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Railway wheel tread damage: 
Detection and consequences of wheel-rail impact loading 
  
Master’s thesis in Master’s Mechanical Engineering 
DAVIDE DELLA VALLE  
Department of Mechanics and Maritime Sciences 
Division of Dynamics 
CHARMEC 
Chalmers University of Technology 
 
 

Abstract 
Swedish transport authorities are investing large amounts of capital in technologies 
aimed at detecting railway wheel tread damage to reduce the costs for maintenance 
and repair of wheelsets and railway infrastructure. Wheel impact load detectors 
(WILDs) based on load cells and accelerometers is one such type of technology 
currently in use by Trafikverket (the Swedish Transport Administration). 
 
This thesis consists of two related parts. The first part is a statistical analysis of data 
collected by WILDs to assess accuracy and increase confidence in their performance. 
The statistical tool used to fit the measured data is a multiple linear regression model. 
For a few selected wheels with evolving rolling contact fatigue damage, data collected 
over a one-year period have been analysed. At the early stages of wheel tread 
degradation, it is shown that the measured dynamic loads are considerably influenced 
by the train speed. For wheels with severe tread damage, the loads are also 
significantly influenced by the time since the previous wheel maintenance or 
replacement (probably related to the increasing wheel tread degradation rate over 
time). It is observed that the accuracy of the detectors cannot be firmly checked since 
the data are shown to be influenced by train speed and the time of measurement, and 
because of lack of measured data within a short time window where the tread damage 
is close to constant. However, a few observations indicating a need for detector 
calibration are given by comparing the results from different detectors when based on 
data registered for the same set of wheels. 
 
In the second part of the thesis, a Python script for the Abaqus software has been 
written to automatically generate a parameterized wheelset model. The Python script 
allows to easily alter the geometrical features of the wheel design, such as the rim 
thickness. A non-powered wheelset model is used to evaluate the fatigue resistance of 
the hollow wheelset axle. A case of warning alarm values registered by a WILD is 
used to define the periodic loads acting on the rolling contact circle of the wheels. It is 
shown that the Sines’ criterion is the most suitable to calculate the equivalent stress of 
the most stressed section. For the given set of applied loads, the calculated stress state 
in the hollow axle does not induce a fatigue damage to the axle. 
 
 
Key words: wheel impact load detectors, multiple linear regression model, 
parameterized wheelset model, dynamic analysis.  
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Abbreviations 
 
FE  Finite element 
PRESS  Predicted error sum of squares 
RCF  Rolling contact fatigue 

WILD  Wheel impact load detector 
 

Symbols  
 
𝐹𝑑𝑦𝑛  Dynamic wheel impact load  
𝐹𝑙  Mean wheel load 
𝐹𝑃  Peak wheel impact load 
𝐼𝑚   First invariant of the mean stress tensor 
𝑀    Mean stress sensitivity 
𝑀𝑆𝑟𝑒𝑠   Mean sum of residual squares 
𝑅2   Coefficient of determination 
𝑆𝑆𝐸   Sum of squares explained 
𝑆𝑆𝑅   Sum of the residuals squared 
𝑆𝑆𝑇   Sum of the total squares 
𝜎𝑎,𝑖    Alternate component of the ith principal stress 
𝜎𝑖  ith principal stress 
𝜎𝑚,𝑖  Mean component of the ith principal stress 
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1 Introduction 
For the dynamics of a railway vehicle, the interaction between wheel and rail is by far 
the most important aspect. Keeping the wheels and vehicles in an acceptable 
condition is a major concern for both railway operators and infrastructure owners [1]. 
Since damage induced on the wheel tread might be detrimental for both track and 
vehicle components, infrastructure owners have adopted several countermeasures in 
order to reduce costs for repair and maintenance. To this aim, criteria for determining 
when a railway wheel should be replaced or reprofiled have been debated and updated 
over time. For instance, in the last decades Swedish criteria were based on identifying 
only a critical length of the wheelflat, whereas recent studies have shown that the 
depth of the flat may have a more considerable influence than the length [2]. Severe 
wheel-rail impact loads are also generated by other discrete wheel tread defects, such 
as clusters of rolling contact fatigue (RCF) damage leading to pieces of material 
breaking out from the tread. 
 
Wheel flats and severe RCF damage, apart from having a large impact on noise 
generation, might also cause safety problems. Moreover, they induce large impact 
forces, see Figure 1.1. 
 
The wheel-rail impact forces occur whenever a wheel flat on the wheel tread meets 
the rail. The wheel flat results in a transient and periodic loading due to an impact for 
each revolution of the wheel. During this phase, the wheel moves downwards to 
compensate for the missing wheel material and at the same time the rail moves 
upwards. Since the wheel and rail cannot utterly compensate for the irregularity due to 
their inertia, there is a reduction in the contact force. After passing the centre of the 
flat, the wheel continues downwards because of its higher inertia. This results in a 
peak in the contact force, which is followed by a damped transient response [3]. 
 
These impact forces aggravate damage on the wheel tread. Damage on the railway 
wheels occur due to mainly two phenomena, fatigue and wear, and their synergetic 
effects. 
 
Before introducing what countermeasures have been adopted by infrastructure owners 
to reduce costs for repair and maintenance of track infrastructure, it is worthwhile to 
give a brief introduction regarding the most common types of damage of railway 
wheels. 
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Figure 1.1: Theoretical description of an impact force acting on the wheel of a railway vehicle [4]. 
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2 Wheel tread damage 
2.1 Rolling contact fatigue of railway wheels 
The development of rolling contact fatigue damage (RCF) can in general be divided 
into four phases. The first phase involves the crack initiation. Then follows a second 
phase during which an early crack propagation occurs. The third phase refers instead 
to an extended crack propagation, whereas the last phase is the one responsible for the 
final fracture [5]. 
 
Surface-initiated RCF cracks occur when a railway component in rolling contact is 
subjected to cyclic tangential wheel-rail contact loads of high magnitude due to 
braking and curving. Under these conditions, the contact surface deforms plastically. 
Consequently, the accumulated plastic strains lead to crack formation as the fracture 
strain is exceeded [6]. 
 
RCF cracks are commonly classified based on their appearance and location on the 
wheel. As a matter of fact, the lateral and longitudinal (tangential) forces that occur 
within the wheel tread may lead to damage in four specific zones.  
 
The most common form of RCF cracks are located on the field side of the tread (Zone 
1, see Figure 2.2). These cracks are mainly due to the interaction between the wheel 
and the lower inner rail during curving and their orientation depends on the loading. 
The cracks are commonly oriented perpendicularly to the direction of the resulting 
tangential contact force during curving, which is usually around 30°-45° with respect 
to the wheel axis [7]. The same mechanism and forces, but acting during the 
interaction between the wheel and the higher outer rail during curving are responsible 
for damage occurrence in Zone 2. Cracks affecting Zone 2 are typically oriented by 
30°-60° with respect to the wheel axis, see picture on the left in Figure 2.2. Zone 3 
RCF occurs far less frequently than in Zone 1 or Zone 2. Fatigue cracks occurring in 
Zone 3 are located in the centre of the tread and they arise from repeated application 
of high longitudinal tractive forces which in turn result from an increase in the 
longitudinal creep. On the contrary, cracks occurring in Zone 4 have a significant 
longitudinal orientation of around 60°-80° to the wheel axis, which indicates that they 
have been induced by a resultant lateral creep force [8]. Lastly, RCF clusters arising 
from mainly braking operations appear at the centre of tread. They are in general 
oriented parallel to the wheel axis, see Figure 2.2. 
 

 
Figure 2.1: Schematic sketch regarding plastic deformation of the surface material in a railway wheel 
due to tangential loading. The dashed lines indicate material planes before and after deformation [6]. 
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Figure 2.2: RCF damage on a locomotive wheel. [Picture courtesy Michele Maria Maglio]. 
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2.2 Wheel flat 
Wheel flats are the most common form of wheel tread damage. Wheel flats are caused 
by the sliding of the wheel along the rail that occurs as a consequence of a blockage 
or partial blockage of the wheelset. The reason for the sliding may be either a fault in 
the brake system or an excessive applied braking force [8, 9]. Consequently, the 
dissipated friction energy turns into heat and makes the tread surface locally flat. This 
local flat defect is designated as wheel flat, see Figure 2.3. 
 
However, under the significantly high temperatures (e.g. 800˚) reached during the 
generation of the flat, the pearlitic microstructure of the wheel steel transforms into 
martensite. Martensite is a very hard and brittle form of steel microstructure. As a 
consequence of further cyclic loads arising from the wheel-rail contact, cracks can 
develop in the brittle material and grow considerably until the brittle surface starts to 
spall out from the wheel tread [8, 9]. 
 
The cavities on the tread surface, such as RCF clusters and wheel flats with spalling, 
produce a local deviation from the nominal wheel radius. This deviation may generate 
impact loads in the wheel-rail contact that further aggravate the irregularity [9].  
 

 
Figure 2.3: Wheel flat on the tread surface. [Picture courtesy Michele Maria Maglio]. 

 

2.3 Wear of railway wheels 
The broadest definition of “wheel wear” includes any kind of damage occurring on 

the running surface that involves loss of material. Wheel wear can be categorized into 
three main classes, deeply described in [10]: 

• Flange wear, involving the reduction of the flange thickness that leads to a 
reduction in the strength and a worsening in wheel-rail contact, see Figure 2.4; 

• Wheel tread wear, involving an increase in the flange height and an increase in 
the flange thickness which in turn might cause severe problems in turnouts or 
crossings; 

• Out-of-round wheel is often caused by the presence of a mixed microstructure 
within the wheel tread as a result of heat treatments issues during wheel 
manufacturing [8]. 
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All of these phenomena lead to a significant change in the shape of the wheel profile, 
which in turn could severely affect the dynamics of the vehicle and the safety against 
derailment. These modifications may be recovered by reprofiling the wheel, i.e. 
turning it to its original shape. However, a limited number of reprofiling operations 
may be carried out before the height and thickness of the rim do not comply anymore 
with the mechanical resistance of the wheel. As this limit is reached, the wheel must 
be replaced [12]. 
 

 
Figure 2.4: Typical railway wheel profile. The picture shows also flange and tread wear phenomena 
[11]. 
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3 Statistical analysis of wheel impact load detector 
data 

The first goal of the present thesis project has been to analyse data detected by wheel 
impact load detectors located in Sweden in order to draw some conclusions from the 
arising trends and to increase the confidence in the performance of the detectors. 
 

