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Abstract

Restricted Boltzmann Machines (RBM) are neural network models that learn a
probability distribution and a representation of data; they belong to the class of
Boltzmann Machines. With respect to the lasts, in RBM the learning procedure is
simpler and faster. Furthermore, once properly trained, final couplings will di-
rectly show the main correlations between visible units.
In this work we applied RBM to a specific cortical neural data set and demonstrate
its usefulness in revealing important properties of this brain region.
Starting from the studies of A. Peyrache et al. [17] on medial Prefrontal Cortex’s
neural activity in a rat, in which, using simple PCA, a cell assembly coding for a
particular learned rule was found, we tried to reproduce their result, deepening
the description of such phenomenon. G. Tavoni et al. [24][25] showed that an Ising
model can faithful reproduce such activity quite well, improving what a simple
PCA is able to attain. This suggests a possible efficacy of Boltzmann machines,
and then of RBM, since they are equivalent to an Ising model.
Even though good results were obtained, the limitations of Kullback-Leibler Di-
vergence (DKL) in such contest forced us to modify the learning rule: in fact,
RBM training is based on the principle of Maximal Likelihood Expectation, equiv-
alent to the minimum of such divergence. This is the reason why we redefined
our machinery using a metric coming from optimal transport theory, called the
Wasserstein distance, instead of DKL, that has the virtues to be smoother and fi-
nite in cases where the previous one, conversely, diverges.
The success of the project could represent a simple way to analyze bigger datasets
of neural activity measurements, speeding up the research in this field, both for
a fast analysis and a simple, graphical representation of the learning mechanisms
taking place in the brain.
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Chapter 1

Introduction

In the field of computational neuroscience, one of the main goals is the study of
the mechanism of learning and its related sub-processes.
It is widely known, together with other important features that we will overlook,
that learning is one of the consequences of plasticity of neural couplings, called
synapses, that modify their structure in some ways in order to tune the signal
passing through them and, then, the interaction between neurons and the final
response of the system to a given stimulus.
One of the main qualities of neural tissue is its high connectivity: each neuron can
have thousands of synapses. It allows a particular subgroup of cells to store a big
amount of information: as firstly reported by Hopfield [7], even if on a really sim-
plified model compared to the reality, these complex structures can contain many
different sequences corresponding to memories; these correspond to minima of
the energy function associated to the model and called Attractors. This result can
be extended, with some restrictions, to biological neural networks. Despite being
essential, high connectivity also makes analysis of neural activity and definition of
a model describing it very challenging, especially if summed to the noisy nature
of biological cells.
In the context of spatial temporal learning, a well supported belief is that learned
rules acquired in some events are finally coded inside a small group of cells, called
’cell assembly’, through interaction of them with the hippocampal cortex. Further-
more, during the subsequent sleep of the animal, some mechanism probably asso-
ciated with consolidation, results in the replay of the spiking patterns associated
to the learning period. These two activities can be somehow compared and used
to better characterize the cell assembly [17]. However, detection of these structures
still remain hard. It then becomes then necessary to use more sophisticated tech-
niques allowing to treat such complex structures.
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Applying Statistical Mechanics on the same collection of data , Tavoni et al. [24]
[25] better characterized the phenomenon: they treated the case as an Inverse Ising
model, achieving an advanced view on the assembly’s properties through the def-
inition of neurons’ susceptibility, the coactivation function of the assembly, and a
better characterization of the reply.
The aim of our project was the realization of an automatized procedure able to
detect and characterize the underlying interactions between neurons, through the
definition of a simple representation. To achieve such result we used a Restricted
Boltzmann Machine [6], particular case of Boltzmann Machines. The last is a
graphical model representing a powerful, as well as simple, tool that allows to
treat Ising models. It is made by visible and hidden units, respectively associ-
ated to input data and to additional variable of the model; from this framework,
the Restricted version comes simply allowing only connections between units of
different kind. Such a change entails, after a proper training procedure on the
dataset using Likelihood maximization, a direct way to visualize the main inter-
actions, simply looking at the coupling matrix. Furthermore, it also determines a
strong simplification in the training and sampling procedures.
Although important results were obtained, some detected problems suggested that
a different train rule has to be used. For this reason, the last part of the project
was to start the definition of a new training framework, based on minimization of
the Wasserstein distance. As reported in literature, this choice avoid different sta-
bility problems, and direct the machine toward a different, and hopefully better,
probability distribution.



Chapter 2

The RBM model

A restricted Boltzmann Machine is a generative stochastic artificial neural network,
straightforward to train and to treat mathematically, but able to learn the prob-
ability distribution of data given as input, even if with some limitations. After
their first introduction by Paul Smolensky in 1986 [21], under the name of Harmo-
nium, they were largely popularized and further studied by Geoffrey Hinton, who
used them in many different applications, with really astonishing performances
for such a simple model.
From classification to dimensional reduction, there are many applications of such
model, as overall for neural network. A general task performed by artificial neural
network is to extract features, also applying transformations on data or decreasing
their dimensionality, in order to find useful representations of them.

A simple way to do both of them is Principal Component Analysis: using eigen-
vectors associated to the highest eigenvalues, you can find a slow dimensional
subspace in which much information is contained, i.e. selecting axes on which data
have a bigger variance and neglecting the others. Though powerful, such method
does not often provide a simple interpretation, and further analysis become nec-
essary.
Among all, an important class of models, and by far the most suitable for statis-
tical mechanics treatment, are the well known Hopfield models, rather some of its
extensions.

2.1 From Hopfield model to Boltzmann machine

A Hopfield network is a form of single layer Recurrent Neural Network (RNN), struc-
tures able to exhibit temporal dynamic behavior thanks to the presence of feedback,
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4 2.1. From Hopfield model to Boltzmann machine

Figure 2.1: a) A feedforward network. b) a feedback network

since it is characterized by interconnections within the layer (then differently from
feedforward networks, see Fig. 2.1). These units are defined as binary threshold units,
taking outuput values si = {+1,−1}, with i=1,..,N the unit’s label, which is deter-
mined by whether or not the units’ input exceeds a certain threshold θi ∈ R.
RNN are generally arduous to analyze, since they may, depending on the cou-
plings distribution, have stable states, but even oscillatory regimes [23] and Chaotic
behaviors [20]. In the case of Hopfield net, connections are described by symmetric
coupling constants, wij = wji ∈ R, where (i,j) is any couple of connected nodes.
This will ensure absence of oscillations and chaos, allowing to define a global en-
ergy function and to treat analitically the problem.
Indeed, to each state we can associate an energy, determined by the Hamiltonian:

H(s|h, {wij, i, j ∈}) = −1
2 ∑

i,j
wijsisj + ∑

i
θisi (2.1)

where wij = 0 if there is no connection. The system will evolve minimizing the
above-mentioned energy function, as it usually happens in physics. The system
will evolve in the energy landscape toward an energy minimum, usually called At-
tractor, where it will remain, and that will constitute a memory. Actually, the main
application of Hopfield nets is as content-addressable memory: differently from usual
hardware memories, for which an address is required to extract memory content, in
such networks information is retrieved through its ’attributes’, rather properties.
This is a very simplified way to model biological memory, but simple to under-
stand: given the name of a person, you can recall its face. For this reason they are
also called associative nets[12].
In order to contain such memories, our network has to be trained, and many are
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the ’algorithms’ that can be applied in order to implement this procedure. In the
case of Hopfield network, learning results to be unsupervised.
A famous paradigm of biological learning is the hebbian rule: the strength of the
coupling between two neurons will be proportional to the entity of their simulta-
neous coactivation.

