

Master of Science in Mechatronic Engineering

Dynamic Neural Networks to Generate
Robotics Trajectories

 Final Project Work

UPE/Poli Supervisor: POLITO Supervisor:
Prof. Dr. Ruben Carlo Benante Prof. Marcello Chiaberge

Author 1: Author 2:
Muhammad Naeem Akhtar D S A Asifur Reza

Universidade de Pernambuco
Poli - Escola Politécnica de Pernambuco

Graduação em Engenharia de Controle e Automação

Author 1: Author 2:
Muhammad Naeem Akhtar D S A Asifur Reza

Dynamic Neural Networks to
Generate Robotics Trajectories

Work Presented on the Exchange Program in Universidade de
Pernambuco in Control and Automation department to obtain the Master
of Science Degree in Mechatronic Engineering, Department of Control and
Computer Engineering (DAUIN) of Politecnico di Torino Italy.

UPE/Poli Supervisor: Professor Dr. Ruben Carlo Benante

ii

Acknowledgement
 In the name of Allah, the Most Gracious and the Most Merciful.

I would like to express my appreciation:

To Politecnico di Torino, Italy and Universidade de Pernambuco, Brasil for providing the

assistance required to successfully complete this work in a way of giving the opportunity to

follow courses related to the thesis work (Robotics taught by Professor Bona Basilio in

POLITO) and (Artificial Intelligence taught by Professor Ruben Carlo Benante in UPE/Poli).

To both the advisors Professor Ruben Carlo Benante (Poli/UPE) and Professor Marcello

Chiaberge (POLITO), for accepting me to do research under their guidance and to understand

the problems in different ways to find the right solutions.

To my friends and colleagues Carlos Alberto Nogueira de Souza Junior, Daidson Fonseca Alves

and Gerônimo De Sá Barreto Neto, they were always helpful from the beginning and made it

easy to complete the work on time.

Finally to my family, without whom none of this would have felt, for their continuous

encouragement throughout learning, for unconditional support and for teaching that in life there

are many obstacles, which we must face with maturity to achieve the much-desired goal. To

Father and Mother, my role models.

 MUHAMMAD NAEEM AKHTAR

iii

Acknowledgement
At first, all the praises and thanks go to Almighty Allah for giving me the opportunity to attend

the course and make me capable to prepare this thesis work. I could not overcome my whole

challenges and could not make my successes without His willingness and help.

I owe my earnest gratitude to Politecnico di Torino (Turin, Italy) for providing me the

opportunity to do the thesis work in Universidade de Pernambuco (Recife, Brazil) and giving

me all the cooperation and guidance, which made me complete the research properly. The

support I had got from both the Universities helped me to acquire a whole new experience

which encouraged me to accomplish this paper satisfactorily.

I gratefully acknowledge the contributions of my supervisor Prof. Dr. Ruben Carlo Benante

(UPE/POLI), who guided and instructed me throughout the completion of the research work.

He instructed me to prepare this thesis paper and provided me his all-out efforts though being

extremely busy. I would like to thank also Prof. Marcello Chiaberge (POLITO) for supporting

me in different phases.

I am also thankful to my Group Members specially Carlos, Daidson and Geronimo as without

their cooperation, coordination and help, it was really difficult to complete this research paper.

This study was possible for me to finish because of the assistance of the concerned authorities

who had given me their precious time and sincere efforts.

This work needed a lot of guidance and assistance from many people and I am extremely

privileged to get all those throughout the completion of this research. The final outcome of this

research could not be possible without their supervision and assistance. I owe my heartiest

gratitude to them.

Last but not the least I would like to give my due respect and thanks to my mother who always

encourages me in all aspects of my life. Also, my thanks go to my all family members who

inspired me to do something different in life.

D S A Asifur Reza

December, 2018.

iv

Resumo

O corrente trabalho apresenta Redes Neurais Artificiais capazes de gerar trajetórias de estado a

partir do mapeamento de estados de espaço de uma dada estrutura. Os modelos focados são os

de Redes Neurais Não-Supervisionadas, tais como a Growing Neural Gas (GNG), (Fritzke),

Grow When Required (GWR), (Marsland); e uma nova rede com Topologia Dinâmica chamada

de State Trajectory Generator (STRAGEN Off-line e STRAGEN On-line), (Benante). Este

ultimo modelo, proposto por Benante, é uma importante contribuição acerca de mapeamento

de espaço de dinâmicas de robôs, tornando possíveis as gerações de trajetórias. Os modelos

permitem a utilização de vários critérios para sintetizar uma trajetória ideal de acordo com a

área de interesse dos diferentes atributos que um mesmo domínio pode apresentar. Cada modelo

trabalha em três fases: Treino, Geração de Trajetórias e Fase de Validação de Erros, com

exceção do STRAGEN Off-line, que tem uma fase de Poda adicional, performada antes da fase

de Geração de Trajetórias. Essas ferramentas são usadas para calcular a performance de robôs

e para implementar e executar trajetórias otimizadas dos mesmos. Simulações e resultados para

os domínios robóticos (com um braço robô bidimensional e um manipulador robótico PUMA

560) são considerados no fim como exemplos de diferentes domínios.
KEYWORDS: Two-Link (2D) and PUMA 560 (3D) manipulators, Forward Kinematics,

Artificial Neural Networks with Dynamic Topology (GNG, GWR, STRAGEN), Trajectory

Generation.

v

 Abstract

This postulation work presents Artificial Neural Networks fit for generating state trajectories

from the state space mapping of a framework. The models with the main focus are Unsupervised

Neural Networks, which are Growing Neural Gas (GNG), (Fritzke), Grow When Required

(GWR), (Marsland) and a new network with Dynamic Topology called State Trajectory

Generator (STRAGEN Off-line and STRAGEN On-line), (Benante). The latter is a model

proposed by Benante, is an important contribution towards mapping robot space dynamic to be

able to generate trajectories. The models permit the utilization of various criteria for the

synthesis of an ideal trajectory as per the area of interest of different attributes of the same

domain. Each model works in three phases: Training, Trajectories Generation and Validation

Error phase, apart from STRAGEN Off-line, which has an additional Pruning Phase, that is

performed before the Trajectory Generation phase and after the training phase. These tools used

for measuring robot performance and for implementing and executing optimized trajectories in

the robots. Simulations and results for the robotic domains (with a two-dimensional and PUMA

560 robotic manipulators) are considered in the end as examples of different domains.

KEYWORDS: Two-Link (2D) and PUMA 560 (3D) manipulators, Forward Kinematics,

Artificial Neural Networks with Dynamic Topology (GNG, GWR, STRAGEN), Trajectory

Generation.

vi

Summary

Chapter 1 Introduction 19

Chapter 2 Robotics System 23

2.1 Robot Manipulators ... 23

2.1.1 Forward Kinematics .. 24

2.1.2 Denavit-Hartenberg convention .. 25

2.2 Two-Link Planar Manipulator .. 27

2.2.1 DH Parameter ... 27

2.2.2 Transformation Matrix ... 28

2.2.3 Data Point Simulation .. 28

2.3 Puma 560 ... 31

2.3.1 DH Parameter ... 31

2.3.2 Transformation Matrix ... 32

2.3.3 Data Point Simulation .. 33

Chapter 3 Neural Network Models 36

3.1 Self-Organizing Map (SOM) .. 36

3.1.1 Algorithm .. 37

3.1.2 Example ... 38

3.2 Topology-Representing Networks (TRN) .. 38

3.2.1 Neural Gas (NG) .. 39

3.2.1.1 Algorithm .. 40

vii

3.2.1.2 Example .. 40

3.2.2 Competitive Hebbian Learning (CHL) ... 41

3.2.2.1 Algorithm .. 42

3.2.2.2 Example .. 42

3.2.3 Combination of NG and CHL .. 43

3.3 Growing Cell Structure (GCS) .. 44

3.3.1 Algorithm .. 45

3.3.2 Example .. 47

Chapter 4 Growing Neural Gas (GNG) 48

4.1 Algorithm .. 48

4.2 Description of this method .. 50

4.3 Discussion ... 51

Chapter 5 Grow When Required (GWR) 53

5.1 Algorithm .. 53

5.2 Example .. 56

5.3 Discussion ... 57

5.4 Limitation of GWR ... 59

Chapter 6 State Trajectory Generator (STRAGEN) 62

6.1 Description of the method ... 63

6.1.1 Motor Babbling (MB) Procedure ... 64

6.1.2 Validation Phase ... 65

6.1.3 Initialization of the Algorithm... 65

viii

6.2 STRAGEN Off-line.. 66

6.2.1 Training Phase .. 67

6.2.2 Pruning Phase ... 69

6.2.3 Trajectory Generation Phase ... 70

6.2.4 Difference Between STRAGEN Off-Line and GWR 71

6.3 STRAGEN On-line .. 73

6.3.1 Training Phase .. 74

6.3.2 Trajectory Generation phase for smallest path 75

6.4 Difference between STRAGEN Off-line and STRAGEN On-line 76

Chapter 7 Results And Conclusions 78

7.1 Simulation .. 78

7.1.1 Network Training (Phase 1) .. 79

7.1.2 Trajectory Generation (Phase 2) .. 81

7.1.2.1 Two-Link Robot ... 84

7.1.2.2 PUMA 560 .. 85

7.1.3 Validation Error (Phase 3) .. 86

7.2 Conclusions And Further Works ... 91

Bibliographic References 93

ix

List of Figures
Figure 1: Coordinate Transformation in Open Chain ... 24

Figure 2: Denavit-Hartenberg Kinematic Parameters .. 26

Figure 3: Two-Link Planar Robot ... 27

Figure 4: Cloud of 2736 Random Positions of a Two-Link Robot. ... 30

Figure 5: Frame Assignment for Puma 560.. 31

Figure 6: Frame Assignments for the Forearm of Puma 560 ... 32

Figure 7: Data Points in 3D of Puma 560 ... 35

Figure 8: Kohonen Map After 10 000 Signals ... 38

Figure 9: Neural Gas After 40 000 Input Signals ... 41

Figure 10: The Delaunay Triangulation and The Induced Delaunay Triangulation 42

Figure 11: Competitive Hebbian Learning for Clustered Data Distribution 43

Figure 12: Example of TRN After 40 000 Iterations ... 43

Figure 13: GCS Network .. 46

Figure 14: Growing Neural Cell Structure After 20 000 Signals ... 47

Figure 15: GNG Algorithm Execution ... 51

Figure 16: A Geometric Figure Composed of Shapes of Different Dimensions...................... 52

Figure 17: GWR Algorithm Execution .. 56

Figure 18: GWR Learns a Dataset Consists Of Four Square and One Line 57

Figure 19: Measurement Error For 𝐸1 and 𝐸2 ... 58

x

Figure 20: Measurement Error E1 and E2 ... 59

Figure 21: Flow-Chart of Stragen Off-Line .. 66

Figure 22: Connection Removal in Stragen Off-Line. ... 69

Figure 23: Example of Insertion of Nodes and Connection in STRAGEN.............................. 73

Figure 24: Flow-Chart of STRAGEN On-Line .. 74

Figure 25: Example of STRAGEN On-Line .. 77

Figure 26: Trained Network of GNG, GWR and STRAGEN.. .. 80

Figure 27: Trained 3D Network By GNG, GWR and STRAGEN .. 81

Figure 28: Diffusion of Energy: Trajectory Generation by the Nodes 82

Figure 29: Trajectory Formed by Diffusion Energy.. ... 83

Figure 30: Final Trajectory of Two-Link Robot. ... 84

Figure 31: Trajectory of Puma 560. Network Trained by GNG .. 85

Figure 32: Trajectory of Puma 560. Network Trained by GWR .. 86

Figure 33: Trajectory of Puma 560. Network Trained by STRAGEN 86

Figure 34: Validation Error of GNG, GWR and STRAGEN ... 88

Figure 35: Network Growth in Terms of Number of Connections Per Iterations 89

Figure 36: Network Growth in Terms of Number of Nodes Per Iterations 90

xi

List of Tables

Table 1: DH Parameter for Two-Link Manipulator ... 28

Table 2: Database of Positions and Corresponding Angles for Two-Link Robot 29

Table 3: DH Parameter for Puma 560 .. 32

Table 4: Database of Positions and Corresponding Angles for Puma 560 34

Table 5: Condition for Inserting a New Node in GWR .. 60

Table 6: Condition for Inserting a New Node in STRAGEN... 72

Table 7: Comparison Between GNG, GWR and STRAGEN .. 87

Table 8: Validation Error for GNG, GWR and STRAGEN .. 88

xii

Table of Symbols

SYMBOLS DESCRIPTIONS

𝜶𝒊 DH parameter that defines rotation angle between two axes.

𝜶 Parameter or auxiliary rate for several equations. In
GWR is used 𝛼𝑛 = 𝛼𝑛= 1,05 as parameters for the function
non-trigger frequency.

𝜶𝒇 Final learning rate of STRAGEN. The value is 𝛼𝑓 = 0.1.

𝒂𝒎𝒂𝒙 Maximum age allowed for a connection before it is

eliminated.

�̅� Maximum activity limit that prevents STRAGEN to create

nodes.

a Vector of activities of the winning node. 𝑎𝑘 is the activity of
subgroup 1 ≤ 𝑘 ≤ 𝑙 of the winning node.

𝒂𝑻 Maximum activity limit of the winning node in relation
to an input pattern for not to insert a new node.

𝒂𝒊 Minimum signed distance in DH parameter.

𝑨 Set of network nodes, being | 𝐴 | the total number of nodes of

the set (cardinality).

 𝑨𝒊
𝒊−𝟏(𝒒𝒊) Homogeneous transformation matrix.

𝜷 Decay rate of local error in GNG.

𝑩(𝟎) Non-normalized database, 𝐿 × 𝐷 dimensions, containing

patterns for training.

xiii

SYMBOLS DESCRIPTIONS

B Normalized database, 𝐿 × 𝐷 dimensions, containing input

patterns for training.

𝑪 Set of connections, where | 𝐶 | is the total number of

connections (cardinality).

𝑪𝒊,𝒋
Connection function. 1 if nodes 𝑖 and 𝑗 are connected, and 0

otherwise.

𝒄𝒏𝟏,𝒏𝟐 Connection c between nodes 𝑛1 & 𝑛2.

 χ The threshold for removing connections. If | N (𝑠1)| > 2,
remove all connections 𝑐𝑠1,𝑛𝑖

 from set 𝐶 for which we have

n ∈ N (𝑠1) and 𝐷𝑖𝑠𝑡(𝑠1, n) > 𝜒.

𝒅𝒊
DH parameter that defines coordinate of 𝑂𝑖′.

𝑫𝑨 Dimension of a topological map 𝐴 representative of input data

M.

𝑫𝒎 Dimension of the input patterns 𝝽 and vector weights 𝑤 ∈ 𝑀.

𝑫𝒊𝒔𝒕(𝒊, 𝒋) Euclidean distance between 𝑖 & 𝑗.

𝑫𝒊𝒔𝒕𝟏(𝒔𝒊, 𝒔𝒋) Smallest segment of a formed triangle by nodes 𝑠1, 𝑠2 and 𝑠3,

with 𝑠𝑖 and 𝑠𝑗 representing the two nodes belonging to the

segment.

𝑫𝒊𝒔𝒕𝟐(𝒔𝒊, 𝒔𝒌) Smallest segment of a formed triangle by nodes 𝑠1, 𝑠2 and 𝑠3,

with 𝑠𝑖 and 𝑠𝑘 representing the two nodes belonging to the

segment.

 𝜺 Learning rate. 𝜀𝑏 is the learning rate of the node winner. When
not mentioned, use 𝜀𝑏 = 0.2. 𝜀𝑛 is the rate to the neighboring
node of the winning node.

xiv

SYMBOLS DESCRIPTIONS

𝛆(𝐭) Exponential decay function.

𝑬𝟏 Measurement Error to evaluate the average size of the

Connections.

𝑬𝟐 Measurement of Cost that evaluates the network's ability to

minimize the distances between the input patterns and the

nodes.

𝑬𝒗 Validation error.

Η Neighborhood criterion of STRAGEN.

𝑬 Set of inactive connections, i.e., that never tripped by

connecting a winning node 𝑠1 and 𝑠2, in the phase of
STRAGEN.

𝒇(𝒕, 𝒏) Energy Diffusion Function.

𝒉𝒚(𝒌) Rank proximity function of NG.

𝒉𝒊 Size of firing variable for node 𝑖.

𝒉�̌� Relative indicator Frequency .

𝒉(𝟎) Initial strength.

𝑰 Number of iterations for the validation phase.

𝑲 Constant 𝐾 < 1.

𝒌 Number of connections emanating from the winning node 𝑠1.

xv

SYMBOLS DESCRIPTIONS

𝒌 − 𝒔𝒊𝒎𝒑𝒍𝒆𝒙 Dimension of the GCS network structure.

𝝀 Number of iterations performed for GCS and GNG

create a new node..

𝝁 Energy dispersion constant in the function 𝑓.

𝒐𝟎𝒙𝟎𝒚𝟎 System coordinate of origin .