3.1 Wheel impact load detectors 
A significant amount of capital is being invested by the Swedish transport authorities 
in technologies aimed at detecting railway wheel damage on time to reduce costs 
deriving from maintenance and repair and to meet noise legislation. One 
countermeasure that has been adopted is represented by wheel impact load detectors 
(WILDs). A WILD system consists of sensors set along the sleepers connecting the 
two rails. The system makes use of a combination of vertical load receptors, lateral 
receptors and accelerometers. These sensors collectively provide coverage for 
approximatively five meters of tangent track, which becomes the detection zone as 
shown in Figure 3.1. 
 
This system is equipped with an automatic vehicle identification (AVI) system that 
detects the unique vehicle number characterizing each passing wagon, regardless of 
the travel direction, through the detection zone [14]. 
 
The WILD system provides the following information: 
 

• Train speed; 

• Direction of travel; 

• Mean wheel load (𝐹𝑙) on left and right rails; 

• Peak wheel impact load (𝐹𝑃) on left and right rails; 

• Dynamic wheel impact load (𝐹𝑑𝑦𝑛 = 𝐹𝑃 − 𝐹𝑙) on left and right rails; 

 
In addition, the WILDs generate alarms when any of the above-mentioned loads 
exceeds a threshold value configured by the operators or set by the regulations. These 
output data are then saved in a file, which is stored on disk and is available to the 
operators. These results can be used for statistical analyses as has been done in the 
present thesis work. 
 

 
Figure 3.1: Wheel impact load detector (WILD) installed in track [13]. 
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3.2 Preface to the analysis 
3.2.1 Introductory notes 
The analysed data have been provided in different Microsoft Excel files by Mr Lars 
Fehrlund, vehicle engineer at Green Cargo AB. More specifically, each Excel file 
refers to a specific axle of one specific locomotive. Each file contains information 
about the dates and time instants at which the data were registered, the name of the 
detector station, the travel direction of the train, the train speed, and the mean and 
peak impact loads registered for both wheels. 
 
Based on additional information provided by Lars Fehrlund, data detected at 
Mellansjö USP MJ MDS and Mellansjö NSP HJ MDS stations have been excluded 
from the analysis because these detectors have not yet been calibrated. In addition, 
data detected for low train speeds (lower than 40 km/h) have been excluded because 
of a relatively high risk that the WILD is not able to identify the locomotive correctly. 
 

3.2.2 Aims 
As far as the aims are concerned, the first goal has been to create a unique Matlab 
code that reads any Excel file having the same format as the ones provided by Lars 
Fehrlund. Its functionalities are explained in Appendix A. 
 
Then, several analyses have been carried out using statistical tools. More specifically, 
the influence of the train speed on the mean wheel loads has been investigated first, 
and then the dependence on dynamic impact loads of the train speed and the time 
instants at which data have been registered has been studied. 
 
Lastly, the performance of different detectors has been evaluated by comparing 
measured dynamic loads when subjected to the same wheel tread defect. More 
specifically, the analysis focused on sequences of data where, according to detector 
data, the degradation rate of the RCF defects led to a slow increase in dynamic load 
over time. 
 

3.2.3 Theoretical background to the statistical analysis 
3.2.3.1 Simple linear regression model 
The statistical technique that has been used for investigating different relationships 
between the data registered by the wheel impact load detectors is the regression 
analysis. Reference [15] has been taken into account to provide a theoretical 
background allowing for carrying out a simple but solid statistical analysis. 
 
Regardless of the selected pair of variables to be analysed, it is possible to display any 
couple of data registered by WILDs in a scatter diagram. A scatter plot, as the one 
shown in Figure 3.2, might suggest a possible relationship between the two variables. 
 
Based on a first impression given by the scatter plot in Figure 3.2, the two variables 
can be related by a linear relationship. The straight line obtained by linear 
interpolation can be described by Eq. (3.1):  
 

𝑦 = 𝛽0 + 𝛽1𝑥                                                          (3.1) 
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where 𝑦 represents the dependent variable, 𝑥 represents the independent variable, 𝛽0 
is the intercept and 𝛽1 accounts for the slope. These two latter coefficients are also 
known as regression coefficients and are statistically computed based on the sample 
data. 
 
However, since the data points do not lie exactly on the straight line, the difference 
between the observed data (𝑦) and the straight line (𝛽0 + 𝛽1𝑥), namely the statistical 
error ( 𝑒 ) or residual, should be considered. Hence, a more plausible model is 
represented by the following equation. 
 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑒                                                    (3.2) 

 
Equation (3.2) is called a linear regression model. The independent variable 𝑥 is 
usually denoted as the predictor or regressor variable, whereas the dependent variable 
𝑦  is the response variable. The linear regression model described by Eq. (3.2) is 
referred to as a simple linear regression model because it involves only a single 
regressor variable. Moreover, the mean value of the errors is assumed to be zero, their 
variance is unknown and they are supposed to be uncorrelated, that means that the 
value of one error does not depend on the value of any other error. 
 

 
(a)        (b) 

Figure 3.2: (a) Example of a typical scatter plot. (b) Linear interpolation between independent and 
dependent variable. 
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A simple linear regression model has been used to study the influence of the train 
speed and the time instants at which data have been registered on the mean loads 
measured by the detectors. Simple linear regression models have been generated in 
Matlab using the function fitlm [16], see Appendix A. This function saves any 
statistical parameters of interest in a nested structure. These parameters include the 
regression coefficients, which in turn are estimated through the method of least 
squares, meaning that the sum of the squares of the differences between the 
observations 𝑦i and the straight line has a minimum. The sum of squared errors S is 
written as: 
 

𝑆(𝛽0, 𝛽1) =  ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2 𝑛

𝑖=1                              (3.3) 

 
Therefore, the least-squares estimators of 𝛽0 and 𝛽1 must satisfy  
 

𝜕𝑆

𝜕𝛽1
=  −2 ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)𝑥𝑖 

𝑛
𝑖=1 = 0                           (3.4) 

and 
 

𝜕𝑆

𝜕𝛽0
=  −2 ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) 𝑛

𝑖=1 = 0                            (3.5) 

 
By simplifying Eq. (3.4) and Eq. (3.5) and solving for 𝛽0 and 𝛽1, it is possible to 
deduce the equation representing the simple linear regression model. 
 
Before applying the fitted model, the significance of the regression model has to be 
checked along with the accuracy of the basic assumptions. One statistical tool used to 
check if the data agree with certain predictions is the hypothesis test. This procedure 
requires the additional assumption that the errors 𝑒𝑖  are normally distributed. It 
considers two hypotheses: the null hypothesis and the alternative hypothesis. The null 
hypothesis (𝐻0) is the hypothesis that is directly tested, for instance the assumption 
that no regression relationship exists between the response (𝑦)  and the predictor 
variable (𝑥). As opposite to the null hypothesis, the alternative hypothesis (𝐻1) will 
consequently indicate that there is instead a regression relationship between the 
response and the predictor variable.  
 
The P-value approach is usually used to check the validity of the null hypothesis. 
After having assumed the null hypothesis as true, the hypothesis testing procedure 
involves subsequently the calculation of t-statistics. The t-statistics is defined as the 
ratio between the estimated value of a parameter (β ̂) from its hypothesized value 
 (β0) and its standard error [15] .  
 

𝑡𝛽 ̂ =  
𝛽 ̂− 𝛽0  

𝑠𝑒(𝛽)̂
                                                       (3.6) 

 
According to the aim of the statistical analysis, the estimated parameter involved in 
Eq. (3.6) might be either the intercept or the slope of the regression model. Both these 
parameters are determined through the method of least squares. Moreover, the t-
statistics follows a t-distribution with n-1 degrees of freedom, where n accounts for 
the number of observed values. Hence, using the known distribution of the t-statistics, 
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it is possible to compute the P-value. The latter then has to be compared to a 
significance level α, which in this study has been set to 0.05 and assumed as default in 
the regression models generated by the fitlm function in Matlab. If the P-value is less 
than α, the null hypothesis will be rejected in favour of the alternative. On the 
contrary, if the P-value is larger than α, the null hypothesis should not be rejected 
[17]. 
 
Another way to assess the goodness of the fit is through the evaluation of the 
coefficient of determination 𝑅2. The coefficient of determination, customarily also 
denoted as R-squared, is defined according to Eq. (3.7): 
 

𝑅2 =
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝑅

𝑆𝑆𝑇
                                                   (3.7) 

 
where:  
 

• 𝑆𝑆𝑇 is the sum of the quadratic deviations of the observed values (𝑦𝑖) from 
their average; 

• 𝑆𝑆𝐸 is the sum of the quadratic deviations of the response values from their 
average; 

• 𝑆𝑆𝑅 is the sum of the squares of the residuals deduced from the fitted model. 
 
Since 𝑆𝑆𝑇 is a measure of the variability in 𝑦 without considering the effect of the 
regressor variable 𝑥, and 𝑆𝑆𝑅 is a measure of the variability in 𝑦 remaining after 𝑥 
has been considered, R-squared accounts for the proportion of variation in 𝑦 
explained by the regressor 𝑥. It ranges between 0 and 1 and the larger its value is, the 
better the variability in 𝑦 is explained by the adopted regression model [18]. 
 
3.2.3.2 Multiple linear regression model 
Multiple linear regression models have been used to analyse the correlation between 
the measured dynamic impact loads, the time at which the data have been registered 
and the train speed. A multiple linear regression model relates the response variable 
(𝑦) to k regressor variables. The model is described by Eq. (3.8): 
 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑘𝑥𝑘 +  𝑒                                   (3.8) 

 
or equivalently in matrix form by Eq. (3.9): 
 

𝒚 = 𝜷𝑿 +  𝒆                                                           (3.9) 

 
where each regression coefficient 𝛽𝑘 indicates the expected change in the response 
variable per unit of change in xk  when all the other regressor variables are held 
constant. It is worth underlining that the term linear refers to a response variable 
expressed as a linear function of the unknown regression coefficients and not of the 
regressor variables.  
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As already explained in Section 3.2.3.1, the first step is to calculate the regression 
coefficients through the method of least squares. For the sake of brevity, the 
mathematical passages used to compute the regression coefficients that minimize the 
sum of squared errors are here omitted but their final expression is reported in Eq. 
(3.10). 
 