Figure 2.2: Example of Hop-
field network with hidden
units

Hopfield model can be extended adding hid-
den units (see Fig. 2.7): visible units states (green)
are connected to a group of units (blue) whose
output will represent an interpretation of the in-
coming sensory input and the system’s total en-
ergy a sort of badness of the interpretation.
One of the main issues with Hopfield nets is the
searching problem: though the system will evolve
through until convergence to a minimum, it may
be possible that it gets trapped on a sub-optimal
one. This can be even worse in presence of spuri-
ous minima.
It would then become then necessary to intro-
duce noise: in this way, the probability to escape
from any attractor will then be finite, allowing
the system to explore the whole configuration
space.
A general procedure to find a minimum using
noise is Simulated Annealing [10]: starting with
a major amount of noise, that will allow to explore the energy landscape, you
gradually reduce it in order to ends up in a deep minimum (see Fig. 2.3).

There are different ways in which noise can be introduced in Hopfield net:
noise can be directly inserted defining a Temperature that, if increased, will flatten
the energy function and increase probability to change state, or intrinsically added
to units; the last case is equivalent to the Boltzmann Machine model.

2.2 Boltzmann Machines and Restricted Boltmann Machines

A Boltzmann Machine (BM) is an undirected graphical model, a network of stochas-
tic units associated to a particular energy function and to the related Boltzmann
probability distribution, that can be used to fit some observed data. Units are of



6 2.2. Boltzmann Machines and Restricted Boltmann Machines

En
er

gy

Figure 2.3: Pictorial description of the system dynamics using Simulated Anneal-
ing

two different nature: visible units are the ones standing for the observed variables
that you want to describe; hidden units, instead, represent some latent variables
catching features from the visible ones.
In the usual framework, the observed data are applied to such visible units and the
learning procedure will modify the model parameters in order to reproduce the
underlying probability distribution. Defining with v = (v1, v2, ..., vN) the vector of
visible variables and with h = (h1, h2, ..., hM) the hidden one, and using Bernoulli
units for both (vi, hj = {0, 1}), the BM probability distribution will be:

P(v, h) =
e−E(v,h)

Z
, Z = ∑

v,h
e−E(v,h)

E(v, h) =−
N

∑
i=1

givi −
M

∑
j=1

gjhj −
N

∑
i=1

M

∑
j=1

wi,jvihj − ∑
i<k∈V

wi,kvivk − ∑
j<l∈H

wj,lhjhl

(2.2)

where V represent the set of visible units, N = |V| , H stands for the set hidden
units, M = |H|; gi and gj are the local fields of, resp., visible and hidden units,
readable as mean frequencies or, looking at 2.1, pseudo-thresholds.
Such a general property can be, in fact, useful to inferring the underlying prob-
ability distribution describing data, as detecting unusual properties in complex
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Figure 2.4: Left) example of BM: hidden units are in green, visible in blue. Right)
example of RBM, same coloring

systems and to compute the Posterior.

In the last decade, the fitting of this model was largely studied by the statistical
physics community in the last years, under the names of inverse Ising problem [16]
or Maximum Entropy modelling [9], since BM is actually equivalent to the so called
Ising model.
Differently from the usual framework in statistical physics, in which macroscopic
observables are derived from microscopic laws governing the system, in the in-
verse problem our attempt is to extract, from observations of the behaving system,
the microscopic laws.
Inverse problems are particularly useful in the study of large systems of interact-
ing units, when their microscopic structure is well known: the functional differ-
entiation between units does not often arise from the unit itself, rather from its
interaction with the rest of the population. This is the case of Neuroscience: it is
not the single neuron that has the ability to codify for a particular function, but
the whole neural structure and its interactions to play such a role.

Thanks to its nature, BM can be easily used as a generative model: extracting
randomly hidden variables, visible units will then follow the distribution

P(v) = ∑
h

P(h)P(v|h) (2.3)

that will resemble the empirical one, obviously if the model properly learned the
real distribution.
The main problem of BM is the high correlation present between units: such prop-
erty complicate its analysis, as it happens also for procedures like sampling or
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learning. This is the reason why Restricted Boltzmann Machines are usually pre-
ferred: in this particular realization of BM, only couplings between units of differ-
ent nature are present, defining a bipartite graph (Fig. 2.4). This allow to simplify
the correlation description, as far as the learning procedure. Furthermore, with
such a graph thermal equilibrium can be reached in a single step: whereas in
BM, imposing from data the visible vector, or through sampling the hidden one,
we need to let the system evolve until reaching its stable distribution, with RBM
configuration of the opposite layer (visible or hidden) will take directly a config-
uration following Boltzmann distribution in 2.2, since the update of all the units
of a particular layer can be computed in parallel (consequence of the bipartition
property).
We stress that, although visible units of RBM are not directly connected, they still
contain correlations because of common inputs from the hidden layer, that act as
a bridge. Hidden units will represent, as a matter of fact, collective modes of vari-
ation between visible units, present within the data.

2.3 Going ahead with RBM

In order to better understand the functioning, properties and potentialities of
RBM, we will proceed now with a detailed explanation of the essential steps that
are necessary to properly use it. Even though the Bernoulli case is a good model in
many cases, in many situations it could be preferable to use units of different na-
ture. The visible unit variables choice will be dictated by the data type on which
you do inference, whereas for the hidden ones different potentials can be used,
depending on what type of correlations you expect or which properties you want
to study; as you can easily understand, there is no exact rule apart from intuition.
The RBM probability distribution takes the general form:

P(v, h) =
e−E(v,h)

Z

E(v, h) =−
N

∑
i=1

givi +
M

∑
j=1
Uj(hj)−

N

∑
i=1

M

∑
j=1

wi,jvihj

(2.4)

where we used the same notation as in 2.1, and Uj(hj) are unary potentials control-
ling marginal distributions of variables hj.Some hidden potentials Uj(hj) examples
are:

• Bernoulli: U (x) = −gx, x ∈ {0, 1},
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• Potts: U (x) = −g(x), x ∈ {1, ..., K},

• Gaussian potential: U (x) = 1
2 γx2 + θx, x ∈ R,

• ReLU potential: U (x) = 1
2 γx2 + θx, x ∈ R+,

• dReLU potential: U (x) = 1
2 γ+x+2 + 1

2 γ−x−2 + θ+x+ + θ−x−

As you will see, it is useful to compute the probability distribution over visible
units only, marginalizing then over hidden ones:

P(v) =
∫ M

∏
j=1

dhjP(v, h) =
1
Z

exp
(
−

N

∑
i=1
Ui(vi)+

M

∑
j=1

Γj(Ij(v))
)
≡ 1

Z
e−Ee f f (v) (2.5)

where Ij is the total input of hidden unit hj and Γj the cumulant generating function
associated to U j:

Ij(v) = ∑
i

wijvi, Γj(I) = log
[ ∫

dhe−Uj(h)+hI
]

(2.6)

2.3.1 Sampling

In the case of RBM, similarly to what happens with BM, the sampling cannot be
done directly. In fact, a usual method is the Gibbs sampling, a Markov Chain
Monte Carlo algorithm that extracts approximated samples from the probability
distribution described by the model. Starting from an initial configuration, the
algorithm updates, one at a time, each unit in a random order, drawing it from its
conditional distribution P(xk|{xj}j 6=k). This procedure satisfies detailed balance,
aperiodicity and irreducibility, i.e. there is non zero transition probability between
any couple of states. All these requirements are fundamental to do the sampling
correctly, since they assure convergence toward Boltzmann distribution for suffi-
ciently large time.
Gibbs sampling is used both for BM and RBM, but with RBM the restricted con-
nectivity allows to simplify the procedure, since the units of one layer are condi-
tionally independent among themselves (see Fig. 2.5) :

1. Compute the hidden units input Ij = ∑i wijvi;

2. Sample each hidden unit in parallel, since independent

P(hj|Ij) ∝ exp
[
−Uj(hj) + hj Ij

]
;

3. Compute the visible layer input: Ii = ∑j wijhj;
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Figure 2.5: Sketch of the Gibbs sampling procedure on RBM. Taken from [27]

4. Sample each visible unit independently

P(vi|Ii) ∝ exp
[
− (gi + Ii)vi

]
.

