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Abstract 

 

This thesis work concerns the virtual commissioning for the control with PLC of 

an inverted pendulum pneumatically actuated. In detail, a model of our system 

within the Simcenter Amesim software was created, which permitted to perform a 

validation of the code created for the PLC, through the subsequent phases of 

Model-in-the-Loop, Software-in-the-Loop, and Hardware-in-the-Loop. After the 

review of the scientific literature, the functioning of the inverted pendulum 

present in our laboratory was described, analyzing studies already done 

previously on the system. All the steps that led to the construction of the model 

within the Amesim software were examined, followed by the programming of 

the PLC first virtual, then real, and by the solutions adopted to put Amesim in 

communication with other software and hardware components that have 

allowed the realization of SIL and HIL. After the validation activity, the test 

bench was used to test the effective functioning of the created control and to 

improve the stability of the system by using a Siemens PLC that is more 

performing than the one already in use on the test bench. Finally, all the 

simulations carried out both on the virtual system and on the test bench using 

the models previously created was analyzed and compared. 
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Introduction 

 

This research objective is to study how to manage the virtual commissioning for 

the control with PLC of an inverted pendulum pneumatically actuated. 

Therefore, we will introduce some theoretical refences on the simple pendulum, 

and then on the inverse pendulum. 

A simple pendulum consists of an inextensible wire to which a material point of 

mass is fixed below, which can oscillate around a fixed point called pole. In this 

system, the weight force component along the wire counterbalances the tension 

of the wire itself, while the weight force component perpendicular to the wire 

acts as a pull force and produces the oscillatory motion of the pendulum. The 

inverse pendulum represents a simple inverted pendulum, rigid and without a 

pole: the lower part can therefore move to balance the oscillations of the upper 

one in order to ensure balance.  

The reason why we have deepened the issue of the reverse pendulum is that, 

although it is one of the most discussed subjects in the field of control theory, no 

definitive solution has been found to control it. In this regard, we focused on the 

study of the model we created, which simulates the physical system, and how 

close this can be to reality. 

In practice, the reverse pendulum model can be found in many applications: from 

the Segway, an individual means of transport that uses a platform with two 

wheels that can be swiveled by means of a handlebar, to the maintenance of 

robots in an upright position and the stabilization of the rockets. Everything we 

have described needs to remain stable in order to function: it is precisely in this 
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area that our work is placed, namely the study of the control algorithm that 

allows to stabilize the pendulum. In this respect, it should be remembered that 

our work is carried out on the study of a pendulum implemented pneumatically 

and controlled by PLC (programmable logic controller). 

Our work is therefore divided into several chapters, which analyze in detail what 

we have just described.  

In the first chapter we briefly explain the state of the art and then the studies from 

which we have taken as a starting point to continue the research. 

Then, in the second chapter, we will describe the test bench in the laboratory and 

we will analyze the various subsystems (mechanical, pneumatic, electrical) that 

compose it. Moreover, the linearized problem used to implement the control 

algorithm in the virtual model is studied again. 

In the third chapter, we will describe the first phase of validation (virtual 

commissioning) carried out through Model-in-the-Loop, in which it is described 

how the Simcenter Amesim software has been used for the construction of our 

system. Moreover, it is also illustrated how the simulation between Simcenter 

Amesim and Simulink has been made. 

In the next chapter, we will illustrate the next phase of Software-in-the-Loop that 

will allow us a first validation of the source code created for the virtual PLC using 

the TIA Portal software, code that will be described in the chapter. We will 

continue by illustrating the way in which it was possible to put Simcenter Amesim 

in communication with the virtual PLC. 

Finally, in the last chapter, we will present the Hardware-in-the-Loop phase, in 

which the real PLC is used to control the Simcenter Amesim model. It will be then 

deepened how the connection between Simcenter Amesim and the real PLC has 

been made through the hardware platform SIMIT UNIT.
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1 State of the art 

Among the various problems analyzed by the scientific literature, we certainly 

find the problem of the inverted pendulum, one of the most treated ever. 

Generally, we deal with the issue of the inverted pendulum in an actuation 

system that requires its operation an electric engine, therefore, we are often faced 

with an electric actuation system, precisely. 

In the case that we are going to analyze during our thesis work, the actuation 

system is pneumatic, which makes it a very peculiar system since it uses a fluid 

with high compressibility such as air. 

Many of the choices made during the entire experimentation process are the 

result of analyses carried out on the state of the art, on which we have based our 

theoretical and practical studies. 

In [1] the construction of the test bench used in the laboratory is explained. The 

test bench played a fundamental role in our experimentation and reference will 

be made to the study of the linearized problem carried out within it in order to 

optimize our controllers.  

In Petric et al. [2] it is considered an experimental device made of a cylinder 

without stem, a 3/2 proportional valve and a pendulum of 400 mm length. The 

supply pressure used is 6 bar, the mass of the slide to which the pendulum is 

bound is equal to 1:5 kg, while the latter has a mass of 0:06 kg. This is checked 

using the LQR method 

In Krupke and Wang [3] the control of a pneumatically operated inverted 

pendulum system is analyzed from a purely theoretical point of view. In fact, the 

model involves the use of a cylinder without stem and a 3/2 proportional valve 

with closed centers. The control architecture requires the use of an internal 
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control loop of the force applied by the actuator, in which a compensator type PI 

is used, and an external ring for stabilizing the position of the cart and the 

pendulum, in which a controller type full-state feedback is implemented. In 

addition, a friction estimator is used to compensate for the variable and non-

linear effects of friction. 

In Zilc et al. [4] the actuation system consists of a 3/2 closed center proportional 

valve with a 100 Hz bandwidth and a pneumatic cylinder without stem stroke of 

0:5 m and 15 mm bore. The angular transducer is of the rotary potentiometric 

type, while the linear transducer is of the potentiometric type. System control is 

first achieved with a linear controller of the state feedback type, to which a non-

linear controller is then added to compensate for the effects of friction. More 

complex control solutions based on LQ and LQG optimization procedures are 

then adopted. 

In the last three cases, there are differences with respect to the system under 

study. As detailed below, the cylinder used has a stem, resulting in a difference 

in the surface area of the piston influence. The control strategy is also simpler: in 

fact, it was decided to use two control rings, one external (to control the position 

of the cart) and one internal (to control the inclination of the pendulum), each of 

which uses a compensator type PID. The PID structure is also simple to 

implement in a PLC. 
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2 Test bench 

As already mentioned above, the system we wanted to model is an inverted 

pendulum which is present in our laboratory and used for educational purposes. 

Below we will list the various characteristics, starting from the mechanical 

components, through the pneumatic ones and ending with the electrical ones. 

 Mechanical components 

Among the mechanical components we will discuss in this paragraph, we find 

first of all the rod: it is a telescopic rod that has a length ranging from 400 mm to 

700 mm, at the tip of which we can insert discs of different weights. In total, the 

rod does not weigh more than 200g, so that the hypothesis of concentrated mass 

can be guaranteed. The rod is connected to the cart by a hinge, and its total travel 

is intentionally limited to about 90°. The rod can be easily separated from the cart, 

which makes it easy to perform tests on the cart if we want to perform a position 

check. 