𝜷 = (𝑿′𝑿)−𝟏𝑿′𝒚                                                    (3.10) 

 
Consequently, the vector of the fitted values �̂� turns out to be: 
 

�̂� =  𝑿𝜷 = 𝑿(𝑿′𝑿)−𝟏𝑿′𝒚   = 𝑯𝒚                                  (3.11) 

 
The 𝑛 𝑥 𝑛 matrix 𝐇 = 𝐗(𝐗′𝐗)−𝟏𝐗′is known as “hat matrix” and allows to correlate 
the vector of observed values to the vector of fitted values. This matrix has particular 
properties and plays a relevant role in multiple regression analyses [15]. 
 
As far as the test for significance of the adopted regression model is concerned, a very 
close procedure to what has been presented in Section 3.2.3.1 is usually performed. 
This test still involves the definition of two hyphotheses: the null hypothesis that 
implies that no regressor variables influence the response variable (𝐻0: 𝛽0 = 𝛽1 =
⋯ = 𝛽𝑘 = 0), and the alternative hypothesis that implies that at least one regressor 
variable affects significantly the response variable (𝐻1: 𝛽𝑘 ≠ 0 for at least one k-
variable). The rejection of the null hypothesis can be checked by looking at F-
statistics or the P-value. Once having created a multiple regression model in Matlab 
through the fitlm function, all these parameters of interest may be accessed through 
the anova function [16], see Appendix A. 
 
After having verified that the response variable is significantly influenced by at least 
one regressor variable, it is worth figuring out which multiple regression model best 
fits the observed data. This cannot be achieved by looking at the R-squared value 
because its value cannot decrease by adding regressor variables to the model [17]. 
Instead, this may be achieved by looking at the adjusted R-squared that is defined as: 
 

𝑅𝐴𝑑𝑗
2 = 1 − [

𝑆𝑆𝑅

𝑛−𝑝−1
 
𝑛−1

𝑆𝑆𝑇
]                                               (3.12) 

 
where n accounts for the number of observed data and p is the number of regressor 
variables used in the regression model. Since 𝑆𝑆𝑇 (𝑛 − 1)⁄  is constant regardless of 
how many variables have been introduced in the model and 𝑆𝑆𝑅 (𝑛 − 𝑝 − 1⁄ ) is the 
residual mean square, 𝑅𝐴𝑑𝑗

2  will only increase if the addition of the regressor variable 
reduces the residual mean square [18]. This statistical tool allows therefore to evaluate 
and compare regression models. 
 
Another useful statistical tool in comparing regression models is the PRESS statistics. 
Reference [15] defines the predicted residual sum of squares (PRESS) as the 
difference between the ith observed value and the predicted value of the ith observed 
response by fitting a model that excludes the ith observation. This definition of the 
PRESS residual or predicted error is outlined by Eq. (3.13) 
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𝑒(𝑖) = 𝑦𝑖 − 𝑦(𝑖)̂                                                      (3.13) 

 
According to the definition given above, it would seem that to calculate all PRESS 
residuals requires to fit n regression models. However, it is possible to deduce the 
PRESS residuals from the results of the least squares fit. As a matter of fact, the ith 
PRESS residual may be calculated according to Eq. (3.14):  
 

𝑒(𝑖) =
𝑒𝑖

1−ℎ𝑖𝑖
                                                            (3.14) 

 
Eq. (3.13) defines the PRESS residual as the ordinary residual, weighted according to 
the diagonal elements of the hat matrix ℎ𝑖𝑖. Consequently, from the definition of the 
PRESS residual it is possible to define the predicted error sum of squares, commonly 
known as PRESS statistics, that is defined according to Eq. (3.15): 
 

𝑃𝑅𝐸𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦(𝑖)̂)2  𝑛
𝑖=1 = ∑ [

𝑒𝑖

1−ℎ𝑖𝑖
]

2
𝑛
𝑖=1                           (3.15) 

 
Both the adjusted R-squared and PRESS statistics approaches suggest the model that 
best fits the data. Generally, the PRESS statistics tend to recommend smaller models 
than the adjusted R-squared. However, the regression model that does not exhibit 
large gaps in the PRESS statistics and the adjusted R-squared values with respect to 
higher order polynomials is commonly the one that is chosen. 
 
3.2.3.3 Model adequacy checking  
As mentioned in the previous sections, the regression models and the significance 
tests are based on some assumptions. In fact, it has been assumed that the error term 𝑒 
has constant variance and is uncorrelated. Additionally, the hypothesis testing 
procedure requires an additional assumption, namely that the errors are normally 
distributed. All these assumptions must be checked before the fitted model can be 
applied. The detection of any violations of these assumptions, along with the detection 
of any model inadequacy, is generally carried out through the study of residual plots. 
These plots usually involve scaled residuals. 
 
The first category refers to standardized residuals that use the approximate average 
variance of residuals, that in turns is represented by the mean sum of squares (𝑀𝑆𝑟𝑒𝑠), 
as scaling factors. The definition of a standardized residual is herein reported as 
 

𝑑𝑖 =
𝑒𝑖

√𝑀𝑆𝑟𝑒𝑠
                                                            (3.16) 

 
However, using 𝑀𝑆𝑟𝑒𝑠 as the variance of the ith residual is just an approximation. 
This approximation may be improved by using as scaling factor the exact standard 
deviation of the ith residual. This is considered in the definition of studentized 
residuals, whose expression is proposed by Eq. (3.14): 
 

𝑟𝑖 =
𝑒𝑖

√𝑀𝑆𝑟𝑒𝑠(1−ℎ𝑖𝑖)
,    𝑖 = 1,2, … , 𝑛                                    (3.17) 
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Studentized residuals are usually preferred in the graphical analysis [15]. The 
graphical analysis involves the study of different residual plots. The first one is the 
plot of residuals versus the corresponding fitted values. This plot allows to detect 
model inadequacies and, for the sake of clarity, a typical one is proposed in Figure 
3.3. 
 
If the residuals can be contained within two horizontal bands, the model has no 
obvious deficiencies. Patterns that deviate from this one might instead indicate a non-
constant variance or nonlinearity and therefore the models should be corrected by 
other statistical procedures [15]. 
 
Especially if the hypothesis testing that is based on the normal distribution assumption 
of residuals has been carried out, the normality must be checked. This property is 
usually checked through a normal probability plot of residuals. This graph is 
constructed in such a way that the cumulative of the normal distribution will appear as 
a straight line. Consequently, if the residuals, commonly the studentized residuals, are 
plotted against the cumulative probability on the normal probability plot, they should 
lie approximatively on the straight line as shown in Figure 3.4 for the case in which 
the normal distribution assumption holds. Any eventual strong deviation from the 
straight line will therefore indicate that the distribution is not normal and 
consequently the hypothesis testing procedure cannot be considered as reliable. 
 

 
Figure 3.3: Typical plot of residuals versus corresponding fitted values. 
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Figure 3.4: Typical normal probability plot of studentized residuals. 

 

3.3 Influence of train speed on mean wheel load 
In the following section, the influence of train speed on the mean wheel load has been 
investigated for several detector stations. The mean wheel loads measured by the 
WILDs should correspond to the static wheel loads that are merely depending on the 
weight of the vehicle and any possible external static load acting on it (for example 
snow and ice). Hence, the registered mean loads are expected to be independent of 
train speed. Further, for a given wheel on a given vehicle, it is expected that the 
different detectors should measure the same mean load. 
 
Nonetheless, the mean loads on the left and right wheels become quasistatic and 
slightly dependent on the train speed during curving because of several factors, such 
as curve radius and cant deficiency. This may lead to a re-distribution of wheel loads 
between the left and right rails [10]. 
 
However, because of lack of information regarding the exact track geometry at the 
WILDs, it has not been possible to consider this relevant aspect in the statistical 
analysis. 
 
Simple linear regression models, described by Eq. (3.2), involving data registered by 
each detector station have been determined to investigate the dependence of the train 
speed (regressor variable) on the mean wheel load (response variable). The analysis 
has been carried out for loads measured on both wheels of the first axle of three 
different freight locomotives, each of them identified by a vehicle number. These 
vehicle numbers are 917400014341, 917400014234 and 917400014325. The analysis 
involved data collected between March 18th 2018 and January 29th 2019 during which 
maintenance interventions took place. The same analysis was carried out also by 
considering restricted time intervals in order to reduce the amount of scattered data. 
First the period from May 1st to October 18th was considered, and secondly October 
18th to December 18th. For these cases, similar results were achieved that led to the 
same conclusions.  
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Detector stations at which less than thirty passages were registered during this time 
interval were excluded from the analysis. 
 
An example of results arising from this analysis is reported in Figure 3.5. The fitted 
linear model suggests that the mean loads do not depend on train speed (because the 
slope of the regression line given by the regression coefficient 𝛽1 is close to zero). 
Along with the linear model, the plot of residuals against fitted values must be 
analysed to prove that the model does not suffer any significant deficiency, see Figure 
3.6.  
 

 
Figure 3.5: Simple linear regression model between train speed and mean wheel loads detected for the 
left wheel of the first axle of locomotive 917400014325 between March 18th 2018 and January 29th 
2019 at Skorped detector station. Red dashed lines account for the confidence bounds.  

 

 
Figure 3.6: Plot of studentized residuals versus fitted values derived from the simple linear regression 
model between train speed and mean wheel loads detected for the left wheel of the first axle of 
locomotive 917400014325 between March 18th 2018 and January 29th 2019 at Skorped detector 
station. 
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Since Figure 3.6 shows that the studentized residuals are randomly distributed around 
zero, it is possible to state that the adopted linear regression model has no obvious 
deficiency. Graphs showing linear regression models for other detector stations and 
for all the considered locomotives are reported in Appendix B. However, for some 
models the plot of the studentized residuals against the fitted values shows a double-
row pattern indicating a non-constant variance. In those cases, reference [15] suggests 
to perform a transformation to either the response variable or regression variable in 
order to stabilize the variance. 
 
However, in order to prove that the mean loads may be considered as independent of 
train speed at a given confidence level, hypothesis testing has been performed 
according to the procedure described in Section 3.2.3.1. In such a case, the null 
hypothesis states that no linear relationship exists between the regressor and the 
response variable (𝐻0: 𝛽1 = 0 ). Failing to reject the null hypothesis by the P-value 
approach will therefore imply that there is no linear relationship between train speed 
and mean loads. 
 