𝑷 Percentage used to calculate the activity threshold 𝑎𝑘̅̅ ̅.

⍵̅
An empirically determined optimal constant, which the value
is 1.5.

 p(𝝃) MB procedure that returns some random pattern 𝜉 on first

execution.

 P(𝝃) Distribution of probability of input signals.

𝝓𝒊 Candidates of input patterns in the MB procedure,

with 𝑖 = 1, . . . , 𝑄.

 Q Number of candidates in the MB procedure. When not

quoted, use Q = 10.

𝝆 Decent learning rate of STRAGEN.

𝝈𝒇 Maximum number of times that a node is supposed to fire.

𝝈𝒔𝟏
 Number of firing of node 𝑠1.

xvi

SYMBOLS DESCRIPTIONS

𝒔𝟏 Nearest node (winner) of the input pattern by

some criterion of proximity.

𝒔𝟐 Second node closest to the input pattern by some

proximity criterion.

 S(t) Stimulus force, usually S (t) = 1.

𝜽𝒊 DH parameter of joint angles.

𝜽𝒌 Joint angles of robots.

 t Iteration or current time.

𝒕𝒎𝒂𝒙 Maximum number of training iterations.

𝒕𝒃 & 𝒕𝒏 Decay parameters for the frequency function in GWR.

Suggested value: 𝒕𝒃 = 3.33 and 𝒕𝒏 =14.3.

 T Transformation Matrix.

𝑽𝒌 Group k of homogeneous information that makes up the

Standard input.

𝑽𝜼 Subvector of the vector of weights composed by the group (s)

of homogeneous information used as a neighborhood

criterion.

𝑽𝜻 Subvector of the vector of weights composed of the group (s)

of homogeneous information and used as an activity criterion.

𝝃 Dimension of input pattern.

𝝃(𝒕) Input pattern presented at time t.

xvii

SYMBOLS DESCRIPTIONS

𝝃𝒉 Subvector of the input pattern 𝜉 which represents the group h

defined as the neighborhood criterion.

𝝃𝜻 Subvector of the input pattern 𝜉 which represents the group ζ

defined as an activity criterion.

𝝃𝜼,𝒒𝒊
 Subvector η of an input vector 𝜉 at point 𝑞𝑖.

𝑽(𝒄) Voronoi field.

𝒘𝒊 Weight vector.

𝒚(𝒕) Function with exponential decay in time.

 ζ Activity criteria of STRAGEN.

18

19

Chapter 1
Introduction
In ongoing ages, Robotics have spread to all segments in our day by day life. The use of

mechanical technology, mainly Robotics is quickly expanding. Over the course of centuries,

human beings have continuously endeavored to quest substitutes that would efficient enough to

mimic their behavior in the numerous instances of interaction with the surrounding

environment. Several enthusiasts have inspired this incessant exploration referring to

philosophical, financial, social and scientific principles.

The term ‘Robot’ was first introduced by the Czech playwriter Karel Capek, who wrote the play

‘Rossum’s Universal Robots’ in 1920. The image of the robot as a mechanical object begins in

the 1940s when the Russian Isaac Asimov, the renowned science fiction writer, mentioned robot

as an automation of human appearance but devoid of feelings. Afterward, the term has been

introduced to a great diversity of mechanical devices such as autonomous land rovers,

underwater vehicles, manipulators etc.

According to scientific interpolation of the science fiction scenario, the robot is understood as

a machine that, independent of its exterior, is able to modify the environment in which it

operates. Robotics are generally defined as the science studying the intelligent connection

between perception and action. A virtual system that operates with some degree of autonomy,

typically computer control, has at some point been called the robot.

The bridge between life and the machine is not trivial, and many

questions that have always been open in philosophy are now, with the

advent of computer science, receiving an answer with a new approach.

This approach has in its vocabulary terms such as systems, sensitive to

initial conditions, patterns, learning, prediction, artificial neural

networks, emergent properties, states, representation of knowledge,

planning, controls, etc. (Benante, 2008)

Trajectory planning is a robotic task in which the robot must follow a prescribed route. It is

formerly automated by an operator who controls the robots through an order of desired arm

20

positions, whereas these positions are kept in controller memory for further recall. The process

described is time-consuming and inefficient, since during storage procedure the robot is out of

operative action and the entire process ensures under the command of the robot operator.

Additionally, in modern work, a robot is regularly required to perform several tasks and the

robot controller needs to pursue different paths.

Trajectory planning can be carried out by neural networks for transient successions if the

trajectory to be pursued is comprehended as an order of arm positions. The role of neural

networks is to figure out how to relate successive states of a trajectory and to store that state

changes for aggregate or fractional generation of scholarly directions. Throughout the

reproduction, at the beginning of each sequence, the current positions of the robot are accessible

to the network and it should respond with next one, until a target position has been satisfied.

Kelso suggests, for example, that the brain is a self-organized system,

working according to synergistic laws, and for this reason it can present

macroscopic phenomena such as vision, locomotion and muscular

organization with the objective of picking up an object. Self-organized

system can be adopted to find the robotics trajectory. (Benante, 2008)

Barreto and Araujo (2002) proposed a self-organizing neural algorithm that learns the temporal

order of input states in an unsupervised way. Discrete trajectory focuses are situated in

feedforward weights while their pattern of occurrence in time is determined by lateral weights.

The network can learn multiple trajectories with their points in common taking into account of

fixed input units. In any case, this model can’t handle trajectories with repeated points.

State trajectories include any valid sequences of state transitions of a learned or predetermined

system, passing through possible intermediate states, starting from an initial point that can be

given or determined by the system, and target point of the system. As it can be seen from the

characterization, there is a wide range of domains in which this technique can be used, if for

that the domain in question can be characterized by possible states and there are transitions

between them.

Numerous models of dynamic topology have imperative attributes to be utilized to determine

the robotics trajectories and which are the base to proceed with this work. Over the last

centuries, many models had been introduced. Among these, the most important ones are: Self-

Organizing Map (SOM) (Kohonen, 1987), Topology Representing Networks (TRN)

(Martinetz, 1991), (Neural Gas and Competitive Hebbian Learning), Growing Cells Structures

21

(GCS) (Fritzke, 1994a), Growing Neural Gas (GNG) (Fritzke, 1997). The GWR model

(Marsland, 2002), which is the result of improvement of previously mentioned models. Among

several other important properties that will be studied in this algorithm, improvement should be

done in the sense of adaptability and growth of the model’s network .

More specifically, Benante (2008) proposed a new improved incremental self-organizing

artificial neural network model called the State Trajectory Generator (STRAGEN), to generate

state trajectories, in which the points provided are learned by the network in an unsupervised

training guided by a procedure called Motor Babbling (MB). The optimality criteria to create

connections between these points can be characterized in several types for each domain, being

described in the own input pattern, and used by STRAGEN to create topological maps. The

STRAGEN model has two approaches that differ in how they deal with the elimination of

inappropriate states and connections between them, called STRAGEN Off-line and STRAGEN

On-line.

This thesis work will mainly focus on three artificial neural network models: Growing Neural

Gas (GNG), Grow When Required (GWR) and State Trajectory Generator (STRAGEN). The

goal is to find trajectories of two-link planar manipulator and PUMA (Programmable Universal

Manipulation Arm) 560 using these three algorithms. To implement these networks at first all

possible points that the robot can move in 2-Dimensional and 3-Dimensional spaces have to be

simulated respectively for two-link robot and Puma 560. A great idea is to use MATLAB

software tool. Afterward, this data points can be trained by using these three networks according

to their algorithm. As soon as the network is trained, it is possible to find state trajectories of

the robot by energy diffusion algorithm.

This document is organized in 7 chapters. Chapter 2 reviews the general concepts of robotic

systems. It includes forward kinematics and most importantly Denavit-Hartenberg (DH)

convention from which data points of two-link robot and Puma 560 have been simulated.

Chapter 3 describes some of the main models of artificial neural network (ANN) with fixed and

dynamic topologies and raised some characteristics that were promising in these models.

Chapter 4 reviews the GNG model, its algorithms and description of this method. Chapter 5 for

GWR model. One can find a comparison between GWR and GNG at the end of this chapter.

Chapter 6 presents a new dynamic topological model STRAGEN. This algorithm is subdivided

into two approaches: STRAGEN Off-line and STRAGEN On-line. We will see their algorithm

and difference among them at the end of this chapter. Chapter 7 emphasis on the results

22

generated by these three models, and a comparison among them. In addition, there is a more

practical description of how the results were achieved. This chapter ends with the conclusion

of this thesis work and improvements in future.

23

Chapter 2
Robotics System
In order to proceed with the thesis work, some general concepts should be discussed. This

chapter describes the mechanical structures of robots, forward kinematics equation as well as

Denavit-Hartenberg notation. Forward kinematics is concerned with the relationship between

the joints of the robotic manipulator and the position of the end effector, for a given value of

joint variables of the robot.

2.1 Robot Manipulators

A robot manipulator, in general consists of a sequence of rigid bodies (links) which are

interconnected by means of articulations (joints). Normally a manipulator can be described in

three sections which are:

• Arm, ensuring mobility.

• Wrist, conferring dexterity.

• End-effector, performing the task required of the robot.

The articulation between two consecutive links can be categorized into two section called

prismatic joints and revolute joints. A prismatic joint (P) creates a linear relative motion

between two links. On the other hand, a revolute joint (R) creates relative rotation between two

links. The Degree of freedom (DOF) is related to the number of joints of a robot manipulator.

It is distributed along the mechanical structure of a robot manipulator to have a sufficient

number to execute a given task. In 3-Dimensional space, typically six DOFs are required where

three DOFs are for positioning and other three are for orientation with respect to reference

coordinate frame. If the number of DOFs are higher than the tasks variables, the manipulator is

called Reduandant from a kinematics point of view, while in other case, if the DOFs are less

than the task vaiables then the arm can not move properly.

The workspace represents the total volume swept out that the end-effector can access. Its shape

and volumes are constrained by the geometric configuration of a manipulator as well as the

presence of mechanical joints. The task required by the arm is to position the wrist. After that

24

is required to orient the end-effector. The entire set of points reachable by manipulator is called

reachable workspace. On contrary, the workspace consists of points that manipulator can reach

with an arbitrary orientation of end-effector is called dexterous workspace.

2.1.1 Forward Kinematics

Kinematic chain can be categorized into two sections: open kinematic and close kinematic. If

there is only one sequence of links connecting the two ends of the chain is named as open. On

the other hand, when a sequence of links create a loop is called closed kinematic. The aim of

forward kinematic is to compute the position of end-effector.

Consider an open chain manipulator with n joints connected by n+1 links. Link 0 is

conventionally settled to the ground. Each joint gives one DOF, correspond to a joint variable.

To define a coordinate frame joined from Link 0 to Link n, it is reasonable to consider first the

description of the kinematic relationship between consecutive links and then to obtain the

general description of the manipulator. The position and orientation of the last frame with

respect to the initial frame is given by a transformation matrix 𝑇𝑛
0 which is composed by

homogeneous transformation matrix 𝐴𝑖
𝑖−1(𝑞𝑖) (for 𝑖 = 1, … … 𝑛) each of which is a function of

each joint variables.

 𝑇𝑛
0 = 𝐴1

0(𝑞1)𝐴2
1(𝑞2) … … . . 𝐴𝑛

𝑛−1(𝑞𝑛)

Where 𝑞𝑖 is the generalized coordinates for each joint. It can represent the motion of a multibody

system, inherently taking into consideration the kinematic constraints acting on the system.

Figure 1: Coordinate transformation in open chain (Siciliano, 2008).

25

The actual coordinate transformation describing the position of orientation of end-effector with

respect to the base frame is given by

𝑇𝑒
𝑏(𝑞) = 𝑇0

𝑏𝑇𝑛
0(𝑞) … … … 𝑇𝑒

𝑛

Where 𝑇0
𝑏 represents the position and orientation of base with respect to Frame 0 and 𝑇𝑒

0 is w.r.t

the end-effector.

2.1.2 Denavit-Hartenberg convention

Most commonly used convention for selecting reference frames in robotic systems is the

Denavit-Hartenberg (1955) convention. Each homogeneous transformation matrix 𝐴𝑖 is

represented as a product of four basic transformation described below:

𝐴𝑖 = 𝑅𝑜𝑡𝑧,𝜃𝑖
, 𝑇𝑟𝑎𝑛𝑠𝑧,𝑑𝑖,𝑇𝑟𝑎𝑛𝑠𝑥,𝛼𝑖,𝑅𝑜𝑡𝑥,𝛼𝑖

= [

𝑐𝜃𝑖
−𝑠𝜃𝑖

0 0

𝑠𝜃𝑖
𝑐𝜃𝑖

0 0

0 0 1 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

] [

1 0 0 𝑎𝑖

0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝛼𝑖

−𝑠𝛼𝑖
0

0 𝑠𝛼𝑖
𝑐𝛼𝑖

0

0 0 0 1

]

= [

𝑐𝜃𝑖
−𝑠𝜃𝑖

𝑐𝛼𝑖
𝑠𝜃𝑖

𝑠𝛼𝑖
𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖
𝑐𝜃𝑖

𝑐𝛼𝑖
−𝑐𝜃𝑖

𝑠𝛼𝑖
𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖
𝑐𝛼𝑖

𝑑𝑖

0 0 0 1

]

Where the parameters 𝜃𝑖 , 𝑎𝑖, 𝑑𝑖, 𝛼𝑖 are linked to link 𝑖 and joint 𝑖. The description of each

parameters is:

• Parameter 𝜃𝑖: defines the rotation angle between axes 𝑧𝑖−1 and 𝑧𝑖 about the axis 𝑥𝑖. The
rotation is positive when counter-clockwise.

• Parameter 𝑎𝑖: defines the minimum signed distance between 𝑂𝑖 and 𝑂𝑖′.
• Parameter 𝑑𝑖: defines coordinate of 𝑂𝑖′ along 𝑧𝑖−1.
• Parameter 𝛼𝑖: defines the rotation angles between axes 𝑥𝑖−1 and 𝑥𝑖 about the axis 𝑧𝑖.

The rotation is positive when counter-clockwise.

Among the four parameters, two parameters are associated with translation and two parameters

are associated with a rotation. Parameters, 𝑎𝑖 , 𝛼𝑖, are always constant and depend only on the

geometry of connection. While other two parameters 𝜃𝑖 , 𝑑𝑖, among them only one variable is

depending on the type of joints.

26

• If joint 𝑖 is revolute, then the variable parameter is 𝜃𝑖
• If joint 𝑖 is prismatic, then the variable parameter is 𝑑𝑖

 Figure 2: Denavit-Hartenberg kinematic parameters (Siciliano, 2008).

According to Figure 2, Axis 𝑖 denote the axis of joint 𝑖 connecting links 𝑖𝑖−1 and 𝑖. To describe

the Link frame 𝑖 by DH convention is as:

• Choose axis 𝑧𝑖 along the joint axis 𝑖 + 1.
• Locate the origin 𝑂𝑖 at the intersection of axis 𝑧𝑖 with common normal to axes 𝑧𝑖−1 and

𝑧𝑖. Also, locate 𝑂𝑖′ at the intersection of the common normal with axis 𝑧𝑖−1.
• Choose axis 𝑥𝑖 along the common normal to axes 𝑧𝑖−1 and 𝑧𝑖 with the direction from

joint 𝑖 to 𝑖 + 1.
• Choose the axis 𝑦𝑖 to complete a right-handed frame.

DH convention is applied both for prismatic and revolute joints. Among these parameters, two

are associated with translation and two are associated with rotations. Indeed, DH doesn’t handle

parallel z-axis very well. Nonetheless, most of the kinematics libraries accept DH parameter.

27

2.2 Two-Link Planar Manipulator

Robots can be mathematically defined as a chain of serially connected links, assuming that each

joint has a degree of freedom, either translational or rotational. A robot manipulator with

𝑛 joints will have 𝑛 + 1 links, since each joint is connecting two links. For a robot with 𝑛 links,

numbered from 1 𝑡𝑜 𝑛, the links are numbered from 0 𝑡𝑜 𝑛, starting from the base. By this

convention, joint 𝑖 connects link 𝑖 − 1 𝑡𝑜 𝑖 and vice versa. When joint 𝑖 is actuated, link i and

link i-1 moves.

Consider the two-link planar robot. By means of the convention of robotics, the system is a

Revolute-Revolute (RR) robot. The joint axis 𝑧𝑜 𝑎𝑛𝑑 𝑧1, pointing out of the page are not shown

in the Figure 3.

Figure 3: Two-link planar robot (Spong, 2004).

2.2.1 DH Parameter

Reference frame 𝑜0𝑥0𝑦0 has been chosen. When the base frame has been chosen, the 𝑜1𝑥1𝑦1

frame of link1 is fixed according to DH convention, where the origin 𝑜1 is positioned at the

intersection of 𝑧1 and the page. The link2 frame 𝑜2𝑥2𝑦2, where the end effector of 2R robot is

located, is fixed by choosing the origin 𝑜2. The table of D-H parameters of 2R is shown as

follows:

28

 Link 𝜶𝒊 𝒂𝒊 𝒅𝒊 𝜽𝒊

1 0 𝑎1 0 𝜃1

2 0 𝑎2 0 𝜃2

Table 1: DH Parameter for two-link manipulator.

