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Abstract 

Today, the navigation in known places is quite easily reached using several solutions as 

GNSS and visual odometry but when the space is unknown, the navigation is more critical: 

no reference, no maps. How to do the navigation under this condition?  One of the challenges 

in the Smart Societies this kind of navigation in outdoor and indoor condition, even using 

UGV (Unmanned Ground Vehicle) system. ICT could have an important role in this domain, 

considering the competences on the technologies and innovative solutions. These devices 

can autonomously acquire important data, but they need to use some particular tools and 

algorithms devoted to investigate and analyze the space. Typically, expensive sensors and 

robust computer are required to solving the navigation in this complex condition. 

The goal of this thesis is to test not-conventional sensors, as low cost systems, mass market 

solution and IR camera for object recognition in order to support navigation in indoor 

environments, implementing the algorithms on low cost platform, such as a Raspberry Pi. 

With a smartphone, photos of an extinguisher were taken, and the training sets were created, 

one for each algorithm. Once trainings were done, performances of the chosen algorithms 

were evaluated on sample images taken with four sensors: Smartphone, Official Pi Camera, 

Longruner Camera, MAPIR Survey3. 

In term of algorithms, the navigation is partially supported by the Object Detection (OD) 

which has a significant practical importance and it is used across a variety of fields as: 

autonomous vehicles, workplace automation and surveillance.  

The use of autonomous surveillance systems is increasingly common, moreover a UGV 

could be useful in dangerous situations to identify emergency exits or useful objects such as 

the extinguisher. 

There are many models available and, in this thesis, Haar Cascade (HC) and YOLO have 

been compared. The tools used are: OpenCV to implement HC and Darknet to implement 

YOLO. 

Several tests have been done and the workflow can be summarized by these steps: 

1. Gathering training data 

2. Training the model  

3. Prediction on new images  
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4. mAP (mean Average Precision) evaluation 

OD suffers from the complexity of creating the training set, because for a good training a 

huge number of images is needed. 

The training of both algorithms was done on the images taken with the smartphone, to 

evaluate whether the sets of images, already present on the web, can be used for the detection 

on images acquired with different sensors, as IR cameras. 

Since low cost sensors have been used, the calibration tools of MATLAB and OpenCV have 

been exploited. The mAP achieved by the algorithms have been evaluated on images with 

and without distortions. 

The mAP of HC is lower than the mAP of YOLO, that is not able to identify the extinguisher 

in the datasets of the MAPIR and the night vision cameras. HC reaches lower mAP compared 

to the one gained on the smartphone and Official Pi Camera images, but still manages the 

detection.  

This greater versatility can be due to the use of grayscale images during training and testing, 

while YOLO works on RAW images and so has trouble recognizing the object on images 

different from those used during training. 

Furthermore, since the application to be obtained should work in real time, it has been tested 

how descriptors, SIFT and SURF, combined with the RANSAC algorithm, can speed up the 

detection on videos. 

However, the results obtained are promising and with the improvement of ICT, the 

application studied will be more efficient. 
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Nomenclature 

GNSS Global Navigation Satellite System 

UGV Unmanned Ground Vehicle 

ICT Information Communication Technology 

CPU Central Processing Unit 

GPU Graphics Processing Unit 

IR InfraRed 

OD Object Detection 

HC Haar Cascade 

Y.O.L.O. You Only Look Once 

NN Neural Network 

ANN Artificial Neural Network 

FNN Feedforward Neural Network 

CNN Convolutional Neural Network 

RNN Recurrent Neural Network 

GAN Generative Adversarial Network 

GD Gradient Descent algorithm 

SGD Stochastic Gradient Descent algorithm 

BP BackPropagation algorithm 

R-CNN Regional Convolutional Neural Network 

RoI Region of Interest 

TP True Positive 

FP False Positive 

TN True Negative 

FN False Negative 

IoU Intersection over Union 

AP Average Precision 

mAP mean Average Precision 

SIFT Scale-Invariant Feature Transform 

SURF Speeded-Up Robust Features 
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RANSAC RANdom Sample Consensus 

RGB Red-Green-Blue 

RGN Red-Green-NearIR 

NV Night Vision 
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Introduction 

Nowadays, UGV (Unmanned Ground Vehicle) are used in a wide variety of different 

situations and applications, as for example in the fields of civil and military industry. An 

UGV can be used by emergency services such as fire brigades, ambulances, police, and 

others. It can also provide a great support for a wide variety of tasks as: harvesting, 

transporting, detection, investigation, exploration and inspection at tunnels, buildings and 

others. In addition, UGV can be also used reconstruct the navigated environment. 

 UGV is a vehicle that navigates autonomously, retrieves data and is suitable for any 

situation. Navigation is general and includes various scenarios:  indoor or outdoor 

environments, known or unknown environments, dangerous due to toxic substances or others 

and all their combination. Todays, outdoor navigation is the most developed because it can 

exploit GPS localization, while indoor or unknown environments navigation, are more 

difficult and obstacle recognition techniques, to avoid collisions, can be very useful. ICT 

technologies are very useful in supporting navigation not only for the recognition of 

obstacles, but also for the object detection task, in fact once the UGV identifies an object it 

can perform some actions like taking it to transport it or mark its position on a map and 

others. 

UGV are built and integrated with sensors, drive mechanisms, computers and software.  

The sensors are devices that allow the collection of data and can be grouped into different 

categories based on their function. Some categories are: vehicle sensors, location sensors, 

vision sensors, obstacle detectors, orientation and communication sensors.  

The integration of the various sensors makes a synergistic intelligent system that should 

work well in various environment. Computing all sensors data will improve interpretation 

and control of the vehicle in any dynamic situation. However, the sensors selection is 

important and specify for each application and goal.  

Drive-by-wire technology is mature and reaches complete control of the movement through 

switch operations and other accessories.  At a distance driving can be done with a guide on 

board and RF technology, then using Light detection and ranging (Lidar) technology, the 

obstacle assessment should be obtained [B. Rohini et al. 2008]. 

To navigate the UGV must first localize itself, so it must be able compute or update its 

position through information gathered from sensors. The vehicle should achieve localization 

in its operational environment for path planning and navigation algorithms to work 

effectively. 
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Borenstein states that since there is no complete solution to the positioning problem, 

developers of mobile robots usually combine two methods for position measurements. For 

example, a vision system is rarely used alone for navigation; it is usually used in combination 

with laser rangefinders and/or ultrasonic sensors for distance measurements [J. Borenstein, 

et al. 1997] 

Moreover, another project of considerable importance and actuality is the autonomous 

driving, which would not be possible without the recognition of pedestrians, vehicles etc. 

In addition, the detection and tracking of objects are the basis of lot of applications in the 

sector of surveillance and activities’ recognition. Indoor positioning systems are used to 

locate people or required objects in large buildings and closed areas. For example, locating 

patients in the hospital, finding people trapped in a burning building or finding workers in a 

large office block are a few applications of indoor positioning systems. 

Using the concept of machine learning, a car can be automated (self-driving) [A. Geiger et 

al. 2013]. It should be trained with specific images and whenever it detects the trained 

images, it operates according to the trained instruction.  

On a UGV the microcontroller can be a low cost solution (as a Raspberry Pi) and then 

additional sensors like pi camera and laser can be used to detect objects and obstacles. 

Traditional objects’ detection methods are built on handcrafted features and shallow 

trainable architectures. Then, with the improvement in deep learning field, more powerful 

tools, which can learn semantic, high-level, deeper features, are introduced to address the 

problems existing in traditional architectures [Y. LeCun et al. 2013]. 

These models behave differently in network architecture, training strategy and optimization 

function.  

The objects’ detection task usually consists of different subtasks such as: face detection and 

pedestrian detection. This task is also able to provide useful information for semantic 

understanding of images and videos, and it is related to many applications, including image 

classification, human behaviour analysis and face recognition [P. Viola et al. 2001]. 

However, due to large variations in viewpoints, poses, occlusions and lighting conditions, 

it’s difficult to perfectly accomplish objects’ detection and localization tasks. 

The problem definition of object detection is to determine where objects are in a given image 

(object localization) and which category each object belongs to (object classification). The 

pipeline of traditional object detection models can be mainly divided into three stages: 
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1. informative region selection  

2. feature extraction  

3. classification 

In the first stage, the image is scanned with multi-scale sliding window since different 

objects may appear in different positions of the image and with different dimensions. Even 

if this exhaustive strategy can find out all possible positions of the objects, its drawbacks 

are also evident. Due to many candidate windows, it is computationally expensive and 

produces many redundant windows. But if only a fixed number of sliding window templates 

are applied, unsatisfactory regions may be produced. 

In the second stage, visual features need to be extracted in order to recognize different 

objects. It is important that the features provide a robust representation of the objects. 

Because due to the diversity of appearances, illumination conditions and backgrounds, it is 

difficult to design a robust feature descriptor that perfectly describes all kinds of objects. 

In the third and last stages, a classifier is needed to distinguish the target object from all the 

others and to make the representations more hierarchical, semantic and informative for visual 

recognition. 

The objectives of this work are: studying the performance of low cost systems in the Object 

detection field, comparing the performance of two different Object Detection model, 

understanding how the training images and settings influence the performance, if the 

calibration improve the performance. All these questions were analyzed in the case of indoor 

navigation of an unknown environment in emergency situation.  

 Below the description of the thesis’ structure: 

- in this first part, a general view of the problem faced in this thesis and of the state of 

the art on the subject has been given; 

- the first chapter is dedicated to a formal description of what machine and deep 

learning are. The basics’ concept to understand how neural networks work and the 

main problems that affects their usage are described; 

- the second chapter concerns a theoretical description of the techniques analysed in 

this thesis. These techniques are related to objects’ detection in different scenarios. 

- In the third chapter, there are the descriptions of: feature detection and matching 

techniques, and the RANSAC algorithm; 

- the fourth chapter concerns the metric used to evaluate the performance of the 

detection algorithms; 
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- in the fifth chapter, there is the description of the sensors used in this thesis; 

- the sixth chapter concerns the geometric calibration that has been done on the sensors 

of the previous chapter; 

- the seventh chapter contains all the trainings made; 

- the eighth chapter is dedicated to the description of the tools used to conduct the 

trainings and testing of the detection algorithms; 

- the ninth chapter contains the description of the tests done and the obtained results; 

- in the last part, conclusions and several promising directions are provided to serve as 

guidelines for future work in both objects’ detection and relevant neural network 

based learning systems. 
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1. Introduction of Machine and Deep learning  

Machine and Deep learning are fields of study that give computers the ability to learn without 

being explicitly programmed [A. Samuel. 1959]. 

 A computational model, for neural networks based on mathematics and algorithms called 

threshold logic, has been created by Warren McCulloch and Walter Pitts in 1943. The model 

opened the way for neural network research to two approaches: one focused on biological 

processes in the brain and the other focused on the application of neural networks to artificial 

intelligence.  

 

1.1 Neural Network basics’ concepts 

Neural Networks (NNs) are computing systems inspired by, but not necessarily identical to, 

the biological neural networks that constitute animal brain. The systems "learn" how to 

perform tasks by considering samples. An example is image recognition, in which a NN 

learns how to identify images that contain dogs by analysing sample images that have been 

manually labelled as “dog” or “no dog” and using the results to identify dogs in new images.  

NNs do this without any prior knowledge about dogs, NNs automatically generate features 

from the learning material that they process. The NN learning material is composed by 

training and testing datasets. The learning process includes both the training and testing 

phases of the network. 

From the mathematical point of view, the NN implements a huge multidimensional nonlinear 

function. 

The basic element of a NN is the perceptron, which weights different factors to make a 

decision. NNs are used to: define a model, use training examples to fit the model and 

determine decision rule. But the real problem is how to define this model, because it is 

difficult to write a computer program that “describes” the data. 

Figure 1.1: example of NN representation 
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The perceptron is defined as 𝑥 ∙ 𝑤 =  ∑ 𝑥𝑗𝑤𝑗𝑗 . Then a perceptron “fires” when the output 

becomes 1. The output is defined by the comparison with a threshold b, called bias, as shown 

in Figure 1.2.  

More complex decisions are made by NNs composed by multiple hidden layers, an example 

is shown in Figure 1.3. The hidden levels are all those included between the input layer and 

the output layer. 

There are different types of NNs: 

1. Feedforward Neural Network (FNN) 

2. Convolutional Neural Network (CNN) 

3. Recurrent Neural Network (RNN) 

4. Generative Adversarial Network (GAN) 

An FNN is characterized by connections in only one direction, forward, from the input 

nodes, through the hidden nodes (if any) and to the output nodes [A. Zell. 1994]. FNN was 

the first and simplest type of NN devised. In this network, the information goes from the 

input nodes, through the hidden nodes (if any) and to the output nodes. In FNN network, the 

information goes from the input nodes, through the hidden nodes (if any) and to the output 

nodes. An FNN is called deep if it has many hidden layers (up to hundreds).  

Figure 1.2: NN perceptron 

Figure 1.3: Feedforward NN with multiple hidden layers 



Chapter 1 | Introduction of Machine and Deep learning 

25 
 

The second type of NNs are CNNs that “share” weights, an example in Figure 1.4 (for more 

details, see §1.5). 

In an RNN (Figure 1.5) the output values of a layer of a higher level are used as an input to 

a lower layer.  

This interconnection between layers allows the use of one of the layers as state memory, and 

allows, by providing an input time sequence of values, to model a dynamic temporal 

behavior dependent on the information received at the previous time instants. RNNs are used 

for tasks of predictive analysis on data sequences, such as speech recognition [H. Sak et al. 

2014]. 

GANs are a class of artificial intelligence algorithms used in unsupervised machine learning, 

which implements two systems of neural networks that challenge one another in a zero-sum 

game framework. They were introduced by Ian Goodfellow in 2014 and were used to 

produce samples of photorealistic images in the field of interior design and industrial design. 

However, in this work only FNN and CNN will be described more in detail as the first is the 

basis of the second which is used to implement object recognition. 

Figure 1.4: CNN structure example 

Figure 1.5: RNN structure example 
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To go deeper in details, variables must be formally defined, and the following notation will 

be used: 

- x is the input vector 

- 𝑤𝑗𝑘
𝑙  is the weight from the kth neuron in the (l-1) th layer to the jth neuron in the lth 

layer 

- 𝑏𝑗
𝑙 is the bias of the neuron j in layer l 

- 𝑎𝑗
𝑙 is the activation of the neuron j in layer l 

- 𝑧𝑗
𝑙 = ∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘 + 𝑏𝑗
𝑙  is the jth neuron in the lth layer 

Logistic functions are often used in neural networks as activation functions to introduce 

nonlinearity in the model or to hold signals within a specified range. The activation  𝑎𝑗
𝑙 can 

be written as 𝑎𝑗
𝑙 =  𝜎 (𝑧𝑗

𝑙), where 𝜎() is a generic activation function. 

The goal of the learning is that a small change in the weights will generate a small change 

in the output (Figure 1.7). 

 

 

 

𝑤24
3  

Figure 1.6: NN notations 

Figure 1.7: effect of weights variations on the output 
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The more common activation functions are: 

1. the “sigmoid” function 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

The sigmoid function is used to reduce the effect of small variations and balance 

them to the final output. 

2. the “tanh” function  

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
  

then the activation function is 

𝜎(𝑧) =
1 + tanh (𝑧 2⁄ )

2
 

Figure 1.8: sigmoid function 

Figure 1.9: tanh function 

tanh function 

sigmoid function 
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This function is a good alternative to the sigmoid one and the major difference is that 

the output’s range is (-1, 1) and not (0, 1). 

3. the “Linear Unit” function 

𝜎(𝑧) = 𝑧 

It is a transfer function which produces an output equal to the activation potential 

and does not modify the input. 

4. the “ReLu” function 

𝜎(𝑧) = max (0, 𝑧) 

It is the most popular activation function for deep neural networks for many factors, 

among which the most important is the vanishing gradient. 

5. the “softmax” function 

𝜎(𝑧𝑗
𝐿) =  

𝑧𝑗
𝐿

∑ 𝑧𝑘
𝐿𝑛

𝑘=1

 

This function is usually used in the last hidden layer for classification problem. In 

fact, L stays for the last hidden layer and the sum is over the n possible classes which 

the output can belongs to. 

 

1.2 Gradient Descent (GD) algorithm 

To understand the purpose of the GD algorithm it is necessary to say that there are two types 

of learning: supervised and unsupervised. Object detection and image classification are two 

cases of supervised learning as we already know, at least for the training datasets, if an object 

is present or not and the class to which it belongs.  

Figure 1.10: ReLu function 

ReLu (Rectified Linear Unit) function 

Z 
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In the case of unsupervised learning the training dataset is not composed of input and output 

pairs, but only from input therefore it is not known a priori the output to be obtained.  

Having made this clarification, the cost function can be applied to the case of supervised 

learning and the whole purpose of training a NN is finding weights and biases such that the 

output approximates the target function for each input.  

GD is a first-order iterative optimization algorithm for finding the minimum of the cost 

function. 

An example of the most used cost function is the quadratic one: 

𝐶(𝑤, 𝑏) =  
1

2𝑛
∑ ||𝑦(𝑥) − 𝑎(𝑥, 𝑤, 𝑏)||2

𝑥
 

where x is the input, y(x) is the desired output and a(x, w, b) is the network output. 

The more accurate a training is, the more the cost function tends to zero (Figure 1.11).  

The GD algorithm is an iterative procedure that is used to find weights and biases that 

minimize the cost function. To explain how it woks, some variables need to be defined. 