The results arising from the hypothesis testing with a 95 % confidence interval care 
listed in the following tables. Each table provides information regarding the estimate 
of the regression coefficients, the number of observed data n, the P-value and the 
coefficient of determination. Furthermore, the statement concerning whether the null 
hypothesis is rejected or not is included in the rightmost cell of the table. 
 
By looking at the results listed in the tables, it is observed that the null hypothesis 
stating no linear relationship exists between mean loads and train speed has not been 
rejected for all models. Therefore, based on the data measured by the detectors, the 
results do not completely rule out that the mean wheel loads may be seen as 
independent of the train speed. On the other hand, a further insight helping in stating 
that the mean loads do not depend on the train speed may be obtained by looking at 
the R-squared values. Due to their low values in all models, it is possible to confirm 
that the used linear regression model does not indicate that the variance in the 
response variable is expressed to a large extent by the regressor variable. Therefore, 
the train speed does not exhibit a high influence on the mean loads.  
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Table 3.1: Results arising from the hypothesis testing for each detector station. Regression analysis 
involved mean loads registered by WILDs for the left wheel of the first axle of locomotive 
917400014314 between March 18th 2018 and January 29th 2019. 

Locomotive 1 
RFID: 917400014341 

Detector 
Station 

Estimate n 
 

P-value 
 

R2 Rejected 
Null 

hypothesis 𝛽0 𝛽1 𝛽1 
Bodsjön 90.47 0.040 118 0.070 0.028 No 
Degerbäcken 92.03 -0.057 94 0.018 0.059 Yes 
Jörn 97.88 -0.089 120 0.001 0.089 Yes 
Koler 104.17 -0.136 96 0.000 0.192 Yes 
Skorped 94.78 0.022 107 0.338 0.008 No 
Sunderbyns 
Sjukhus 

95.75 -0.019 121 0.465 0.004 No 

 
 
Table 3.2: Results arising from the hypothesis testing for each detector station. Regression analysis 
involved mean loads registered by WILDs for the right wheel of the first axle of locomotive 
917400014314 between March 18th 2018 and January 29th 2019. 

Locomotive 1 
RFID: 917400014341 

Detector 
Station 

Estimate n 
 

P-value 
 

R2 Rejected 
Null 

hypothesis 𝛽0 𝛽1 𝛽1 
Bodsjön 91.56 0.100 118 0.000 0.111 Yes 
Degerbäcken 93.45 0.012 94 0.637 0.002 No 
Jörn 105.35 -0.132 120 0.000 0.126 Yes 
Koler 94.247 0.051 96 0.039 0.044 Yes 
Skorped 98.676 0.001 107 0.780 0.000 No 
Sunderbyns 
Sjukhus 

94.39 0.040 121 0.077 0.026 No 
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Table 3.3: Results arising from the hypothesis testing for each detector station. Regression analysis 
involved mean loads registered by WILDs for the left wheel of the first axle of locomotive 
917400014234 between March 18th 2018 and January 29th 2019. 

Locomotive 2 
RFID: 917400014234 

Detector 
Station 

Estimate n 
 

P-value 
 

R2 Rejected 
Null 

hypothesis 𝛽0 𝛽1 𝛽1 
Bodsjön 90.07 0.070 176 0.000 0.079 Yes 
Degerbäcken 90.17 -0.004 90 0.806 0.001 No 
Jörn 93.69 -0.010 184 0.655 0.001 No 
Koler 93.19 0.002 158 0.884 0.000 No 
Skorped 90.04 0.082 170 0.000 0.078 Yes 
Sunderbyns 
Sjukhus 

97.21 -0.001 179 0.877 0.001 No 

 
 
Table 3.4: Results arising from the hypothesis testing for each detector station. Regression analysis 
involved mean loads registered by WILDs for the right wheel of the first axle of locomotive 
917400014234 between March 18th 2018 and January 29th 2019. 

Locomotive 2 
RFID: 917400014234 

Detector 
Station 

Estimate n 
 

P-value 
 

R2 Rejected 
Null 

hypothesis 𝛽0 𝛽1 𝛽1 
Bodsjön 86.92 0.095 176 0.000 0.094 Yes 
Degerbäcken 92.88 -0.009 90 0.726 0.001 No 
Jörn 93.67 -0.039 184 0.124 0.013 No 
Koler 99.66 -0.058 158 0.016 0.036 Yes 
Skorped 97.27 -0.024 170 0.172 0.011 No 
Sunderbyns 
Sjukhus 

94.03 0.008 179 0.829 0.001 No 
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Table 3.5: Results arising from the hypothesis testing for each detector station. Regression analysis 
involved mean loads registered by WILDs for the left wheel of the first axle of locomotive 
917400014325 between March 18th 2018 and January 29th 2019. 

Locomotive 3 
RFID: 917400014325 

Detector 
Station 

Estimate n 
 

P-value 
 

R2 Rejected 
Null 

hypothesis 𝛽0 𝛽1 𝛽1 
Bodsjön 90.40 0.061 175 0.001 0.061 Yes 
Degerbäcken 87.73 0.005 59 0.847 0.001 No 
Hållsta 100.13 -0.040 39 0.123 0.063 No 
Jörn 95.06 -0.034 174 0.163 0.011 No 
Koler 88.20 0.048 157 0.023 0.033 Yes 
Skorped 96.24 0.010 164 0.643 0.001 No 
Sunderbyns 
Sjukhus 

101.22 -0.055 166 0.055 0.022 No 

 
 
Table 3.6: Results arising from the hypothesis testing for each detector station. Regression analysis 
involved mean impact loads registered by WILDs for the right wheel of the first axle of locomotive 
917400014325 between March 18th 2018 and January 29th 2019. 

Locomotive 3 
RFID: 917400014325 

Detector 
Station 

Estimate n 
 

P-value 
 

R2 Rejected 
Null 

hypothesis 𝛽0 𝛽1 𝛽1 
Bodsjön 91.91 0.053 175 0.007 0.041 Yes 
Degerbäcken 94.53 -0.028 59 0.470 0.009 No 
Hållsta 82.33 0.217 39 0.000 0.452 Yes 
Jörn 96.02 -0.061 174 0.006 0.042 Yes 
Koler 95.54 -0.009 157 0.614 0.002 No 
Skorped 94.55 0.012 164 0.527 0.002 No 
Sunderbyns 
Sjukhus 

91.71 0.038 166 0.224 0.009 No 

 
 
For those models where the null hypothesis was rejected, the normal distribution 
assumption has been checked via a graphical approach and reported in Appendix B, 
see Section B1. According to the graphs, the normal distribution assumption is 
conserved for all models. As a matter of fact, the graphs do not show substantial 
deviations from the straight line. Nonetheless, some of them show a typical defect, 
that is the occurrence of a few residuals exhibiting low offset from the straight line. 
This phenomenon is usually an indication that the corresponding observations are 
outliers [15]. 
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Lastly, a brief comparison between the detectors is proposed in terms of the average 
value of the mean loads registered over time. The comparison was made by taking 
into account data registered during the summer time to exclude any influence of snow 
and ice packed in the bogies. 
 
In addition, because of limited amount of data registered during this time period for 
the locomotive identified by vehicle number 917400014341, the analysis focused on 
data measured for the first axle of the locomotive identified by vehicle number 
917400014234. The average values of the mean loads measured for both wheels at 
each detector station in the period of time May 1st to November 1st 2018 is shown in 
Figure 3.7 and Figure 3.8. 
 

 
Figure 3.7: 2D-Bar plot showing the average value of mean loads registered for the left wheel of the 
first axle of locomotive 917400014234 at each detector station in the period of time May 1st 2018 to 
November 1st 2019 . The vertical axis shows the average of the mean load. The thin vertical line for 
each bar allows to identify the upper and lower bounds for the sample data standard deviation. 

 
 

 
Figure 3.8: 2D-Bar plot showing the average value of mean loads registered for the right wheel of the 
first axle of locomotive 917400014234 at each detector station in the period of time May 1st 2018 to 
November 1st 2019 . The vertical axis shows the average of the mean load. The thin vertical line for 
each bar allows to identify the upper and lower bounds for the sample data standard deviation. 
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By looking at the Figure 3.7 and Figure 3.8, it is observed that not all the wheel 
impact load detectors exhibit the same performance in registering the mean loads. 
This aspect may be evidenced by looking at the average values of the mean loads 
registered at each detector station. The average value (estimated around 97 kN) of 
mean loads registered for the left wheel is rather similar at the Bodsjön, Skorped and 
Sunderbyns Sjukhus detector stations, but evident differences from these values can 
be observed at the Degerbäcken, Jörn and Koler detector stations. The same 
differences, but slightly lower, may be observed for the loads registered for the right 
wheel.  
 
As far as the standard deviation is concerned, it generally ranges between 2.5 kN and 
3.5 kN. However, a larger value is derived for data registered at the Sunderbyns 
Sjukhus detectors station which is estimated 7.7 kN. Since the standard deviation 
accounts for the variability in the measured data, it is possible to state that there are 
some other hidden factors related to the registered mean load that make the statistical 
results not completely reliable. 
 

3.4 Investigation on dynamic load 
The dynamic loads due to wheel-rail impact caused by severe wheel tread damage are 
of major interest because they are responsible for wheelset and track damage 
occurrence and growth. Their values in turn depend on the extent of the damage on 
the wheel tread; larger defects on the wheel tread are responsible for the occurrence of 
higher dynamic loads [11]. In addition, for a specific type of damage on the wheel 
tread, a linear increase in dynamic load with increasing speed was shown in [13]. 
Based on these expectations, the analysis proposed in this section aims at finding any 
possible correlation between dynamic load, train speed and the time since initiation of 
the wheel tread defect in order to increase the confidence in WILDs detection ability. 
 
Among the three locomotives considered in the analysis proposed in the previous 
section, Lars Fehrlund also provided additional information regarding the 
maintenance of one of the locomotives, the one identified by the vehicle number 
917400014341. According to this information, the wheelset corresponding to the first 
axle has undergone maintenance more than once during the time period in which data 
have been measured. More specifically, on April 9th and May 23rd both wheels were 
replaced, whereas on October 18th 2018 the wheels were reprofiled. The match of this 
information may be found by looking at the variation in dynamic loads over time for 
the right wheel that is shown in Figure 3.9. The corresponding impact load 
distribution for the left wheel may be found in Appendix B, see Figure B1.45. 
 