2.2.2 Transformation Matrix

Homogeneous transformation matrix of joint 1 and joint 2 is given by:

To simplify the notation in the transformation matrix, the trigonometric function can be re-
written as follows:

𝑠1 = sin (𝜃1) 𝑐1 = cos (𝜃1)

𝑠12 = sin (𝜃1 + 𝜃2) 𝑐12 = cos (𝜃1 + 𝜃2)

The transformation matrix T is given as follow:

𝑇1
0 = 𝐴1

𝑇2
0 = 𝐴1𝐴2 = [

𝑐12 −𝑠12 0 𝑎1𝑐1 + 𝑎2𝑐12

𝑠12 𝑐12 0 𝑎1𝑠1 + 𝑎2𝑠12

0 0 1 0
0 0 0 1

]

Where the first three rows and columns represent the orientation of the 𝑜2𝑥2𝑦2 w.r.t base frame

and last columin of 𝑇2
0 shows the position (x and y components) of the origin 𝑜2 w.r.t the base.

2.2.3 Data Point Simulation

Once the kinematic equations have been solved, it is possible to create database consisting of

positions in XY plane as a result of combinations of angles of orientation by using the software

MATLAB. For the purpose of generating trajectory between two random points, training of the

𝐴1 = [

𝑐1 −𝑠1 0 𝑎1𝑐1

𝑠1 𝑐1 0 𝑎1𝑠1

0 0 1 0
0 0 0 1

] 𝐴2 = [

𝑐2 −𝑠2 0 𝑎2𝑐2

𝑠2 𝑐2 0 𝑎2𝑠2

0 0 1 0
0 0 0 1

]

29

working environment of the manipulator is needed. Training is done by using Neural Networks

(NN), which are described in the later chapters. For both Trajectory Generation and Training,

first thing that is needed is the uniformly distributed database within the working range of our

machine.

Points X Y 𝜽𝟏 𝜽𝟐

1 3.5 0 0 0

2 3.4631 0.3306 0 25.8593

...

729 1.1836 2.9214 90 307.9

...

1058 -1.3962 2.9141 135 314.3120

...

2423 1.4337 -2.9140 315 315.7472

...

2650 2.9446 -1.6240 345 327.4713

...

2736 2.9937 -1.2258 357 314.6301

Table 2: Database of positions and corresponding angles for two-link robot.

Table 2 demonstrates database of two-link robot where the random positions of the end effector

is represented and their corresponding angles of rotation in 2-Dimensional space. For creating

homogenous database of two link robot, following criteria have been used:

30

1- Link 1, 𝑎1 = 2 cm

2- Link 2, 𝑎2 = 1.5 cm

3- 𝜃1,𝑖 = 𝜃1,(𝑖−1) + 3 s.t 𝜃1𝑖 ≤ 360 - 3

4- 𝜃2,𝑖 = 𝜃2,(𝑖−1)+ rand∙30 s.t 𝜃2,𝑖 ≤ 360-30 ∀𝜃1𝑖 𝑖 ∈ {1,2,3, … }

The simulation has been carried out in MATLAB using forward kinematics concept, where

possible points of the two-link robot can be seen in 2D space.

 Figure 4: Cloud of 2736 random positions of a two-link robot according to the table.
These training points shown above are useful as a starting phase for artificial neural network

algorithms discussed in the upcoming chapters.

31

2.3 Puma 560

Different types of robots are used in industries. PUMA (Programmable Universal Manipulation

Arm) 560 is one of the industrial robots that has been used in many industries. This robot was

initially developed for General Motors. It is RRRRRR with 6 links and 6 degrees of freedom.

The figure can be shown below:

Figure 5: Frame assignment for PUMA 560 (Craig, 2005).

From this Figure 5, it can be seen that link-frame parameters corresponding to all joint angles

are equal to zero. The joint axes 4 5 6 intersect at a common point and mutually orthogonal.

2.3.1 DH Parameter

One of the main concerns for the robotic system is to find the position of the end effector of a

robotic manipulator most accurately. For this case, the Denavit-Hartenberg (DH) parameter

should be adopted to find end effector position and angles. DH convention is the most common

approach of forward kinematics. After the frame assignment, it is possible to compute the DH

parameters of PUMA 560.

32

 Link i 𝜶𝒊 𝛉𝐢 𝐚𝐢 𝐝𝐢

1 90° θ1 0 d1

2 0° θ2 a2 0

3 90° θ3 + 90 0 0

4 −90° θ4 0 d4

5 90° θ5 0 0

6 0° θ6 0 0

Table 3: DH parameter for PUMA 560.

To better understand the forearm position of the robot:

 Figure 6: Frame assignments for the forearm of PUMA560 (Craig, 2005).

2.3.2 Transformation Matrix

After the DH convention of PUMA560, it is possible to derive a 4 × 4 transformation matrix

where the first 3 rows and columns show the rotation and last column shows the translation.

𝑇1
0 = [

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

] 𝑇2
1 = [

𝑐2 −𝑠2 0 0
0 0 1 0

−𝑠2 −𝑐2 0 0
0 0 0 1

]

33

𝑇3
2 = [

𝑐3 −𝑠3 0 𝑎2

𝑠3 𝑐3 0 0
0 0 1 𝑑3

0 0 0 1

] 𝑇4
3 = [

𝑐4 −𝑠4 0 𝑎3

0 0 1 𝑑4

−𝑠4 −𝑐4 0 0
0 0 0 1

]

𝑇5
4 = [

𝑐5 −𝑠5 0 0
0 0 −1 0
𝑠5 𝑐5 0 0
0 0 0 1

] 𝑇6
5 = [

𝑐6 −𝑠6 0 0
0 0 1 0

−𝑠6 −𝑐6 0 0
0 0 0 1

]

By the convention of Matrix multiplication property, it is possible to obtain 𝑇0
6 as:

𝑇0
6 = 𝑇1

0𝑇2
1𝑇3

2𝑇4
3𝑇5

4𝑇6
5

2.3.3 Data Point Simulation

After solving DH parameter and forward kinematics, one can simulate it on MATLAB to derive

the position and corresponding angles of rotation of end effector. By using MATLAB, a

database of points can be generated that the robot can move in 3D space. Each point represents

a position in X Y Z and corresponding angles of rotation.

It is possible to create a table with data points of Puma robot as done in section 2.2.3. Uniformly

distributed data points of Puma 560 can be achieved by using following criteria:

1- Parameter 𝑎2 = 2 cm

2- Parameter 𝑑1 = 2 cm

3- Parameter 𝑑4 = 1.5 cm

4- 𝜃1,𝑖 = 𝜃1,(𝑖−1) + 3 s.t 𝜃1𝑖 ≤ 320

5- 𝜃2,𝑖 = 𝜃2,(𝑖−1)+ 3 s.t 𝜃2,𝑖 ≤ 250

6- 𝜃3,𝑖 = 𝜃3,(𝑖−1)+ rand∙90 s.t 𝜃3,𝑖 ≤ 270 ∀𝜃1𝑖 𝑖 ∈ {1,2,3, … }

7- XY positions generated by above-mentioned criteria of θ values must be apart from each

other by a distance of more than 0.15cm.

Table 4 shows an excerpt from the database of Puma 560 where positions of end effector are

labeled as X Y Z and angles of rotation 𝜃1, … , 𝜃6. It can be noted that the values of

𝜃4, 𝜃5 𝑎𝑛𝑑 𝜃6 are zero because the angles belong to the wrist of robot and by changing these

angles, it does not have any effect of the positions of end effector, only in case d6 ≠ 0.

34

Points X Y Z 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔

1 3.34 -5.06 2.67 0 0 0 0 0 0

2 2.10 -1.83 0.50 0 0 73.43 0 0 0

...

650 -2.96 0.86 3.63 6 9 225.58 0 0 0

...

999 -0.46 0.21 -0.55 9 42 264.91 0 0 0

…

1484 -0.22 0.14 -0.47 12 249 70.23 0 0 0

...

1754 2.11 -1.81 1.04 15 249 249.70 0 0 0

...

2909 0.53 -3.44 1.83 30 0 62.25 0 0 0

...

5879 -1.17 -0.37 -0.14 60 36 202.19 0 0 0

...

8550 -1.86 -1.33 1.41 120 180 261.75 0 0 0

...

11041 -1.52 -2.04 0.71 180 132 73.68 0 0 0

15257 1.73 1.45 2.95 318 222 233.61 0 0 0

Table 4: Database of positions and corresponding angles for Puma 560.

35

According to the table, it is optimal to plot the database of Puma 560 in 3-dimensional space

where all possible points are shown that robot can reach. The simulation is done in MATLAB

by solving forward kinematic equations. Figure 7 shows the uniformly distributed points of

Puma robot.

Figure 7: Data Points in 3D of PUMA 560.

In total, the plot shown above has 15257 random points. It can be called as training points,

which will be used as starting point of artificial neural networks such as GNG, GWR and

STRAGEN in next chapters, to train them. After training, it can be possible to find the trajectory

of the robot described in Chapter 7.

36

Chapter 3

Neural Network Models

In order to proceed with the purpose of work to find continuous trajectory between two end

points, first database needs to be trained, for which some artificial neural network models

should be discussed. The operation and properties of these models can be used as a foundation

and inspiration for this thesis work. Supervised learning can be understood by analyzing the

training data to produce an inferred funtion, which can be used for mapping of new patterns.

3.1 Self-Organizing Map (SOM)

The Self Organizing Map (SOM) algorithm, defined by Finnish professor T. Kohonen, is a type

of unsupervised Artifical Neural Network (ANN). It uses a competitive learning procedure for

discretized representation of high dimension information into low dimensional, while

simultaneously preserving similarity relations between the presented data items.

Kohonen (1987) points out one of the common properties of the brain, which was ignored by

the learning machine, is the order that appears in the processing units, called neurons. This order

is necessary for the correct topological representation of the input data and is obtained by a

relatively simple algorithm.

‘‘Although a part of such ordering in the brain were determined genetically, it will be

intriguing to learn that an almost optimal spatial order, in relation to signal statistics, can

completely be determined in simple self-organizing process under the control of received

information” stated by KOHONEN in 1987.

The SOM consists of a regular, usually two-dimensional grid, onto which a distribution of input

items is projected nonlinearly. The mapping tends to preserve the topological-metric relations

between the input items. Matching procedure is used for the projection. Every grid unit, a

generalized model is thought to be associated. For every input pattern, the closet model in a

metric is identified. The collection of models is enhanced to approximate all inputs.

The focal property of SOM is that it frames a nonlinear projection of a high-dimensional data

manifold on a regular, low-dimensional matrix. In the display, the clustering of the data spaces

37

as well as the metric-topology relations of data items are plainly visible. If the data items are

vectors, the components of which are variables with a definite meaning such as descriptors of

statistical data, or measurements that describe a process, the SOM matrix can be utilized as a

preparation on which every one of the factors can be shown independently using color coding.

The sort of consolidated presentation has been discovered exceptionally helpful for the

comprehension of the common conditions between the factors, and in addition to the structure

of the database.

Most of the Artificial Neural Network basically follow functions in two modes:

• Training: to build up the map from existing input samples.

• Mapping: classify a new input vector.

The self-organized map defines a mapping from a higher-dimensional input space to a lower-

dimensional map space. At the point when it's being trained, the map can arrange a vector from

input space via looking through the nodes with nearest (short separation metric) to the input

space vector.

3.1.1 Algorithm

The Algorithm below as described by Benante (2008, Page 53):

1. Initialize the network with random weight vector, such that 𝑤𝑖 is the vector of weights

of connections between the input and node 𝑖.

2. Initialize the neighborhood function, 𝑁(𝑖), for the largest neighborhood.

3. Display the input pattern 𝜉 = [𝜉1 𝜉2 … 𝜉𝐷]𝑇 ∈ 𝑅𝐷, where 𝜉𝑗 is the input 𝑗 in node 𝑖.

4. Calculate the Euclidean Distance 𝐷𝑖𝑠𝑡(𝜉, 𝑤𝑠1) between the input 𝜉 and the weight

vector at each node, given by the equation:

𝐷𝑖𝑠𝑡(𝜉, 𝑤𝑖) = ‖𝑤𝑖 − 𝜉 ‖

5. Let 𝑠1 is the node that has the shortest distance 𝐷𝑖𝑠𝑡(𝜉, 𝑤𝑠1), i.e., winning node.

6. Update the weight vector 𝑤𝑖, for each node 𝑖, belonging to the neighborhood 𝑁(𝑠1),

according to the equation:

 𝑤𝑖 = 𝑤𝑖 + 𝜀 ∙ (𝜉 − 𝑤𝑖)

38

7. Decrease the neighborhood of 𝑁(𝑠1).

8. Repeating the Neighborhood function until reaching an iteration limit.

It ought to be recalled that the neighborhood function 𝑁(𝑠1) contains the neighbor nodes of the

winning node, which will likewise have their weights updated (Gaussian) in the direction of the

current pattern of input. The neighborhood function is responsible for the ordering of the nodes

that tend to respond for the similar input pattern or for comparable input patterns. It is necessary

that this function tends to zero to ensure the convergence of the method.

3.1.2 Example

Figure 8: Kohonen map after 10 000 signals for clustered data distribution (Fritzke, 1997).

Figure 8 demonstrates a case of a self-organizing map of Kohonen with an initial two-

dimensional, rectangular structure finds a configuration that distorts its initial grid to a new

arrangement that minimizes the error of response at every unit. The rectangular map consists

of 100 nodes. It very well may be noted that, because of characteristics of the data mass

(discontinuous and convex), the Kohonen map can not disperse its units legitimately.

3.2 Topology-Representing Networks (TRN)
The previous model used for the low dimensional dataset. It emerges conflicts dealing with

high-dimensional informational collection. In practice, high-dimensional data set is used to be

analyzed. This model proposed by Martinetz (1991) is based on a combination of two

techniques:

39

• Neural gas vector quantization.

• Competitive Hebbian learning rule.

The point of the topology display is to give a strong representation of data set, where the hidden

information structure is protected. For a given data structure, where a number of points

(weights) are the predefined parameters. The idea is to distribute an explicit number of nodes

in a region of the input data, according to some likelihood functions, following Neural Gas

algorithm and Competitive Hebbian Learning. This topology may have different dimensions

for different areas of the input. At the beginning, it chooses randomly a pattern from the given

data set and condenses all weights nearer to this pattern. After this, two weights nearest to the

selected input patterns, which is random, will be connected. The edges which surpass a

predefined threshold will be expelled toward the end. The process is continued until a limiting

criterion is introduced.

Dynamic Topology Representing Networks (DTRN), introduced by J. Si, S. Lin, the topology

graph incrementally develops by adding and eliminating edges and vertices. At the initial step,

begins with only one node. The algorithm performs a vigilance test in each iteration. In the

event that the nearest (winner) node to the randomly chosen input information pattern falls flat

the test, then a new node will be generated and it will connect to the winner. In another case, if

the first winner and the second winner are not connected, the algorithm creates an edge between

them. This algorithm is same as TRN when the connections those exceeds a predefined limit,

will be removed.

3.2.1 Neural Gas (NG)
Neural gas is an artificial neural network, followed by Self-organizing map. The algorithm

essentially based on finding the optimum data representation on featured vectors. NG refers

only to the isolated nodes, which will be distributed in a 𝑅𝐷 space, according to the probability

function 𝑃(𝜉). The principal of NG is that, for each input signal 𝜉, all the nodes must adapt

according to classified order, i.e., the nearest first, second etc, with relation to the input signal

𝜉. Over time the number of nodes will be adapted until the first winner is matched.

40

3.2.1.1 Algorithm

Algorithm underneath as described by Benante (2008, Page 58):

1. Initialize the set 𝐴 with 𝑛 units of 𝑖, and at random positions 𝑤𝑖 ∈ 𝑅𝐷, 𝑖 = 1,2, … , 𝑛,

random such that 𝐴 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛}. Initialize the time parameter 𝑡 = 0.

2. Generate at random an input signal 𝜉, according to 𝑃(𝜉).

3. Order the elements of 𝐴, as well their indices (𝑖0, 𝑖1, 𝑖2, … , 𝑖𝑛−1), according to the distance

between 𝑤𝑘 and 𝜉, such that:

 ‖𝑤𝑘 − 𝜉‖ < ‖𝑤𝑘+1 − 𝜉‖

4. Set the featured vector (weight) according to the equation:

 ∆ 𝑤𝑖 = 𝜀(𝑡) ∙ ℎ𝑦(𝑘) ∙ (ξ − wi)

With the dependence of time: 𝑦(𝑡) = 𝑦𝑖(𝑦𝑓/𝑦𝑖)
𝑡/𝑡𝑚𝑎𝑥 , 𝜀(𝑡) = 𝜀𝑖(𝜀𝑓/𝜀𝑖)

𝑡/𝑡𝑚𝑎𝑥 , and

ℎ𝑦(𝑘) = exp (−𝑘/𝑦), where 𝑦(𝑡) and 𝜀(𝑡) are decay functions, for which the values of

initial (𝑦𝑖, 𝜀𝑖) and final (𝑦𝑓 , 𝜀𝑓) must be chosen, 𝑡𝑚𝑎𝑥 is the limit of iterations and 𝑘 is the

index vector of positions of 𝑖𝑘 in the proximity ranking of the nodes and ℎ𝑦(𝑘) is a ranking

proximity function.

