
POLITECNICO DI TORINO

Department of Electronics and Telecommunication (DET)

Master Degree Program in Engineering

Communication and Computer Networks

Master Degree Thesis

Internet Bandwidth Measurements
On FTTH Access Network

Supervisors

Prof. Marco Mellia

Prof. Maurizio M. Munafò

Candidate

Seyed Sina Vagheh Dashti

July 2019

Dedication

To my beloved Mom and Dad...

I

Acknowledgements

I express the deep sense of gratitude to Professor Marco Mellia, for giving me the
opportunity of performing my thesis under his supervision. I am very much
thankful, because of his excellent guidance and help throughout the thesis. Also,
without his persistent support and favor, this dissertation could not be started at
the company.

I submit my heartiest gratitude to other respected supervisor of this thesis,
Professor Maurizio M. Munafò for his kind support and exemplary advices to
successfully complete my thesis. His companionship and assistance led this
survey move forward.

I would like to thank my manager at the company, Andrea Fregosi that accepted me
to carry out my thesis in Fastweb. In addition, I was really fortunate that I had the
great help and support of Andrea Sannino, my supervisor in the corporation. Plus,
a thank to all the colleagues that they helped me during the time I was working in
Fastweb.

Finally, I must thank to my close friends. Without them, it was almost impossible
to tolerate tough moments, knotty circumstances and homesickness during these
years.

II

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Objective and layout of the thesis . 2

2 Background 4
2.1 FTTH Access Network . 4
2.2 PON . 4
2.3 GPON . 6

3 Ookla Speedtest 9
3.1 Ookla Speedtest Overview . 9
3.2 Test Component . 10

3.2.1 Ping/Jitter . 10
3.2.2 Download . 10
3.2.3 Upload . 10

3.3 One Measurement Sample . 10
3.4 Speedtest Server Requirements . 10

3.4.1 Network Requirements . 11
3.4.2 Server Requirements . 11
3.4.3 Supported Operating Systems for OoklaServer 11
3.4.4 Supported Web Servers . 12

4 Methodology 13
4.1 Dataset . 13

4.1.1 Dataset overview . 13
4.1.2 Dataset fields . 13

4.2 Tools . 16
4.2.1 Selenium . 16
4.2.2 Other tools . 17

5 Results 18
5.1 Data analysis of first data set . 18

5.1.1 A general view of core networks 19
5.2 Impact of CPE and distance . 20

5.2.1 Comparing Rtt based on different CPE and distance 23
5.2.2 Comparing download/upload based on Rtt and time 24

5.3 Impact of operating system and browser 25
5.3.1 Comparing download/upload/Rtt based on OS and browser . 26

5.4 Test automation . 29

III

5.4.1 Main goal . 29
5.4.2 Results assessment . 30

5.5 Packet tracing . 35
5.6 Analysis of traces . 36

5.6.1 Number of TCP connection 36
5.6.2 Connection management in HTTP/1.x 36

6 Conclusion 41

A Appendix 43
A.1 Architecture of Test Plant-GPON . 43
A.2 Example of user agent parser . 44
A.3 Example of test automation . 45
A.4 Tables of the existing samples . 46
A.5 Statistics related to CPE, Rtt and distance 47
A.6 Technicolor and DNF figures . 53
A.7 Askey residential gateway datasheet 54
A.8 Wireshark statistics . 55

IV

List of Figures

2.1 Architecture of the optical access network 5
2.2 Traffic directionality in PON . 6
2.3 GPON access network architecture general view 6
2.4 GPON FTTH access network architecture 7
2.5 Fastweb architecture proposal . 8

3.1 Speedtest Platforms . 9

4.1 A sample record . 13
4.2 Header of first set of data . 13

5.1 Data set sample . 18
5.2 Data set sample (continue 1) . 18
5.3 Data set sample (continue 2) . 18
5.4 Average of total samples of wifi connection 19
5.5 Average of total samples of wire connection 19
5.6 CDF Comparison of Download throughput for three CPE - Milan . . 21
5.7 CDF Comparison of Upload throughput for three CPE - Milan 21
5.8 CDF Comparison of RTT for three CPE - Milan 21
5.9 CDF Comparison of Download throughput for three CPE - Turin . . 22
5.10 CDF Comparison of Upload throughput for three CPE - Turin 22
5.11 CDF Comparison of RTT for three CPE - Turin 22
5.12 CDF Comparison of Rtt - Milan . 23
5.13 CDF Comparison of Rtt - Turin . 23
5.14 CDF Comparison of Rtt - Genova . 23
5.15 ASKEY download/upload comparison based on Rtt and time - A.M. 24
5.16 ASKEY download/upload comparison based on Rtt and time - P.M. . 24
5.17 Windows, Mac and Linux download emprical CDF 26
5.18 Windows, Mac and Linux upload emprical CDF 26
5.19 Windows, Mac and Linux Rtt emprical CDF 26
5.20 Milan CDF plots for less/greater than 100 Mbps - Windows - Download 27
5.21 Milan CDF plots for less/greater than 100 Mbps - Windows - Upload 27
5.22 Milan CDF plots for less/greater than 100 Mbps - MAC - Download . 27
5.23 Milan CDF plots for less/greater than 100 Mbps - MAC - Upload . . 27
5.24 Browser throughput comparison - Milan wireline - Download 28
5.25 Browser throughput comparison - Milan wireline - Upload 28
5.26 Average of test samples of wifi connection 29
5.27 Average of test samples of wire connection 29
5.28 Test samples CDF plots of Wire Connection - Milan - Windows . . . 30
5.29 Test samples CDF plots of Wire Connection - Rome - Windows . . . 30

V

5.30 Test samples CDF plots of Wire Connection - Milan - MAC OS . . . 31
5.31 Test samples CDF plots of Wire Connection - Rome - MAC OS . . . 31
5.32 Test samples CDF plots of Wifi Connection - Milan - Windows 31
5.33 Test samples CDF plots of Wifi Connection - Rome - Windows 31
5.34 Test samples CDF plots of Wifi Connection - Milan - MAC OS 32
5.35 Test samples CDF plots of Wifi Connection - Rome - MAC OS 32
5.36 Test samples CDF plots of Wire Connection - Milan - Windows . . . 33
5.37 Test samples CDF plots of Wire Connection - Rome - Windows . . . 33
5.38 Test samples CDF plots of Wire Connection - Milan - MAC OS . . . 33
5.39 Test samples CDF plots of Wire Connection - Rome - MAC OS . . . 33
5.40 Test samples CDF plots of Wifi Connection - Milan - Windows 34
5.41 Test samples CDF plots of Wifi Connection - Rome - Windows 34
5.42 Test samples CDF plots of Wifi Connection - Milan - MAC OS 34
5.43 Test samples CDF plots of Wifi Connection - Rome - MAC OS 34
5.44 Firefox network configuration . 36
5.45 Three models of HTTP connection management 37
5.46 TCP window size . 39

A.1 Fastweb test plant architecture . 43
A.2 Python script for extracting OS type 44
A.3 Python script for extracting browser name 45
A.4 Python script for running test on Safari without iteration 45
A.5 Milan - Download . 47
A.6 Milan - Upload . 48
A.7 Turin - Download . 49
A.8 Turin - Upload . 50
A.9 Milan - Rtt . 51
A.10 Turin - Rtt . 52
A.11 Technicolor download/upload comparison based on Rtt and time . . . 53
A.12 DNF download/upload comparison based on Rtt and time 53
A.13 Askey datasheet . 54

VI

List of Tables

2.1 TDM PON standards . 5

3.1 Ookla Server Requirements . 11

4.1 Data set fields . 14

5.1 Milan wire connection total samples 25
5.2 Milan wire connection OS samples . 25
5.3 Milan wire connection browser samples 25
5.4 An example of TCP conversation just during the test 35
5.5 Edge upload TCP streams . 38
5.6 Firefox Download TCP streams in MAC OS 39
5.7 Firefox Upload TCP streams in MAC OS 40

A.2 Milan wifi connection browser samples 46
A.4 Rome wire connection browser samples 46
A.6 Rome wifi connection browser samples 46
A.7 Milan TCP Streams . 55
A.8 Rome TCP Streams . 55

VII

Chapter 1

Introduction

1.1 Problem statement

Nowadays, Internet speed measurement in ultra-broadband consumer network, with
capacity up to 1000 Mbps is very challenging. Internet service providers try to im-
prove the quality of service that they offer to their customers. Fastweb, one of the
main ISPs in Italy wants to increase the quality of its services too. Fastweb has
two core networks located at Milan and Rome which are constructed by 36 and 24
PoP respectively. Fastweb offers to its client by the help of FTTH based on GPON
architecture, a brand new technology in access networks, up to 1 Gbps for down-
stream, and 200 Mbps for upstream, and this study is concentrated on the speed
greater than 100 Mbps.

The web offers many public speed test services. A very popular one is speedtest.net
presented by Ookla and the goal of this study is about understanding of this ser-
vice, for the Internet speed measurement. An ISP company like Fastweb by fulfilling
Ookla requirements can use its services and provide a custom interface for its client
for Internet bandwidth measurements. The results of Ookla speed test method
include ping, jitter, download and upload value. Fastweb clients sometimes com-
plaining about the quality of the service provided by the company based on this
speed test results.