Given a visible layer, we can define its most probable configuration as

h∗j (v) =arg max
hj

[
P(hj|v)

]
= Hj(Ij(v)) Hi = (U ′j )−1

=〈hj|v〉 ≡
∂Γj

∂I
(Ij(v))

(2.7)

since Γ is the cumulant generating function [28].
We anticipate that we will use mostly dReLU potential: ReLU is widely used
in neuroscience as non-linearity, and dReLU is a more general form, proved to
significantly outperform the other potentials reported above [14] in the context of
image recognition . In the case of many hidden units, a cumbersome part will be
the computation of the partition function Z : for this reason the usual way is to
set a Markov Chain Monte Carlo simulation, thanks to the Markovianity of such a
system. In fact, in RBM the present state is determined only by the previous one
(Markov property). Such a property can be exploited using Monte Carlo sampling,
where each accepted new configuration will represent a point in the evolution of
the system, then defining the Markov chain. If properly used, such evolution can
be interpreted as the dynamics of the system in the configuration space, ad used as
an ’empirical’ distribution from which you can extract a probability distribution.

2.3.2 Learning

Both in BM and RBM training consists in maximizing the log-likelihood on the
training data-set L = 〈log P(v)〉data using Gradient Ascent algorithm, updating
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each parameter according to this rule:

θ(t+1) = θ(t) + εt · ∇θL (2.8)

where εt is the learning rate, usual parameter in machine learning. The last
term, with some simple calculations (see appendix A), takes the form:

∇θL = −〈∇θE(v, θ)〉d + 〈∇θE(v, θ)〉m (2.9)

where the first expectation is computed on the training dataset distribution and
the second one on the current probability distribution of the model. Informally, we
can see the update as a way to diminish the energy on the real configurations, in
accordance to memory storaging in Hopfield model, as to the usual hebbian rule,
but raising the energy on the current model distribution (see Fig. 2.6), avoiding
blowing up of the model and getting rid of spurious minima, as a sort of unlearn-
ing.

Figure 2.6: Schematic representation of a possible interpretation of the lerning
procedure.

A standard learning algorithm in multiplayer neural networks is back-propagation,
that consists of the repeated application of the following two passes: the Forward
step, the network is activated on one example and the error of the output layer is
computed; then, in the Backward pass, the network error is used for updating the
weights.
Since in RBM the process of settling to thermal equilibrium corresponds to prop-
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agating information about weights, we don’t need back-propagation.
Considering the case of RBM, the likelihood gradients will be:

∂L
∂gi

= 〈vi〉d − 〈vi〉m

∂L
∂ξ j

=
〈∂Γj(Ij(v))

∂ξ j

〉
d
−
〈∂Γj(Ij(v))

∂ξ j

〉
m

∂L
∂wij

= 〈vi〈hj|v〉〉d − 〈vi〈hj|v〉〉m

(2.10)

where again 〈hj|v〉 =
∂Γj(Ij(v))

∂I .
In the first term, gradients, computed with respect to fields and couplings, are
non-linear functions that has to be computed at each parameters’ update; in our
algorithm we used Stochastic Gradient Ascent, deepen in 2.5.1. The difficult part is
the right term 〈〉m, because we need to estimate the Model probability distribution,
and neither analytical nor direct sampling evaluation are possible; a standard way
is to use Markov Chain Monte Carlo , constructing a Markov Chain that matches
the correct one in the limit of infinite sampling time. It is usually slow and some-
times deceitful, as it can happen in case of bad-connected low energy regions; for
this reason, different method were developed, depending on the problem. In our
work we used Augmented Parallel Tempering (APT), that shares properties of Con-
trastive Divergence and Parallel Tempering, explained below.

2.3.3 Likelihood estimation

As seen, RBM learning consists in finding parameters changes that increase the
loglikelihood L on the dataset, quantity that we need to estimate in some way.
Since the partition function Z is intractable in both BM and RBM, the loglikelihood
L = logP(v) cannot be computed directly. For that reason Annealed Importance
Sampling (AIS) algorithm can be used for estimating the partition function and,
then, the likelihood. For more details see [15]. In the usual Importance sampling
you to estimate partition function ratios.
Let P1(x) = P∗1 (x)

Z1
, P0(x) = P∗0 (x)

Z0
two probability distributions. The next identity

holds: 〈P∗1 (x)
P∗0 (x)

〉
x∼P0

= ∑
x

P∗1 (x)
P∗0 (x)

P∗0 (x)
Z0

=
1

Z0
∑
x
P∗1 (x) =

Z1

Z0
(2.11)

This result can, in fact, be used in the evaluation of the Z1 partition function:
choosing a well known, or at least simple to compute, model with partition func-
tion Z0, it will be possible to estimate Z1 by Monte Carlo. The major drawback
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lies in a possible variance of the estimator: if P1 and P0 are very different from one
another, some configurations are very likely for P1 and very rare P0; such config-
urations almost never appear in the Monte Carlo estimate of the average, but the
probability ratio can be exponentially large.
In Annealed Importance Sampling, we address this problem by constructing a
continuous path of interpolating probability distributions Pβ = P β

1P
1−β
0 , then we

can estimate the wanted partition as

Z1 =
Z1

Zβlmax

Zβlmax

Zβlmax−1

...
Zβ1

Z0
× Z0 (2.12)

Intuitively given two distributions, which might be disjoint in their support, we
create intermediate distributions that are bridging from one to another. Then we
do MCMC to move from one distribution to the next, ending up in our target dis-
tribution.
The best way to use such a method is to choose P′ as the closest independent
model, in terms of DKL, to the data distribution Pd, using a linear set of βl : start-
ing from P0 you draw samples using Gibbs sampling and gradually pass toward
Pβlmax

.

2.4 Pseudo-likelihood

Before starting to describe how learning takes place it can be useful to define a
new quantity, that will substitute the log-likelihood during the most of the com-
putation.
Although likelihood is the main quantity we want to maximize during the train-
ing, its evaluation is often computationally demanding: it involves the computa-
tion of the Partition function, and it has to be computed each time a parameter is
updated in order to be reliable.
RBM can also be trained using different objectives than maximum likelihood, such
as minimum probability flow [22] or pseudo-likelihood maximization (PLM) [3].
In our work, we used the last during training, evaluating log-likelihood only after
many steps, getting a reasonably good approximation.

