q0, one knows that the second fixed point F2 is attractive.
An alternative procedure would then be to lower the values at which the system will want to
stabillise to, i.e. to lower the values of S2 and D2 = S2

d . This leads us back to a maximisation
of α strategy. One in fact recalls that:

S2 = −S0log
(α
γ

(σtanh−1(
2d

q0
− 1) +m0)

)
.

Since S0 is positive, the argument of the logarithm will have to be the larger in order for S2

to take low values. Then:
α

γ
(σtanh−1(

2d

q0
− 1) +m0)→ 1,

which will be the more likely to be satisfied, the larger the value of α.

2.6.2 Dynamical Simulations

The goal of this work being to study the dynamical behaviour of a multi-phase population of cancer
cells, one will be particularly interested in following the time-evolutions of the four variables of

15



10 20 30 40
t

0.54

0.56

0.58

0.60

S

10 20 30 40
t

0.30

0.35

0.40

D

10 20 30 40
t

1.65

1.70

1.75

a

10 20 30 40
t

8.×10-7

1.×10-6

1.2×10-6

m

Figure 2: Evolution in time of S, D, a and m. Initial conditions are S(0) = 0.6, D(0) = 0.4,
a(0]) = 1.72, m(0) = 0.000001. Values of parameters are (d, q0) = (2, 1), (α, β, η, ψ,m0, σ, γ, S0) =
(1, 3, 1, 1, 0.5, 0.05, 1, 0.038), corresponding to a system in the red region of the phase-diagramme.
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Figure 3: Dynamics of the system with the following set of initial conditions: S(0) = S1 = 0, D(0) =
D3 = 0.26, a(0) ∼ a1 = 0.0001,m(0) = m3 = 9.3 × 10−7. Parameters are: (d, q0) = (2, 1), and
(α, β, η, ψ,m0, σ, γ, S0) = (1, 3, 1, 1, 0.5, 0.05, 1, 0.038). The system is in the red region of the phase-
diagramme, and jumps from the first fixed point F1 at zero concentration of cancer cells, to the
third fixed point F3, standing at high concentrations.
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the model, given different initial conditions. In order to plot these evolutions one has solved the
differential equations using the Euler method with Python and using NDSolve with Mathematica.

Fig. 2 shows that the variables S, D, a and m oscillate in time around a fixed point before
converging to it. This oscillating dynamics is the translation of the fact that some eigen-directions
were found to be spiraling in the stability analysis.

For some sets of initial conditions, one can see that jumps from one fixed point to another
may arise, in a completely deterministic situation. This is simply due to a proximity of the initial
conditions to two different fixed points, which will let the system first converge to one of them and,
after some time, converge to the other one. The time after which the system will change its mind,
will depend on the initial conditions. Fig. 3 shows that for the chosen initial conditions I, the
system jumps from the first fixed point F1 to the third one F3, after approximately 15 iterations of
time. Compared coordinates of I, F1 and F3 are the following:

I =


Si = 0,

Di = 0.26,

ai = 0.0001,

mi = 9.3× 10−7,

F1 =


S2 = 0,

D2 = 0,

a2 = 0,

m2 = 1,

F3 =


S3 = 0.53,

D3 = 0.26,

a3 = 1.72,

m3 = 9.3× 10−7,

For the choice of parameters that lead to Fig.3 ((d, q0) = (2, 1), (α,ψ, β) = (1, 1, 3)), the system
stands in the red region of the phase-diagramme (Fig.1). The death rate d = 2 is larger than the
de-differentiation rate q0 = 1. This choice corresponds to an attractive fixed point F1. However,
one could think that for this value of d one stands in the blue region, since d < 5. This is not the
case, because the horizontal line will be shifted to a value d 6= 5. In fact, for the new choice of
parameters, d = αψ

β = 0.33 which is lower than the chosen value d = 2 > 0.33. The system does
stand in the red region.

Despite the fact that in that region, the attractive fixed point is F1, the concentration of cancer
stem cells S, in the upper left plot of Fig. 3, jumps drastically from S1 = 0 to S3 = 0.53 around the
15-th iteration of time, thus over-crossing the stable fixed point F1.