As is possible to notice from Figure 3.9, the dynamic loads show increasing trends 
corresponding to a deteriorating state of the wheel tread. Moreover, the sudden 
reduction in 𝐹𝑑𝑦𝑛 values occurs at specific time instants which perfectly match the 
dates provided by Lars Fehrlund at which the wheelset was maintained. Another 
decrease in 𝐹𝑑𝑦𝑛 occurs in the middle of February. Another maintenance action may 
be expected to have taken place in this period, but no information about this has been 
received. Thus, having confirmed that the registered dynamic impact loads depend on 
the time since the initiation of the wheel damage, the analysis was focused on 
restricted time intervals.  
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More specifically, the influence of the train speed on the dynamic impact loads over a 
time period with low wheel tread damage has been investigated first. Secondly, the 
same investigation has been repeated during a time interval where the damage on the 
wheel tread is more significant. 
 

 
Figure 3.9: Scattered data of dynamic impact loads generated by the right wheel of the first axle of 
locomotive 917400014341 and registered by all WILDs over one year period. The data have been 
plotted for three different train speed ranges. 

 

3.4.1 Influence of train speed on dynamic load: low wheel tread 
damage 

In this section, the influence of train speed on the dynamic impact loads measured 
shortly after the wheelset was maintained on October 18th is investigated. More 
specifically, the time period between October 18th and December 18th has been 
considered. 
 
To this aim, an insight helping for the understanding of what can be expected from the 
influence of train speed on dynamic loads is provided by a 3D-bar plot illustrating the 
mean (average value) of the dynamic loads registered during different time intervals 
and for different speed ranges. A typical trend can be seen in Figure 3.10. 
 
By looking at the trends shown in Figure 3.10, it is possible to notice that the dynamic 
impact loads tend to increase with increasing train speed. As expected, the trend 
shows also an increase of the dynamic impact loads over time. This is an expected 
result because of continuous growth of the RCF damage. Hence, not only the time 
instants at which data were registered but also the train speed influence somehow the 
dynamic loads.  
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Figure 3.10: 3D-Bar plot showing the mean of dynamic loads registered for the right wheel of the first 
axle of locomotive 917400014341 at the Sunderbyns Sjukhus detector station during specific time 
intervals and for specific train speed ranges. The vertical axis shows the dynamic load values. The Y-
axis shows the time intervals at which data have been registered, while the X-axis shows the considered 
speed ranges.  

 
3.4.1.1 Results from a multiple regression analysis 
The next step has been to determine the polynomial that best fits the measured data. 
To this aim, multiple linear regression models described by Eq. (3.8) have been 
generated.  
 
Data subject of the following statistical analysis refer to dynamic impact loads on 
both wheels of the first axle of the locomotives identified respectively by vehicle 
numbers 917400014341and 917400014234 and registered between October 18th and 
December 18th 2018 by the detector stations located at Sunderbyns Sjukhus and 
Bodsjön. Similar results were achieved for all the other detectors. However for the 
sake of brevity, only results related to data detected at Sunderbyns Sjukhus detector 
station are presented here. Results regarding the data measured at the Bodsjön 
detector station are presented in Appendix B, see Section B2. 
 
Several regression models have been generated. First, only one regressor variable was 
included, either time or train speed. Then models including a combination of both 
variables and including higher power exponents have been generated. Then, the 
models have been compared by looking at PRESS statistics, adjusted R-squared and 
𝑀𝑆𝑟𝑒𝑠, whose details are given in Section 3.2.3.2. Lastly, the model characterized by 
the best results in terms of PRESS statistics and 𝑅𝐴𝑑𝑗

2  has been chosen as the one that 
best fits the measured dynamic impact loads. 
 
The results are listed in the following tables. Each table provides information 
regarding the number and type of regressor variables used in the fitted model. 
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Table 3.7: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 
regression models involving the regressor variables indicated in the rightmost cells of the table. The 
analysis involved dynamic impact loads measured for the right wheel of the first axle of locomotive 
917400014341 at Sunderbyns Sjukhus detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014341 
Sunderbyns Sjukhus 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 54.52 -0.007 26.99 x     
1 54.97 0.601 10.69  x    
2 57.38 0.608 10.50 x x    
2 54.97 0.601 10.69  x x   
2 54.00 0.622 10.13  x  x  
3 57.31 0.623 10.11 x x  x  
4 61.11 0.614 10.33 x x  x x 
 
 
Table 3.8: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 
regression models involving the regressor variables indicated in the rightmost cells of the table. The 
analysis involved dynamic impact loads measured for the left wheel of the first axle of locomotive 
917400014341 at Sunderbyns Sjukhus detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014341 
Sunderbyns Sjukhus 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 56.65 0.057 25.62 x     
1 57.22 0.593 11.05  x    
2 62.27 0.666 9.07 x x    
2 57.22 0.593 11.05  x x   
2 60.96 0.637 9.84  x  x  
3 70.31 0.694 8.31 x x  x  
4 82.81 0.690 8.41 x x  x x 
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Table 3.9: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗
2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 

regression models involving the regressor variables indicated in the rightmost cells of the table. The 
analysis involved dynamic impact loads measured for the left wheel of the first axle of locomotive 
917400014234 at Sunderbyns Sjukhus detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014234 
Sunderbyns Sjukhus 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 41.75 0.175 42.35 x     
1 44.14 0.599 20.58  x    
2 51.82 0.737 13.52 x x    
2 44.14 0.599 20.58  x x   
2 55.17 0.612 19.92  x  x  
3 68.99 0.766 11.99 x x  x  
4 83.45 0.775 11.55 x x  x x 
 
 
Table 3.10: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 
regression models involving the regressor variables indicated in the rightmost cells of the table. The 
analysis involved dynamic impact loads measured for the right wheel of the first axle of locomotive 
917400014234 at Sunderbyns Sjukhus detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014234 
Sunderbyns Sjukhus 

Number of 
regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 45.98 0.089 52.90 x     
1 47.74 0.514 28.24  x    
2 45.78 0.579 24.44 x x    
2 47.73 0.514 28.24  x x   
2 44.91 0.585 24.09  x  x  
3 55.3 0.67 19.11 x x  x  
4 252.72 0.661 19.66 x x  x x 
 
By comparing the results reported in the tables above, it is possible to notice that time 
is not the most relevant regressor variable in the regression model. This can be seen 
by looking at the adjusted R-squared and the mean of the sum of residual squares 
values. As a matter of fact, the adjusted R-squared for the regression model involving 
merely the time as regressor variable turns out to have a very low value. This means 
that the variability in the dynamic loads expressed by the time variable accounts for a 
small fraction. In reality this indicates that over a two-month period, namely between 
October 18th and December 18th 2018, the damage on the wheel treads did not grow 
enough to lead to a drastic increase in the dynamic load values. The opposite 
conclusion may be derived for the train speed. In fact, due to the large adjusted R-
squared values, the train speed is confirmed to have a high influence on the dynamic 
impact loads.  
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Additionally, the regression model that best fits the measured data turns out to be the 
one expressing the dynamic impact load values as a linear function of time and 
including both linear and quadratic terms of train speed. This can be deduced because 
the regression model leads to a slight improvement in the R-squared value with 
respect to the ones derived for lower-order polynomials and at the same time it does 
not show huge differences in the PRESS-statistics value. The outcome slightly 
contradicts the experimental results demonstrated in [13], where the dynamic loads 
exhibited an linear increase with the train speed for the same wheel tread damage.  
 
The surface fitting of the observed data by using a multiple regression model 
expressing the dynamic impact loads as a linear function of time and both linear and 
quadratic terms of the train speed is presented in Figure 3.11 and Figure 3.12. 
According to these figures, it is observed that the dynamic impact loads show an 
increase with train speed and also a slight increase over time. 
 

 
Figure 3.11: Surface fitting of dynamic impact loads expressed as a linear function of time and 
including both linear and quadratic terms of the train speed. Data have been registered by the 
Sunderbyns Sjukhus detector station and referring to dynamic impact loads measured for the right 
wheel of the first axle of locomotive 917400014341 between October 18th and December 18th 2018.  
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Figure 3.12: Complementary view to Figure 3.11. 

 
3.4.1.2 Low wheel tread damage: comparison between wheel impact load 

detectors 
In the previous section, it was shown that the dynamic loads registered when the 
wheel tread damage is not severe depend mainly on the train speed. The next step was 
to use simple linear regression models involving merely the train speed as regressor 
variable in order to make some comparisons on the data registered by each wheel 
impact load detector. 
 
Figure 3.13 illustrates observed data and corresponding fitted linear regression models 
for each detector station over the period October 18th to December 18th. 
Complementary information to Figure 3.13 are presented in Table 3.11. The table 
highlights the values of the slope corresponding to each regression model reported in 
Figure 3.13. 
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Figure 3.13: Simple linear regression models between train speed and dynamic loads detected for the 
right wheel of the first axle of locomotive 917400014341 between October 18th 2018 and December 
18th for each detector station. 
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Table 3.11: Regression coefficient (𝛽1) values corresponding to the regression models reported in 
Figure 3.13 

Detector station Regression coefficient 𝜷𝟏 
Bodsjön  0.494 
Degerbäcken  0.353 
Jörn 0.137 
Koler 0.361 
Skorped -0.011 
Sunderbyns Sjukhus 0.255 

 
By looking at Figure 3.13 it is possible to notice that the linear models derived based 
on data registered at Bodsjön, Degerbäcken, Koler and Sunderbyns Sjukhus detector 
stations show a sharp increase in the dynamic loads with increasing train speed. A less 
steep trend arises from data registered at the Jörn HJ detector station. The slope of the 
fitted models varies between the detectors. However, for the detectors at 
Degerbäcken, Koler and Sunderbyns Sjukhus, the slope (𝛽1) is rather similar and in 
the order of 0.3 kN/(km/h). 
 
On the contrary, the fitted linear model derived for data collected at the Skorped 
detector station does not exhibit an increase in dynamic loads with increasing speed. 
This is also confirmed by the acceptance of the null hypothesis stating that no linear 
relationship exists between regressor and response variable. A reason for this might 
be the lack of data measured at higher train speeds which have a high influence in the 
results for all the other detectors. It could also indicate that the vehicle dynamics at 
Skorped is different compared to at the other detectors (leading to a different rolling 
band that may not interact with the position of the tread damage) or that the 
performance of this detector needs to be calibrated. 
 
