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Abstract

While AI techniques have found many successful applications in autonomous sys-
tems, many of them permit behaviours that are difficult to interpret and may lead to
uncertain results. We follow the “verification as planning” paradigm and propose
to use model checking techniques to solve planning and goal reasoning problems
for autonomous systems. We give a new formulation of Goal Task Network (GTN)
that is tailored for our model checking based framework. We then provide a sys-
tematic method that models GTNs in the model checker; Process Analysis Toolkit
(PAT). We present our planning and goal reasoning system as a framework called
Goal Reasoning And Verification for Independent Trusted Autonomous Systems
(GRAVITAS) and discuss how it helps provide trustworthy plans in a dynamic
environment. Finally, we demonstrate the proposed ideas in an experiment that
simulates a survey mission performed by the REMUS-100 autonomous underwa-
ter vehicle.
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Chapter 1

Introduction

Artificial intelligence, characterized as
intelligence shown by machines, has
numerous applications in the modern
society. In detailed manner, it is Weak
AI, the kind of AI where programs
are made to perform explicit tasks,
that is being utilized for a wide extent
of uses including medical diagnosis,
electronic trading and exchanging plat-
forms, robot control, and remote sens-
ing. Artificial intelligence has been utilized to create and propel various fields and
enterprises, including finance, health care, training, transportation, and that’s only
the tip of the iceberg.

This dissertation is inspired by the work of Hadrien Bride, Zhe Hou, Jin
Song Dong and few other notable people. In this research, we will apply AI tech-
niques which will allow producing robust ways to deal with modelling behavior,
empowering agents’ reaction to unforeseen battlefield conditions and improve-
ment of autonomous decision making ability. Mimicked agents in meaningful
simulation and virtual conditions ought to be fit for getting objectives and apply-
ing intellectual, critical thinking procedures to survey a circumstance and self-
sufficiently decide the best way to achieve objectives.

This dissertation will supply sufficient knowledge about Automated Plan-
ning and Goal Reasoning which provides a framework for developing methods
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that will enable autonomous agents capable of problem solving; considering mul-
tiple courses of action; coordinating with friendly forces; following chain of com-
mand; and using Tactics, Techniques, and Procedures (TTPs) to direct tasks.
These agents execute complex undertakings given just mission objectives, begin-
ning/limit conditions, and limitations.

1.1 Planning

Planning is the process of finding a sequence of actions that will achieve a goal. By
understanding and anticipating the outcomes of specific actions and acting with
intent, the agent can engage in problem solving, which is difficult with scripted
behaviors.

Planning is a central and hard computer science problem that is essential
in the development of autonomous systems. Many existing solutions require a
controlled environment in order to function correctly and reliably. However, there
are situations where adaptive autonomous systems are required to run for a long
period of time and cope with uncertain events during the deployment. Here we
will apply the automated planning techniques that will enable our agent to plan
automatically when such uncertain events occur to achieve the specific goal which
will lead itself to the completion of it’s directed mission.

1.1.1 Automated Planning

Automated planning, sometimes showed as just AI planning, is a kind of artifi-
cial intelligence that concerns the affirmation of techniques or activity sequences,
typically for execution by intelligent agents, self-governing robots and unmanned
vehicles. As opposed to traditional control and order issues, the arrangements
are entangled and ought to be found and streamlined in multidimensional space.
Automated planning is additionally identified as the decision theory.

Automated planning innovation now plays a vital role in an assortment of
requesting applications, ranging from controlling space vehicles and robots to
making the game of bridge. These practical applications create new opportuni-
ties among theory and practice: seeing what works well in practice leads to better
speculations of planning, and better hypotheses lead to better execution of useful
applications.
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Our work is motivated by the requirements of next generation autonomous
underwater vehicles (AUV) in law enforcement and defense industries. More par-
ticularly, we are currently developing a decision making system suitable for an
AUV designed to stay underwater for up to 6 months, with very limited commu-
nication with the outside world. The AUV is expected to carry out survey missions
on its own and report details of its surveillance at semi-regular intervals. During
the mission, the AUV may encounter underwater currents, deep ocean terrain,
fishing boats, objects and places of interest, hostile vehicles etc., each of which
may affect its ability to achieve its goals. The AUV must be able to decide which
goals to pursue when such uncertain events occur and plan tasks to achieve the
goals in an agile manner.

In the face of uncertain events in execution, automated planning becomes
an even harder problem. In this case, the agent’s goal may be affected and thus
both selecting a new goal and re-planning are necessary. This generally follows a
note-assess-guide procedure, where note detects discrepancies (e.g., [1]), assess
hypothesizes causes for discrepancies, and guide performs a suitable response [2].
Unlike classical planning where the goal is fixed, when an uncertainty is detected,
it is often necessary to change the current goal. This process will be done by
the Goal reasoning technique which will be discussed in detail in the following
section.

1.2 Goal Reasoning

Goal reasoning concerns the capacity of an intelligent agent to reason about, fig-
ure, select, and deal with its goals/destinations. Goal reasoning contrasts from
structures in which agents are determined what goals to accomplish, and perhaps
how goals can be decayed into sub-goals, yet not how to powerfully and self-
sufficiently choose what goals they should seek after. This requirement can be
constraining for agents that understand errands in complex conditions when it
isn’t attainable to physically build/encode total information of what goals ought
to be sought after for each possible state. However, in such conditions, states
can be reached to an action failure, opportunities can emerge, and occasions can
generally occur that unequivocally persuade changing the goals that the agent is
currently trying to accomplish.

Furnishing an agent with the capacity to reason about its goals can expand
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execution measures for certain applications. Ongoing advances in hardware and
software platforms (including the accessibility of fascinating/complex simulators
or databases) have progressively allowed the use of smart agents to task that in-
clude partially observable and dynamically-updated states (e.g., because of un-
foreseeable exogenous events), stochastic activities, numerous (coordinating, im-
partial, or antagonistic) agents, and different complexities. Accordingly, this is
a proper time to encourage discourse among researchers with interests in goal
reasoning.

Goal reasoning is about selecting a suitable goal for the planning process.
There have been various formulations that attempt to solve planning problems in a
dynamic environment, including hierarchical planning methods, such as hierarchi-
cal task networks (HTN) [3] and hierarchical goal networks (HGN) [4], and goal
reasoning systems such as the Metacognitive Integrated Dual-Cycle Architecture
(MIDCA) [5] and the goal lifecycle model [6, 7].

In general AI theory, goal reasoning comprises of two parts:

1. Goal Seeking

2. Reasoning

1.2.1 Goal Seeking

Goal Seeking links the reasoning and planning processes to actual behavior, trans-
lating planning operators into actions in the underlying simulation.

Goal seeking is the way toward finding the right input value when just the
output is known. The capacity of goal seeking can be incorporated with various
types of computer software programs like Microsoft Excel. Goal seeking is a gen-
eral term used to depict the procedure associated with making sense of your input
value dependent on a definitely realized output value. The procedure includes
utilizing a particular administrator in a recipe, which can be determined utilizing
computer software.

Goal seeking is one of the apparatuses utilized in ”what if analysis” on com-
puter software programs. A what if analysis is a process in which investigation
is the way toward changing qualities in (Microsoft Excel) cells to perceive how
these progressions will influence equation results on the worksheet. When you
are goal seeking, you are playing out a what if analysis on a given value, or the
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output. Thus, fundamentally, you would make a situation by asking ”what if the
output was X” — or essentially, a cause and effect circumstance.

1.2.2 Reasoning

Reasoning is the act of adding new facts to the agent’s knowledge base and using
these facts to select the agent’s goal. This includes perception of the environment,
spatial reasoning, and the application of knowledge rules to determine new facts.

Two types of logical reasoning can be differentiated in addition to formal
deduction: induction and abduction. Given a prerequisite or proposition, one can
explain the following.

• Deductive reasoning decides if reality of an end can be resolved for that
rule, in light of the truth of the premises. Example: ”When it rains, things
outside get wet. The grass is outside, consequently: when it rains, the grass
gets wet.” Mathematical rationale and philosophical rationale are ordinarily
connected with this sort of reasoning.