2.6.3 Tumour Resumption

The overall stability of the system around the fixed points has been shown as a function of d and q0 in
the phase-diagramme (Fig. 1). The evolution has been confirmed from a purely dynamical point of
view in time-plots. For some initial conditions of the variables the system has shown a more complex
behaviour, including jumps from one fixed point to another. The goal is now to have a closer look
at the exact shape and speed of the streamlines around the fixed points, in the variable-space. A
streamline plot shows trajectories and directions of the system in a two-dimensional sub-space. The
rainbow gives a measure of the norm of the vector field. Figures 4 and 5 show streamline plots in
both (S, a)- and (D, a)-subspaces for two different choices of parameters. One has used Mathematica
and has fixed the two variables of the system that do not appear in the plot at the values they take
in the third fixed point F3. What is being followed is therefore the convergence of the system to
any of the fixed points, given that two of its variables are already in F3. This brings uones back to
the complex behaviour mentioned here above, that involved jumps in the dynamics. Indeed, in the
previous case, the values of Di and mi were exactly equal to D3 and m3 respectively, just like for
the (S, a)-plots in Figures 4 and 5. One may notice the important changes in size of the basins of
attraction from one choice of parameters (red region) to the other one (green region).
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Figure 4: Streamplot for d < q0 (green region): (d, q0) = (0.2, 1); and (α, β, η, ψ,m0, σ, γ, S0) =
(0.5, 5, 1, 1, 0.5, 0.05, 1, 0.038).
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Figure 5: Streamplot for d > q0 (red region): (d, q0) = (2, 1), and (α, β, η, ψ,m0, σ, γ, S0) =
(1, 3, 1, 1, 0.5, 0.05, 1, 0.038).
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In the streamline plots, one can see that the system may undergo regression, resumption, and
convergence to a fixed point, depending on their position in (S, a)- and (D, a)-subspaces. In Figures
4 and 5, the basins of attraction of the two figures on the right-hand-side (in the (D, a)-subspace)
are more or less comparable. However, their difference in size in the left-hand-sided pictures (in the
(S, a)-subspace) are quite different. In the red region (Fig. 5), the size of the basin of attraction for
low concentration values is larger compared to the green region’s case (Fig. 4), where, moreover, the
optimistic fixed point F1 is no longer stable. Driving the system to the basin of attraction of F1,2 is
therefore more restrictive in the green region: it is a more dangerous region for the system to be in.

In other words, in the red regions, where F1 is stable, the Allee effect [3] is more likely to occur
with extinction of cancer cells. The Allee effect is a cooperation phenomenon defined as the positive
correlation between population density and average fitness. Allee had proved in an ecological setting
that aggregation can improve the survival rate of individuals, as well as the opposite statement.
The Allee effect is indeed also defined at low population densities as a tendency of it to shrink. The
extinction of tumour could be explained as some sort of cooperative behaviour of cancer cells ”that
become[s] less efficient at low population density” [11]. It may arise as a consequence of ”autocrine
growth factors, diffusive signalling molecules produced and secreted by cells that enhance growth
and proliferation of other cells” [11]. So finally, ”due to feedback and the Allee effect, a tumor may
become extinct spontaneously or after therapy even when the entire tumor has not been eradicated
by the end of [it]” [3].

In the less dangerous red region, it appears that, even though the attractive fixed point is F1, the
tumour will not necessarily go under regression and converge to such low concentrations of cancer
cells, because of the existence of the third fixed point F3. In order to impose that the system will
eventually converge to F1, one would think qualitatively, that inducing death of differentiated cells
by acting on their death rate d, would be a good strategy. Indeed, the case of the red region, with
larger d, at fixed q0, seemed more optimistic than that of the green region with lower d. However,
this does not seem to be a very promising strategy, since the red region still threatens of making the
system’s concentrations of cancer cells grow dangerously.