On the other hand, the cart is connected to a recirculating ball bearing guide 

anchored to the test bench. 

   Pneumatic components 

The actuator connected to the cart is a double acting cylinder with a stroke of 500 

mm and a bore of 16 mm, while the rod has a diameter of 6 mm. 

The solenoid valves are type 2 way 2 position normally closed and are controlled 

by special drivers that guarantee proportional behavior. The drivers can be 

controlled either in voltage 0 ÷ 10 V or in current 0 ÷ 20 mA. Both the drivers and 

the valves are powered by 24 V. 



 Chapter 2: Test bench 

 

 

4 

  Electrical components 

The electrical components include two sensors. The linear displacement sensor is 

of the LVDT type and allows to calculate the position of the cart and the relative 

displacement of the piston. It is connected to the cart by a spherical joint and has 

the same stroke as the cylinder, equal to 500 mm. The voltage output varies in the 

range 0 ÷ 10 V. The other is the angular one and is a Hall effect sensor. It is 

connected to the shaft of the rod and allows to measure the angular displacement 

of the latter. It is supplied at 5 V and has a voltage output of 0.5 ÷ 4.5 Vc, while 

the measuring range used is 0 ÷ 90°.The last component is a Siemens PLC, which 

is part of the S7-1200 family and manages the control of the entire system. In 

addition, two modules have been integrated, one to manage the analog inputs 

from the sensors and another for the analog outputs that control the drivers of 

the valves. 

 Test bench operation 

In order to control the inverted pendulum, the PLC receives the signals from the 

two sensors and after applying the control algorithm, it controls the valves 

through the drivers. As we can see, the valves are two in total and are controlled 

in pairs, thus using only two analog outputs. When it is necessary to release the 

rod and move the cart to the right, valves V2 and V4 are powered. The first allows 

the air to enter the rear chamber, while the second allows the air to leave the front 

chamber. On the contrary, when the piston has to be retracted, it is controlled by 

the V1-V3 couple. In this way it is not necessary to check the valves individually. 
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 Simcenter Amesim 

Before testing the code, we created on the real system, we had to consider the 

following auditing techniques in succession: Model-in-the-Loop (MiL), Software-

in-the-Loop (SiL) and Hardware-in-the-Loop (HiL). The study of the system, 

according to these phases, was carried out using Simcenter Amesim, which is a 

simulation software that permits to model and simulate multi domain problems, 

as the one we are dealing with. 

 

 

Figure 1: Validation diagram 

We tried to create a model as close as possible to reality, then we chose 

components in the standard library and, for each of these, we have chosen a sub-

model closer to the hypotheses made with the data at our disposal.  
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In Amesim there are four main tabs, which are Sketch, Submodel, Parameter and 

Simulation. We started our analysis using Sketch and created our model by 

inserting components from library and connecting them; we continued using the 

Submodel tab:  consequently, if all components are properly connected, we have 

the possibility to pick from a list of available sub-models the most appropriate 

one. After choosing the sub-model, we set parameters for each element in the 

relative tab, and, finally, we started the simulation by clicking on the Simulation 

tab to let the software compile the model. 

Every component in Amesim have a different number of ports that allow to 

connect each of them to other compatible components of the same domain, and, 

in certain specific cases, to components of other domains. Each port can host 

different kinds of variables (force, speed, etc.) both ingoing and outgoing, so if a 

variable exits from a port, the same variable must entry in the port connected and 

vice versa. We can see an example in the figure below where the port n. 1 of 

element a is linked to the port n. 3 of element b. 

 

Figure 2: Input/output variables 
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3 Model-in-the-Loop: MiL 

MiL testing is a phase during which system simulation is performed by using a 

model of the system: it allows a first verification of the requirements and the 

algorithms of the solution adopted. Even if we can obtain an initial review, 

during this phase, the forecast of the required hardware processing resources is 

difficult.  

In the following figure, we can see a sampling scheme of our full system in 

Amesim. 

 

Figure 3: Amesim complete model 
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 Pneumatic components 

The components used are obtained by the standard pneumatic library and they 

are purple colored. We decided to neglect thermal exchange effects between the 

components and the environment, and the ones on the working fluid. 

3.1.1 Gas model, sources and exhausts 

The component in figure below allows us to define gas characteristics of a 

working fluid. In this case we are using the air assumed as perfect gas; the 

parameters used are in the following table: 

 

 

Figure 4 Gas property 

 

Air as a perfect gas 

γ 1.4 

R 287.2 J/kgK 

µ 1.82*10-5 Ns/m2 

Table 1: Air parameters  

 

The source and the exhaust, respectively a and b in Figure 5 are assumed as ideal: 

they are both at temperature of 293.15 K, and, for the source the pressure is 6 

absolute bar, while for exhausts is 1 absolute bar (atmospheric pressure). 
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Figure 5 Source and exaust 

3.1.2 Valves 

The valves used are, like in the test bench, 2 way 2 position proportional 

pneumatic servo-valves. The are 4 valves like the component presented in Figure 

6, whereas their parameters are summarized in the table below: 

 

Valves parameters 

C 14.3 l/min*bar 

b 0.3  

ωn 50 Hz 

ζ 0.7 

Table 2: Valves parameters in Amesim 

 

The valve natural frequency and the damping ratio were estimated on the basis 

of similar components, because was not possible to calculate them with 

experimental tests.  
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Figure 6: Valve 

 

The valves work in pairs, so a couple lets the piston extend, while the other on 

allows the piston to retract. We used this working scheme in order to reproduce 

what it happens in the test bench. 

3.1.3 Pneumatic pipes 

For the pneumatic pipes between sources, the valves and the cylinder, we chose 

a sub-model that takes into account the resistance and the capacity: we set only 

the internal diameter and the pipes length, dimensions are included in Figure 7: 
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Figure 7: Pneumatic pipes dimension 

 

To connect pneumatic pipes, we used the T-junction sub-model only specifying 

one input and two outputs diameters because of the lack of data. 

 

 

Figure 8: T-junction 
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3.1.4 Pneumatic chambers and orifices 

The element a of the figure below is used to model a pneumatic chamber, 

therefore, in conformity with our piston, we  set dead volumes of both front and 

back chamber to 1 cm3, while pressure was 3 absolute bar; in addition, these ones 

were coupled with two orifices as the type represented in Figure 9-b, which  work 

like resistances and where we set two parameters: area equals to 1.8 mm2 and 

discharge coefficient to 0.4. 

