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Summary

Correlations in time series have been widely studied in several fields like biology[9],
physiology[10][23], finance[17], signal processing[18], geology[21], astronomy[22], etc.
In this internship report we will study the rate variability in heart beat time series recorded
during exercise. These time series are generated by physiologic processes that present an
intense intrinsic complexity because they are highly non linear and non stationary. We be-
lieved that the heart rate variability could be quantified as the behaviour of the fluctuations
around a macroscopic trend and with this in mind we will study the time correlations be-
tween them. A real time relation between the heart rate variability and the rate could serve
to hasten the recovery of patients under rehabilitative treatments and to provide useful in-
formation to improve the performances of professional athletes. After a brief introduction,
in Chapter 2 I will shed light on the state of the art in the field. For resting time series it
has been shown using first fitting an autoregressive process[2][3] and then detrended fluc-
tuation analysis[10][5] that for short time scales the fluctuations are correlated if the time
series is recorded from an healthy individual and uncorrelated if they are recorded from
a patient who is affected by congenital heart failure. In Chapter 3 I will show why strong
trends in RR time series recorded during activity prevent the straightforward application
of the previous techniques. I will then interpret anyway the results taking into accounts
all the limitations of the used methods[8][11][12][13]. A new analysis approach using the
partial autocorrelation function will also be developed in this chapter. An analytical link
between all the techniques will be outlined[20], and indeed the results will be consistent
between all the methods and will point out that the fluctuations in the studied heart rate
regimes are strictly anti-correlated. Anticorrelations are probably born from the coupling
of the heart rate with the physiologic vascular regulation and respiration cycles. In the last
chapter I will describe a recently invented, data driven algorithm called Empirical Mode
Decomposition[26] and its noise-aided versions[27][28] that perform better than Fourier
Decomposition on short, non linear and non stationary time series. Its output is consistent
with the previously obtained results.
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Above all else, guard your heart,
for everything you do flows from it.
[Book of Proverbs, 4, 23]



Chapter 1

Introduction

1.1 Preamble and motivations
The heart, the most noble of the organs, has been deemed to be, for millennia and in

several cultures, the most intimate seat of a person’s will, perception and memory.
The word comes from the sanskrit hŗd, that is equivalent to the latin cor, cordis and to
the greek kardía. They both share a common indoeuropean root: skar, skard that means
to vibrate, to bounce, to jump.
The whole history of mankind comes as the offspring of this small little engine, whose
relentless movement serves as a perfect allegory of life itself. Indeed, never ceasing to pul-
sate, by its alternating vibrations, thoughts were born, passions bloomed and decisions
made.
It’s only in the eighteenth century, when a rigorous scientific method was applied to phys-
iology, that the heart lost his primate as the center of thoughts in favour of the brain. Nev-
ertheless, in our cultural heritage and language, it has never lost his former role and will
never be a mere pump for blood. When we feel sad after breaking up with a partner, we
still say that he/she broke our heart; when we memorize an expression we still do it by
heart and when we are striving for excitement, we are looking for something that makes
our hearts beat faster.
In the light of the previous statements, the purpose of this thesis is to study both quanti-
tavely and qualitatively correlations and fluctuations in the heartbeat time series, not only
driven by scientific motivations, but also guided by the same zeal that made young men
love and poets dream.

1.2 Heart Rate Variability
The object of this work will be a quantity called Heart Rate Variability or HRV that

characterizes the state of the variations in a heartbeat time series and that also describes
the propensity of the heart to adapt both to external and internal stimuli. Previous studies
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1.2 – Heart Rate Variability

showed that changes in HRV affects the health status and, solely by determining the HRV,
one can classify healthy individuals and patients that suffered from a heart failure[5][10].
All of this suggests that the classical concept of homeostasis should be redefined: home-
ostasis is not meant to allow the body to keep a fixed state, but grants it to adapt to changes
without failing[5]. Unfortunately, at the current day, HRV does not have an unequivocal
definition, but many quantities have been candidated to fill this position: the ARV (Auto
Regressive Variability) that points how well an autoregressive model fits the time se-
ries[2][3] and the Hurst exponent H describing the rate of decay of the autocorrelation
function along a time series at long timescales[7]. Focusing on details, for time series we
will consider the ones made of RR intervals, namely the periods of the time interval that
spans two adjacent R peaks in an electrocardiogram measurement (Figure 1.1).
With this in mind, in the next pages I will outline the first attempts of estimating the HRV

Figure 1.1: How the RR time series is constructed starting from an ECG recording. First
the R peaks (circled in blue) are individuated, then their distance (the length of the green
segments) is computed. Each entry of the RR time series is the distance between two
adjacent R peaks.

from the time series of resting subjects. Specifically, I will illustrate the pros and contra of
fitting an autoregressive (AR) model to the RR time series and afterwards I will also shed
light on the method called Detrended Fluctuations Analysis or DFA which estimates the
Hurst exponent exploiting a remarkably, approximately, present scale invariance property
of the data. With our hearts strengthened by the appealing beauty of the results obtained
by DFA on resting individuals, we will then apply the same method to RR time series of
running athletes during exercise. As we will see, in this case more hindrances will arise,
the greatest of them all being the not-anymore negligible or easily treatable trends.
Let us begin!
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Chapter 2

Heart Rate Variability at rest

This chapter is about the current state of the art in the field. For more details about the
recording devices and samples see the related references.

2.1 Resting time series
The ECG of several volunteers at rest was recorded during a whole day. By at rest we

mean that during the day the patients just experienced a sedentary life with little physi-
cal activity, like slowly walking for little distances. According to the AHA[4], a resting
heart rate is comprised between approximately 60 and 100 bpm (beats per minute). Since
usually the measurement devices record the RR time series with a sensibility of 1 𝑚𝑠,
the latter can be converted to the time series of instantaneous Heart Rate (HR) with the
proper expression:

HR(𝑖) = 6 × 104

RR(𝑖)
bpm
ms

where 𝑖 is the element (beat) number along the time series.
If the subject is not involved in any intense physical activities its heart rate will vary
slowly within the given range. A 24h record will generate a time series of ≈ 9 × 103

entries. (Figure 2.1)

2.2 Why Fourier decomposition is not enough
The vademecum of the good time series analyst prescribes to perform a Fourier de-

composition with the aim of investigating which ones are the main frequencies that char-
acterize the spectrum of the data. From that one could extrapolate one relation linking the
frequencies, the shape of the spectral density function or the autocorrelation function to
the HRV.
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2 – Heart Rate Variability at rest

Figure 2.1: HR time series of a patient at rest during 3h.

Fourier Spectral Analysis, in order to give consistent results, requires the data set to have
two important properties:

1. The system generating the data must be linear

2. The time series must be strictly periodic or stationary

Indeed, for a stationary signal, the Wiener–Khinchin theorem is valid[1] and the following
relation for the autocorrelation function 𝑅(𝜏) holds:

𝑅(𝜏) = E [RR(𝑖)RR(𝑖 − 𝜏)] = ∫
∞

−∞
𝑆(𝑓)𝑒𝑖(2𝜋𝑓)𝜏𝑑𝑓 (2.1)

where 𝑅(𝜏) is the autocorrelation function and 𝑆(𝑓) is the Power Spectral Density func-
tion.
We notice that 𝑆(𝑓) is related both to the Fourier transform of 𝑅(𝜏), both to the squared
modulus of the Fourier Transform of RR.
Therefore, in order to study the rate of decay of 𝑅, one could:

1. Compute directly the expected value in (2.1)

2. Analyze the behaviour of 𝑆(𝑓) obtained by Fourier transforming RR

16



2.2 – Why Fourier decomposition is not enough

Remark 1 It is known from physiology that the heart rate is coupled with many regula-
tory systems that act at different frequencies, often varying with time. It is believed the
existence of a coupling with the respiratory cycle and of some mechanisms that adjust the
heart rate according to the intensity of the physical activity, to the variations in the blood
pressure and body internal temperature. One could try to model the heart rate as a sys-
tem of coupled stochastic differential equations where also the strength of the couplings
itself varies with time. It goes without saying that the complex system is way too hard
to model and analyze. Therefore it works better to consider the heart as a black box and
try to extract useful quantities directly from the recorded time series ignoring the physi-
ologic rhythms. Nevertheless, when we draw our conclusion, we must not forget that the
presence of these regulatory oscillating feedback loops will be reflected in some peaks in
the power spectral density function (and hence in some periodicity in the autocorrelation
function) and therefore they could affect our estimate of the decay rate of the correlations
along the time series.

Unfortunately, our time series are non-stationary. Strictly speaking, the cumulants related
to the probability distribution from which the series entries are extracted could change
with time. Or, using a better definition, the process is not time translation invariant.
More specifically we can say that a time series 𝑋 is stationary if the following relations
hold:

E [|𝑋(𝑖)2|] < ∞ (2.2)

E [𝑋(𝑖)] = 𝑚 (2.3)

𝐶 (𝑋(𝑖),𝑋(𝑗)) = 𝐶 (𝑋(𝑖 + 𝜏),𝑋(𝑗 + 𝜏)) = 𝐶(𝑖 − 𝑗) ∀𝑖, 𝑗 (2.4)

Non-stationarity is evident because there are trends in the data.
We define as a trend the whole set of variations in the time dynamics that do not depend
of the inner regulatory systems, but are a direct consequence of a decision made by the
person or caused by external factors e.g. starting accelerating or walking causes a satu-
rating exponential increase in the heart rate [15].
Additionally, we can’t state that the process generating the signal is linear, and just to
worsen the scenario the finite number of points available in a time series creates arti-
facts in the Fourier spectrum. Also other problems can arise: in fact the Fourier transform
employs globally uniform harmonic components. If the signal is non-stationary and/or
non-linear, and therefore only locally defined, the Fourier decomposition might need ad-
ditional harmonics to describe it, and hence the energy of a non-stationary local signal
will be spread unto a much wider range of frequencies that, in principle, are not physically
excited in the data, only to ensure the mathematical rigor of the deconstruction. Even so,
Fourier spectral analysis is still used to study non-stationary and non-linear time series
due to lack of alternatives. Nevertheless, one should take all these aspects into account in
order to adopt this tool.
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2 – Heart Rate Variability at rest

Remark 2 In order to obtain an estimate of the rate of decay of the correlations it’s
mandatory at least to detrend the time series in the sense of transforming the data set in
one with identical fluctuations around a zero or constant instantaneous mean value.