Let’s define υ as the vector which contains the huge number of variables present in the NN. 

υ = [υ1, υ2, …, υn] 

Then C is a function of υ, C(υ), and when the values of the variables change, the cost function 

changes as  

∆𝐶 ≈  
𝜕𝐶

𝜕𝑣1
∆𝑣1 +

𝜕𝐶

𝜕𝑣2
∆𝑣2 + ⋯+

𝜕𝐶

𝜕𝑣𝑛
∆𝑣𝑛   

∆𝑣 = [∆𝑣1, ∆𝑣2, … , ∆𝑣𝑛 ]𝑇 must be defined such that ∆C is negative. 

 

 

Figure 1.11: example of cost function  

(eq. 1.1) 

https://en.wikipedia.org/wiki/Category:First_order_methods
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
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The gradient of C is 

∇𝐶 ≡ ( 
𝜕𝐶

𝜕𝑣1
,

𝜕𝐶

𝜕𝑣2
, … ,

𝜕𝐶

𝜕𝑣𝑛
)𝑇   

and so  

∇𝐶 ≈  ∇𝐶 ∙  ∆𝑣    

Choosing  

∆𝑣 =  −𝛾∇𝐶   

Then substituting equation 1.4 into equation 1.3: 

∇𝐶 ≈  −𝛾||𝛻𝐶||2   

where γ, called learning coefficient, is a positive and small number. 

Then in order to minimize C(υ), the following update rule is used 

𝑣 ← 𝑣 + ∆𝑣 = 𝑣 −𝛾∇𝐶   

The value of γ is very important and the right value must be evaluated case by case; because 

if it is too small the gradient algorithm will be too slow and instead if it is too big, then the 

algorithm will not find the minimum (Figure 1.12). 

The explanation above refers to a very general case, then the previous expressions change 

if instead of υ, the vector of input x of dimension n, the weights w and biases b are used. 

Then the cost function relative to input x is  function of w and b, Cx(w, b). The overall cost 

function is 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥  and the algorithm is used to find weights and biases that get the 

cost function towards its minimum, applying the following updates: 

𝑤𝑖 ← 𝑤𝑖 − 𝛾
𝜕𝐶

𝜕𝑤𝑖
 

𝑏𝑖 ← 𝑏𝑖 − 𝛾
𝜕𝐶

𝜕𝑏𝑖
 

 

Too big Too small Just right 
Figure 1.12: learning rate values 

(eq. 1.2) 

(eq. 1.3) 

(eq. 1.4) 

(eq. 1.5) 

(eq. 1.6) 
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1.2.1 Stochastic Gradient Descend (SGD) algorithm 

Since 𝐶 =
1

𝑛
∑ 𝐶𝑥𝑥  where 𝐶𝑥 =

1

2
 ||𝑦(𝑥) − 𝑎||2, hence the computation of  ∇𝐶 =

1

𝑛
∑ ∇𝐶𝑥𝑥  

can results too slow for a huge amount of variables. 

Then a variation of the gradient algorithm, called stochastic gradient algorithm can be used 

in order to speed up the minimization of the cost function. 

It computes ∇𝐶 for a small sample of training inputs, called mini-batch, at each iteration. 

So, assumed that X is the set of all the training inputs, X will be divided into m mini-batch, 

called X1, X2, …, Xm. 

It is expected that 
∑ ∇𝐶𝑋𝑗

𝑚
𝑗=1

𝑚
 ≈  

∑ ∇𝐶𝑥𝑥  

𝑛
 ≈  ∇𝐶 

The updates became 

𝑤𝑖 ← 𝑤𝑖 −
𝛾

𝑚
∑

𝜕𝐶𝑗

𝜕𝑤𝑖𝑗
 

𝑏𝑖 ← 𝑏𝑖 −
𝛾

𝑚
∑

𝜕𝐶𝑗

𝜕𝑏𝑖𝑗
 

In the next iteration another mini-batch is taken and when all the mini-batches have been 

considered, an epoch is completed and the algorithm starts a new cycle, with a new epoch. 

The mini-batches can be of different sizes, even mini-batches of just an element can be 

chosen. This procedure is called online or incremental learning and is similar to how human 

brains work. 

 

1.3 Backpropagation (BP) algorithm 

Backpropagation algorithms are a family of methods used to efficiently train NNs following 

a gradient descent approach that exploits the chain rule.  

The BP algorithm was invented in the 1970’s and became popular with a 1986 paper by 

Rumelhart, Hinton and Williams. 

The main feature of BP is its iterative, recursive and efficient methodology for calculating 

the weights updates in order to improve the network learning, until it is able to perform the 

task for which it has been trained. As the goal of any supervised learning algorithm is to find 

the function that best maps a set of inputs to their correct output. 
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This algorithm is called backpropagation because, starting from the output layer of a 

network and going back, it is able to compute the two partial derivatives of the cost function 

and subsequently compute easily weights and biases. 

To better describe the procedure, it is necessary to define the following points: 

- for each layer l, wl is the weight matrix, bl the bias vector, 𝑧𝑙 the neuron vector and 

al the activation vector. 

➢ 𝑎𝑙 =  𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) =  𝜎(𝑧𝑙) with components  

𝑎𝑗
𝑙 =  𝜎(∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘 + 𝑏𝑗
𝑙), where 𝜎() is a generic activation function. 

➢ 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 with components 𝑧𝑗𝑙 = ∑ 𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1
𝑘 + 𝑏𝑗

𝑙 

- the Hadamard product of two vectors is their element-wise product: (𝑠ʘ𝑡)𝑗 = 𝑠𝑗𝑡𝑗 

- the cost function 𝐶 =
1

2𝑛
∑ ||𝑦(𝑥) − 𝑎𝐿(𝑥)||2𝑥 , where L is the number of layers 

- a new variable 𝛿𝑗
𝑙 = 

𝜕𝐶

𝜕𝑧𝑗
𝑙, called error that refers to the neuron j of layer l 

The goal is to minimize the cost function, and this requires the computation of 𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  and 𝜕𝐶

𝜕𝑏𝑗
𝑙 

to understand how changing weights and biases affects the cost function. 

The BP algorithm is based on four key equations: 

1. the error in the output layer: 

𝛿𝑗
𝐿 = 

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎′(𝑧𝑗

𝐿) or 𝛿𝐿 = ∇𝑎𝐶ʘ𝜎′(𝑧𝐿 )  

where the first term indicates how much the cost function is changing as a function 

of the output activation j and the second term measures how fast the activation is 

changing at 𝑧𝑗𝐿  

2. the error 𝛿𝑙  in layer l as a function of the error in the next layer l+1: 

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1)ʘ𝜎′(𝑧𝑙)  

then if the error in layer l+1 is known, through this equation the error on every 

previous layer can be computed and combining these first two equations the error at 

any layer of the network can be computed 

3. the rate of change of the cost function with respect to any bias 
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 

 



Chapter 1 | Introduction of Machine and Deep learning 

33 
 

4. the rate of change of the cost function with respect to any weight 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑗
𝑙 

Considering equation at point 3 and 4 if 𝛿𝑗
𝑙 is small, weights and biases learn slowly. So, in 

the case 𝛿𝑗
𝐿 is small and a weight in the last layer learns slowly, the neuron has saturated. 

Finally, algorithms such as gradient descent or stochastic gradient descent are always related 

with BP, that makes computations feasible. For combining BP and gradient algorithm the 

following steps must be taken: 

1. taken an input x → activation a1, initial weights wl and biases bl for all layers (e.g. 

random) 

2. Feedforward → for each layer l=2, 3, …, L compute 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙  and  

𝑎𝑙 =  𝜎(𝑧𝑙) 

3. output error→ compute 𝛿𝐿 = ∇𝑎𝐶ʘ𝜎′(𝑧𝐿 ) 

4. Backpropagation → for each l=L-1, L-2, …, 1 compute 𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1)ʘ𝜎′(𝑧𝑙) 

5. update weights and biases → 𝑤𝑗𝑘
𝑙 ← 𝑤𝑗𝑘

𝑙 − 𝛾 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑤𝑗𝑘

𝑙 − 𝛾𝑎𝑘
𝑙−1𝛿𝑗

𝑙 and 

 𝑏𝑗
𝑙 ← 𝑏𝑗

𝑙 − 𝛾 
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝑏𝑗

𝑙 − 𝛾𝛿𝑗
𝑙 

Otherwise if BP is combined with SGD, there will be an external for loop on the epoch and 

an internal for loop on the mini-batch that will work exactly as described above. 

 

1.4 Training problems 

The training of a general NN is a very hard task and there is the risk of making mistakes due 

to following factors: 

1. neuron saturation 

2. overfitting 

3. learning rate 

4. vanishing gradient 
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1.4.1 Neuron saturation 

Neuron saturation occurs when the partial derivatives of the cost function are small and 

therefore the learning is slow and sometimes prevents any kind of improvement.  

The problem can be addressed using two different approaches: 

a. changing the cost function in the output layer; 

b. initializing all variables with a Gaussian probability distribution with mean 0 and 

standard deviation equal to 1

√𝑛𝑖𝑛
 where nin is the number of input weights of the 

selected neuron. 

Considering the first option, the most used cost functions are the cross-entropy and the log-

likelihood. They can be described as: 

- Cross-entropy cost function  

𝐶 =  −
1

𝑛
 ∑∑[𝑦𝑗 ln(𝑎𝑗

𝐿) + (1 − 𝑦𝑗) 𝑙𝑛(1 − 𝑎𝑗
𝐿)]

𝑦𝑥

 

 where the first sum is over the inputs x and the second over the multiple outputs y. 

- Log-likelihood cost function 

𝐶 = −ln (𝑎𝑥
𝐿)  

However, using this first option there is the risk to saturate some neurons in the hidden layers. 

Considering the second option the learning slowdown is greatly reduced if the weight are 

initialized with the Gaussian distribution. The biases initialization, instead, less affects the 

slowdown problem then they can be either set all equal to zero or using a Gaussian 

distribution with 0 mean zero and standard deviation equal to 1. 

 

1.4.2 Overfitting 

Another great problem is overfitting which occurs when a huge amount of variable is trained 

and the network instead of generalizing the model learns the peculiarity of the training 

dataset. To remedy this inconvenience, there are different ways.  

One of the most used is to divide the data into three subsets: the training dataset, that contains 

about the 80% of the total data, the validation set that contains around 10% of the total data 

and the test set which contains the 10% left of the total data.  
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Then during training at the end of each epoch the network is tested on the validation test in 

order to see if the accuracy on the validation test is increasing while the accuracy on the 

training dataset is increasing. Because a way to see if overfitting is occurring is to see the 

accuracy on the validation set stops growing while the accuracy on training set continues to 

grow. The test set is used just at the end as a final check. 

Sometimes if the dataset available is not so big, the training dataset with the 80% of the total 

is created and the test set with the remaining 20%; then the test set is used as the validation 

set described above. 

Another way to overcome overfitting is to use the K-fold cross validation techniques. The 

overall data will be divided into K subsets, then the training is done K times considering 

each time a different subset as test set and all the others together as the training set. At the 

end if the accuracy is more all less the same each time, then overfitting has not occurred. 

A completely different approach to face with overfitting is called Dropout. For each training 

step only the 50% of neurons is activated and the weights and biases related to the others 

aren’t updated. At the next training iteration, the process is repeated with a different subset 

of neurons randomly chosen. When the full network is used the weights must be halved. In 

this way the co-adaptation of neurons is reduced, since a neuron cannot rely on the presence 

of particular other neurons and so the resulting model is more robust against the loss of an 

individual piece of information. Dropout is especially useful in training large, deep networks, 

where overfitting is a major problem. 

 

1.4.3 Learning rate 
 
As already said, the value of the learning rate of the gradient algorithm is very important. 

It has a great impact on the training performance because it controls the changing of the 

model in response to the estimated error each time the weights and biases are updated. Its 

value must be evaluated case by case because it is very hard to know its optimum value a 

priori. However, a variation of the GD algorithm, called steepest descent, can be used, since 

it computes the optimum value of the learning rate at each iteration. 

Steepest descent algorithm follows the same steps of the GD algorithm, but in addition it 

computes the Hessian matrix [L. O. Hesse, 19th century]. 
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This algorithm computes the Hessian matrix of the inputs with respect to the weights and 

then sets the learning coefficient equal to 

𝛾 =  
||∇𝐶(𝑤𝑖)||

2

(𝛻𝐶(𝑤𝑖))
𝑇
𝐻(𝑤𝑖)∇𝐶(𝑤𝑖)

 

where C is the cost function and H the Hessian matrix. 

The Hessian matrix contains the second derivative of the function with respect to any 

variable, an example is 𝐻 = 

[
 
 
 
 
 

𝜕2𝑓

𝜕𝑥1

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

… …
𝜕2𝑓

𝜕𝑥𝑛 ]
 
 
 
 
 

 where f: ℝn → ℝ is a function  

taking as input a vector x∈ℝn and outputting a scalar f(x)∈ℝ. If all second partial 

derivatives of f exist and are continuous over the domain of the function, then the Hessian 

matrix H of f is a square n×n matrix. 

 

1.4.4 Vanishing gradient 

In machine learning, the vanishing gradient problem is a difficulty found in training artificial 

neural networks with gradient-based learning methods and backpropagation. In such 

methods, each of the neural network's weights receives an update proportional to the partial 

derivative of the error function with respect to the current weight in each iteration of training. 

The problem is that in some cases, the gradient will be too small and then the weights values 

cannot be efficiently updated. In the worst case, this may completely stop the training. 

As example of the problem’s cause are the traditional activation functions such as the 

sigmoid function that have gradients in the range (0, 1), and backpropagation computes 

gradients by the chain rule. This has the effect of multiplying n of these small numbers to 

compute gradients of the "front" layers in an n-layer network, meaning that the gradient 

decreases exponentially with n while the front layers train very slowly. 

Back-propagation allowed researchers to train supervised deep artificial neural networks 

from scratch, initially with little success. In 1991 Hochreiter formally identified the reason 

for this failure in the "vanishing gradient problem", which not only affects many-layered 

feedforward networks, but also recurrent networks.  

To solve the problem different options are available: 

- using CNN, where fewer parameters are needed; 

- using dropout; 

https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Partial_derivative
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- using ReLU activations for speed-up (3-5x times) the training process; 

- using GPUs and training for much longer time; 

- increasing size of training dataset; 

- using right cost function and good weight initialization; 

- using pre-training early layers. 

 

1.5 Deep learning and Convolutional Neural Network (CNN) 

Deep learning is a vast and debated topic, so in this thesis only the techniques related to the 

classification of images and the recognition of objects will be treated. 

Classification is a subfield of the recognition of the model, classifying means assigning to 

each input value an output value that corresponds to the class to which it belongs.             

Thanks to the advent of deep learning, CNN has improved a lots image classification and 

objects’ detection and so it became the most used architecture in object recognition field.  

Image classification labels the entire image. Instead, detection is finding the position of the 

objects, usually defined by rectangular coordinates, as shown in Figure 1.13. 

To understand how a CNN works, it is necessary to know three fundamental concepts: 

1. local receptive fields 

2. shared weights/biases 

3. pooling 

Taken an image and the input neurons, the input neurons are basically the pixel intensities 

of an input image. Connections are not made from every input to every hidden neuron, but 

they are made only in small regions KxK (e.g. 5x5), called local receptive field (Figure 

1.14). 

Figure 1.13: classification (a) and detection (b) 

(a) (b) 
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The local receptive field slides over the whole image (Figure 1.15) and every position 

corresponds to a hidden neuron. The stride length is by how much the receptive field is 

shifted, at each neuron. For example, for a 28x28 image, 5x5 receptive field and 1 stride 

length, in the first layer there will be 24x24 neuron. 

The connections from the local receptive field to each neuron have all the same weights: 

𝜎(𝑏 + ∑ ∑ 𝑤𝑙,𝑚

𝐾

𝑚=0

𝐾

𝑙=0

𝑎𝑗+𝑙,𝑘+𝑚) 

All neurons in the first layer detect the same feature, at different locations in the image. This 

exploits (possible) shift-invariance of the image content. The shared weights/bias define a 

filter or kernel and a complete convolutional layer consists of several different filters. 

 In Figure 1.16, an example of complete convolutional layer with depth equal to three. 

Figure 1.14: input neurons example 

Figure 1.15: example of sliding receptive field (a, b) 

Figure 1.16: example of filters 

28x28 input neurons first hidden layer: 3x24x24 

(a)                                                                       (b) 

Input neurons 
(1-5) 1st hidden neuron  

Input neurons 
(2-6) 

 2nd hidden neuron 
neuron 

local receptive field 
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The use of shared weights reduces the number of parameters and therefore overfitting is less 

likely. For example, with a 5x5 filter there are 26 parameters and with 20 filters, the number 

of parameters increases to 520. But if there are a first fully connected layer and then 

30 hidden neurons, this would require 23550 parameters. 

Pooling layers “simplify” the information output from a convolutional layer, performing a 

sort of down sampling.  Max-pooling (Figure 1.17) means that each pooling unit outputs the 

maximum activation in a 2x2 input region.  

Pooling layers are applied independently to each feature map. 

In Figure 1.18 an example of a simple and complete CNN, obviously the number of layers 

can be large. 

The training of a CNN is still performed using backpropagation, with few adaptations for 

convolutional and max-pooling layers.  