5. Increment the time parameter 𝑡 = 𝑡 + 1.

6. If 𝑡 < 𝑡𝑚𝑎𝑥, continue from the step 2.

3.2.1.2 Example

The simulation results of NG algorithm are shown below. Following Martinetz (1993), this

simulation was done by choosing the following parameters:

𝑦𝑖 = 10, 𝑦𝑓 = 0.01, 𝜀𝑖 = 0.5, 𝜀𝑓 = 0.005, 𝑡𝑚𝑎𝑥 = 40 000

The simulation results are obtained for this algorithm by applying 40 000 input signals. It is

noted that no topological information involved in neural gas, i.e., there are no neighborhood

connections. The distribution of nodes reflects only the density function probability of input

space.

41

Figure 9: Neural gas after 40 000 input signals for the clustered data distribution (Fritzke,
1997).
The Neural Gas model does not create a connection between the signals. Therefore, we can’t

implement this topology in many cases. To overcome this case, the complete TRN algorithm

combines NG with CHL, which creates the connections.

3.2.2 Competitive Hebbian Learning (CHL)

CHL is proposed by Martinetz (1993) topology considers a number of nodes in the 𝑅𝐷 space

and progressively insert topological connections among them by evaluating input signals drawn

from a data distribution 𝑃(𝜉). The quotation of the method is given below:

‘‘For each input signal 𝜉 connect the two closest centers (measured by Euclidean distance) by

an edge.’’ (CHL)

The resulting graph generates a subgraph of the Delaunay Triangulation. This corresponds to

the arrangement of centers. The induced Delaunay triangulation, a subgraph of Delaunay

triangulation, the algorithm is limited to connect nodes only if at least part of their Voronoi

regions are in regions with probability P(𝜉)> 0.

The NG method does not use a specific topology. A ‘network’ simply consists of a number of

disconnected centers in 𝑅𝐷. Two centers are only connected if the common border of Voronoi

polygons lies any event partially in a region where P(𝜉)> 0.

Figure 10 presents (a) Delaunay Triangulation connects points having neighboring Voronoi

polygons (thin lines). Sub-figure (b) shows the induced Delaunay triangulation (thick lines) is

obtained by masking the original Delaunay triangulation with a data distribution P(𝜉) (shaded).

42

Figure 10: (a) The Delaunay Triangulation (b) The induced Delaunay triangulation
(Martinetz and Schulten, 1994).

3.2.2.1 Algorithm

Below the algorithm is described by Benante (2008, Page 60):

1. Initialize the set 𝐴 with 𝑛 units of 𝑖 at random positions 𝑤𝑖 ∈ 𝑅𝐷, 𝑖 = 1,2, … , 𝑛, such that

𝐴 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛}. Initialize the connection set 𝐶, 𝐶 ⊂ 𝐴 × 𝐴, with the empty set 𝐶 =

{ }, i.e., no connections.

2. Generate randomly the input signal 𝜉, according to 𝑃(𝜉).

3. Determine the nodes 𝑠1, 𝑠2 such that:

‖𝑤𝑠1 − 𝜉‖ < ‖𝑤𝑖 − 𝜉‖ ∀𝑖 ∈ 𝐴

‖𝑤𝑠2 − 𝜉‖ < ‖𝑤𝑖 − 𝜉‖ ∀𝑖 ∈ 𝐴 − {𝑠1}

4. If it does not exist already, insert a connection between 𝑠1 and 𝑠2 to 𝐶:

𝐶 = 𝐶 ∪ {(𝑠1, 𝑠2)}

5. Continue from Step 2 until a maximum number of input signals is reached.

3.2.2.2 Example

The edges are developed by the input data submanifold lying on the centers or in its vicinity.

The others are ineffective for the purpose of this algorithm, is called dead units. In Figure 11,

we can see that stating the algorithm with a number of units at random positions, edges are

inserted between best-matching and second-best matching unit for each input signal. The

positions of the units for circular data distribution remain unchanged, which possibly leads to

dead units not affecting the network. While for clustered data distribution, a considerable

43

number of dead units with any connection can be visualized. the random initialization of center

positions leads to unevenly well-represented regions of the input data submanifold.

Figure 11: Competitive Hebbian learning for clustered data distribution (Fritzke, 1997).

3.2.3 Combination of NG and CHL

An viable method for learning topology can be achieved if, for a given mass of input data, first

execute NG algorithm to position the nodes within the areas of interest in the probability

distribution and then to apply the CHL algorithm to create the topology as a combination of

these two models, which includes the connections between the nodes created by NG algorithm.

Figure 12: Example of TRN after 40 000 iterations. Parameters of the simulation is the
same as for NG and CHL (Fritzke, 1997).

In relation to the previous techniques, the quality of the representation, which collectively

covers all the points in the shaded area maintains the representation of the irregularity of the

input function.

The last structure appeared in figure imitates exceptionally well the representation of hidden

distribution. Since a parameter decay is required for NG algorithm, the number of adaption

steps have to be defined in advance.

44

3.3 Growing Cell Structure (GCS)

The model of GCS has been proposed by Fritzke (1991) to overcome some difficulties arising

in the Self-organizing map. The aim of this model is to enable the artificial neural network itself

to find a suitable neural structure for a huge amount of given data. The GCS model advances in

the sense that there is no longer pre-defined structure, but only a few nodes, in addition to a

mechanism to create or remove nodes. With this strategy, this network can grow changing both

its shape, position and the number of elements that compose it.

The goal of growing cell structure is the creation of topology-preserving mapping from the

input space 𝑅𝐷 into a topological structure of 𝐴 of equal or lower dimensionality k. The meaning

of Topology-preserving can be understood as follows:

• Input vectors which are close in 𝑅𝐷 should be mapped onto neighboring nodes in 𝐴.

• Neighboring nodes in A should have similar input vectors mapped onto them.

Most cases, the above property is not obtained because in general, a reversible mapping from

high dimensional space onto lower dimensional does not exist. A growing cell structure

generates k dimensional topological structure can be visible as a projection onto a nonlinear,

discretely sampled submanifold.

The objective of GCS is to generate a topological map 𝐴 representative of input data 𝑀, with

smaller dimension 𝐷𝐴 < 𝐷𝑚 which meets the following requirements:

• Signals of similar entities in 𝑀 are mapped onto topologically close elements of 𝐴.

• Topologically close elements in 𝐴 have similar input signals.

• Regions of 𝑀 with high probability density are represented in 𝐴 by a high density of

elements.

The initial topology of this model is a set 𝐴 of 𝑘 + 1 nodes (vertices) of a graph simplex, where

k is the dimension of the graph. During network execution, nodes will be added and those

considered unnecessary will be removed, always maintaining the characteristic k-simplex

network. The model preserves the topology of the input data if the dimension of the graph k is

the same as the input space (Marsland, 2002).

45

Another important notation in this model is the Voronoi Region. A given set of nodes with their

reference vector defines a distinct barrier of the input space is called as Voronoi Region.

Voronoi filed 𝑉(𝑐) can defined as the receptive field of each node 𝑐 and its reference vector 𝑤𝑐.

𝑉(𝑐) = {𝑝 ∈ 𝑅𝐷| (‖𝑝 − 𝑤𝑐‖ < ‖𝑝 − 𝑤𝑑‖) ∀𝑑 ∈ 𝐴, 𝑑 ≠ 𝑐}

The Voronoi field of c consists of those points in 𝑅𝐷 for which 𝑤𝑐 is the nearest of all currently

existing reference vectors.

3.3.1 Algorithm

The model adapts the reference vectors and inserts the node that connects in between. Two

different types of scenario in the algorithm described by Benante (2008, Page 65) that are:

• Learning (adaption) rates are constant over time. Let 𝜀𝑏 for the winning node 𝑠1 and 𝜀𝑛 for

the direct neighbors of 𝑠1.

• Only the winning nodes and their direct neighbors are adapted.

To perform a number of adaption steps for an unused unit is hypothesis proportionate to embed

another node and interpolate its reference vector from neighbors. Executing stepwise-adaption,

insertion can be quicker than situating. The parameter can be chosen small and constant if

adaption isn’t required for moving units in the extensive separation.

1. Choose an input signal 𝜉 according to probability distribution function 𝑃(𝜉).

2. Locate the winning unit 𝑠1 , the shortest Euclidean distance according to:

‖𝑤𝑠1 − 𝜉‖ = ‖𝑤𝑖 − 𝜉‖ 𝑖∈𝐴
𝑚𝑖𝑛

3. Update the weights of 𝑠1 and its direct neighborhood:

 ∆𝑤𝑠1 = 𝜀𝑏(𝜉 − 𝑤𝑠1)

 ∆𝑤𝑖 = 𝜀𝑛(𝜉 − 𝑤𝑖) ∀𝑖 ∈ 𝑁(𝑠1)

4. Add a unit to the 𝑠1 signal counter such that:

ℎ𝑠1 = ℎ𝑠1 + 1

5. Decrease all the signal counter by a fraction such that:

∆ℎ𝑖 = −𝛼ℎ𝑖

46

• Inserting node and its connection at every 𝜆 step:

The capacity of GCS is to embed a lot of nodes 𝑖 ∈ 𝐴 to such an extent that the vector 𝑤𝑖 is

the agent of probability function 𝑃(𝞷) with 𝜉 ∈ 𝑀. This generally happen when every node

𝑖 has the similar probability to be the champ of 𝑠1 for a given information 𝝽.

The indicator of Relative frequency is given by:

ℎ�̌� =
ℎ𝑖

∑ ℎ𝑗∀𝑗∈𝐴

Figure 13: GCS Network. (a) Before insertion (b) After insertion of node r (Benante,
2008).

The GCS algorithm consists of indicator frequency and inserts a new node r in the center of

Voronoi Region which is ineffectively represented. This should be possible by picking a

halfway point between the node with most relative frequency 𝑞 and its most distant neighbor

𝑓.

𝑤𝑟 = (𝑤𝑞 + 𝑤𝑓)/2

The new formation of vector connection should maintain the k-simple graphical characteristics,

maintaining the hyper tetrahedrons. This can be done according to the following steps:

• The old connections between q and r are undone.

• The new node r is connected to q, f and neighbors that are common to both (in this case

𝑛1 𝑎𝑛𝑑 𝑛2).

After the insertion of new nodes, the ℎ𝑖 input signal counter of the neighboring nodes 𝑖 should

be redistributed as follows:

47

∆ℎ𝑖 =
|𝐹𝑖

(𝑛𝑒𝑤)
| − |𝐹𝑖

(𝑜𝑙𝑑)
|

|𝐹𝑖
(𝑜𝑙𝑑)

|
∙ ℎ𝑖

Where |𝐹𝑖| is the 𝐷𝑚-dimesional volume of the Voronoi Region 𝐹𝑖. And the new node r has its

counter initially set to

ℎ𝑟 = − ∑ ∆ℎ𝑖

𝑖∈𝑁(𝑟)

• Removal of nodes:

The GCS algorithm includes a criterion for the removal of so-called "superfluous" nodes. A

node will be regarded as superfluous if it is located in a region of low probability density. Since,

probability density is generally very difficult to obtain, the GCS estimates the 𝑝 value by the

relative frequency of signals from a node in relation to the size of its Voronoi map. The cut-off

threshold 𝑘 to be chosen depends on the problem, since the densities vary for each case, making

it very difficult to define it as an absolute value. An approximation based on a normalized

probability density in relation to the total volume of all hypercubes minimizes this difficulty,

making 𝑘 = 0.09 (Fritzke, 1994) an appropriate standard value for most cases.

3.3.2 Example

Figure 14: Growing neural cell structure after 20 000 signals. The parameters of the
simulation: 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟎𝟎𝟓, 𝝀 = 𝟐𝟎𝟎, 𝜺𝒃 = 𝟎. 𝟎𝟐, 𝜺𝒏 = 𝟎. 𝟎𝟎𝟔 . (Fritzke, 1997).

The above figure shows the result of applying a variation of the proposed GCS algorithm for a

convex and discontinuous mass of data with areas that have zero probability.

48

Chapter 4
Growing Neural Gas (GNG)

The model GNG, introduced by Fritzke (1997), it tends to be viewed as an incremental variation

of the TRN model, is derived from GCS. The motivation behind this model is to generate a

graph that reflects the topological input data manifold. This graph has a dimensionality which

differs with the dimensionality of the input pattern.

Growing Neural Gas model is an unsupervised incremental clustering algorithm. The

connections between the neighbors can be used as information about an interpolation scheme

where function values for arbitrary positions in 𝑅𝐷. This model shares some properties with

Topology Representing Network (TRN). The node addition procedure in GNG, has some

advantages in relation to the fixed TRN. Furthermore, GNG does not have the topological

constraints of k-simplex graph as of GCS model. At first, arbitrary edges are allowed. Its

topology based on how many different dimensions are required to represent the input data.

There are still some differences that can be seen by the algorithm presented below.

4.1 Algorithm

Consider networks consisting of (Benante, 2008, Page 72):

• a set 𝐴 of nodes (or units). Each node 𝑖 ∈ 𝐴 has a reference vector 𝑤𝑖 ∈ 𝑅𝐷, which can

be understood as its position in input space.

• a set of 𝐶 connections (or edges) between the pair of nodes. These connections have not

weights. Their sole perform is to define the topological structure.

The principle thought is to include new nodes successively, starting from a network through the

assessment of local statistical measures during the presentation of the data and it’s in the

previous adaption step (Fritzke, 1997).

1. Initialize the set 𝐴 with two units 𝑛1 𝑎𝑛𝑑 𝑛2 in positions 𝑤𝑛1 𝑎𝑛𝑑 𝑤𝑛2 belonging to

𝑅𝐷 from randomly selected input P (𝜉).

𝐴 = {𝑛1, 𝑛2}

49

Initialize the set of 𝐶 connection with a connection between 𝑛1 & 𝑛2 and set the age of

connection to zero.

 𝐶 = {𝑐𝑛1,𝑛2}

 𝑎𝑔𝑒(𝑛1,𝑛2) = 0

2. Generate an input signal 𝜉, according to P (𝜉).

3. For every node 𝑖 in the network, determine nodes 𝑠1, 𝑠2 ∈ 𝐴 such that:

 ‖𝑤𝑠1 − 𝜉‖ ≤ ‖𝑤𝑖 − 𝜉‖ ∀𝑖 ∈ 𝐴

 ‖𝑤𝑠2 − 𝜉‖ ≤ ‖𝑤𝑖 − 𝜉‖ ∀𝑖 ∈ 𝐴 − {𝑠1}

Where 𝑤𝑖 is the weight vector of node 𝑖.

4. If a connection does not exist already, then insert the connection between 𝑠1, 𝑠2 to 𝐶:

𝐶 = 𝐶 ∪ {𝐶𝑠1,𝑠2}

 In any case, set the age connection to be zero (refresh the age):

𝑎𝑔𝑒(𝑠1,𝑠2) = 0

5. Add the squared distance between the input signal and the nearest unit in input space to

a local error variable.

∆𝐸𝑠1 = ‖𝑤𝑠1 − 𝜉‖2

6. Move 𝑠1 and its direct topological neighbors towards 𝜉 by fractions 𝜀𝑏 and 𝜀𝑛,

respectively of the total distance.

∆𝑤𝑠1 = 𝜀𝑏(𝜉 − 𝑤𝑠1)

∆𝑤𝑖 = 𝜀𝑛(𝜉 − 𝑤𝑖) ∀𝑖 ∈ 𝑁(𝑠1)

Where 𝑁(𝑠1) is the set of direct topological neighborhood of 𝑠1.

7. Increase the age of all connections emanating from 𝑠1.

𝑎𝑔𝑒(𝑠1,𝑖) = 𝑎𝑔𝑒(𝑠1,𝑖) + 1 ∀𝑖 ∈ 𝑁(𝑠1)

50

8. Remove the edges with an age larger than 𝑎𝑚𝑎𝑥. If this results in units having no edges

emanating, remove them as well.

9. If the number of input signals is an integer multiple of parameter λ, then insert new node

as follow:

• Determine the unit q as having the largest accumulated error and determine f, a

direct neighbor farthest from q.

• Interpolate a new unit r between q and f: 𝑤𝑟 = (𝑤𝑞 + 𝑤𝑓)/2.

• Insert connections between r and q and between r and f. Also, remove the

connections between q and f.

• Decrease the error variable of q and f.

• Interpolate the error variable of r between q and f.

10. Decrease the error of all units:

∆𝐸𝑖 = −𝛽𝐸𝑖 ∀𝑖 ∈ 𝐴

11. Continue from step 2 until a stop criterion (maximum iterations) has been reached (for

example, the size of the network, or some measurement of performance).