Since the form of the trend is unknown it’s up to the analyst to decide what really is a
trend and what are the fluctuations, hoping that the choice will lead to consistent results.
Techniques as DFA include an intrinsic detrending scheme by fitting a polynomial [9].
In the final chapter another detrending procedure based on an algorithm called Empirical
Mode Decomposition and the subsequent Hilbert-Huang spectral analysis will also be
explored [26].
Keeping in mind the limitations of Fourier Spectral Analysis we will procede adumbrating
two different approaches that have been used to study correlations in RR resting time
series: fitting an AR model and DFA.

2.3 AR model fitting
In the ’80s a Japanese research team proposed an innovative technique to detrend and

study the heart rate variability[2][3].
Firstly, they define a sliding window of width 𝑁 to be moved along the data with a step
of size 𝑛. Secondly, they fit the autoregressive model of order 𝑝∗ where both 𝑝∗ and the
coefficients of the model are chosen with the goal of minimizing the AIC (Akaike Infor-
mation Criterion). Let’s remember that an autoregressive process 𝑋 of order 𝑝 is defined
in the following way[18]:

𝑋(𝑖) =
𝑝

∑
𝑗=1

𝑎𝑗𝑋(𝑖 − 𝑗) + 𝜉𝑖 (2.5)

where the 𝑎𝑗 coefficients show the intensity of the lagged effect on the value of the series
at time 𝑖 enforced by the values assumed by the series at times 𝑖 − 𝑗. 𝜉𝑗 is a Gaussian
random variable of zero mean and variance one.
Let then RR∗ be the average time series given by the optimal AR fit (in the sense of
minimizing AIC) of RR, we can define a residual time series 𝑍 as:

𝑍(𝑖) = RR(𝑖) − RR∗(𝑖) (2.6)

A quantity called Auto Regressive Variability for the AR model of order p, ARV(p), is
straightforwardly defined as:

ARV(𝑝) = Var [𝑍]
Var [RR]

(2.7)

Since, by construction, 𝑍 is the residual series obtained by subtracting the fit from the RR
time series, equation 2.7 establish a sort of normalized fit error that can assume values
between 0 (if the fit is perfect) and 1 (in case the fit is useless).
Moreover, if the 𝑎𝑗 are such that the roots of 𝛷(𝑧) = 1 − ∑𝑝

𝑗=1 𝑎𝑗𝑧𝑗 reside out of the
unit circle in the complex plane, then the AR process will be linear and stationary in a
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2.4 – Self-similarity and DFA

wide-sense[18].
The fitting procedure is hence a way to project a process that is non-linear and non-
stationary into one that can be examined with the Fourier spectral analysis. Of course,
while doing so, we might be losing many important details.

Remark 3 Interpreting the results, in [2][3] it is claimed that high 𝐴𝑅𝑉 corresponds to
high heart rate variability. However, a great fitting error indicates that the deterministic
behavior exerted by an AR process is too simple to describe a more complex inner dy-
namics. We must acknowledge hence that identifying ARV as a marker of the HRV is most
probably an oversimplified interpretation.

Although the results of [2][3] may become questionable for high ARV, the evolution of
the Fourier-PSD of the sliding window along RR∗ is still interesting to look at because
now we can supplement it with a parameter that tells us how reliable the interpretation is.
Choosing the more comfortable units of beats instead of seconds for the time, 𝑆RR∗(𝑖),𝑁(𝑓 )
clearly shows peaks around 𝑓 = 0.50 beats−1, 0.25 beats−1, 0.10 beats−1 and 0.05 beats−1

that should be respectively related to the physiologic feedback loops of sinus arrhythmia,
respiration, regulation of blood pressure and temperature which is concerned with the
vascular motion (Figure 2.2) The peaks evolve with time in a non-trivial way. Their av-
erage frequency shifts and both their amplitude and spread can increase or decrease. An
interesting result is that for patients at rest the spectrum contain most of its power in a low
frequency band (𝑓 < 0.1 beats−1), while in patients that suffer of cardiac diseases such
as atrial septal defects and arrhythmias like atrial fibrillation and ventricular premature
beats have large amount of power at high frequency band.
The AR fitting approach has been applied also to RR time series of running athletes during
exercise. An AR process that simulates frequency excitations related only to the respira-
tion peak was first extracted from the original fit. Subsequently it was shown how the
ARV(p) of this constructed respiration-related time series increases with a boost in the
heart rate. In running time series most of the power was contained in a frequency band
around 0.5 beats−1.
The author’s conclusion is then that the HRV increases with the intensity of the exercise,
while, as we have seen, a more plausible statement would have been that in this regime
the AR model cannot well describe the process.
Fitting and then drawing the conclusion from the fit is a very contrived method that can
be both computationally expensive, both can lead to unphysical results since the analyzed
time series will be different from the starting one. The detrending perpetuated while do-
ing so neither is well under control: we know that some details are lost but not exactly
which ones and in what extent.

2.4 Self-similarity and DFA
The urge for a less invasive detrending was henceforth greatly felt by the scientific com-

munity. Surprisingly, Goldberger, Stanley et al.[10][5], discovered that the trajectory that
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2 – Heart Rate Variability at rest

Figure 2.2: Fourier Spectrum along a resting time series of a young girl with average
HR=64.5 bpm. On the vertical axis is reported, in decibels, the log ratio between the
power contained in the signal at a specific frequency and the maximum energy related to
any frequency and any sub-time series. The Power Spectral Analysis is computed in sub
time series along the original one going from beat index 𝑇 to beat index 𝑇 + 𝑁0. Taken
from [2].

one can build up from the RR time series approximately benefits from self-similarity, a
particular property that arises when the underlying process is scale-invariant, even though
only in a statistical way. The immediate general idea was then to exploit this feature to
infer some relations about the nature of the fluctuations in the data. In order to clarify how
the method works it might be useful then to remember the key concepts of self-similarity,
scale invariance and how they affect the correlation function.

2.5 Self-similarity
An object is said to be self-similar if upon both a multiplication by a specific coefficient

and a scaling transformation of the coordinate system its structure is preserved exactly or
approximately[6].
Quantitatively, let 𝑓∶ ℝ → ℝ be a function describing some physical property of an
object, then 𝑓 is said to be self-invariant if the structure is exactly preserved:

𝑓(𝜆𝑥) = 𝜆𝛥𝑓(𝑥)
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2.5 – Self-similarity

Fractals are a perfect archetype of self-similarity.
In nature an infinite rescaling towards both smaller and smaller or larger and larger scales
is impossible due to the trivial limits given by discretization in the first case and finite
size in the other.
Therefore we will say that there exist fractals only in a statistical sense. Up to a given
rescaling threshold some functions describing the properties of a fractal will not rep-
resent identical patterns, but only statistical similar ones. The exponent 𝛥 is called the
fractal dimension of the object and it can be different from the intuitive definition of di-
mensionality. According to the Hausdorff definition 𝛥 is a statistical property that defines
how much the fractal fills the space where it is embedded.
𝛥 is not exclusively a constant and can depend on the scale 𝜆. In this case we can say that
the object is not a simple fractal, but a multifractal. Usually in physics scales are funda-
mental: what happens at a macroscopic scale is different from what is happening at Planck
length scale. Anyway scale-invariance and self-similarity are common characteristics in
statistical physics when the models, in their range of validity, are describing systems that
exhibit a critical behaviour.
At the critical point of some control parameter usually phase transitions happen and cor-
relations in the system become infinite at any distance. Nearby the critical point the cor-
relation function decays as a power-law, the only kind of function that suffice the require-
ments dictated by scale-invariance. Therefore, within the range of validity of the statistical
model that describes it, a system at one of its critical points can be surprisely considered
scale invariant. Moreover, it is known that the curves describing the boundaries of the
spin islands in a 2D-Ising model near to its critical point benefit from fractal properties.
Self-similar trajectories can also arise from stochastic processes. In particular, by study-
ing how the fluctuations in a stochastic process vary when the range is rescaled, Hurst
obtained a relation between the correlation or autocorrelation function of a time series
and the fractal dimension of the trajectory[7]:

E [
𝑅(𝑛)
𝑆(𝑛)] = 𝐶𝑛𝐻 𝑛 → ∞ (2.8)

where 𝑅(𝑛) is the range of the first 𝑛 cumulative deviations from the mean, 𝑆(𝑛) is their
standard deviation and 𝐶 is a constant. 𝐻 is called the Hurst exponent and if the time se-
ries is self-similar it’s directly related to the fractal dimension: 𝛥 = 2−𝐻 with 𝐻 ∈ [0,1].
It is well known for this kind of critical processes a relation that binds the Hurst exponent
and the decay exponent of the power spectral density function, that will tend asymptoti-
cally to a power law 𝑆(𝑓) ∼ 𝑓 −𝛽 [8]:

𝐻 =
𝛽 + 1

2
(2.9)

• If 𝐻 = 1
2 then 𝛽 = 0, the power spectrum is flat and the fluctuations in the time

series are uncorrelated;
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2 – Heart Rate Variability at rest

• 𝐻 > 1
2 and 𝛽 > 0, the power spectrum is decaying as a power law, the process is

positively correlated;

• while for 𝐻 < 1
2 and 𝛽 < 0 it’s anti-correlated, this could suggest the presence of a

peak in 𝑆(𝑓) (Figure 2.3)

Figure 2.3: LogLog plot of 𝑆(𝑓). Minus the slope of a linear fit onto a specific region is
the 𝛽 that Hurst is estimating through relation (2.9)

It’s hence undeniable the existence of a link between the decay rate of the correlations in
a time series and the fractal dimension of the curve that stems from it.

2.6 Applications to cardiology and DFA
The Hurst exponent of the time series of RR intervals has been deeply studied[10].