• Inductive reasoning endeavors to help an assurance of the rule. It theorizes
a rule after various models are taken to be a determination that pursues
from a precondition as far as such a rule. Example: ”The grass got wet
various occasions when it rained, in this manner: the grass dependably gets
wet when it rains.” While they might be enticing, these contentions are not
deductively substantial, see the issue of induction. Science is related with
this sort of reasoning.

• Abductive reasoning, a.k.a. surmising to the best clarification, chooses a
pertinent arrangement of preconditions. Given a genuine decision and a
rule, it endeavors to choose some potential premises that, if true also, can
support the conclusion, though not uniquely. Example: ”When it rains, the
grass gets wet. The grass is wet. In this manner, it may have rained.” This
sort of reasoning can be utilized to build up a theory, which in turn can
be tried by extra reasoning or information. Diagnosticians, detectives, and
researchers frequently utilize this kind of reasoning.

Within the context of a mathematical model, the three kinds of reasoning
can be described as follows. The construction/creation of the structure of the
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model is abduction. Assigning values (or probability distributions) to the param-
eters of the model is induction. Executing/running the model is deduction [8].

1.3 Model Checking

In computer science, model checking or property checking is, for a given model of
a framework, comprehensively and naturally checking whether this model meets
a given determination. Ordinarily, one has hardware or software systems as a
primary concern, though the particular contains security necessities, for example,
the nonattendance of gridlocks and comparable basic expresses that can make
the framework crash. Model checking is a technique for naturally confirming
rightness properties of limited state frameworks.

So as to tackle such an issue algorithmically, both the model of the frame-
work and the determination are defined in some exact scientific language. To this
end, the issue is planned as a task in logic, in particular to check whether a given
structure fulfills a given legitimate equation. This general idea applies to numer-
ous sorts of logics and appropriate structures. A basic model checking issue is
confirming whether a given equation in the propositional logic is fulfilled by a
given structure.

Although some of the above formalisms have been successfully applied to
solve real life problems, the verification aspect of the problem remains to be ad-
dressed. Usually planning is solved by heuristic search, but this approach does
not confer a sufficient level of trust. The correctness, safety, and security issues
of autonomous systems are particularly important in mission-critical use cases
such as our AUV example. To tackle this problem, we turn to formal methods,
which have been used to solve planning problems in the literature. For exam-
ple, Giunchiglia et al. proposed to solve planning problems using model check-
ing [9]; Kress-Gazit et al.’s framework translates high-level tasks defined in linear
temporal logic (LTL) [10] to hybrid controllers [11]; Bensalem et al. [12] used
verification and validation (V&V) methods to solve planning.

Following the above ideas, we propose a model checking based framework
for hierarchical planning and goal reasoning. Model checking is a technology to
automatically verify whether certain properties are satisfied by a model using ex-
haustive search. Model checking is especially strong in addressing uncertain and
concurrent behaviours. This technology has been successfully applied to mod-
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elling and verifying uncertain environments, such as network attacks which may
involve arbitrary behaviour in communication protocols [13].

1.3.1 PAT - An Enhanced Model Checker

PAT (Process Analysis Toolkit) [14] is a self-contained framework for composing,
simulating and reasoning of concurrent, real-time systems and other possible do-
mains. It comes with user friendly interfaces, featured model editor and animated
simulator. Most importantly, PAT implements various model checking techniques
catering for different properties such as deadlock-freeness, divergence-freeness,
reachability, LTL properties with fairness assumptions, refinement checking and
probabilistic model checking. Besides, we choose PAT because its verification
outcome includes a witness trace which can be effectively extracted to form a
plan.

Since our planning method is realised in PAT, we can formulate inconsis-
tency and incompatibility as reachability/LTL properties [15] and verify them on
the fly. For instance, when a new goal is generated during execution, we can
check whether the new goal conflicts with existing goals, and select the subset
of goals that are compatible with each other. We can also verify the planning
model itself, such that a given planning model does not output plans that may
lead to undesired events. Based on the use of PAT, we propose a novel planning
and goal reasoning system called Goal Reasoning And Verification for Indepen-
dent Trusted Autonomous Systems (GRAVITAS), which is amiable to verifiable
and explainable plans for autonomous systems. We demonstrate our ideas in a
simulation environment which is compatible with modern AUVs.
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Chapter 2

Preliminaries with Motivating
Example

2.1 Preliminaries

This section is inspired by the related work of Hadrien Bride et al. [16] briefly
introduces necessary concepts upon which this work is based. It notably presents
the concepts behind model checking as well as PAT – a mature and efficient model
checker.

Model checking is an automatic technique for formally verifying finite-state
systems. In the context of model checking, specifications of finite-states systems,
i.e., properties to be verified by the systems, are often expressed in temporal logic
whereas the system to be checked is modelled as a state transition graph. Model
checking involves a search procedure which is used to determine whether or not
the state-transition graph satisfies the specifications [17].

Models that can be verified using PAT [14] may take several forms, includ-
ing: CSP# models, timed automata, real-time models and probabilistic models.
The latter ones are extensions of the CSP# language.

In this work, we mainly use CSP# – an high-level modelling language sup-
ported by PAT. Formally, a CSP# model is a tuple hVar, initG,Pi where Var is a
finite set of global variables, initG is the initial valuation of global variables, and
P is a process. Variables are typed: either by a pre-defined type (e.g., boolean,
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integer, array) or by any user-defined data type. When the type of a variable is
not explicitly stated, then, by default, the variable is assumed to be an integer. For
instance, an integer variable v and an integer array a can respectively be defined
as follows :

1 v a r v = 0 ;
2 v a r a [ 3 ] : { 0 . . 5 } = [ 0 ( 3 ) ] ;

The range of a variable can be specified. For instance, the annotation ‘:
{0..5}’ specifies that the value of each element in a must be in the close interval
[0,5]. The three values of a are initialised with value 0, as denoted by right-hand
side of a’s declaration – i.e., [0(3)] is equivalent to [0,0,0].

A CSP# process is defined using the following syntax:
1 P ( x1,x2, ... ) = Exp ;

where P is the process name, x1,x2, ... are the optional parameters of the process,
and Exp is a process expression, which defines the computation of the process.
The running example in this paper uses the following subset of CSP#, shown in
Backus–Naur form:

1 Exp : : = Stop | Skip | Ev{Prog } → Exp | Exp ; Exp | Exp | | Exp
2 | Exp [ ] Exp | Exp <> Exp | i f ( Cond ) {Prog1} e l s e {Prog2}
3 | [ Cond ] Exp

Let P and Q be CSP# processes. The process expression Stop terminate the
expression of a process. The Skip expression does nothing.The process expression
e{Prog} → P first activates the event labelled by e and executes the statements
given by Prog, then it proceeds with the execution of P. The statements of Prog
are defined by the syntax and semantics of C# and can therefore manipulate com-
plex data types. The processes P;Q and P||Q respectively express the sequential
and parallel composition of processes P and Q. We use P[]Q to state that either P
or Q may execute, depending on which one performs an event first. On the other
hand, P <> Q non-deterministically executes either P or Q. The expression i f
(Cond) Prog1 else Prog2 is self-explanatory. Finally, the expression [Cond] P,
where Cond is a boolean expression, defines a guarded process such that P only
executes when Cond is satisfied.

We can check whether a CSP# process P satisfies a given specification using
the following expression:

1 # a s s e r t P ( x1,x2, ... ) p r o p e r t y ;
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Formula Meaning
2 f f holds in all subsequent states.
3 f f holds somewhere in the subsequent states.
X f f holds in the next state.
f1U f2 f2 holds somewhere, and before that, f1 must hold.
f1R f2 f2 must hold until f1 is true; if f1 is never true, then f2 holds forever.

Table 2.1: The syntax and meaning of LTL operators.

where property can be deadlock f ree (the process does progress until reaching a
terminating state), divergence f ree (the process performs internal transitions for-
ever without engaging any useful events), deterministic (the process does not in-
volve non-deterministic choices), and nonterminating (no terminating states can
be reached). Also, we can check whether the transition system can reach a state
where a boolean expression Cond is satisfied using:

1 # a s s e r t P ( x1,x2, ... ) r e a c h e s Cond ;

Additionally, we can check whether a process P satisfies a LTL (cf. Huth et al.’s
book [18, Section 3.2.1]) formula F using:

1 # a s s e r t P ( x1,x2, ... ) |= F ;

The syntax and meaning of LTL operators is given in Table 2.1.