Figure 3.13 also illustrates a significant scatter in the data measured for similar train 
speeds. In particular, this is evident for the Degerbäcken detector station. Based on 
this observation, the accuracy of each detector in measured dynamic loads in a 
restricted train speed range is reported in Figure 3.14. 
 
Figure 3.14 shows dynamic loads registered over a two-month period and 
corresponding to a measured train speed ranging between 95 km/h and 105 km/h. 
Despite the restricted train speed range, the dynamic loads turn out to be still very 
scattered. This implies that despite a period of time with low wheel tread damage was 
considered, a small growth of the damage still occurred. Therefore, based on this 
consideration, the time interval was reduced even further. Figure 3.15 illustrates the 
updated information by considering only the dynamic loads measured between 
October 18th and October 30th and for train speeds ranging between 95 km/h and 105 
km/h. Results derived from other time intervals and a more restricted train speed 
range may be found in the Appendix B, Figure B1.46 and Figure B1.47. 
 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2019:34  31 
 

 
Figure 3.14: Target diagrams involving dynamic impact loads registered at each detector station and 
referring to the right wheel of the first axle of the locomotive identified by the vehicle number 
917400014341. Data were measured between October 18th and December 18th 2018 and correspond to 
measured train speed ranging between 95 km/h and 105 km/h. The green dashed line indicates the 
mean value of the dynamic loads. The blue solid lines represent an accuracy of 5%, the red solid lines 
an accuracy of 10% whereas the black solid lines an accuracy of 20% computed with respect to the 
mean value. 
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Figure 3.15: Target diagrams involving dynamic impact loads registered at each detector station and 
referring to the right wheel of the first axle of the locomotive identified by the vehicle number 
917400014341. Data were measured between October 18th and October 30th 2018 and correspond to a 
measured train speed ranging between 95 km/h and 105 km/h. The green dashed line indicates the 
mean value of dynamic loads. The blue solid lines represent an accuracy of 5%, the red solid lines an 
accuracy of 10% whereas the black solid lines an accuracy of 20% computed with respect to the mean 
value. 

By analyzing the information in Figure 3.15, Figure B1.46 and Figure B1.47 the 
following conclusions can be drawn. 
 
Data registered at Dergebäcken detector station are very scattered, which may indicate 
that this station has a poor accuracy and needs to be calibrated. A further assessment 
of the performance of this detector station is recommended.  
 
All the other detectors exhibit a better performance in measuring data because the 
dynamic loads magnitudes measured for the same wheel over a short period of time 
and for a limited train speed range are close to each other. The accuracy of each 
detector may be estimated around 20%. However, an accuracy of 20% does not match 
the one prescribed by the authorities which is 5%. It is clear that the poor accuracy 
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can partly be explained by the fact that the data have been measured on different 
occasions and at slightly different speeds. 
 
Therefore, it is not possible to assess the exact accuracy of each detectors because of 
the lack of data registered in a very short time interval (implying that the wheel tread 
damage would be constant) and for the exact same train speed. Further, since the RCF 
damage has a local appearance on the wheel tread, it is not possible to exclude the 
possibility that the damage is only partly, or perhaps not at all, interacting with the 
rolling band when the damaged wheel is passing a given detector. 
 

3.4.2 Influence of train speed on dynamic loads: severe wheel tread 
damage 

Contrary to the analysis proposed in the previous section, the following analysis 
focuses on a time interval where the damage on the wheel tread is more significant 
leading to higher dynamic loads. Such a time interval may be deduced from the 
variation in dynamic loads over time, as the one proposed in Figure 3.9. As a matter 
of fact, a sharp increase in the dynamic impact load values over time marks the 
presence and evolution of severe RCF damage on the wheel treads.  
 
The same type of analysis as in the previous section has been repeated for the 
different time interval. The analysis whose results are presented below is based on 
data collected by the detector stations at Sunderbyns Sjukhus and Bodsjön and 
referring to both wheels of the first axle of the locomotive identified by vehicle 
number 917400014341.  
Particularly, dynamic impact loads registered from January 14th to February 14th 2018 
have been considered because of their abnormal trend shown in Figure 3.9 and Figure 
B1.45, available in Appendix B. As it has been proposed in the previous section, an 
insight helping for the understanding of the expected trends may be obtained by 
looking at Figure 3.16. According to the figure, the dynamic loads exhibit a sharp 
increase over time.  
 
 

 
Figure 3.16: 3D-Bar plot showing the mean of dynamic loads registered for the right wheel of the first 
axle of locomotive 917400014341 at the Sunderbyns Sjukhus detector station during specific time 
intervals and for specific train speed ranges. The vertical axis shows the dynamic load values. The Y-
axis shows the time intervals at which data have been registered, while the X-axis shows the considered 
speed ranges. 
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Table 3.12: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 
regression models involving the regressor variables indicated in the rightmost cells of the table. 
Analysis involved dynamic impact loads measured for the left wheel of the first axle of locomotive 
917400014341 at Sunderbyns Sjukhus detector station between January 14th and February 14th. 

LOCOMOTIVE 917400014341 
Sunderbyns Sjukhus 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 27.41 0.637 45.92 x     
1 29.44 -0.025 129.56  x    
2 35.07 0.762 30.02 x x    
2 29.44 -0.025 129.56  x x   
2 45.40 0.008 125.34  x  x  
3 56.83 0.796 25.65 x x  x  
4 150.87 0.795 25.89 x x  x x 
 
 
Table 3.13: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 
regression models involving the regressor variables indicated in the rightmost cells of the table. 
Analysis involved dynamic impact loads measured for the right wheel of the first axle of locomotive 
917400014341 at Sunderbyns Sjukhus detector station between January 14th and February 14th. 

LOCOMOTIVE 917400014341 
Sunderbyns Sjukhus 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 32.46 0.781 44.17 x     
1 28.34 -0.051 212.32  x    
2 40.28 0.849 30.50 x x    
2 28.34 -0.051 212.32  x x   
2 40.84 -0.092 220.51  x  x  
3 47.48 0.842 31.90 x x  x  
4 93.73 0.835 33.28 x x  x x 
 
  



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2019:34  35 
 

Table 3.14: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗
2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 

regression models involving the regressor variables indicated in the rightmost cells of the table. 
Analysis involved dynamic impact loads measured for the left wheel of the first axle of locomotive 
917400014341 at Bodsjön detector station between January 14th and February 14th. 

LOCOMOTIVE 917400014341 
Bodsjön 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 29.45 0.695 42.25 x     
1 32.65 -0.046 144.87  x    
2 34.19 0.683 43.89 x x    
2 32.65 -0.046 144.87  x x   
2 37.13 -0.103 152.79  x  x  
3 36.13 0.684 43.73 x x  x  
4 41.28 0.681 44.13 x x  x x 
 
 
Table 3.15: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 derived by the adoption of different 
regression models involving the regressor variables indicated in the rightmost cells of the table. 
Analysis involved dynamic impact loads measured for the right wheel of the first axle of locomotive 
917400014341 at Bodsjön detector station between January 14th and February 14th. 

LOCOMOTIVE 917400014341 
Bodsjön 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 80.21 0.468 856.58 x     
1 61.87 0.074 1491.3  x    
2 143.74 0.689 501.71 x x    
2 61.87 0.074 1491.3  x x   
2 67.43 0.028 1564.7  x  x  
3 163.97 0.676 521.34 x x  x  
4 176.81 0.696 488.97 x x  x x 
 
By looking at the results listed in the tables above, it is possible to notice that the train 
speed is no longer the most influencing regressor variable. This is evidenced by the 
results arising from the adoption of multiple linear regression models involving 
merely the train speed as variable. Instead, the regression models involving the 
presence of time as a regressor variable provides a better fit to the observed data.  
 
A typical surface fitting arising from the adoption of a multiple linear regression 
model involving both train speed and time as regressor variables is shown in Figure 
3.17. As it is possible to notice from Figure 3.17, in this time interval the dynamic 
loads exhibit a (in relation to the time dependence) low increase with train speed but 
instead a sharp increase over time. 
 
These results might be related to a fast wheel tread damage growth over time. This 
implies that the contribution to the increase in the dynamic loads registered by the 
detector stations due to the fast deterioration of the wheel tread is much more 
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significant than the increase induced by higher train speeds. This conjecture will 
therefore result in regression models that suffer the train speed dependence. Further, it 
is even more difficult to compare the performance of the different detectors since the 
measured dynamic loads are not stable over time. 
 

 
Figure 3.17: Surface fitting of dynamic impact loads expressed as a linear function of time and train 
speed. Data have been registered at the Sunderbyns Sjukhus detector station and referring to dynamic 
impact loads detected for the right wheel of the first axle of locomotive 917400014341 between 
January 14th and February 14th 2018. 

 

3.4.3 Concluding comments 
In conclusion, from the results achieved in Chapter 3 the following key points may be 
highlighted: 
 

• The mean loads registered by the WILDs cannot be considered as completely 
independent of train speed. The linear simple regression model between mean 
load and train speed does not allow to properly correlate these two variables. 

• The dynamic loads registered by WILDs exhibit an increase with increasing 
train speed and over time. 

• For low wheel tread damage, the measured dynamic loads depend mainly on 
the train speed. This confirms the results presented in [13], where a linear 
increase in the dynamic loads with increasing train speed for the same wheel 
tread damage (rolling contact fatigue) was shown. 

• For severe wheel tread damage, the progressive growth over time of the wheel 
tread damage leads to an increase in the loads acting on the wheels that is 
much more significant than the increase induced by higher train speed.  
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• For both above-mentioned cases, the multiple linear regression model between 
dynamic load, train speed and time instants at which data were measured 
provides a good fit to the registered data. 

• It is not possible to firmly assess the accuracy of the wheel impact load 
detectors because of the lack of data registered in a very short time and for the 
same train speed. However, indications for necessary calibration of a wheel 
impact load detector may be given by comparing data registered by each 
device for a given wheel in a very short time period and for a restricted range 
of train speeds. 
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4 Parameterized finite element model 
4.1 Implementation phase 
The second part of the present thesis project aimed at generating a parameterized 
three-dimensional wheelset model that will be used for further analyses in the EU 
project In2Track2. 
 