Unfortunately, Hurst’s estimator of 𝐻 is susceptible to trends in the time series.
In order to better evaluate H in these cases a technique called Detrended Fluctuation Anal-
ysis (DFA) has been developed by Peng et al.[9]. Given a time series X = {𝑋1,𝑋2, ...,𝑋𝑁}
we first integrate it while subtracting its mean value:

𝑦𝑖 =
𝑖

∑
𝑘=1

𝑋𝑘 − ⟨𝑋⟩ (2.10)

Therefore the time series 𝑌 is divided in adjacent boxes of size 𝑛 and within each one of
these the Root Mean Squared Error is calculated by first subtracting a trend given by a
fitted-polynomial 𝑓 𝑙,𝑛 of order 𝑙 (Figure 2.4) and then averaging over all the boxes. This
operation will be re-iterated for different box-sizes 𝑛 giving birth to a function 𝐹𝑙(𝑛).

𝑌 (𝑙,𝑛)
𝑘 =

𝑘𝑛

∑
𝑖=𝑛(𝑘−1)+1

(𝑦𝑖 − 𝑓 (𝑙,𝑛)
𝑖,𝑘 ) (2.11)
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2.6 – Applications to cardiology and DFA

Figure 2.4: Detrending procedure in the DFA algorithm. Taken from [14]

𝐹𝑙(𝑛) =

√√√√

⎷

1
𝑁

⌈ 𝑁
𝑛 ⌉

∑
𝑘=1

[𝑌 (𝑙,𝑛)
𝑘 ]

2
(2.12)

where 𝑘 is a box index along the time series for a given box size 𝑛.
It is also interesting to observe how the fluctuation function is related to the autocorrela-
tion function 𝑅(𝑡) of a discrete stochastic process [24]:

𝐹 2
𝑙 (𝑛) = 𝜎2

(
𝐿𝑙 (0, 𝑛) + 2

𝑛−1

∑
𝑡=1

𝑅 (𝑡) 𝐿𝑙 (𝑡, 𝑛)
)

(2.13)

where 𝜎 is the variance of the time series and 𝐿𝑙(𝑡, 𝑛) is a kernel that annihilates polyno-
mial trends of order 𝑙 − 1.
If the process is scale invariant then:

𝐹𝑙(𝑛) ∝ 𝑛𝐻 (2.14)

that is equivalent to say that if in log-log scale 𝐹𝑙 scales linearly with respect to 𝑛, it means
that the fluctuations vary as a power law under rescaling. The slope of that line will give
the Hurst exponent 𝐻 of the detrended time series. When we are fitting a polynomial of
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2 – Heart Rate Variability at rest

order 𝑙 we will say that we are using DFA-l.
We expect from the AR analysis illustrated in the previous section a spectral density that is
not properly decaying as a power-law, but with some peaks emerging from it in the high
frequencies range. This implies that the underlying process is not globally self-similar
and a reckless application of the method could lead to false results. However, if the log-
log plot of the function 𝐹 (𝑛) preserves a piece-wise linear behaviour in some sufficiently
extended region, one could define a different local scaling exponent 𝛼 that instead of 𝐻,
is not a global property of the time series.

Remark 4 If the physiologic rhythms are characterized by oscillations with small periods
𝑇𝑘, we expect a different 𝛼 for the linear behaviour of log − log 𝐹 (𝑛) with a crossover
between different regimes at 𝑛 ≈ 𝑇𝑘.

The results of the application of DFA-1 to the intra heartbeats time series showed a multi-
fractal behaviour of the underlying process. In particular Golderberger et al.[10][5] ana-
lyzed data recorded during a 24h period on healthy young subjects, healthy elder subjects
and on patients with cardiac problems incline to heart-failure. For the first group an expo-
nent 𝐻 = 1 was measured at all scales, for the second group a deviation of 𝐻 ≈ 1.5 was
computed at very short scales (𝑛 = 4, ..., 32), while 𝐻 = 1 but with a lot of fluctations
(sign of multifractality) was recorded at very long scales (𝑛 > 100). For the group of
patients with severe heart failure 𝐻 = 1

2 was computed for scales in the range 𝑛 = [4,16]
and 𝐻 ≈ 1.5 for scales of size 𝑛 > 200. We must beforehand specify that 𝐻 should as-
sume a value comprised in the interval [0,1] for an infinitely long time series in order for
the relation 𝐻 → 𝛥 to hold. If our time series is not long enough the previous relation
does not always hold and 𝐻 can assume also values outside of this interval. In particular
it has been proved by numerical simulations that 𝐻 = 1.5 describes the decay of auto-
correlations in a Brownian exploding (correlated) motion. The latter results suggest that
illness is the consequence of a loss of adaptability of the heart.
In healthy young subjects 𝐻 = 1 points out the sane rate of decay of the autocorrelations
in heart beats. In healthy elderly subjects the autocorrelations decay slower than normal at
short scales and in a diverse fashion with respect to the normality also at very long scales.
In patients incline to severe heart failure the heartbeats act as if they were completely un-
correlated at very short scales and strongly correlated at very large scales (Figure 2.5). It
looks clear that loss of adaptability is a sign of deviation from sanity. Moreover, the fact
that there is a huge amount of fluctuations in the intra-beats time series of healthy indi-
viduals at rest shed light on the well diffused biological concept of homeostasis. A sane
individual is not one who can keep his current status fixed, but one who can efficiently
adapt to any internal or external stimuli.
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2.6 – Applications to cardiology and DFA

Figure 2.5: “Scaling analysis of heartbeat time series in health, aging, and disease. Plot
of log F(n) vs. log n for data from a healthy young adult, a healthy elderly subject, and
a subject with congestive heart failure. Compared with the healthy young subject, the
heart failure and healthy elderly subjects show alterations in both short and longer range
correlation properties. To facilitate assessment of these scaling differences, the plots are
vertically offset from each other.” Taken from [5]

.
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Chapter 3

Heart Rate Variability during
exercise

Hand in hand with technological development more and more fine and portable de-
vices measuring echocardiograms became available. Therefore the immediate next step
of the research in this field was dedicated to the study of the behaviour of the correla-
tions in the time series of intra-beats intervals in groups of people that are exercising.
More specifically, data of running athletes were collected and analyzed. Running usually
requires an average heart-rate that can go from 100 bpm up to, usually, 180 bpm. (Fig-
ure 3.1)
The data used in this section were recorded using a Polar® H10 strap.

3.1 Limitations of DFA
From a first naive application of DFA-1 it appeared as if in running subjects the short

time scales fluctuations with 𝑛 ∈ [4,16] showed different type of exponents ranging from
an anti-correlated to a strongly correlated regime depending on the instantaneous heart
rate, while the ones with 𝑛 > 16 were almost always the very typical ones of a correlated
underlying stochastic process.
In contrast to the time series of subjects at rest, the outcomes of DFA-1 on time series of
exercises looks very different from one another. Varying the average and the instantaneous
heart rate, the duration of the exercise and its type (normal running, sprints etc.) can
tremendously affect the results of DFA-1. We hence wondered if DFA-1 is a robust way
of measuring 𝐻 also on this data set.
One of the main differences of time series of exercises with respect to the ones of people at
rest is their duration. For the latter the analysis performed by Golderberg et al. used a data
set in which the measures were taken in a ≈ 24h period with very small perturbations
in the average heart rate. The subjects were doing nothing, or at least they carried out
activities that required a very small effort. On the contrary, time series of exercises can

27



3 – Heart Rate Variability during exercise

Figure 3.1: HR time series of a marathon run.

last from about 10 minutes to a couple of hours. The on-set of the physical activity is
characterized by an exponential acceleration of the heart rate as it has also been shown by
Javorka et al.[15]. Moreover, usually linear and/or periodic trends of relevant amplitude
are also present. While DFA-1 managed to efficiently detrend the long time series of
resting subjects, this seems not to be the case for running time series.

3.1.1 The range of validity of DFA and local DFA

In order to be able to tell if DFA-1 is performing well on the new data set we first had
to study how it behaves when analyzing simple time series.
In two papers Stanley et al. studied and analytically and via numerical simulations the per-
formance of DFA-1 on monofractal time series coupled with different trends[11] (linear,
quadratic, power law -like and periodic) and mixed with several kind of non-stationarities[12]
(segments deleted in the signal, uncorrelated spikes, segments of increments extracted by
distribution with different variance, segments extracted by evolving distributions with dif-
ferent autocorrelations).
In particular, they analytically derived that for any order of DFA if the fluctuations are
coupled with an uncorrelated trend, then the function 𝐹𝑙(𝑛) obtained by the application
of DFA on the total time series will benefit of a sort of superposition principle of what
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3.1 – Limitations of DFA

would have been the results of DFA applied only to the noise and only to the trend:

𝐹 2
𝑙 (𝑛) = 𝐹 2

𝑙,noise(𝑛) + 𝐹 2
𝑙,trend(𝑛) (3.1)

They also analytically proved that in order to detrend any series affected by a polynomial
trend of order 𝑚 or by an exponential trend with exponent 𝜆 it is required to apply DFA-l
with respectively 𝑙 > 𝑚 and 𝑙 ≥ 1 + 𝜆. This is a clear consequence of the fact that at the
first step of DFA the time series is being integrated, and with it also its inner trend.
When DFA-1 is performed on a linear trend, 𝐹1,Ltrend(𝑛) is independent of the length of
time series, but it grows as ∼ 𝐴𝑛𝛼𝐿 where 𝐴 is the slope of the linear trend and 𝛼𝐿 = 2.
Since it is well known that for a monofractal noise 𝐹1,noise ∼ 𝑛𝛼, the total 𝐹 in a log-log
scale will appear as two piecewise lines with slope 𝛼 and 𝛼𝐿 and a crossover 𝑛𝑋.(Fig-
ure 3.2)
The 𝐹 of a quadratic trend will also increase linearly with the length of the time series