When checking LTL properties, PAT produces a counter-example when the
property to be checked cannot be satisfied, and only outputs “yes” when when
the property can be satisfied. For reachability properties, which are widely-used
in the planning technique of this paper, PAT outputs different information. When
the desired states cannot be reached, PAT outputs “no”. When the desired states
can be reached, PAT produces a witness trace of actions that leads to the desired
states. When model checking reachability properties, the user can specify one of
the following verification engines: If a breath-first search based engine is used and
the desired states can be reached, then PAT will output the shortest witness trace,
which is useful when finding certain “optimal” plans. Furthermore, the user can
tell PAT to output the witness trace that optimises certain criterion. For example,
the following code will produce witness traces that respectively yield maximum
reward and minimum penalty, assuming that Cond is reachable and reward and
penalty are predefined variables:

1 # a s s e r t P ( x1,x2, ... ) r e a c h e s Cond wi th max ( reward ) ;
2 # a s s e r t P ( x1,x2, ... ) r e a c h e s Cond wi th min ( p e n a l t y ) ;
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2.2 Motivating Example

One of the common usages of AUVs is surveying underwater areas and reporting
back the locations of potential objects of interest. For instance, in the search
for MH370, the missing aircraft from Malaysia Airlines Flight 370, AUVs were
deployed in deep ocean areas to locate debris of the aircraft [19]. There are also
demands and interests from the defence industry to demonstrate the abilities to
scan underwater areas for naval mines and dumped arms, as shown in the Wizard
of AUS 2018 Autonomous Warrior Trial [20].

Figure 2.1: The aircraft that disappeared, taking-off back in 2011

In this dissertation, we run an example with the following context that
demonstrates a common survey mission for the AUV: the AUV is to be deployed
at the initial position and to be recovered at the final position. During the mission,
the AUV is expected to scan three survey areas and record the locations of objects
of interest upon identification. Although our technique is general and could be
used on all forms of AUVs, we specifically target a torpedo-shaped AUV named
REMUS-100 [21], which is equipped with side scanners that are able to detect
surrounding objects. The side scanners have a scan range of about 15 meters and
therefore, in order to cover large area, the AUV should perform a lawn mowing
pattern so that the survey area is fully covered. The overall mission is visualized
in Figure 2.2.

The challenges of such a survey mission include optimizing the path to min-
imize energy consumption of the AUV. To deal with uncertainties of the environ-
ment, such as changes of survey areas, unexpected events during the transit from
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Figure 2.2: An illustration of the overall survey mission.

one location to another, unprecedented appearance of the hostile ships; though
our technique must be agile enough to accommodate the dynamics of the environ-
ment. The AUV also needs to make smart decisions autonomously, these include
the order in which to visit the survey areas and the entry and exit point of each
survey area that maximize trajectory efficiency.
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Chapter 3

Planning & Goal Reasoning

This chapter discusses how to solve Goal Task Network planning problems us-
ing model checking. We build upon the idea of using model checking to solve
classical planning problems [22]. Given a classical planning problem containing
an initial state, a goal, and a set of actions, one can construct a system model
by translating every action into a corresponding state transition in model check-
ing. The initial state of the planning problem is also the initial state of the model
by assigning value to each variable accordingly. The goal is expressed using a
propositional formula. Then we use model checking to verify the negation of the
formula, so that the model checker provides a counterexample path consisting of
actions that lead to a state where the formula is satisfied. In this way, a classical
planning problem is converted to model checking of the truth of a formula.

Here, we first give a new formalism of the GTN that is suitable for mod-
elling in CSP#. We then propose a model checking based approach to model
GTN and solve the planning problem. We also discuss how goal selection – a
vital aspect of goal reasoning – can be done in this approach.

3.1 Goal Task Networks

Goal task networks (GTNs) are an extension and unification of hierarchical task
networks and hierarchical goal networks [23, 24]. The main conceptual advan-
tage of hierarchical task networks (HTNs), when compared to flat-structured task
networks, is their ability to describe dependencies among actions in the form of
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nested task networks. HTNs have an explicit task hierarchy which generally re-
flects the hierarchical structure of many real-world planning applications. This
hierarchy has decomposition methods which can then be used during the plan-
ning phase following the well known divide and conquer scheme. Due to this,
HTNs planners are much more scalable and performant than classical planners in
practice if the hierarchy is well-designed.

Goal task networks of Alford et al. [24] are similar to hierarchical task net-
works but also consider goals and sub-goals in addition to tasks and sub-tasks.
As a result, they inherit the advantages of HTNs but also provide flexibility and
reasoning capabilities in goal reasoning. We give an adaptation of the original
GTN below with a focus on guarded state transitions, which are in the same form
as processes in CSP#.

Let V = {v0, · · · ,vd−1} be a finite set of variables. Without loss of general-
ity, the state s of a goal task network over V is defined as a function s : V → N
assigning a non-negative integer to each variable of V . The set of goal task net-
works E is recursively defined as e ∈ E ⇔ e = hEe,ge,τei where:

• Ee ⊆ E is a finite set of sub-tasks/goals,

• ge : (V → N)→{⊥,>} is the guard associated with e, and

• τe : (V → N)→ (V → N) is the state transition function associated with e.

Let e = hEe,ge,τei be a goal task network. Then e can conceptually rep-
resent a task or a goal. In the sequel we shall loosely refer to e as a task or a
goal when the context is clear. When e is a task, its guard models the conditions
necessary for the task to begin. When e is a goal, its guard models the conditions
under which the goal is achieved.

Goal task networks whose set of sub-tasks/goals is empty are called prim-
itive tasks/goals and describe the elementary block of goal task network execu-
tions.

The state of a goal task network evolves during its execution according to
the following firing rules: A task/goal e is enabled in state s if and only if ge(s) =
>. A task/goal enabled in state s can be fired, when it does so, it leads to a new
state s0 = τe(s).

If e is a primitive task/goal then s e−→ s0 denote the fact that e is enabled in
state s and that its firing leads to state s0. If e is not a primitive task/goal then
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s e−→ s0 denote the fact that there exists a valid execution of e starting in state s and
leading to state s0.

Given an initial state s0, a valid execution of e is a sequence e0, · · · ,en−1,e,
of tasks/ goals, where n ∈ N, such that {e0, · · · ,en−1} ⊆ Ee and s0

e0−→ ·· · en−1−−→
sn

e−→ sn+1. The set of all valid execution starting from a given state s is denoted
by Σs.

A GTN planning problem is tuple P = he, ii where e is goal task network
and i is the initial state of e. The set of solutions for P is the the set of all valid
plans Σi, i.e., the set of all valid executions of e starting in state i.

A formalised model of our GTN definitions in Isabelle/HOL is available
online 1. The following theorem establishes that our GTN formalism can be used
to represent the GTN of Alford et al [24]. The other direction is not important
here.

Theorem 3.1.1. Given a GTN (I,≺,α) in Alford et al.’s notation [24] where I is
the set of goals and tasks, ≺ is a preorder between goals and tasks, and α is a set
of labels/names of goal/task instances, there is a corresponding GTN hE,g,τi in
the above definition.

Proof. (Sketch) The above definition simplifies Alford et al.’s notation by not
explicitly including names/labels of instances of goals and tasks in the definition.
Here we just assume that we need to construct a task/goal in the form of hE,g,τi
for each task/goal in I and preserve their relation in the preorder ≺.

Each primitive task/goal in I corresponds to a primitive task/goal hEp,gp,τpi
in E where the Ep part is empty. For each primitive task in I, there is a corre-
sponding operator o which is a tuple (n,χn,e). Correspondingly, the guard gp is
the precondition χn, and the state transition τp captures the effect e in the operator
application.

For a primitive goal release of hE 0p,g0p,τ 0pi, the guard g0p is the Boolean
condition of the goal, and the transition function τ 0p is the identify function.