The backbone of the thesis is based on the data analysis. Therefor, it has been tried
to find the features that might influence on the speed test results. Fastweb had a
large collection of its clients speed measurement for a period about eight months.
This data set is collected at server side of the speed test interface. The data set
that is used for this study has 23 fields and 3 other fields extracted from them, so in
total we have 26 columns in our data set. The total amount of available data was
341155 samples, which are the measurements that are conducted towards the Milan
and Rome core networks from a specific location.

Since it is not possible to get a uniform service for every customer, the company
defined a threshold for the quality of the service. Accordingly, for the speed greater
than 100 Mbps up to 1 Gbps, if a client can utilize its service with at least 50% of
the promised quality, that client is at good condition.

1

Based on this threshold and available data set, the first part of the study is de-
voted to investigation of this data. So, we wanted to verify how much the results
are reliable. Beside, the correlation between physical infrastructure, distance, de-
vice capability, etc that might affect the proficiency of this speed test method has
examined. Moreover, some statistics based on these samples are provided for the
company to give a general view about the behavior of the Fastweb core networks.
After these steps, we reached to a basic knowledge about the factors that affect the
speed test outcomes more, and they have been focused further in detail.

Other part of the thesis needed significant repetition with different context. A great
number of speed test in the provided test bed of Milan core network at the test
plant have performed. The goal of these tests was having equal number of samples
for different situations in the lab environment. So, the tests have done from the test
plant in Milan towards the Milan and Rome core networks. Here we tried to reduce
the influences of some factors like noise, interference and other factors that could
reduce the device capability for performing the test.

Then, another data analyses have done based on the main factors that affect the
speed test results and they have been found in the first part of the analyses. At
this stage we reached to an idea of the appropriate choices for different contexts for
performing speed test based on Ookla method.

At the end, by the help of packet traces and Wireshark, we tried to understand for
example why a specific browser gives better result with respect to the other ones.
Here we tried to find a correlation between the performance of each browser and
number of persistent TCP connections, TCP window size and encryption.

1.2 Objective and layout of the thesis

In chapter two, we start by, a general and short description of FTTH technology
based on GPON architecture for access network. Also, a brief explanation about
the architecture of the core network of Fastweb is presented. Moreover, the
procedure that GPON uses for downstream and upstream and the elements of the
GPON architecture in short is explained.

In chapter three, the Ookla speed test system is going to be explained. First of all
the two available Ookla speed test interfaces are illustrated. Plus, we explained
how the test results components are prepared by Ookla system. Then, the network
and server requirements of the Ookla are described.

Methodologies of the thesis are described in chapter four. At this part, first an
example of a sample of the data set is presented, then the structure and the field of
the data set is explained. Also, we needed to perform some repetitive tests. Based
on this, Selenium which is a tool for test automation with browsers is described.
Moreover, the interesting contexts for more investigation and the procedure of the
tests are described. At the end of this section, The tools and software for
extracting information and analyses are described in this section too.

2

The results are presented at chapter five. this chapter can be divided to three
parts. First, we started by the analyses of first data set and we reached to the
factors that affect more the speed test results, like type of browser and operating
system. Then, the results of our automated tests at the test bed is illustrated with
the similar structure that have been used before. Finally, the packet traces part
and its results are shown.

The conclusion, is presented at chapter six. Based on our data set and analyses we
present the best choices for performing the speed test at different contexts that
have been investigated.

3

Chapter 2

Background

The goal of this part is to explain a little bit about the architecture, in particular
the one that the Fastweb is using, plus, a short description of the GPON access net-
work. Also, it should be mentioned that, the FTTH technology is going to be used
for our purpose, considering the fact that there are different types of technologies
that a user can use like FO, ADSL, VDSL and etc.

We are almost trying to measure things that are happening away from the part of
network that we control. First of all, we assume that the user at home is capable to
use Fiber Optic technology. So, the user can be connected directly to an ONT/ONU
or CPE device.

2.1 FTTH Access Network

The increasing demand for extra speed and bandwidth led to move to new tech-
nologies. Telecommunication operators have to upgrade their access networks that
are clearly becoming the bottleneck in terms of bandwidth. Therefore most of them
are replacing their old copper network technology, with optical fiber networks. The
optical fibers are reaching to the doorstep of the client for faster speed, and Fiber
To The Home appears the best choice [1].

2.2 PON

Passive optical network (PON) based FTTH access network is a point-to-multipoint
and these networks are capable to provide all communication services including
voice, data and video from one network platform[1].

PONs have a tree topology in order to maximize their coverage with minimum
network splits.Because PON has no amplifires or regenerator, therefor decreasing
optical power loss is crucial. There are three types of PON: Ethernet PON (EPON),
Broadband PON (BPON) and Gigabit PON (GPON). For all of these models, two
wavelengths are being used, one for downstream and one for upstream data traffic.
There are two main multiplexing schemes using in the architecture, WDM and TDM
and the last one is deployed for our purpose. In Time Division Multiplexed PONs

4

(TDM-PONs) the total bandwidth by time-sharing is available per user and it is
limited, in particular if the connection is going to be used for CBR applications.
Wavelength Division Multiplexing (WDM-PONs) for increasing the throughput can
be utilised but this method is costly [2].
Some standards for TDM-PON are available at table 2.1 [1].

Parameter BPON EPON GPON XGPON 10G-EPON
Standard ITU-T G.983 IEEE 802.3ah ITU-T G.984 ITU-T G.987 IEEE 802.3av

Downstream data Rate 622 Mbps 1.25 Gbps 2.5 Gbps 10 Gbps 10 Gbps
Upstream data rate 155 Mbps 1.25 Gbps 1.25 Gbps 2.5 Gbps 10 Gbps/Symmetric , 1 Gbps/Asymmetric

Table 2.1: TDM PON standards

Figure 2.1: Architecture of the optical access network

In the figure 2.1, UNI means User Network Interface and SNI means Service Node
Interface. The above figure, illustrates, the architecture ranging from FTTH to Fi-
bre to the Building/Curb (FTTB/C) and Fibre to the Cabinet (FTTCab).

The differences between FTTH, FTTB/C and FTTCab network options are due
mainly due to the different services supported. Three services that FTTH provide
are [3]:

• Asymmetric broadband services (e.g., digital broadcast services, file download,
etc.).

• Symmetric broadband services (e.g., content broadcast, online-game, etc.).

• POTS and ISDN

5

Managing Upstream/Downstream Traffic in PON

In PON the process of sending data downstream from the OLT to multiple ONUs
is completely different from transmitting data upstream from multiple ONUs to
the OLT. As illustrated in figure 2.2a, Each packet carries a header that uniquely
recognizes it as data aimed for ONU-1, ONU-2 or ONU-3. Plus, some packets
might be intended for all of the ONUs (broadcast packets) or a specific group of
ONUs (multicast packets). At the splitter the traffic is divided into three distinct
signals, each taking all of the ONU-specific packets. When the data reaches the
ONU it admits the packets that are intended for it and discards the packets that
are destined for other ONUs [4].

(a) downstream traffic flow in PON
(b) Upstram traffic flow in PON

Figure 2.2: Traffic directionality in PON

Figure 2.2b illustrates how upstream traffic is managed using TDM, in which trans-
mission time slots are devoted to the ONUs. The time slots are synchronized in
order to upstream packets from the ONUs do not conflict with each other once the
data are joined into the common fiber [4].

2.3 GPON

The GPON architecture can be either point-to-point or point-to-multipoint. It can
be described by an OLT, ONU/ONT, splitters and Optical Distribution Network
(ODN) which interconnects these equipment [3].

Figure 2.3: GPON access network architecture general view

6

Figure 2.4: GPON FTTH access network architecture

A typical length between OLT and ONU is about 20 KMs, and The GPON intend
to transmit at speed greater than 1.2 Gbit/s. For our purpose, the GPON aims to
transmit 2.4 Gbit/s downstream and 1.2 Gbit/s upstream. It should be mentioned
that, different wavelengths, 1310 nm and 1490 nm for upstream and downstream is
going to be use respectively. Based on current technology, 1:64 split ratio could be
realistic. Splitting can be centralized or cascade. Although, the second method is
more attractive for operators, the first one is more efficient. Now, in short, the key
parts of the GPON architecture are going to be explained. Also, the architecture
that Fastweb uses is shown at figure 2.5 [1].

Optical Line Terminal OLT
OLT located at Local Exchange and it is the dominant element of the network.
Actually, this is the engine that operate FTTH system. Traffic scheduling, buffer
control and bandwidth allocation are the main operation of OLT [1].

Optical Splitters
The goal of this device is splitting the power of the signal. Inside each splitter, the
fibers enter, and they might be splitted to a specific number of links which leave
the splitter. Typically, two or three levels of fibers corresponding to two or more
levels of splitter exist. This allow us to share the fibers between the users [1].

7

Optical Network Terminal ONT
This device is placed at client location. Without any active element through the
link, ONTs are connected to OLT with optical fiber. In GPON the transceiver in
the ONT is the physical connection between the customer premises and the central
office OLT [1].

Optical Network Unit ONU
The user-side interface of Optical Access Network (OAN) is provided by ONU
(directly or remotely) [3]. Here the optical signal is terminated before being
further distributed to all the subscribers attached to this ONU via other media,
such as copper wire, etc[5].