(a) “Crossover behavior of the root mean square
fluctuation function 𝐹 ≈ 𝐿(𝑛) for noise (of length
𝑁max217 and correlation exponent 𝛼 = 0.1) with
superposed linear trends of slope 𝐴𝐿 = 2−16,
2−12, 2−8. For comparison, we show 𝐹𝜂(𝑛) for the
noise (thick solid line) and 𝐹𝐿(𝑛) for the linear
trends (dot-dashed line). The results show that a
crossover at a scale 𝑛𝑥 for 𝐹𝜂𝐿(𝑛). For 𝑛 < 𝑛𝑥, the
noise dominates and 𝐹𝜂𝐿(𝑛) ≈ 𝐹𝜂(𝑛). For 𝑛 > 𝑛𝑥,
the linear trend dominates and 𝐹𝜂𝐿(𝑛) ≈ 𝐹𝐿(𝑛).”
Taken from [11]

(b) “Crossover behavior of the root mean square
fluctuation function 𝐹𝜂𝑆(𝑛) (circles) for correlated
noise (of length 𝑁max = 217) with a superposed
sinusoidal function characterized by period 𝑇 =
128 and amplitude 𝐴𝑆 = 2. The rms fluctuation
function 𝐹𝜂(𝑛) for noise (thick line) and 𝐹𝑆(𝑛) for
the sinusoidal trend (thin line) are shown for com-
parison.” Taken from [11]

Figure 3.2: a) DFA of linear trend b) DFA of sinusoidal trend

and this corresponds to a vertical upwards shift in the log-log plot.
The behaviour of DFA-1 on periodic trends is instead quite peculiar. For a pure sinusoidal
trend the 𝐹 doesn’t almost scale at all with the length of time series, for small scales n it
grows as 𝐹1,sin(𝑛) ∼ 𝐴𝑆

𝑇 𝑛𝛼𝑆 where 𝐴𝑆 is the amplitude of the sin, 𝑇 its period and 𝛼𝑆 = 2,
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3 – Heart Rate Variability during exercise

while for large scales it saturates to 𝐹1,sin(𝑛) ∼ 𝐴𝑆𝑇. Therefore, using the superposition
principle, it is straightforward to remark that depending on the values of 𝐴𝑆, 𝑇 and 𝛼
one could notice 4 different regions in the log-log plot of 𝐹 vs 𝑛 with 3 crossovers (Fig-
ure 3.2). A first regime where 𝐹noise is relevant up to the crossover 𝑛1𝑥 with a second
regime at small scales where 𝐹1,sin dominates, then it reaches the plateau at 𝑛2𝑥 ≈ 𝑇 and
at 𝑛3𝑥 𝐹noise becomes the leading one again. Increasing the order 𝑙 of DFA both increases
by 1 𝛼𝑆 and both shifts 𝑛1𝑥 to higher scales, (always less than 𝑛2𝑥).
Regarding the non-stationarities, segment deletion on time series with fluctuations scal-
ing as 𝛼 > 0.5 is not relevant, while if 𝛼 < 0.5 then, proportionally to the fraction of the
data that was cut out, there will be a crossover dividing a regime at small scales where 𝛼
dominates and another one at large scales where a slope of 𝛼𝑐 = 0.5 will be the leading
one (Figure 3.3).
Instead, if uncorrelated random spikes are present in the signal, 𝛼𝑠𝑝𝑖𝑘𝑒 = 0.5 will dom-

inate over the noise at small scales for correlated time series and at large scales for anti-
correlated ones (Figure 3.4).
The last two phenomena are very important since usually the recorded data present a lot
of measurement artifacts that are almost always the aftermath of a skipped-beat (that will
result as a spike since skipping a beat will double the intra-beats interval for that given
value) or more rarely a RP-PR sequence mistaken for RR-RR intervals that will result in
two opposite directed spikes (a shorter spike followed by a longer one). Before the analy-
sis the raw data undergo a filtering process for artifacts. In our later studies we will delete
all the intervals that will present values detected as outliers by a properly tuned rolling
median filter. We prefer to delete the artifacts and not to keep them because, as it has
been stated above, deleting the outliers should at least clean the 𝐹 with correlated noise
time series, and at the same time should also clean the ones with anti-correlated signals
at small scales. All of the previous and also of the following results are obtained thanks
to the superposition principle substituting each time the different part of the signal with
one with all zeros.
For signals with same local 𝛼 but different local variance it has been shown that the out-
come DFA is greatly affected only if 𝛼 < 0.5 with a crossover at large scales with a region
where 𝛼𝜎 = 0.5.
While for signals with different local 𝛼 we can appreciate a crossover at a scale 𝑛𝑥 only
if the biggest part of the time series is composed by data characterized by 𝛼 < 0.5. It is
impressive to remark that even if there is a time series formed for the 90% by 𝛼 = 0.1 and
for the remaining 10% by segments with 𝛼 = 0.9, the total 𝐹 will be almost immediately
dominated by the correlated signal starting at 𝑛 ≈ 16 (Figure 3.5)
We should also say that, as pointed out in reference [13], every DFA-l has an optimal

range of validity, with a lower 𝑛𝑚𝑖𝑛 that increases the higher is the order of 𝑙 because
we will need more points to fit the the trend in each box along the time series, while at-
tempting to avoid the risk to overfit. And more generally, DFA tends to overestimate the
evaluated 𝐻 for noises with 𝛼 < 0.5 and 𝛼 > 1.

30



3.1 – Limitations of DFA

Figure 3.3: “Effects of the ‘‘cutting’’ procedure on the scaling behavior of stationary cor-
related signals. 𝑁max = 220 is the number of points in the signals (standard deviation
𝜎 = 1) and 𝑊 is the size of the cut out segments. (a) A stationary signal with 10% of the
points removed. The removed parts are presented by shaded segments of size 𝑊 = 20
and the remaining parts are stitched together. (b) Scaling behavior of nonstationary sig-
nals obtained from an anticorrelated stationary signal (scaling exponent 𝛼 < 0.5) after
the cutting procedure. A crossover from anticorrelated to uncorrelated (𝑎 = 0.5) behav-
ior appears at scale 𝑛𝑥 . The crossover scale 𝑛𝑥 decreases by increasing the fraction of
points removed from the signal. We determine 𝑛𝑥 based on the difference 𝛥 between the
logarithm of 𝐹 (𝑛)

/ 𝑛 for the original stationary anticorrelated signal (𝛼 = 0.1) and the non-
stationary signal with cut out segments: 𝑛𝑥 is the scale at which 𝛥 > 0.04. (e) Cutting
procedure applied to correlated signals (𝛼 > 0.5). In contrast to (b), no discernible effect
on the scaling behavior is observed for different values of the scaling exponent 𝛼, even
when up to 50% of the points in the signals are removed.” Taken from [12]

Remark 5 Keeping all of these results in mind, it is now evident that, for a preprocessed
artifact-free time series of RR intervals of running persons, if we want to analyze when and
how the fluctuations switch from a correlated to an anticorrelated regime it is mandatory
to focus on extremely short scales with 𝑛 →∼ 16.

This now justified assumption is in agreement with what was noticed naively using a
dynamical modified version of the DFA-1 algorithm that serves to measure the local Hurst
exponent in a interval of fixed size 𝑊 around any entry of the time series. This procedure
not only allows us to infer the local properties of the time series, but collecting all the
computed instantaneous local Hurst exponents 𝐻𝑡 we are able to build up a statistics for
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3 – Heart Rate Variability during exercise

Figure 3.4: “Effects of random spikes on the scaling behavior of stationary correlated
signals.” Taken from [12]

Figure 3.5: “Scaling behavior of nonstationary correlated signals with different local stan-
dard deviations.” Taken from [12]

its distribution that will be characteristic of a multifractal behaviour.
The algorithm works as follow: first we choose an observation window size 𝑊 within the
time series, then for every entry starting from the one of index 𝑊

2 to the one of index
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𝑁 − 𝑊
2 we compute DFA-1. As Kantelhardt recommends we should select a 𝑊 that is at

least 4 times the value of the maximum scale for which DFA is computed[16]. In order
to obtain a smoother time series of 𝐻𝑡 we may subdivide the observation window, during
the evaluation of the RMS, in many 𝑛 sized overlapping boxes shifted by 1 step instead of
𝑊
𝑛 adjacent non overlapping boxes. This will not affect mean value of 𝐻𝑡 over the whole
series but will drastically reduce its local spread.
While on the long series of patients at rest we had at most a constant trend and hence
DFA-1 was enough to contrast, on average, all the perturbations, we might need a higher
DFA order to detrend the new data-set in an acceptable fashion. Additionally, since the
most frequent kind of trend in our data set is the exponential one, it goes without saying
that we should procede analyzing analytically what happens when we are facing one of
this sort with DFA.