In PLM, the learning criterion is to maximize the conditional probability of
observing one variable given all the others:

PL = 〈logP(vi|{vj, j 6= i})〉 (2.13)
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Pseudo-likelihood maximization gives in principle less accurate predictions, but it
is instead efficiently computable without further approximations, required instead
for the likelihood estimation. Furthermore, in case of large datasets, maximizing
the exact conditional likelihood would give the same result as maximizing full
exact likelihood. Then pseudo-likelihood maximization is a consistent estimator,
which is an important theoretical advantage of this approach.

2.5 Learning Methods

2.5.1 Stochastic Gradient Ascent

The usual Gradient Ascent algorithm is an important tool in finding functions
maxima.
The main idea is that the gradient of a parameter has to be directed in the same
direction in which the function derivative is positive. Defining such a gradient
locally can gives problems in case of multiple maxima present: depending on the
initial point, different result will be achieved, even if only one will be the true
global maximum. This is the reason why full-batch gradient ascent is usually
preferred, in which the chosen gradient will be an average of the one computed
on the full dataset.
Going forward, a "mini-batch" way can be preferred: in this version, the mean
gradient is computed only on a randomly chosen subset of the full dataset. The
change can be useful in cases where many local maxima are present, since they
can have a global weight larger than the global maxima one. This procedure is the
so called Stochastic Gradient Ascent [1].

2.5.2 Contrastive Divergence (CD) and Persistence Contrastive Diver-
gence (PCD)

CD is a MCMC method introduced by Hinton [4]: instead of random initialize the
markov chain, we use data samples, from which evolving the MCs for few steps
only.
Intuitively, the final, wanted result is that Gibbs sampling leaves as invariant as
possible the initial configuration: instead of start a MCMC at random, waiting for
thermalization, and then computing the gradient, we can do few Gibbs sampling
(2.3.1) and consequently compute the gradient to reduce the tendency of the chain
to run away from the correct distribution. Heuristically, the gradient quantifies a
’contrast’ between the initial configuration and the model ’divergence’. To imple-
ment it, we will use as many chains as the number of batches, with few MC steps,
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using the same data sample for SGA.

Figure 2.7: Illustration
of the Parallel Temper-
ing principle. Taken
from [27]

Since CD is biased, it will not have good generalization
capabilities, having unexplored region possibly con-
taining spurious minima, as seen for learning in the
Hopfield model.

In PCD [26], MC are not initialized at each gra-
dient update, but they are used through the whole
evolution; this can be justified by the fact, assum-
ing that samples are at equilibrium and probability
varies slowly between updates, only few steps are re-
quired to the new equilibrium distribution (at least
true in the case when the learning rate decays to
zero).

Although these two methods are faster than nor-
mal MCMC, they are biased and they fail in pres-
ence of small mixing rates between rare config-
urations, besides possible divergence of the like-
lihood, partially avoidable decreasing the learning
rate.
A widely used method to speed up the sam-
pling is Parallel tempering; we will now introduce
it, since it is the basis of a new method intro-
duced in [27] and that we used in our simula-
tions.

2.5.3 Parallel Tempering

Also called Replica Exchange Method [11], PT simulates at the same time several
replica of the system, drawn from the Boltzmann distribution at inverse temperatureβi ∈
[0, 1], i ∈ 1, ..., NR:

Pβi(v,h) =
1

Zβi

e−βiE(v,h)−(1−βi)E0(v,h)

with βi ordered from 0 to 1 and E0 = ∑i U 0
i (vi)∑j U 0

j (hj) is the energy of a non-
interacting system, related to P0, that can be chosen as the independent model
closest to the data, i.e. the one that minimizes the Kullback-Leibler Divergence
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DKL(Pd|P0). Denoting with v(t) = (v(t)
1 , ..., v(t)

i , ..., v(t)
NR
) the current population of

replica v(t)
i , the sampling occurs repeating the following steps:

1. compute a parallel Gibbs update of each replica v(t)
i using the Metropolis-

Hastings algorithm

2. Propose configuration swapping: choose a replica i and try to exchange it
with one of its neighbors (i± 1, prob. a half for both)

3. Accept the move with probability

ARi = min

{
1,

Pβi(vi±1)Pβi±1(vi)

Pβi(vi)Pβi±1(vi±1)

}

In this way, a particle trapped in a local energy minimum at β = 1 can, moving it
to higher temperature, diffuse to a different state through an energy barrier lower
than the initial one, effectively escaping from the initial mode. This method allows
to speed up the transition time between modes, preserving the transition probabil-
ity between states thanks to the acceptance rule, and ensuring unbiased sampling.
In order to have reasonable acceptance, temperatures need to be chosen carefully,
as in presence of phase transitions; furthermore, this sampling becomes wrong in
case of entropic barriers: although at β = 0 the energy landscape becomes flat,
modes containing a bigger number of equivalent configurations will prevail the
evolution, possibly breaking ergodicity, with the Markov Chain unable to over-
come this barrier (like in first order phase transitions, or in different cases with
RBM, since this entropic unbalance is usual).

2.5.4 Augmented Parallel Tempering (APT)

This new method, introduced in [27], join features of CD, PCD and PT, but over-
coming their major drawbacks.
Even though PT can be used to explore unknown energy regions, what we need is
to evaluate the unknown probability distribution of our parametrized model near
the known data, since it is a generative model. This information can be used as in
the case of Contrastive Divergence, but through an unbiased model. Bringing back
into play the idea of Parallel Tempering, we can use as P0 a Mixture of Independent
model (MoI) fo mode z

P0(v) =
Z

∑
z=1

∏
i
P0(vi|z)P0(z) (2.14)
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able to learn multimodal distributions: such improvement allow direct sampling
during the MCMC, ensuring ergodicity and multimodality.
Using MoI instead of independent model, it is possible to heavily speed up the
trajectory trhough the configuration space, as to use fewer replica thanks to the
lesser distance between P0 and P1. In this way you will also sort out the inability
of usual MCMC-based learning to fit multimodal and bad connected datasets.
A general problem with RBM training is to find the minimal number of Monte
Carlo steps required to correctly learn the model, a quantity determined by the
specific dataset. Using APT, we can associate to each data point its mode
z = arg maxP0(z|v) and computing the transition time to a new mode, defining
then a transition matrix: the effective convergence time, related to the Markov
Chain mixing rate, can be defined as τ = − 1

log λ2
where λ2 is the second higher

eigenvalue: a large τ corresponds to a transition matrix with small off-diagonal
terms, then slow in changing the mode, while a small τ is related to well mixing
systems. This parameter can then be used to define such length, method that will
define the Adaptive APT.
J. Tubiana shown that Adaptive APT outperform the previous ones: lower-Temperature
replica are much closer to the target distribution, resulting in higher swap rates.
(write appendix on implementation and results)





Chapter 3

Restricted Boltzmann machine
applied on cortical activity

We presented in the last chapter the Restricted Boltzmann Machine model, the
model we used in our analysis. As we reported, such a model can be used to
fit any type of dataset from which, if properly trained, it extracts the probability
distribution that better describe the empirical one.
The aim of our project was to define the best procedure enlightening, using RBM,
new functional neural structures arising in the medial Prefrontal Cortex of rat after
task-learning, with a wide quantity of possible applications in many other situa-
tions.
First, after introducing the concept of cell assembly in the field of neuroscience, we
summarize the recent methods developed in order to extract these neural ensem-
bles from the recorder activity of the Prefrontal Cortex. Then, we will present the
main results of our study.