Figure 2.5: Fastweb architecture proposal

Backbone network
If we consider some PoP make a core network for a specific ISP in one region,
connection of all core networks at different regions together, in total makes the
backbone network of that ISP.

Internet access gate way
This node is the gate between the core network and the big Internet, from this
node you can go to different ISPs or other Internet nodes through the IXPs, direct
peering towards other ISPs, Data Centers, OTT provider and etc.

PoP
An Internet Point of Presence contains servers, routers, frame relays or ATM
switches, multiplexers and other network interface equipment. With more PoP we
could get better coverage.

Access network
It is connecting the end user to core network. Some types of the access networks
are: ADSL, VDSL, Wireless LANs, Fiber Optic. The one which is going to be use
for our purpose is GPON.

8

Chapter 3

Ookla Speedtest

3.1 Ookla Speedtest Overview

Ookla Speedtest is a powerful and authentic testing method based on HTML5,
Flash-free and supports both mobile and desktop browsers. Testing using open
standards, including HTML5, JavaScript and WebSockets and it utilizes TCP. Ookla
Speed test measures download speed, upload speed, ping (latency),
and jitter.
The test front-end is managed by Ookla, either the usual one that all the peo-
ple can use https://www.speedtest.net or at the sub domain of your choice (e.g.
https://fastweb.speedtestcustom.com) [6]. During the thesis the first and second
options will be mentioned by the name “public” and “private” respectively. Below
their interfaces are shown. From now on the word platform is being used instead of
interface.

(a) Public Platform

(b) Private Platform

Figure 3.1: Speedtest Platforms

9

3.2 Test Component

3.2.1 Ping/Jitter

At the beginning of the test, clients sends some packets to the server. At the time of
receiving this information, the server replies back. By measuring the time it takes
for the host to response to a request from the user’s client, one test has been fulfilled.
At the end, after some repetition, the smallest value regulate the final result, and
the round-trip time is computed in ms (milliseconds) [7]. One should consider, Only
the private platform gives the jitter value.

3.2.2 Download

1. Numerous connections with the server over port 8080/8181 set-up by client and
it asks from the server to send a primary block of data.
2. The real-time velocity of the transfers is measured by client, then it modifies
the chunk and buffer dimension based on this computation to boost usage of the
network link.
3. During the time that blocks are collected by the client, more chunks are requested.
4. Throughout the first fraction of the experiment, the client will establish additional
links to the host if it discovers extra threads are needed to more accurately measure
the download speed.
5. The experiment finishes when the configured amount of time has been reached.
[7].

3.2.3 Upload

There are a few differences with respect to computing download value, therefor
just these differences are mentioned. At first step, client sends data, but without
requesting a block of packets. At the third step, the chunks are received by server
not client and also there is no request from client. [7].

3.3 One Measurement Sample

A measurement sample at front-end of the public platform, gives the test component
that described before. The private platform also gives the jitter. At the back-end
because Fastweb has got a perimum account in Ookla can get more information
about each test that will be explained more in the following sections.

3.4 Speedtest Server Requirements

For installing Ookla speed test on a server there are some requirements that must
be fulfilled.

10

3.4.1 Network Requirements

• Network Capacity

◦ 1 Gbps Upstream and Downstream Capacity

◦ Rare exceptions are made for underdeveloped and underserved regions.

• DNS

◦ We require public DNS resolvable hostnames, IP addresses are not valid
hostnames.

∗ Example HTTP Legacy URL: http://sp1.domain.com/speedtest/upload.php
- 201.12.28.12

∗ Example OoklaServer URL: sp1.domain.com:8080-201.12.28.11

• Ports

◦ TCP/UDP inbound/outbound port 8080 (OoklaServer)

◦ TCP/UDP inbound/outbound port 5060 (OoklaServer)

◦ TCP inbound/outbound port 80 (HTTP Legacy)

◦ Optional TCP outbound port 80/443 to Ookla (optinal) speed test web
site for updates and LE provisioning if enabled.

◦ All ports are required to be open for any public internet IP as users will
connect directly [8] .

3.4.2 Server Requirements

The following is required to become a Speedtest Server sponsor [8] :

CPU Memory Network Disk
Minimum Quad Core 4GB 1Gbps 1GB
Recommended Quad Core 8GB 2Gbps 1GB
1Gbps Testing Dual Socket Quad Core 8GB 10Gbps 1GB

Table 3.1: Ookla Server Requirements

3.4.3 Supported Operating Systems for OoklaServer

• Server operating system [8] :

◦ Windows Server (2008, or 2012 with IIS 6, 7, 7.5, or 8)

◦ Linux (2.6.18 kernel or newer)

◦ Mac OS X (built on 10.8, previous versions may function but are not
fully supported)

◦ FreeBSD (kernel 7.3 or newer)

11

3.4.4 Supported Web Servers

• Supported Web Servers / Server Side Code for HTTP Legacy Fallback [8] :

◦ Web server software with PHP, ASP, ASP.NET or JSP support.

◦ Examples: Apache, IIS, nginx, and lighttpd.

◦ Make sure the Maximum POST request size is raised to 10 MB.

◦ Keep Alive Enabled and Compression Disabled.

◦ Administrator or root access might be needed if default server settings
are inadequate.

12

Chapter 4

Methodology

4.1 Dataset

4.1.1 Dataset overview

There are different fields in raw dataset that the most important ones are going to
be explained.The raw dataset provides a means to gain superior knowledge about
various wire and wireless services including Wi-Fi and cellular networks with the
accuracy and unparalleled volume of Ookla’s authoritative Speedtest.net [9, 10]. We
changed the field name based on our interest. Also, there are some fields extracted
from raw data for better data analysis like hour, OS and browser. Below is an
example record:

Figure 4.1: A sample record

the general header example in which the default names have changed:

Figure 4.2: Header of first set of data

4.1.2 Dataset fields

In the following page, the main variables and those which are not clear are explained.
It should be mentioned that, this data set is available at back-end, and someone who
is just able to access the front-end information, cannot access to them. Normally,
at front-end we see ping, download, upload and server location.

13

Field Name Description Data Type
START TS END TS YYYY-MM-DD HH:MM:SS (de-

faults to Pacific Time but Ookla
can accommodate different time-
zones)

datetime

OOKLA HOSTNAME name of the server tested text
CONNECTIVITY WIRE/WIFI text
USERAGENT Identifies OS and browser text
IS OPERATOR Test has performed by Fastweb

operator (1), Test has performed
by ordinary user (0)

number

OM SITE ID Client ID number
PROVINCIA Italy province text
CLUSTER NAME Core network location text
CAPACITA UP Upload maximum capacity number
MEASURE UP Specific sample upload value number
RELEASE SW CPE version text
CPETYPE CPE type(name) text
RELEASE SW The CPE version text
TIPO GPON Related GPON physical infras-

tructure used for the test
text

OLT VENDOR Manufacturer of OLT text
SFP OLT TYPE Type of SFP port of OLT devices text
HOUR The hour part of START TS

END TS field
number

OS Operating system name extracted
from user agent

text

BROWSER Browser name extracted from
user agent

text

Table 4.1: Data set fields

OOKLA HOSTNAME: There are different Ookla host name including two Fast-
web core servers, and others not related to Fastweb, with much fewer samples
in this field. An example of the sample of data in this field is “spd-pub-mi-01-
01.fastwebnet.it:8080”. We are just interested to the Ookla host name related to
the core network of Fastweb in Milan and Rome.

USERAGENT: The User-Agent header field consists of a characteristic string,
used by servers and allows the network protocol peers to describe the scope of the
application type, operating system, software manufacture or software version of the
requesting program user agent [11, 12].

IS OPERATOR:When a Fastweb operator at the installation phase of connection
at client home perform a test with his device to check the quality of the line, this
value is set to 1, otherwise is 0 (The total in following figures means all specific
samples including IS OPERATOR = 1/0).

14

OM SITE ID: This is the Fastweb’s client account number.

PROVINCIA: Each province is related to a specific core network.So, the provinces
of Milan network is different from Rome.

CLUSTER NAME: There are two cluster in the data set. One is related to the
Milan core network and the other to Rome core network.

CAPACITA UP: It is equal to 200 Mbps. This is the maximm speed that users
at home can reach for their upload. This value in the lab is 1000 Mbps and the 200
Mbps limitation does not exist there.

MEASURE UP: The specific upload value at each test.

RELEASE SW: This field shows us the exact version of CPE.

OLT VENDOR: There are just two company that their CPU has been used in
the data set, Nokia and Huawei.

SFP OLT TYPE: Small Form-factor Pluggable,this is a small transceiver that at-
tach in a network switch and connects to fibre channel and Gigabit Ethernet (GbE)
optical fiber cables at the other end. SFP ports permit Gigabit switches to connect
to a broad collection of fiber and Ethernet cables so as to increase switching per-
formance throughout the network. The SFP works in single and multimode, it also
allows switches to connect to various speeds (1 Gbps, 10 Gbps) . Modern Gigabit
switch is usually designed with two or more SFP ports, allowing them to turn into
a part of a ring or star-based network topology [13, 14].