3.1.2 The effects of an exponential trend
Let’s consider an exponential trend of the form

𝑋𝑖 = 𝐻𝑚𝑖𝑛 + 𝐴 (1 − 𝑒− 𝑖
𝜏 ) (3.2)

The first step of DFA consists in integrating the time series. We will skip the subtraction
of its average value since it will be a constant that will just change the value of 𝐻𝑚𝑖𝑛.
Moreover, since any constant trend is perfectly removed by DFA-1 we can put 𝐻𝑚𝑖𝑛 ≡ 0
without loss of generality. Therefore

𝑦𝑖 = 𝐴
𝑖

∑
𝑘=1

(1 − 𝑒− 𝑘
𝜏 ) = 𝐴 (

1
1 − 𝛾

+ 𝑘 −
𝛾−𝑘

1 − 𝛾) (3.3)

where, for simplicity of notation, 𝛾 ≡ 𝑒
1
𝜏 . We want to compute, according to (3),

𝑌 (1,𝑛)
𝑘 =

𝑘𝑛

∑
𝑖=𝑛(𝑘−1)+1

(𝑦𝑖 − 𝑓 (1,𝑛)
𝑖,𝑘 ) (3.4)

𝑓 (1,𝑛)
𝑖,𝑘 = 𝑎(𝑘,𝑛)

0 + 𝑎(𝑘,𝑛)
1 𝑖 (3.5)

the latter is the best linear fit of the succession 𝑦 in a box of index 𝑘 and size 𝑛 obtained
with least squares regression.
Now it’s the time for a small remark:

Remark 6 We notice that detrending in this way corresponds to subtracting the polyno-
mial that minimizes the fluctuations (the square of 𝑌) in each box. This will be always the
case if the noise is extracted by a symmetric thin-tailed distribution, otherwise we might
consider as a trend what really is an extremed valued fluctuation. Anyway in the next step
the averaging over all 𝑌 for a given 𝑛 will mitigate the effect.
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3 – Heart Rate Variability during exercise

Therefore proceding with the minimization problem following the scheme of Stanley et
al.[12] we obtain:

∂𝑌 2
𝑘

∂𝑎(𝑘,𝑛)
𝑚

= 0 ∀𝑚 = 0,1 (3.6)

and hence a system of 2 equations in the unknowns 𝑎(𝑘,𝑛)
𝑚

𝑦(𝑚,𝑘,𝑛) = 𝑎(𝑘,𝑛)
0 𝑡(𝑘,𝑛)

𝑚,0 + 𝑎(𝑘,𝑛)
1 𝑡(𝑘,𝑛)

𝑚,1 (3.7)

where

𝑦(𝑚,𝑘,𝑛) =
𝑘𝑛

∑
𝑖=𝑛(𝑘−1)+1

𝑦𝑖𝑖𝑚 (3.8)

and

𝑡(𝑘,𝑛)
𝑚,𝑗 =

𝑘𝑛

∑
𝑖=𝑛(𝑘−1)+1

𝑖𝑚+𝑗 ∀𝑗 = 0,1 (3.9)

From which we recover first 𝑎(𝑘,𝑛)
𝑚 , then 𝑌 2

𝑘 and finally a very long complicated expression
for 𝐹 (𝑛) that for large enough scales 𝑛 saturates to

lim
𝑛→∞

𝐹 (𝑛) ∼ 𝐴√(
1 − 𝛾−2𝑁

𝑁 ) (3.10)

We notice that the amplitude 𝐴 just causes a vertical shift in the loglog scale plot.
This behavior is similar to the one obtained for the periodic trend, with the exception that
luckily for the exponential trend the effect decreases with an increasing N. For long time
series the superposition principle will allow the fluctuation function of the noise to even-
tually overcome the one of the exponential trend. For short time series this is unlikely to
happen and the trend may be dominating.

Before starting to look for a robust technique that could serve for the massive analysis
of all running time series we have to check that the trends and the noises are uncorre-
lated. This is equivalent to checking the validity of the superposition principle on real
data. In order to do so we first generate an exponential time series, then we add a noise
to it, afterwards we numerically compute the 𝐹𝐸 of the trend with the obtained parame-
ters, subsequently we assume that the noise has approximately a monofractal behaviour,
hence we perform DFA-1 on the time series and subtract from it the 𝐹 computed before
for the trend. From DFA-1 we noticed that the 𝐹 first logarithmically scales with exponent
𝐻 and then it bends to another 𝛼𝐸 before turning to a plateau. There is almost a perfect
overlap between 𝐹𝑡𝑜𝑡𝑎𝑙 and 𝐹𝐸 after the first turn. Therefore we subtract 𝐹𝐸 from 𝐹𝑡𝑜𝑡𝑎𝑙
and if the remaining 𝐹 will preserve the same linear slope both for small and big scales
we can conclude the validity of the superposition principle. As we notice from the plots
in Figure 3.6 on the time series analyzed the superposition principle is valid, therefore we
conclude that the noise and the exponential trends are uncorrelated.
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3.2 – Applications of DFA to real data

(a) Example: Time series with 𝑁 = 5000 built by
summing an exponential trend of the form: 𝑢𝑖 =
150 (1 − 𝑒− 𝑖

30 ) and a white noise 𝑋𝑖 ∼ 𝒩 (0,1).

(b) Log-log plot of 𝐹 (𝑛) obtained with DFA-1
both on the whole time series of Figure ?? and
on the trend alone. Using the the superposition
principle we can derive the quantity 𝐹𝑛𝑜𝑖𝑠𝑒(𝑛) =

√𝐹 2(𝑛) − 𝐹 2
𝑡𝑟𝑒𝑛𝑑(𝑛). Its slope is 𝐻 ≈ 0.57 as ex-

pected.

Figure 3.6: a) Example of generated exponential trend b) DFA of the signal in a)

3.2 Applications of DFA to real data
Now we can proceed estimating the time series 𝐻𝑡 for a time series that has some

evident exponential trends (Figure 4.2) with 𝑛𝑚𝑖𝑛 = 5, 𝑛𝑚𝑎𝑥 = 16 and 𝑊 = 80. The
selected time series also has some artifacts left. This is a nice study-case to practically
show how artifacts can influence the outcome of DFA.
We notice from (Figure 3.8) that also 𝐻𝑡 exhibits an exponential trend, and this is due to
the fact that, even though we are at very small scales 𝑛, we are not efficiently detrending.
Moreover, as expected from the setup, since we are assigning the value 𝐻𝑡 to every entry 𝑡
performing 𝐷𝐹 𝐴 in an interval of size 𝑊 around it, the information about drastic changes
in the time series at an instant 𝑡∗ are visible starting from 𝐻𝑡∗− 𝑊

2
up to 𝐻𝑡∗+ 𝑊

2
. Around the

spiky artifacts we notice a small increase of 𝐻𝑡 towards an uncorrelated behaviour. When
the obeservation window meets the sudden relaxation and then the start of the exponential
rise, 𝐻𝑡 becomes instantaneously > 1.
We therefore perform DFA-2 with the same values as before but 𝑛min = 6 in order to avoid
unstabilities due to overfitting. Moreover, we will adoperate an extra trick: since we are
and expecting a crossover to another 𝛼 behaviour at scales 𝑛 ≈ 16 (that can differ a bit for
each subtimeseries) and imagining that DFA-2 for small 𝑛 ≈ 6 can be unstable, and since
in addition to that we have only very few points in our loglog plot, we compute the slope
of the linear fit (𝐻𝑡) using the Theil-Sein estimator for the best median-linear fit. This
approach is much more robust because it is more stable with respect to the presence of
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3 – Heart Rate Variability during exercise

Figure 3.7: Example: Values of heart rates along a running time series. Three approxi-
mately equal exponential trends and some artifacts are present.

outliers that could arise from the presence of fluctuations with a different local 𝛼 (at big
𝑛) or due to overfitting (at small 𝑛). It’s remarkable how in (Figure 3.9) the exponential
trends are greatly suppressed. This is accountable not only to the fact that the linear part
of the exponential trend is perfectly filtered out, but also the first crossover 𝑛1𝑥 is shifted
to a larger value.
Quite strangely, there are many instants for which 𝐻𝑡 assumes values < 0 or > 1. These
effects are due to the unstabilities of DFA-2, to imperfections in detrending, to the small
dimension of the observation window 𝑊 and to the small scales 𝑛 taken in account. In
order to limit the presence of isolated negative or positive spikes in 𝐻𝑡, and also not to
overestimate too much the exponents for 𝛼 > 1, we developed a modified version of DFA
that we baptized as medianDFA. The only adjustment consists in replacing the estimator
of the average value of the RMS’s 𝑌 2 with their median.

𝐹𝑙(𝑛) = √median [𝑌 (𝑙,𝑛)2] (3.11)

In this way if in some boxes we happen or to be overfitting or to be sampling from the
distribution with a much higher 𝛼, if we still have a decent set of values 𝑌 (𝑙,𝑛), the outliers
will be reasonably ignored. On the contrary, the mean value computed as in normal DFA is
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3.2 – Applications of DFA to real data

Figure 3.8: Local DFA-1 over the overlapped rescaled heart rates time series (the orange
curve). Scales n ranging from 5 to 16, Observation window size: 80. The blue curve is
the 𝐻𝑡 time series.

consistently shifted by outliers. In (Figure 3.10) the series has lost some of its smoothness,
but there are nor negative values nor values greater than 1.
In other examples there will still be present values of 𝐻𝑡 larger than 1, but their maximum
value with respect to normal DFA-2 will be contained. It’s important to state that the
median is a linear operator only if acting on monotonic ordered (with the same ascending
or descending order) list of values.
Nevertheless, the median and the mean estimator give almost the same result if we are
sampling from a symmetric, single peaked distribution. Keeping this in mind, using the
median on these ranges of 𝑛 should only help to filter the outliers out the true results and
sample 𝐻𝑡 directly from the noise which scales with exponent 𝛼.
Therefore, we applied local DFA-1 and local DFA-2, in their normal and median versions,
to 200 time series of several lengths. These time series do not contain only long runs, but
also different kind of aerobic work-outs. The exercises were all performed by the same
athlete, a young sane male. In order to deduce a relation between the scaling exponent
𝐻𝑡 and the instantaneous Heart Rate, we divided the data in Heart Rate bins of size = 2.5
bpm . For each bin we will report the median value of 𝐻𝑡 (since it’s hugely fluctuating,
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3 – Heart Rate Variability during exercise

Figure 3.9: Local DFA-2 over the overlapped rescaled heart rates time series (the orange
curve). Scales n ranging from 6 to 16, Observation window size: 80. The blue curve is
the 𝐻𝑡 time series.

this approach is less affected by outliers). We must not forget that the athlete is spending
different amount of times with disparate Heart Rates. So it might be also useful to plot
the histogram of the instantaneous Heart Rates on the whole dataset (Figures 3.11, 3.12).
From the bin statistics plot we notice that for ”low” exercising heart rates (up to 130 bpm)

𝐻𝑡 starts being of order 1, then it decreases, approaching very rapidly < 0.5, suddenly it
increases again showing a little bump with 𝐻𝑡 ≈ 0.8 around 160 bpm and finally returning
to an anti-correlated regime (< 0.5).
For starters we hoped that the presence of this bump would be related to the onset of
a new ventilatory regime. It’s known from physiology that at a given point, in order to
compensate for the increase in effort, the ventriculi starts to open more, sucking in more
blood and therefore increasing the flux that is being pumped out. If 𝐻𝑡 told us something
about the amount of stress that the heart is experiencing, this should have been the case.
Unfortunately a closer analysis on the single time series showed that this effect is created
by the trends. We can infer from the histogram (Figure 3.13) that the athlete is spending
most of the time with an heart rate that is in the range just before the bump. This means
that there are a lot of running time series were the heart is saturating, after an exponential
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3.2 – Applications of DFA to real data