In continuity with what was mentioned in paragraph 2.6.1, one is interested in checking that
acting on parameter α could instead have more positive consequences on the system. In the stream-
plots of Fig. 6, one observes that the higher the value of α, the wider the basin of attraction for
optimistic fixed points F1 and F2.

2.6.4 Noise-Induced Change in Stability

Environmental fluctuations can certainly influence the dynamics of the system. Indeed, their pres-
ence in the system can lead it out of the initial basin of attraction, thus changing its asymptotic
behaviour. This can for instance be because the quantities describing the system fluctuate, or be-
cause the basins of attraction do so. Figure 7 shows the fluctuations of the basins of attraction
as induced by an additive gaussian white noise for d and q0 of standard deviations 0.9 and 0.6
respectively. Noise has been defined as a function of time. However, since streamline plots are
independent of time, noise has simply been obtained by evaluating the function at some fixed time.
At each iteration of the noise the full function is redefined. This is the way that was chosen among
others for extracting a random number from a gaussian distribution, with Mathematica. One may
observe that the basin of attraction of F1 sometimes shrinks significantly. As a consequence of
these large changes in size of the basins of attraction, noise-induced transitions from one fixed point
to another seem likely to occur. However, it is not surprising that with such an important noise
variance, the system will jump from one fixed point to the other. Moreover, this does not allow
to define any therapeutic strategy, as transitions induced in such a way would be purely random.

19



-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

0

1

2

3

S

a

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

0

1

2

3

S

a
Figure 6: Parameters common to both figures are: (d, q0) = (0.2, 1), (β, η, ψ,m0, σ, γ, S0) =
(5, 1, 1, 0.5, 0.05, 1, 0.038); (green region). The figure on the left-hand-side has lower value of the
death rate of the activator responsible for self-renewal of cancer stem cells: α = 0.5. Figure on the
right-hand-side has stronger death rate: α = 0.9.

One would therefore want to look for noteworthy effects of relatively weak noise on the system, that
would not occur in a random way. For the definition of a good therapeutic strategy, one would like
to see whether noise could make the system be very likely to converge to either of the optimistic
fixed points.
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Figure 7: Streamplots for four different realizations of noise. Parameters are: (d, q0) = (0.2, 1),
(α, β, η, ψ,m0, σ, γ, S0) = (0.5, 5, 1, 1, 0.5, 0.05, 1, 0.038); - Green region.
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3 Conclusion

A simple multi-phase model for tumour progression has been presented, and simulated. In particular,
one is dealt with a bi-phase model: the cancer population was assumed to be composed of a small
percentage (about 1%) of cancer cells in the stem state of cells, the rest of the population was instead
present in the differentiated state. The model for cancer then took into consideration transitions
among the two allowed states of cells. This model is meant to describe non-trivial phenomena such
as tumour resumption that seem to take place in some kinds of cancer. Tumour resumption occurs
if a population with low concentrations of cancer cells - a situation which would seem optimistic -
starts resuming, or growing dangerously again. A few examples of cancers that sometimes exhibit
such a behaviour are pancreatic cancer, squamous cell carcinoma, colon cancer, melanoma and breast
cancer [4].

The transition from stem to differentiated cells is the one that occurs most frequently within
a population and is called differentiation. It consists in cells in their toti-potent stem state to
differentiate into a given tissue’s or organ’s specialised cells and thus to switch to the so-called
differentiated state. The opposite transition, from differentiated to stem state, happens, on the
other hand, much more seldom. Its existence in tumours, however, may be the one responsible
for events of tumour resumption, which are not yet well understood. This transition that takes
the name of de-differentiation, occurs when the amount of cells in the stem state goes below some
small threshold value which was denoted S0. The differentiated cells will then act in order to
repristinate an ”acceptable” concentration of stem cells. The possibility of backward transition that
occurs in healthy cells thus introduces in the cancerous situation the feedback that could explain
the occurrence of tumour resumption.

One has numerically and analytically observed that, depending on the region of variable-space,
the cancer system may undergo regression, resumption or convergence to a steady-state that was
more or less optimistic.