4.2 Description of this method

The method described above has an adaption phase (Step 6) that moves all the nodes towards

those areas 𝑃(𝜉) > 0. In Step 6, adds a new connection between the nearest and the second-

nearest unit, in relation to an input signal 𝜉. This generates a single connection in the induced

Delaunay triangulation. The removal of nodes described in Step 8, is needed to eliminate

connections that are no longer part of Delaunay Triangulation. This can be performed in

conjunction with Step 7 that ages all the connections and with Step 4 that resetting age of those

which already exist between nearest and second-nearest units. Removing and inserting

connections in this model endeavors to develop and keep up the actuated Delaunay triangulation

which is a gradually moving target because of the adaption of reference vectors. Step 5

accumulates the square of the distance between the signal 𝜉 and the winning node, in order to

identify nodes that are arranged in areas of the input space where the mapping is poorly

represented.

51

According to the algorithm described in (Section 4.1), data points of two-link planar robot has

been trained (Figure 15). The left figure initializes the algorithm with two random nodes and

edge connection between them. At every 𝜆 iterations, this algorithm continues to add nodes

until stop criterion (tmax= 40000) has been reached.

Figure 15: GNG algorithm execution. (Left) 1-199 iteration, (Middle) 400 Iterations,
(Right) 1500 Iterations.

4.3 Discussion

For a given distribution 𝑃(𝜉) of input signals, GNG model is capable of making explicit the

important topological relations. This model differs from GCS in a sense that it adopts less rigid

topological definition. Comparing the GNG model with NG or CHL, one could have an

important advantage as it does not require a predefine size of the network. The GNG model is

a type of dynamic topology network similar to GCS. All parameters are constant in time and

the number of adaption steps need not to be defined as priori. The variation of the network

performance regarding the variations of its parameter was evaluated and the GNG network

presents clear advantages in comparison with the Multi-layer Perceptron (MLP) and GCS. Due

to its fractal-like characteristics, the learning process can be interrupted by any time, which has

a good representation of input signals, given the computation time.

Fritzke (1997) comments that this model is not suitable for the data visualization as the model

is not intended to decrease the dimensionality of input data signals unless a low-dimensional

input data signal is presented.

52

Figure 16: A geometric figure composed of shapes of different dimensions, being mapped
by GNG. Simulation parameters are: 𝜶 = 𝟎. 𝟓, 𝒂𝒎𝒂𝒙 = 𝟖𝟖, 𝜷 = 𝟎. 𝟎𝟎𝟓, 𝝀 = 𝟐𝟎𝟎, 𝜺𝒃 =
𝟎. 𝟎𝟓, 𝜺𝒏 = 𝟎. 𝟎𝟎𝟎𝟔 (Fritzke, 1997).

Figure 16 illustrated growing neural gas adapts to signal distribution which has different

dimensionalities in a different area of input space. The initial network consists of two randomly

place units and the network size of 7, 17, 50, 100 and 200 after 1000, 3000, 9600, 19 000 and

39 600 input signals respectively. The last one is not the least one since the process to be

continued inconclusively.

This model applies very well for grouping and vector quantization. It is possible to combine

with radial basis functions to achieve a supervised model incremental (Fritzke, 1997). The GNG

model, however also depends on a parameter that controls the number of steps that controls the

insertion and removal of nodes. The insertion of nodes in this model has been done as GCS, in

order to minimize accumulated error at every step.

53

Chapter 5
Grow When Required (GWR)

The dynamic topologies described until now usually add a node (or add a layer of the node) in

the position where accumulated error is high, or where there is need of topological adjustment.

For each input signal an edge connection is created between the two nodes which best matched

the unit and the second-best matching unit. These edge connections have an associated age.

Initially, the ages are set to zero and increment at each time step. Nodes are added based on a

predefined parameter λ iteration step. By this convention, the network always grows at the same

rate according to the input data presented and continue to grow until the stopping criteria are

fulfilled. The exception is that the edge that creates a connection between the best-matching

unit and second-best unit, whose age is set to zero. Edges which exceeds the maximum age

𝑎𝑚𝑎𝑥 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) are being removed. Node that has no edge connections is called

dead node.

The Grow When Required (GWR), introduced by Marsland (2002), overcomes the limitation

of using a criterion to insert nodes at a regular time interval. Rather than adding a node at every

λ step, this algorithm can add a node at any time, depending on node insertion criterion. New

nodes are added depending on input and current winning node, instead of adding them where

the accumulated error is high or to divide the region that has the highest utilization rate.

A new node is added when the activity of the best-matching node (which is a function of the

distance between the weights of the node and input) is not sufficiently high. The activity of the

node calculated by taking the Euclidean distance between the weights for the node and the

input.

5.1 Algorithm

Let 𝐴 be the set of nodes of a self-organizing map and 𝐶 ⊂ 𝐴 × 𝐴 the set of connections

between the nodes in the map field. Let P(𝜉) is the probability distribution function of the input

data 𝜉. Finally, consider 𝑤𝑖 be the weight vector of node 𝑖 with dimension 𝐷 (Benante, 2008,

Page 77):

54

1. Initialize the set 𝐴 with two units 𝑛1 𝑎𝑛𝑑 𝑛2 in positions 𝑤𝑛1 𝑎𝑛𝑑 𝑤𝑛2 belonging to 𝑅𝐷

from randomly selected input P (𝜉).

𝐴 = {𝑛1, 𝑛2}

 Define 𝐶, the connection set, to be the empty set

𝐶 = 0

2. Generate an input signal 𝜉, according to P (𝜉).

3. For every node 𝑖 in the network, determine nodes 𝑠1, 𝑠2 ∈ 𝐴 such that:

‖𝑤𝑠1 − 𝜉‖ ≤ ‖𝑤𝑖 − 𝜉‖ ∀𝑖 ∈ 𝐴

‖𝑤𝑠2 − 𝜉‖ ≤ ‖𝑤𝑖 − 𝜉‖ ∀𝑖 ∈ 𝐴 − {𝑠1}

Where 𝑤𝑖 is the weight vector of node 𝑖.

4. If there exists no connection between 𝑠1, 𝑠2 then create it.

𝐶 = 𝐶 ∪ {𝐶𝑠1,𝑠2}

Otherwise, set the age of the connection to zero.

𝑎𝑔𝑒(𝑠1,𝑠2) = 0

5. Calculate the activity of the best matching unit 𝑠1

𝑎(𝑠1) = exp(− ‖𝜉 − 𝑤𝑠1‖)

6. If (𝑎(𝑠1) < 𝑎𝑇) and (ℎ𝑠1
̅̅ ̅̅ < ℎ𝑇), then a new node must be added between the two best

matching unit 𝑠1 𝑎𝑛𝑑 𝑠2, according to the step below where 𝑎(𝑠1) is the activity threshold

and ℎ𝑠1
̅̅ ̅̅ is the firing counter:

(a) Add the new node r,

𝐴 = 𝐴 ∪ {𝑟}

(b) Create the new weight vector for node r, setting the weights to be the average of the

weights for the best matching node and the input vector:

55

𝑤𝑟 = (𝑤𝑠 + 𝜉)/2

(c) Insert the connections between (r, 𝑠1) and between (r, 𝑠2) and remove the connection

between (𝑠1, 𝑠2):

𝐶 = 𝐶 ∪ {𝐶𝑟,𝑠1, 𝐶𝑟,𝑠2}

𝐶 = 𝐶 − {𝐶𝑠1,𝑠2}

If a new node is not added, adapt the position of the winning node and its neighborhood 𝑖 that

is the node to which it is connected

∆𝑤𝑠1 = 𝜀𝑏 × ℎ𝑠1
̅̅ ̅̅ × (𝞷 − 𝑤𝑠1)

∆𝑤𝑖 = 𝜀𝑛 × ℎ�̅� × (𝞷 − 𝑤𝑖) ∀𝑖 ∈ 𝑁(𝑠1)

Where 0 < 𝜀𝑏 < 𝜀𝑛 < 1 and ℎ�̅� is the value of firing counter for node 𝑖.

7. Increase the age of all connections emanating from 𝑠1:

𝑎𝑔𝑒(𝑠1,𝑖) = 𝑎𝑔𝑒(𝑠1,𝑖) + 1 ∀𝑖 ∈ 𝑁(𝑠1)

 Where 𝑁(𝑠1) is the set of the direct topological neighborhood of 𝑠1.

8. Reduce the firing counter ℎ𝑠1
̅̅ ̅̅ from the winner node 𝑠1 and ℎ�̅� from its direct neighborhood.

ℎ𝑠1
̅̅ ̅̅ (𝑡) = ℎ(0) −

𝑆(𝑡)

𝛼𝑏
(1 − exp (−𝛼𝑏𝑡/𝑡𝑏))

ℎ�̅�(𝑡) = ℎ(0) −
𝑆(𝑡)

𝛼𝑛
(1 − exp (−𝛼𝑛𝑡/𝑡𝑛))

Where ℎ𝑖 is the size of firing variable for node 𝑖. ℎ0 is the initial strength, usually ℎ0 =1 S(t) is

the stimulus force normally set to 𝑆(𝑡) = 1. And the values of other constants controlling the

behavior of the curve are 𝛼𝑏 = 1.05, 𝛼𝑛 = 1.05, 𝑡𝑏 = 3.33, 𝑡𝑛 = 14.3.

9. Check if there is any node to remove i.e. if there exist any nodes that no longer have any

neighbors or edge that are older than the greatest allowed age 𝑎𝑚𝑎𝑥, in that case, remove

them.

56

10. Continue from step 2 until some stop criterion has been reached (for network size, or some

measure of performance).

The algorithm described above has been executed on the database of two-link robot (Figure

17). GWR can insert node when the activity threshold and firing counter both are less than 𝑎𝑇

and ℎ𝑇 respectively. GWR is much faster than GNG in terms of inserting nodes. Figure 17

shows an example of GWR execution. After 50 iterations, it already added several nodes and

edge connection between them. While in GNG, it add nodes at every 200 iteration. GWR does

not need any time interval to add nodes as the network grows on demand.

Figure 17: GWR algorithm execution. (Left) 50 iterations, (Right) 100 Iterations.

5.2 Example

This example shows the behavior of GWR network for a distributed database (Marsland, 2002).

The samples in this dataset are drawn from the random unit square. The top left diagram of

above figure shows areas of positive probability occurrence of an input pattern. The next

diagram shows the structure of GWR network after 80 patterns presented to the network.

Afterward, it can be seen that the patterns presented in the network are increased but nodes and

edges remain almost constant. This figure also shows that the GWR network is a type of

topology preserving. Where data is represented in 2D, the GWR forms a 2D representation of

this data set.

57

Figure 18: GWR learns a dataset consists of four square and one line. Parameters for this
simulation are: 𝒂𝑻 = 𝟎. 𝟗𝟗, 𝜺𝒃 = 𝟎. 𝟎𝟓, 𝜺𝒏 = 𝟎. 𝟎𝟎𝟔 (Marsland, 2002).

5.3 Discussion

To measure the connections between nodes, Marsland (2002) used two cost functions, so that

the combinations of these constraints could indicate a network with performance. The first

measure of cost, 𝐸1 penalizes the network that has neighbors located very distant from each

other.

𝐸1 = ∑ ∑ 𝐶𝑖,𝑗 ∙ ‖𝑤𝑖 − 𝑤𝑗‖
2

𝑗<𝑖𝑖

Where

𝐶𝑖,𝑗 = {
1 𝑓𝑜𝑟 (𝑖, 𝑗) 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

58

Figure 19: The left figure shows measurement error for 𝑬𝟏 GWR and GNG. The right
figure shows measurement error 𝑬𝟐 for GWR and GNGU (Marsland, 2002).

It can be noted that GWR quickly decrease the 𝐸1 error after 80 iterations. It means that this

network keeps the neighboring nodes at a small distant already during the start of the execution

process. In this example, topology function of GWR is 𝜙(0) = 0.0023.

The second cost function returns an evaluation of the ability of the network to minimize the

distance between the input patterns the nodes. In this case 𝑣 → ∞, the cost function considers

only the winning node.

𝐸2 = ∑ ∑‖𝜉 − 𝑤‖2 ∙
𝑒−𝑣∙‖𝜉𝑘−𝑤𝑖‖2

∑ 𝑒−𝑣∙‖𝜉−𝑤𝑗‖
2

𝑗𝑖𝑘

In the right figure, the mapping shows the performance between GWR and GNGU (Growing

Neural Gas with Utility). The mapping rapidly decreases for both networks. It reaches a

constant level and this level is controlled by a threshold 𝑎𝑇 , that allows insertion of new nodes.

GWR network is fixed after 80 iterations as no new nodes are added to this network and nodes

do not move. The GNGU network continues to decrease as it adds nodes at a regular time

interval. The error value 𝐸2 for GWR is lower than GNGU at a point where the both networks

have the same number of nodes.

59

A more sharper response of measurement error 𝐸1 and 𝐸2 can be obtained when there is a

sudden change in the probability distribution (or input map) that the network must learn.

Figure 20: (a) measurement error E1 and (b) E2 for GWR and GNGU (Marsland, 2002).

In Figure 20, there is a change in the input map after 8000 data presentation. It can be noted

that the GNGU model maintains, in case of E1, more distinct neighbors and much longer than

the GWR model. For E2, the cost measure between the input pattern and the winning node that

responded it. However, both networks recover rapidly and return to something like the same

level as for original data distribution.

5.4 Limitation of GWR

The GWR network has more parameters to be adjusted compare to GCS and GNG model.

There’s no need to set such a parameter that indicates the growth rate found in GCS and GNG

model, as GWR grows on demand. However, it is still necessary to adjust an age limit for the

aging (death connection) 𝑎𝑚𝑎𝑥, but this information difficult to define. It is also necessary to

adjust the activation rate limit 𝑎𝑇 and the firing limit of a node ℎ𝑇 that together define the

growth rate of the network and subsequently replace the parameter λ.

When inserting new nodes, the GWR algorithm is based on the conditions shown in the

following table:

60

 Condition Activity Firing Insert

1 High Low No

2 High High No

3 Low Low Yes

4 Low High No

Table 5: Condition for inserting a new node in GWR.

Only acceptable criterion to insert a new node is condition 4, configures the input pattern in

such a way that is far from the winning node and the winning node has a high number of firing.

As like in GWR model, it does not distinguish heterogeneous information that can compose the

description of states represented by its nodes, distortion occurs in the information when the

nodes are modified according to the equation described in step 6(b) which considers the

arithmetic mean between vectors, assuming a linearity in the represented data. Another problem

of deformation of the data arises in condition 3, when the algorithm decides that a winning node

that is far from the represented pattern and has firing at a low level, should also train and move

toward the input pattern to represent it. Successive adaption steps indicated in the last equation

in step 6(c), minimize the Euclidean distance between the input pattern and the information

contained in the node. Therefore, also reduce the error when considering this computed

distance. However, the heterogeneous information contained in the node is modified linearly

and the fact of having a minor error no longer corresponds to the quality of the stored

information.

Since the activity of the winning node is high in condition 1 and 2, the node is well represented

the input pattern and the adaption that is made to fit the new input data is small and probably is

related to minimize noise effects thus not to lead to large distortion.

The SOM model has a predetermined geometry in its connections. The TRN model creates

connections, with the CHL algorithm, based on similarities of the nodes after their distribution

by the input space made by NG. The GCS model maintains a hyper tetrahedron mesh formed

by its connections, while in the GNG and GWR model the connections are simply indicators of

61

neighborhoods, which may disappear or reappear as the nodes connected by them. Since the

information represented in the nodes can be heterogeneous and grouping criteria for the

generation of trajectories, it is necessary a more complete interpretation of the role of

connections in the space of states.

The GWR does not reduce the size of the state space and is able to represent it faithfully in

different dimensions. It does not present topological defects for disconnected or concave areas.

62

Chapter 6
State Trajectory Generator

(STRAGEN)

The State Trajectory Generator (STRAGEN), introduced by Benante (2008), is a self-organized

incremental neural network model that can manage complex heterogeneous information, such

as angles, torques and joint positions. Self-organized because it doesn’t need a supervisor to

teach how to create a topological map. The map is created using a given criterion that optimizes

its structure. It is incremental because the model can grow and shrink as indicated by the

measure of data and the quality of representation map. STRAGEN shields the heterogeneous

information from being mixed with one another, by using n-dimensional pre-configured groups

of similar data represented in each node of the network. This data contains kinematics and

dynamical information, they are stored in the nodes during the training phase and can be used

at any time, by pattern completion. Once the network had been trained with the problem space

of the robot, it is enough and necessary to give the starting and target points, and STRAGEN

trained network will generate a trajectory from one to another using a diffusion energy

algorithm. The trajectory can be generated to optimize different criteria, such as minimum

distance, minimum torque variation or minimum joint angles variation.

Benante (2007a) mentioned different phases of the algorithm. The algorithm of STRAGEN is

composed of three phases:

(a) Training Phase: represents the topology of the solution space and adapts itself while reading

samples from a database.