 

 

Figure 9: Pneumatic chamber and orifice 

 

3.1.5 Pneumatic piston 

The pneumatic piston was modelled trough the Pneumatic Component Design 

library that assure a major complexity respect to basic pistons of pneumatic 

library. As shown in Figure 10, the piston consists of three elements: a and c have 

the same characteristics and allow to model both rear (a) and front (c) chamber of 

the fixed body actuator; what changes is variables associated with ports, which 

are interchanged.  
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Figure 10: Piston design  

 

Chambers parameters are summarized in the table below: 

 

 Rear chamber Front chamber 

D 16 mm 16 mm 

d 0 mm 8 mm 

l 0 mm 500 mm 

Table 3: Piston parameters 

 

The last element b of the Figure 10 is necessary to set piston sealing friction 

parameters, as follows: 

 

dynamic friction pressure gradient = 8 N/bar 

dynamic to stiction friction coefficient = 1.4 

stick displacement threshold = 0.1 mm 

equivalent viscous friction during stiction = 1000 N/(m/s) 
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As in the case of the components mentioned above, also with the sealing friction 

parameters was not possible to execute tests for experimental validation. For this 

reason, we created a script in Matlab that helped us to estimate those parameters. 

We will describe the process in paragraph 2.6. 

 Mechanical components 

The mechanical components were picked up from 1D and 2D Mechanical library 

and they are all green colored.  

3.2.1 Friction and end stops 

 

 

Figure 11: End stop 

 

The element in Figure 11 connected to one of the piston ends, let us introduce 

stiction, viscous friction and elastic end stops to our system, and, set all the 

parameters listed in the table. Lower and higher displacements permit us to 

define stroke of pneumatic jack: even then, we used the Matlab script mentioned 

before to approximate the friction parameters. 

 

End stops parameters 

Lower displacement  0 m 

Higher displacement 0,5 m 



 Chapter 3: Model-in-the-Loop: MiL 

 

 

15 

End stops parameters 

kt 1000 N/mm 

η 5 N/(m/s) 

Table 4: End stops parameters 

 

3.2.2 Rigid bodies 

By using the two elements represented in Figure 12, which are part of planar 

mechanical library, we modelled the cart and the pendulum. With this 

component, we could set items location and inertia parameters, so concerning the 

cart, the mass set up is the sum of the cart mass itself plus piston mass: in fact, it 

was not possible to consider the cart mass among the elements used for 

modelling the piston. On the other hand, concerning the pendulum, we 

considered the barycenter at upper end of rod to simulate a bar without inertia. 

 

 

Figure 12: Rigid body 

 

In the table is possible to see all data used for modelling the two components: 
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 Cart Pendulum 

Gx 0.25 m 0.25 m 

Gy 0 m 0.5 m 

x1 0.25 m 0.25 m 

x2 0.26 m 0.25 m 

y1 0 m 0 m 

y2 0 m 0.5 m 

Table 5: Cart and pendulum parameters 

 

3.2.3 Joints 

The system represented below contains two joints that are driven by prismatic 

and revolute pair: the first one is depicted in Figure 13-a and assures a translation 

along a line and replaces the recirculating ball bearing guide of the test bench; 

the latter is a joint between the two rigid bodies and it is showed in Figure 13-b. 

For both of them it was possible to define the spring stiffness and the damping 

coefficient, but, because of information lack, it was only possible to set damping 

coefficient of prismatic pair to 20.83 Ns/m. 

 

 

Figure 13: Prismatic and revolute joints 
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3.2.4 Sensors 

The last components of this domain are two displacement sensors: one is linear 

the other is angular, and, they are respectively elements a and b of Figure 14. The 

first one is necessary to calculate position of cart, while the latter computes the 

pendulum inclination. 

 

 

Figure 14: Linear and angular displacement sensors 

 

 Signal components 

Components of this library are red colored and the relevant ones for our study 

are the two represented in Figure 15-a and b: the PID controller and the saturation 

elements. 

 

 

Figure 15: PID and saturation block 
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The PID controller element was used two times. Beginning from the one in 

external control loop, input error is the difference between feedback coming from 

linear displacement sensor and setpoint given by signal reference; its output is 

compared with angular sensor feedback and it goes into second PID comparator. 

We can notice how in first PID input error is calculated as feedback minus set 

and not set minus feedback. Both have outputs limited between -1 and 1, and 

anti-wind-up method is active: when output reaches saturation, the integrator 

part receives a zero signal until the PID output goes inside the limits. At the end 

of the internal PID, there is a gain block that scales signal -1÷1 to -20÷20, that is 

our rated current valve. Like in PLC, negative signals are directed to valve 1 in 

order to supply rear chamber and to valve 3 to exhaust front chamber, and, vice 

versa, if the output is positive, signal arrives to valve 2 and 4 allowing piston to 

retract.  

In this way we can compare the control law used during different phases of 

validation to the one used during experimental tests. 

Two saturation elements were used to filter signals and they are represented in 

Figure 15- b: the first let negative values between -20 and 0 pass and block positive 

ones, while the second, located to the right, blocks negative signals allowing 

transition of values from 0 to 20. 

Valves work with positive current, so when output signal from PID is negative, 

a gain block equals to -1, positioned after the saturation element, converts it in 

positive.  

 Co-simulation with Simulink 

Amesim offers several possibilities to interact with other software: the one that 

interests us is the possibility of interfacing with Simulink  
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In fact, both the Amesim-Simulink and Simulink-Amesim interfaces give us the 

possibility to run different kind of simulations with a combination of the two 

programs models. Dealing with the two software packages, we have two main 

options at our disposal: indeed, we can import the Amesim model into Simulink 

and the Simulink model into Amesim. 

Furthermore, we can export the Amesim solver (with the Amesim model) to 

Simulink. The last method in known as co-simulation because software performs 

the simulation together using the solvers from both packages.  

Since certain Amesim systems are hard or impossible to be solved using the 

Simulink solver, in cases like the mentioned, we have two choices: we can either 

use co-simulation (in Simulink) or import the Simulink model into Amesim, 

exploiting the Amesim solver for our intents. However, it happens that the 

Simulink system is very complex and its importation into Amesim could not be a 

good option. Apart from these technical reasons, we must have a clear idea about 

what the model is used for. If our main goal is either testing or developing the 

Amesim model, the best strategy is to import the Simulink model into Amesim; 

vice-versa, in the event that our main purpose is either testing or develop a 

controller in Simulink through a physical model written in Amesim, it would be 

better to work in Simulink.  

All the working methods available are summarized in table below: 

 

Envisaged interface mode 

Co-simulation in Amesim: Amesim as Master (Simulink as Slave) 

Model Exchange: Import of Simulink model into Amesim 
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Envisaged interface mode 

Co-simulation in Simulink:  Amesim as Slave (Simulink as Master) 

Model Exchange: Export of Amesim model into Simulink 

Table 6: Envisaged interface mode 

 

We have two options for creating an interface with Simulink: the standard and 

the co-simulation interfaces, but there are differences between them. The main 

one is that the co-simulation interface employs two -or more - solvers contrary to 

the standard interface that employs only one solver meaning that Amesim and 

Simulink use their own solvers for the co-simulation interface but they both use 

the Simulink solver for the standard one. The second difference, instead, is that, 

using the standard interface, the Amesim part is perceived as a time continuous 

block in Simulink, while in the co-simulation it is seen as a time discrete block. 

The last makes the interface appropriate for discrete controllers implemented in 

Simulink that control an Amesim model. 