CPETYPE: Five types of CPE are available in our data set. ASKEY01-UCPE,
ASKEY02-UCPE, DN8245F-UCPE, Technicolor DGA4131FWB-UCPE andTechni-
color FGA2130FWB-UCPE 1.1. ASKEY01 and ASKEY02 samples, are aggregated
to ASKEY, and the last two model, to Technicolor. The reason for sample aggre-
gation is first of all, they are so similar, then having enough samples for comparing
different CPE.

HOUR: Simply extracted from START TS END TS field, by help of HOUR for-
mula in excel. This information is extracted, because we want to analyze data set
based on different hours of the day. Obviously, at different hours, we have different
amount of traffic in the network.

OS: This field gives us the operating system of a specific sample, based on the user
agent information. First of all, the first part of user agent string is filtered and then
by help of a simple python script, three different operating system is extracted from
that. An example of user agent string:

“Mozilla/5.0 (iPhone CPU iPhone OS 12 0 like Mac OS X”)

It should be mentioned that the Mozilla/5.0 is almost included at the beginning of
all user agent information and it does not show the correct browser nor related to

15

the type of operating system. Although, there are some user agent parser-which
is used for parsing and extracting information about the browser- for this field we
preferred to use a custom script (please see: A.2) for our interest which seems naive,
but for this case, it is faster, plus, it gives the three different types of operating
systems that we are going to check, including Windows, MAC OS and Linux.

BROWSER: Here, the data is not filtered, and a “Python” user agent parser
(please see: A.3 [15]) which gives the browser information which is used. Moreover,
the diversity of browsers is numerous, on the other hand, some browsers are used
very rarely such as “QQ browser”, “Vivaldi”, etc. Also, some browsers, did not use
in a specific OS, like IE on MAC OS. It is clear that, we should pay attention to the
reliable amount of browser samples, not only based on their total amount, but also
by considering the OS. As a result, we concentrate more on Chrome, Firefox, Safari
and Edge (IE).

4.2 Tools

4.2.1 Selenium

There are many interests to test automation. Most are link with reiteration of the
tests and test execution pace . A great portion of profitable and open source means
are feasible. The one used for our purpose is “Selenium” which is open source. Sele-
nium is built by different software tools and any of them has a unique character [16].

We wanted to perform one hundred tests for different situations for three major
browsers at each operating system including Windows and MAC OS,but, manual
testing is tedious. Different settings are:

• Fastweb core network location (Milan, Rome)

• Operating system (Windows, MAC OS)

• Type of connection (Wire, Wireless)

• Ookla speed test platforms (Public, Private)

• Browser (Edge, Chrome, Firefox, Safari)

What was needed was a straightforward mechanism to create rapid automation and
in the same time capable, so these tests can be extended at least with little changes
in other browsers [17]. The changes can be different methods for getting a web
element, or for example ignoring elements like banners that comes in front of a
desired web element in public platform of Ookla speed test interface. Also, it should
be mentioned that, sometime it is not possible to use the same “XPATH” or “CSS
selector” for different browsers. Basic procedure was similar for all test cases:

16

1. opening browser

2. waiting for the speed test page to be loaded

3. selecting the appropriate server

4. starting the test

5. waiting for the test to be finished

6. extracting and saving the test result

7. closing the browser

This procedure performed with using Selenium web driver and Python script. An
example of python script for the test automation can be find at A.4 without consid-
ering iteration.

It must be considered that, the time of each test, is highly dependent on the speed
of the connection, in the sense that, the test cannot be started exactly after opening
the url. Therefore, for each particular browser and platform, we used a distinct sleep
time to prevent script from crashing. Choosing correct timing for each situation is
important for choosing the server, waiting during the test procedure and getting
the result. As an example, it has been needed for public platform, to control these
times in a good manner, because, we did not want to wait a lot of time for each
test, besides that, as a consequence of removing irrelevant web elements, we should
wait enough until the page could be loaded.
In total, for each location, operating system, connection and platform we performed
100 tests, just with exception of executing the test with Safari and Edge on Windows
and MAC OS respectively. For example, one of our test condition was: (Rome,MAC,
Wire, Private, Safari). So, at the end, after implementing all circumstances, in the
lab environment, we had 4800 results. The architecture of test plant can be found
at A.1.

4.2.2 Other tools

For the purpose of analyses and repeated task and tests some application are used.
The first part of analyses has been done by the help of Matlab. For the test automa-
tion, as mentioned, Python helped us to use Selenium. Also, the last part of our
analyses are performed by Python and in particular, with its modules like, Scipy,
Numpy, Panda, Matplotlib and Seaborn. Moreover, Wireshark, the famous software
for packet tracing is utilised.

17

Chapter 5

Results

5.1 Data analysis of first data set

At this part we are going to describe and visualise the first set of data provided by
Fastweb based on Ookla speed test measurements, from April to December 2018.
The goal of this process is probably finding the main reasons that affect the results.
The structure of data set is explained in previous section. Now, we analyse these
data sets based on different field and their relation. Moreover, some statistics about
the performance of network, according to this type of measurement and our available
data will be shown. The data sets are divided in four main sets based on Fastweb
core network location and type of connection. Also, it should be mentioned that,
the main focus of analysis is on the Milan core network and wire connection but
other situations investigated too. At this stage, also some results of Linux operating
system probably is illustrated and considered, but when we start our automation
speed test, just the Windows and MAC OS are checked. The number of available
samples present at appendix.

Figure 5.1: Data set sample

Figure 5.2: Data set sample (continue 1)

Figure 5.3: Data set sample (continue 2)

18

5.1.1 A general view of core networks

Here just by considering the impact of Milan and Rome core networks and type of
connection, some statistics about them are illustrated. It should be considered that,
the number available samples of Milan networks are greater than Rome.

Figure 5.4: Average of total samples of wifi connection

Figure 5.5: Average of total samples of wire connection

From now on, a great majority of our analyses and figure representation will be
based on CDF. Other type of plots will be used like histogram and box plot where
they can show us valuable information.

19

Cumulative Distribution Function (CDF)

This is a metric to represent the probability associated with random quantities. the
CDF is defined for discrete random variables as:

FX(x) = P(X ≤ x) =
P

xi≤x P(X = xi) =
P

xi≤x p(xi)

F(x) accumulates all of the probability less than or equal to x. The CDF of a
continuous random variable X describes as the integral of its probability density
function fX . So, just the summation must be replaced with integral:[18]

FX(x) =
R x

−∞ fX(t) dt

Histogram

This function mi calculates the number of observations that fall into each of the
separate level, recognized as bins. Considering k and n the total number of bins and
observations respectively, the histogram mi has the following conditions: [19]

n =
Pk

i=1 mi

CDF vs Histogram

Histogram shows the frequency of each value in the data and it is very useful for
finding the distribution of the data. Also, it seems that, Histogram is easier to
be explained, but CDF provides more benefits (at least for our case). One of this
advantages is, the main properties like minimum, maximum, median, quantiles and
percentiles can be extracted from CDF graph, which is not be read from histogram.
Moreover, comparing the differences of two or more distributions could be difficult
with histogram. On the other hand, CDF is an applicable option. Other factors
that, in particular for our analyses affect the result and visualization, are the number
of samples and size of bins. Different sample size can mislead us for comparing
various situations. Besides that, based on the bin size, it is possible to get different
distribution [20, 21]. With this background, the CDF plots are used most of the
time for our purpose.

5.2 Impact of CPE and distance

The goal of this part is to show, when we have enough samples ,there is not a
big difference related to geographical area, different CPE and also if the test is
accomplished by a user or an operator. Different operating systems did not consider
here. The influences of operating system and browser will be discussed later. To
make this section short, just the figures for Milan and Turin for Chrome are shown.
Download and upload are shown at the scope of Kbps and Rtt in ms. We have similar
behavior for this kind of comparison for Milan Wifi and Rome Wireline/Wifi samples
too. Also, we filtered our data hourly, which means we separated the samples from
midnight to midday and vice versa, which does not show impressive effects. For this
reason, the amount of graphs are not equal to available ones in this assessment. So,
it is illustrated by download figures from two cities, and different CPEs are ASKEY,
Technicolr and DNF from left to right. Then, similar structure for upload has been
used.

20

CPE comparison Milan

(a) ASKEY (b) Technicolor (c) DNF

Figure 5.6: CDF Comparison of Download throughput for three CPE - Milan

(a) ASKEY (b) Technicolor (c) DNF

Figure 5.7: CDF Comparison of Upload throughput for three CPE - Milan

(a) ASKEY (b) Technicolor (c) DNF

Figure 5.8: CDF Comparison of RTT for three CPE - Milan

21

CPE comparison Turin

(a) ASKEY (b) Technicolor (c) DNF

Figure 5.9: CDF Comparison of Download throughput for three CPE - Turin

(a) ASKEY (b) Technicolor (c) DNF

Figure 5.10: CDF Comparison of Upload throughput for three CPE - Turin

(a) ASKEY (b) Technicolor (c) DNF

Figure 5.11: CDF Comparison of RTT for three CPE - Turin

22

5.2.1 Comparing Rtt based on different CPE and distance

Here the Rtt figures for three CPE and cities are being shown.Also, this time samples
are separated based on three major browsers Chrome, Edge and Firefox, left to
right. In this way, it can be seen better how they behave similarly. These figures
like previous section, are extracted from wire connection and Milan core network.