Figure 3.10: Local medianDFA-2 over the overlapped rescaled heart rates time series (the
orange curve). Scales n ranging from 6 to 16, Observation window size: 80. The blue
curve is the 𝐻𝑡 time series.

acceleration, to a value comprised in that range. All the higher heart rates comes from a
fewer amount of points, and in order to reach those rates the patient must accelerate more.
With the aim of finding out if this effect is 1) common to every human being, 2) not caused
by trends; we selected 40 short time series from another healthy patient, a middle-aged
healthy male. These data are related to exponential accelerations from rest to a whole
range of constant heart rates going from 140 bpm to 180 bpm. We notice from the bin
statistics (Figure 3.14) that, overall, the behaviour of 𝐻𝑡 with respect to the Heart Rate
is the same. It starts from 𝐻𝑡 ≈ 1 and it becomes rapidly strongly anti-correlated, also
now there is a bump, but its maximum is slightly less than 0.5. However the exponent is
anti-correlated in the time series when the heart rate is saturating to a value that lies in
the range of the local maximum. We can hence reasonably state this effect is generated
by trends.

Remark 7 The conclusion we can draw from DFA performed with boxes of size scaling
from 𝑛 = 4 to 𝑛 = 16 is that during exercise the fluctuations in the Heart Rate are anti-
correlated.
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3 – Heart Rate Variability during exercise

Figure 3.11: Bin statistics of 𝐻𝑡 vs HR for DFA-1 over 200 time series. The blue curve are
piecewise linear interpolation of the median value in the bin. The red segments represent
the bin interquartile range.

3.3 (Partial) Autocorrelation Function and Lags
Let’s now do a small recap: our goal is to study the Heart Rate Variability and to infer

some parameter that will link the HRV to the status of the patient or to its current level of
stress (if during exercise). A straightforward application of the Fourier Spectral Analysis
is not possible, for the signal is non-linear, non-stationary and may also be short.
The first method we studied fitted an AR model and tried to perform Fourier Spectral
Analysis upon it. The spectral density of the fitted AR model showed non negligible
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3.3 – (Partial) Autocorrelation Function and Lags

Figure 3.12: Bin statistics of 𝐻𝑡 vs HR for DFA-2 over 200 time series. The blue curve are
piecewise linear interpolation of the median value in the bin. The red segments represent
the bin interquartile range.

peaks in a high frequency band with frequency 𝑓 > 0.1 beats−1. Heart Rate variabil-
ity was pointed out by the ”normalized” variance of the residual time series, or better by
the error in the fit.
The second method exploited an alleged scale invariance and an asymptotic relation be-
tween the fractal dimension of the trajectory (built up considering the time series as in-
crements) and the decay exponent of its Fourier Spectral Density, although for short time
series it is hard to evince if that relation really holds, or better if the autocorrelation func-
tion is decaying exponentially or as a power-law.
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3 – Heart Rate Variability during exercise

Figure 3.13: 2D Histogram of 𝐻𝑡 computed with DFA-1 and HR. The color bar refers to
the number of points in each bin.

Nevertheless, both techniques gave unsatisfactory quantitative results in the evaluation
of a precise link between the HRV and the heart rate. On one hand the first method is
way too approximative because during the process of fitting we are discarding too many
important details; on the other also the second method is not correct due to the failure of
scale-invariance.
We will try to entirely avoid the Fourier Spectral Analysis imagining that the RR time
series can be described by an AR model coupled with some regulatory periodic physi-
ologic mechanisms. Hence we will compute directly the discrete partial autocorrelation
function (ACF) to obtain estimates both of the order of the AR model, both of the period
of oscillations. This has not been originally done for the following list of reasons:

1. because of the trends, that have a great impact on the ACF and usually enforce cor-
relations on every lag

2. if the original signal is periodic, the ACF won’t decay but will also be a periodic
function. If we want to evaluate the period without recurring to the Fourier Trans-
form, we will have to compute the ACF for a number of lags such that will allow the
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3.3 – (Partial) Autocorrelation Function and Lags

Figure 3.14: Bin statistics of 𝐻𝑡 vs HR for DFA-2 over 40 intervals time series. The blue
curve are piecewise linear interpolation of the median value in the bin. The red segments
represent the bin interquartile range.

periodic pattern to repeat itself a sufficient amount of times. In order for the estimate
to be statistically significant a large amount of points along the time series will be
needed.

3. because, in principle, people were interested in the decay rate of the ACF at great
distances/times and DFA was more convenient and numerically robust for short data
sets [20]
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3.3.1 The relation between DFA, an oscillating signal and an AR pro-
cess

We will now try to understand how well an oscillatory signal can be modeled by an
AR process and how these two are related to the fluctuation function computed with DFA.
This research has been carried out by Meyer and Kantz in a recent paper[20] for AR(2)
processes but we believe that could be, in further studies, generalized to high order ones.
They define an AR(2) process:

𝑋𝑡 = 𝑎1𝑋𝑡−1 + 𝑎2𝑋𝑡−2 + 𝜂𝑡 (3.12)

𝑎𝑖 are the model parameters and 𝜂 is any kind of uncorrelated noise. Being 𝜎𝜂 the variance
of the noise, the variance of the whole process can be computed analytically and assumes
the following form:

𝜎2
𝑋 =

(1 − 𝑎2) 𝜎2
𝜂

(1 + 𝑎2) (1 − 𝑎1 − 𝑎2) (1 + 𝑎1 − 𝑎2)
(3.13)

One can define a backshift operator 𝐵 [18] to write (3.12) as

(1 − 𝑔1𝐵) (1 − 𝑔2𝐵) 𝑋𝑡 = 𝜂𝑡 (3.14)

where 𝑔𝑖 are complex roots. Using the Yule-Walker equations, one can calculate analyti-
cally the correlation function 𝑅:

𝑅(𝑡) = 𝑐1𝑔𝑡
1 + 𝑐2𝑔𝑡

2 (3.15)

where 𝑐𝑖 are constants, 𝑅(1) = 𝑎1
1−𝑎2

and 𝑅0 = 1.
Since 𝑅(𝑡) is the superposition of two AR(1) autocorrelation functions, the superposition
principle extends to the DFA-1 fluctuation function, and using equation (2.13) and (3.1):

𝐹 2(𝑛) = 𝜎2
(𝑐1𝐹 2

𝑔1
(𝑛) + 𝑐2𝐹 2

𝑔2
(𝑛)) (3.16)

When ℜ(𝑔1,2) > 0 the AR(2) process can be mapped into a discrete damped driven
harmonic oscillator with period:

𝑇 = 2𝜋
arctan (ℑ(𝑔1)/ℜ(𝑔1))

(3.17)

The authors of the paper also noted how for large 𝑛 equation (3.16) scales as 𝑛
1
2 ,as if the

process were not correlated.

Remark 8 If the superposition principle works also for higher order AR(p) processes,
then all of them will scale for large 𝑛 asymptotically with exponent 𝐻 = 1

2 . So one could
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3.3 – (Partial) Autocorrelation Function and Lags

infer from the asymptotic trend of the fluctuation functions at large scales if the analyzed
time series is generated by an autoregressive process. For small scales the behaviour of 𝐹
is completely non trivial and non-linear. It’s astonishing the conclusion that, even though
the fluctuation function is not a power-law, we can still use DFA in a more general sense
to extract important quantities about the behaviour of the correlations in the time series,
and also the period of its dominant oscillation if there is one.

Successively, Meyer and Kantz fitted not-damped oscillators like a pure sine-wave with
an AR(2) process (Figure 3.15). They then approximately estimated the period and found
out that for small scales the results are still good. Anyway, contrarily to the perfect sine-
wave behaviour of Figure (3.2), the fluctuation function in (3.16) will behave according
to the exponent 𝐻 = 0.5 for large scales. Since, as will be reported in the next subsection,

Figure 3.15: “LEFT: theoretical result of AR(2) fitted to the DFA-1 fluctuation function
of a sinusoidal signal with length 3000 and period length 𝑇 = 20. For 1000 realizations
with random phase shifts (not in the picture) was fitted. The results 𝑎11.90256±0.00004,
𝑎2 = −0.999997 ± 0.000001 and 𝑇 = 20.047 ± 0.003 indicate only a small bias, but
even smaller variance. RIGHT: theoretical result of AR(2) fitted to the DFA-1 fluctuation
function of the 11 month averaged ENSO time series (e.n.: that has period 𝑇 ≈ 3.3𝑦).
Here they obtain the period length 𝑇 = 39.6𝑚 = 3.3𝑦.” Taken from [20]

there is a straightforward relation between the coefficients of an AR model and the partial
autocorrelation function, and since, as we have just seen through, fitting an AR model for
short time scales can give discretely accurate results for the period of dominant oscillating
modes in the time series without recurring to Fourier Spectral Analysis, we will now
compute directly the pACF on our data.
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3.3.2 Local-pACF and applications
If the time series is wide-sense stationary and periodic, for example a pure sine wave,

the ACF will be a cosine with the very same period. In order to visualize this behaviour in
the estimation of the ACF that we perform, we should at least notice the same repeating
pattern 2 or 3 times. If the period of the oscillation is 𝑇 = 10, we would need to compute
the value of the ACF for at least 30 lags. With the goal of obtaining a marker for the
instantaneous HRV that varies with activity intensity, we should hence compute the ACF
in a sliding moving window. In order to make the average value statistically significant,
we should use an observation window of size 𝑊 > 10 × max lag = 300.
But at these heart rates 300 beats correspond approximately to 2 minutes. It goes without
saying that this time interval is way too big since we want to infer a local quantity.
This is why then more than the ACF it would be interesting to study the partial anti-
correlation function 𝑅(𝑝)(𝜏), a sort conditional autocorrelation function that removes the
cumulative linear contributions of past lags by taking into account the value assumed by
the time series in the middle points while performing the average value in (2.1).