(b) Pruning Phase: eliminates unsuitable or unnecessary nodes and connections.

(c) Trajectory Generator Phase: the algorithm tries to find the best trajectory between two

points, according to a given criterion.

STRAGEN can be subdivided into two approaches. The two approaches stand for an artificial

neural network with the dynamic topology on non-linear systems. One is On-line approach and

the other one is Off-line approach. The Off-line approach consists of all the three phases

described above while the On-line approach consists of Training and Trajectory phases.

63

6.1 Description of the method

This section will describe two artificial neural work model with dynamic topology for a solution

of generating the state trajectory for nonlinear system. STRAGEN off-line has a pruning phase

of connections that must be performed after training, while STRAGEN on-line performs

pruning during training. Both models are in common for definitions of variables, Motor

Babbling procedure and calculation of validation procedure (Benante, 2008, Page 94).

In the beginning of training phase, a pre-processing phase is required to normalize the database

𝐵(0) of dimension 𝐿 × 𝐷, where L is the number samples (Lines) and D is the dimension of

each samples 𝑖, such that 1 ≤ 𝑖 ≤ 𝐿 , should be normalized before starting the training phase.

Each sample 𝑤𝑗 ∈ ℝ𝐷 is normalized using its maximum and minimum values, assuring that

the normalized 𝐵 such that 𝑤𝑖𝑗 ∈ 𝐵 ⇒ 0 < 𝑤𝑗 < 1

𝑤𝑖𝑗 =
𝑏𝑖𝑗 − 𝑚𝑖𝑛𝑘(𝑏𝑘𝑗)

𝑚𝑎𝑥𝑘(𝑏𝑘𝑗) − 𝑚𝑖𝑛𝑘(𝑏𝑘𝑗)

Where 1 ≤ 𝑘 ≤ 𝐿 and 𝑏𝑖𝑗 ∈ 𝐵(0). The weight vector is defined as, 𝑤𝑖 = [𝑤1 … 𝑤𝐷]
𝑇. The

weight vector 𝑤 may contain heterogeneous information from various domains. To deal with

this different information, the weight vector is divided into groups having similar information,

to form possible neighborhood criteria:

𝑤𝑖 = [𝑉1 𝑉2 … 𝑉𝑚]𝑇

where the vector 𝑉𝑖, 𝑖 = 1, … , 𝑚 represents a set of variables of a domain that can be grouped

together and operated as a whole. The dimension of each group is 𝑉𝑖
∈ ℝ𝐷𝑖 and ∑ 𝐷𝑖

𝑚
𝑖=1 = 𝐷.

To clarify this concept in a robotic domain, for example: groups can be together with angles

and torques of the joints. A group, for example the spatial positions of the joints can be divided

into subgroups that are vectors representing the spatial position of each meeting individually.

It is necessary to select 1 < 𝜁 < 𝑚 to be the activity group used to calculate the activity of the

network. Also to select 1 < 𝜂 < 𝑚 to be the neighborhood criterion, used to evaluate the

proximity of one stimulus and its representation in the topological map among other proximity

evaluations.

The activity threshold 𝑎𝑘̅̅ ̅ for the group 𝑉𝜁 is defined by a chosen percentage, 0<P<1, of the

maximum Euclidian distance in dimension 𝐷𝜁𝐾, for each subgroup inside 𝑉𝜁 that represents an

64

independent information: 𝑎𝑘̅̅ ̅ = exp (𝑃. √𝐷𝜁𝐾), 1 < 𝑘 < 𝑙 , where 𝑙 is the number of

homogeneous subgroups that compose 𝑉𝜁.

6.1.1 Motor Babbling (MB) Procedure

Motor babbling (MB) (Benante, 2008, Page 96) was used to create a cartesian position map to

join motion coordinates. MB works to generate endogenous movements through state

trajectories and learning isolated points on the presentation map from one coordinate system to

another. MB helps the model to create connections between the nodes that have a significant

effect in the generation of trajectories. STRAGEN adopts MB to form trajectories while the

isolated points as stimuli. It is noted that SOM based networks suffer from structural hill

climbing. Taking advantage of this property, i.e., the SOM are known to be sensitive to the

order which data is presented. Therefore, presenting the data in a convenient order that helps

the algorithm to create nodes and connections in a more feasible way.

For each iteration t, when a new sample is required for the Training phase, MB procedure p (𝝃)

returns some random pattern 𝝃 on first execution. From second execution onwards, for each

new sample required by the network, MB chooses Q random candidates not yet presented. For

these Q candidates, MB returns the nearest to the last presented input 𝝃, according to some

criterion of minimum Euclidean distance. In this way, the training is randomly directed within

a neighborhood. The MB procedure is given below:

1. If t =1, choose a random pattern 𝝃(𝒕) from database 𝐵 of dimension 𝐿 × 𝐷, and remove this

sample to avoid repetition.

2. If t >1, choose with uniform probability Q candidates to be next pattern 𝜙𝑖 , 𝑖 = 1, … , 𝑄 and

choose

𝝃(𝑡) = arg min
∀𝑖

{𝐷𝑖𝑠𝑡(𝝃(𝑡 − 1), 𝜙𝑖}

Remove 𝝃(𝑡) from the database to avoid repetition.

This procedure is the part of Training phase. Once the network is trained, it is possible to

calculate the validation error of the topology.

65

6.1.2 Validation Phase

In STRAGEN off-line, the validation phase occurs after the pruning phase. In STRAGEN on-

line, since there is no pruning phase, the validation phase can be performed during the training

phase. The validation phase allows to check the error of representation of the problem space,

generated by the node. The procedure is given as follows:

1. Repeat for 𝑖 = 1, … , 𝐼 iterations:

• Generate an input signal 𝜉 from the database according to MB procedure

• Calculate the iteration error 𝑖, the distance between the sample and nearest node

according to the criterion adopted:

𝑒𝑖 = ‖𝜉 − 𝑤𝑠1‖

2. Return the validation error as:

𝐸𝑣 =
∑ 𝑒𝑖𝑖

𝐼

6.1.3 Initialization of the Algorithm

Let 𝐴 be a set of nodes and 𝐶 be a set of connections between these nodes. Let the input

distribution be P (𝜉), for inputs 𝜉 as defined in MB procedure.

Let the learning rate be 𝜀𝑏. Define the neighborhood creation η and the activity creation ζ such

that 1 ≤ 𝜂, 𝜉 ≤ 𝑚, for some group 𝑉𝜂 and 𝑉𝜁 and the final learning rate decay be 𝛼𝑓 ≈ 0.

Before starting the algorithm, initialize the set A with 2 nodes 𝑛1 𝑎𝑛𝑑 𝑛2 and placed at 𝑤𝑛1

and 𝑤𝑛2. In ℝ𝐷, representing 2 random patterns from the dataset:

A = {𝑛1, 𝑛2}

in which:

𝑤𝑛𝑖 = [𝑤𝑖1 … 𝑤𝑖𝐷]
𝑇 = [𝑉1 … 𝑉𝜁 … 𝑉𝜂 … 𝑉𝑚]𝑇

Initialize the connection set 𝐶 with one connection between the first two nodes 𝐶 = {𝑐𝑛1,𝑐𝑛2}.

These parameters settings and initialization are common both in STRAGEN on-line and

STRAGEN off-line.

66

6.2 STRAGEN Off-Line

Various phases of STRAGEN off-line in a flow diagram (Figure 21). Motor babbling is set to

data samples to be used during the training phase after pre-processing step.

 Figure 21: Flow-chart of STRAGEN Off-Line (Benante, 2008).

In the Training Phase, the model adapts and creates a representation of the state space topology

while the MB procedure reads the database. In the Pruning Phase, the model reassesses the

connections created during training and eliminates those that are considered unnecessary or

unwanted. In the third phase, the Generation of Trajectories, the algorithm finds the best path

 Pre-Processing
DataBase, Definitions

Initialization Parameters

 Training Motor Babbling
P(𝝽)

 Pruning

Generation of Trajectory Via Points

 Phase 1

 Phase 2

 Phase 3
Validation

67

between two points according to the energy diffusion algorithm (Zeller, 1997). After the

training phase and before the trajectory generation phase, one can perform the Validation Phase

to measure the topological map error created by the model.

6.2.1 Training Phase

The training algorithm described by Benante (2008, Page 98) as follows:

1. Generate a data sample from P (𝜉) as input to the network, according to Motor

bubbling procedure,

𝜉 = [𝜉1 … 𝜉𝜁 … 𝜉𝜂 … 𝜉𝑚]𝑇

2. For each node 𝑖 in the network, calculate the distance from the input ‖𝜉𝜂 − 𝑉𝜂,𝑖‖, and

determine the best matching unit and the second best 𝑠1 , 𝑠2 ∈ 𝐴, using the chosen

neighborhood criterion η, such that:

‖𝑉𝜂,𝑠1 − 𝜉𝜂‖ < ‖𝑉𝜂,𝑖 − 𝜉𝜂‖, ∀𝑖 ∈ 𝐴

‖𝑉𝜂,𝑠2 − 𝜉𝜂‖ < ‖𝑉𝜂,𝑖 − 𝜉𝜂‖, ∀𝑖 ∈ 𝐴 − {𝑠1}

3. Add one to the number of wins of 𝑠1: 𝜎𝑠1 = 𝜎𝑠1 + 1.

4. Insert a new connection between 𝑠1 and 𝑠2 in 𝐶, if there is not one yet

𝐶 = 𝐶 ∪ {𝐶𝑠1,𝑠2}

5. To calculate the activity of the stimulus 𝜉 with respect to winner node 𝑠1, it is necessary

to use only part of the information in both vectors. The information used is the group

number ζ, that defines the activity criteria. Then, 𝑉𝜁 is subdivided in 𝑙 homogenous

subgroups per joint, because the activity is calculated independently for each joint:

𝑎𝑘 = exp (−‖𝜉𝜁𝑘
− 𝑉𝜁𝑘,𝑠1

‖) , 1 < 𝑘 < 𝑙

6. If any activity is less than the established threshold for that group, (𝑎1,𝑠1 < 𝑎1̅̅ ̅ OR

𝑎𝑘,𝑠1<𝑎𝑘̅̅ ̅), then a new node 𝑠3 must be added in the exact location of the input sample:

68

a) Add the new node 𝑠3 to the A set: 𝐴 = 𝐴 ∪ {𝑠3}

b) Create a new weight vector associated with the node 𝑠3, i.e., 𝑤𝑠3
= 𝞷

c) Remove the connection (𝑠1, 𝑠2) from 𝐶

d) Calculate the distance 𝐷𝑖𝑠𝑡 = {𝐷𝑖𝑠𝑡(𝑠3, 𝑠1), 𝐷𝑖𝑠𝑡(𝑠3, 𝑠2), 𝐷𝑖𝑠𝑡(𝑠1,𝑠2)}

where:

 𝐷𝑖𝑠𝑡(𝑠3, 𝑠1) = ‖𝑉𝜂,𝑠3
− 𝑉𝜂,𝑠1‖

𝐷𝑖𝑠𝑡(𝑠3, 𝑠2) = ‖𝑉𝜂,𝑠3
− 𝑉𝜂,𝑠2‖

𝐷𝑖𝑠𝑡(𝑠1, 𝑠2) = ‖𝑉𝜂,𝑠1 − 𝑉𝜂,𝑠2‖

e) Select the 2 shortest distances 𝐷𝑖𝑠𝑡1𝑎𝑛𝑑 𝐷𝑖𝑠𝑡2:

𝐷𝑖𝑠𝑡1(𝑠𝑖, 𝑠𝑗) = arg min(𝐷𝑖𝑠𝑡)

𝐷𝑖𝑠𝑡2(𝑠𝑖, 𝑠𝑘) = arg min(𝐷𝑖𝑠𝑡 − {𝐷𝑖𝑠𝑡1(𝑠𝑖, 𝑠𝑗)})

f) Insert new connections between the nodes considered to determine

𝐷𝑖𝑠𝑡1(𝑠𝑖, 𝑠𝑗) 𝑎𝑛𝑑 𝐷𝑖𝑠𝑡2(𝑠𝑖, 𝑠𝑘).

𝐶 = 𝐶 ∪ {𝑐𝑠𝑖,𝑠𝑗
, 𝑐𝑠𝑖,𝑠𝑘

}

7. If a new node was not inserted in step (6), update the positions of the winning node 𝑠1:

∀𝑤𝑠1 = 𝜌 × (𝜉 − 𝑤𝑠1)

Where:

𝜌 = {𝜖𝑏 × 𝛼𝑓

(
𝜎

𝜎𝑓
)
, 𝜎 < 𝜎𝑓

𝜖𝑏 × 𝛼𝑓 , 𝜎 > 𝜎𝑓

And 0<𝜀𝑏<1 is the learning rate; 𝛼𝑓 ≈ 0 is the final learning rate; 𝜎 is the counter of the

number of times that a winner node has fired, and 𝛼𝑓 is the maximum number of times

a node is supposed to fire.

8. Repeat from step 1 up to the maximum number of iterations 𝑡𝑚𝑎𝑥.

69

6.2.2 Pruning Phase

After the training phase (Benante, 2008, Page 100), run the pruning phase for 𝐼 iterations to

remove unsuitable nodes and links. The pruning phase will eliminate all unused links that do

not disconnect the graph, all unused nodes and all isolated nodes.

1) Create a set 𝑁 = 𝐴 of all nodes and a set 𝐸 = 𝐶 for all links.

2) Repeat for 𝐼 iterations:

• Generate a data sample 𝑃(𝜉), according to MB procedure.

• Exclude the winner node 𝑠1 from the 𝑁 = 𝑁 − {𝑠1} and exclude the connection

𝑐𝑏 between the best and the second-best unit, from set 𝐸 = 𝐸 − {𝑐𝑏}.

3) Repeat for all connections remaining in 𝐸:

• Check if a possible deletion of connection 𝑐𝑏 between two nodes creates a

disconnected graph.

• If that is the case, do not delete the connection 𝑐𝑏. Otherwise, delete

connection 𝑐𝑏 permanently.

4) Eliminate all nodes remaining in set 𝑁 (nodes that never won a competition)

5) Eliminate isolated nodes, i.e., disconnected nodes.

An example of removal of the connection is shown below in Figure 22. In (a) before removal,

the network presents two candidate connections for removal. The top link in (a) that connects

two nodes, should be removed for any input pattern presented. After deletion, in (b) STRAGEN

holds the central connection between two nodes.

Figure 22: Connection removal in STRAGEN Off-line. (a) before removal (b) after

removal. (Benante, 2008).

70

6.2.3 Trajectory Generation Phase

Generation of trajectory is explained by Benante (2008, Page 102). The use of diffusion energy

(Zeller, 1997) allows to find the trajectory of the trained network. It is possible to provide two

or more possible points in the state space after training the network. Trajectory is obtained as

output from the network that passes through these points which have high energy distribution

rather than others starting from the initial point, which has the lowest.

Let any initial point 𝜉𝑖𝑛𝑡 and target point 𝜉𝑡𝑎𝑟𝑔 find the best matching node 𝑛𝑖𝑛𝑡 for the initial

point and the best matching node 𝑛𝑡𝑎𝑟𝑔 for the target point among trained neurons.

Set an energy diffusion function that defines a flux of energy diffusing through the links of the

network such as 𝑓(𝑡, 𝑛), for all nodes 𝑛, aiming to find a chain of nodes 𝑛𝑆,𝑆−1…,1,0 , starting

from the target point 𝑛𝑡𝑎𝑟𝑔= 𝑛𝑆 to the initial point 𝑛𝑖𝑛𝑡= 𝑛0, where S is the (unknown) size of

the trajectory.

The algorithm of Zeller (1997) is given below:

1) Initialize the diffusion function 𝑓(0, 𝑛) = 0 ∀𝑛 ≠ 𝑛𝑡𝑎𝑟𝑔 and 𝑓(0, 𝑛𝑡𝑎𝑟𝑔) = 1

2) Repeat for all 𝑛 ∈ 𝐴 until 𝑓(𝑡, 𝑛𝑖𝑛𝑡) ≠ 0

𝑓(𝑡 + 1, 𝑛) = {

1, ∀𝑡, 𝑖𝑓 𝑛 = 𝑛𝑡𝑎𝑟𝑔

𝜇 ∑ 𝑓(𝑡, 𝑗)

𝑗∈𝑁𝑛

, 𝑖𝑓 𝑛 ≠ 𝑛𝑡𝑎𝑔

Where 𝑁𝑛 is the set of all nodes that are neighbors of n and |𝑁𝑛 | is its cardinality, and 𝜇 =

𝐾/𝑁𝑛, K<1 such as 𝐾 = |𝑁𝑛 | /(|𝑁𝑛 | + 1).

This procedure starts diffusing energy from the target, towards all the nodes, until perhaps

reaches the initial node which is guaranteed if there is a possible route (Zeller, 1997). The

trajectory is formed when the initial node receives any amount of energy and to define it simply,

start from the initial node always choosing to next node the neighbor of higher energy, until the

target node (single node with energy equal to one) is found. The final trajectory is formed by

the nodes 𝑇 = {𝑛0, 𝑛1, … , 𝑛𝑆−1, 𝑛𝑆}. The diffusion algorithm of energy does not take in account

the distance between nodes, but only their neighborhood.