 

1.5.1 Performance of CNNs for objects’ detection 

CNN combined to Selective Search produces Regional-CNN (Figure 1.19). Selective Search 

is a combination of exhaustive search and segmentation. Since an object can be located 

everywhere and scale in the image, it is natural to search everywhere [Dalal and Triggs 2005; 

Harzallah et al. 2009; Viola and Jones 2004]. However, the search space is huge, and this 

hidden neurons (output from feature map) 
max-pooling units 

Figure 1.17: example of max-pooling 

Figure 1.18: example of CNN  
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makes the exhaustive search computationally expensive. Segmentation aims a partitioning 

of the image through a generic algorithm, where there is a part for all the profiles of the 

object in the image. 

Given an image, each pixel is analysed, and then “similar” pixels are grouped together. A 

greedy algorithm is used to recursively combine “similar” regions into larger ones.  

At the end the generated regions are used to produce the final candidate region proposals. 

These candidate region proposals are warped into a square and fed into a convolutional 

neural network that produces a feature vector as output.  

The CNN acts as a feature extractor and the output dense layer consists of the features 

extracted from the image. The extracted features are fed into an SVM (Support Vector 

Machine) to classify the presence of the object within that candidate region proposal. SVM 

are supervised learning models with associated learning algorithms that analyse data used 

for classification and regression analysis.  

In addition, to predicting the presence of an object within the region proposals, the algorithm 

also predicts four values which are offset values to increase the precision of the bounding 

box. 

However, R-CNN needs a huge amount of time to train the network and it cannot be used in 

real time application as it takes around 47 seconds for each test image [R. Girshick et al. 

2015]. Moreover, selective search algorithm is fixed, therefore, no learning is happening at 

that stage and this could lead to the generation of bad candidate region proposals. 

Then the Fast R-CNN (Figure 1.20) approach was introduced by Ross Girshick in 2015. The 

input image is given to the CNN in order to generate a convolutional feature map and from 

the feature map, the region of proposals is identified and warped into squares.  

Then through a RoI pooling layer, the squares are resized to a fixed size so that it can be fed 

into a fully connected layer. From the RoI feature vector, a softmax layer is used to predict 

the class of the proposed region and also the offset values for the bounding box. 

Figure 1.19: example of R-CNN  

SVM 

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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This approach is faster because the convolution operation is done only once per image and 

a feature map is generated from it. Fast R-CNN is faster both in training and testing.  

However, comparing the performance of Fast R-CNN during testing time, including region 

proposals, shows that region proposals become bottleneck (Figure 1.21). 

Both R-CNN and Fast R-CNN uses selective search to find out the region proposals.  

Therefore, the Faster R-CNN (Figure 1.22) was introduced by S. Ren, R. Girshick and J. 

Sun in 2016. As for the Fast R-CNN, the image is provided as an input to a convolutional 

network which provides a convolutional feature map. But differently from the Fast R-CNN 

that uses selective search on the feature map to find the region proposals, the Fasters R-CNN 

uses a separate network to predict the region proposals. Then they are reshaped using a RoI 

pooling layer which is then used to classify the image within the proposed region and predict 

the offset values for the bounding boxes. 

Figure 1.21: comparison of R-CNN and Fast R-CNN training and testing time 

Figure 1.22: example of Faster R-CNN 

Figure 1.20: example of Fast R-CNN 
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Again, a comparison of the testing time, including region proposals, required by: R-CNN, 

Fast R-CNN and Faster R-CNN is shown in the Figure 1.23. It clearly emerges that Faster 

R-CNN can be used for real-time object detection. 

 

1.6 Platforms and Libraries 

Nowadays machine learning is used in a wide domainis and therefore online it is possible to 

find different platforms and libraries that help in the development of one's NN. 

To make the right choice, given the variety of solutions it is necessary to understand is the 

purpose of the training is part of a simpler case of machine learning or if it requires 

something more powerful and therefore it is a case of deep learning. 

Most of the solutions found online are based on: C ++, Java and Python programming 

languages. So given my personal programming experience, we chose to use Python as a 

programming language and therefore platforms and libraries that support it. 

The list of the most popular is in the following: 

- TensorFlow was designed by researchers and engineers working on the Google 

Brain Team within Google’s Machine Intelligence research organization. The 

system is developed to help research in machine learning. It provides stable Python 

and C APIs as well as non-guaranteed backwards compatible API's for C++, Go, 

Java, JavaScript, and Swift. 

- Microsoft Cognitive Toolkit (CNTK) is a unified deep learning toolkit that 

describes NNs as a series of computational steps via a directed graph. In the graph, 

leaf nodes represent input values or network parameters, while others represent 

matrix operations upon their inputs. CNTK allows users to realize and combine 

popular model types such as FNNs, CNNs and RNNs. It implements SGD and BP 

Figure 1.23: R-CNN, Fast R-CNN and Faster R-CNN testing time 
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with automatic differentiation and parallelization across multiple GPUs and servers. 

CNTK has been available under an open-source license since April 2015.  

- Scikit-learn is simple and efficient tools for data mining and data analysis, 

accessible to everybody. It is a Python module built on top of SciPy and is 

distributed under the 3-Clause BSD license. The project was started in 2007 by 

David Cournapeau as a Google Summer of Code project, and since then many 

volunteers have contributed, it is currently maintained by a team of volunteers. 

- Keras is, a high-level NNs API, written in Python and able to run on top of 

TensorFlow, CNTK, or Theano. It allows easy and fast prototyping and supports 

both CNNs and RNNS, as well as their combinations. It runs on both CPU and 

GPU. 

- PyTorch is a Python package that provides: Tensor computation (like NumPy) 

with strong GPU acceleration and Deep NNs built on a tape-based autograd system. 

- Caffe is a deep learning framework made with expression, speed, and modularity in 

mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and 

community contributors. 

- Neon is Nervana's Python-based deep learning library. It is Intel's reference deep 

learning framework committed to best performance on all hardware. It provides 

ease of use while delivering the highest performance.  

- PyBrain is a modular Machine Learning Library for Python. It offers flexibility, 

simplicity and powerful algorithms. It has for a variety of predefined environments 

to test and compare different algorithms. 

- Darknet is an open source neural network framework written in C and CUDA. It is 

fast, easy to install, and supports CPU and GPU computation.  

- Open Source Computer Vision Library (OpenCV) is an open source computer 

vision and machine learning software library, it is originally developed by Intel, 

and later it was maintained by Willow Garage and now by Itseez. The 

programming language mainly used to develop OpenCV is C ++, but it is also 

possible to interface through C, Python and Java. 

In this thesis OpenCV and Darknet have been exploited. 

 

 

 

http://pytorch.org/
http://neon.nervanasys.com/
http://nervanasys.com/
https://github.com/soumith/convnet-benchmarks
http://pybrain.org/
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1.7 Online available dataset  

As said above, training of a NN requires a huge amount of data. Therefore, exploiting the 

data sets already available online for image classification and object detection is very 

helpful. These datasets vary in number of objects, ranging from 20 to 200 annotated in these 

datasets. In addition, some datasets have too many objects in a single image compared to 

others with just an object per image.  

ImageNet is an image dataset organized according to the WordNet hierarchy. Each 

meaningful concept in WordNet, possibly described by multiple words or word phrases, is 

called a "synonym set" or "synset". There are more than 100 thousand synsets in WordNet, 

majority of them are nouns (80,000+). In ImageNet, the aim is to provide about 1000 images 

to illustrate each synset. Images of each concept are quality-controlled and human-annotated. 

In its completion, the hope is that ImageNet will offer tens of millions of cleanly sorted 

images for most of the concepts in the WordNet hierarchy. 

The PASCAL VOC datasets were provided as part of the PASCAL Visual Object Classes 

challenge from 2005 to 2012. The goal of the datasets is to recognize objects from a number 

of visual object classes in realistic scenes. The dataset has more than 11 thousand images 

with over 27 thousand of annotations. This dataset can recognize objects of the following 20 

classes: 

- person: person 

- animal: bird, cat, cow, dog, horse, sheep 

- vehicle: airplane, bicycle, boat, bus, car, motorbike, train 

- indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor 

The Common Objects in Context (COCO) is a large-scale object detection, segmentation, 

and captioning dataset. It is designed for the detection and segmentation of objects occurring 

in their natural context and it is the most extensive publicly available object detection 

database. It has about 330 thousand images with more than 200 thousand object annotations 

in more than 90 stuff categories (Figure 1.24).  
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In this thesis both ImageNet and the COCO datasets have been exploited.

Figure 1.24: icons of 91 categories in the COCO dataset grouped by 11 super-categories 
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2. Object detection algorithms 

As described in the previous chapter there are several online datasets, containing images and 

labels that can be used as they are or integrated with new images of objects already present 

in the dataset or new, the important thing is that the additional images are labeled. 

The images in the online datasets are traditional RAW data, that may vary in image size and 

quality.  

Online, there are also available several platforms and libraries that implement object 

recognition. 

Object detection task is a critical part of any surveillance system and the analyzed 

recognition algorithms look for the characteristics of the input image and therefore work 

well on images taken in good lighting conditions. In low light condition, the performance of 

surveillance system using the traditional camera is poor, because the objects captured by 

traditional cameras have low contrast against the background due to the absence of ambient 

light in the visible spectrum. Night vision is the ability to see things in low light conditions 

and it has made possible by a combination of two techniques: enough spectral range and 

sufficient intensity range.  

Thermal cameras have been a popular choice of implementation of night vision surveillance 

systems. They can be used to detect humans, but their cost is high, and they cannot be used 

to detect indoor or outdoor objects that are not warm. 

 

2.1 Object detection using Haar feature 

Object detection using Haar feature was proposed by P. Viola and M. Jones in 2001. It is a 

machine learning approach where a cascade function is trained with two sets of images: 

positive and negative. The set of positive images consists of images which contain the object 

to be recognized. The set of negative images, instead, can include any image that does not 

contain the chosen object. 
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First, the algorithm needs the two sets of images to train the classifier and then, features need 

to be extracted from them. Haar features shown in Figure 2.1 are used.  

Each feature is a single value obtained by subtracting sum of pixels under the white rectangle 

from sum of pixels under the black rectangle (for example a 24x24 window has over 160000 

features). All possible sizes and locations are used to calculate lots of features.  

To compute the features, the integral image is used. Because it reduces the calculations for 

a given pixel to an operation involving just four pixels, so it makes things faster. 

The integral image can be computed from an image using a few operations per pixel. The 

integral image at location (x, y) contains the sum of the pixels above and to the left of (x, y):  

𝑖𝑖(𝑥, 𝑦)  =  ∑ 𝑖(𝑥′, 𝑦′)𝑥′≤𝑥,𝑦′≤𝑦    

𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦)   

𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦)   

where: ii(x, y) is the integral image and i(x’, y’) is the original image; s(x,y) is the cumulative 

row sum, s(x, -1) = 0 and ii(-1, y) = 0.  

Using the integral image, any rectangular sum can be computed in four array references, as 

shown in Figure 3.2. In particular, the sum of the pixels within rectangle D can be computed 

with the four array references: 1, 2, 3 and 4. Since, the value of the integral image at location 

1 is the sum of the pixels in rectangle A, at location 2 is A+B, at location 3 is A+C and at 

location 4 is A+B+C+D. Then the sum within D can be computed as 4+1-(2+3).  Then more 

Figure 2.1: Haar features 

Figure 2.2: integral image 

(eq 2.1) 

(eq 2.2) 

(eq 2.3) 
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in general, the difference between two rectangular sums can be computed in eight references. 

Since the two-rectangle features, defined above, involve adjacent rectangular sums, they can 

be computed in six array references, eight in the case of the three-rectangle features, and 

nine for four-rectangle features. Following this technique, the integral image can be 

computed in one pass over the original image. 

However, among all the features, most of them are irrelevant. In fact, chosen a feature, it is 

useful only in a specific area of the image. For example, consider the feature that stores the 

property that the region of the eyes is often darker than the region of the nose and cheeks; if 

this feature is moved to cheeks or any other place, it results useless.  

Now, it is clear that the number of features effectively needed by the classifier is small and 

to select them the AdaBoost algorithm is used.  

The AdaBoost algorithm works as follow: 

1. given example images (x1, y1), …, (xn, yn) where yi = 0, 1 for negative and positive 

examples respectively. 

2. initialize weights 𝑤1,𝑖 = 
1

2𝑚
,

1

2𝑙
 for yi= 0, 1 respectively, where m and l are the 

number of negatives and positives respectively. 

3. for t = 1, …, T: 

i. normalize the weights  𝑤𝑡,𝑖 ← 
𝑤𝑡,𝑖

∑ 𝑤𝑡,𝑗
𝑛
𝑗=1

  so that wt is a probability distribution. 

ii. for each feature j, train a classifier hj which is restricted to using a single 

feature. The error is evaluated with respect to wt, 𝜖𝑗 = ∑ 𝑤𝑖|ℎ𝑗(𝑥𝑖) − 𝑦𝑖|𝑖 . 

iii. choose the classifier, ht, with the lowest error 𝜖𝑗. 

iv. update the weights: 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽𝑡
1−𝜖𝑖 where 𝜖𝑖 = 0 if example xi is 

classified correctly, 𝜖𝑖 = 1 otherwise, and 𝛽𝑡 = 
𝜖𝑡

1−𝜖𝑡
 . 

4. the final strong classifier is: 

where 𝛼𝑡 = log
1

𝛽𝑡
 . 

   

1      ∑ 𝛼𝑡ℎ𝑡(𝑥) ≥  
1

2
∑ 𝛼𝑡

𝑇
𝑡=1

𝑇
𝑡=1  

 

0      otherwise 

 
  
h(x) = 
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In the algorithm each feature is applied on all the training images. For each feature, 

AdaBoost finds the best threshold which will classify the image to positive or negative. 

Obviously, there will be errors or misclassifications. The features selected (Figure 2.3) are 

the ones with minimum error rate, which means they are the features that most accurately 

classify the presence and absence of the object in the training images.  

To each image is given an equal weight at the beginning; then at each classification, weights 

of misclassified images are increased.  

The same process is done again, so new error rates and new weights are calculated. The 

process is repeated until the required accuracy or error rate is achieved or the required 

number of features is found. 

The final classifier is a weighted sum of these weak classifiers. They are called weak because 

each of them alone can't classify the image, but together form a strong classifier.  

In face detection 200 features provide detection with 95% accuracy but the final setup had 

around 6000 features (the reduction is from 160000+ features to 6000 features). So taken an 

image, each 24x24 window will be applied 6000 features to it, in order to check if it is face 

or not.  

But in general, given an image, most of the areas are non-face region. So, it is better to have 

a simple method that checks if a window is or not a face region. If it is not, discard it in a 

single shot, and don't process it again. Instead, focus on regions where there can be a face. 

In this way, more time is spent for checking possible face regions.  

The concept of Cascade of Classifiers has been introduced and instead of applying all 6000 

features on a window, the features are grouped into different stages of classifier. The stages 

are applied one-by-one and normally the first few stages will contain fewer features. 

Figure 2.3: example of Haar feature selected by AdaBoost 
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If a window fails the first stage, discard it. If it passes, apply the second stage of features and 

continue the process. The window which passes all stages is a face region. 

 
2.2 Object detection using Y.O.L.O. 

All previous object detection techniques: R-CNN, Fast R-CNN and Faster R-CNN use 

regions to localize the object within the image and the network does not look at the complete 

image. Y.O.L.O. (You Only Look Once) is an object detection algorithm in which a single 

convolutional network predicts the bounding boxes and the class probabilities for these 

boxes [J. Redmon et al. 2013]. 

Y.O.L.O. trains on full images and directly optimizes detection performance.  

This unified model has several benefits over traditional methods because it is extremely fast 

and achieves more than twice the mean average precision of other real-time systems. 

Unlike region proposal-based techniques, Y.O.L.O. sees the entire image during training and 

test time so it implicitly encodes contextual information about classes as well as their 

appearance. 

It makes less than half the number of background errors compared to Fast R-CNN and learns 

generalizable representations of objects. So Y.O.L.O. is less likely to break down when 

applied to new domains or unexpected inputs. 

A negative aspect of this new technique is that it is less accurate than state-of-the-art 

detection systems. It fast identifies objects in images, but it strives to precisely localize some 

objects, especially small ones.  

In the Y.O.L.O. procedure first of all, the input image is divided into an SxS grid. Then, if 

the centre of an object falls into a grid cell, that cell is responsible for detecting that object. 

Each grid cell predicts B bounding boxes and confidence scores for those B boxes. The boxes 

with the thickest edges are the ones with the highest scores.  

Figure 2.4: cascade of classifiers 
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The confidence score reflects how sure the model is that the box contains a certain object 

and how accurate it thinks the predicted box is, formally it is computed as: 

Probability(Object)*IoU 

where IoU is Intersection over Union (§4.2). 

Each grid cell also predicts C conditional class probabilities, Probability(Classi|Object), and 

these probabilities are conditioned on the grid cell containing an object. Only a set of class 

probabilities per grid cell, regardless of the number of boxes B, is computed. 

During testing, the conditional class probabilities is multiplied by the individual box 

confidence score predictions: 

Probability(Classi|Object) * Probability(Object) * IoU = Probability(Classi) * IoU 

The result is the class-specific confidence scores for each bounding box; these values 

represent both the probability of the Classi appearing in the box and how well the predicted 

box encloses the object.  

Else if no object exists in that cell, the confidence scores should be zero.  

To make the procedure described above clearer, Figure 2.5 and the following summary are 

inserted. 