In the figure below, it is possible to see in detail how the interfaces work. In the 

standard interface, the Amesim part of the system gets state variables and input 

variables from Simulink: it is possible to calculate state derivatives and output 

variables: the Simulink solver monitor the entire process of exchanging 

information. 
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Figure 16: Amesim-Simulink interaction 

 

On the other hand, in the co-simulation, input and output variables are the only 

ones to be swapped: the rate of exchange is set according to a parameter that we 

define. 

The model is not managed by a single piece of software (Simulink), but it is a co-

operation among two or more software packages.  We must be aware of the fact 

that there will be an information leak by exchanging input and output variables 

at a certain sample rate.  

We could make a comparison between the process mentioned and the difference 

of a continuous and a sampled controller.: if we use a smaller sample rate, we get 

much closer to the continuous result. Apart from this, we must face another 

problem concerning the leak of information regarding possible cross pairings 

between the systems – since there is no communication of information on states 

- and state derivatives. 

The Amesim to Simulink interface let us the building of a model of a subsystem in 

Amesim and its conversion to a Simulink S-Function. It is possible to import S-
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Function into Simulink and employ it within a Simulink system just like any other 

S-Function. 

The interface obtained allows us to continue to use many of the Amesim facilities 

meanwhile the model is running in Simulink:  we may modify the parameters of 

the Amesim model within Amesim in the normal way, examine the results within 

Amesim by creating plots  

We can find an example of the process described in the diagram below: 

 

 

Figure 17: Co-simulation process 
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Since our goal was to use Simulink to manage the control of pendulum, the two-

control loop was designed in in the program. 

We have reused the system created before in Amesim to make co-simulation with 

Simulink, but, this time, PID controllers have been taken off and substitute by an 

interface block, as we can see from Figure 18 at the top right. During the creation 

of an interface block, it can be chosen the type of interface and the number of 

inputs and outputs. In this case, to make a co-simulation, we chose SimuCosim 

among interfaces, two inputs for linear and angular displacement sensors, and 

one output for PID signal extracted from Simulink. In Simulink library, there is an 

interface block (Figure 18) too, named AME2SLCoSim; after the importation of the 

desired model, inputs and outputs defined in Amesim appear, but they are 

reversed. 
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Figure 18: Amesim co-simuation model 

By comparing model in Amesim and Simulink, it is possible to see that what for 

Amesim is an outgoing signal, for Simulink is ingoing, and vice versa. 
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Figure 19: Simulink co-simulation model 

 

 Calculation of friction parameters 

Thanks to the type of simulation explained in the previous paragraph, we were 

able to approximate some parameters of our system, so that the data from the 

simulation and the data obtained from the experimental tests were as suitable as 

possible.  

In this case, the rod was removed both from our Amesim model and from the real 

system, so as it was possible to get a system with only the cart position control, 

instead, in Simulink, the external control loop of the angle was deleted and only 

the one with the PID for the linear displacement control remained. 

In order to change the parameters of system components, we first had to add the 

desired parameters to the global parameters table in Amesim, then, we created 

the interface block for the co-simulation in Simulink: in the present case, we used 

the command in Matlab amecreatecosimsfunmask to create a block, differently from 
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what we did before, that also allows to modify global parameters directly from 

Simulink. 

All this has been done in order to exploit the script created in Matlab, present in 

the Appendix A. We used the fminsearch function present in Matlab, which 

allowed us to find a minimum of unconstrained multivariable function using 

derivative-free method.  

Starting from a starting point x0, which in this case are our parameters, fminsearch 

calls a function going to modify each time the parameters until it detects the 

minimum. The function of which we have found the minimum is opt_par. This 

function starts a simulation using the parameters that fminsearch modifies at each 

recall and calculates the Mean Squared Error between the tracking of a square 

wave signal that we have performed with the test bench, and the same tracking 

done with the Amesim model.   

 Simulation results 

For each validation phase, simulations were performed to compare the data 

obtained. 

Each test was carried out starting from stationary conditions with the cart 

halfway up and the pendulum rod in a vertical position. The only exceptions 

were the simulations of step reference tracking because, given the width of the 

variation, the stroke of the piston would have been insufficient.  

As far as the MiL is concerned, the data were obtained directly from Amesim, 

while for all the other phases, the data were taken through the appropriate tool 
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in the Tia Portal software. Regarding these last measurements, being directly 

saved on the PLC memory, they have a limited recording time. 

In the next paragraph will be shown the results obtained by the controllers 

optimized from those calculated in [1]. 

For each validation phase, simulations were performed to compare the data 

obtained. 

3.6.1 Optimized controllers 

Using the initial controllers, the system was unstable: this is, probably, due to the 

fact that some aspects were not considered when studying the linearized 

problem. After a few attempts, the following controllers have been developed to 

stabilize the system and ensure a good reactivity.  

The controllers mentioned are the following: 

 

𝐶𝑥 = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠

𝑇𝑓𝑠 + 1
= 0,001 +

0,0001

𝑠
+

0,055

0,2𝑠 + 1
 

𝐶𝜃 = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠

𝑇𝑓𝑠 + 1
= 5,7 +

20

𝑠
+

0,103

0,002𝑠 + 1
 

 

The optimization of the controllers has been carried out trying to stabilize first 

the inner ring, that is the angle, and then the outer ring. 

The stabilization of the angle is concluded when, starting with the pendulum in 

a perpendicular position, the cart moves uniformly towards one of the end stops. 

The various tests were carried out using a constant signal, a step signal and a 

square wave signal for the setpoint supplied to the outer ring. 
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The first graph represents the constant reference tracking with a fixed setpoint at 

0.25 m and it can be seen that the pendulum is stable even though there is a 

continuous oscillation of both x and θ. 

 

 

Figure 20: Amesim simulation with constant reference tracking 

 

As far as the step reference tracking test is concerned, it was decided to start the 

cart from the 0.10 m position using 200 mm step width. We can notice a sub-

elongation typical of systems with no minimum phase rotation, of which the 

inverted pendulum is part. 
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Figure 21: Amesim simulation with step reference tracking of 200 mm 

 

The last test is the tracking of a square wave signal with a period of 8 s and a 

width of 200 mm. The cart manages to reach the reference despite some 

difficulties, while, it is noted that there are no major problems for the stabilization 

of the angle.  
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Figure 22: Amesim simulation with square wave reference tracking, T=8s 
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4 Software-in-the-Loop: SiL 

SiL testing is performed by running the software on a normal PC hardware that 

allows to identify the main errors in the functional domain. However, the 

compiler and processor of a PC can behave differently compared to the target 

platform.  

We stated below the reasons why SiL is very useful: 

• control strategies can be validated virtually, without jeopardizing lives or 

machines only by using the real PLC code; 

• costs can be reduced thanks to the possibility to troubleshoot (it could be 

late doing the error correction during the design process); 

• operators can become familiar with the controller systems, also the ones 

under construction, thanks to the creation of virtual operator training 

systems;  

• failures can be fixed within few minutes using the "virtual time" 

capabilities, i.e. acceleration and of time that allow a simulation of a real 

process in a desired time.  