For each task decomposition using a task method (c,χc,gtnc), the corre-
sponding task hEc,gc,τci has a guard gc = χc, and the Ec part captures the sub-
GTN gtnc. The transition function τc is the identity function.

1https://figshare.com/articles/GTN_thy/6964394
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Similarly, for each goal decomposition using a goal method (g,χg,gtng), we
can construct a goal hEg,gg,τgi where Eg captures the sub-GTN gtng, the guard
gg is the precondition χg, and the transition function τg is the identity function.

The preorder ≺ is captured by set membership relation of tasks/goals and
sub-tasks/sub-goals in the E part.

3.2 Translating GTN Into CSP#

In a previous work [22], it has been formally established a relation between the
classical planning domain and the model checking domain, which helps to reduce
errors (e.g., lack of type of information) in manual specification or translation. We
provide formal semantics for translating PDDL to CSP# and have implemented
the translation in our model checker - Process Analysis Toolkit (PAT). This im-
plementation has been validated with several case studies, which show that using
the existing model checker (PAT) to solve classical planning problems is both
feasible and efficient.

In this work, we propose a translation from GTNs into CSP# in order to
treat goal reasoning within the planning algorithm.

Let e = hEe,ge,τei and {e0, · · · ,en−1} ⊆ Ee be GTNs defined over the set
of variables V = {v0, · · · ,vd−1}. Further, let i be the initial state of e. The GTN
planning problem P = he, ii is modelled as follows.

First, the variables are declared and initialised to their initial values.
1 v a r v0 = i ( v0 ) ; · · ·
2 v a r vd−1 = i ( vd−1 ) ;

Second, the GTN e and its sub-GTNs, as well as their sub-GTNs, are recursively
defined using to the following template.

1 t r a n s e ( ) = [ ge ] e v e n t e {τe} → Skip
2 sub e ( ) = e0 ( ) <> · · · <> en−1 ( ) ; ( sub e ( ) <> Skip )
3 e ( ) = sub e ( ) ; t r a n s e ( )

The process transe() is guarded by the boolean predicate ge and, if executed,
transforms the current state into its successor state according to the state transition
τe. Note that τe can be effectively encoded by the set of C# statements as C# is
Turing complete. Further, the process sube() models the set of e’s sub-GTNs that
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can be executed before executing transe(). In sube(), we use non-deterministic
choices <> to connect the execution of sub-GTNs. The last part of sube, i.e.,
(sube() <> skip), allows the process to repeat zero or more times, which effec-
tively chooses and executes any sub-GTN zero or more times. This general trans-
lation allows the execution of GTN e to be decomposed to the execution of any
subset of sub-GTNs {e0, · · · ,en−1} for any number of times. Finally, the CSP#
process e() links the processes sube() and transe() to model the behaviour of the
GTN e.

Theorem 3.2.1. For every GTN hE,g,τi, there is a corresponding model in CSP#.

Proof. (Sketch) By the construction of the CSP# process e() and according to the
definition of the GTN e, all valid transition sequences of the CSP# process e()
correspond to valid plans of the GTN planning problem P.

Example: Take the overall control of the AUV survey mission as an example. At
this granularity, the GTN is responsible for making high-level decisions regarding
the mission, such as which survey area to visit, in which order, and how to visit
it (enter from which direction and exit from which direction). Assuming all the
predefined locations are stored in an array, a primitive task at this level is goto(i),
which moves the AUV to location i:

1 go to ( i ) = [ v i s i t e d [ i ] == 0] go . i {
2 c u r r e n t P o s i t i o n [ 0 ] = p o s i t i o n [ i ] [ 0 ] ;
3 c u r r e n t P o s i t i o n [ 1 ] = p o s i t i o n [ i ] [ 1 ] ;
4 v i s i t e d [ i ] = 1 ;
5 } → Skip ;

In the goto(i) task, the vector visited[] records the status of each location. The
precondition visited[i] == 0 ensures that each location is visited only once. Since
goto(i) is a primitive task, it does not contain subtasks/subgoals, therefore, its
formulation only involves the guard condition and the transition.

The compound task survey(i) dictates which locations to visit for survey
area i. This task does not have explicit state transitions, but instead performs
state transitions in its subtasks (goto() tasks). Following the translation template,
survey(i) is formulated as:

1 s u r v e y ( i ) = ( go to ( i0 ) <> · · · <> go to ( in ) ) ; ( s u r v e y ( i ) <> Skip ) ;

where i0, · · · , in are the indices of the locations in survey area i.

Similarly, the survey mission is formulated as below:
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1 m i s s i o n ( ) = ( s u r v e y ( 0 ) <> · · · <> s u r v e y (m) ) ; ( m i s s i o n ( ) <> Skip ) ;

where 0, · · · ,m are the indices for survey areas.

The overall GTN involves initialising the start position of the AUV, per-
forming the survey mission, and returning to the final position for recovery. This
is modelled as below where we omit the code of initialise():

1 r e n d e z v o u s ( ) = go to ( f i n a l P o s i t i o n ) ;
2 main ( ) = ( i n i t i a l i s e ( ) <> m i s s i o n ( ) <> r e n d e z v o u s ( ) ) ; ( main ( ) <>

Skip ) ;

However, since the motivating example specifies that the three sub-GTNs
of main() should be executed sequentially, the above definition can be optimised
as below:

1 main ( ) = i n i t i a l i s e ( ) ; m i s s i o n ( ) ; r e n d e z v o u s ( ) ;

3.3 Planning Under Resource Constraints

For most planning applications, considering resource constraints, such as limited
amount of available energy, is critical to the quality and relevance of the produced
plan. This is particularly true in the application domain we consider as strategic
commanders aim at launching AUVs that are meant to operate autonomously for
extended period of time with limited resources. Therefore, it is essential that
these resource constraints are correctly modelled in order to be able to produce
plans that can be fully realised, i.e., plans that do not require more resources than
available. Also, as unexpected events may arise during the execution of plans, it
is necessary to formulate plans that minimise resource consumption in order to
maximise the AUV’s resilience.

Suppose we wish to consider a finite set of m resources R = {r0, · · · ,rm−1}
and certain tasks that may consume or produce a finite and discrete amount of one
or several of these resources. To do so we introduce, to the GTN modelling of a
planning problem, a set of m new variables VR = {vr0, · · · ,vrm−1} modelling the
amount of available resources. In the initial state, the values of these variables cor-
respond to the amount of resources available on launch. When a tasks e consumes
one or several resources, its guard ge is extended so that it can only be executed if
the resources needed to perform it are available before it executes. Additionally,
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its state transition function τe is also extended so that it decreases the values of
the resource variables in order to reflect the resources consumed. Similarly, when
a tasks e produces one of several resources, its state transition function τe is ex-
tended so that it increases the values of the resource variables in order to reflect
the resources produced.

Example: In the motivating example, we wish to model the AUV energy con-
sumption while moving based on the distance to travel. To do so we introduce the
variable energyLevel which models the amount of energy left in the battery as well
as a function dist that returns the distance of the trajectory between two positions
and the constant energyRequiredByMeter which is used to scale the energy con-
sumption linearly with respect to a travelled distance. We then modify the goto(i)
implementation as follows:

1 go to ( i ) = [ v i s i t e d [ i ] == 0 &&
2 e n e r g y L e v e l >= d i s t ( c u r r e n t P o s i t i o n , p o s i t i o n [ i ] ) ] go . i {
3 energyConsumed = d i s t ( c u r r e n t P o s i t i o n , p o s i t i o n [ i ] ) ∗

ene rgyRequ i r edByMete r ;
4 e n e r g y L e v e l −= energyConsumed ;
5 c u r r e n t P o s i t i o n [ 0 ] = p o s i t i o n [ i ] [ 0 ] ;
6 c u r r e n t P o s i t i o n [ 1 ] = p o s i t i o n [ i ] [ 1 ] ;
7 v i s i t e d [ i ] = 1 ;
8 } → Skip ;

These changes allow the states of the GTN modelling of a planning problem
to encompass available resource quantities and guarantee that valid plans do not,
at any time, consume more resources than available. Furthermore, these changes
also enable us to minimise resource consumption by maximising the available re-
source quantities. However, as several resources may be considered, this leads to a
multi-objectives optimisation problem that is unfortunately not readily supported
by model checking tools like PAT.