The first therapeutic strategy that came to mind was that of inducing senescence or a stronger
death rate on the differentiated cells by increasing the value of d. However it is not necessarily a
good strategy as the situation of large death rate, d > q0, has been shown not to be so optimistic.
Indeed, the presence of the third fixed point in the red and green parts of the phase-diagramme
made it not automatically true that a regression would take place.

The ideal case has been shown to be the one corresponding to the blue region of the phase dia-
gramme, for lower values of d. The idea was then to base a good therapeutic strategy on this result,
by imposing the system to be in that situation. This was shown to find optimistic response when
imposing a growth of the spontaneous death rate α of the activators. The most promising strategy
therefore seemed to be that of targeting chemical activators rather than cancer cells themselves,
because of the vicious feedback loop occurring between stem and differentiated cancer cells [5]. ”In
medical centers nowadays, this strategy is commonly employed post-surgery to avoid the relapse of
a new tumour at the same place of the primary one which had been withdrawn. Long time drug
administration over years aims at suppressing these activators” [5].

The study of the conditions under which jumps occur also seemed relevant for the determination
of promising therapeutic strategies. One has shown that for some choices of initial conditions, the
system jumps from one fixed point to another one. The hope is to further explore both deterministic
and noisy situations that induce such changes of asymptotic behaviour, so that therapy could avoid
jumps leading to a pessimistic steady-state, and promote those leading to an optimistic one.

Since research in stochastic processes has shown that noise may have a strong impact on non-
linear systems, and since noise is necessarily present in this system, it seems important to check for
possible effects of noise on it. The work on this stage has been interrupted at a very preliminary
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point. But various ideas are in process.
Analysis and simulations of this model allowed to determine parameters for which resumption

happens, as well as parameters for which a change of basin of attraction occurs, after an amount of
time that depends on the initial conditions. The model has hopefully enabled to draw a provisional
conclusion on possible therapeutic strategies for tumour extinction [5]. The hope of the success of
such a model is that it may also allow a more personal medical monitoring. Based on parameter
values that are related to physiological quantities, one could decide the strategy to adopt, in order
that, given the basin of attraction in which the patient is initially found, the cancerous system will
eventually be brought to extinction.
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4 Appendices

.1 Proof: S = dD

One should take the first pair of equations in system of equations of paragraph 2. Since one is
ultimately looking for the coordinates of the three fixed points, one lets the time-derivatives vanish.

In order to simplify notations one recalls that:

ηa

(1 + ηa)(1 + ψD)
= p

The system finally simplifies into:
(2p− 1)S +

q0

2
(1 + tanh(

m−m0

σ
)D = 0,

2(1− p)S − (d+
q0

2
(1 + tanh(

m−m0

σ
))D = 0,

(14)

(15)

Summing both equations one gets:

��2pS − S +
((((

(((
((((

(q0

2
(1 + tanh(

m−m0

σ
))D + 2S −��2pS − dD −

((((
(((

((((
(q0

2
(1 + tanh(

m−m0

σ
))D = 0

S − dD = 0 ⇒ S = dD (16)

.2 Coordinates of F1 and F2

In the case where a = 0 (→ a1,2 = 0), system of equations in paragraph 2 becomes:

−S +
q0

2
(1 + tanh(

m−m0

σ
)D = 0,

2S − (d+
q0

2
(1 + tanh(

m−m0

σ
)D = 0,

0 = 0,

γe−
S
S0 − αm = 0

(17)

From the fourth equation one straightforwardedly gets the value for S2:

γe−
S
S0 − αm = 0 ⇒ S = −S0 · log

(αm
γ

)
Since D = S

d , as has been proven in Appendix .1:

D = −S0 · log
(αm
γ

)1

d
.

By plugging D = S
d in the first equation of (17), one gets:

−�S +
q0

2
(1 + tanh(

m−m0

σ
))
�S

d
= 0

q0

2
(1 + tanh(

m−m0

σ
)) = d

m−m0

σ
= tanh−1(

2d

q0
− 1)

m = σtanh−1(2
d

q0
− 1) +m0.
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The logarithm in S and D then distinguishes two different cases: the case for which its argument
αm2

γ is equal to 1, and the case αm2

γ where it is generally different from 1. In the former case, the
logarithm will vanish carrying with him the values of S and D. This condition will define the so-
called first fixed point F1, with zero concentrations of cancer cells. In the latter case (αm2

γ generally

different form 1), the logarithm will generally be non-vanishing, therefore defining non-vanishing
values of S and D for the so-called second fixed point F2.