(a) Chrome (b) Edge (c) Firefox

Figure 5.12: CDF Comparison of Rtt - Milan

(a) Chrome (b) Edge (c) Firefox

Figure 5.13: CDF Comparison of Rtt - Turin

(a) Chrome (b) Edge (c) Firefox

Figure 5.14: CDF Comparison of Rtt - Genova

At appendix (see A.5), a short statistical output of the available samples, for three
browsers and Just for Milan and Turin is available. This type of results are available
in general for 5 browsers, and all the provinces in the data set.

23

5.2.2 Comparing download/upload based on Rtt and time

At this part the relation between Download/Upload throughput versus Rtt and the
time is shown, in which the time is divided in two section, from 00:00 A.M. to
12:00 P.M. and 12:00 P.M. to 00:00 A.M which will be indicated as A.M. and P.M.
respectively. At the left side, the scatter plots show how the samples distributed
during the time. At the right we see the CDF figures which show us the changes are
so similar. It should be mentioned that, the differences in CDF plots for this figures
are so close, and because the subplots are small these differences can not be seen,
but in scatter plots, the differences are a little bit visible. To make this section as
short as possible, the figures just for Milan and Chrome and the ASKEY CPE are
shown (for similar figures please see A.6). Also we can see that in the same location,
with equivalent OS and operating system, during the different hours of a day, there
is not big changes in the CDF of download and upload. The scatter plots shows us
even in the time that the traffic is high we can reach to maximum speed. So, we
should focus on other factors.

Figure 5.15: ASKEY download/upload comparison based on Rtt and time - A.M.

Figure 5.16: ASKEY download/upload comparison based on Rtt and time - P.M.

24

5.3 Impact of operating system and browser

Finally, we reached to the most important factors, that affected the results, including
download, upload and Rtt, but the first two ones show this changes better. As
mentioned at section 5.2, the results where enough number of samples are available
are going to be shown. We have very small amount of samples in some cases,
specially for Linux operating system. Some browsers, either do not have sufficient
number of samples too, as an example Safari in Linux, or there is no sample for
Edge or IE in MAC OS or Linux and similarly Safari in Windows. So, we tried
to choose browser that most of the times are available in all operating systems. It
should be mentioned that, in the data set, we cannot understand from a specific
sample, those specific client network card, allow him/her to reach the speed more
than 100 Mbps or not. Moreover, there are some samples, in which the download or
upload value has passed the maximum available speed. So, we filtered this data out.
Although, we can understand, the OS type of each sample, obviously it is not clear
the capability of that machine, specially the network card. Moreover, the browser
information at this point does not give us a view that, a specific client uses the last
available version of browser. Considering these factors and also the point that, in
all the cases the number of samples are not equal, we just investigated our data to
prove that the main reason for poor or excellent performance is related to OS and
browser. The plots are comparing the behavior of different browsers but at the same
OS. One main reason, except the fact of lack of samples was, the difference in system
configuration. With this background, after visualisation of some results to illustrate
the impact of OS and browser, at the section 5.4.2 we just focus on main OS and
browser which are more interesting for the company to be investigated. Below the
table of available samples is listed, and the complete tables can be find at section
A.4. The table 5.3 is presented after some filtering.

Core Network Number of Samples
Milan 127850

Table 5.1: Milan wire connection total samples

Operating System Number of Samples
Windows 114490
MAC OS 5890
Linux 5839

Table 5.2: Milan wire connection OS samples

Edge Safari Firefox Chrome IE Opera Total
Windows 21890 0 14649 31687 5308 902 74436
MAC OS 0 3266 702 1500 0 52 5520
Linux 0 19 5003 292 0 45 5359
Total 21890 3285 20354 33479 5308 999 85315

Table 5.3: Milan wire connection browser samples

25

5.3.1 Comparing download/upload/Rtt based on OS and
browser

All the figures are plotted when we have enough number of samples for major
browsers. Also, the throughput threshold is plotted, in which company consid-
ers that, if the users measure a value greater than or equal 500 Mbps (Download),
100 Mbps (Upload) and less than or equal 5 ms (Rtt), they are at good condition.
Little amount of samples in Linux, for download and upload gives those vertical and
horizontal line. These figures are related to Milan wire connection.

(a) Windows (b) MAC OS (c) Linux

Figure 5.17: Windows, Mac and Linux download emprical CDF

(a) Windows (b) MAC OS (c) Linux

Figure 5.18: Windows, Mac and Linux upload emprical CDF

(a) Windows (b) MAC OS (c) Linux

Figure 5.19: Windows, Mac and Linux Rtt emprical CDF

26

In the previous figures, it can be seen that, for download and upload, when the
speed is less than 100 Mbps, the distribution are so close. For better visualization,
the sample where download and upload are less and greater than 100 Mbps are
separated here. Left to right less and greater than 100 Mbps.

Figure 5.20: Milan CDF plots for less/greater than 100 Mbps - Windows - Download

Figure 5.21: Milan CDF plots for less/greater than 100 Mbps - Windows - Upload

Figure 5.22: Milan CDF plots for less/greater than 100 Mbps - MAC - Download

Figure 5.23: Milan CDF plots for less/greater than 100 Mbps - MAC - Upload

27

If we just look at the graphs of previous page, without considering the influence of
number of samples, based on our data set and analyses, it can be stated that, for
measures with speed less than 100 Mbps, plots distributed in the same fashion, both
for download and upload. On the other hand, for speed greater than 100 Mbps, the
differences are more visible. Moreover, the trends of browser are so different for speed
greater than 100 Mbps, and the diversity of contrasting styles is further conspicuous.
In all respects, these figures lead us to main aspect. After understanding the main
circumstances of changes in our results, the fair comparison of browsers in Windows
and MAC OS, which are the favorite OS of clients, will be carried out.

(a) Windows (b) MAC OS

Figure 5.24: Browser throughput comparison - Milan wireline - Download

(a) Windows (b) MAC OS

Figure 5.25: Browser throughput comparison - Milan wireline - Upload

As previously stated, all the clients upload speed is limited to 200 Mbps, and because
of this reason this similarity in their trend is exist. Opera has not got enough number
of samples, so it can mislead us to a false decision.

28

5.4 Test automation

Unequal number of samples, plus the ambiguous device and browsers capability in
the data set, can cause to inequitable comparison. As a result, we decided to repeat
measurements with an admissible range, for main conditions. These tests took a lot
of time, because we had one 1 Gbps GPON connection at the lab. So, it was not
possible to perform the tests in parallel. Each test took about 1 minute. All the
tests have been performed from 10 A.M. to 5 P.M. . The lab environment is isolated
and the samples for wifi have gathered with lowest interference and noise, moreover,
the devices were so close to CPE. Technicolor CPE, model FGA2130FWB is used
for our tests, because in our first set of data this CPE had the most number of
samples.

5.4.1 Main goal

Now, we have equal samples, we can compare the main factors that affect the Ookla
speed test measurements at application layer. Not only a great difference in network
quality can be seen, but also, different trend in CDF plots of important browsers.
These changes, helped us to focus in detail on main browsers at specific situation.
Here, we do not have any limitation for upload like before, so they can be compared
better too. Although, we know our device capability at each test situation, but the
goal of our comparison is based on browser not operating system. The main reason
is each operating system uses different TCP congestion control, which is the main
protocol Ookla uses for the test.

Figure 5.26: Average of test samples of wifi connection

Figure 5.27: Average of test samples of wire connection

29

5.4.2 Results assessment

Based on our tests and outputs, some evaluation can be conducted. Firs of all,
The trends of graphs show us the clear differences of using different browser at each
condition. Now, the vertical lines are because of stability of the results. The upload
figures do not have similar behavior like before.

Figure 5.28: Test samples CDF plots of Wire Connection - Milan - Windows

Figure 5.29: Test samples CDF plots of Wire Connection - Rome - Windows

As illustrated at section 5.3.1 and figure 5.20 for speed greater than 100 Mbps, even
there can be seen the impact of browser in performance, but it did not show us that,
Firefox is the best choice for download in Windows for wire connection. But here
after tests in the lab, the results tell us that clearly Firefox worked perfectly.

The perfect behavior of Firefox does not exist for upload in Windows,which can
be seen at figures 5.36 and 5.36. Also, when Firefox used at MAC OS, for both
download and upload, this great difference at different operating system (MAC OS)
for Firefox is clearly visible at figures 5.30, 5.31, 5.38 and 5.39 . On the other hand,
even though, Edge was a good competitor at download for Firefox, But for upload
in Windows (figures 5.36 and 5.37), it had the best performance.

30

Figure 5.30: Test samples CDF plots of Wire Connection - Milan - MAC OS

Figure 5.31: Test samples CDF plots of Wire Connection - Rome - MAC OS

One of the big differences with respect to figure 5.22 is the efficiency of Safari. The
charming constancy of this browser for wire connection and the fantastic average
speed for download, which was about 940 Mbps, without doubt tell us this is the
best option for MAC OS user at least for downstream and wire connection.

Figure 5.32: Test samples CDF plots of Wifi Connection - Milan - Windows

Figure 5.33: Test samples CDF plots of Wifi Connection - Rome - Windows

31

Unfortunately, this behavior could not be seen in previous data set, even the mean
of Safari was better than Chrome and Firefox, but it did not reach to the half of its
capability, also most of our client were using Chrome unluckily.