1. it divides the image into an SxS grid (a) 

2. for each grid cell predicts: 

a. B bounding boxes (b) 

b. confidence scores for those boxes (b) 

c. C class probabilities (c) 

3. these predictions are encoded as S * S * (B * 5 + C) tensor 

4. detection output (d) 

(a) 

(b) 

(c) 

(d) 

Figure 2.5: Y.O.L.O. flowchart (a, b, c, d) 
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In particular, the evaluation of Y.O.L.O. on PASCAL VOC uses the following parameters: 

S=7, B=2 and C=20. Figure 2.6 illustrates the structure of the convolutional NN used.  

It has 24 convolutional layers followed by 2 fully connected layers. The convolutional layers 

are used to reduce the feature maps and the last one is used to output a tensor with the desired 

shape (7x7x30). 

Y.O.L.O. main source of error is incorrect location because of the strong spatial constraints 

on bounding box predictions, because each grid cell only predicts two boxes and can only 

have one class and this constraint limits the number of nearby objects that the model can 

predict. As a consequence, the model makes mistakes also with small objects that appear in 

groups, as flocks of birds. 

Unlike classifier-based approaches, Y.O.L.O. is trained on a loss function that approximates 

detection performance, so the errors on both small and large bounding boxes are treated the 

same. This is not optimum because a small error in a large box is less significant than a small 

error in a small box that has a greater effect on the IoU. 

 

2.2.1 YOLOv3 

In this thesis YOLOv3 has been used, because it is the latest and fastest version of Y.O.L.O. 

YOLOv3 uses a few tricks to improve training and increase performance, including multi-

scale predictions, a better backbone classifier, and more. 

Its network predicts 4 coordinates and an objectness score for each bounding box.  

Objectness is evaluated using logistic regression that is 1 if the bounding box prior overlaps 

a ground truth object by more than a threshold (IoU > 0,5) and more than any other bounding 

box prior. If the bounding box prior is not the best, it is discarded and if a bounding box prior 

Figure 2.6: Y.O.L.O. CNN 
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is not assigned to a ground truth object it incurs no loss for coordinate or classification, only 

objectness.  

YOLOv3 performs a multilabel classification because it uses independent logistic classifiers. 

Indeed, during training the cross-entropy is use as loss function for class prediction. 

This formulation helps in complex domains where there can be many overlapping labels (i.e. 

Woman and Person). In fact, using a softmax function implies that each box has exactly one 

class which is often not the case, then a multilabel approach better models the data. 

More in details, YOLOv3 predicts boxes at 3 different scales and from the base feature 

extractor several convolutional layers are added. Features are extracted as follow: 

1. the prediction is made in the last feature map layer 

2. 2 layers back are considered and up sampled by 2 

3. the feature map with higher resolution in the considered layer is merged with the up-

sampled feature map using concatenation to get more meaningful information 

4. few more convolutional filters are added on the merged map and applied in order to 

generate prediction tensor 

5. at the end, the same steps are performed again to predict boxes for the final scale that 

is a tensor of NxNx[3*(4+1+80)] for the 4 bounding box coordinates, 1 objectness 

prediction, and 80 class predictions of the COCO dataset. 

YOLOv3 still uses k-means clustering to determine bounding box priors and on COCO 

dataset the number of clusters is 9: (10x13); (16x30); (33x23); (30x61); (62x45); (59x119); 

(116x90); (156x198); (373x326). Clusters are grouped and assigned to specific feature map 

to improve the object detection. 

Figure 2.7: YOLOv3 network (Darknet-53) 
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YOLOv3 achieves the highest measured floating-point operation per second, so its 

application requires the utilization of GPU hardware.  

Figure 2.8 [J. Redmon et al. 2018] illustrates the comparison between the performance of 

several object detection model, so YOLOv3 is the fastest one and that it has improved the 

detection of small object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: performance comparison  
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3. Detection and matching of features 

The human brain does a lot of pattern recognition to make sense of raw visual inputs. As the 

eyes focuses on an object, the brain automatically identifies the characteristics of this object, 

such as the shape, the color, the texture and others. Then, always in a completely automatic 

manner, it searches for these characteristics in other objects to recognize it if it is revised 

again. Consequently, the desirable property for a feature detector is repeatability: whether 

the same feature will be detected or not in two or more different images of the same scene. 

In computer vision, the process of deciding what to focus on is called feature detection. 

A feature can be formally defined as “one or more measurements of some quantifiable 

property of an object, computed so that it quantifies some significant characteristics of the 

object” [R. Castelman, et al. 1996]. Using easier word: a feature is defined as an "interesting" 

part of an image. 

Therefore, the purpose of the recognition of the features in an image is to find the unique 

characteristics of the image, to later recognize these characteristics in other images similar 

to the first. 

Two of the most famous feature detectors are SIFT (Scale-Invariant Feature Transform) and 

SURF (Speeded-Up Robust Features). 

Features descriptor are also useful to compare images, comparing the descriptor of the two 

images is a way to find their match. The combination of feature descriptors and their match 

is a way to identify objects, as shown in Figure 3.1. 

 

 

Figure 3.1: feature matching example 



Chapter 3 | Detection and matching of features 

58 
 

3.1 SIFT 

SIFT was introduced by Lowe in 2004 and it solves the image rotation, affine 

transformations, intensity, and viewpoint change in matching features.  

The SIFT algorithm is composed by 4 steps: 

1. Scale-space Extrema Detection is used to estimate a scale space extremum using the 

Difference of Gaussian (DoG). DoG is the difference of the Gaussian blurring of an 

image with two different σ: σ and kσ. 

This computation is done for various octaves of the image in Gaussian Pyramid, an 

example in Figure 3.2. 

As DoG are computed, images are searched for local extrema over scale and space. 

For example, a pixel in an image is compared with its 8 neighbours as well as 9 pixels 

in next scale and 9 pixels in previous scales. If it is a local extremum, it is a potential 

key point. This means that key point is best represented in that scale.  

Regarding different parameters, Lowe gives some empirical data which can be 

summarized as: 4 octaves, 5 scale levels, σ = 1.6 and 𝑘 =  √2 as optimal values. 

Figure 3.2: DoG for different octave 

Figure 3.3: searching for local extremum 
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2. Key point localization is where the key point candidates are localized and refined by 

eliminating low contrast and edges key points. To get more accurate results the 

potential key points locations found are compared with two thresholds. The Taylor 

series expansion of scale space is used to compute the intensity of the extremum and 

if this intensity is lower than a threshold (e.g. 0,03 per Lowe), the extremum is 

refused. 

Then to remove edges a 2x2 Hessian matrix is used to evaluate the principal 

curvature. From Harris corner detector is known that for edges, one eigen value is 

larger than the other. So, if this ratio is greater than a threshold (e.g. 10 for Lowe), 

that key point is discarded.  

3. Key point orientation assignment is based on local image gradient. To each key point 

an orientation is assigned to achieve invariance to image rotation. Around the key 

point location depending on the scale a neighbourhood is selected, and the gradient 

magnitude and direction is calculated in that region. An orientation histogram with 

36 bins covering 360 degrees is created. It is weighted by gradient magnitude and 

gaussian-weighted circular window with σ equal to 1.5 times the scale of key point. 

The highest peak is kept and any peak above the 80% of it is considered to calculate 

the orientation. This generates key points with same location and scale, but different 

directions and contributes to stability of matching. 

4. Key point descriptor is used to compute the local image descriptor for each key point 

based on image gradient magnitude and orientation. A 16x16 neighbourhood around 

the key point is taken, then it is divided into 16 sub-blocks of 4x4 size. For each sub-

block, 8 bins orientation histogram is generated and then 128 bins values are 

available, in total. The key point descriptor is represented as a vector. In addition to 

this, several measures are taken to achieve robustness against illumination changes 

and rotation. 

Key points between two images are matched by identifying their nearest neighbours. But if 

the second closest match is too near to the first, due to noise or some other reasons, then the 

ratio of closest-distance to second-closest distance is taken. If it is greater than 0,8, they are 

rejected. This removes about 90% of false matches while discards only around 5% of correct 

matches. The lower the threshold, which is used to compare the ratio-test the lower the 

number of false matching. 
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3.2 SURF 

In 2006, H. Bay, T. Tuytelaars and L. Van Gool have introduced SURF which is a new 

algorithm for the detection of features. This new algorithm approximates the DoG with box 

filters. Instead of Gaussian averaging the image, squares are used for approximation since 

the convolution with square is much faster if the integral image is used (Figure 3.4). This 

can be done in parallel for different scales.  

Also, SURF relies on determinant of Hessian matrix for both scale and location of the key 

points. For orientation assignment, it uses wavelet responses in both horizontal and vertical 

directions by applying adequate Gaussian weights for a neighbourhood of size 6s. 

Then they are plotted in a space as shown in Figure 3.5.  

The dominant orientation is estimated by the summation of all responses within a sliding 

orientation window of angle 60 degrees. 

Wavelet response can be found out using integral images easily at any scale. For many 

applications, rotation invariance is not required, so no need of finding this orientation, and 

Figure 3.4: DoG approximation 

Figure 3.5: SURF orientation assignment 
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SURF provides a functionality called Upright-SURF or U-SURF that improves speed and is 

robust up to ±15 degrees.  

For feature description it uses the wavelet responses. A neighbourhood of size 20sx20s 

around the key point is selected and divided into subregions of size 4x4. Then, for each 

subregion the wavelet responses are taken and represented to get SURF feature descriptor as 

a vector like 𝑣 = (∑𝑑𝑥 , ∑𝑑𝑦 , ∑|𝑑𝑥| , ∑|𝑑𝑦|) with total dimension 64.  

Lower the dimension, higher the speed of computation and matching, but provide better 

distinctiveness of features. For more distinctiveness, SURF feature descriptor has an 

extended version of dimension 128. 

Another important improvement is the use of sign of Laplacian (trace of Hessian Matrix) for 

underlying interest point. It adds no computation cost since it is already computed during 

detection.  

The sign of the Laplacian distinguishes bright blobs on dark backgrounds from the reverse 

situation. Then in the matching stage, only features that have the same type of contrast 

(Figure 3.6) are compared.  

This minimal information allows for faster matching, without reducing performance. 

Briefly, SURF adds a lot of features to improve the speed in every step.  

Analysis shows that SURF should be 3 times faster than SIFT and it is good at handling 

images with blurring and rotation, but not good at handling viewpoint change and 

illumination change. 

 

3.3 RANSAC algorithm 

RANSAC stands for RANdom SAmple Consensus and in computer vision, it is used as a 

method to calculate features matching and homography between two images [L. Dung et al. 

2013]. 

Figure 3.6: contrast matching 

http://en.wikipedia.org/wiki/RANSAC
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Chosen two images, their point correspondences are found by matching features using SIFT 

or SURF. Then, a transformation is calculated based on these matched features that warps 

one image into the other one. 

Four initial feature matches are taken in the random selection step of each iteration in 

RANSAC, and a correct homography in obtained only after the final iteration if they are the 

real inliers.  

In the field of computer vision, any two images of the same planar surface in space are 

related by a homography.  This has many practical applications, such as image 

rectification, image registration, or computation of camera motion between two images. 

Once camera rotation and translation have been extracted from an estimated homography 

matrix, this information may be used for navigation, or to insert models of 3D objects into 

an image or video, so that they are rendered with the correct perspective and appear to have 

been part of the original scene. 

From a practical point of view, homography is a 3×3 matrix that maps the points of one 

image to the corresponding points in the other image. 

To calculate a homography between two images, at least four points correspondences 

between the two images need to be known. If more than four corresponding points are 

known, it is even better.  

The algorithm’s procedure can be described by the following points: 

1. select four feature pairs (at random) 

2. compute homography H 

3. compute inliers   

4. keep largest set of inliers 

5. re-compute least-squares H estimate using all the inliers 

As already said, homography is 3×3 matrix: 

𝐻 = [ 

ℎ00 ℎ01 ℎ02

ℎ10 ℎ11 ℎ12

ℎ20 ℎ21 ℎ22

] 

Let (x1, y1) be a point in the first image and (x2, y2) be the coordinates of the same physical 

point in the second image.  

 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Image_rectification
https://en.wikipedia.org/wiki/Image_rectification
https://en.wikipedia.org/wiki/Image_registration
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Then, the Homography H relates them in the following way: 

[
𝑥1

𝑦1 
1

] = 𝐻 [
𝑥2

𝑦2

1
] 

If the homography is known, it could be applied to all pixels of one image to obtain a warped 

image that is aligned with the second one. 

An example of result in Figure 3.7 to better understand what can be achieved using this 

procedure. 

Figure 3.7: feature matching + homography 





 

65 
 

4. Evaluation metrics 

To compare the performances of the chosen techniques it is necessary to define an evaluation 

metric that will be performed on datasets. 

 
4.1 Confusion Matrix 

In the field of machine learning, confusion matrix is a specific table layout that allows to 

visualize the algorithm performance, typically a supervised learning one.  

A learning is supervised if the training and the testing set are formed by input-output pairs. 

So, the correct solution is known. Instead, a learning is unsupervised if both training and 

testing set are formed by only inputs and the right solution is unknown. 

Confusion matrix is a special kind of contingency table, with two dimensions: "truth" and 

"predicted", and identical sets of "classes" in both dimensions. 

Each row of the matrix represents the instances in the right class while each column 

represents the instances in the predicted class or vice versa.  

If all the elements in a row are divided by the sum of all the elements in that row, then the 

result is the normalized confusion matrix, that in each cell (i, j) stores the probability that the 

estimated class is j given that the true class is i. Then the aim is to obtain the identity matrix 

as confusion matrix. 

 

Figure 4.1: example of confusion matrix of 10 classes classification 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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In this thesis, the aim is to recognize a single object then the confusion matrix is 2x2   

[T. Fawcett. 2006], because there are only two classes: presence and absence of the object.  

Since the object detection is a supervised technique, it is already known if the image fed to 

the detector contains or not the object, then: 

1. taken an image with the object: 

a. If the detector finds it, the detection is classified as TP 

b. Else the detection is classified as FN 

2. taken an image without the object: 

a. If the detector recognizes the presence of the object, the detection is classified 

as FP 

b. Else the detection is classified as TN 

Once the confusion matrix is obtained, it is possible to calculate the following parameters 

[L. David. 2008] to know the performance of the tested techniques: 

- 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                             (eq. 4.1) 

Accuracy measures the overall accuracy of the model 

- 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                          (eq. 4.2) 

Precision measures the accuracy of a single class, how accurate are the predictions 

- 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                (eq. 4.3) 

Recall is the proportion of True Positive cases that are correctly predicted 

- 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                       (eq. 4.4) 

Specificity is the proportion of True Negative cases that are correctly found 

  

Figure 4.2: example of confusion matrix 2x2 (in this case) 
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4.2 Intersection over Union (IoU) 

Intersection over Union is a performance evaluation used to evaluate the accuracy of an 

object detector. 

IoU is the ratio between the overlapping area of the ground-truth box (light blue) and the 

detector box (green) and the area of union of the same boxes. 

The ground-truth boxes are the ones manually created with LabelImage on the test images. 

To clarify how the ratio is calculated, Figure 4.4 has been inserted. It is evident that a 

complete and total match between predicted and ground-truth boxes is unrealistic. Then it is 

important that the performance evaluation gives higher scores to detector boxes for heavily 

overlapping with the ground truth. 

 

Figure 4.3: example of IoU of a test image 

 

Ground-truth 
box 

Detector box 

Figure 4.4: IoU 
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IoU is a number between 0 (no matching) and 1 (perfect matching) and in this thesis different 

threshold has been used to see the effect of the IoU on the mean Average Precision.  

4.3 Mean Average Precision (mAP) 

The AP (Average Precision) is the average of the maximum precisions (eq 4.2) at different 

recall (eq. 4.3) values.  

Both precision and recall depend on the threshold set for the IoU because a detector box with 

IoU under the threshold is classified as TN while over as TP.  

Figure 4.6 shows the Precision-Recall curve, the more predictions are included the more 

recall increases, but precision goes up with TP and down with FP. So, a good classifier 

precision will stay high as recall increases and a poor classifier will have to take a large hit 

in precision to get a higher recall. 

 

 

 

Figure 4.5: example of IoU values 

Figure 4.6: example of Precision-Recall curve 
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The Average Precision (AP) value is the area under the approximation of the orange curve. 

So, the area under the green curve of Figure 4.7. 

If the network has to evaluate different classes, an AP for each one is computed and the mean 

between all of the considered classes is the mAP value. Figures below show an example of 

AP (4.8) and mAP (4.9) computation on 85 images and 36 classes. 

 

Figure 4.7: example of Average Precision-Recall curve 

      p 

𝐴𝑃 = න 𝑝(𝑟)𝑑𝑟
1

0

 

 

Figure 4.8: example of number of FP and TP predictions of 36 classes  
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In this thesis there is just a class, so AP and mAP are coincident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: example of AP and mAP of 36 classes 
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5. Sensors  

The field of this thesis study are the smart societies and therefore the sensors chosen are part 

of the category of low cost technologies. In particular it was not chosen to use only low cost 

sensors but also low cost platforms such as the Raspberry Pi. In fact, two cameras used are 

specifically designed to work with the Raspberry Pi, in particular: the Raspberry Pi Official 

Camera Module V2 and the Longruner Camera Module, which is a Night Vision camera.  

The Raspberry Pi Official Camera is a high quality 8 Mp Sony IMX219 image sensor and 

the Longruner Camera Module is composed by OV5647 sensor and two infrared illuminators 

that work at 850nm. The second camera is a Night Vision camera that works well up to 8 

meters, but if the goal is to reach a top-quality night vision results, then the ideal distance is 

between 3 and 5 meters.  