.3 Coordinates of F3

The third fixed point F3 corresponds to the solution of the fixed point equation for which a 6= 0:

a
(
βS

Sa

1 + a
− α

)
= 0 ⇒ if a 6= 0 this holds true when:⇒ βS3

S3a3

1 + a3
− α = 0

Instead of using the latter condition to express a3 as a function of S3, one chooses to use it to define
S3 and D3 as a function of a3. One gets:

S3 =
α

β

1 + a3

a3
and D3 =

S3

d
=

α

βd

1 + a3

a3

Then, for the following, one must consider that the case a = 0 corresponded to a zero probability
p that cancer stem cells will divide and give birth to one of their kind. Indeed, one recalls that
p = ηa

(1+ηa)(1+ψD) . But as mentioned above, the division can be either symmetric or asymmetric. p

therefore only takes three possible values: 0, 1
2 and 1. The latter value is however not interesting,

because it means that no differentiation ever happens. The case of the third fixed point will therefore
be: p = 1

2 .

ηa3

(1 + ηa3)(1 + ψD3)
=

1

2

2ηa3 = 1 + ηa3 + ψD3 + ψηa3D3

One then plugs the value of D3 in the latter equation:

2ηa3 = 1 + ηa3 + ψ
α

βd

1 + a3

a3
+ ψηa3

α

βd

1 + a3

a3

ηa2
3 = a3 +

ψα

βd
(1 + a3) + η

ψα

βd
a3(1 + a3)

ηa2
3 =

ψα

βd
+ (1 +

ψα

βd
(1 + η))a3 + η

ψα

βd
a2

3

a3 must thus satisfy a second order equation:

η
(

1− ψα

βd

)
a2

3 −
(

1 +
ψα

βd
(1 + η)

)
a3 −

ψα

βd
= 0 (18)

Solutions are:

a3 =
1

2

1 + Ψα
dβ (1 + η)

η(1− Ψα
dβ )

(
1±

√√√√1 +
4Ψα
dβ η(1− Ψα

dβ ))

(1 + Ψα
dβ (1 + η))2

)
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Since, for the existence of this third fixed point one requires that d > ψα
β , i.e. ψα

dβ < 1, the solution
with the minus sign would be unphysical, as it would give a negative value for a3. Hence:

a3 =
1

2

1 + Ψα
dβ (1 + η)

η(1− Ψα
dβ )

(
1 +

√√√√1 +
4Ψα
dβ η(1− Ψα

dβ ))

(1 + Ψα
dβ (1 + η))2

)

.4 Stability of F1 - Analytically

The Jacobian in eq. 8 evaluated at F1 reads:
−1 q(m) 0 0
2 −(d+ q(m)) 0 0
0 0 −α 0
− γ
S0

0 0 −α,


Two eigenvalues are trivially λ1,2 = −α. It is then sufficient to compute the characteristic

polynomial of the following sub-matrix:(
−1 q(m)
2 −(d+ q(m))

)
The characteristic polynomial will look like:

λ2 + (1 + d+ q(m))λ+ d− q(m) = 0

Its roots give the remaining eigenvalues:

λ3,4 =
1

2

(
− (1 + d+ q(m))±

√
(1 + d+ q(m))2 − 4(d− q(m))

)
Since parameters are assumed to be all positive, the four eigenvalues of F1 are negative as long

as: √
(1 + d+ q(m))2 − 4(d− q(m)) < (1 + d+ q(m))⇒ d > q(m)

However, since q0 is the maximum value that q(m) can take, condition d > q0 implies that
d > q(m). In conclusion, all eigenvalues are negative -and F1 is attractive- if d > q0. On the
contrary, one of the eigenvalues may be positive, if d < q0. In that case, F1 will be saddle.