We solve this problem by modelling the connections between resources.
Note that some resources might be more valuable than others with respect to the
mission objectives. Therefore, to avoid the need for multi-objectives optimisation
capability, we propose to reduce the problem to a single-objective optimisation.
To do so, we suggest the use of an extra variable Λ acting as a common currency
which is used, among other things, to evaluate the overall state of resources. To
update the value of Λ we require, for each resource r ∈ R, a conversion func-
tion λr : N→ N relating the basic unit of a resource as modelled by variable vr
to the basic unit of value of Λ. Conversion functions used in practice include
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linear functions, logistic functions as well as exponential and logarithmic func-
tions depending on the nature of the resources. Using these conversion functions,
we further extend the state transition functions of tasks producing (respectively
consuming) resources so that they increase (respectively decrease) the value of Λ

accordingly.

An important aspect of this approach is that it enables the comparison of
any two sets of quantified resources by transitivity. As a result, maximising the
value of Λ minimises the overall resources consumption while accounting for the
relative importance of the considered resources. Another important aspect of this
approach is that it provides mission operatives with an economic perspective on
the complex relations that govern the relative importance of available resources –
a familiar perspective people can relate to in everyday life.

To illustrate the use of a conversion function we integrate the common cur-
rency into the motivating example by inserting the following line after line 3 of
the above code modelling the movement of the AUV, where renergy and eenergy are
user-defined constant:

1 Λ −= brenergy ∗ energyConsumedeenergyc ;

Continuing with the AUV survey mission example, our model described
above already takes the energy cost into account. To find a plan for the modelled
GTN with respect to the energy cost, we first need to define the condition for the
overall goal:

1 # d e f i n e g o a l (∀i. v i s i t e d [ i ] == 1) && ( c u r r e n t P o s i t i o n [ 0 ] ==
f i n a l P o s i t i o n [ 0 ] && c u r r e n t P o s i t i o n [ 1 ] == f i n a l P o s i t i o n [ 1 ] ) ;

which states that all the locations are visited, and the AUV’s current location is
the final position. We then use PAT to find a plan that yields minimal energy cost
by model checking the following assertion:

1 # a s s e r t main ( ) r e a c h e s g o a l w i th max ( Λ ) ;

3.4 Goal Reasoning

In this section we further discuss the concepts that enable our model checking
based approach to deal with run-time goal reasoning.

28



3.4.1 Reasoning About Rewards/Penalties of Goals

Due to environment constraints and resource constraints, the completion of one
or several goals may not be possible, or perhaps not worthwhile. Further, goals
may not have the same priority. Some goals may be more important to the suc-
cess of the mission than others. Additionally, as one of the underlying directives
is to minimise resources consumption, the produced plans may not consider sec-
ondary objectives and only fulfil the minimum requirements in order to complete
the mission if the incentive to do so is not correctly modelled.

To cope with these challenges, we propose to associate the achievement of
a goal with a reward function relating the goal completion to an amount of the ba-
sic unit of value of Λ – the previously introduced variable acting as the common
currency. In this setting, maximising the value of Λ prioritises and incentivises
the completion of goals providing the most rewards while compromising with the
resources they require to be completed. Further, as the resources conversion func-
tions and the reward functions can be arbitrarily complex arithmetic functions,
this provides a way to assess trade-offs between complex, competing criteria for
a large number of resources and goals.

These economic notions therefore lead to the formulation of highly cost-
effective plan. Additionally, when multi-agents missions are considered, they
provide further benefits as market-based mechanisms [25] can be leveraged to ob-
tain greater collaboration among agents as well as to optimise resources and tasks
allocation. These mechanisms also provide non-technical operatives the means to
leverage their day to day economic knowledge to specify technical details of the
missions that have to be accomplished by the agent.

Example: Returning to the motivating example, we wish to prioritise the recovery
of the vehicle (rendezvous()) over the completion of the survey (mission()). To
achieve this, we first insert the following code into goto(i) (between the curly
braces):

1 Λ += reward survey ;

We then modify the definition of rendezvous():
1 r e n d e z v o u s ( ) = rend {Λ += reward rendezvous ;} → go to ( f i n a l P o s i t i o n ) ;

We set rewardrendezvous to be far greater than rewardsurvey×N where N is the
total number of positions in the model. We also have to ensure that rewardsurvey is
greater than brenergy * energyConsumedeenergyc, otherwise PAT will choose not to
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visit any position at all. Finally, we modify the goal so that visiting all positions
and returning to recovery position is no longer mandatory. Rather, we use a more
flexible goal, defined as below:

1 # d e f i n e g o a l ∀i ∈C. v i s i t e d [ i ] == 1 ;

where C is a subset of positions that are critical and will override the optimisation
on reward/penalty. Now when we model check

1 # a s s e r t main ( ) r e a c h e s g o a l w i th max ( Λ ) ;

However, if the energyLevel is sufficient to visit all positions and go to the
recover position, then PAT will output such a plan with minimal energy consump-
tion. Otherwise, if the energyLevel is insufficient due to unexpected events such
as strong current, energy spent on detour or surveying uncertain objects, etc., PAT
will try to find a plan that ensures that the positions in C are visited, and that
rendezvous() is far more likely to be executed than visiting a few more positions.

3.4.2 Reasoning About Consistency of Goals

Consider the following scenario: the AUV has finished the survey mission and
now has to report the results. There are two ways to report: (1) acoustic com-
munication with a nearby friendly surface vessel; (2) surface and use satellite
communication. Suppose there is no friendly surface vessel nearby, then the AUV
will choose the second method. However, suppose there is a hostile surface vessel,
which the AUV should avoid. Now the AUV has two goals: report using satel-
lite communication and avoid the hostile surface vessel. The underlying plans for
these two goals have conflicts, and the two goals should not be pursued at the
same time.

Since PAT can determine whether a condition is satisfiable or not in exe-
cution, we can also use PAT to determine the satisfiability of the conjunction of
several conditions. To solve the above issue, we first formulate the goals as the
conditions below:

1 # d e f i n e goa lComple t eSu rvey auvCom == 1 ;
2 # d e f i n e s u c c e s s f u l S u r v e y goa lComple t eSu rvey && h v C o n t a c t == 0 ;

The first goal says that the AUV has done the communication, the second goal is
a compound goal that consists of the first goal and that the AUV does not surface
when the hostile vessel is nearby (hvContact == 0). We define a task auvReport
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which consists of subtasks auvAcousticCom and auvSur f aceCom, which repre-
sents communication with friendly surface vessel and with a satellite respectively.

1 auvAcoust icCom ( ) = [ fv InRange ] comFV{auvCom = 1 ;} → auvRepor t ( ) ;
2

3 auvSurfaceCom ( ) = [ ! fv InRange ] comS{ auvDepth = 0 ; e n e r g y L e v e l =
1 0 ; auvCom = 1 ; i f ( h o s t i l e I n R a n g e ) h v C o n t a c t = 1 ;} →
auvRepor t ( ) ;

4

5 auvRepor t ( ) = auvAcoust icCom ( ) [ ] auvSurfaceCom ( ) ;

The condition f vInRange checks whether the friendly vessel is in range for acous-
tic communication. Verifying the below assertion, which states that auvReport
can reach a state where the communication has been done and the AUV has not
had contact with the hostile vessel, would return negative by PAT.

1 # a s s e r t auvRepor t ( ) r e a c h e s s u c c e s s f u l S u r v e y ;

This means that the above two goals are incompatible, and PAT cannot find an
execution path to satisfy both. To resolve this issue, we can add a new task that
moves the AUV away from the hostile vessel, as coded below:

1 auvAvo idCon tac t ( ) = c a s e {
2 h o s t i l e I n R a n g e : auvMove ( ) ; auvRepor t ( )
3 d e f a u l t : auvRepor t ( )
4 } ;
5 auvRepor t ( ) = auvAcoust icCom ( ) [ ] auvSurfaceCom ( ) [ ]

auvAvo idCon tac t ( ) ;

Now PAT returns affirmative for the above verification and gives a plan to achieve
the goal success f ulSurvey.