3.1 The cell assembly and its description

One of the main peculiarity of mammals, as well as the majority of living beings,
is the capability to learn from experience: it is probably the main resource of the
individual, and one of the principal features determining the strength and success
of a species in nature.
Tough such ability was, and presently is, largely studied, huge questions remain
open yet. One of these is how, effectively, the learning actually take place.
Nevertheless, given the solid belief that the brain works as a distributed system
of interacting units, it seems quite reasonable that such mechanism would consist
in small changes in the neural connectivity, probably associated to local modifica-

19
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tions in the neuron itself.
With the term cell assembly, neuroscientists usually identifies putative subgroups
of cells coding for particular functions, as memories or learned abilities: such neu-
rons interact, in an precise way, showing particular temporal patterns, that could
be associated to such encoded information.

3.2 Rule-learning

A well established model concerning spatio-temporal experience-related learning
is the Standard Model of Consolidation, for which, roughly saying, information is
stored as short-term memory in the Hippocampus and after, mainly during sleep,
such information flow towards prefrontal cortex. Such phenomenon takes place
as strong coactivation of the two structures. In their work, Peyrache et al. [17]
analyzed reactivation strength of neural activity during Slow-Wave Sleep (SWS)
period, preceding (Pre) and following (Post) rule-learning experiences of rats: in
particular, each rat was asked to perform a task in a Y-maze in which it had to
learn how to select the rewarded arm using one of four possible rules: left arm,
right arm, illuminated arm and nonilluminated arm; during each trial, one target
arm was illuminated at random; such period is referred as the Awake epoch.
The data analysis was mainly based on Principal Component Analysis (PCA): it is
an orthogonal linear transformation that transforms the data to a new coordinate
system. Indeed, it identifies directions with larger variance, then containing much
information about the points distribution. They found that the highest eigenval-
ues of the Awake correlation matrix were associated to rat’s strategies, and that the
first principal component’s higher elements, selected using the theoretical upper
bound for random spike trains, correspond to the notorious cell assembly (Fig. 3.1,
Top). Furthermore, through the definition of a Reactivation strength function, es-
timate of the similarity between awake and sleep activity, it was also observed a
clear emergence of the cell assembly, from Sleep Pre to Sleep Post. Reactivation
peaks occurred together with SPWR hippocampal waves, via large synchronous
oscillations of the two cortical structures, according to the Standard model of Con-
solidation. Finally, as it is possible to see in Fig. 3.2 (Bottom), the probability
distribution of such reactiovation resulted to change across the two rest periods,
with an increased tail in the second one.

The dataset provided by Peyrache’s group was further studied; in particular,
some interesting outcomes were obtained through statistical inference, which will
justify and enrich our work.
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Figure 3.1: First two principal components of the correlation matrix related to the
Awake epoch; the red line represent the upper bound for random spikes train.

Figure 3.2: Incidence of reactivation strengths during rest periods. Black filled
zones indicate SWS periods and the gray trace indicates non-SWS. The post epoch
SWS histogram has a heavy tail, reflecting strong transient reactivation events.
Taken from [17]

3.3 Study of neural activity through inverse Ising problem

To better characterize the knowledge on such cell assembly and its replay, Tavoni et
al. [25][24] inferred functional interaction networks reproducing low-order statis-
tics of ’snapshots’ of the neural population studied. Among the two articles they
extracted, using maximum-entropy, a BM model associated to the real system,
whose parameters reproduce recorded frequencies and pairwise cross-correlations
of neurons.
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Figure 3.3: In contradistinction with the data distribution (red), the Ising distribu-
tion (black) reconstructs accurately the tail of the distribution of all activity patterns
potentially generated in such a network. Inset: mean global activity as a function
of the external drive H, computed from MCMC of Ising probability distribution.
Taken from [24]

In [25] they mainly analyzed structural changes in the networks between Sleep
epochs, then looking at correlation of these with the Awake one. Extracting the
probability distribution and such related graphical model allowed to refine the
analysis, with multiple neuron correlation, exact definition of the modifications of
the inferred functional couplings as the reactivation of the enhanced group. In the
second one [24], the same model was instead used to the identification of coac-
tivating neurons (cell assemblies) in single epochs: once the model was inferred,
a neural susceptibility to an external drive was defined; using it, the cell assembly
was defined as the group of cells with the highest susceptibility peak at the drive
value. Besides the other outcomes, the important thing, at least in our point of
view, is the power of such inferring procedure: as schematically explained in Fig.
3.3, the inferred model reconstructs the tail of the distribution of all observable
configurations; rare and high-activity configurations, resulted to include also the
cell assembly activation, that emerges from structural properties of the functional
network obtained.
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3.4 The machinery

In this project we try to define a new RBM model in order to study the mPFC data
of [17]. We start describing the physical model’s details; after, we will define the
final training procedure used, followed by the parametrization.

3.4.1 Graphical model

The RBM used is made by 37 Bernoulli visible units, each one associated to a par-
ticular recorded neuron. These are connected with a variable number of hidden
units (from 1 to 60). Of course, many more units can be used, possibly improv-
ing the final likelihood. Nevertheless, what we want to define is a simple and
interpretable model, with each hidden unit and its related couplings representing
particular interactions between neurons, easily linkable to biological phenomena.
Using too many units then, even though it could better reproduce spiking activity,
would not be useful for the purpose we addressed. The best results, in fact, were
obtained not exceeding 10 units.
A general feature that we forced along learning was sparsity: this feature allows
to get, for each hidden unit, only few strongly coactivating visible units, and also
to differentiate them in subgroups of higher interacting cells. Sparsity can be ob-
tained in many ways, using Regularization terms.
Concerning the nature of hidden units, as anticipated we used dReLU potentials:

U (x) =
1
2

γ+x+2 +
1
2

γ−x−2 + θ+x+ + θ−x−

In order to understand this choice, we compare it with the other two most used po-
tentials, i.e. Bernoulli and quadratic (Gaussian) (see 2.3): with respect to Bernoulli,
dReLU takes continuous values, allowing to encode much information than in the
other case. Also, after marginalization, quadratic potentials create pairwise ef-
fective interactions whereas Bernoulli and dReLU does not. It was shown in the
context of image processing [14] and text mining that non-pairwise models are
more efficient in practice, and theoretical arguments also highlight the importance
of high-order interactions.

3.4.2 Learning Methods

Following section 2.3.2, the learning procedure consists in updating the model pa-
rameters using Gradient Ascent rule in order to maximize the likelihood 2.8. We
used Stochastic Gradient Ascent (2.5.1), in which data are divided in mini-batches
of 300 ∼ 500 data-vectors.
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As usual in Machine Learning, we randomized the dataset ordering, dividing it in
training and test set, in order to check generalization ability of our net: such proce-
dure will confirm the effective learning of the probability distribution describing
the data, representing also a way to detect possible overfitting.
For the sake of performance, gradients were instead computed using Pseudo-
likelihood (see section 2.4): such quantity is simpler to be evaluated and, although
it is less stable and accurate than the likelihood estimation, it turned out to be a
valid quantity to use, supported by occasional likelihood evaluation, both on train
and test set, making use of Annealed Importance Sampling (2.3.3).