First of all, however, a smartphone has been used because nowadays everybody has ones 

and it is a mass market ICT technology.  

Finally, the MAPIR Survey3 camera has been also used since it is available in the DIATI 

laboratory. This camera is designed to make surveys and therefore could be used on object 

detection in agriculture field. The images returned by this last sensor are RGN (Red-Green-

NearIR), so it seemed very interesting to use an Object Detection algorithm on a different 

image format since all the previous sensors return the classic RGB (Red-Green-Blue) 

images. Another important aspect that led us to choose to use this sensor is the fact that the 

MAPIR NearIR spectrum has a peak at 850 nanometres which is the wavelength at which 

the Night Vision camera illuminators work, therefore combining the illuminators with the 

MAPIR it was possible to see in low light condition. 

Below a list, an image (Figure 5.1) and a table (Table 5.1) that contains the characteristics 

of the sensors, have been inserted. 

The list of sensors is: 

a) ASUS Zenfone 2 Deluxe, hereafter called smartphone 

b) Raspberry Pi Official Camera Module V2, hereafter called Official Pi camera 

c) Longruner Camera Module for Raspberry Pi, hereafter called Night Vision (NV) 

camera 

d) MAPIR Survey3, hereafter called MAPIR
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Sensor Cost [€] Max Resolution 
(Mp) 

Radiometric 
channel GPS 

Internal 
data 

storage 

Smartphone 300  13 RGB yes yes 

Official Pi camera 27 8 RGB yes, but 
external 

no 

Night Vision 
camera 26 5 RGB yes, but 

external 
no 

MAPIR Survey3 600 12 RGN yes yes 

Figure 5.1: sensors 

 

b) Official Pi Camera a) Smartphone 
 

d) MAPIR c) NV Camera 

Table 5.1: sensors characteristics 
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6. Geometric camera calibration 
 
In the previous chapter the sensors used were described and therefore as all optical sensors, 

the images could be affected by optical and sensor distortions. 

In order to correct the image, a calibration is necessary. In object detection, this aspect could 

play a relevant role, because without this correction, the shape and size could be totally 

different with respect the “truth” used in the learning (§9.2 and §9.3). 

A camera characterized by a small hole, through which light rays pass and project an inverted 

image on the opposite side of the camera. The virtual image plane can be seen as a plane 

positioned in front of the camera and containing the vertical image of the shot (Figure 6.1). 

The camera parameters are represented in a matrix (4x3) called camera matrix, that maps the 

3D shot in the 2D image plane. The calibration algorithm calculates the camera matrix using: 

- the extrinsic parameters that represent the position of the camera in the 3D shot 

- the intrinsic parameters that represent the X, Y, Z and the attitude 

In particular, world points are transformed into camera coordinates using extrinsic 

parameters and camera coordinates are mapped in the image plane using intrinsic parameters 

(Figure 6.2). The equations are: 

𝑤[𝑥 𝑦 1] = [𝑋 𝑌 𝑍 1]𝑃 

𝑃 = [
𝑅
𝑡
]𝐾 

where: 

- w is the scale factor 

- x, y are the image points 

- X, Y, Z are the world points 

- P is the camera matrix 

- R is extrinsic rotation parameter 

Figure 6.1: camera model 



Chapter 6 | Geometric camera calibration 

74 
 

- t is translation extrinsic parameter  

- K is intrinsic matrix 

Intrinsic parameters are specific to a camera. They include information like focal length  

(fx, fy) and optical centre (cx, cy). All these parameters are stored in the camera matrix, that 

is different for each camera. 

𝑐𝑎𝑚𝑒𝑟𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 =  [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] 

Extrinsic parameters correspond to rotation R and translation vectors t which translate a 

coordinate of a 3D point to a 2D coordinate system (Figure 6.3). 

The two major distortions introduced by cheap lens are radial and tangential and they can be 

solved using a mathematical model. 

Due to radial distortion, straight lines will appear curved and the effect increases towards the 

edges of the image. 

Figure 6.4: radial distortion 

Figure 6.2: example of world points transformation into camera coordinates 

Figure 6.3: extrinsic camera parameters 
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Tangential distortion occurs because image taking lens is not aligned perfectly parallel to the 

imaging plane. So, some areas may look nearer than expected (Figure 6.5). 

The following procedure was used to find the parameters: 

1. a chessboard was chosen 

2. the length of the side of a square of the chessboard was measured (10 cm) 

3. multiple pictures of the chessboard have been taken with each camera, and in order 

to get good results, at least 20 different pictures varying the angles and distance 

should be taken.  

4. all the pictures are given to the camera calibration tool and at least 10 images must 

be accepted to get reliable results. 

5. the parameters are given as the output of the tool and then images without distortion 

can be obtained 

It is important to say that sometimes images do not appear to be affected by any distortion 

even before the calibration, but the calibration is important to improve the accuracy of the 

camera. 

 

 

Figure 6.5: example of distortion effects 
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6.1 Dataset for calibration 

The pictures of the chessboard were taken in good light conditions and leaving the sensor 

setting parameters in their default values, except for the Official Pi camera and Night Vision 

camera in which a lower resolution than the default one was set. 

Table 6.1 contains all the information relative to the sets of images used to calibrate each 
camera. 

 
To calibrate the cameras both the Camera Calibrator MATLAB App and OpenCV 

calibrateCamera() function have been used. 

The results of both calibrations are described in the following sections. 

 
6.2 MATLAB Camera Calibrator  

In MATLAB there is a suite of calibration functions used by the Camera Calibrator that 

provides the workflow for camera calibration procedure. 

Images of the chessboard can be added to a session and then once the accepted images are 

enough, calibration can be done. After evaluating the first results, their accuracy can be 

Sensor Num. of images Resolution (pixel) Type of image 

Smartphone 27 4026x2304 RGB 

Official Pi camera 33 720x576 RGB 

NV Camera 33 720x576 RGB 

MAPIR Survey3 24 3840x2160 RGN 

Figure 6.7: MATLAB Camera Calibrator  

Figure 6.6: example of chessboard photo  

Table 6.1: calibration datasets 

https://it.mathworks.com/help/vision/ref/cameracalibrator-app.html
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improved adding or removing images and then make a new calibration or re-running the 

tool. 

More in details, as shown by Figure 6.8, calibration accuracy can be improved by examining: 

reprojection errors (red box), pattern-centric view (light blue box) or viewing the undistorted 

image (green box).  

Generally, mean reprojection errors of less than 1 pixel are acceptable and it should be as 

close to 0 as possible. In the histogram, highlighted by the red box, there are the values of 

the reprojection error for each image, then to improve accuracy the images related to higher 

error should be removed and then the tool must be run again. In the histogram there is also 

a dotted line which represents the mean reprojection error value. 

The MATLAB Tool for camera calibration does not works well on the sets of images taken 

with the MAPIR and the smartphone cameras. The Camera Calibrator has been tested on 

different datasets created with the two sensors, but every time a lot of images are discarded 

and the reprojection error on the accepted images is always too close to 1 pixel.  

In Table 6.2 the results of the Camera Calibrator. 

Sensor Mean Reprojection Error 
(pixel) 

Accepted 
image Input image 

Smartphone 0,97 19 27 
Official Pi camera 0,15 38 38 
NV Camera 0,24 33 33 
MAPIR  1,02 10 24 

Table 6.2: MATLAB calibration results 

Figure 6.8: Camera Calibrator interface 
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6.3 OpenCV Camera Calibration and 3D Reconstruction 

OpenCV has a specific library called cv2.calibrateCamera() which estimate the camera 

matrix, distortion coefficients, rotation and translation vectors. Then new images can be 

undistorted.   

The OpenCV calibration function has not GUI (Graphical User Interface) as the MATLAB 

Camera Calibrator, but it is however easily usable with python. In fact, through the 

cv2.drawChessboardCorners() function, it is possible to see the pattern of the chessboard 

recognized on each picture (Figure 6.9) and decide whether to accept or reject an image. 

OpenCV works well with all the sensors, since it works on the black and white images of 

the chessboard. Then if the original RGB or RGN have good contrast, it has no difficulties 

in findings the chessboard corners.  

However, in the set of images taken with the MAPIR camera the function does not find the 

chessboard pattern in all the images but in 18 out of 24 totals. Instead in the set of images 

captured with the other sensors the chessboard’s pattern is always recognized.  

Below an example of the chessboard images before and after calibration.  

Figure 6.9: OpenCV chessboard pattern 

Figure 6.10: NV Camera photo with (a) and without (b) distortions 

(a) (b) 
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In Table 6.3 there are the mean reprojection error in pixel and the number of good images 

for each sensor. 

Sensor Mean Reprojection Error 
(pixel) 

Accepted 
image 

Input image 

Smartphone 0,20 26 27 
Official Pi camera 0,03 38 38 
NV camera 0,11 33 33 
MAPIR  0,26 18 24 

 

Below the camera matrix and distortion vector obtained for each sensor: 

1. Smartphone: 

𝑚𝑎𝑡𝑟𝑖𝑥 = [
3,45 ∗ 103 0 1,90 ∗ 103

0 3,46 ∗ 103 1,08 ∗ 103

0 0 1

] 

𝑣𝑒𝑐𝑡𝑜𝑟 = [2,03 ∗ 10−1;  −5,69 ∗ 10−1;  −7,69 ∗ 10−3;  −1,67 ∗ 10−2; 7,39 ∗ 10−1] 

2. Official Pi camera 

𝑚𝑎𝑡𝑟𝑖𝑥 = [
5,95 ∗ 102 0 3,78 ∗ 102

0 5,93 ∗ 102 2,92 ∗ 102

0 0 1

] 

𝑣𝑒𝑐𝑡𝑜𝑟 =  [2,00 ∗ 10−1;  −2,75 ∗ 10−1;  6,27 ∗ 10−5;  −2,82 ∗ 10−2;  2,31 ∗ 10−2] 

3. Night Vision camera 

𝑚𝑎𝑡𝑟𝑖𝑥 = [
2,21 ∗ 103 0 3,50 ∗ 102

0 1,48 ∗ 103 2,85 ∗ 102

0 0 1

] 

𝑣𝑒𝑐𝑡𝑜𝑟 =  [−1,17;  1,29 ∗ 10;  1,01 ∗ 10−2;  −1,08 ∗ 10−2;  −1,96 ∗ 102] 

4. MAPIR 

𝑚𝑎𝑡𝑟𝑖𝑥 = [
5,45 ∗ 103 0 1,58 ∗ 103

0 5,44 ∗ 103 1,31 ∗ 103

0 0 1

] 

𝑣𝑒𝑐𝑡𝑜𝑟 =  [2,11 ∗ 10−3;  −3,74 ∗ 10−1;  5,22 ∗ 10−3;  −6,24 ∗ 10−3;  9,52 ∗ 10−1] 

 

Table 6.3: OpenCV calibration results 
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7. Training of the algorithms  
 
This thesis aims to get a Object Detection algorithm able to work with low-cost where this 

means to indicate both the sensors used and described in Chapter 5 and the platforms such 

as the Raspberry Pi, on which we intend to use the algorithm.  

To achieve the goal, it was first necessary to choose the software and to remain faithful to 

the low cost policy, open source software was chosen. 

Obviously, it's not possible to do the training on the low cost platform, but it is necessary to 

use something more powerful like a computer, which does not need very expensive 

components. However, the characteristics required by the training for the hardware, depend 

on the technique chosen, in fact in this work two very different techniques for the 

implementation of Object Detection were analysed. An older model (Haar Cascade) that 

does not require particular hardware features and a newer one (Y.O.L.O.) that, instead, 

requires higher hardware performance.  

However, in the following paragraphs the technical characteristics of the hardware used will 

be specified.  

To implement the Haar Cascade, OpenCV (Open Source Computer Vision Library) has been 

chosen. It is an open source computer vision and machine learning software library and the 

distribution comes with a trained frontal face detector that works remarkably well. It is 

possible to train the algorithm on other objects and it works well for rigid and characteristic 

views object.  

To implement Y.O.L.O., Darknet has been used. Darknet is an open source neural network 

framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU 

computation. The Y.O.L.O. training using a pre-trained model can be done to recognize an 

object that is not already present in the basic dataset. Darknet installation makes the 

Y.O.L.O. re-training very easy. 

In this thesis, the object to be recognized is the fire extinguisher. It is chosen because it is 

relevant in the indoor security field and present in a very large number of buildings. In 

addition, it seems to have all the characteristics to be recognize after appropriate training  

as it has a rigid, standard and well-defined shape.  
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7.1 Haar Cascade training  

To build a Haar Cascade, "positive" and "negative" images are needed.  

The "positive" images contain the chosen object. These can either be images that just mainly 

have the object, or they can be images that contain the object, and the ROI (Region Of 

Interest) where the object is, must be specified.  

Instead, the negative images can be anything, except they cannot contain the chosen object. 

With a single positive image and a command, a bunch of positive examples using the 

negative ones, can be created. In this way, the positive image will be superimposed on these 

negatives, and it should be angled and all sorts of things.  

This technique can work well to detect one specific object, as the fire extinguisher. Instead 

if the aim is to identify, for example, all breeds of cats, thousands of unique images of cats 

are needed.  

To train the cascade many parameters are needed: the vector file; the background file; the 

number of positive and negative images to use; the number of stages; the width and height 

in pixels of the maximum rectangle that can contain the fire extinguisher; the maximum 

False Alarm Rate and others.   

It is important to use fewer positive images than all available because at each new stage the 

training will add some images. Using as many negatives as the half of the number of positive 

samples is a good practice 

 

7.2 Haar Cascade training dataset 

A fire extinguisher model, presents in the Politecnico di Torino, has been chosen and 6 

photos (Figure 7.1) of it, from different point of view, have been taken with a mobile phone.  

Subsequently, the 6 photos have been resized into 100x200 pixels (width x height), using a 

python script and the OpenCV library tools. Then 600 positive samples were created from 

each of these in order to obtain 3600 positive images. 

Figure 7.1: fire extinguisher (a, b, c, d, e, f) 
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Thousands of negative images have been taken from ImageNet, where images of about 

anything can be found.  

In this thesis, three categories have been chosen and all their images have been downloaded 

and used as negative samples. Once enough negative images have been collected, they have 

been resized to 300x300 pixels because they must be larger than the positive samples and 

not too big otherwise the opencv_traincascade can’t process them. 

At the end, 2290 negative images have been obtained. 

Then for both positive and negative images, a description file is needed. For positives, this 

file (info.lst) has been built via the opencv_createsamples command. Each line of info.lst is: 

- Name of the image 

- The number of fire extinguisher inside the image (always 1) 

- The top left corner, (x, y) in pixels, of the square inside which the fire extinguisher 

has been placed by the opencv_createsamples  

- The size of the square (width, height) in pixels 

Then the vector file (positives.vec), which contains all positives image for training, has been 

created via the opencv_createsamples command. 

Instead, for the negative images’ description file, called background file (bg.txt), a python 

script has been used and each of its line contains the path of an image. 

Several trainings have been done over an i7 of 5th generation and OpenCV 4.0.0. 

Table 7.1 shows the settings and the duration of all the trainings done. Trainings can be 

divided into 4 cases which differ precisely in the characteristics of the images present in the 

training datasets (transparency and rotation). Then each case includes within it other 

subcases that differ in the maximum False Alarm Rate used. 

Table 7.1: Haar Cascade trainings 

Training 
Max False 

Alarm 
Rate 

Max 
rotation 

(rad) 

Num. of 
stages 

Acceptance 
Ratio 

(last stage) 
Time 

First trial 
1 0,5 0,5 10 4,305*10-3 4d 

Second trial 
2 0,4 0,5 10 2,32*10-4 1d 11h 
3 0,3 0,5 10 7,23*10-5 1d 16h 
   9 1,56*10-4 1d 9h 
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Third trial 
4 0,2 0 10 1,81*10-5 2d 10h 
   7 2,02*10-4 1d 10h 
5 0,3 0 6 2,10*10-5 9h 
6 0,4 0 4 8,71*10-4 2,5h 
7 0,5 0 3 5,73*10-3 1h 

Fourth trial 
8* 0,2 0,2 5 1,05*10-4 9h 
9* 0,3 0,2 8 1,27*10-4 12h 
10* 0,4 0,2 8 2,42*10-4 10h 

 

7.2.1 First trial 

The set of positives images is composed by 3600 images (Figure 7.2). For each of the photos 

of Figure 7.1, 600 positive samples have been created with a maximum rotation of 0,5 

radiant on the x, y and z axis. 

The maximum False Alarm Rate is equal to 0,5 and the number of stages is 10. The training 

lasted 4 days. 

In Figure 7.3a, the fire extinguisher is in front of the camera and on a homogeneous wall. In 

this simple scenario, it is assumed that the fire extinguisher is perfectly recognized, but it 

does not. 

Figure 7.3b shows the fire extinguisher in a non-optimal light condition and in a more 

complex scenario. In Figure 7.3c the fire extinguisher is in good light condition, but on a 

more complex background than Figure 7.3a. 

The results (Figure 7.3) are very bad, because the cascade found fire extinguisher 

everywhere and a lot of boxes overlap. 

                                                 
* trainings who’s the mAP of Chapter 9 refers to 
 
 

Figure 7.2: positive images (1st trial) 
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So once obtained those results, some changes have been done and new trainings performed. 

 
7.2.2 Second trial 

The transparency present in the positive images (Figure 7.2) of the previous training has 

been removed and the maximum False Alarm Rate has been reduced to 0,4, while the 

maximum rotation remained the same. The training lasted 1 day and 11 hours for 10 stages. 