For this purpose, Python scripts have been used to generate FE models in Abaqus. 
Abaqus is a commercial software package for finite element analysis developed by 
Dassault Systèmes Simulia Corp [19]. 
 
The Abaqus scripting procedure is summarized in Figure 4.1. The Abaqus/CAE 
graphical user interface (GUI) was used to create the wheelset model. The GUI 
generates all command functions accounting for each performed operation and saves 
them in a journal-file whose extention is .jnl [20]. The journal-file is written in object-
oriented programming language and therefore it can be saved as a Python-file. 
Subsequently, the Python script may be edited to add parameterization of some 
geometrical features. In addition, it allows to easily alter the model properties such as 
materials, mesh size and element type. The Python code may then be run in 
Abaqus/CAE. The Abaqus kernel interprets the commands to generate the modified 
model [21]. 
 

 
Figure 4.1: Block diagram summarizing the implementation procedure in Abaqus. 

 

4.2 Wheelset model 
A conventional wheelset consists of two coned wheels rigidly connected to the axle so 
that both wheels exhibit the same angular velocity and the distance between the 
wheels is preserved.  
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Figure 4.2:Schematic of a conventional wheelset. Measures in mm. [22] 

 
The surface of the wheel where contact with the rail occurs is characterized by two 
parts: the flange and the wheel tread. The flange is located at the inner side of the 
wheel and aims to provide lateral guidance especially in curves. The wheel tread is 
the conical running surface that meets the rail [22]. Additionally, the wheelset 
involves the presence of brake discs that are mounted on the wheels (or on the axle). 
A powered wheelset also includes a traction gear box which is mounted on the axle of 
the wheelset.  
 
The modelled wheelset refers to a powered wheelset of a freight locomotive whose 
drawings were provided by the Bombardier Transportation company. The drawings 
included a detailed sketch of the wheel and the assembly drawing of the whole 
wheelset. However, because of the lack of detailed sketches regarding the gear box 
housing, gear wheel and brake discs, some simplifications in their modelling were 
made. Reference [23] was used as a guideline to perform these simplifications. As a 
matter of fact, in reference [23], the FE model of a powered railway wheelset is 
characterized by similar geometry and characteristics as the one analysed in this thesis 
project. Hence, components for which detailed information were missing have been 
modelled in such a way that their characteristics were similar to the corresponding 
ones reported in [23]. 
 
The main assumptions and simplifications adopted in the model are: 
 

• The wheels are rigidly connected to the wheelset axle. 

• The brake discs are rigidly connected to the wheels. 

• The gear wheel has been modelled as a hollow cylinder rigidly connected to 
the axle. 

• The gear housing is rigidly connected to the gear wheel. 
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• The roller bearings ensuring the interface between axle and gear box were 
modelled by springs applied in lateral and radial directions. More specifically, 
a 500 MN/m spring stiffness was assumed in the longitudinal (𝑘𝐿) and radial 
vertical directions (𝑘𝑅𝑉 ), whereas a 1 MN/m spring stiffness was used to 
model the interaction in the radial horizontal direction ( 𝑘𝑅𝐻 ), [23]. An 
illustration showing the mentioned interaction is presented in Figure 4.3. 

 
The CAD model of the wheelset is shown in Figure 4.4. 
 

 
Figure 4.3: Schematic illustrating the modelled interaction between axle and gear box. 

 

 
Figure 4.4: Frontal view of the wheelset model in Abaqus CAD interface. 

 

4.2.1 Material properties 
Three different materials were used to assign the mechanical properties to each 
component of the wheelset. 
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Common steel was used to assign the mechanical properties to the brake discs, gear 
wheel and gear housing. A slightly lower density steel was assigned to the wheels to 
match the wheel mass prescribed by the drawing provided by Bombardier 
Transportation. Lastly, EA1N steel was assigned to the axle [24]. The mechanical 
properties defined for each component of the wheelset and the corresponding mass are 
presented in the following tables.  
 
Table 4.1: Mechanical properties for each modelled component 

Component Material Young 
Modulus 
[𝑮𝑷𝒂] 

Density [𝒌𝒈

𝒎𝟑
 ] Poisson 

coefficient [-] 

Axle (hollow) EA1N 210 7500 0.26 
Wheel Steel 210 7700 0.3 
Brake disc Steel 210 7800 0.3 
Gear wheel Steel 210 7800 0.3 
Gear housing Steel 210 7800 0.3 
 
 
Table 4.2: Mass of each component of the wheelset and overall mass of the wheelset. 

Component Quantity Total Mass [𝒌𝒈] 

Axle 1 430 
Wheel 2 1222 
Brake disc 4 528 
Gear wheel 1 241 
Gear housing 1 642 
 ∑   3063 
 

4.2.2 Python code and modal analysis 
The Python script allows to create railway wheelset models that differ in terms of 
geometrical features of the wheel, such as the rim thickness. The goal was to create a 
parameterized wheelset model that enables to generate automatically different models 
characterized by railway wheels with varying external diameter, thus considering the 
wear of the tread. The use of the Python script is to easily make available different 
wheelset models to reduce the time demanded to create each of them directly in the 
Abaqus GUI. 
 
The following section presents a description of the Python script and results arising 
from a modal analysis of the wheelset for two different thicknesses of the wheel rim. 
Finally, a few suggestions for further analyses are proposed. 
 
4.2.2.1 Description of the Python code 
As mentioned in Section 4.1, the modelling process has been carried out in the 
Abaqus graphical user interface (GUI). By saving the model and converting the 
journal-file into a Python file it was possible to get access to information regarding all 
the operations executed. However, this information appears in the form of numbered 
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entities, thus not allowing to modify the code. Therefore, the first action was to type 
the instruction “session.journaloptions.setvalues(replaygeometry = coordinate, 
recovergeometry = coordinate)” into the command line interface [20]. By applying 
this instruction, the information available in the Python code appears as function of 
the coordinates of each selected entity. Consequently, it was possible to parameterize 
each entity belonging to the rim of the wheel as a function of the rim thickness.  
 
The Python script takes only the external diameter of the wheel as input. The 
modelled wheel has a nominal external diameter of 1.25 m. Nevertheless, the rim 
thickness of the wheel diminishes gradually due to wear of the tread until it reaches a 
critical value. For this wheel type, the prescribed threshold diameter beyond which the 
wheel must be replaced is 1.17 m. 
An idea about the maximum allowable range of wheels due to the reduction of the rim 
is given in Figure 4.5. 
 

 
Figure 4.5: Cross section view of the modelled railway wheel: the wheel having nominal external 
diameter is shown on the left , whereas critical prescribed external diameter thereof is shown on the 
right. 

 
4.2.2.2 Modal analysis of free wheelset 
This section proposes the numerical results arising from a modal analysis of the 
wheelset for two different cases: the first case was derived by the adoption of the 
wheelset model characterized by the wheel having nominal external diameter, 
whereas the second one considered a wheel having the limit prescribed external 
diameter.  
 
The analysis may be seen as starting point of further analyses aimed at studying the 
dynamic response of the wheelset for different wear conditions of the railway wheel. 
The analysis was carried out in Abaqus CAE/Standard. The elastic modes of the 
wheelset in the frequency range 0 - 1000 Hz were calculated. Solid 8-node linear 
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hexahedral elements were used to mesh all the components of the wheelset except  the 
gear housing. The latter was instead meshed with 10-node quadratic tetrahedral 
elements. A convergence study revealed that a 50 mm element size was appropriate. 
Finally, free boundary conditions were assumed and the Lanczos solver was adopted 
to run the analysis. 
 
Table 4.3 shows some of the significant modes and the corresponding 
eigenfrequencies for both analysed cases. The table also provides the percentage of 
the difference between the eigenfrequencies derived for the two mentioned cases. 
 

 
Figure 4.6: Elastic modes of the wheelset: (a) Undeformed wheelset. (b) Mode 3. (c) Mode 4. (d) Mode 
7. (e) Mode 11. (f) Mode 17. 

  



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2019:34  44 
 

Table 4.3: Eigenmodes and corresponding eigenfrequencies of the wheelset for two different cases: 
wheelset characterized by a wheel with nominal dimensions and wheelset characterized by a wheel 
having critical external diameter. Percentage increase in terms of eigenfrequencies is shown in the 
rightmost column. 

 Frequency [Hz] 
Mode Type Nominal Limit Limit - nominal 

difference [%] 
1 - 2 Rigid body 0 0 - 

3 First torsion mode 42.7 51.5 17.0 

4 First bending mode 53.3 60.3 11.6 

7 Second bending mode 96.2 113.7 15.4 

11 First umbrella mode 194.9 227.3 14.2 

17  Second umbrella mode 363.9 399.3 8.9 

 
By comparing the results listed in Table 4.3, an increase in the eigenfrequency values 
with reduced external diameter of the wheel is observed. This is an expected and 
reasonable result. As a matter of fact, a reduction in the rim thickness results in a 
decrease in the overall mass of the system that leads consequently to an increase in 
the eigenfrequency values since the eigenfrequencies are inversely proportional to the 
mass. Further, it is possible to observe that the percentage increase in the 
eigenfrequency values due to the reduction of the rim thickness of the wheel tends to 
decrease for higher modes of the wheelset. 
 
The parameterized wheelset model might be used for innumerable purposes. Many 
current researches in the railway sector focus on the wheel–rail interaction. For 
instance in [25], a three dimensional wheel–rail model was object of study to predict 
the occurrence of defects on both rail and wheel surfaces. In this context, a useful 
means of the parameterized wheelset model might be to go into more specific issues 
and investigate how the reduction of the rim thickness due to the wear may affect the 
interaction between wheel and rail trying to predict how the damage occurrence might 
be influenced. Additionally, the study of the wheelset flexibility might be another 
interesting lead to be undertaken. For this purpose, the deformation of the axle and 
wheels through the receptance method might be investigated for different wheel 
geometries and for different train speeds [26]. 
 
In conclusion, the Python scripting for finite element analysis (FEA) softwares is a 
suggested tool to create parameterized models because it allows to generate different 
models automatically, and moreover it opens up many avenues for further analyses. 
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5 Fatigue analysis: non-powered wheelset 
5.1 Aims and background 
In the last chapter, a dynamic analysis aimed at checking the fatigue resistance of the 
axle of a non-powered wheelset while subject to periodic sinusoidal loads acting on 
the wheels is performed. The intent of this analysis is to increase the confidence in the 
alarm limits currently set for the wheel impact load detectors, but at the same time 
also to encourage other studies and research for improved wheel design and for 
defining a precise timeframe within which the maintenance of the wheels must be 
carried out to prevent any consequent and serious damage to the railway axles. 
 