𝑅(𝑝)(1) = 𝐶 (RR (𝑖) ,RR (𝑖 − 1)) = 𝐶(1) (3.18)

𝑅(𝑝)(𝜏) = 𝐶 (RR(𝑖 + 1 + 𝜏) − 𝑃𝑖,𝜏 (RR(𝑖 + 1 + 𝜏)) ,RR(𝑖 + 1) − 𝑃𝑖,𝜏 (RR (𝑖 + 1)))
(3.19)

for 𝜏 ≥ 2 and 𝑃𝑖,𝜏 (𝑥) being an operator projecting 𝑥 onto the linear subspace of Hilbert
space spanned by 𝑥𝑖+1,… , 𝑥𝑖+𝜏. The goal of the latter is essentially to give the best linear
predictor, in the sense of reducing the mean squared error, of 𝑥𝑖+1+𝜏 given the previous 𝜏
points[18].
The pACF is a very powerful tool to determine the max-lag of a linear AR process, since
the subtraction of the projections in the arguments of the correlator puts every lag greater
than the max one to zero. Anyway, like always in statistics, sample estimates of the pACF
will never be exactly zero, but one can consider its lags negligible (5% significance level)
if they are between the band delimited by ±1.96

√𝐿
(if 𝐿 > 30) where 𝐿 is the length of the

time series. Keeping in mind that during exercise the Heart Rate is changing a lot and
that we would like to extrapolate a relation that binds its macroscopic variation to the
fluctuations around the trend, alias the HRV, we will implement a local analysis of the
pACF taking inspiration from dynamical DFA.

We considered the 7 marathon run time series (summary with details in the following
Table 3.1) and 17 of the 200 time series of runner 7 analyzed in section 2.

We first defined a sliding window of dynamical size 𝑊 = 10 lag. For the first 3 lags
we won’t consider any significance threshold because the dynamical observation windows
are not long enough. Each time, while the window slides along the whole time series, we
additionally detrended the data with a polynomial of order 𝑚. Afterwards, we compute
the pACF using the Levinson-Durbin recursion scheme[19]. We use as parameter for the
max lag of fitting the order of the lag we want to compute. For example, if we want to
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# Duration
(beats)

Distance
(km)

Age
(y)

Weight
(kg)

Height
(cm)

Max
HR (bpm)

Rest
HR (bpm) Sex

4 40034 41913.20 39 86 180 194 55 MALE
1 43771 42870.10 43 82 177 200 55 MALE
2 37027 42481.00 50 78 184 200 50 MALE
3 32200 42604.50 34 85 183 195 50 MALE
6 36880 41522.40 28 68 180 198 58 MALE
7 38270 42752.10 50 84 178 174 46 MALE
8 36262 41644.20 53 73 178 185 56 MALE

Table 3.1: Summary of the analyzed marathon time series.

calculate with dynamical pACF-m (with 𝑚 being the detrending order, and 𝑚 = 1) 𝑅(𝑝)(3)
we will set a 𝑊 = 30 and take only the last value (lag = 3) of the pACF computed with
the Levinson-Durbin algorithm with max fitted lag = 3.
Indeed, given a set of coefficients 𝜙𝑖,𝑗, for a fixed lag 𝑘 the 𝜙𝑖,𝑗 satisfy the Yule-Walker
equations[18]:

𝜌𝑗 = 𝜙𝑘,1𝜌𝑗−1 + 𝜙𝑘,2𝜌𝑗−2 + 𝜙𝑘,3𝜌𝑗−3 + ⋯ + 𝜙𝑘,𝑘𝜌𝑗−𝑘 (3.20)

where 𝜌𝑗 are estimates of the ACF, and 𝑖, 𝑗 ≤ 𝑘.
The values 𝜙𝑘,𝑘, varying 𝑘, are the partial autocorrelation function 𝑅(𝑝)(𝑘). At the same
time the best linear predictor for the time series at time 𝑡 given the previous 𝑘 points,
whether the process is autoregressive or not, will be:

�̂�𝑡 = 𝜙𝑘−1,1𝑥𝑡−1 + 𝜙𝑘−1,2𝑥𝑡−2 + ⋯ + 𝜙𝑘−1,𝑘−1𝑥𝑡−1 (3.21)

In this sense there is a direct link between the pACF and the coefficients of an AR process.
Carrying forward the analysis, we ended up with time depended dynamical estimates of
the pACF values 𝑅(𝑝)(𝜏, 𝑘), where the discrete index 𝑘 spans the time series.
For each 𝜏 we have a time series describing the time evolution of that specific lag. We
plot the results in a convenient color based fashion for the first 10 lags for the runner
7 time series and for the first 20 lags for the marathon ones (Figures 3.16, 3.17, 3.18,
3.19, 3.20, 3.21). Only values that are statistically non-zero according to their relative 5%
significance threshold are plotted.

Remark 9 We can make the followings remarks:

1. High intensity in a lag could be interpreted as the onset of a delayed regulatory
mechanism or physiologic rhythm.

2. 𝑅(𝑝)(1) and 𝑅(𝑝)(2) are significantly negative across the whole time series.

3. In some parts also other 𝑅(𝑝)(𝑖) with 𝑖 < 10 become negative. These can be seen as
the couplings with the vascular and body temperature regulations. They are often
followed by positive correlations in higher order lags.
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Figure 3.16: Dynamical pACF-1 up to lag 20 computed on marathon number 1. In the
upper panel the time series is plotted, in the lower panel each line corresponds to the time
evolution of a given lag within its dynamical window of size 10lag.

4. If in some temporal intervals a set of lags is more prominent than others, and then
this behavior changes, it can mean that those specific mechanisms were suppressed
or that the frequencies of their oscillations had shifted.

3.4 Conclusion

Every single one of the used approaches, within its range of validity, leads to the same
conclusion: during exercise the fluctuations become anti-correlated.
The increase for HRV claimed in [2][3] appears to be probably due to the fact that the
data have been fitted with an AR model. We have seen that this error comes from the arise
of peaks in the high frequency range of the spectral density.
With the local-pACF method we also found out that the period of the dominant oscillation
is changing in time.
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3.4 – Conclusion

Figure 3.17: Dynamical pACF-1 up to lag 20 computed on marathon number 2. In the
upper panel the time series is plotted, in the lower panel each line corresponds to the time
evolution of a given lag within its dynamical window of size 10lag.

Local-DFA agrees with our findings: for short time scales the estimated local Hurst ex-
ponent 𝐻𝑡 suggests that the data are generated by an anti-correlated stochastic process,
and the fluctuations in 𝐻𝑡 could be born from the shifts in frequency and amplitude of
the spectral peaks related to the physiologic regulatory rhythms. Unfortunately we could
not find a quantitative relation between HRV and the instantaneous heart rate. We should
not forget that in order to achieve a precise result, we should also use a more rigorous
detrending algorithm. An attempt towards this direction will be made in the following
chapter.
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3 – Heart Rate Variability during exercise

Figure 3.18: Dynamical pACF-1 up to lag 20 computed on marathon number 3. In the
upper panel the time series is plotted, in the lower panel each line corresponds to the time
evolution of a given lag within its dynamical window of size 10lag.
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3.4 – Conclusion

Figure 3.19: Dynamical pACF-1 up to lag 10 computed on a time series with a smooth
exponential trend and final relaxation. In the upper panel the time series is plotted, in the
lower panel each line corresponds to the time evolution of a given lag within its dynamical
window of size 10lag.
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3 – Heart Rate Variability during exercise

Figure 3.20: Dynamical pACF-1 up to lag 10 computed on a time series with an expo-
nential trend plus some steep fluctuations. In the upper panel the time series is plotted,
in the lower panel each line corresponds to the time evolution of a given lag within its
dynamical window of size 10lag.
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3.4 – Conclusion

Figure 3.21: Dynamical pACF-1 up to lag 10 computed on a time series with a sequence of
accelerations and decelerations. In the upper panel the time series is plotted, in the lower
panel each line corresponds to the time evolution of a given lag within its dynamical
window of size 10lag.
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Chapter 4

Empirical Mode Decomposition

In this Chapter I will discuss Empirical Mode Decomposition[26], a completely al-
gorithmic, data driven, approach for the frequency (mode) decomposition of short non-
stationary time series.
This algorithm has been widely used in several different fields achieving outstanding re-
sults both in detrending and denoising. Usually the results are characterized by higher
SNR ratios with respect to denoising and detrending performed with other techniques as
Fourier Decomposition or Wavelet Analysis.
In the first section I will outline how the algorithms worked and how it has been improved
during the years, reaching its current version called Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise CEEMDAN[27][28].
In the second section I will outline the Hilbert-Huang Transform and the subsequent
Hilbert-Huang Spectral Analysis.
Finally, in the last section the applications to RR time series recorded during exercise will
be discussed.