We used at this stage Automation Connect, an Amesim tool, PLCSIM Advanced 

which is part of the Siemens suite together with the TIA Portal used to create the 

source code of our PLC. 

In this chapter we will first explain how the PLC programming was carried out, 

and then, we will examine how it was possible to exchange data between the 

different software used.   
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 Programming PLC 

The programming of both the PLCs in the laboratory (S7-1200 and S7-1500) and 

the virtual ones was made using the proprietary software TIA Portal V15, which 

allows us to interface with the various PLCs and to load the program. 

Subsequently in this thesis, we analyzed the structure and described the program 

we created, which source code is located in the Appendix: we deliberately chose 

to minimize the complexity of the program by including only the features we 

needed. 

4.1.1 Program structure 

Usually, the program of a Siemens PLC realized through TIA Portal is 

characterized by the presence of blocks, four types of blocks to be precise: 

Organization block (purple colored), Function block (blue colored), Function (green 

colored), and Data block (blue colored). 

 The Organization Blocks, OB, define the structure of the user program and are 

divided into subcategories that allow to decide what the start event will be. This 

type of block also includes the Main block, which is present in all TIA Portal 

programs and allows to call subprograms one after the other that execute defined 

subtasks. 

Function Blocks, FB, are code blocks that store their values permanently in 

instance data blocks, so that they remain available after the block has been 

executed. 

Functions, FC, are code blocks or subroutines without dedicated memory, and are 

very useful because they can be called several times within the program. 
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Data Blocks, DB, are used to store program data and thus contain variable data 

that is used by the user program. Global data blocks store data that can be used 

by all other blocks. 

It is necessary to specify that variables can be saved not only within Data Blocks 

but also within tag tables. In this case it is necessary to assign them an address 

inside the CPU. So, we can divide these variables into three categories: Inputs, 

Outputs and Merkers. As far as the inputs and outputs are concerned, we will have 

to assign the address associated to the used channel, while for the Merkers we 

have, depending on the CPU that has been used, a series of addresses available. 

The address is formed in such a way that the first letter indicates the type of 

operand (I for Inputs, Q for Outputs and M forMerkers), the second letter indicates 

the type of data and finally there is a number that represents the starting address. 

Depending on the type of data chosen for a given variable, it will occupy a 

different number of bytes. In this paragraph we chose to analyses the program 

we used on the two CPUs in the laboratory, which contains some additional 

functions, which were not necessary with the virtual model being easier to 

manage.  Within the program there are three OB, three FC and one DB. The 

language we decided to use is Ladder, very common for PLC programming. 
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Figure 23: PLC program structure 
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4.1.2 Main block 

The Main block is the first block to be called at each scan cycle and consists of a 

few networks of Ladder code. The first network is used for the interaction with 

Amesim, so that when the simulation is started the program can also start on the 

CPU. 

The second network is used to activate theta offset calibration, by calling the 

appropriate function. 

In the third network it is possible to enable the function to modify the parameters 

of PID_position and PID_angle. 

Afterwards it is possible to activate the cart movement by disabling the two main 

PIDs and activating one for position control only. 

In the fifth and sixth segments it is possible to enable the generation of square 

and sine waves. 

Finally, in the last network we have included the control of various operands 

that, if activated, disable the operation of the PIDs. 

4.1.3 Startup block 

The Startup block is of the OB type and is called every time the CPU switches 

from the STOP state to the RUN state.  

There are only two networks that call two functions: the one that resets the PID 

values and the other that calibrates the maximum and minimum values of the 

sensors. This ensures that both functions are called up every time we start the 

CPU. 
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4.1.4 PID Cyclic Interrupt block 

The Cyclic Interrupt PID block is the most important one because it contains the 

control algorithm. It is part of one of the subcategories of the Organization Block, 

precisely that of the Cyclic Interrupts, which allows to start the program at 

periodic intervals, regardless of the execution of the cyclic program. In our case, 

we set the interval to 500µs. Inside the block there are the two PID controllers, 

with the structure used previously, that is double closed loop. 

Inside the TIA Portal, we can find a PID controller among the technological 

objects, which is called PID_Compact. In order to make the best use of the object, 

it must be inserted inside a Cyclic Interrupt block. This means that the PID_Compact 

will be called cyclically with an interval equal to the one of the OB that contains 

it. 

Once the component has been inserted in our program, we go define the 

operating parameters.  Among these, we can set the limit values for the input and 

output of the PID, the proportional, integrative and derivative constants and the 

sampling time.  This last one is very important because it represents the interval 

of time that the PID must wait before updating the output; Ideally it should be 

set equal to the cycle time of the block that contains it, but since the controlled 

system needs a certain amount of time to respond to changes in the output value, 

it is not advisable to update the output at each cycle. For this reason, since the 

cycle time of the entire block is 500µs, we set the PID sampling time to 1ms. This 

means that the PID does the calculation twice before updating the output: this 

avoids clogging the bus and gives the system time to implement the signal. 
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PID_Compact is a PID compensator with anti-windup that uses the following 

control law: 

 

𝑦 = 𝐾𝑝[(𝑏 ∗ 𝑤 − 𝑥) +
1

𝑇𝑖
∗ 𝑠(𝑤 − 𝑥) +

𝑇𝑑 ∗ 𝑠

𝑎 ∗ 𝑇𝑑 ∗ 𝑠 + 1
(𝑐 ∗ 𝑤 − 𝑥) 

 

Below is a description of the symbols:  

 

y  Output value of the PID algorithm 

Kp  Proportional gain 

s  Laplace Operator 

b  Component weighting P 

w  Setpoint 

x  Instantaneous value 

TI  Integration time 

TD  Derivative time 

a  Coefficient for the derivative delay (derivative delay T1 = a × TD) 

c  Component weighting D 

 

 Going back to the description of the program, in the first two networks we find 

the two compensators. Again, on the first network, we have inserted a branch 

with another PID controller that is activated by the BIT X_CHANGE and that we 

have used to perform only the control of the position of the cart. Before x and ϑ 

become compensators feedback signals, their values are transformed from the 

range 0 ÷ 27468 to that 0 ÷ 0.5 through a box NORM_X, which allows us to 

normalize the input value that, subsequently, is scaled to the desired range 



 Chapter 4: Software-in-the-Loop: SiL 

 

 

38 

through a box SCALE_X. Through the operations we obtain what will be the 

feedback of the first PID controller. 

It should be noted that when using analog inputs, the PLC processes these values 

through an analog-to-digital converter, transforming the voltage or current value 

into a decimal value. In our case, we used the voltage measurement method with 

a voltage range between 0 and 10V, as the sensors we had, worked in this range. 

Automatically, the voltage range is converted to decimal, with a resolution of 215 

where 0V is equal to 0 and 10V is equal to 27468.  

The values x and ϑ were converted in order to obtain a range of 0 ÷ 0.5m for the 

first and -0.78 ÷ 0.78rad for the second. Those conversions were done through a 

box NORM_X, which allowed us to normalize the input value that, subsequently, 

we scaled to the desired range through a box SCALE_X. We used the values 

obtained as feedbacks for the two PID compensators. As for the setpoints, the 

first PID receives a value in meters that indicates the position of the cart, while 

the second receives the output value of the first PID. 