The results seem a little bit better but there are still lots of false detection. 

The detection in Figure 7.5a is good, but in the others the results are not well enough.  
Figure 7.4: positive images (2nd trial) 

Figure 7.3: first cascade output (a, b, c) 

Figure 7.5: second cascade output (a, b, c) 

(b) (a) 

(c) 

(b) (a) 

(c) 
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Then a new training with a maximum False Alarm Rate of 0,3 and the same dataset has been 

done. The training duration is 1 day and 16 hours for 10 stages. 

The results (Figure 7.6) seem a little bit better in good light condition, but if there is little 

light the extinguisher is not seen.  

However, for this new training 10 stages seems to many, because the AcceptanceRatio 

parameter is of the order of 10-5 in the last stage and a good guideline is to train not further 

than 10-5, to ensure the model does not over train on the training data. AcceptanceRatio is 

used to determine how precise the model should keep learning and when to stop. By default, 

its value is set to -1 to disable this feature but it is possible to set it equal to any reasonable 

small number as, 10-5, to stop the training when its value becomes smaller than the chosen   

 number.  

The results (Figure 7.7) are better than the results obtained with 10 stages (Figure 7.6), since 

the side effect of overfitting is removed by the 9 stages cascade. 

Comparing Figure 7.7c and Figure 7.6c, it is evident that the reduction of the maximum 

False Alarm Rate, during the training, has reduce the false detection and better results has 

been obtained in general. 

Figure 7.6: third cascade output (a, b, c, 10 stages) 

(b) (a) 

(c) 
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However, the results are not yet well enough, so a new training with a maximum False Alarm 

Rate equal to 0,2 has been done and its duration is 2 days and 10 hours for 10 stages. But 

again 10 stages are too many and overfitting affects the results (Figure 7.8 vs. Figure 7.9). 

Those results are not good enough, so new changes have been done. 

Figure 7.7: third cascade output (a, b, c, 9 stages) 

Figure 7.8: fourth cascade output (a, b, c, 10 stages) 

Figure 7.9: fourth cascade output (a, b, c, 7 stages) 

(b) (a) 

(c) 

(b) (a) 

(c) 

(b) (a) 

(c) 
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7.2.3 Third trial 

A new dataset of 3600 positive images without rotation has been used and different False 

Alarm Rates have been tested.  

The training of images without rotation is much faster and the number of features used by 

each stage is smaller.  

For these trainings the AcceptanceRatio values has been set lower than 10-5 to avoid 

overfitting. 

In Figure 7.11 the results related to a maximum False Alarm Rate of 0,3, the training 

duration is 9 hours for 6 stages and the fire extinguisher is never detect 

 Then a new training with a maximum False Alarm Rate equal to 0,4 has been performed 

(Figure 7.12). The training lasted 2 hours and a half for 4 stages. 

Figure 7.11: fifth cascade output (a, b, c, 6 stages) 

Figure 7.10: positive images (3rd trial) 

(b) (a) 

(c) 
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Since the fire extinguisher is not detected most of the time, a new training with a 

maxFalseAlarmRate of 0,5 have been done (Figure 7.13) and its duration is 1 hour and a 

half for 3 stages.  

From Figure 7.13, it is evident that the results are bad, because there are a lot of false 

detection and the box that should identify the fire extinguisher does not encose it well. 

Observed those results a new dataset was created and new trainings were carried out.  

 

 

 

Figure 7.12: sixth cascade output (a, b, c, 4 stages) 

Figure 7.13: seventh cascade output (a, b, c, 3 stages) 

(b) (a) 

(c) 

(b) (a) 

(c) 
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7.2.4 Fourth trial 

A new dataset of 3600 positive images with a maximum rotation of 0,2 radiant on the x, y 

and z axis has been used and different False Alarm Rate have been tested.  

The maximum False Alarm Rate tested are: 0,2 (Figure 7.15); 0,3 (Figure 7.16); 0,4 (Figure 

7.17). The results related to 0,2 are the best ones in good light condition, but only with a 

maximum False Alarm Rate equal to 0,4 the fire extinguisher is detected in the darkest 

scenario 

Figure 7.15: eighth cascade output (a, b, c, 8 stages) 

Figure 7.14 positive images (4th trial) 

Figure 7.16: ninth cascade output (a, b, c, 8 stages) 

(b) (a) 

(c) 

(b) (a) 

(c) 
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7.2.5 New model detection  

During the performance tests of the previous cascades, it was noted that in the Politecnico 

di Torino, also another model of fire extinguisher very similar to that of Figure 7.1 is 

recognized. The two extinguishers are analog in shape and the most evident differences are: 

the position of the black wire and the color of the base. 

 
 
  
 
 
 
 
 

In Figure 7.19 and 7.20 there are the outputs related to the cascade of the second trial (§7.2.2) 

with maximum False Alarm Rate equal to 0,4 and 0,2 respectively. 

There are a lots of false detection, but the interesting thing is the fact that also this model of 

fire extinguisher is well squared. 

It is clear that the performance of each classifier varies greatly depending on the scenario 

and the lighting conditions. 

 

Figure 7.18: (a) new extinguisher model, (b) previous extinguisher model 

Figure 7.17: tenth cascade output (a, b, c, 8 stages) 

(b) (a) 

(c) 

(b) (a) 
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Also, the cascades presented in the fourth trial (§7.2.4) have been tested on this new fire 

extinguisher model and they work better than the previous ones. The maximum False Alarm 

Rate increases from Figure 7.21 to 7.23. 

 

 

Figure 7.21: eighth cascade output (a, b) 

Figure 7.19: second cascade output (a, b) 

Figure 7.20: fourth cascade output (a, b, 7 stages) 

(b) (a) 

(b) (a) 

(b) (a) 
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However, these results are unexpected because they are like the previous ones even if the 

cascade has never seen this second model.  

 

7.3 Y.O.L.O. re-training  

A pre-trained model, on the COCO dataset, has been used because training a network starting 

from scratch would have been too long and resource intensive. 

The re-training has been done over a computer with a GeForce GTX 670MX and an i7 of 

the 7th generation. 

Since, the followed procedure is based on a pre-trained model some changes need to be done. 

Firstly, the number of classes has been changed from 80 to 1 (extinguisher), since the aim is 

to detect only the fire extinguisher. In this way the network output referred only to a specific 

object resulting more performing and accurate. Also, the filters parameter has been changed 

and set to 18 since it depends on the number of classes. Another change is the batch size that 

has been set equal to 64 with a subdivision of 32.  

 

Figure 7.22: ninth cascade output (a, b) 

Figure 7.23: tenth cascade output (a, b) 

(b) (a) 

(b) (a) 
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7.4 Y.O.L.O. re-training dataset 

For the re-training 400 images has been manually labelled with LabelImage, 320 images 

have been used for training and the remaining ones for testing.  

LabelImage is a graphical image annotation tool through which you can create a box (green 

box) around the object and assign it a label (red box).  

Then a text file (.txt) with the same name of the image (.jpg) can be saved. Each line of these 

text file is: 

- name of the class  

- the x (pixels) of the centre of rectangle drawn, divided by the width of the image 

(1280 pixels) 

- the y (pixels) of the centre of rectangle drawn, divided by the height of the image 

(720 pixels) 

- the width (pixels) of the rectangle drawn, divided by the width of the image 

- the height (pixels) of the rectangle drawn, divided by the width of the image 

The re-training has lasted 13 hours for 5000 epochs.  

Figure 7.24: example of labelling using LabelImage 
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From Figure 7.25, it is evident that Y.O.L.O. predictions enclose better the two fire 

extinguisher models. In Figure 2.25a is shown the extinguisher model, used in the training, 

in non-optimal light condition, while in Figure 2.25b there are both extinguisher models in 

good light condition. The closest extinguisher is the model used in training images, the 

farthest model is the similar one, also recognized by the Haar cascade (§7.2.5). 

Moreover, the predictions made by Y.O.L.O. do not give rise to all the false detections given 

by the Haar Cascade.  

 

Figure 7.25: Y.O.L.O. re-training predictions (a, b) 

(a) 

(b) 
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8. Development of the tools used 

As previously mentioned, the purpose of the thesis is to get an Object Detection algorithm 

able to find the extinguisher in images or videos. To achieve the goal, a model was first 

chosen and after the training dataset was created. The training dataset can be composed of 

images (.jpg) of any type: grayscale, RGB, RGN, high or low resolution, with or without 

distortion, etc. Once the dataset is obtained, the training of the chosen model can be done. 

After the training, you can choose whether to apply the algorithm on a video stream or on a 

set of images. If you choose the video, you can optionally apply a detection and matching of 

feature among frames, otherwise you have to create a testing dataset of images that can have 

the same or different characteristics than those of the training dataset.  

 

Model 

Training 
dataset 

Training 

(optional) 
Detection and 
matching of 

features  

(optional) 
Calibration 

Testing 
dataset 

mAP 
evaluation 

Prediction 
video 

images 

- Haar Cascade 

- Y.O.L.O. 

 
- §7.2  

- §7.4 

- §7.1 

- §7.3 

- §9.1 
 

- §9.2 

- §9.3 

Detection 

Detection 

- §6.3 
 - §3.3 
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8.1 Haar Cascade training  

Firstly, the OpenCV library has been installed and some tools have been used to: resize the 

fire extinguisher photos, convert to grayscale both positive and negative samples, create the 

text files. Then three commands have been executed from the command line:  

i. opencv_createsamples to superimpose the photos of the extinguisher on the negative 

samples  

ii. opencv_createsamples to get the vector file 

iii. opencv_traincasacdes followed by the setting described in the previous chapter 

(§7.1) to start the training 

 
 
 
 
 
 
 
 

Take at least an image of the object 

Take enough negative samples 

opencv_createsamples command to create positive samples 

opencv_createsamples to create the vector file 

Create background file 

opencv_traincascades command  

cascade.xml  
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8.2 Haar Cascade testing  
 
The detection using the cascade.xml file is done by OpenCV function 

cv2.CascadeClassifier.detectMultiScale(). Chosen the input, image or frame of a video, it is 

firstly converted to grayscale and then given to the function named above. The function 

returns the predictions in a matrix whose rows contain the coordinates of the prediction 

boxes. Using the coordinates and others OpenCV tools the predictions can be drawn. 

 
 
 
 

Load the cascade.xml file (output of the Haar Cascade training) 

Convert the input to grayscale  

Get the predictions (rectangular coordinates) an the confidence score of each 

prediction via the cv2.CascadeClassifier.detectMultiScale() function 

Draw predictions on the input   

Input 

- Start the PC camera 

- Start recording or shooting in 

continuous with the Raspberry Pi 

camera 

- Load a video 

- Load a set of images 

Save the output 
- Video stream 

- Set of images 
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8.3 mAP evaluation on Haar Cascade predictions 

A set of images has been created with each sensor. Then each image has been manually 

labelled and the ground truth files obtained. Subsequently on these images, the detection was 

made, and the prediction files were obtained. Then choose a threshold for the IoU parameter, 

the prediction files have been compared with the ground truth ones, to estimate the 

performance. 

 

Input 

Ground-truth 
coordinates 

Prediction 
coordinates 

For each image 

yes no 
IoU > Th? 

- Images (jpg) 

- Ground-truth files (txt) 

- Prediction files (txt) 

- IoU threshold (Th) 

TP++ 

- mAP (%) 

- number of TP and FP prediction 

- Precision-Recall curve 

- Folder with all the images with ground-truth and prediction boxes on them 

FP++ 

Last Image? Last image? 
no no yes yes 

Output 
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8.4 Y.O.L.O. re-training  

Firstly, Darknet and all the necessary packages has been installed. The re-training must be 

done on a machine that has a GPU with CC greater than or equal to 3.0 

[https://en.wikipedia.org/wiki/CUDA#GPUs_supported]. 

Then the images chosen for the training have to be manually labelled and then divided into 

training and testing sets. After that, the parameter of the pre-trained network have been 

changed, the pre-trained weights file of YOLOv3 downloaded and via the ./darknet train 

command the training phase has been started. 

 
 
 
 
 
 
 
 

Take enough images of the object (at least 400) 

Divide the images into train and test subsets (train.txt and test.txt) 

Change the network parameters 

Manually label each image and get the text file 

Download pre-trained weights for the convolutional layers  

Train the network (./ darknet train …) 

New weights file to test the network 
already trained  

https://en.wikipedia.org/wiki/CUDA#GPUs_supported
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8.5 Y.O.L.O. testing and mAP evaluation 

Taken a set of images they have to be manually labelled in order to get the text files. 

Then both images and text files are given as testing dataset to the re-trained network. 

After that, the pre-trained network with its new weights file needs to be loaded via ./darknet 

map command. As results it returns the mAP evaluated on the testing dataset.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Create a test.txt file with the path to each image 

Load the trained network with its weights file (./darknet map …) 

Set the mAP threshold (0,5 by default) 

Get the results 

Input - Set of images 

- mAP 

- Animation with the prediction if 

compiled with OpenCV 

Give the network the test.txt file 
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8.6 Calibration of the sensors 

A set of chessboard photos has been created with each sensor (§6.1). Then using OpenCV 

library tools each image is converted to grayscale and the chessboard pattern is searched. If 

the pattern is found, the images can be either accepted or discarded at choice. At the end 

when all images have been considered the distortion parameters of the camera and the mean 

reprojection error can be estimated.  

 
 
 

Set chessboard parameters 

Take images 

For each image 

Transform to grey scale 

Chessboard 
pattern? 

yes no Discard 
image 

Save 
image  

Last Image? Last image? 
no yes yes 

Output 
no 

- Rows’ number 

- Columns’ number 

- Size of the square (mm) 

- IoU threshold (Th) 

- Distortion vector 

- Camera matrix 

- Mean reprojection error  
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8.7 Feature detection and matching on video stream  

This implementation has been done to evaluate the detection only on the homography to 

speed up the prediction on video stream.  

Using the OpenCV library, the video stream has been analysed frame by frame. 

On each frame, using SIFT and SURF, the features have been detected. Then the features, 

of the current frame and the previous one, have been matched. Afterwards, the RANSAC 

algorithm has been used to find the homography.  

 
 
 
 
 
 
 
 
 

Take two consecutive frames (i-1, i) 

Convert the input to 
grayscale  

Detect features (SIFT or SIRF) on both frames 

Match the features 

Input 
- Start the PC camera 
- Load a video 

 

Find homography 
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9. Tests and Results 

In the previous chapters the purpose of the thesis, the tools used, and the procedure followed 

were described. Now the results obtained will be presented and analyzed in the following 

paragraphs. 

 
9.1 Datasets for the mAP evaluation  

The mAP has been evaluated on four different testing datasets, one for each sensor in order 

to understand in such conditions the recognition algorithm works better or worse. 

In Table 9.1 the number of images present in each dataset. 

 
 
 
 
 
 

In order to get the best camera performance some parameters need to be configured. The 

parameters to which particular attention has been paid are the ISO and the shutter speed, 

because they must be set according to the lighting conditions.  

ISO stands for  International Organization of Standardization. It measures the level of 

sensitivity of the camera to available light. A lower number represents lower sensitivity to 

available light, while a higher number means more sensitivity. High ISO is used in low light 

condition while a small value of ISO is used with good illumination. Examples of ISO values 

are: 100, 200, 400, 800 and 1600. 

Shutter Speed influences the length of time a camera shutter is open to expose light into the 

camera sensor. Slow shutter speed values allow more light into the camera sensor and are 

used for low-light and night photography, while fast shutter speeds help to freeze motion. 

Shutter speed values are characteristic of each camera. 

 

 

Sensor Num of image 

Smartphone 80 

Official Pi camera 79 

NV camera 80 

MAPIR  65 

Table 9.1: mAP datasets 

https://www.iso.org/home.html
https://photographylife.com/what-is-shutter-speed-in-photography
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In Table 9.2 the settings used to record the video stream from which frames have been saved 

to create the testing datasets. 

 

9.2 Haar Cascade Results 

In Haar Cascade trainings, mAP has been evaluated only on the following cases: 8, 9 and 10 

of Table 7.1. These cases have been chosen because they are the ones that have the best 

results as shown by Figures 7.15, 7.16 and 7.17 (§7.2). They are characterized by different 

values of maximum False Alarm Rate that are respectively: 0,2, 0,3 and 0,4 (Table 7.1). 

Each training generates a casade.xml file (§8.2 and §8.3) that is used to make predictions 

and to get the following values: 

- the confidence 

- the coordinate in pixels of the top-left corner 

- the width and height in pixels of the box   

The performances were evaluated on the dataset of the images with and without distortions.  

Moreover, a filter, denominated “overlapping filter”, that discards the box with the lowest 

confidence value in case two detections overlap more than 30%, has been applied to see if it 

is possible to increase the accuracy of the algorithm. 

For simplicity all the results will refer to those cases: 

A. images before calibration 

B. images before calibration, with the overlapping filter 

C. images after calibration 

D. images after calibration, with the overlapping filter 

                                                 
** if shutter speed is set to 0 (auto), then you can read the actual shutter speed being used from this attribute. 

The value is returned as an integer representing a number of microseconds. 