Theoretically, we can extend this solution to check incompatibility of a set
of goals. Given a set S of goals, we can use PAT as a black-box and implement
Algorithm 1 [26] to find the minimal set of goals that are incompatible. We can
also find the set of achievable goals, and update the model to resolve unachievable
goals if necessary. Algorithm 1 is an elementary method for efficiently finding the
minimal unsatisfiable core of a set of formulae by divide and conquer.
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Algorithm 1 A simple algorithm for finding minimal unsatisfiable core (MUC).
To find a MUC of S, call Minimise(S, /0).

procedure MINIMISE(S, S0)
Randomly partition S into two sets S0 and S00 of the same size.
if S0∧S0 is unsatisfiable then

return Minimise(S0,S0);
else if S00∧S0 is unsatisfiable then

return Minimise(S00,S0);
else . S0∧S0 and S00∧S0 are both satisfiable

S0min←Minimise(S0,S0∧S00);
S00min←Minimise(S00,S0∧S0min);
return S0min∧S00min;

end if
end procedure

3.5 Performance Testing

To judge the feasibility and scalability of the model checking based approach, we
have tested two levels of planning details. (i) The first level consists of finding an
order of the areas to survey so that it minimises the energy cost of the mission.
At this level we abstract away the entry, the internal path and the exit point of
each survey area. The second level (ii) enables the entry and exit point of each
survey area to be determined. These levels respectively correspond to two GTNs
of increasing complexity.

We ran the testing on the NVIDIA Jetson TX2 – a power-efficient embedded
chip that is equipped in a customised REMUS-100 underwater vehicle at Defence
Science and Technology (DST) Australia. We report the results in Table 3.1, in
which each configuration is run 5 times and the average of the CPU time and
memory usage are displayed. One could theoretically also model the “lawn mow-
ing” path inside each survey area, but it is more of an actuation problem than a
planning problem, thus we do not test it here.

The model complexity has a significant impact on the run-time and mem-
ory usage of the goal reasoning and planning phase. This is not surprising and
is mainly due to the explosion of the state-space size – an issue commonly en-
countered by model checkers [27]. On the other hand, the REMUS-100 AUV
only has a cruising speed of 5.4 km/h, which means that the software has plenty

32



Level # of Survey Areas avg. CPU Time (s) avg. Memory Usage (MB)

1

2 0.005 8.4
3 0.01 8.4
4 0.03 8.4
5 0.16 11.7

2

2 0.14 11.2
3 3.20 66.9
4 40.26 383.8
5 290.70 796.3

Table 3.1: Performance testing for planning and goal reasoning in two levels of
PAT models. Level 1 decides which survey areas to visit and the order to visit
them. Level 2 further decides the entry and exit points of each survey area.

of time to perform re-planning during the mission. The other targeted hardware,
the Ocean Glider, is even slower since it relies on water movement to generate
forward thrust. We conclude that Level 1 is feasible, and Level 2 is feasible only
when the number of survey areas is less than 3. Note that both these levels are
high-level operations. We still need to convert high-level operations to low-level
operations which can be actuated by the hardware.

The above results highlight the trade-off between performance and guaran-
tees. An approach based solely on model checking is at the moment intractable
whereas an approach based solely on heuristics do not provide sufficient guaran-
tees about missions critical elements. Therefore, the above empiric results support
the design choice of a hybrid approach for goal reasoning and planning. That is,
PAT is suitable for making critical high-level decisions, whereas we need to rely
on an external program to translate the high-level plans into low-level plans. The
verification of this translation is non-trivial: it includes details such as showing
that turning the rudder of the AUV at a certain degree corresponds to going a
certain direction in the high-level plan. Such details are hardware-dependent and
are not in the scope of this paper. Nonetheless, a carefully designed GTN at an
appropriate level of details can, in the context of a hybrid approach, provide better
trustworthiness and reliability for the high-level decision-making.
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Chapter 4

GRAVITAS

This section describes the Goal Reasoning And Verification for Independent Trusted
Autonomous Systems (GRAVITAS) – an automated system which enables au-
tonomous agents to operate with trustworthy high-level plans in a dynamic en-
vironment.

4.1 An Overview of GRAVITAS

The GRAVITAS framework follows a cyclic pattern composed of four main phases:
Monitor, Interpret, Evaluate and Control, which are illustrated in Figure 4.1.

The main operative cycle of GRAVITAS begins with the Monitor (1). This
component perceives the environment through the signal processing and fusion
of the raw outputs of available sensors. For AUVs, examples of sensors includes
accelerometers, gyroscopes, pressure sensors and GPS. It is also in charge of pro-
cessing these data in order to provide information such as the estimated position
and the speed of the agent to the Interpreter (2). This step notably involves tech-
niques such as target tracking which we will not detail here [28]. Once the In-
terpreter (2) receives the required information, it updates the agent’s local model
of the system and its environment. This formally defined local model is then for-
warded to the Evaluator (3) – a component in charge of assessing the validity of
the previously established plan with respect to pre-defined specifications. If the
Evaluator assesses the plan as valid, the Controller (5) is tasked with executing
the plan. Otherwise, if the Evaluator (3) finds the plan invalid e.g., an uncertain
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Figure 4.1: Overall workflow of GRAVITAS.

event creates inconsistencies in the previously established plan and the mission
requirements, a new plan needs to be formulated. The formulation of a new plan
is accomplished by the joint operation of the Planner and Goals Manager com-
ponents (4). After a new plan is formulated, the Controller (5) is tasked with
executing this plan. This step involves processing based on control theory [29]
which we do not discuss here.

The components in the lower loop in Figure 4.1 are orchestrated via the
Mission Oriented Operating Suite [30] (MOOS) – a middleware mainly in charge
of the communication. The main computational workload of the Evaluator (3),
the Planner and the Goal Manager (4) components are powered by PAT. Note that
although conceptually the planner and the goal manager are two separated compo-
nents, in our implementation they are realised in the same PAT model, as discussed
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in the examples throughout the previous Chapter. Also, to achieve high efficiency
in real-life applications, we use a hybrid approach discussed in Section 3.5.

Also, to achieve high efficiency in real-life applications, we use a hybrid
approach to implement planning and goal reasoning: the PAT model performs
high-level goal reasoning and planning, and we implement an external actuator
to derive a low-level plan from a high-level plan, the former will then be sent to
hardware for execution.

4.2 Verification of PAT Models

The key advantage of the model checking based approach is that we can formally
verify certain properties for the planning and goal reasoning model. This verifi-
cation guarantees that the model only permits “correct” high-level plans. Since
the verified model is directly used to generate high-level plans in the planning and
goal reasoning phase, we can ensure that the generated high-level plans not only
are optimised by for max rewards (resp. min penalties), but also are “correct” with
respect to the verified properties.

The verification itself is straightforward since the model is already in CSP#.
We only need to formulate the properties in the specification language (cf. Chapter
2) and use model checking to verify them.

Example: In the AUV survey example, we are interested in checking whether the
model would permit an execution sequence in which the AUV hits an obstacle.
The below Boolean condition expresses that the position of AUV does not overlap
with any position of obstacles.

1 # d e f i n e d o n t R u n I n t o O b s t a c l e (&& i n d e x : { 0 . . iNumberOfObs tac les 1 }@
( o b s t a c l e s [ i n d e x ] [ 0 ] != a u v P o s i t i o n [ 0 ] | | o b s t a c l e s [ i n d e x ] [ 1 ]

!= a u v P o s i t i o n [ 1 ] ) ) ;

Using LTL, we can check whether this condition holds for all subsequent
states in the execution. This is realised by an assertion of the form

p ‘2c

where p is a process in CSP#, c is the condition we need to check, and 2 is a
modality in LTL that means c holds for all subsequent states. The above verifica-
tion is realised in the code below:
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1 # a s s e r t main ( ) |= [ ] d o n t R u n I n t o O b s t a c l e ;

and PAT can automatically return “yes” as the result. Thus we obtain the following
lemma:

Lemma 4.2.1. The example planning and goal reasoning model described in the
previous Chapter does not generate plans where the AUV runs into any obstacle.