Concerning the PID for position control, it should be noted that if we want the 

control to work properly, we must reverse the control logic within the settings of 

the PID Compact. In the first network there is another branch, which is enabled 

by the open contact X_CHANGE, in which we have inserted a PID that allowed 

us to check only the position of the cart and move it along the guide in the desired 

position. 

The third network is activated if the cart is in one of the end stops with the rod 

tilted outwards, going to activate the operand that resets the PID controllers, and 

then, the integral sum, and the function SHUTOFF_VALVES. Resetting the PIDs 

is necessary because if we need to take back the pendulum control, the 

accumulated error must first be zeroed.  
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The valves power supply is managed in the fourth and fifth networks: depending 

on the sign of the PID value, it is directed towards one or the other pair of valves 

after being properly converted; at the same time, the pair of valves that is not 

powered is reduced to a minimum value equal to about 5V that does not 

completely close the flow and allowed us to obtain a more linear behavior and a 

greater reactivity, bypassing the deadband region. 

4.1.5 Reset min max values block 

The Program Cycle OB recalibrates the minimum and maximum values for x and 

ϑ. The first network is activated after the consents have been checked and the V1-

V3 valves, which allow the piston to retract, are powered. 

At the same time, the values of x and ϑ are saved in X_MAX, THETA_MIN. Timer 

T_MAX after 5 seconds enables output Q and sets BIT RETRACT. In this way 

network 1 is disabled and network 2 is enabled: V1-V3 are switched off and V2-

V4 are supplied in order to extend the piston, and the values of x and ϑ are saved 

in X_MIN and THETA_MAX. 

The network remains active for 5 seconds until the Delay timer is enabled setting 

MANUAL_CHANGE_X and resetting RETRACT. The next network is enabled for 

5 seconds that keeps MANUAL_CHANGE_X active, allowing the cart to position 

itself in the center: then, it is reset. 

4.1.6 Square Wave Generator block 

The block under discussion is also part of the OB and it is of the Cyclic Interrupt 

type. We have set the recall interval to 1ms. In the first network there is the control 

of the Start_SqW operand: if this is not active, the instruction "skips" is activated, 



 Chapter 4: Software-in-the-Loop: SiL 

 

 

40 

and it only executes the last network that, when enabled, calls the 

Change_setpoint_x function. 

In the second block, there is a timer used as a delay for the start of the square 

wave signal. The square wave signal with a duty-cycle of 0.5 is generated in the 

next two networks. In the first network the maximum square wave is imposed at 

set_point with the variable STEP_UP for the desired cycle time by using the 

TIMER_POS block.  

The Q output of TIMER_POS is activated if the latter is powered for a duration 

equal to that set on PT: in this case Cycle_time_SW. Once TIMER_POS is activated, 

in the succeeding network, the value of the set_point variable is replaced with the 

minimum value of the square wave, and at the same time TIMER_NEG is 

powered, which activates the output Q after a time equal to Cycle_time_SW, 

disabling for one cycle the upper network, and consequently the lower one. At 

the next cycle the network 3 is re-enabled and the high value is passed again to 

set_point, so that, the whole procedure can be repeated until Start_SqW is not 

reset. 

4.1.7 Sine Wave Generator block 

The block is of the same type as the previous one and has the same cycle time: it 

is used to generate a sine wave. The first network is responsible for checking 

whether the generation of the sine wave has been requested through the 

appropriate operand. Until the operand is set, for each program cycle all 

instructions will be skipped going directly to the last network. On the second 

segment there is a timer that restarts at each cycle time set for the sine wave. In 

the third and fourth segment, the ET variable is taken, which is equal to the time 

elapsed since the timer was started, and the value is transformed into seconds. 
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Finally, as can be seen from the formula below, it is determined the value to be 

passed to the set_point variable: 

𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 = 0,25 + 𝐴𝑠𝑖𝑛(𝜔𝑡) 
 

The last network resets the setpoint to the initial value when the generation of 

the sine wave is no longer required. 

4.1.8 FC Change setpoint x 

It is a very simple function block consisting of a single network that, when called, 

allows to manually change the setpoint of the PID for position control. 

4.1.9 FC Reset PID values 

This function is used to set the output values of the PIDs to zero using the MOVE 

element, and to reset them by enabling the RESET operand. 

4.1.10 FC Reset Theta zero 

Sometimes it is necessary to recalibrate theta zero, that is, the input coming from 

the angular sensor when the rod is in a vertical position: this can be done by 

calling this function. First the valves are turned off so that the cart does not move, 

then, in the second network, the value coming from the angular sensor, after 

being properly scaled, is copied to the variable THETA_ZERO that contains theta 

offset value.  

4.1.11  FC Reset x theta min max 

It may be necessary to calibrate the minimum and maximum values of the two 

sensors' signals. To do this, the V1-V3 valves are first supplied so that the piston 

retracts to the left end stop, and with the cart in this position and the rod tilted to 
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the left, the values of X_MAX and THETA_MIN are changed. After 10s from the 

activation of the first network, timer T_MAX activates the output Q that sets the 

RETRACT operand and disables the first network. The same operand enables the 

second network in which the piston is extended by turning on the valves V2-V4, 

then the values of X_MIN and THETA_MAX are rewritten, with the cart 

positioned on the right end stop and the rod tilted to the right. This network is 

also disabled after 10s by the Delay timer that resets the BIT RETRACT and set 

the MANUAL_CHANGE_X, which allows the cart to move towards the center. 

From the setting of this last BIT we obtain the activation of the last network that 

only maintains the BIT active for 10s. 

4.1.12  FC Turnoff valves 

The function is made of a single network which, when called, does not supply 

the valves using two MOVE blocks to set the outputs to 0. 

4.1.13  FC Update PID parameters 

The last function changes the parameter values of the two PIDs. When it is called, 

even when the program is running, it is possible to manually change the values 

of Kp, Ti and Td for both PID_position and PID_angle. 

 Automation Connect 

Automation Connect is a tool that allows the connection of Amesim models to 

different types of real or virtual automation controllers. It is designed to permit 

a fast and easy interface to map and exchange variables. We will describe two 

main families of use-cases: Hardware-in-the-Loop (HiL) and Software-in-the-Loop 

(SiL). Furthermore, it is possible to combine HiL/SiL cases, that is, cases where 
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automation hardware is only partly simulated. The following figure shows some 

HiL and SiL modes supported by Automation Connect and employed in our work. 

 

 

Figure 24: Automation connect supported modes 

 

4.2.1 User interfaces 

In this paragraph we will talk about the use case of SiL in Automation Connect, 

anticipating that we will deal with the HiL in the chapter devoted. 

Among the various interfaces of Automation Connect we used the one with 

PLCSIM Advanced (add-on of Siemens TIA Portal): it permits to connect Amesim 

with the emulated recent PLC S7-1500 series. We will deepen how PLCSIM 

Advanced functions later in the chapter. 