The learning task was accomplished by means of Adaptive Augmented Parallel
Tempering (2.5.4), using two replica of the system and a single Markov step in the
Monte Carlo evolution, in accordance with the usual PCD procedure (2.5.2). The
mixture model was fitted on the data at the beginning, and kept fixed along the
whole evolution. Finally, the so called batch normalization procedure [8] was used.
During learning, each time a parameter changes, a coviarate shift phenomenon
takes place [19], consisting in a spurious change in the mean activity of the hidden
unit, requiring a lowering in the learning rate and a consequent slow down of the
training. The idea is to reparametrize the network, such that all intermediate
activities have zero mean and unit variance. Such procedure was tested in many
cases [27], resulting in much better performances.

3.4.3 Parametrization

RBM can obtain good performances only with careful choices of parameters.

Particular care has to be taken for the system initialization. We initialized
visible fields from the independent model, i.e. imposing them equal to the cor-
responding mean activity of the correspondent cell, corresponding to Maximum
entropy inference [9]; weights are extracted from N (0, σ2 = 0.01

N ), usual choice
with such model, that avoid to have initial hidden units with too high values, fact
that can slow or get worse the generalization performance.

An important parameter defining training is the learning rate, a coefficient that
determine the magnitude of the effective gradient applied on the single parameter
(εt in 2.8). As reported in [5], it has to be chosen in such a way that the total
change in weights does not exceed the empirical rule:
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Figure 3.4: Evolution of the ratio between the mean weights variation and mean
weights amplitude, plotted for different simulations varying the regularization
term. It is clearly visible the effect of the learning rate’s exponential decay on the
weights variation.

∆wtot ∼ 10−3wtot; ∆wtot = ∑
i,j
|∆Wij|, wtot = ∑

i,j
Wij (3.1)

Furthermore, it is usually suggested to use a dynamic parameter, following an
Annealing procedure, according to the idea of Simulated Annealing [10]. For these
reasons, we used an initial learning rate lr = 0.01, with exponential decay on the
second half of the training, till a final value of 10−6. In Fig. 3.4 an example of the
dynamics followed by the ratio of the two quantities in 3.1, where it is possible to
notice the correct change and the effect of the Annealing.

A decisive parameter is the regularization.
In machine learning, training is carried out by minimization of a loss function, to
which some additional terms can be added: they will add supplementary infor-
mation, routing the model on a particular direction that minimize such a term:

min
f

n

∑
i=1

V( f (xi), yi) + λR( f )

where λ is a parameter controlling the strength of the regularization function R(f).
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This new term can be used to impose particular properties on couplings, giving
preference to low weights instead of large one, for example.
The main reason to include it is that it is a powerful way to avoid overfitting, i.e.
when the high number of fitting parameters, despite corresponding closely or ex-
actly to a particular set of data, brings the system to fail to fit additional data or
predict future observations reliably. If the regularization works properly in such
a direction, the likelihood, seen as a function of this parameter, will show first an
increase, after which it will start to go down again, meaning that the model will
start to overfit data.
In our system, we used the so called L2

1 penality, since we focus on sparse weights:
we addressed to find new representations that are interpretable, and sparse weights
are then crucial. Furthermore, such property will not arise naturally in RBM learn-
ing, then such regularization penality is required. L2

1 is defined as:

L2
1 ∝

1
2N ∑

µ

(∑
i,v
|wiµ(v)|)2 (3.2)

Notice that in our case we set up the training on likelihood instead of loss, trying
to maximize it: this results in a change of sign in the final gradient computation.
In contrast with our expectations, the described likelihood shape, presenting a
well defined maximum, was not found: as you can see in Fig. 3.5, before the fast
decrease caused by overfitting, only a plateau is present.

Figure 3.5: Final evaluation of the likelihood as a function of l1b, computed on
test set. Simulations were done with 60 hidden units, in order to confirm that the
model has enough parameters. l1b≡ L2

1)

In order to validate our set up, we used a second generation of RBM: using the
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Figure 3.6: Same function of Fig. 3.5, but computed on a second generation of
RBM, trained on artificial data generated by the first generation of RBM, i.e trained
on real data.

fact that RBM are generative models (see 2.2), we trained a first RBM on real data,
and generated a new dataset used as training set on which a second RBM was
used. In this second case the expected behavior was found, as you can see in Fig.
3.6. We will face the reasons of these two cases in the next section.
A final parameter involved in our analysis, even if not directly implemented in
the RBM, is the data binning: the Peyrache’s recordings are time series of cell-
events, independently recorded one each other. Since, for their structure, RBM
are not able to correlate activation over time, then learning temporal patterns, the
only way to find correlations in arbitrary large time window is to apply a binning
procedure. The simple way, that is the one we used, is to simply look at fixed
time windows, and consider the neurons spiking inside them as activated for the
whole period.
The choice of the binning size was take according to some outcomes of the articles
presented above, then equal to 100ms, i.e. a bit larger than the mean time of
coactivation of the cell assembly.
Although useful, such a procedure will negatively affect the final result. In fact, the
cut applied on data could split in two these patterns, and has also the drawback
of losing information about how much each active cell effectively spikes.
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3.4.4 Evolution

Before presenting the results, we will show an example of model’s parameters
evolution during the training.
As explained, learning is accomplished by likelihood maximization: as you can
see in Fig. 3.7, the behavior is the one expected, with a first increase, followed
by a stabilization. The learning rate starts to decrease in the first half of the pro-
cedure (1100 over 2200 epochs), same point in which strong variations precede
a final increase: it seems to be exactly the effect of the annealing of the param-
eter, as pictorially showed in 2.3, interpreting the parameter as a noise on the
dynamics and the raising as the final arrival to a better minimum. The picture re-
port the log-likelihood of the model, divided by the number of visible units, then
corresponding to the single neuron. Other two quantities monitored during the
evolution were weights sparsity S and the average sum of the weights squared NW

associated with each hidden unit

S =
1

NM

M

∑
µ

(∑N
i w3

µi)
2

(∑N
i w6

µi)

NW =
1
M ∑

iµ
w2

iµ

(3.3)

with N visible units and M hidden ones. The observations 3.8 and 3.9 graph
confirm the effect of the L2

1 regularization of decreasing sparsity, also figuring
again the effect of the learning rate annealing. The reported curves are related to
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Figure 3.7: Evolution of log-likelihood of the RBM, computed on training and test
set, during learning.
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simulations with the same likelihood final distribution as in Fig. 3.5, using some
selected points: the association allows to understand that probably the decreasing
is not due to overfitting, but rather to an excessive effect of the regularization, that
blocks the growth of the weights.
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Figure 3.8: Evolution of the RBM weights’ sparsity for different regularization
parameters. l1b≡ L2
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Figure 3.10: Matching between first principal component of PCA and weights of
the RBM-1. Both vectors are squared.