Sensor Resolution 
[pixel] fps ISO Shutter 

speed 
Smartphone 1280x720 30 / / 

Official Pi camera 720x576 20 100 0 (default) ** 

NV Camera 720x576 20 1600 33120 µs ** 

MAPIR Survey3 1920x1080 60 1600 1/30 s 

Table 9.2: sensors settings 

https://picamera.readthedocs.io/en/release-1.10/api_camera.html#picamera.camera.PiCamera.shutter_speed


Chapter 9 | Tests and Results 
 

107 
 

In the state of art, the most used IoU threshold is 0,5, but the mAPs evaluated with thresholds 

not lower than 0,3 are acceptable. In general, the lower the IoU threshold used, the higher 

the mAP and the higher the number of TP predictions.  

In this thesis the IoU threshold used are: 

- 0,3; 0,4 and 0,5 for the Haar Cascade 

- 0,5 and 0,75 for Y.O.L.O. 

On all the following cases the variation, on the various trainings and IoU thresholds, in 

percentage of the mAP and number of FP have been evaluated considering different 

combination: 

- To see the effect of the filter, the comparisons are: 

➢ A vs. B 

where we mean the computation of ∆𝑚𝐴𝑃[%] =
𝑚𝐴𝑃𝐵 − 𝑚𝐴𝑃𝐴

𝑚𝐴𝑃𝐴
∗ 100 

➢ C vs. D 

- To see the effect of the calibration, the comparisons are: 

➢ A vs. C  

➢ B vs. D 

If a variation is greater than zero it means that the quantity (mAP, FP) increases, while if the 

variation is lower than 0, the quantity decreases. Therefore, for example, the overlapping 

filter is expected to lead to a decrease in the number of detections classified as FP. 

All the following numerical values of the various cases are included in appropriate tables in 

Appendix A:  

- the number of ground-truth boxes present in the dataset 

- the different thresholds used for the IoU  

- the mAP in percentage  

- the number of True Positive boxes found (TP) 

- the number of False Positive boxes found (FP) 
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9.2.1 Smartphone dataset 

Considering the set of images before calibration, the overlapping filter has been applied to 

remove some FP detections. As the IoU threshold decreases the variations are negative and 

grow in absolute value, this means that both the number of FP and the mAP. 

Considering the set of images without distortion, the training number 8 shows a different 

behaviour, the mAP variations are positive, while the FP variations are negative, this means 

that the overlapping filter improves the accuracy of the algorithm and removes some false 

detections. 

0,5 0,4 0,3

10-mAP -5,98% -8,60% -8,38%

10-FP -14,61% -15,00% -15,19%

9-mAP 2,56% 10,36% 10,36%

9-FP -20,69% -34,78% -34,78%

8-mAP -1,94% 0,75% 2,67%

8-FP -9,30% -12,90% -18,52%
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0,5 0,4 0,3

10-mAP -7,82% -19,80% -19,24%

10-FP -15,84% -13,48% -13,41%

9-mAP -3,74% -3,82% 0,71%

9-FP -10,20% -14,29% -18,52%

8-mAP -8,29% -2,82% -1,84%

8-FP -7,84% -15,15% -21,74%
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Comparing the mAP variation between images with and without distortion, the variations 

are mostly positive but not very large, so no major changes are seen. 

Except for the 0,5 IoU case in which there are large positive variations for trainings number 

9 and 8, this implies that the removal of distortions from the images has greatly improved 

the performance of the recognition algorithm. 

The same considerations done before are true also when the filter is used on images with and 

without distortion. Moreover, with respect to the previous histogram, a clear improvement 

can be noted in the case of IoU ≥ 0,4. 

 

0,5 0,4 0,3

10-mAP 12,02% 1,99% -13,49%

9-mAP 129,55% -1,32% -5,41%

8-mAP 115,91% 23,10% 1,64%
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10-mAP 14,26% 16,23% -1,85%
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-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

V
A

R
IA

TI
O

N
 [

%
]

B vs. D

IoU



Chapter 9 | Tests and Results 
 

110 
 

9.2.2 Official Pi camera dataset 

Considering the set of images before calibration, the overlapping filter has been. As the IoU 

thresholds decreases, the mAP variations are positive and increases, while the FP variation 

are negative and decreases. This means that the overlapping filter has a good impact on the 

predictions. 

On the set of images without distortion, the overlapping filter leads to a greater improvement 

with respect to the case of images before calibration for the training number 9, while for the 

other trainings the variations are very similar. 

0,5 0,4 0,3

10-mAP 2,62% 1,61% 1,61%

10-FP -24,27% -24,51% -24,51%

9-mAP 29,26% 29,26% 29,26%

9-FP -34,72% -34,72% -34,72%

8-mAP 4,89% 4,45% 3,26%

8-FP -25,00% -33,33% -50,00%
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10-FP -26,85% -27,36% -28,43%

9-mAP 35,24% 24,32% 24,68%
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8-mAP 3,00% 3,20% 2,95%

8-FP -15,38% -25,00% -28,57%
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Comparing the variations of the mAP between the set of images with and without distortion, 

the variations are mostly negative, so the removal of distortions from the images makes the 

recognition of the extinguisher more difficult. Except for training number 9 and IoU > 0,3, 

in which calibration improves the detection ability of the algorithm, since the variation is big 

and positive. 

The same considerations done before are true also when the filter is used on images with and 

without distortion, even if, the variation of mAP of training number 9 and IoU ≥ 0,3 has been 

reduced a bit. This means that in this case it is better to apply only the overlapping filter and 

not also the calibration. 

0,5 0,4 0,3

10-mAP -42,53% -34,82% -19,85%

9-mAP -61,11% -4,07% 75,56%

8-mAP -29,63% -5,90% -16,55%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

V
A

R
IA

TI
O

N
 [

%
]

A vs. C

IoU

0,5 0,4 0,3

10-mAP -34,93% -26,01% -5,24%

9-mAP -59,31% -7,74% 69,34%

8-mAP -30,90% -7,03% -16,80%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

V
A

R
IA

TI
O

N
 [

%
]

B vs. D

IoU



Chapter 9 | Tests and Results 
 

112 
 

9.2.3 Night Vision camera dataset 

Considering the set of images before calibration, the overlapping filter has been. As the IoU 

thresholds changes, the mAP and FP variations, of training number 9, are null. This means 

that the overlapping filter has not impact on both mAP and FP. Considering the other 

trainings, the FP variations are negative and big in absolute value, so the filter has removed 

a lot of false detection without touching the predictions classified as TP. 

Considering the set of images without distortion, the effect of the overlapping filter is more 

or less the same as before, the difference is that the variations relative to training number 9 

are no more zero. This means that removing distortion makes the algorithm more sensible 

to the overlapping filter.  
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Comparing the variations of the mAP between the set of images with and without 

distortion, the variations are mostly negative, except for the training number 8, in which 

the calibration produces a greater improvement, since the mAP variation is big and 

positive.  

The same considerations done before are true also when the overlapping filter is used on 

images with and without distortion. This time the variations relative to training number 8 

are bigger than the previous, so also the use of the filter improved the detection ability of 

the algorithm. 
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9.2.4 MAPIR dataset 

Considering the set of images before calibration, the overlapping filter has been applied. The 

training number 8 shows no variation. Instead, training number 10 shows positive variations 

for the mAP and negative variations for the number of FP. Training number 9 has negative 

variations for both mAP and FP. 

Considering the set of images without distortion, the effect of the filter is the same. 

0,5 0,4 0,3

10-mAP 5,32% 3,62% 3,69%

10-FP -26,15% -29,36% -29,63%

9-mAP -17,21% -10,67% -10,48%

9-FP -5,41% -6,45% -6,90%

8-mAP 0,00% 0,00% 0,00%

8-FP 0,00% 0,00% 0,00%
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Comparing the variations of the mAP between the set of images with and without distortion, 

the variations are positive for trainings number 10 and 9, then for them calibration helps the 

detection. 

The same considerations done before are true also when the overlapping filter is used on 

images with and without distortion. In particular, for training number 10 the variations are 

bigger than the previous histogram, this means that the overlapping filter has a greater impact 

in this case.  

 
9.2.5 Considerations 

As you can see from the previous histograms it is not possible to say absolutely that the 

calibration or the use of overlapping filter will improve the performance of the algorithm, 

but the effects vary from case to case.  
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9.3 Y.O.L.O. re-training results 

As shown in the flowchart 8.7, the mAP relative to a set of images is obtained through a 

command, then is not possible applying some filter as Haar Cascade procedure.  

Only the comparison between images with and without distortion (A vs. C) has been done. 

 

9.3.1 Smartphone dataset 

Comparing the variations of the mAP between the set of images with and without distortion, 

the variations relative to IoU threshold equalt to 0,5 is very small, while the others is big and 

negative. This means that calibration has reduce a lot the performance of the trained network. 

In fact, comparing the numerical value present in Table 9.3 and Table 9.4, relative to the 

same IoU threshold: 

- the mAP values decrease 

- the TP values decrease 

- the FP values increase 

Case A 

 

 

 

 
Case C 

 
 
 
 
 

In Table 9.5 instead, there are the variations of the mAP values (A vs. C) 

 
 
 

 

Ground truth IoU mAP [%] TP FP 

91 
0,5 89,93 86 3 

0,75 37,53 51 38 

Ground truth IoU mAP [%] TP FP 

91 
0,5 88,67 82 9 

0,75 7,45 22 69 

IoU ∆mAP [%] 

0,5 -1,40 

0,75 -80,15 

Table 9.3: Y.O.L.O. mAP (Smartphone, A) 

Table 9.4: Y.O.L.O. mAP (Smartphone, C) 

Table 9.5: Y.O.L.O. mAP variations (Smartphone) 
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9.3.2 Official Pi camera dataset 

Comparing the variations of the mAP between the set of images with and without distortion, 

the variations relative to IoU threshold equal to 0,5 is big and negative, while the other one 

goes down to -100%, because the mAP of IoU ≥ 0,75 of case C is 0%. This means that the 

network never recognize the extinguisher in the images of the dataset, again as before 

calibration has reduce the performance of the trained network. 

Comparing the numerical value present in Table 9.6 and Table 9.7, relative to the same IoU 

threshold: 

- the mAP values decrease 

- the TP values decrease 

- the FP values increase 

Case A 

 
 
 
 
 

 
Case C 

 
 
 
 
 
 

 
In Table 9.5 instead, there are the variations of the mAP values (A vs. C) 

 
 
 

Ground truth IoU th mAP [%] TP FP 

79 
0,5 61,88 13 1 

0,75 14,11 6 8 

Ground truth IoU th mAP [%] TP FP 

79 
0,5 6,89 4 16 

0,75 0 0 0 

IoU ∆mAP [%] 

0,5 -88,87 

0,75 -100,00 

Table 9.7: Y.O.L.O. mAP (Official Pi camera, C) 

Table 9.6: Y.O.L.O. mAP (Official Pi camera, A) 

Table 9.8: Y.O.L.O. mAP variations (Official Pi camera) 
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9.4 Y.O.L.O. vs. OpenCV 

As already said in the Abstract, comparing Y.O.L.O. and OpenCV it is evident that the 

previous one is more accurate and gives rise to lower false detection. Indeed, the threshold 

use for the IoU with Y.O.L.O. are higher. However, Y.O.L.O. is not able to find the fire 

extinguisher on the images taken with the MAPIR and the Night Vision camera. In addition, 

from the tables and above is evident that on images like those of training Y.O.L.O. has 

excellent performance, but any variation drastically reduces its performance.  

In order to better understand the limits of the network trained with Y.O.L.O., we have 

converted to grayscale the images of the smartphone dataset, on which Y.O.L.O. for a  

IoU ≥ 0,5 has a mAP of about 90%. The Y.O.L.O. mAP on grayscale images with a  

IoU ≥ 0,5 was around 9%, this means that to get the best performance from Y.O.L.O. re-

training, it is necessary to use images very similar to those of the training, so for example, if 

you want to use Y.O.L.O. on calibrated images of any sensor it is necessary to create the 

training dataset using calibrated images taken with the same sensor. 

Considering the results obtained, it was hypothesized that if grayscale images were used 

during training, Y.O.L.O. could be more adaptable to different sensors, because a sensor 

such as the Night Vision camera used works well both in good light and darkness conditions. 

Then images taken in both situations have a good contrast and so their grayscale version will 

be very similar. 

 
9.5 Descriptors and Features matching results 

As mentioned in Chapter 3, how the combination of SIFT or SURF with RANSAC 

influences the speed of the recognition algorithm on a video stream, has been analyzed.  

This combination has been tested only with the Haar Cascade training, while Y.O.L.O. needs 

to load the trained neural network and so it is not possible to analyze the single frame before 

passing it to the network.  

The characteristics of the videos used are in Table 9.2 and 500 frames of each video were 

analyzed. On each frame, the following parameters were measured: 

(a) time interval to recognize features (s); 

(b) time interval to match features of two consecutive frames (s); 

(c) time interval to find homography (s); 

(d) number of features; 
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(e) number of matching features; 

(f) average fps 

Below, for each sensor used are shown the curves of the time intervals and of the number of 

features over the frame. In order to make comparison all x and y axis have the same scale 

and to make the reading of the results easier a table with minimum, maximum and average 

values of each variable has been inserted. 

 

9.5.1 Smartphone video stream 

Comparing the time required to find the features (a), SURF is faster, but comparing the 

average fps at the end, SURF is however faster, but the speed difference is significantly 

reduced. In addition, SURF finds more features and more matching. 

However, the resulting average fps is lower using the descriptors than only detection (last 

row of Table 9.9), this means that for this application they take longer to process than they 

should have saved. 

From the following graphs it can be noted that: 

- step (a), blue line, that is the one that measures the time required to find the features 

is the highest, using both SIFT (Figure 9.1 and 9.2) and SURF (Figure 9.3 and 9.4); 

- before frame number 150 there is a decrease in times and number of features, both 

with SIFT and SURF, the decrease with SURF is more marked. 

                              SIFT                                        SURF Only detection 

 Max Min Avg Max Min Avg Avg 

(a)  0,2058 0,1459 0,1601 0,1809 0,0098 0,0320  

(b) 0,0444 0,0024 0,0173 0,0867 0,0098 0,0320  

(c) 0,0164 0,0004 0,0012 0,0357 0,0010 0,0026  

(d) 1845 82 706 3696 506 1592  

(e) 693 17 24 1415 97 549  

(f)   6   7 19 

Table 9.9: descriptors results on the Smartphone 



Chapter 9 | Tests and Results 
 

120 
 

This descent could be due to the fact that the extinguisher is no longer present in the video 

for some frames and then returns to the foreground.  

SIFT 

 

 
 
 
 
 
 

Figure 9.1: time intervals required by SIFT (Smartphone) 

Figure 9.2: features found by SIFT (Smartphone) 

(a) (b) (c) 

(d) (e) 



Chapter 9 | Tests and Results 
 

121 
 

 
SURF 

 
 
 
 
 
 

Figure 9.3: time intervals required by SURF (Smartphones) 

Figure 9.4: features found by SURF (Smartphone) 

(b) (a) (c) 

(d) (e) 
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9.5.2 Official Pi camera video stream 

As noted in the previous case SURF is faster in finding features than SIFT, but comparing 

the average fps, they are the same, so the speed difference is not significantly at the end. In 

this case the number of features found in the frame is lower than the number of features 

found on the frame of the smartphone video. 

 
SIFT 

 
 
 
 
 

                              SIFT                                         SURF Only detection 

 Max Min Avg Max Min Avg Avg 

(a) 0,0936 0,0700 0,0744 0,1424 0,0596 0,0745  

(b) 0,0092 0,0032 0,0061 0,0394 0,0140 0,0216  

(c) 0,0010 0,0005 0,0006 0,0251 0,0009 0,0014  

(d) 419 143 267 1567 710 1134  

(e) 219 44 118 656 156 409  

(f)   6   6 37 

Figure 9.5: time intervals required by SIFT (Official Pi camera) 

Table 9.10: descriptors results on the Official Pi camera 

(a) (b) (c) 
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SURF 

Figure 9.6: features found by SIFT (Official Pi camera) 

Figure 9.7: time intervals required by SURF (Official Pi camera) 

Figure 9.8: features found by SURF (Official pi camera) 

(d) (e) 

(a) (b) (c) 

(e) (d) 
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9.5.3 Night Vision camera video stream 

Again, the same consideration done for time intervals in the Smartphone and Official Pi 

camera cases are true also Night Vision camera.  

In Table 9.11 the minimum of features matching is zero, because between some frames less 

than 10 matches have been found, so the homography cannot be done and the entire frame 

is passed to the detection algorithm. The average fps is higher than the one of the Official Pi 

cameras and this could be since less features are found. In the graphs of Figures: 9.9, 9.10, 

9.11 and 9.12, it is not visible due to the scale used for the y-axis, but also in this case all the 

variables oscillated a lot. 

 
SIFT 

                               SIFT                                          SURF Only detection 

 Max Min Avg Max Min Avg Avg 

(a) 0,0884 0,0666 0,0695 0,0686 0,0194 0,0245  

(b) 0,0026 0,0001 0,0007 0,0066 0,0003 0,0017  

(c) 0,0021 0,0003 0,0003 0,0039 0,0003 0,0005  

(d) 100 2 25 371 17 83  

(e) 68 0 13 137 0 50  

(f)   14   38 52 

Figure 9.9: time intervals required by SIFT (NV camera) 

Table 9.11: descriptors results on the Night Vision camera 

(a) (b) (c) 
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SURF 
Figure 9.10: features found by SIFT (NV camera) 

Figure 9.11: time intervals required by SURF (NV camera) 

Figure 9.12: feature found by SURF (NV camera) 

(a) (c) (b) 

(d) (e) 

(e) (d) 



Chapter 9 | Tests and Results 
 

126 
 

9.5.4 MAPIR video stream 

The consideration on the time intervals are again the same. On the MAPIR video the average 

fps, in every case, is the lowest and this is probably due to the high resolution used 

In Figure 9.15, related to SURF cases a, b and c, RANSAC time interval (green) has some 

peaks, this means that it has difficulty to find homography, but the cause is unknown since 

in the video are not present any changes of illumination or others. 