.5 Stability of F2 - Analytically

The Jacobian in eq. 8 evaluated in the second fixed point reads:
−1 d 2S2η

1+ψD2

2dD2

σ

(
1− d

q0

)
2 −2d − 2S2η

1+ψD2
− 2dD2

σ

(
1− d

q0

)
0 0 −α 0

−αm2

S0
0 0 −α,


The third line of the Jacobian clearly shows that one eigenvalue is λ1 = −α. It is then sufficient to
compute the characteristic polynomial of the following sub-matrix:

−1 d 2dD2

σ

(
1− d

q0

)
2 −2d − 2dD2

σ

(
1− d

q0

)
−αm2

S0
0 −α,


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The equation to be solved in order to determine the eigenvalues will be the following:

λ3 + (α+ 1 + 2d)λ2 + (α(1 + 2d)−B)λ−Bd = 0,

where B = 2α
σ (1 − d

q0
)log(αm2

γ ) ×m2. As a consequence of the conditions for the existence of this
second fixed point, one can state that B is negative, whatever the values of the parameters. Indeed,
m2 <

γ
α implies that the logarithm in B will be negative ; and d < q0 implies that the part into

brackets will always be positive. B being negative, all the coefficients in the characteristic polynomial
will be positive. The Routh-Hurwitz result [12] states that for a characteristic polynomial of the
form λ3 + pλ2 + qλ + r = 0, where p, q, r > 0, which is precisely the present case, the three roots
will have a negative real part as long as p× q > r [5]. As a consequence, the second fixed point will
be attractive as long as:

(α+ 1 + 2d)(α(1 + 2d)−B) > −Bd
1

q0
· (α+ 1 + 2d) · (α(1 + 2d)−B) > −B · d

q0

However this inequality is always satisfied for d < q0. Indeed, this condition for the existence of F2

gives an upper bound for the right-hand-side: −B · dq0 < −B × 1. One therefore gets:

1

q0
· (α+ 1 + 2d) · (α(1 + 2d)−B) > −B

α2(1 + 2d)− αB + α(1 + 2d)−��B + 2αd(1 + 2d)− 2dB > −��B
α2(1 + 2d)− αB + α(1 + 2d) + 2αd(1 + 2d)− 2dB > 0 ⇒ always true for B < 0

.6 Stability of F3 - Analytically

The Jacobian (eq. 8) evaluated in F3, with q(m3) = 0, p = 1
2 and S3 >> S0, simplifies to:

0 −dτ ψ0

2η
τα

β(1+ηa3)2
∂q
∂m (m3) ·D3

1 dτ ψ0

2η − d − τα
β(1+ηa3)2 − ∂q

∂m (m3) ·D3

βa2
3

1+a3
0 α

1+a3
0

0 0 0 −α,


where τ = (1+a3)(1+ηa3)

a2
3

and ∂q
∂m (m3) = q0

σ (1 + tanh(m3−m0

σ ))
[
1− 1

2 (1 + tanh(m3−m0

σ ))
]
. This form

of the Jacobian can be proven by taking into account the fact that for F3, the following equation
holds:

ψα

dβ
=

a3(ηa3 − 1)

(1 + a3)(1 + ηa3
,

which was obtained by solving eq. 18.
One trivially has that λ1 = −α. The three remaining eigenvalues will be given by the following

characteristic polynomial:
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0 = λ3 +A · λ2 +B · λ+ C

A = d− α

1 + a3
− τψα

2βη

B = −α
( 1

1 + ηa3
+

d

1 + a3

)
+

ψα

2ηβa2
3

(1 + a3 + α)(1 + ηa3)

C = −αd
( 1

1 + ηa3
+

(1 + ηa3)ψα

2ηβa2
3

)

One sees that C is always negative. Moreover, since C = −λ2 · λ3 · λ4, the product of the three
remaining eigenvalues will be positive (λ2 · λ3 · λ4 > 0) implying that there is always at least one
positive eigenvalue. The third fixed point is therefore saddle.
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