Using the same technique, we have verified the following lemmas:

Lemma 4.2.2. The example model described in the previous Chapter does not
generate plans where the AUV runs out of battery during the mission.

Lemma 4.2.3. The example model described in the previous Chapter does not
generate plans where the AUV surfaces at a location within 3 units of distance of
a hostile vessel.

4.3 Interacting with Un-trusted Components

Although the Level 2 planning and goal reasoning model in Table 3.1 suffices in
our demonstration of the AUV survey mission, there might be other applications
where model checking cannot provide detailed plans in time. For instance, the
user may need to adopt heuristic-based planning techniques for UAVs and land
vehicles because they run faster.

Inspired by Clarke et al.’s counterexample-guided abstraction refinement [31],
we propose to integrate heuristic-based planning techniques as an “un-trusted
component” as follows: We treat the heuristic method as an high-level plan gener-
ator. Whenever the heuristic method generates a plan, we simulate this plan using
the corresponding high-level planning and goal reasoning model, i.e., the CSP#
model, in PAT. This simulation is much faster than model checking because we
only need to check one path of actions instead of checking all paths. If the simula-
tion is successful, then this plan is in the set of plans that can be generated by the
CSP# model. If the CSP# model has been verified as described in Section 4.2, then
this plan is correct with respect to the verified properties. If the simulation fails,
then we add the old plan into a set of disabled plans and constraints the heuristic
method such that it does not generate one of the disabled plans. This procedure
provides plans that have the same formal guarantee as those generated by PAT, but
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this procedure may not yield optimal plans. Nonetheless, this procedure provides
the means to interact with existing heuristic-based planning techniques generally
employed without safe-guards in a reliable way.
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Chapter 5

Implementation & Experiment

5.1 Implementation of GRAVITAS

In situ, experimentation is very expensive and slow. While it is mandatory to
the final evaluation of the implementation, in this paper we focus on assessing
and demonstrating the feasibility of the proposed goal reasoning and planning
approach in a virtual environment. Notable challenges include controlling the
complexity of the GTN so that the embedded hardware of the AUV is able to
carry the computational load in a reasonable time (i.e., less than a minute) and the
transposition of a discrete plan as issued by PAT into its continuous counterpart
so that it can be enacted by the AUV.

We have implemented the proposed approach and integrated it within a vir-
tual environment closely simulating the mission described in Section 2.2. We first
introduce the integration of PAT within a community of MOOS applications [30].
We then report the obtained results and discuss the conclusion drawn from them.

5.1.1 Experimental Setup

The experimental setup as shown in the Figure 5.1 is composed of three MOOS
communities - shoreside community, which simulates the computer at the shore
side to communicate with the AUV through sattelite communication, AUV com-
munity, that simulates the AUV behaviors in the virtual environment and Hostile
community, which simulates the Hostile which is roving around throughout the
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Figure 5.1: Typical Module Topology

mission. These communities include the following:

• MOOSDB: a central server application for all communications.

• pMarineViewer: a GUI rendering vehicles and associated information dur-
ing operation or simulation.

• pShare: allows data to be shared between MOOS communities.

• pHostInfo: determines the IP address of the machine on which it is running
and post it to the MOOSDB.

• uFldShoreBroker: a tool for brokering connections between a shoreside
community and one or more nodes (simulated or real vehicles).

• uFldNodeBroker: a tool for brokering connections between a node (a sim-
ulated or real vehicle) and a shoreside community.

• uSimMarine: a 3D vehicle simulator that updates vehicle state, position and
trajectory, based on the present actuator values and prior vehicle state.
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• pLogger: records the activities of a MOOS session.

• pMarinePID: a PID controller for heading, speed and depth.

• pHelmIvP: publishes a steady stream of information that drives the plat-
form, typically regarding the desired heading, speed or depth.

• pBasicContactMgr: posts to the MOOSDB summary reports about known
contacts (detected by sensors) after getting information from the sensors.

• pProcessWatch: monitors the health of a set of MOOS application.

• uFldMessageHandler: handles incoming messages from a remote MOOSDB.

• uXMS: a terminal based MOOS app for scoping the MOOSDB.

• pHostileDetect: integrates PAT and provide goal reasoning and planning
ability to the AUV and detects Hostile.

Key MOOS application & it’s role

The MOOS application pHostileDetect implements the GRAVITAS framework as
described in Chapter 4. It subscribes to and monitors channels which broadcast
information about the general state of the AUV (e.g., position, speed, heading) as
well as information about the objects detected by the side scanners. Then, at each
iteration of its internal loop, it interprets this information and models a local world
view of the environment. Based on this internal representation and according to
the proposed planning approach, it evaluates the actual plan being enacted and,
if required, updates it before enacting it by publishing the desired heading, speed
and depth of the AUV to the community.

The plan issued by PAT as a part of the re-planning step is a discrete se-
quence of primitive tasks (e.g. go to 3D position) that require some processing
in order to be enacted by the AUV as actuators commands (e.g., set heading,
set speed). For instance, the trajectory between several way-points set by the
plan has to be compliant with the maximum turn-rate of the AUV. To solve this
issue, as a proof of concept we implemented an algorithm based on piecewise
Bezier curves composition with continuous curvature constraint for continuous
path planning [32]. In the future we plan on using a more advanced low-level
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planning approach such as the FMT* algorithm [33] that will enable us to con-
sider trajectories based on 3D current dynamics as well as uncertainty in the AUV
position.

Primarily, AUV was only capable of detecting the strong currents and mines
during the mission, but after the extension of AUV’s perception to the environ-
ment, it is also capable of detecting hostile ships and performs respective actions
in the diverse environment and resumes the mission after being undetected.

Finally, we can demonstrate the proposed ideas in an experiment that sim-
ulates a survey mission performed by the REMUS-100 autonomous underwater
vehicle.

5.2 Simulation in MOOS pMarineViewer

We demonstrate a case study scenario in a simulation in MOOS. In this scenario,
we intend to capture GRAVITAS’s capabilities in dealing with dynamic events
during execution. We create a survey mission similar to Figure 2.2. Note that
although the following screenshots are in 2D, the simulation is actually in a 3D
environment.

We set 3 survey areas: lower-left (LL), upper-right (UR), and lower-right
(LR), with rewards 22807, 51918, 31313 respectively. Initially, the AUV has an
energy level of 60000. During execution, we randomly generate a strong water
current, with a chance of 20%, that doubles the energy consumption for an un-
certain period of time. For simplicity in this example, we trigger goal reasoning
and re-planning at the end of each survey area, although these can be done as fre-
quently as required provided that the computation does not take longer than the
interval between re-plannings.

5.2.1 Primary Stage

Figure 5.3a shows the initial plan computed by GRAVITAS. The numbers indicate
the high-level plan computed by PAT and the dots indicate the low-level plan
generated by the actuator. That is, PAT finds the optimal order as well as the entry
and exit points for the survey areas, and the actuator computes a smooth path that
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Figure 5.2: Simulation - Mission started

the AUV can follow. The “wing” of the AUV indicates the coverage of the side
scan sonar.

In this run, the random generator creates a strong current during the first
survey. As a result, the expected energy consumption for the first survey is 14400,
but the actual consumption is 23284. Consequently, the Interpreter in GRAVITAS
uses a simple “learning” to update the expected energy consumption for future
execution to 162% of the estimation. However, this unexpected change causes
re-planning in which PAT decides that there is insufficient energy to complete 3
survey areas, and then finds a new plan to optimise the outcome, as shown in
Figure 5.3b. In the new plan, PAT chooses to only survey area LR because it
yields more reward.

During the transit to the second survey, the water current has returned to
normal. At the end of the second survey, the Controller in GRAVITAS discovers
that survey area LR has been fully covered before going through the last pass in the
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(a) Initial plan. (b) 1st re-planning.

(c) 2nd re-planning. (d) Mission finished successfully.

Figure 5.3: Simulation shown in MOOS-pMarineViewer.