 
SIFT 

 

                              SIFT                                         SURF Only detection 

 Max Min Avg Max Min Avg Avg 

(a) 0,4380 0,3395 0,3470 0,1784 0,1072 0,1487  

(b) 0,0046 0,0015 0,0025 0,0344 0,0042 0,0203  

(c) 0,0019 0,0004 0,0006 0,2020 0,0006 0,0072  

(d) 221 60 100 2131 204 1251  

(e) 59 13 28 994 47 238  

(f)   3   6 9 

Figure 9.13: time intervals required by SIFT (MAPIR Survey3) 

Table 9.12: descriptors results on the MAPIR camera 

(c) (b) (a) 
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SURF 

 
 

Figure 9.15: time intervals required by SURF (MAPIR Survey3) 

Figure 9.14: features found by SIFT (MAPIR Survey3) 

(e) (d) 

(a) (c) (b) 
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9.5.5 Considerations 

From the results obtained the calculation of features, their matching and the search for 

homography require more time than we thought they would have earned us, so it is not 

advisable to use this technique. Moreover, the higher the resolution, the slower the algorithm 

is, so if you don’t need an HD or full HD resolution, it is better to use a lower one. 

 

9.6 Detection using Raspberry Pi 

As already said, this thesis aims to obtain an Object Detection algorithm which is able to 

identify the extinguisher, using low cost sensors and platforms. Therefore, in Chapter 5 the 

sensors were described and in §8.2 there is the flowchart related to the testing of the Haar 

Cascade training. The procedure described in that flowchart can be safely used with the 

Raspberry Pi.  

To obtain optimal performance as input, we have used the mode “take photos continuously” 

of the Raspberry Pi camera, then on each photo the detection is applied and after thst each 

photo is saved as a video frame, which is the chosen output format. More in details, the 

detection made with the Raspberry Pi works as follows: 

- the connected camera takes photos continuously 

- every 700ms a photo is shot  

Figure 9.16: features found by SURF (MAPIR Survey3) 

(e) (d) 
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- on every photo taken the detection is done 

- the photo with the prediction boxes is saved as a video frame 

- the output of this procedure is a video stream 

700ms has been used because if the camera is used at maximum resolution between one shot 

and the other one without any processing 667ms are required. However, with the resolution 

used 720x576, 500ms are enough. To correctly choose the time interval, some tests were 

made in which the resolution was set, and the time required by the camera between two shots 

was measured, the higher the resolution, the longer the required time. 

The predictions on the Raspberry Pi are done only using the Haar Cascade trainings, because 

Y.O.L.O.  requires more pervasive hardware components. 

The Raspberry Pi is a single-board computer that has powerful hardware compared to its 

small size (85.60 mm x 56 mm). In addition, its low cost (around 35€ the Raspberry Pi 3 

Model B+) has made it one of the most used hardware for simple projects. 

Unfortunately, even if it is extremely powerful due to its size, it is not enough for the 

computation needed using a Neural Network. 

 

Figure 9.17: night vision camera connected to Raspberry Pi  
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Conclusion  

At this point before drawing the conclusions on the work done, it seems better making a 

short reference to the objectives of this thesis and tools used to achieve them. 

The aims were: studying the performance of low cost systems in the Object detection field, 

comparing the performance of two different Object Detection model, understanding how the 

training images and settings influence the performances, if the calibration improve the 

performance. All these questions were analyzed in the case of indoor navigation of an 

unknown environment in emergency situation and the object to be identified is the fire 

extinguisher.  

The low cost sensors chosen functioned as desired. Through the PiCamera library the two 

cameras designed for the Raspberry Pi, were managed in a very simple way, both for setting 

all the desired parameters (resolution, fps, ISO and shutter speed) and for choosing the 

operating modes, such as video, single shot and continuous shots. MAPIR has also allowed 

us to achieve the goal, as its NearIR component peaks at the same wavelength as the Night 

Vision camera illuminators, it was possible to see in low light conditions. 

The models chosen and the trainings done have been shown that they influence a lot the 

results. Each model has its pros and cons: Haar Cascade is more versatile with different 

sensors, but it reaches lower performances (smaller mAP, higher number of false detections). 

Haar Cascade is a rather old and traditional technique that has shown excellent potential 

(§9.2), as regards the use of different sensors as it works on grayscale images, as regard the 

comparisons between images with and without distortion, in which has demonstrated to have 

sometimes better performances on the calibrated images (smartphone and MAPIR cameras) 

and as regarding the low cost platform implementation with reduced hardware performance, 

like the Raspberry Pi.  

The Haar Cascade training is influenced by: the AcceptanceRatio parameter that has to be 

no lower than 10-5 in the last stage to ensure the model does not over train on the training 

data, the number of positive and negatives samples used in the first stage that must be big 

enough but lower than all available because at each new stage the training will add some 

images and using as many negatives as the half of the number of positive samples is a good 

practice, the maximum False Alarm Rate that if is too big as 0,5 the resulting cascade finds 

fire extinguisher everywhere and does not enclose well the object, the characteristics of the 

training images that if they present transparency the resulting cascade does not identify the 
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object well and this also leads to many false detection and prediction boxes that do not fit 

the extinguisher well and finally the orientation sets for the training images that if it is null 

or too low it leads to a cascade that identifies the extinguisher only in a few cases since the 

dataset without rotation is not quite varied in terms of points of view. 

The best performance (higher mAP) gathered with the Haar Cascade training has been 

reached in the MAPIR dataset and the datasets that have undergone an improvement and a 

reduction in the number of false detection (False Positive) thanks to the “overlapping filter” 

are those of the Official Pi camera and the Night Vision camera. For the other two sensors 

the filter has reduced the number of false detection but also the mAP, which means that the 

filter has discarded some detection that had been classified, in the computation of the mAP, 

as True Positive. 

Y.O.L.O., instead, showed to achieve excellent results, but these results depend very much 

on the images used in the training dataset. In fact, on the images of the smartphone and the 

Official Pi camera has higher performance than the Haar Cascade, but on the datasets created 

with the MAPIR and the Night Vision cameras it is no longer able to recognize the 

extinguisher (§9.3). Also, in the comparisons between images with and without distortion it 

showed a dramatic decrease in performance. The best performance from Y.O.L.O. re-

trainingwere obtained on the smartphone dataset, since even the training images were taken 

with the smartphone, therefore to get the most of Y.O.L.O.'s potential it is necessary to use 

images very similar to those of the training, so for example, if you want to use Y.O.L.O. on 

calibrated images of any sensor it is necessary to create the training dataset using calibrated 

images taken with the same sensor. Considering the results obtained, it was hypothesized 

that if grayscale images were used during training, Y.O.L.O. could be more adaptable to 

different sensors, because a sensor such as the Night Vision camera used works well both in 

good light and darkness conditions. Then images taken in both situations have a good 

contrast and so their grayscale version will be very similar. 

In addition, Y.O.L.O. uses a CNN for learning and this makes it useless on a platform like 

Raspberry Pi that has not enough pervasive hardware components for the computation 

needed by a Neural Network. 

One aspect of this work that did not produced the desired results was the use of detection 

and matching of features between the frames of a video stream. Independently of the sensor, 

this experiment has led to a remarkable slowing in the speed of frame processing, in fact the 
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fps resulting from the single detection are always greater than the fps resulting from the 

combination of descriptor and feature matching with the detection (§9.5). 

Now, it is important to remember that the application field is the indoor navigation in 

unknown environments and therefore it was considered appropriate to find an object 

recognition algorithm, so that a UGV (Unmanned Ground Vehicle) can return not only a 

map of the navigated environment but also the location of known objects . 

Another important aspect of this work is the choice of using low cost sensors and platforms, 

since with expensive tools and equipment there are already several platforms and datasets 

useful for autonomous driving, as the Benchmark KITTI dataset. 

Furthermore, given that the use of descriptors and feature matching did not produce the 

desired result, that is making the detection faster. This purpose could be achieved differently 

thanks to the use of hardware accelerators, nowadays much used. 

Comparing the objectives placed at the beginning and those achieved, we can be satisfied as 

the results obtained are good and promising, especially if we also consider the fact that ICT 

technologies are in continuous development. We have got a recognition algorithm able to 

work on a Raspberry Pi at a speed of 700 ms per image, which makes it possible to 

implement a real-time application with the ICT technology improvements. 

Moreover, it is important to say that even if it has not been possible to test Y.O.L.O. on 

Raspberry Pi, there are some devices like "Intel Movidius Neural Compute Stick" which is 

defined as a small USB fanless deep learning unit designed to learn Artificial Intelligence 

programming. This product has been added under the VPU (Vision Processing Unit) class, 

similar to the classic GPU but for built-in purposes, and it supports the computation needed 

from a CNN so that, it can be used for many deep learning applications. Movidius has low 

energy consumption, which makes it perfectly applicable to embedded systems. The VPU 

includes 4 Gbit of LPDDR3 DRAM, imaging and vision accelerators and a set of 12 VLIW 

vector processors called SHAVE processors, that are used to accelerate neural networks by 

running parts of neural networks in parallel. 

In conclusion, the study carried out has shown that ICT technologies can give a great 

contribution to the Smart Societies challenge of outdoor and indoor navigation in an 

unknown environment. In the near future, it is expected that the development of this sector 

will lead to the achievement of ever more performing results. 
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Appendix A 
 
A.1 Smartphone tables 

Case A 

 
 
 
 
 
 

 

 

 

 

 

Case B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Ground 
truth Training IoU mAP [%] TP FP 

91 

8 

0,5 11,94 19 51 

0,4 33,37 37 33 

0,3 44,54 47 23 

9 

0,5 13,64 28 49 

0,4 39,31 49 28 

0,3 41,01 50 27 

10 

0,5 24,8 44 101 

0,4 36,27 56 89 

0,3 43,44 63 82 

Ground 
truth Training IoU mAP [%] TP FP 

91 

8 

0,5 10,95 17 47 

0,4 32,43 36 28 

0,3 43.72 46 18 

9 

0,5 13,13 26 44 

0,4 37,81 46 24 

0,3 41,3 48 22 

10 

0,5 22,86 40 85 

0,4 29,09 48 77 

0,3 35,08 54 71 

Table A.1: Haar Cascade mAP (Smartphone, A) 

Table A.2: Haar Cascade mAP (Smartphone, B) 
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Case C 

 

 
 
 
 
 
 
 
 
 
 
 
 

Case D 

 
 
 
 
 
 
 
  

Ground 
truth Training IoU mAP [%] TP FP 

91 

8 

0,5 25,78 34 43 

0,4 41,08 46 31 

0,3 45,27 50 27 

9 

0,5 31,31 40 29 

0,4 38,79 46 23 

0,3 38,79 46 23 

10 

0,5 27,78 48 89 

0,4 36,99 57 80 

0,3 37,58 58 79 

Ground 
truth Training IoU mAP [%] TP FP 

91 

8 

0,5 26,12 44 76 

0,4 33,81 52 68 

0,3 34,43 53 67 

9 

0,5 32,11 38 23 

0,4 42,81 46 15 

0,3 42,81 46 15 

10 

0,5 22,86 40 85 

0,4 29,09 48 77 

0,3 35,08 54 71 

Table A.3: Haar Cascade mAP (Smartphone, C) 
 

Table A.4: Haar Cascade mAP (Smartphone, D) 
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A.2 Official Pi camera tables 

Case A 

 
 
 
 
 
 
 
 
 
 
 
 
 

Case B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Ground 
truth Training IoU mAP [%] TP FP 

79 

8 

0,5 20,86 22 8 

0,4 24,93 24 6 

0,3 30,03 26 4 

9 

0,5 2,7 12 72 

0,4 2,7 12 72 

0,3 2,7 12 72 

10 

0,5 12,58 27 103 

0,4 13,7 28 102 

0,3 13,7 28 102 

Ground 
truth Training IoU mAP [%] TP FP 

79 

8 

0,5 21,88 22 6 

0,4 26,04 24 4 

0,3 31,01 26 2 

9 

0,5 3,49 12 47 

0,4 3,49 12 47 

0,3 3,49 12 47 

10 

0,5 12,91 24 78 

0,4 13,92 25 77 

0,3 13,92 25 77 

Table A.5: Haar Cascade mAP (Official Pi camera, A) 

Table A.6: Haar Cascade mAP (Official Pi camera, B) 
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Case C 

 
 
 
 
 

 

 

 

 

 

 

Case D 

  

Ground 
truth Training IoU mAP [%] TP FP 

79 

8 

0,5 14,68 18 13 

0,4 23,46 23 8 

0,3 25,06 24 7 

9 

0,5 1,05 8 71 

0,4 2,59 11 68 

0,3 4,74 15 64 

10 

0,5 7,23 19 108 

0,4 8,93 21 106 

0,3 10,98 25 102 

Ground 
truth Training IoU mAP [%] TP FP 

79 

8 

0,5 15,12 18 11 

0,4 24,21 23 6 

0,3 25,8 24 5 

9 

0,5 1,42 8 49 

0,4 3,22 11 46 

0,3 5,91 15 42 

10 

0,5 8,4 19 79 

0,4 10,3 21 77 

0,3 13,19 25 73 

Table A.7: Haar Cascade mAP (Official Pi camera, C) 

Table A.8: Haar Cascade mAP (Official Pi camera, D) 
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A.3 Night Vision camera tables 

Case A 

 
 
 
 
 
 
 
 
 
 
 
 
 

Case B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Ground 
truth Training IoU mAP [%] TP FP 

80 

8 

0,5 1,67 2 5 

0,4 2,2 3 4 

0,3 6,25 5 2 

9 

0,5 9,44 9 12 

0,4 12,67 11 10 

0,3 12,67 11 10 

10 

0,5 6,29 8 25 

0,4 11,81 13 20 

0,3 18,66 18 15 

Ground 
truth Training IoU mAP [%] TP FP 

80 

8 

0,5 1,67 2 4 

0,4 1,67 2 4 

0,3 6,25 5 1 

9 

0,5 9,44 9 12 

0,4 12,67 11 10 

0,3 12,67 11 10 

10 

0,5 6,57 8 16 

0,4 12,38 13 11 

0,3 20,39 18 6 

Table A.9: Haar Cascade mAP (NV camera, A) 

Table A.10: Haar Cascade mAP (NV camera, B) 
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Case C 

 
 
 
 
 

 

 

 

 

 

 

Case D 

  

Ground 
truth Training IoU mAP [%] TP FP 

80 

8 

0,5 3,52 5 8 

0,4 3,52 5 8 

0,3 13,75 11 2 

9 

0,5 1,38 2 20 

0,4 3,28 5 17 

0,3 12,32 11 11 

10 

0,5 2,16 4 19 

0,4 7,12 8 15 

0,3 14,02 13 10 

Ground 
truth Training IoU mAP [%] TP FP 

80 

8 

0,5 3,52 5 7 

0,4 3,52 5 7 

0,3 13,75 11 1 

9 

0,5 1,42 2 16 

0,4 2,46 4 14 

0,3 12,71 11 7 

10 

0,5 1,67 3 18 

0,4 7,17 8 13 

0,3 14,44 13 8 

Table A.11: Haar Cascade mAP (NV camera, C) 

Table A.12: Haar Cascade mAP (NV camera, D) 
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A.4 MAPIR tables 

Case A 

 
 
 
 
 
 
 
 
 
 
 
 
 

Case B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Ground 
truth Training IoU mAP [%] TP FP 

65 

8 

0,5 1,64 4 28 

0,4 27,24 23 9 

0,3 43,85 30 2 

9 

0,5 11,68 26 74 

0,4 22,96 38 62 

0,3 27,19 42 58 

10 

0,5 29,34 36 130 

0,4 59,6 57 109 

0,3 61,71 58 108 

Ground 
truth Training IoU mAP [%] TP FP 

65 

8 

0,5 1,64 4 28 

0,4 27,24 23 9 

0,3 43,85 30 2 

9 

0,5 9,67 22 70 

0,4 20,51 34 58 

0,3 24,34 38 54 

10 

0,5 30,9 34 96 

0,4 61,76 53 77 

0,3 63,99 54 76 

Table A.13: Haar Cascade mAP (MAPIR, A) 

Table A.14: Haar Cascade mAP (MAPIR, B) 
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Case C 

 
 
 
 
 

 

 

 

 

 

 

Case D 

  

Ground 
truth Training IoU mAP [%] TP FP 

65 

8 

0,5 1,35 4 31 

0,4 24,62 23 12 

0,3 40,09 29 6 

9 

0,5 18,01 32 77 

0,4 31,86 45 64 

0,3 36,35 48 61 

10 

0,5 34,82 38 116 

0,4 64,95 58 96 

0,3 64,95 58 96 

Ground 
truth Training IoU mAP [%] TP FP 

65 

8 

0,5 1,35 4 31 

0,4 24,62 23 12 

0,3 40,09 29 6 

9 

0,5 14,39 32 77 

0,4 27,92 45 64 

0,3 32,2 48 61 

10 

0,5 37,77 37 89 

0,4 70,83 57 69 

0,3 70,83 57 69 

Table A.15: Haar Cascade mAP (MAPIR, C) 

Table A.16: Haar Cascade mAP (MAPIR, D) 
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