3.5 Results

Once the network training was correctly done, we looked for methods to evaluate
its efficacy, mainly concerning reactivation.
A first, simple way to compare our procedure with usual PCA is to define an RBM,
trained on the Awake epoch dataset, including only one hidden unit (called RBM-
1 from now on). As you can see in Fig. 3.10, higher values corresponds in case of
neurons belonging to the cell assembly. In the labeling we used, cell assembly will
correspond to cells 1, 9, 20, 21, 26 and 27
A second check was to look at the generative properties of our RBM. This can be

easily accomplished comparing frequencies and correlation matrices of the orig-
inal and the artificial dataset. As you can see in Fig. 3.11, the two frequencies
distribution are almost identical, as happens for correlations.
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Figure 3.11: Left) Comparison between neural frequencies on real and artificial
data. Right) Scatter plot of correlation matrices: x and y coordinates correspond
respectively to real and artificial data correlation matrix elements.
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Figure 3.12: Histograms of the Reactivation scores, relative to RBM with 1,5,10
and 60 hidden units

Concerning the replay, a simple way to verify the RBM performances is to
define a Replay score RS in the following way:

RSPre =
1

2LPre
(QpreW)2 − (Qpre)

2(W)2

RSPost =
1

2LPost
(QpostW)2 − (Qpost)

2(W)2
(3.4)

with L the length of the dataset, and Qi the renormalized datasets of sleep Pre and
Post

(QPre)i,l =
Di,l −mi

σi
i = 1, ..., N (3.5)

mi and σi are mean and variance of each neuron computed on the particular
dataset. Results are shown in Fig. 3.12: for each hidden units the reply score
works well, even if, paradoxically, the best result was obtained with RBM - 1. Go-
ing further in this direction, we studied the probability distribution of reactivating
sequences, trying to reproduce the Peyrache result in Fig. 3.2, then looking at
the emergence of tail events. We defined our probability distributions on a new
reactivation, simpler than the previous one, multiplying the Sleep Pre and Sleep
Post datasets by the couplings of the model. The values will be described by the
function

Rµ(v) =
N

∑
i=1

wiµ ∗ vi (3.6)
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Figure 3.13: Left) Probability distribution of reactivation strength for RBM-1 (Top)
and RBM-5 (Bottom). Right) Distribution of the RBM weights. Red (Top and
Bottom) and green circles (Bottom) represents, resp., the affirmed cell assemblies
and new cell that could be added.

The results are shown in Fig. 3.13. You can easily see that the reactivation strength
probability distribution reveals, as expected, an increase of replay from Sleep Pre
to Sleep Post, in accordance with literature.

We then extended the procedure to 5 and 10 hidden units (Fig. 3.14): although
most of the distributions remained basically unchanged, some of these showed the
wanted tail events. Such a result should mean that the system starts to distinguish
between preserved and new associations of cells.
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Figure 3.14: Left) Probability distribution of reactivation strength for RBM-10.
Right) Distribution of the RBM-10 weights
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These findings confirm the efficacy of the defined method and its possible ap-
plication on larger data, also allowing to enlarge the cell assembly with new cells.
Nevertheless, the absence of a maximum in the likelihood-L2

1 plot, and then the
inefficacy of the regularization on its improving, suggests the inefficacy of our
machine: increasing the units allows to better represent interactions, but does not
improve the likelihood, even with an high number of hidden units used. Further-
more, modeling the system with independent neurons, then inferring local fields
only, resulted in a log-likelihood level around -0.48, close to the best case found
using our procedure, that never exceeded -0.41.
In our opinion, the DKL divergence minimization, equivalent to Likelihood maxi-
mization, might not be the good quantity to look at, since, as widely known, it is
not a well-behaved quantity in case of high dimensions, in which the possibility
to have no shared support between the two distribution that you are comparing
can be finite. For this reason we started to redefine the learning procedure on
Wasserstein distance minimization, that, instead, has important properties that
could overcome the problem.



Chapter 4

Wasserstein

In the framework of Boltzmann Machines, and generally in machine learning,
learning is usually seen as Maximal Likelihood Estimation, equivalent to mini-
mization of the Kullback-Leibler Divergence. Even if it is a powerful tool in quan-
tifying how much close two probability distributions are (that cannot be defined as
distance because not symmetric), going to high dimensions, it can be problematic
to handle with, in particular when the distribution that has to be achieved live in a
lower dimensional manifolds. This will increase the possibility to get in some re-
gions where the two distribution do not overlap. For this reason, different groups
started to use Wasserstein distance, also known as optimal transport distance, a fun-
damental distance that, instead, is symmetric and smooth, then endowed by better
generative properties.

4.1 Background

Consider two continuous probability distributions p and q in P(χ), probability
distribution space defined on a metric space (χ; d). Consider π as a joint proba-
bility measure on χ×χ with marginals p and q, also called a transport plan:∫

dx′ π(x, x′) = p(x) ∀x ∈ A ⊆ χ∫
dx π(x, x′) = q(x′) ∀x ∈ B ⊆ χ

π(x, x′) ≥ 0

(4.1)

The Wasserstein distance between p and q is defined as

35
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W(p, q) = min
π∈Π(p,q)

Eπd(x, x′)

= min
π∈Π(p,q)

{ ∫
dxdx′π(x, x′)d(x, x′)

}
s.t.

∫
dx′ π(x, x′) = p(x),

∫
dx π(x, x′) = q(x′)

(4.2)

with Π(p, q) the marginal polytope of p and q.
We define optimal the one which represent such minimum. To this quantity it can
be associated a dual form (Kantorovich duality), that will be useful in the distance
computation:

W(p, q) = max
α,β

{ ∫
dx α(x)p(x) +

∫
dx′ β(x′)q(x′)

}
s.t. α(x) + β(x′) ≤ d(x, x′)

(4.3)

Following the pictorial exegesis of Villani [29], we can interpret p(x) as the amount
of bread produced in a bakery located at x, q(x’) as the amount of bread sold in
café located at x’, d(x,x’ the cost transport per unit from x to x’, and π(x,x’) as the
amount of bread to transport. In this picture, the first formulation can be inter-
preted as the minimum cost to transport all bread from bakeries to cafés.
Imagine, instead, that an external agent wants to compete for business with the
transportation department, buying bread in x at price -α(x) and selling it to
cafés located in x’ at price β(x’). In order to be competitive, it has to ensure
α(x) + β(x′) ≤ d(x, x′): the second formulation interpretation will correspond to
maximization of the agent’s profit. The gain will be the same if both will choose
the optimal transport plan.

4.2 Wasserstein distance in the maximum entropy frame-
work

Since such computation can be unfeasable to do, especially in non euclidean high
dimensional spaces, approximations are necessary. Following the Cuturi’s idea
[2] , we can use a γ-smoothed Wasserstein distance, i.e. consider the maximum-
entropy principle. This allow to gain differentiability of the function:

Wγ(p, q) = min
π∈Π(p,q)

Eπd(x, x′)− γH(π)
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with H(π) = −
∫

dx dx′π(x, x′) log π(x, x′) the Shannon entropy.
Following the same approach of (), we can define a Lagrangian for Wγ containing
the constraints for p and q (4.2):

L =
∫

dx dx′ π(x, x′)
(

d(x, x′) + γ log π(x, x′)
)
+∫

dx α(x)
(

p(x)−
∫

dx′ π(x, x′)
)
+∫

dx′ β(x′)
(

q(x′)−
∫

dx π(x, x′)
) (4.4)

where α(x) and β(x′) are Lagrange multipliers.