The data exchange between Amesim and Automation Connect is only possible after 

inserting the right interface block in the model Amesim: we used the same 
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interface block and chose Automation Connect without modifying the system 

created for co-simulation with Simulink. 

The tool has several tabs, each dedicated to a different software with which it 

interfaces. In order to create a connection between Automation Connect and our 

Amesim model, from the Amesim tab, it is necessary to select the DLL file in the 

base directory, created after compilation. In fact, after the uploading process, the 

tool lists the defined interface-variables that per definition are of type Double (or 

LREAL), meaning a 4-byte floating-point number. 
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Figure 25: Automation connect Amesim tab 

As shown in Figure 22, we have at the top the input-variables and at the bottom 

the output-variables. In addition to the variables in the interface block we 

defined, the tool always adds one more input-variable, Toggle start and two more 

outputs, Simulation time and Start toggled. Those can be used by an output from 

another system to automatically start the Amesim simulation. Furthermore, it 

allows a programmed feedback describing the simulation status and the wall-

clock-time synchronization capabilities. 



 Chapter 4: Software-in-the-Loop: SiL 

 

 

46 

Automation Connect acts as a co-simulation (and time) master and Simcenter 

Amesim as a slave with which it is possible to control the Amesim simulation:  it 

is input variables can be inputs to the connected system, whereas output 

variables can be a feedback given by the connected system: the first can be 

written, while the latter can be read; it is also possible to write the input values 

instead of connecting the variables to other systems. 

Furthermore, Amesim uses the simulation parameters, previously defined inside 

the tool.  

Simulation Interval value defines the timeframe of each simulation macro-step in 

Amesim and it restricts the minimum time for exchanging and updating variables 

with Amesim. During the simulation it is possible to see what is going on in 

Amesim in real time, and plot graphs.  



 Chapter 4: Software-in-the-Loop: SiL 

 

 

47 

 

Figure 26: Automation Connect control panel 

 

Since we worked with Siemens S7-1500 PLCs and TIA Portal, we could emulate 

our target PLC using PLCSIM Advanced: the software can be then connected to 

Automation Connect. In the related tab we can choose from the various existing 

instances of PLCSIM Advanced, and, once we select the one we preferred, a 

window opens, like the following figure. 
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Figure 27: Automation Conncect PLCSIM Advanced tab 

 

This window shows all the variables we've created within the tag table of our 

PLC program. We can select those of our interest, that is, those that will exchange 

data with the other variables present in Amesim. 

For each variable we are shown the direction – either input or output-, address 

and type: The Markers are considered both input and output. 

The last step is to connect the Amesim variables with those of PLCSIM Advanced. 

To do this we moved to the variable mapping tab, and, connected the input (on 

the right) of a system with the output (on the left) of the other and vice versa. For 
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each variable it is indicated which software it belongs to, the name and type. In 

the Figure are represented the connections that concern our simulation. 

 

 

Figure 28: Automation Connect Variable mapping tab 

 

At this point it is possible to start the simulation directly from the Automation 

Connect interface by going to the Amesim tab. As far as the virtual CPU is 

concerned, it will already be in the RUN state and ready to control the system. In 

the source code we have created, every time we start the simulation from 

Automation Connect, thanks to the BIT Start toggled, the required networks are 

activated so that the control can start. The simulation started following these 

steps has the problem to be asynchronous, but however we have succeeded in 

stabilizing the system. In any case, the tool offers the functionality to synchronize 

the various systems and this allowed us to obtain more reliable simulations. 
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 PLCSIM Advanced 

Using PLCSIM Advanced we simulated the program for PLC on a virtual 

controller, without needing a real one. We just configured our CPU in TIA Portal, 

we created our program and then we loaded the hardware configuration and 

program inside the virtual controller. So, we started the CPU and observed the 

effects on simulated inputs and outputs. 

The virtual controller could not fully simulate a real CPU, because even if there 

were no errors, we could not be sure that the virtual controller would behave 

exactly like the real one. The scan cycle time and the exact time of actions in 

PLCSIM Advanced were not the same as when these actions run on physical 

hardware: this is because there were several programs share the processing 

resources on the PC. 

4.3.1 Communication paths 

PLCSIM Advanced have two different paths for communicating with TIA Portal: 

Local and Distributed communications. Local communication is carried out via 

Softbus in PLCSIM Advanced by default, either making it impossible downloading 

data accidentally to a hardware CPU or communicating with real hardware. 

 

 

Figure 29: Local communication via Softbus 
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The second protocol, which may be employed for local communications is 

TCP/IP. Communication is performed via the PLCSIM Virtual Ethernet Adapter, 

which is a virtual network interface behaving as it was a real interface. 

 

Figure 30: Local communication via TCP/IP 

 

Distributed communication also uses TCP/IP: so that PLCSIM Advanced instances 

are able to exchange data with other devices through the Virtual Switch, and they 

make also possible communicating with real or simulated CPUs. 

In the figure below, we can see the communicative structure of TIA Portal, located 

on one PC, and PLCSIM Advanced instances located on another one. 

 

Figure 31: Distributed communication via TCP/IP 
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4.3.2 Control Panel 

In this paragraph we are going to talk about the PLCSIM Advanced control panel: 

in the figure below, we can see an image of how the panel appears. 

 

 

Figure 32: PLCSIM Advanced control panel 
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Our first step was the choice of the communication type, that is to say PLCSIM, a 

local communication via Softbus; it is possible to change the Virtual Time Scaling, 

so the system time runs correspondingly faster or slower. 

Afterwards, we defined the instance name so that our virtual controller could 

start: we will be able to select within the TIA Portal the virtual PLC could be 

created and used as if it was a normal CPU going to load our program. 

 Simulation results 

Concerning the simulations carried out in SiL, the first step was to start with the 

controllers used in the Amesim model, and then to arrive at the following 

controllers that have assured a better behavior of the system: 

  

𝐶𝑥 = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠

𝑇𝑓𝑠 + 1
= 0,003 +

6,12 ∗ 10−5

𝑠
+

0,132

0,1584𝑠 + 1
 

𝐶𝜃 = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠

𝑇𝑓𝑠 + 1
= 5,1 +

10,2

𝑠
+

0,153

0,004𝑠 + 1
 

 

As for constant reference tracking, the system is stable, but the behavior is 

different from that seen in the MiL. As it can be seen, the cart has some difficulty 

in staying close to the setpoint: this may be due to the step target set within 

Automation Connect. In fact, the tool can have some problems using a target step 

below 10 ms, as in our case. All this goes to affect the data transmission between 

Amesim and the virtual PLC causing the problems we mentioned above. 