71

6.2.4 Difference Between STRAGEN Off-Line and GWR

Benante (2008) explained the difference between STRAGEN off-line and GWR in Page 103.

STRAGEN off-line demonstrates a series of ideas that make it possible to generate trajectories

when compare to other models described in above Chapters. In comparison to GWR model,

from which STRAGEN was initially inspired as the basis for the network.

The topological map training has the MB phase, which permits the STRAGEN model to make

the state space representation by considering comparable states as per the vicinity measure

given by the expressed separation (neighborhood) rule. MB strategy allows the creation of maps

with coherent state transitions from the beginning of the training, by giving, regardless of

whether randomly guided, an order in the state transition.

The pre-processing phase of STRAGEN presents principal changes for the treatment of

heterogeneous data from nonlinear framework in order to produce state trajectories. The vital

point is to normalize database that made to remove possible impacts between distinct groups of

information for the calculation of neighborhood proximity. The grouping of this information in

the node are additionally fundamental with the that they are dealt with independently, staying

away from distortions in the adaption operations and permitting their use as an improved

standard of the recognized framework.

The GWR has several parameters to be adjusted. Nonetheless, among those parameters, two of

them are essentially identified to the insertion of nodes: the activity limit and the firing limit.

STRAGEN does not use firing limit to insert nodes. With respect to the activity limit, it is

constant and modifies by a percentage P which is based on the maximum size of Euclidean

distance of normalized state space. The value of percentage P is 1% and for more accurate map,

it is 3% in vast majority of cases. In Step 4 of the training phase, the inserted connection

represents the possible route between the nodes 𝑠1 and 𝑠2 , since they are the two nodes nearest

to the provided point 𝜉 , as indicated by the criteria. The process is equivalent for both in

STRAGEN and GWR.

The method for the insertion of new nodes is done in STRAGEN is a vital component of the

model. According to the table 5, in the GWR algorithm a new node is inserted if and only if the

new winner is distant and active. A table of inserting of a node in STRAGEN is given below:

72

Activity

Condition 𝑽𝜻𝟏 𝑽𝜻𝟐 … 𝑽𝜻𝒏 Insert

1 High High … High No

2 Low High … High Yes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3 Low Low … Low Yes

Table 6: Condition for inserting a new node in STRAGEN.

By looking at Table 6, it is noted that the procedure of inserting node in STRAGEN is more

combative, adding a node whenever the activity of the winning node is not sufficiently

considered for all groups that make up the activation criterion. STRAGEN makes separation

between two ambiguous positions where the end effector is at the same point, but the other

joints are in various configurations not being treated similarly. To illuminate table 6, consider

a two-dimensional robot, the activation criterion for the spatial position of the joint is 𝑉𝜁, the

position of the joint 𝐽2 is 𝑉𝜁1and the position of the end effector 𝐽3 is 𝑉𝜁2 considered seperately.

In step 6, STRAGEN off-line algorithm shows the process of inserting new nodes. In GWR, as

observed, in addition to node activity, the frequency of firing is also evaluated, so a new node

will only be added if the winner is far from the standard and has been used frequently. When

one of these two characteristics fails (activity and frequency), rather than inserting a new node

the training (displacement) of the winning node is made towards the input pattern. STRAGEN

off-line learned nodes must stay to the points that they represent and ought not move to keep

away from the distortion of information about the learned state. The way of adapting

STRAGEN, together with the conditions of insertion of a new node, gurantees that a node will

only adapt if it is activated by an input pattern close enough to be considered a noise of the

same pattern.

73

Figure 23: Example of insertion of nodes and connection in STRAGEN (Benante, 2008).

When the network inserts nodes, STRAGEN recalculates the connections that this new node

will have with the winning nodes and vice. The process can be understood by Figure 23. Sub-

figure (a) shows the network before insertion of node 4. In subfigure (b), node 4 has as

topologically close to the nodes 1 (winner) and 3, vice. STRAGEN calculates the distances

between the pairs of nodes (4,1), (4,3) and (1,3), and holds only the two smallest connections,

measured according to the established neighborhood criterion, in this case the connections (4,1)

and (1,3), so that the inserted node 4 has only one connection.

6.3 STRAGEN On-Line

The algorithm is composed of two phases, intermediate stage of Pruning phase does not exist

here. Firstly, the training phase creates a representation of the state space topology, adapting

and pruning unnecessary connections and useless nodes during the process. Secondly, trajectory

generation phase, the model is requested to find the best trajectory between two points directly

or passing through intermediate points (called via-points). During the execution of second

phase, the validation error is calculated.

STRAGEN on-line also performs the pre-processing phase described in section 6.1 before

starting the training phase, to normalize the database 𝐵(0), characteristic of the weight vector

𝑤𝑖 = [𝑤1… 𝑤𝐷]
𝑇=[𝑉1 𝑉2 … 𝑉𝑚]𝑇, neighborhood creation η and the activity creation ζ. Calculate

the activity limit 𝑎𝑘̅̅ ̅ based on percentage P of the space state that a node must respond, usually

P=1%.

74

Various phases of STRAGEN on-line shown in the following flow diagram (Figure 24). Motor

babbling is set to data samples to be used during the training phase according to section 6.1.1.

Initialize the algorithm as described in section 6.1.3.

Figure 24: Flow-chart of STRAGEN On-line (Benante, 2008).

6.3.1 Training Phase

STRAGEN On-line training algorithm follows the STRAGEN Off-line, with the difference of

few modifications. This algorithm can eliminate nodes and connections during the training

phase without the need of the pruning phase. The procedure of STRAGEN On-line is identical

from Step 1 to Step 7 of STRAGEN Off-line. The algorithm described by Benante (2008, Page

108) given below from Step 8.

 8. Calculate the mean size and standard deviation of all connections k = |N (𝑠1)| emanating

from the winning node 𝑠1, and the threshold for removing connections 𝜒:

 Pre-Processing
Data Base, Definitions

 Initialization
Parameters

 Training Motor Babbling

P(𝝽)

Generation of Trajectory Via Points

Phase 1

Phase 2

Validation

75

�̅� =
∑ 𝐷𝑖𝑠𝑡(𝑠1, 𝑛𝑖)𝑘

𝑖=1

𝑘

�̅� = √
∑ |𝐷𝑖𝑠𝑡(𝑠1, 𝑛𝑖) − �̅�|2𝑘

𝑖=1

𝑘 − 1

𝜒 = �̅� + ⍵̅ ∙ �̅�

 Where | N (𝑠1) | is the number of neighbors of 𝑠1, 𝑛𝑖 ∈ N (𝑠1) and ⍵̅ = 1.5, is an

empirically determined optimal constant.

9. If | N (𝑠1)| > 2, remove all connections 𝑐𝑠1,𝑛𝑖
 from set 𝐶 for which we have n ∈ N (𝑠1)

and 𝐷𝑖𝑠𝑡(𝑠1, n) > 𝜒.
10. Remove all isolated nodes n ∈ A, i.e., nodes without at least one neighbor.
11. Repeat from step 1 mentioned in 6.2.1 to the maximum number of iterations 𝑡𝑚𝑎𝑥 or

some stop criterion is satisfied.

6.3.2 Trajectory Generation phase for smallest path

Given any initial point 𝜉𝑞0, target point 𝜉𝑞𝑓 and any intermediate point 𝜉𝑞𝑖, 0 < 𝑙 < 𝑓, called

via-points, find the smallest path according to algorithm (Dijkstra, 1959) from 𝑞𝑜 and 𝑞𝑓,

passing through all via-points 𝑞𝑖.

1. Let be the chain of target points 𝑞𝑜 … 𝑞𝑓

2. Let 𝑖 = 0 and 𝑗 = 1

3. Repeat until 𝑗 = 𝑓

• Find the winning nodes 𝑠𝑖 and 𝑠𝑗 which represents 𝑞𝑖 and 𝑞𝑗 respectively

‖𝑉𝜂,𝑠𝑖
− 𝜉𝜂,𝑞𝑖‖ ≤ ‖𝑉𝜂,𝑘 − 𝜉𝜂,𝑞𝑖‖

‖𝑉𝜂,𝑠𝑗
− 𝜉𝜂,𝑞𝑗‖ ≤ ‖𝑉𝜂,𝑘 − 𝜉𝜂,𝑞𝑗‖ ∀𝑘 ∈ 𝐴

76

• Find the shortest path from 𝑠𝑖 to 𝑠𝑗 according to Dijkstra algorithm.

• Move to next stretch, 𝑖 = 𝑖 + 1 and 𝑗 = 𝑗 + 1.

Since all nodes are required to follow some path, each node provides additional information for

the complete execution of the trajectory, avoiding the need of calculation.

6.4 Difference between STRAGEN Off-Line and STRAGEN
On-Line

STRAGEN off-line has the pruning phase that allows the creation of a topological map that

represents the state space very well. During the pruning phase, one has full access to configure

the final map and to choose the connections and nodes that will be removed according to well-

characterized criteria. STRAGEN on-line eliminates nodes and connections that do not win

once for all input points presented in the pruning phase that performs during training as long as

the map is not disconnected. This method affirms that only futile connections are eliminated. It

helps to keep the map connected allowing all states to be accessible. Conversely, STRAGEN

off-line does not appropriately represent disconnected areas.

STRAGEN on-line exhibits a smooth technique for the disposal of connections in a dynamic

and programmed way which takes into account the density of nodes that is currently

representing the map to be learned. The actualized methodology is straightforward, innovative

and comprises of wiping out connections for which the distance of neighbors of the winner are

larger than the threshold 𝜒 only for nodes that have more than two neighbors, as described in

Step 9.

STRAGEN on-line map can also represent disconnected areas, created in such a way that no

isolated nodes emerge in the process and without the computational cost of evaluating each

connection removed. STRAGEN on-line does not remove connections from nodes that have

just a single or two connections. There are two steps in the algorithm that remove connections.

Step 9, which deals with the removal of connections, and Step 6 in section 6.2.1, which carries

out the node insertion process. Step 6c, although removing one of the connections between the

77

winning nodes near the inserted node, does so only to replace it with others that best represent

the similarity between the three nodes (winner first, second and new inserted node), and the

third method is in which it removes nodes, which does not have at least one neighbor (no

connections/isolated).

Figure 25: Example of STRAGEN On-line. (a) before removing connection (b) after

removing connection (Benante, 2008)

Figure 25 shows an example of the removal of the connections larger than 𝜒.

78

Chapter 7
Results And Conclusions

The algorithms of GNG, GWR, STRAGEN explained in chapters 4, 5 and 6 respectively, were

implemented successfully using MATLAB software related to MATHWORKS.

7.1 Simulation

The algorithm was divided in two distinct parts for their implementation. Phase 1 comprises the

training of the network. Phase 2 comprises the generation of the state trajectory and open loop

control. The parameters used will always be: learning rates of the winning node was 𝜀𝑏= 0.1

and for its neighbors 𝜀𝑛 = 0.007, maximum age 𝑎𝑚𝑎𝑥 =50, 𝜆 = 200, 𝛽 = 0.995 and 𝛼 = 0.5 for

GNG, learning rate of the winning node 𝜀𝑏 = 0.2 and its neighbors 𝜀𝑛 = 0.006, maximum age

𝑎𝑚𝑎𝑥 = 50, activity threshold 𝑎𝑇 = 0.8, firing threshold ℎ𝑇=0.1, initial strength ℎ0 = 1, stimulus

strength S(t) = 1 of firing node, constants controlling the behavior of the curve 𝛼𝑏 = 𝛼𝑛 = 1.05,

𝑡𝑏 = 3.33, 𝑡𝑛 = 14.3 for GWR, final learning rate 𝛼𝑓 =0.1, activity threshold 𝑎𝑇 = 0.8, maximum

of estimated firing per node 𝜎𝑓 = 2* 𝑡𝑚𝑎𝑥 /L, and number of candidates in the MB procedure is

defined as Q = 100 for STRAGEN. For STRAGEN, experiments will be performed, one to

each criterion defined above, in which the database is used as input data with points representing

the position of the end-effector of the robot (2D and PUMA-560). The maximum number of

iterations tmax = 40000, used to train the network.

The motivation behind these simulations is to test the models, to collect data with respect to the

trajectories generated and to compare the neighborhood criteria and how they influence the

trajectory and mapping of the input space.

At the end of the section, the results will be compared with the simulations done with the models

GNG, GWR and STRAGEN.

.

79

7.1.1 Network Training (Phase 1)

This segment exhibits the execution of the models GNG, GWR, STRAGEN on various systems.

The first is an extremely straightforward, which implemented on a two-link robot’s dataset in

2D Figure 4, and second actualized on PUMA-560 database in 3D Figure 7, intended to

demonstrate how the algorithms generate mappings from information spaces of (generally) high

dimension to bring down dimensional map fields. The first simulations above in subsections

2.2.3 was done with the sequential presentation of the points, so that the joint 1 (shoulder)

rotated the whole cycle, of 0o to 360o (at the interval of 3), then for joint 2 (elbow) rotate to the

next range (angles defined of 0o to 360o, at the interval of 30o∙rand) for two link robot, until all

the points were presented once.

Presenting the points in an order that allows the learning of neurons and their connections makes

it possible to simulate. GNG and GWR follow random input pattern, while STRAGEN follows

the MB characteristics, in which the first input pattern is randomly followed by the input

patterns nearby to the previous one, and removing already used in order to avoid repetitions.

However, this order must not be sequential, but rather contain some randomness that allows the

model to create diverse neighborhoods and with greater robustness and stability.

Figure 26 and Figure 27, demonstrate the maps produced by utilizing previously mentioned

models for training the 2-dimensional and 3-dimensional database when the neighborhood

criterion: the Euclidean distance between the positions of the end-effector (DE). It very well

may be seen the assessment of the network when the neighborhood criterion DE was used. This

criterion of special distance between nodes is generally used in artificial neural networks. The

adopted neighborhood rule is the key to the following stages of the algorithm.

The 2D network trained by models GNG, GWR and STRAGEN, with this criterion (DE),

generated a map of 202, 397 and 412 nodes. Which were able to represent the training of 2736

points with cumulative errors of 0.31704, 0.12954 and 0.10389 respectively. These results are

obtained for 40000 iterations and it can be seen that for the same number of iterations different

nodes have been created. The cumulative error measures the quadratic Euclidean distance

between the input patterns and the winning nodes representing them. In the case of error equal

to zero it indicates that the pattern is exactly represented by a node. The accumulated error of

all nodes informs if the mapping is representing the input data appropriately. As it will be seen

later, the errors between the input space mappings using the adopted criteria vary little and are

80

therefore not decisive in the choice of the best criteria. The best criterion should be chosen

based on information other than error, for example characteristics about the types of trajectories

it generates, such as minimal trajectory, smooth movement and no jerks, beyond the coverage

of state space. In general overview, trajectory generated in the upcoming section is also linked

to the number of nodes generated in training. As the diffusion energy starts with two random

nodes: the initial and final one and distributes the energy from the final until it reaches the initial

one. If there exist a higher number of nodes in the trained data, there will be more certainties to

find the most correct trajectory. This can be one of the reasons of robustness of STRAGEN.

Figure 26: Trained Network of GNG, GWR and STRAGEN. Figure shows 2D networks,

(Left) GNG, (Middle) GWR, (Right) STRAGEN after training.

Figure 27 demonstrates 3D network trained by models GNG, GWR and STRAGEN, by using

criterion (DE) generated a map of 427, 752 and 778 nodes. Which were able to represent 15257

high dimensional base points to lower dimensional training with cumulative errors of 0.5670,

0.5025 and 0.4868 with iterations 85000, 10000 and 10000 respectively.

81

Figure 27: Trained 3D Network by GNG, GWR and STRAGEN with (all left) and without
(all right) connections. Following in vertical direction (first) GNG, (second) GWR, and
(third) STRAGEN after training.

7.1.2 Trajectory Generation (Phase 2)

Network training is followed by the phase of its trajectory generation. Diffusion energy

algorithm was tested for this phase.

Energy diffusion algorithm permits the passage of any two in the input space and automatically

chooses as starting node the triumphant node (particularly close) from the first entry point, and

the final nodes the winning node of the second entry point.

Once you have chosen the desired points, the process of dispersion of energy begins. In the

beginning, all the trained points have dissemination energy equivalent to zero. This procedure

82

dependably starts from the final node, which will have the energy equivalent to 1, from which

fractions will go to their neighbors and neighbors of neighbors, successively until the energy of

an underlying node isn’t exactly same as zero.

The generation of trajectory can be understood by looking the Figure 28. The white node in this

figure shown below represents the beginning of the trajectory and the black node (marked with

energy equal to 1) represents the last node. The dispersion thinks a unit of vitality in the last

hub and disseminates this vitality towards the underlying hub until the point that its esteem is

not quite the same as 0. The generation of trajectory follows from the initial node towards the

final node, choosing as the next node the one with the highest energy among the neighboring

nodes connected to the previous node. On the off chance that there exist a different selection of

nodes with the same amount of energy, the algorithm will choose the first one.