∂L
∂π(x, x′)

=d(x, x′) + γ(1 + logπ(x, x′))− α(x)− β(x′) = 0

⇒ π(x, x′) = e
1
γ (α(x)+β(x′)−d(x,x′))−1

(4.5)

Defining u(x) = e
α(x)

γ , v(x′) = e
β(x′)

γ and K(x, x′) = e−
d(x,x′)

γ −1 the contraints will
require:

u(x)
∫

dx′ K(x, x′)v(x′) = p(x)
∫

dx u(x)K(x, x′)v(x′) = q(x′) (4.6)

Starting from an initial guess for u(x) these two equations can be solved iteratively,
until convergence, finding

α∗ = γ log u(x) β∗(x′) = γ log v(x′)

Wγ(p, q) =
∫

dx α∗(x)p(x) +
∫

dx′ β∗(x′)q(x′)− γ
∫

dx dx′ e
1
γ (α(x)+β(x′)−d(x,x′))−1

(4.7)

It has to be noticed that the optimal dual variables α, β have an extra degree
of freedom, since from (4.3) (α∗(x) − c, β∗(x′) + c) are also optimal, for any c.
For this reason we will set c =

∫
dx α∗(x)p(x) (centered optimal dual variable), s.t.

〈α∗(x)p(x)〉 = 0
Now we identify in p ≡ pθ the probability distribution describing the model
(where θ stands for a general parametrization), and in q ≡ p̂ the real (empiri-
cal) one that has to be achieved

pθ(x) =
e−Eθ(x)

Zθ
, p̂ =

1
N

N

∑
i=1

δxi (4.8)
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Figure 4.1: Empirical distribution p̂(x) (gray) defined on the set of states 0,1d with
d=3 superposed to two possible models of it defined on the same set of states.
Size of the circles indicates probability mass for each state.

In order to define the new learning procedure, we need to determine the gradients
w.r.t. the general parameter θ.

∂Wγ(pθ , p̂)
∂θ

=
∫

dx
∂Wγ

∂pθ

∂pθ(x)
∂θ

=
∫

dx α∗(x)
∂ log pθ(x)

∂θ
pθ(x)

=

〈
α∗(x)

(
−∇θEθ(x)

)〉
pθ

(4.9)

Since an analytical approach for computing such expectation is generally hard,
we replace the average with the empirical mean computed by sampling from the
model. This leads to

∂Wγ(pθ , p̂)
∂θ

≈ − 1
Ñ

Ñ

∑
n=1

α̂∗(x̃n)∇θEθ(x̃n)

with Ñ the number of sample extracted from the model, α̂∗ the dual solution
of the smooth Wasserstein distance, computed between p̂ and the approximated
distribution of the model p̂θ .

4.3 DKL vs Wasserstein

To understand the difference between the two metrics, we propose a schematic
picture from [13]. As you can see, whereas the DKL looks at overlaps between the
real distribution p̂ and the model’s one pθ , Wasserstein distance try to compute
the mean distance between each couple of points of the two distribution. This will
corresponds, as in the two example in figure, in different results for the same sit-
uation.

Though this new distance appears powerful in usual ML tasks, it has to be no-
ticed that it cannot stand alone: indeed, the gradient depends mainly on the actual
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modeled distribution, while the empirical one play only a minor role, through the
α(x) computation. For this reason two adjustment will be taken in the implemen-
tation of the procedure . We will divide the training in two different evolutions:
the first will be done only using the usual MLE gradient, in order to bring our
distribution as near as possible to the correct one; in the second part, we will use
Wassertein gradient, that will be then computed with better precision. Further-
more, we included in the regularization factor a term that takes into account the
KL gradient, in order to ensure a certain closeness between the two results. This
because, even if the wanted result can be different from the MLE result, the two
will be similar.
All this will determine the final expression for the gradient descent:

dθ =− λ
(
∇θWγ +∇θL+ reg

)
=λ
〈
α∗(x)∇θEθ(x)

〉
p̂θ
+

λ η
(〈
∇θEθ(x)

〉
p̂ −

〈
∇θEθ(x)

〉
p̂θ

)
+

− λ(reg)

(4.10)

where λ is the learning rate, η the DKL stabilization term and ’reg’ the regulariza-
tion term that can be used.

4.4 Implementation and Results

In order to apply the new training rule, some practical aspects has to be clarified.
As you can see in 4.9, gradients are computed only on the model distribution,
while the data information comes only indirectly through the α computation. This
simple, but important detail suggests that a preliminar training using only DKL

minimization is necessary, in order to bring the model close enough to the empir-
ical distribution, to correctly compute the gradients.
In the new case, Frobenius regularization was used, with frobenius norm defined
as usual:

||A||2 =

√√√√ m

∑
i=1

n

∑
j=1
|aij|2 (4.11)

We compare now the new procedure against the DKL training previously de-
fined, using an RBM of 10 Bernoulli hidden units. Just looking at the coupling
matrix (Fig. 4.2), it results quite clear that the DKL fails in the cell assembly de-
tection, unlike the Wasserstein one. Moreover, using the Reactivation score, the
Wasserstein again outperformed the DKL one, that actually failed (Fig. 4.3).
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Although the positive results, further analysis are needed to conclude the overall
improvement, at least extending the model to dReLu potential.
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Figure 4.2: Representation of the DKL − RBM final couplings matrix (Left) and of
the Wasserstein-RBM one (Right)

Figure 4.3: Histograms of the Reactivation score for the two RBMs defined above.
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Conclusions

The study of neural spiking activity using RBM, once correctly set, allows to easily
find the main correlations between cells, with a clear representation of the under-
lying structure. Replay analysis supported and finally confirmed such a statement.
Once defined the coupling matrix, further analysis can be added to better charac-
terize the system. Nevertheless, it seems quite sure that the DKL training proce-
dure cannot be taken as totally reliable, given the strange behavior; then, further
analysis are needed .
Concerning the Wasserstein RBM, a complete implementation, including dReLU
potential is necessary before affirming it as a better model. However, the prelimi-
nary results showed at least confirm that it is able to obtain some basic results
Further improvements can be easily achieved, using an ensemble of RBMs to corre-
late spikes in time, avoiding the binning procedure and the associated drawbacks
already treated.
All at all, the RBM model, already affirmed in several different circumstances,
seems a very powerful tool to be used in inverse inference on this kind of data,
and its use could represent an important opportunity to speed up the research in
the neuroscience field.
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Appendix A

Derivation of the likelihood
gradient in RBM

Given the probability distribution described by the RBM model

Pθ(v) =∑
h
Pθ(v, h) = ∑h e−Eθ(v,h)

∑v,h e−Eθ(v,h)
=

e−Eθ(v,θ)

Zθ

E(v, h) =−
N

∑
i=1

givi +
M

∑
j=1
Uj(hj)−

N

∑
i=1

M

∑
j=1

wi,jvihj

(A.1)

with θ a generic parameter, the log-likelihood of the model on real data will be
L = 〈log Pθ(v)〉d.
In order to use Gradient Ascent algorithm we need to compute loglikelihood gra-
dients with respect to each parameter of the model.

∂logPθ(v)
∂θ

=
∂

∂θ

[
log

(
∑h e−Eθ(v,h)

Zθ

)]

=
Zθ

∑h e−Eθ(h,v)

Zθ ∑h ∂θ(e−Eθ(h,v))− (∑h e−Eθ(h,v))∑v,h(∂θe−Eθ(h,v))

Z2
θ

=
∑h(−∂θEθ)e−Eθ(h,v)

∑h e−Eθ(h,v)
− ∑v,h(−∂θEθ)e−Eθ(h,v)

∑v,h e−Eθ(v,h)Zθ

= −〈∂θEθ(h, v)〉data + 〈∂θEθ(h, v)〉model

(A.2)

where 〈〉data and 〈〉model are the average computed using respectively the probabil-
ity distribution followed by the observations and by the model.
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