 Chapter 4: Software-in-the-Loop: SiL 

 

 

54 

 

 

Figure 33: SiL Amesim simulation with constant reference tracking 

 

As for the step and the square wave reference tracking, the behaviors are more 

similar to those seen before, even if in the first case the system takes a long time 

to reach the target after the jump, and also in the second case there is a latency in 

relation to the same simulation previously analyzed. 
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Figure 34: SiL Amesim simulation step constant reference tracking 
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Figure 35: SiL Amesim simulation with square wave reference tracking, T=8s, 

A=200mm  
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5 Hardware-in-the-Loop: HiL 

HiL simulation is the testing phase during which it is possible to validate a 

control algorithm running on an intended target controller, creating a virtual 

system that represents the physical system to control. 

This is particularly interesting to: 

• validate PLC control strategies online based on a virtualized controlled 

system yet able to represent the expected dynamics of the real machine, 

• enhance or compare data measured from the field with simulated data 

(e.g. coming from virtual sensors), 

• assist operators during real machine operation thanks to simulated 

predictions or diagnoses made by a "digital twin" fed with real data 

acquired from the field. 

As already mentioned, one of the main potentialities of Amesim is to implement 

HiL, through the use of Automation Connect. In this case Amesim is used to 

simulate the behavior of a system controlled by a PLC, and through Automation 

Connect it is possible to continuously exchange data with a real PLC. 

For this type of connection, a hardware communication gateway is required. We 

used a Siemens SIMIT UNIT hardware. 

 SIMIT UNIT 

The hardware platform we used is the SIMIT UNIT PN128, which allows real-

time simulations supporting up to 128 devices via PROFINET.  

Using the SIMIT UNIT, the I/O signals of the decentralized periphery, as well as 

field device signals, such as actuators and sensors can be simulated. 
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Figure 36: SIMIT UNIT platform 

 

The SIMIT UNIT replaces the field devices of a real plant. It simulates the 

behavior of these devices on the bus and communicates - like the real modules - 

with the automation hardware via the fieldbus. 
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 Hardware configuration  

 

Figure 37: HiL hardware connection 

 

The connection has been made in order to have our CPU, S7-1500, connected via 

PROFINET to the SIMIT UNIT. We then connected the two elements to our PC 

via Ethernet cable, so that the SIMIT UNIT could exchange data with Amesim and 

the PLC could be controlled via TIA Portal. 

Differently from SiL, in this phase we had to add external modules to our PLC, 

because SIMIT UNIT only manages the I/O signals of the decentralized 

periphery, so to manage the input and output variables with SIMIT UNIT this 

operation was necessary, as shown in the Figure. 
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Figure 38: PLC hardware configuration 

 

In order to use the external modules, it is necessary that the addresses of all the 

I/O variables are replaced, that is, those that will exchange data with Amesim, 

going to assign the addresses present on these modules, and it is also necessary 

to export the mapping, namely the allocation of addresses to the variables. 

The other step was to load the hardware configuration on the SIMIT UNIT, using 

the appropriate software SIMULATION UNIT 9.1. Once done, the SIMIT UNIT 

recognizes which external devices we want to connect to our PLC and can 

virtualize them. 
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Figure 39: SIMIT UNIT software control panel 

 Software configuration 

As already occurred for SiL, the tool that allows us to put Amesim in 

communication with SIMIT UNIT is Automation Connect, so choosing the relative 

tab it is possible to establish a connection between the latter and the hardware 

platform. In this case, only the addresses virtualized by SIMIT UNIT are loaded, 

that will be associated to the corresponding variables, importing the mapping 

that we created through TIA Portal. 

The result is that in the following image: there are many empty spaces because 

not all the addresses on the external modules have been used. 
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As for the other simulations carried out with Automation Connect, we connected 

the variables of our interest in the Variable Mapping tab, and we started the 

simulation in the Amesim tab. 

 

Figure 40: Automation Connect SIMIT UNIT tab 

 

As for the Amesim model, the time-sync component of the type in Figure has been 

added and allows the synchronization of the simulation with the wall clock time. 

This element can be used when a model need to be piloted in "real time 
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conditions" from outside otherwise the data exchange with other real-time 

devices like PLCs will become very asynchronous. In fact, being the simulation 

in Amesim faster than the reality, it can be slowed down. 

 

 

Figure 41: Time sync 

 

 Simulation results 

Again, we could not use the same controllers as before, but it was necessary to 

make an optimization by obtaining the following controllers: 

 

𝐶𝑥 = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠

𝑇𝑓𝑠 + 1
= 0,001 +

0,001

𝑠
+

0,08

0,002𝑠 + 1
 

𝐶𝜃 = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠

𝑇𝑓𝑠 + 1
= 5 +

15,15

𝑠
+

0,075

0,144𝑠 + 1
 

 

Also in this case, as in the SiL one, we noticed that the communication between 

the various components was affected by the very low target step. Certainly, the 

use of SIMIT UNIT helped to decrease the latency in the data transfer, so that the 

data obtained is very close to those obtained with the MiL and the real PLC. 

Concerning the constant reference tracking, the system is stabilized even if it has 

some contained oscillations. Talking about the step reference tracking, we notice 
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a much lower rise time compared to the one obtained with the SiL and even after 

the jump the system has no problems to keep the reference. 

 

 

Figure 42: Amesim constant reference tracking  

 

Finally, if we look at the last graph, we see how the system arrives a little late at 

the target point, so that once reached it does not have time to stabilize because 

the reference varies. 
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Figure 43: Amesim step reference tracking, A=200 mm 
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Figure 44: Amesim simulation with square wave reference, T=8s, A=200mm 
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6 Conclusions and future developments  

The aim of this thesis was to create a reliable virtual model of a pneumatic system 

and, precisely, of a reverse pendulum.  

From the results of the simulations it emerged that the various virtual models in 

the various phases of simulation presented a behavior very similar to that which 

they would have obtained through the tests carried out with the test bench. 

To prove this, it was not necessary to substantially modify the controllers 

obtained in the various simulations, which proved to be effective even on the test 

bench. 

The most significant differences were found in Software-in-the-Loop and 

Hardware-in-the-Loop: this was because with the means at our disposal, the 

communication between hardware and software was not able to withstand a data 

transfer fast enough for our type of system. 

As for future developments, there is certainly still room for improvement 

regarding the reliability of the Amesim model: in fact, if it were possible to 

recover and make available precise data on friction in the piston, almost certainly 

it could be improved the behavior of the Amesim model making it more similar 

to the real one. These data were not at our immediate disposal and to obtain them 

were necessary long experimental tests that, for reasons of unsuitable 

instrumentation, it was not possible to perform.  

Another improvement could be possible in case of a future update of the software 

we used, in order to obtain a more effective communication for systems like ours, 

which need a high speed of communication between the various actors involved. 
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As far as the stability of the inverse pendulum we have analyzed is concerned, it 

could be improved by using more complex functions than the PID compensators 

used in our system, which can guarantee better performance.
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Appendix A 

A.1. Matlab scripts 

In the following page some scripts used in Matlab are showed. They were used 

for the friction parameter approximation. 
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A.1.1. Main 
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A.1.2. Parameters optimization 

 

  



 

 

74 

 

 

 

 

 

 

Appendix B 

B.1. Source code of program for PLC S7-1500 

In the following pages, the source code is showed and written through the 

software Tia Portal. It is uses on PLC S7-1500. 
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