Figure 5.34: Test samples CDF plots of Wifi Connection - Milan - MAC OS

Figure 5.35: Test samples CDF plots of Wifi Connection - Rome - MAC OS

Other factor that should be mentioned is, the variation of results for Chrome in most
of the cases which does not seem a good feature.Also, it was not a superior browser
for a majority of conditions, except for upload for the test which performed towards
Rome server in MAC OS and it is illustrated at figure 5.39 for Private platform with
wire connection. Even in the public platform of Ookla, Safari and Chrome are so
close in performance, so, it is possible to get similar result if we repeated our test
for private interface.

For wifi, when the Windows used as the operating system, the browsers do not show
us that a specific browser is a head and shoulder above the other one and also they
cannot reach to speed greater than 600 Mbps. Although, we used the best available
device, but unfortunately our network card capability or maybe the lap top did not
allow us that the tests gives us the results in a way that we can compare the browser
truly. Their similar trend can be seen at figures 5.32 and 5.33.

32

Figure 5.36: Test samples CDF plots of Wire Connection - Milan - Windows

Figure 5.37: Test samples CDF plots of Wire Connection - Rome - Windows

But, the powerful MACbook Pro did not have this problem and again Safari was
the best browser for upload for wireless connection, despite the fact that, it did not
offer stability once more.

Figure 5.38: Test samples CDF plots of Wire Connection - Milan - MAC OS

Figure 5.39: Test samples CDF plots of Wire Connection - Rome - MAC OS

33

Figure 5.40: Test samples CDF plots of Wifi Connection - Milan - Windows

Figure 5.41: Test samples CDF plots of Wifi Connection - Rome - Windows

At wireless connection for upload, Edge did not give us the best performance, and
approved again that, better performance in download does not guarantee finer effi-
ciency in upload. Moreover, the same condition exists for safari. As can be seen in
figures 5.42 and 5.43, now Chrome is a solemn rival. In short, device capability has
more effects for wireless connection and in particular for upload.

Figure 5.42: Test samples CDF plots of Wifi Connection - Milan - MAC OS

Figure 5.43: Test samples CDF plots of Wifi Connection - Rome - MAC OS

34

It has been told that, we are not interested to compare browsers in different operat-
ing system, but it is better to point that, for example, there is a substantial change
in workmanship of Firefox in different operating system. We also tried to, at least
find the reason for these behaviors.

5.5 Packet tracing

As we saw in previous section, different browsers give us different performance, even
at same operating system. Some effort have been done to find the reasons of these
differences of behavior. At this stage, we did not repeat the test for packet tracing
a lot of time, but we tried to investigate the Wireshark traces in most of the cases,
when they are at the same condition with the test results. Obviously, sometimes for
upload or download the results of this part are not close to the average behavior of
previous part, but because of our time limitation we could not repeat the tests a lot.
For each browser at each scenario, we have a Wireshark trace. Statistics about this
tests are available at A.8 . We focus on main connection between the IP address
of our device and the Fastweb core networks in Milan and Rome for Public and
Private platform with port numbers 8080 and 8181 respectively. Clearly, client uses
random port numbers for TCP connections. For each test, the total TCP streams
of Wireshark has been collected in an Excel file and the main ones which are related
to speed test is also extracted. The figures that are provided based on I/O graph
capability of this software. Because, it is not possible to use this option of Wire-
shark for different traces, first the numbers of each I/O graph is extracted, then with
the help of Python we put all the figures in one graph to show their differences better.

Below an example of TCP streams just during the test for the case of Safari in MAC
OS and wifi connection for private platform is presented. For the sake of simplicity
and finer visualization some fields are removed. A means client and B server.

Port A Port B Packets A → B Packets B → A Real Start Duration
56869 8181 43 27 0.638233 0.502936
56870 8181 17470 117777 3.096478 15.125856
56871 8181 30510 213840 312.596 15.097437
56872 8181 18098 123105 3.127148 15.102171
56873 8181 33107 238542 3.128159 15.198077
56874 8181 14707 108487 3.731.025 14.498118
56875 8181 9269 63318 3.733791 14.495344
56876 8181 47859 21622 18.954927 15.110433
56877 8181 90103 37707 18.955862 15.108433
56878 8181 177584 70996 18.955948 15.105613
56879 8181 169137 71311 18.95658 15.097218
56880 8181 150997 66736 19.424928 1.464038
56881 8181 155683 67455 19.432776 14.630041

Table 5.4: An example of TCP conversation just during the test

35

5.6 Analysis of traces

At this part some factors that might affect each specific browser output are
investigated. For sure, it cannot be all the factors, and also the differences are
presented based on our result and system and browser configuration. Moreover, the
way that Ookla implement for each browser could be different. Plus, each operating
system uses different type of TCP.

It should be mentioned that, we did not change the default configuration of the
Firefox. Below you can see the Firefox network preferences.

Figure 5.44: Firefox network configuration

5.6.1 Number of TCP connection

Unfortunately, there is no reference or standard about the number of TCP connec-
tions that a browser can open, even there are suggestions in HTTP standard. In
short Safari and Chrome never open more than 6 connections for download or upload.

Edge in Windows for download in both Ookla platforms in our tests used 6 con-
nections, also for upload in Public platform, but in Private platform it establishes
variable amount of connections up to 32.

Firefox followed the default configuration, in the sense that, it did not open more
than 32 connections for download and 6 for upload. Firefox in most of the cases, used
6 connections for upload and some times less than this number, but for download
this number varied a lot. Statistics about number of connections are available at A.8.

This numbers that we talked about are persistent connections, of course there are
some TCP connections even between desired client and servers, during the speed
test, but they did not use for test, they used for encryption with SSL(TLS) protocol.

5.6.2 Connection management in HTTP/1.x

Some factors that clearly affect the the performance of web site and web appli-
cations are opening and preserving the connection. Some models are: short-lived
connections, persistent connections, and HTTP pipelining.

36

Figure 5.45: Three models of HTTP connection management

Short live connections deal with very old systems, those that not support the per-
sistent connection. Also, modern browsers do not use the pipelining. So, we should
focus on persistent connection. HTTP/1.1 defaults to the use of persistent connec-
tions, allowing multiple requests and responses to be carried over a single connection.
The close connection option is used to signal that a connection will not persist af-
ter the current request/response. HTTP implementations should support persistent
connections [22].

Persistent connection

This type of connection continue opening for a time interval, and it allows multiple
requests and responses to be carried over a single connection, also it reduces the
need for new TCP handshakes, and improves TCP’s performance. It will be closed
after some time. In order to remain persistent, all messages on a connection need
to have a self-defined message length. [23, 22]
There are some advantages of using persistent connections, some of them mentioned
bellow:

• Decreased delay in successive requests (no handshaking)

• Reduced CPU usage and round-trips because of less new connections and TLS
handshakes

• Reduced network congestion (fewer TCP connections) [24]

37

Now we try to show the impact of these factors in different browsers. Based on the
section 5.6.1 and the statistics on tables A.7 and A.8, Firefox gets better results
for download when it opens at maximum 6 connections in Windows. The impact of
number of connections can be see better when we compare the results of Public plat-
form with Private in which it opens more connections for download. Also, Firefox
opens more connections in download in MAC OS, which leads to low performance
comparing to Safari and Chrome. This does not mean that if we reduce the number
of connections, we should get better result. As it can be seen in the tables, when
we have less than 6 connections, we get very low performance, except one sample
for Safari.
But, why Edge in upload behaves better in windows, specially in Private platform,
even it opens more connections? First, it should be said that, Edge always opened
more than 6 connections, just in the Private platform. This is the only browser that
passed the maximum number of 6 connections in both operating systems. Below
the TCP traces of Edge just for upload connections, in Public and Private platform
is presented.

Packets B → A Rel Start Duration
9210 21.337704 30.060393
10175 21.338004 30.073931
8725 21.801276 29.615399
8681 21.827214 29.580738

(a) Public platform

Packets B → A Rel Start Duration
5367 19.067237 15.195865
4679 19.522135 14.742005
4749 19.525022 14.740587
4074 19.528648 14.737213
4682 19.531082 14.734526
4348 19.534162 14.731697
4611 19.538219 14.727641
4334 19.541683 14.727881
4203 19.544839 14.718769
4468 19.548053 14.717556
4973 19.553692 14.715079
4785 19.557055 14.708806
4127 20.108986 14.156624
4048 20.112063 14.153797
4081 20.115281 14.150328
3831 20.122659 14.143202
4376 20.126634 14.138976
4118 20.129248 14.137781
4470 20.132735 14.135378
4168 20.137143 14.130248
4233 20.146211 14.120829
4555 20.149751 14.118412
4328 20.153803 14.113587
4294 20.157865 14.109164
4522 20.160987 14.107784
3726 20.164666 14.102361
3494 20.669135 13.596887
4353 20.671896 13.597668
4021 20.674568 13.591455
4140 20.677583 13.591981
3741 20.680332 13.589453
3755 20.682678 13.584351

(b) Private platform

Table 5.5: Edge upload TCP streams

Edge transfers 36791 and 137654 in Public and Private platform respectively. So, it
seems that, if a browser can send more packets even with more number of connec-
tions, for upload gives better result. So, the condition of sending more packets is so
important and in the MSC OS we can see this impact better.