“lawn-mowing” pattern. Therefore it triggers re-planning and PAT and the actua-
tor enact a new plan, shown in Figure 5.3c, to directly go to the rendezvous point.
At the same time, the Interpreter captures that the expected energy consumption
for the second survey is 27216, but the actual consumption is 17411, so it lowers
the scale of future energy consumption to 104% of the estimation. There is no
more strong current on the way to the rendezvous point, and the expected energy
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consumption is roughly the same as the actual value, and the AUV successfully
finishes the mission, as shown in Figure 5.3d. In this case study, the (re-)planning
takes around 1 second, which is fast enough for the operation of AUV.

5.2.2 Secondary Stage

(a) AUV detects hostile (b) AUV avoids hostile

(c) AUV keeps the track (d) AUV resumes mission

Figure 5.4: Simulation - AUV avoids hostile & resumes the mission
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If AUV detects any hostile ship during the mission, our environment enables two
kinds of actions:

• Avoid Hostile: avoids the hostile suddenly after detecting it and change
the heading until the hostile is not in it’s mission territory and resumes the
mission afterwards as shown in Figure 5.4.

• Wait: turns off the engine after updating the speed to 0 & enables the stealth
mode if the hostile is close enough and there is a fear of being detected
and then resumes the mission after confirming that the hostile is not in the
AUV’s territory anymore as shown in Figure 5.5.
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(a) AUV detects hostile (b) AUV is in stealth mode

(c) AUV is in stealth mode (d) AUV resumes the mission

Figure 5.5: Simulation - AUV sleeps & resumes the mission
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Chapter 6

Related Work

Different approaches exist according to the assumptions about the domain, the
goals, the plans and the planning algorithm. Conceptually, the domain evolves
according to the performed actions, a controller provides the actions according to
the observations on the domain and a plan [34]. An example of applying auto-
mated reasoning techniques on planning is Kress-Gazit et al.’s framework which
automatically translates high-level tasks defined in linear temporal logic formu-
lae to hybrid controllers [11]. This framework allows for reactive tasks, which
may change depending on the information the robot gathers at runtime. This is
similar to the goal reasoning literature where goals may change depending on the
environment at runtime.

This work follows the “planning as model checking” paradigm, which dates
back to 1990s, e.g., in the work by Giunchiglia and Traverso [9]. They proposed to
solve (classical) planning problems model-theoretically, where planning domains
are formalised as semantic models, properties of planning domains are formalised
as temporal formulae, and planning is done by verifying whether temporal for-
mulae are true in a semantic model. This idea has been studied and improved in
their subsequent work [35, 36, 37], which involves using Binary Decision Dia-
gram based heuristic symbolic search. Similar ideas have been used in planners
such as MIPS [38], which can effectively handle the STRIPS subset of the PDDL,
and some additional features in ADL.

Closely related to the above work is the verification and validation (V&V)
based method of Bensalem et al. [12]. They argue that constructing correct and
reliable planning systems is error-prone due to the non-deterministic nature of
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planning problems, thus it is important to develop V&V methods for planners to
ensure that the generated plans are correct. To achieve this, the authors proposed
to use V&V techniques to perform planning, and use planning to perform V&V.
This work is similar in the sense that we are using model checking techniques to
perform planning, and since the planning system is built upon the model checker,
we can also verify correctness and safety issues of the plans and goals. As a result,
we can not only output plans that are efficient in certain criteria, but also those that
are verified safe and correct, which is essential in building trusted intelligent agent
and is often required in mission-critical operations.

Goal reasoning has been used in a number of projects about controlling au-
tonomous machines in a dynamic environment. Many goal reasoning systems fol-
low a note-assess-guide procedure, and extend it with a cycle of executions to han-
dle the dynamics of the environment and perform goal reasoning and re-planing
on-the-fly. Cox et al. [5] propose to use classical planning to formalise goal rea-
soning. They present an architecture with a cognitive layer and a metacognitive
layer to model problem-solving and dynamic event management in self-regulated
autonomy. The architecture is realised in the Metacognitive Integrated Dual-Cycle
Architecture (MIDCA) version 1.3, which is shown useful in experiment. A de-
tailed account is given by Dannenhauer [39].

Roberts et al. [6] give more detailed definitions of goal reasoning in their
framework. They divide the states and goals into two parts: the external part is
a modified or incomplete version of the transition system, and the internal part
represents the predicates and state required for the refinement strategies. The au-
thors use a data structure called goal memory to represent the relationship between
goals, subgoals, parent goals etc., and propose to solve the goal reasoning prob-
lem using refinement. They use a goal lifecycle model to capture the evolution of
goals and the decision points involved in the process. The goal lifecycle includes
the formulation, selection, expansion, execution, dispatch, evaluation, termina-
tion, and discard of goals. This model is adapted by Johnson et al. [7], who give a
system called Goal Reasoning with Information Measures. In the scenario of con-
trolling Unmanned Air Vehicles to survey certain areas, the goals are formulated
with parameters such as maximum uncertainty in the search area, acceptable un-
certainty under which the goal is considered complete, and deadline by which the
search must complete. The goal reasoning method is shown useful for unmanned
aerial vehicles operating in dynamic environments.

A more theoretical foundation about planning and goal reasoning is sur-
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veyed by Alford et al. [24]. The authors unify HGN planning and HTN planning
into GTN planning. They also provide plan-preserving translations from GTN
problems to HTN semantics. Several computability and tractability results are
given. For example, GTN, HTN, and HGN are semi-decidable, and a restricted
form called GTNI is NEXPTIME. An application of HTN planning realised by
symbolic model checking is presented by Kuter et al. [40]. While their work
is focused on the theoretical foundation of the problem and they assume full-
observability, this paper is more concerned with a more concrete real-life prob-
lem: the execution of the AUV in an uncertain environment. Thus this paper is
more focused on practical issues that arise when solving the AUV survey problem.

One interesting use case of goal reasoning is goal selection. Rabideau et
al. [41] give a tractable goal selection method algorithm specialised for selecting
goals at runtime for re-planning in a system where computational resources are
limited and the complete goal set oversubscribe available resources. Kondrakunta
and Cox [42] also consider the situation where an agent has more goals than can
complete in a given time constraint and show how an intelligent agent can estimate
the trade-off between performance gains and resource costs. Another important
aspect of goal reasoning is to detect inconsistency or incompatibility of goals and
plans. Tinnemeier et al. [43] propose a mechanism to process incompatible goals
which have conflicting plans. They argue that the agent should not pursue goals
with conflicting plans, and their mechanism can help the agent choose from in-
compatible goals.

An important application of our project is applying the planning and goal
reasoning framework to AUVs. Among many relevant papers, goal reasoning
for AUVs [44] is particularly interesting. The authors use a goal-driven auton-
omy conceptual model which has three parts: the planner, the goal controller, and
the state transition system. The goal reasoning problem is formalised in PDDL,
which is the standard language for representing classical planning problems and
is widely used by many planners. The authors test their approach in simulations
where the AUV surveys a defined area and it has to respond (change the goal)
to the actions from a nearby unmanned surface vehicle dynamically. Cashmore
et al.’s work [45] describes a planning algorithm for AUVs. Like many other re-
lated papers, their work assumes certain requirements that are slightly different
from our settings. For example, they are focused on temporal planning with time
constraints whereas our mission does not have such constraints.
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Chapter 7

Conclusion

This work describes a decision-making framework named GRAVITAS for au-
tonomous systems. The GRAVITAS framework not only provides theoretical
foundation for hierarchical planning and goal reasoning, i.e., modelling GTNs
using CSP# and using model checking to perform planning and goal reasoning,
but also includes practical implementations via the model checker PAT and the
MOOS application community. This framework is ultimately realised on a hard-
ware chip that runs on the REMUS-100 AUV. Our simulation has shown that the
model checker PAT is sufficient to perform high-level decision making tasks. We
have also developed various auxiliary functionalities in GRAVITAS to extend the
high-level PAT plan into low-level plans for actuation. An important future work
is to improve the level of trustworthiness by extending the verification from high-
level plans to low-level plans. We are also planning to conduct more realistic
simulations, and will attempt to show in situ ability of our approach in real-world
demonstrations.
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