4.1 The algorithm
The goal of the EMD algorithm is to decompose the signal in a list of Intrinsic Mode

Functions or IMF plus a Residual trend. The IMF will be full-fledged wide-sense periodic
stationary time series characterized by an almost constant in time frequency and a varying
amplitude. The residual trend often contains the part of the time series that is not mean
reverting.
To extract the IMF the following sifting process must be applied:

1. Identify all the local maxima and minima in the data

2. Interpolate with a cubic spline the upper and lower envelopes as the curves passing
through all the maxima and that passing through all the minima
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4 – Empirical Mode Decomposition

3. Compute the average envelope 𝑚1 as the average curve between the previous two
interpolated curves

4. Subtract the average envelope from the data (Figure 4.1):

𝑋(𝑡) − 𝑚1 = ℎ1 (4.1)

5. Reiterate, this time using ℎ1 as an input, until at the 𝑘 iteration the number of con-
secutive siftings for which the number of zero-crossings and extrema are equal or
at most differing by one is less than a previously chosen parameter called S-number
(that is usually an integer between 4 and 8). Huang found out that in this way the
algorithm works best. [29]

ℎ1 − 𝑚11 = ℎ11
…

ℎ1(𝑘−1) − 𝑚1𝑘 = ℎ1𝑘

6. Set IMF1 = ℎ1𝑘

7. Reiterate the siftings process with 𝑟1 = 𝑋(𝑡) − IMF1 as an input and find all the
remaining IMF and the residual.

8. We finally obtain:

𝑋(𝑡) =
𝑛

∑
𝑖=1

IMF𝑖 + 𝑟𝑛 (4.2)

What is the significance of the IMF? The algorithm doesn’t look like it has a solid math-
ematical background and the IMF are not orthogonal in the sense of the dot product of
the 𝑙2 vector space. Yet they somehow encode better the real nonlinear submodes that
compose a signal if there are no spikes. Recently Niang has tried to analytically formalize
how the procedure works using partial differential equations [25]
Anyway the phenomenon of mode-mixing, that is when a real signal divided into differ-
ent spurious IMF, is yet present.
Many attempts have been done [27][28] in order to improve the decomposition quality.
The most successful ones use zero average white noise to introduce a comparison scale
that the algorithm will exploit to discern better between modes since this kind of noise
is made of a wide spectrum of frequencies. The one performing best is called Improved
CEEMDAN and works as follow:

• Before step 1 create 𝑁 copies of the signal and add to them different realizations of
white noise extracted from a normal distribution of zero mean, choosing the variance
with the aim of having a particular ratio between the standard deviation of the noise
and the standard deviation of the signal. After that compute the first IMF on all
copies.
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4.1 – The algorithm

Figure 4.1: Example of firsts steps of sifting process. Taken from [26]

• Take an average of the computed IMF in order to cancel out the contributions given
by the noise, this will be final IMF1.

• Subtract IMF1 from the signal, and reiterate on the residual, but adapting the vari-
ance time to time as to having the original ratio of the standard deviations fixed.

4.1.1 Example: highly non linear function
Let’s now perform EMD and Improved CEEMDAN on the following functions defined

in 𝑡 ∈ [0,1]:
𝑌 (𝑡) = cos (22𝜋𝑡2) + 7𝑡2 (4.3)

and

𝑋(𝑡) =
{

cos (22𝜋𝑡2) + 7𝑡2, 0 ≤ 𝑡 < 0.9 ∨ 0.9 < 𝑡 ≤ 1
0, 𝑡 = 0.9

(4.4)

𝑋(𝑡) is equal to 𝑌 (𝑡) except for a discontinuity at 𝑡 = 0.9. In the numerical implementa-
tion 𝑡 is a sequence of numbers between 0 and 1 and spacing 𝛿 = 0.001.
On one hand EMD of 𝑌 (𝑡) gives almost an exceptionally good output with the cos and
the parabolic trend perfectly separated (Figure 4.3), on the other EMD of 𝑋(𝑡) is mixing
the discontinuity with the cos, it’s creating spurious modes and it’s also bad at detecting
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the trend, which in this case looks to have the opposite concavity (Figure 4.4).
Eventually, CEEMDAN (with ensemble size = 1000 and noise strength = 0.2) of 𝑋(𝑡)
is acceptably good. The first IMF carry most of the energy of the discontinuity. Unfor-
tunately the cos is decomposed in more modes but the trend is well identified. Using
CEEMDAN we might then consider that the original modes present in the signal might
not be perfectly isolated if discontinuities are present (Figure 4.5).

Figure 4.2: Function (4.4). Time axis counts the index in the discretized list.

Figure 4.3: EMD on (4.3). Time axis counts the index in the discretized list.
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4.2 – The Hilbert Transform and Spectrum

Figure 4.4: EMD on (4.3). Time axis counts the index in the discretized list.

Figure 4.5: CEEMDAN on (4.4). Time axis counts the index in the discretized list.

4.2 The Hilbert Transform and Spectrum

The IMF contain all the information about the amplitude and the frequency of the
selected oscillating modes and how they change with time. Extracting this information
can be done with the Hilbert transform.
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Being 𝑌 (𝑡) the Hilbert Transform of a function 𝑋(𝑡):

𝑌 (𝑡) = 1
𝜋

𝑃 ∫
∞

−∞

𝑋(𝑡′)
𝑡 − 𝑡′ 𝑑𝑡′ (4.5)

one can define the complex signal as:

𝑆(𝑡) = 𝑋(𝑡) + 𝑖𝑌 (𝑡) = 𝑎(𝑡)𝑒𝑖𝜃(𝑡) (4.6)

and eventually one can define an instantaneous frequency 𝜔(𝑡) as

𝜔(𝑡) = 𝑑𝜃(𝑡)
𝑑𝑡

(4.7)

The generalization to discrete signals is straightforward. One then can study the time evo-
lution of the instantaneous amplitude 𝑎(𝑡) and frequency 𝜔(𝑡) of each IMF.
The time evolution of the sum of the amplitude/frequency relation over all IMF is called
the Hilbert spectrum and indeed performing the Hilbert Transform over all IMF the orig-
inal time series can be written in the following form:

𝑆(𝑡) =
𝑘

∑
𝑗=1

𝑎𝑗 (𝑡) 𝑒𝑖 ∫ 𝜔𝑗(𝑡′)𝑑𝑡′
(4.8)

Simple Fourier Decomposition would have led to a similar expression but with constant 𝑎𝑗
and 𝜔𝑗. Amplitude and frequency adaptability makes the Hilbert-Huang transform more
suitable for the analysis of non-linear, non-stationary time series.
We define the Hilbert Spectrum of each IMF in this way:

𝐻𝑗 (𝜔, 𝑡) =
{

𝑎𝑗(𝑡), 𝜔𝑗(𝑡) = 𝜔
0, else

And the Hilbert spectrum of the total signal 𝑋(𝑡) is:

𝐻(𝜔, 𝑡) =
𝑘

∑
𝑗=1

𝐻𝑗(𝜔, 𝑡) (4.9)

4.3 Application to RR time series
I will now show some results of the application of the Hilbert-Huang Spectral Analysis

to the marathon time series analyzed in the previous chapter. The decomposition has been
performed using the CEEMDAN function from Rlibeemd package[30] with ensemble
size = 1000 and noise strength = 0.2.
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4.3 – Application to RR time series

Figure 4.6: Hilbert Spectrum of the sum of the first 6 IMF of marathon file number 2. For
graphical purposes the frequency axis has been divided into 150 bins and the time axis
into bins of size 𝐿 = 100.

Remark 10 From the Figures (4.6, 4.7, 4.8) we can clearly see a high intensity frequency
very broad band around 𝜔 = 0.5 beats−1 and some more narrow ones at lower 𝜔. It’s
clear that the amplitude and average frequency is shifting in time. This is because the
underlying process is highly non-linear and non-stationary and it’s also the main reason
why simple Fourier Spectral Analysis does not perform well.

It’s also interesting to plot the Hilbert Spectrum where the time axis is replaced by the
instantaneous HR assumed by the time series at each instant. (Figures 4.9, 4.10, 4.11).
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4 – Empirical Mode Decomposition

Figure 4.7: Hilbert Spectrum of the sum of the first 6 IMF of marathon file number 4. For
graphical necessities the frequency axis has been divided into 150 bins and the time axis
into bins of size 𝐿 = 100.
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4.3 – Application to RR time series

Figure 4.8: Hilbert Spectrum of the sum of the first 6 IMF of marathon file number 8. For
graphical necessities the frequency axis has been divided into 150 bins and the time axis
into bins of size 𝐿 = 100.
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Figure 4.9: Hilbert Spectrum with respect to the instantaneous HR of the sum of the first
6 IMF of marathon file number 2. For graphical necessities the axis has been divided into
100 bins.
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4.3 – Application to RR time series

Figure 4.10: Hilbert Spectrum with respect to the instantaneous HR of the sum of the first
6 IMF of marathon file number 4. For graphical necessities the axis has been divided into
100 bins.
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Figure 4.11: Hilbert Spectrum with respect to the instantaneous HR of the sum of the first
6 IMF of marathon file number 8. For graphical necessities the axis has been divided into
100 bins.

66



Chapter 5

Conclusion and perspectives

Heart rate variability is a very important quantity that can give us a view on the health
status of a patient. In this master thesis, I have focused my attention on the study of the
Heart Rate Variability in time series recorded during physical exercise, exploiting the re-
lation between the fluctuations and the correlations along the data. Since the current state
of art in the field does not provide a unique efficient tool that can be used to perform the
analysis, I made use of many of them: Auto Regressive fitting, Dynamical Detrended Fluc-
tuation Analysis, Dynamical Partial Autocorrelation Function (that I developed during the
work) and Hilbert-Huang Spectral Analysis. When using these techniques, an extreme at-
tention was given to their range of validities and their limitations, stressing out how and
where the methods could be used. The results of each approach have been interpreted
with extreme care and consistently pointed out that the analyzed data benefits of a deep,
intrinsic complexity. The RR time series recorded during physical activity are character-
ized by strongly anti-correlated fluctuations that I believe are caused by the dynamical
coupling with physiologic regulatory cycles that serve to balance the beating rate when
the heart is under stress, also adjusting it according to the respiratory cycle and to vascular
pressure and temperature changes. Both the coupling intensity and the cycle frequency
appear to be shifting in time in a non trivial fashion. Unfortunately, at the moment I could
not extract a quantitative precise relation that links the amplitude or the frequencies of the
fluctuation to the instantaneous Heart Rate, still this internship work was very productive
because I was able not only to show the presence of these high frequency modes in the
signal, but also to shed light on the DFA and its link to an autoregressive process and to
the partial autocorrelation function. All the used approaches, anyway, are very sensitive
to the detrending process effectuated in order to remove the stochastic fluctuations that
are not strictly generated by the heart and by its numerous parasympathetic regulatory
mechanisms. I am confident that in the near future further studies might be able to find
some analytical relation between the coupling intensity and the heart rate, especially if
Empirical Mode Decomposition will be further improved.
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