38

TCP window size

Without doubt, the TCP window size is one of the factor that affect the results.
Here we show at the same operating system which browser performed better.

Figure 5.46: TCP window size

At the left side the impact of window size is clear. Safari has bigger window size
during download and can receive more packets. Both browsers have 6 tcp connec-
tions.

On the other hand, there is not a big difference in the window size. The reason that
Safari with respect to Firefox gives better performance is the number of connections.
Firefox opened 13 connections for download.This would create more bursty traffic,
congesting the buffers more quickly. Similarly, having N connections implies each
connection gets 1/N of the available capacity. In such case, then each TCP connec-
tion works on lower rates, and could thus affect the congestion control algorithm too.

Packets B → A Rel Start Duration
96512 4.344419 15.229628
130996 4.362664 15.212181
29517 4.379444 15.253200
68867 4.400586 15.173459
11989 5.672146 14.674728
10399 6.238856 14.106792
7201 7.511156 13.373546
8034 8.929358 12.002968
6297 10.01870 10.084478
7141 11.29015 9.7195701
5661 12.90705 7.7909330
4463 14.13112 6.7362730
8 16.01667 1.9057600
3 19.01121 0.6216900
5 19.78192 0.2645649
7 20.18589 0.2846630
8 20.58140 0.3029770
10 20.90712 0.0893279

Table 5.6: Firefox Download TCP streams in MAC OS

39

Encryption

As mentioned at section 5.6.1, one of the factors that can affect the throughput is
encryption.As in the table 5.7 the statistics of TCP streams of firefox for download is
presented, there are more than 6 connections. But, there are 6 connections which are
used for encryption. These connections are not used download speed measurements,
but they use CPU. Moreover, this kind of encryption does not exists in our results
for Windows. The situation is also worse when we look at the upload streams of
Firefox. Not only there are these types of connections, but also they opened during
the test not after that.

Packets B → A Rel Start Duration
12211 20.959748 15.202395
13213 20.966751 15.195386
12100 20.966894 15.195246
14927 20.967017 15.196248
10 20.993703 0.0384619
10 21.021604 0.0931570
9 21.112575 0.0839600
6 21.195499 0.2454979
10 21.241916 0.2945339
10 21.535741 0.4599068
8 21.858288 0.8735439
5941 22.289671 13.874892
5158 22.289853 13.874858
4 22.732179 0.7925381
4 23.779619 0.2887191
10 24.474475 1.2382121
2 25.915151 0.0036379
5 28.267235 0.5024319
7 29.528252 1.5490051

Table 5.7: Firefox Upload TCP streams in MAC OS

Clearly, in the above figure we can see that, 7 connections for encryption opened
after 4 connections in the beginning, and other 6 after 2 last connections for upload.
Also, our statistics at A.8 show that, Firefox when opens 6 connections in Windows
performed better.

In short, admissible number of connections, which are persistent, and those that
have bigger TCP window size get better result. At the end, we could suggest to use
Safari for speed test with Ookla speed test system both for download and upload in
MAC OS, and Firefox and Edge for download and upload respectively in Windows.

40

Chapter 6

Conclusion

Conclusion

This study as its subject tells, is more practical than theoretical. Although, internet
bandwidth measurement is not a new topic, but the type of measurement and the
application that used is a specific type of measurements that has got its own ad-
vantages and disadvantages. The Ookla speed test system is used and investigated,
because a lot of users, not only Fastweb customers, but also other Internet users
utilizing this platform to examine their speed. For people who are not expert, it
could be the first choice to measure the quality of the service that they are using,
they can start complaining based on these results about the level of their facilities.
The purpose of this study was to find the factors that might affect the result that
the user can experience.

Without doubt, ISPs are trying to improve their excellence of offering services to
customers, and they benefit from new technologies, and in particular for our case,
GPON. Obviously, the objective of the thesis is not to improve this architecture,
but it seemed necessary to remark at least the features of this brand new technology
at the beginning.

Similarly, the main platform which is investigated, needed to be explained more.
Ookla speed test system measures three important factors of Internet speed, round
trip time, download and upload. After talking about the network architecture, the
procedure that this system uses for computing these elements has explained. Also,
the requirements of each method of calculation, should be considered and prepared,
so these demands mentioned too.

The result of each speed measurement, could have its own structure. At chapter
four, this pattern is clarified. Plus, the tools and software that this study has used
for analysing. Clearly, to get more reliable measurements, we need to repeat the
task. These iteration could be frustrating if a correct way will not be considered.
Moreover, an accurate way could be extended easier. With this background, Sele-
nium used for doing repetitive tests. This tool helped us a lot, in the sense that,
our measurements performed at the application layer.

The analyses has started withe hypothesis that, the CPEs are capable enough for
quality assurance. Fortunately, this idea by the help of first data set proved. There

41

were some assumptions about the distance and the influence of round trip time on
the results. In an unusual way, it has been illustrated that, for our case, this im-
portant factor, did not affect our results as we predicted. Our analyses showed that
we should focus more on operating system and the type of browsers. Two main
operating systems and three major browsers at each operating systems chose. The
tests this time performed with equal number of iteration, to prevent driving out-
come based on sloppy samples. In short, it could be stated that, this does not seems
correct to expect similar result with different browser at different operating system.
Moreover, it is not very accurate to compare different browser at different operating
system with each other. As it shown, a specific browser can be the best choice for
a specific operating system, but at the same time the worst option for the other.
Clearly, different operating systems, have their own configurations, and in particular
for out case, the TCP behave differently at distinct platform. It is illustrated that,
even we use the perfect browser at each operating system, the type of connection
can affect the results enormously. So, even we were in the lab and almost in a ideal
condition, but we could not reach to performance of wire condition. Based on this,
we can state that, if we do compare the results of different browsers at a particular
operating system, the type of connection can reduce the efficiency between 10 to 50
percents.

To conclude, it is suggested based on this study, if the Ookla speed test is the tools
for examining the speed, the users should employ the correct browser at each operat-
ing system, and it is better to consider the downstream or upstream circumstances.
As a result, it seems preferable to use Firefox for testing download both in wire and
wireless connection in Windows, but for upload Edge and Chrome are finer choices
in Windows for wire and wifi connection respectively. On the other hand, Safari in
the MAC OS is the shining option in all the situation.

42

Appendix A

Appendix

A.1 Architecture of Test Plant-GPON

Figure A.1: Fastweb test plant architecture

43

A.2 Example of user agent parser

Figure A.2: Python script for extracting OS type

44

Figure A.3: Python script for extracting browser name

A.3 Example of test automation

Figure A.4: Python script for running test on Safari without iteration

45

A.4 Tables of the existing samples

Core Network Number of Samples
Milan 128165

(a) Milan wifi connection total samples

Operating System Number of Samples
Windows 101451
MAC OS 14326
Linux 12369

(b) Milan wifi connection OS samples

Edge Safari Firefox Chrome IE Opera Total
Windows 32028 0 15854 47923 4661 919 101385
MAC OS 0 5228 1202 2634 0 65 9129
Linux 0 27 5128 1005 0 5 6165
Total 32028 5255 22184 51562 4661 989 116679

Table A.2: Milan wifi connection browser samples

Core Network Number of Samples
Rome 40242

(a) Rome wire connection total samples

Operating System Number of Samples
Windows 34214
MAC OS 2915
Linux 3087

(b) Rome wire connection OS samples

Edge Safari Firefox Chrome IE Opera Total
Windows 5491 0 11996 15190 1194 312 34183
MAC OS 0 1332 667 899 0 1 2899
Linux 0 59 2883 74 0 23 3039
Total 5491 1391 15546 16163 1194 336 40121

Table A.4: Rome wire connection browser samples

Core Network Number of Samples
Rome 37495

(a) Rome wifi connection total samples

Operating System Number of Samples
Windows 27087
MAC OS 5068
Linux 5339

(b) Rome wifi connection OS samples

Edge Safari Firefox Chrome IE Opera Total
Windows 5250 0 10221 10545 898 146 27060
MAC OS 0 1800 572 1010 0 0 3382
Linux 0 47 2052 542 0 6 2647
Total 5250 1847 12845 12097 898 152 33089

Table A.6: Rome wifi connection browser samples

46

A.5 Statistics related to CPE, Rtt and distance

This type of results are available in general for 5 browsers, and all the province in
the data set. Name of CPE is written in short as ASK, TEC and DNF, Also, MI and
TO indicate Milan and Turin respectively. Number indicates the available samples
for each case. Company considers that, if the users measure a value greater than or
equal 500 Mbps (Download), 100 Mbps (Upload) and less than or equal 5 ms (Rtt),
they are at good condition.

Figure A.5: Milan - Download

47

Figure A.6: Milan - Upload

48

Figure A.7: Turin - Download

49

Figure A.8: Turin - Upload

50

Figure A.9: Milan - Rtt

51

Figure A.10: Turin - Rtt

52

A.6 Technicolor and DNF figures

(a) A.M. (b) P.M.

Figure A.11: Technicolor download/upload comparison based on Rtt and time

(a) A.M. (b) P.M.