Figure 28: Diffusion of Energy: Trajectory generation by the nodes, from the initial
node to the target node, with the energies. The left figure shows Diffusion of energy from
the target point (black) to the starting point (white). The right one shows a better view of
the energy values .
The simulation in Figure 28 has been carried out with criterion DE, it can be observed that for

this simulation the algorithm easily finds the initial node, starting from the final node and

diffusing the energy from neighbor to neighbor. Most of the network does not even receive

some energy. Once the initial node is reached, the diffusion algorithm is terminated, because it

has a trajectory linking both nodes. In case of the criterion DE, the neighborhoods denote the

nearest nodes specially in relation to the position of the end-effector and the algorithm finds the

smallest possible route in number of nodes (even though there were ambiguities in the choice

of trajectory stretches).

83

Trajectory formed by the nodes with the energy values are: 2𝑒−04, 1𝑒−03, 5𝑒−03, 1𝑒−02, 4𝑒−02,

1𝑒−01,1. Starting from the initial node, with energy of 2𝑒−04, the options of selecting the next

node are the lower node with value 5𝑒−04, the upper node with energy of 8𝑒−05 and the middle

one that is chosen has 1𝑒−03. In this second node of the trajectory, the options from which to

select the one with energy greater than the previously selected node, are the lower node 9𝑒−04

and the upper node that is chosen 5𝑒−03. From this third node, there is an ambiguity. This node

has four links with energies 1𝑒−03 (returning to the previous node), the upper node with energy

3𝑒−03 , and two higher-energy nodes with values equal to 1𝑒−02. The algorithm decided to

walk underneath because it was the first node (the lower one) with the energy higher it acquired.

From the fourth node it has four links and among them choose the highest energy having value

4𝑒−02. From this fifth node, it walks for the sixth value 1𝑒−01. From the sixth node, finally

reaches the target node of the trajectory (seventh), with energy equal to 1. By calling the lower

node (or the chosen one), the upper ambiguous option and so on, we can generate all the

trajectories by following this method, and with this we realize that choice does not lead to in

bad choices, because trajectories will always have the same total cost. The final trajectory can

be shown in the following figure:

Figure 29: Trajectory formed by diffusion Energy. The left figure shows trajectory of the
trained network and right one stands for a better view and nodes are indicated with
corresponding energy values.

The diffusion algorithm, as implemented, is faster than other methods like Dijkstra, because it

calculates the diffusion of energy from final node, until it reaches the initial node with energy

84

different from zero, unlike in Dijkstra it calculates the distances between all the nodes of the

network, which creates time-consuming problem in complex and large networks. Diffusion

energy consists of opening up in amplitude, several layers of energy, from the final node, until

a layer finally reaches the target creating the trajectory.

7.1.2.1 Two-Link Robot

Final trajectory for a two-link robot according to the trained network of GNG, GWR &

STRAGEN can be seen in Figure 30. The procedure of finding trajectory is the same for all of

the three networks. Initial node labeled in white and final node labeled in red color in this figure.

Trajectory is formed by diffusion algorithm according to the above-stated procedure.

Figure 30: Final trajectory of two-link Robot. Top left and top right figure show the
trajectory of the trained network of GNG and GWR. The bottom one shows for
STRAGEN.

85

7.1.2.2 PUMA 560

Trajectory of Puma 560 has been achieved according to same procedure described in section

7.1.2. Puma robot has a 6 DOF structure and the data points of this robot has been done in

section 2.3.3. As the Puma robot moves in 3D space, it has more data points compare to two-

link robot. These data points have been trained by GNG, GWR and STRAGEN. After training,

it is optimal also to find the trajectory of this robot. As it has presented 15257 data points in 3D

space, there exists more connection between the nodes after training.

Figure 31 presents trajectory of Puma 560 trained by GNG network. The right figure shows the

trajectory only taking into account the nodes for a better view.

Figure 31: Trajectory of Puma 560. Network trained by GNG.

The same approach goes for GWR network and can be seen below:

86

Figure 32: Trajectory of Puma 560. Network trained by GWR.
In the following, we conclude with STRAGEN. The initial node is labeled as blue and final

node is labeled as red (left Figure, same for all networks).

Figure 33: Trajectory of Puma 560. Network trained by STRAGEN.

7.1.3 Validation Error (Phase 3)

The models GNG, GWR and STRAGEN were trained with the same database to be compared.

The database was presented to GNG and GWR using the original procedure, i.e., the samples

presented randomly. STRAGEN uses Motor Babbling procedure as a strategy to present the

samples of the base in an order that facilitates the creation of connections appropriate to the

neighborhood criterion used. The models GNG and GWR models create their neighbors based

87

on information given by the Euclidean distance of the complete weight vectors. Therefore, these

models do not distinguish what would be a suitable neighborhood for different criteria based

on homogeneous information groups of the input vector.

The database was presented (𝑡𝑚𝑎𝑥 = 1... = 40000) for the three models (GNG, GWR and

STRAGEN. The number of iterations for the validation phase was also 𝐼 = 40000. The

topology created by these models to represent the state space can be compared by Table 7.

 GNG GWR STRAGEN

On-Line

Validation

Error

0.31704 0.12954 0.10389

Number of

Nodes

202 414 418

Number of

connections

449 758 879

Table 7: Comparison Between GNG, GWR and STRAGEN
In every one of the reenactments done till now, STRAGEN demonstrated better validation error

and distribution of nodes in state space.

STRAGEN creates new nodes in the exact position of the input pattern, while GNG and GWR

create nodes based on the average of the first and second best matching node. As the weight

vector is formed by heterogeneous information (positions) vital for the estimation of direct and

inverse kinematics and dynamics, the calculation of the mean made by GNG and GWR for the

whole vector causes the information stored that there to be distorted during training.

Figure 34 shows the evolution of the validation error for all three models according to the

algorithm described in section 6.1.2. The error graph has been achieved after 40 000 iterations.

At very beginning, GWR and GNG start with low error value compare to STRAGEN.

Analyzing this figure, one can see that the advantage of STRAGEN is the rapid identification

of the system at the beginning of its training, which makes it appropriate to be used almost

88

immediately at the start of the simulation. Over time, the GWR algorithm approaches

STRAGEN precision, both being stabilized and with better result than the GNG algorithm.

Figure 34: Validation Error of GNG, GWR and STRAGEN.

A table can be made by taking into account the number of iterations at random interval and

corresponding validation error.

Iterations GNG GWR STRAGEN

1 1.40157 0.74274 2.66229

2000 1.15011 0.41052 0.17573

10000 0.61188 0.19818 0.11913

40000 0.31704 0.12954 0.10389

Table 8: Validation Error for GNG, GWR and STRAGEN.

89

It ought to be recalled that in spite of the fact that the error displayed by GWR is close to

STRAGEN. The algorithm accomplishes this convergence at the expense of the twisting of the

information contained in the topological map by its learning process and insertion of nodes.

The growth of the number of connections in terms of number of iterations is given in Figure

35. It is imperative to note that STRAGEN, even after stabilizing the number of nodes needed

to cover state space with good precision, continues to draw similarities from the exhibited

patterns and to create (and also remove), at a lower rate, connections between nodes close by

according to the established neighborhood criterion.

Figure 35: Network growth in terms of number of connections per iterations

The growth of the topological map for GNG, GWR and STRAGEN networks can be seen in

Figure 36. GNG has direct development dependent on λ. In principle, STRAGEN also presents

a straight growth. In any case, this growth is reliant on the emergence of new patterns not yet

trained and is augmented by the Motor Babbling procedure. Once the nodes precisely presented

the patterns, the growth of STRAGEN stabilizes immediately. The growth system of GWR

topological map makes it a trade-off between creating a node or moving an existing node, and

with this your growth curve is smooth. One of the challenges of GWR is to configure its

parameter with the goal that the bend has greatest use for the area and database in question.

90

Figure 36: Network growth in terms of number of nodes per iterations.

7.1.3.1 Comparison Between the Graphs

By comparing the graphs of validation error and network growth, it can be seen that the error

plot descrease as the network grows. Mathematically it can be said that error is inversely

proportional to the number of nodes and connections between them with respect to to the

number of iterations. It is also noted that GNG is slow as it increments the number of nodes

after a predefined number of iterations, whilst GWR and STRAGEN grows faster than GNG as

different node insertion criteria has been used in these algorithms. GWR needs to fulfill two

conditions (activity threshold and firing threshold) for inserting node, while STRAGEN has

just one condition (activity limit) in common to GWR. Activity limit is the exponential of the

distance between winner and the input node. It means if the input is more near to the winning

node, there are more chances to increment the network. Since random input is generated for

GWR until the stopping criterion has been reached, there can be a chance of higher or lower

distance between the winner and input. On the contrary, for STRAGEN input are generated by

MB procedure and it inserts a new node exactly at the same position of input make the network

agile. Following the formula of validation error (which is the distance between input and

winner) is decresing. After 5000 iterations, STRAGEN grows to its maximum possible size and

validation error reaches to its minimum value faster. For the remaining iterations it covers the

remaining input states till the maximum number of iterations has been reached and graphs

reached to a constant value.

91

7.2 Conclusions And Further Works

This work presented three artificial neural networks with dynamic topology to train the database

of two-link robot and Puma 560 for the generation of state trajectories and make comparison

among these networks. Various requirements were raised during this work to gain the outcome

in different phases.

Data points simulation of the robots described in Chapter 2, is the very first task to proceed our

work. After doing the simulation of robots according to DH convention, homogeneous data

base had been achieved. GNG, GWR and STRAGEN use this data base to train the network by

their algorithms. The development of the code was not an easy task. After several trails, we

succeeded to implement the network for training the database.

During the training of the network, STRAGEN has higher growth in terms of adding number

of nodes and number of connections described in section 7.1.3. At every comparison,

STRAGEN shows a better response compare to other models. STRAGEN represents a strategy

that can deal with heterogeneous (positions, angles and torques) information while other

models have some difficulties in training.

STRAGEN is able to perform the generation of trajectories. It takes a process of generation of

trajectories that follows up on the topological map learned. STRAGEN actualizes this

procedure using established classical global search algorithm: energy diffusion (Zeller, 1997).

Once a topological map has been created that represents the state space and contains

information for navigation according to some established criteria, one can use any global search

algorithms or local search techniques to generate the trajectory.

Taking advantage of a process inspired by Motor Babbling, STRAGEN utilizes this strategy to

learn the connections of the input space. It is worth mentioning that MB was designed for multi-

purpose learning between motor and visual systems that STRAGEN sums up its utilization for

figuring out how to guide the mapping of nonlinear systems. The use of MB allows the

STRAGEN exploit in creating more appropriate connections to represent the trajectories of the

identified system. The MB also allows STRAGEN to learn systems, thus avoiding the mapping

of unreachable or obstructed areas in the state space.

92

In addition, STRAGEN off-line eliminate unnecessary nodes and connections during pruning

phase. But this is more time consuming to perform this phase as it has to be done for the same

iteration number that has been used in training phase. While STRAGEN on-line removes

unused node and connections during training phase.

Unlike the GCS, which attempts to preserve a k-simplex structure at the cost of creating

"artificial" neighborhood relationships, and the SOM whose neighborhood relations are

predefined, the STRAGEN creates these connections on demand and considers the topological

density of the state space, thus resembling the GWR. However, taking care that the GWR is not

to maintain the connections that represent the state transitions, not eliminating them due to a

usage system or age. There is no need to eliminate dead or little-used connections by

representing an unknown domain, whose reference to the transition between states is the

similarity between certain groups of characteristics, not the time of use of the system.

Further work will be done in hardware platform. The objective is to program the robot according

to the algorithms that have been simulated in Chapter 7. It would be more economical and time

redundant system to find the trajectories of the robot by artificial neural networks instead of

providing command to the robot.

93

Bibliographic References

Araujo, Aluzio F. R. and Barreto, Guilherne de A., “Context in Temporal Sequence

Processing: A Self -organizing Approach and its Application to Robotics’’, IEEE, 2002.

Araujo, Aluzio F. R. and Barreto, Guilherne de A., “Competitive and Temporal Hebbian

Learning for Production of Robot Trajectories’’, University de Sao Paolo, 1998.

Araujo, Aluzio F. R. and Barreto, Guilherne de A. and Ritter, Helge J., “Self-Organizing

Feature Maps for Modelling and Control of Robotic Manipulator’’, Journal of Intelligent

and Robotic System, Kluwer Academic Publisher, Netherlands, 2003.

Araujo, Aluzio F. R. and Barreto, Guilherne de A. and Ritter, Helge J., “Identification and

Control of Dynamic System Using the Self-Organizing Map’’, IEEE, 2004.

Benante, Ruben C. and Araujo, Aluizio F. R. and Ludermir, Teresa B., “Automatização na

Escolha de Parâmetros para o Modelo Incremental GNG Usando Algoritmos Genéticos’’,

University Federal de Pernambuco, 2004.

Benante, Ruben C. and Araujo, Aluizio F. R., “Self-organizing Maps to Generate State

Trajectories of Manipulators’’, 2007a.

Benante, Ruben C. and Pedro, Leonardo M. and Massaro, Leandro C. and Belini, Valdinei L.

and Araujo, Aluizio F. R. and Caurin, Glauco A. P. Member IEEE, ‘‘A Self-Organizing State

Trajectory Planner applied to an Anthropomorphic Robot Hand’’, 2007b.

Benante, Ruben Carlo, ‘‘Geração de Trajetórias de Estados por Mapas Auto-organizáveis

com Topologia Dinâmica’’, TESE DE DOUTORADO, Universidade Federal de Pernambuco.

Craig, John J., “Introduction to Robotics – Mechanics and Control’’, Third Edition, Pearson

Educational, Inc., 2005.

94

Dijkstra, E. W., “A Note on Two Problems in Connexion with Graphs’’, Numerische

Mathematik 1, 269-271, 1959.

Fritzke, Bernd, “Growing cell structures - a self-organizing network for unsupervised and

supervised networks’’, Neural Networks 7(9), 1441–1460, 1994.

Fritzke, Bernd, “A growing Neural Gas Network Learns Topologies’’, Ruhr-University

Bochum, Germany, 1996.

Fritzke, Bernd, ‘‘Unsupervised ontogenic networks’’, 1997.

Holmstrom, Jim Uppsala University, “Growing Neural Gas Experiments with GNG, GNG

with Utility and Supervised GNG’’.

J. Si, S. Lin, “Dynamic Topology Representing Networks’’, Neural Networks 13(6): 617-27,

2000.

Lee, Byung-Joo and Kyoichi, Sugimoto, “Construction of a Position Maintained

Trajectory’’.

Martinetz, T. M., Berkovich, S. G. & Schulten, K. J., “A ’neural-gas’ network learns

topologies, in T. Kohonen, K. Mäkisara, O. Simula & J. Kangas, eds, ‘Artificial Neural

Networks’’, North-Holland, Amsterdan, pp. 397–402, 1991

Martinetz, T. M. and Berkovich, S. G. and Schulten, K. J., “Neural-gas network for vector

quantization and its application to time-series prediction’’, IEEE Transactions on Neural

Networks 4(4), 558–569, 1993.

Marsland, Stephen and Shapiro, Jonathan and Nehmzow, Ulrich, “A self-organising network

that grows when required’’, Neural Networks 15, 1041-1058, 2002.

Siciliano, Bruno and Sciavicco, Lorenzo and Villani, Luigi and Oriolo, Giuseppe, “Robotics

Modelling, Planning and Control’’, Springer-Verlag London Limited, 2009

95

Spong, Mark W. and Hutchinson, Seth and Vidyasagar, M., “Robot Dynamics and Control’’,

2004.

Villmann, Thomas and Der, Ralf and Herrmann, Michael and Martinetz, Thomas M.,

‘‘Topology Preservation in Self-Organizing Feature Maps: Exact Definition and

Measurement’’, IEEE Transactions On Neural Networks, Vol. 8, No. 2, 1997.

World Economic Forum, “Technology and Innovation for the Future of Production”,

Switzerland, 2017.

Zeller, M. and Schulten, K., “Vision-Based Robot Motion Planning Using A Topology

Representing Neural Network’’, 1997.

96

Cite this thesis as:

Akhtar M.N.; Reza, D.S.A.A., Dynamic Neural Networks to Generate Robotics Trajectories.

Recife, 2018. 96Pg. Thesis (Projecto de final de Curso): Master of Science Degree in

Mechatronic Engineering. Universidade de Pernambuco & Politecnico di Torino.

BibTeX:

@MASTERTHESIS {

author = ‘‘ Akhtar, M.N.; Reza, D.S.A.A.’’

title = ‘‘Dynamic Neural Networks to Generate Robotics Trajectories’’

school = ‘‘Universidade de Pernambuco & Politecnico di Torino’’

year = ‘‘2018’’

address = ‘‘Recife-PE, Brazil’’

month =‘‘December’’

}