Figure A.12: DNF download/upload comparison based on Rtt and time

53

A.7 Askey residential gateway datasheet

Figure A.13: Askey datasheet

54

A.8 Wireshark statistics

Download and upload speeds are in the scale of Mbps. Total TCP refers to the
all TCP connection from beginning of the tracing until the end. TCP DL and
TCP UP are the number of TCP connections dedicated to download and upload
measurements respectively.

OS Connection Browser Platform Download Upload Total TCP TCP DL TCP UP
MAC Wire Safri Public 941.22 868.74 117 6 6
MAC Wire Safri Private 943.8 900.1 47 6 5
MAC Wire Chrome Public 347.82 807.41 177 6 6
MAC Wire Chrome Private 294.4 797.4 21 6 6
MAC Wire Firefox Public 404.08 383.38 202 13 6
MAC Wire Firefox Private 490.1 432.0 46 15 6
MAC Wifi Safri Public 705.2 835.38 62 6 6
MAC Wifi Safri Private 705.7 853.1 32 6 6
MAC Wifi Chrome Public 657.45 832.86 170 6 6
MAC Wifi Chrome Private 678.3 854.5 16 6 6
MAC Wifi Firefox Public 408.82 333.97 178 13 6
MAC Wifi Firefox Private 408.2 337.5 57 14 6
Windows Wire Edge Public 375.45 146.92 121 6 4
Windows Wire Edge Private 323.3 486.6 141 6 21
Windows Wire Chrome Public 353.89 68.48 190 6 6
Windows Wire Chrome Private 344.2 784.9 89 6 6
Windows Wire Firefox Public 407.64 64.98 211 6 6
Windows Wire Firefox Private 302.4 336.1 100 32 6
Windows Wifi Edge Public 410.26 53.98 175 6 4
Windows Wifi Edge Private 415.8 151.5 45 6 27
Windows Wifi Chrome Public 263.41 48.18 202 6 6
Windows Wifi Chrome Private 320.1 244.6 52 6 5
Windows Wifi Firefox Public 399.03 44.72 144 6 6
Windows Wifi Firefox Private 311.7 135.0 54 32 6

Table A.7: Milan TCP Streams

OS Connection Browser Platform Download Upload Total TCP TCP DL TCP UP
MAC Wire Safri Public 943.66 150.53 50 6 4
MAC Wire Safri Private 940.0 915.2 14 6 6
MAC Wire Chrome Public 395.08 122.02 104 6 6
MAC Wire Chrome Private 435.3 888.8 41 6 6
MAC Wire Firefox Public 552.08 120.64 217 6 6
MAC Wire Firefox Private 460.8 409.2 108 12 6
MAC Wifi Safri Public 572.95 814.2 50 6 6
MAC Wifi Safri Private 623.3 840.2 19 6 6
MAC Wifi Chrome Public 602.13 843.23 84 6 6
MAC Wifi Chrome Private 668.6 799.6 34 6 6
MAC Wifi Firefox Public 391.32 326.29 121 13 6
MAC Wifi Firefox Private 388.2 331.7 51 14 6
Windows Wire Edge Public 207.87 66.73 130 6 6
Windows Wire Edge Private 222.3 443.4 56 6 32
Windows Wire Chrome Public 191.67 58.08 158 6 6
Windows Wire Chrome Private 292.5 714.3 72 6 6
Windows Wire Firefox Public 234.7 51.39 171 6 6
Windows Wire Firefox Private 199.9 227.1 114 30 6
Windows Wifi Edge Public 413.64 54.41 81 6 6
Windows Wifi Edge Private 431.2 186.4 50 6 25
Windows Wifi Chrome Public 323.56 50.58 142 6 6
Windows Wifi Chrome Private 349.4 227.8 68 6 6
Windows Wifi Firefox Public 363.11 31.93 123 6 2
Windows Wifi Firefox Private 353.7 141.9 52 32 6

Table A.8: Rome TCP Streams

55

Bibliography

[1] M. M. Al-Quzwini, “Design and implementation of a fiber to the home ftth ac-
cess network based on gpon,” International Journal of Computer Applications,
vol. 92, no. 6, 2014.

[2] D. Gutierrez, K. S. Kim, S. Rotolo, F.-T. An, and L. G. Kazovsky, “Ftth
standards, deployments and research issues,” in 8th Joint Conference on Infor-
mation Sciences, Salt Lake City, Utah, pp. 21–26, 2005.

[3] ITU-T, “Gigabit-capable passive optical networks (gpon): General character-
istics,” 2008.

[4] A. ANILKUMAR, “Simulative performance evaluation of gpon and wdmpon,”
International Journal of Latest Research in Science and Technology, vol. 2,
pp. 58–61, 2013.

[5] C. F. Lam, Passive optical networks: principles and practice. Elsevier, 2011.

[6] https://support.ookla.com/hc/en-us/articles/115003369327-Speedtest-Custom-Overview.

[7] https://support.ookla.com/hc/en-us/articles/115000234391-How-Does-Speedtest-%
20Custom-Work-.

[8] https://support.ookla.com/hc/en-us/articles/234578628-Speedtest-Server-.

[9] https://support.ookla.com/hc/en-us/articles/234578448-What-fields-are-included-.

[10] https://support.ookla.com/hc/en-us/articles/234578408-What-fields-are-included-.

[11] https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent.

[12] https://tools.ietf.org/html/rfc2616#section-14.43.

[13] https://blog.router-switch.com/2017/11/what-are-sfp-ports-used-for/.

[14] https://www.pcmag.com/encyclopedia/term/64582/sfp.

[15] https://github.com/ua-parser/uap-python.

[16] https://www.seleniumhq.org/docs/01 introducing selenium.jsp#
introducing-selenium.

[17] Z. H. Stanislav Stresnjak, “Usage of robot framework in automation of func-
tional test,” ICSEA 2011 : The Sixth International Conference on Software
Engineering Advances.

56

https://support.ookla.com/hc/en-us/articles/115003369327-Speedtest-Custom- Overview
https://support.ookla.com/hc/en-us/articles/115000234391-How-Does-Speedtest-%20Custom-Work-
https://support.ookla.com/hc/en-us/articles/115000234391-How-Does-Speedtest-%20Custom-Work-
https://support.ookla.com/hc/en-us/articles/234578628-Speedtest-Server-
https://support.ookla.com/hc/en-us/articles/234578448-What-fields-are-included-
https://support.ookla.com/hc/en-us/articles/234578408-What-fields-are-included-
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://tools.ietf.org/html/rfc2616#section-14.43
https://blog.router-switch.com/2017/11/what-are-sfp-ports-used-for/
https://www.pcmag.com/encyclopedia/term/64582/sfp
https://github.com/ua-parser/uap-python
 https://www.seleniumhq.org/docs/01_introducing_selenium.jsp#introducing-selenium
 https://www.seleniumhq.org/docs/01_introducing_selenium.jsp#introducing-selenium

[18] https://en.wikipedia.org/wikiCumulative distribution function#cite
note-KunIlPark-1.

[19] https://en.wikipedia.org/wiki/Histogram.

[20] https://www.andata.at/en/software-blog-reader/
why-we-love-the-cdf-and-do-not-like-histograms-that-much.html.

[21] https://iandzy.com/histograms-cumulative-distribution/.

[22] https://tools.ietf.org/html/rfc7230#section-6.3.

[23] https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection
management in HTTP 1.x.

[24] https://en.wikipedia.org/wiki/HTTP persistent connection#Advantages.

57

 https://en.wikipedia.org/wiki Cumulative_distribution_function#cite_note-KunIlPark-1
 https://en.wikipedia.org/wiki Cumulative_distribution_function#cite_note-KunIlPark-1
 https://en.wikipedia.org/wiki/Histogram
 https://www.andata.at/en/software-blog-reader/why-we-love-the-cdf-and-do-not-like-histograms-that-much.html
 https://www.andata.at/en/software-blog-reader/why-we-love-the-cdf-and-do-not-like-histograms-that-much.html
 https://iandzy.com/histograms-cumulative-distribution/
 https://tools.ietf.org/html/rfc7230#section-6.3
 https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x
 https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x
 https://en.wikipedia.org/wiki/HTTP_persistent_connection#Advantages

	Introduction
	Problem statement
	Objective and layout of the thesis

	Background
	FTTH Access Network
	PON
	GPON

	Ookla Speedtest
	Ookla Speedtest Overview
	Test Component
	Ping/Jitter
	Download
	Upload

	One Measurement Sample
	Speedtest Server Requirements
	Network Requirements
	Server Requirements
	Supported Operating Systems for OoklaServer
	Supported Web Servers

	Methodology
	Dataset
	Dataset overview
	Dataset fields

	Tools
	Selenium
	Other tools

	Results
	Data analysis of first data set
	A general view of core networks

	Impact of CPE and distance
	Comparing Rtt based on different CPE and distance
	Comparing download/upload based on Rtt and time

	Impact of operating system and browser
	Comparing download/upload/Rtt based on OS and browser

	Test automation
	Main goal
	Results assessment

	Packet tracing
	Analysis of traces
	Number of TCP connection
	Connection management in HTTP/1.x

	Conclusion
	Appendix
	Architecture of Test Plant-GPON
	Example of user agent parser
	Example of test automation
	Tables of the existing samples
	Statistics related to CPE, Rtt and distance
	Technicolor and DNF figures
	Askey residential gateway datasheet
	Wireshark statistics