The fatigue phenomenon is a well understood type of damage which is triggered by 
variable loading conditions on a mechanical component that might lead to a sudden 
failure thereof. Railway axles are designed for infinite life which means that the time-
varying stress state is below the limit (endurance limit) that causes crack initiation. 
This cautionary condition is ensured by generous safety factors applied to the material 
fatigue properties [27]. 
 
Railway axles undergo a complex and three-dimensional state of stress. Therefore, 
multiaxial fatigue criteria must be used to determine a scalar quantity (equivalent 
stress) that equivalently describes the stress state of the component. Subsequently, the 
equivalent stress must be compared to the fatigue limit prescribed by the regulations. 
 
Multiaxial fatigue criteria can be categorised in several typologies, see [28]. The use 
of the most suitable criterion depends on the case being analysed. The main 
distinction between different multiaxial fatigue criteria entails the type of loading. 
Multiaxial loadings can be classified into two categories: proportional and non-
proportional loading. The difference refers to the direction of the principal stresses 
over time. For the first category, the direction of the principal stresses does not change 
over time, whereas multiaxial non-proportional loadings lead to the change in 
principal stresses directions instant by instant [29]. 
 
In section 5.3 a proportional loading condition is proven to reflect the stress state in 
the wheelset axle caused by first order sinusoidal loads applied on the rolling circle of 
the wheels. Based on this outcome, the multiaxial fatigue criterion that best suits the 
proportional loading condition turned out to be the Sines’ criterion. 
 
The Sines’ criterion is an invariant based criterion; the term invariant is used because 
the first invariant of the mean stress tensor appears in the formulation of the 
equivalent stress [30]. The definition of the equivalent stress is described by Eq. (5.1): 
 

𝜎𝑎,𝑒𝑞 = 𝜎𝑣𝑀,𝑎 + 𝑀 ⋅ 𝐼𝑚                                                     (5.1) 

 
where:  

• 𝜎𝑣𝑀,𝑎 is the von Mises equivalent alternating stress which is described by 

Eq. (5.2): 
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                   𝜎𝑣𝑀,𝑎 =
1

√ 2
 √(𝜎𝑎,1 −  𝜎𝑎,2)

2
+ (𝜎𝑎,2 −  𝜎𝑎,3)

2
+ (𝜎𝑎,3 −  𝜎𝑎,1)

2
    (5.2) 

 
 where 𝜎𝑎,𝑖 accounts for the alternate component of the ith principal stress; 

• 𝐼𝑚 is the first invariant of the mean stress tensor, as described by Eq. (5.3): 
 

𝐼𝑚 = 𝜎𝑚,1 + 𝜎𝑚,2 +  𝜎𝑚,3                                            (5.3) 

 

 where 𝜎𝑚,𝑖 accounts for the mean component of the ith principal stress; 
• 𝑀 is the mean stress sensitivity and depends on the material properties. 

FKM-Richtline provides an estimate of the mean stress sensitivity based on 
experimental results [31]. This factor can be calculated according to Eq. (5.4): 
 

𝑀 = 𝑎 ⋅ 10−3𝑅𝑚 + 𝑏                                              (5.4) 

 

where 𝑅𝑚 (expressed in MPa) is the ultimate strength of the material, whereas 
𝑎  and 𝑏  are coefficients depending on the material. The coefficients are 
estimated to 0.35 and -0.1 for different steel alloys. 

 
According to Sines’ criterion, the equivalent stress described by Eq. (5.1) must be 

lower than the fatigue limit prescribed by the technical standards to prevent any 
initiation and propagation of cracks. 
 

5.2 Dynamic analysis 
The fatigue resistance of a hollow wheelset axle has been assessed via local approach. 
This is the opposite to the global approach where the fatigue resistance of a 
mechanical component is evaluated via hand calculations and by using tables to 
estimate the influence of several effects such as the notch. The local approach uses the 
numerical results arising from a finite element simulation where such effects are 
embedded in the FE model. 
 
A non-powered wheelset was object of the analysis. Furthermore, for the sake of 
simplicity, the same wheelset model generated by the Python code described in 
Section 4.2.2 was considered. However, since the analysis focused on a non-powered 
wheelset, the gear box was omitted from the model. The deletion of the gearbox was 
needed because of the lack of data regarding gearbox characteristics such as power, 
gear ratio and geometric dimensions that would have allowed for modelling the forces 
and moments exchanged between the gear wheel and the axle.  
Therefore, the analysis of the examined axle reflects approximatively the reality, but it 
might still be considered fair because there are just a few other differences in the 
geometry between powered and non-powered railway wheelset axles which do not 
significantly affect the dynamic response. 
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The analysis was carried out in the Abaqus software. The stress state of the hollow 
axle was derived from a finite element simulation. After identifying the most stressed 
section and verifying the proportional loading assumption, the equivalent stress 
according Sines’ criterion was determined and compared to the fatigue limit 
prescribed in the technical standard [32]. For this purpose, the stress-time history of 
the most critical section was saved in an Abaqus report-file (extension .rpt) and 
imported in Matlab. Finally, the principal stress-time histories were plotted in Matlab 
and used to calculate the alternate and mean components that appear in the 
formulation of the Sines’ equivalent stress. 
 

5.2.1 Loads and boundary conditions 
As mentioned in Section 5.1, one of the aims of such an analysis is to increase the 
reliability of the current alarm limits set for the wheel impact load detectors. The 
current peak load alarm for freight locomotives set by the regulations in Sweden is 
320 kN. However, a precautionary warning alarm is set at 250 kN [33]. 
 
Hence, one case of warning alarm highlighted in the data sheets provided by Lars 
Fehrlund has been considered to define the loads on the railway wheels. The warning 
alarm refers to the one registered at the Bodsjön detector station on February 13th 
2018 for the first axle of the locomotive 917400014431. The data measured are 
reported in Table 5.1. 
 
Table 5.1: Data registered by the wheel impact load detector at the Bodsjön station on February 13th 
2018 for the first axle of locomotive 917400014341. 

 Mean load [kN] Peak load [kN] 
Train speed 
[km/h] 

Left wheel Right wheel Left wheel Right wheel 

96 94 98 143 291 
 
The data reported in Table 5.1 were used to define two sinusoidal loads acting 
respectively on the left and right wheels. The definition of first-order sinusoidal loads 
is a fair approximation for loads acting on the wheels when the wheel radius is not 
perfectly circular but eccentric. 
 
The two sinusoidal loads were applied at the rolling contact point of each wheel and 
defined in such a way that the means and the peaks correspond to the measured ones. 
Furthermore, the circular frequency (𝜔) of the two sinusoidals was defined from the 
value of the measured train speed (𝑣). Subsequently, the time (𝑇) employed by the 
wheel to perform one revolution was derived from the circular frequency. The 
mentioned quantities are correlated to each other by Eq. (5.5). 
 

𝜔 =
𝑣

𝑟
=

2𝜋

𝑇
                                                                 (5.5) 

 
where 𝑟  is the nominal wheel radius (half the nominal diameter of the wheel 
mentioned in Section 4.2.2.1). 
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Figure 5.1 shows the load applied at each wheel in one revolution. Lastly, it is worth 
mentioning that each load was associated to a dynamic implicit step in Abaqus. This a 
suitable choice when dynamic analyses must be carried out.  
 
As far as the boundary conditions are concerned, the primary suspensions were 
modelled by a spring-damper system. The spring was modelled by a stiffness (𝑘) of 
10.5 MN/m, whereas the damper by a viscous damping coefficient (𝑐) of 50 kNs/m. 
These values are typical values for the design of the primary suspension system of 
railway wheelset of freight locomotives. Figure 5.2 shows the location where the 
spring-damper system modelling the primary suspension was applied. 
 

 
Figure 5.1: Load time history in one revolution of the wheel. 

 

 
Figure 5.2: Schematic showing the location and the modelling of the primary suspension system. 

 

5.2.2 Mesh 
The definition of the mesh when performing stress analysis is critical. The mesh is 
required to be well-defined and fine enough to ensure the reliability of the numerical 
results. Since the aim was to evaluate the stress state in the hollow axle, a fine mesh 
was used there, whereas the wheels and brake discs were meshed rather coarsely to 
reduce the computational time needed to run the finite element simulation. The axle 
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was meshed with 20-node quadratic hexahedral (brick) elements, whereas the wheels 
and brake discs were meshed with 8 node linear hexahedral elements, see Figure 5.3. 
 
The first adopted mesh was relatively fine and was used to identify the most stressed 
section. The latter coincides with the axle section on the left of the fillet located next 
to the right wheel seating. Subsequently, the axle model was partitioned in the 
proximity of the most stressed section to allow for a further refinement of the mesh in 
that specific area. 
 

 
Figure 5.3: Mesh of the wheelset model. The figure refers to the final mesh adopted for extracting the 
numerical results. 

 

 
Figure 5.4: Snap shot of the numerical results in terms of Von Mises equivalent stress aimed to 
visualize the most critical section. The figure refers to the numerical results arisen from the adoption of 
the “medium” mesh. 

 
5.2.2.1 Sensitivity analysis 
A convergence study was performed to evaluate the robustness of the mesh. A node 
located on the most stressed section was chosen for the sensitivity analysis. However, 
the convergence study was not focused on the whole stress history, but on the 
maximum principal stresses detected at the time instant for which the peak loads 
occur on the rolling contact circle of the wheels. 
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Table 5.2: Characteristics of the coarse, medium and fine mesh of the axle. 

 Approximative 
global element 
size [cm] 

Element size 
in the refined 
area [cm] 

Number of 
nodes 

Coarse 2 0.8 72768 
Medium 1.5 0.6 120813 
Fine 1.5 0.4 129987 

 
Three similar meshes were adopted for this analysis. The meshes are respectively 
designated as coarse, medium and fine mesh. A h-refinement of the coarse mesh was 
carried out to search for a suitable mesh whose use would have not resulted in large 
differences in the stress values arising from the FE simulation with respect to the 
results derived from the adoption of the previous mesh. Figure 5.5 illustrates the 
different global element size and the different local refinement between the three 
meshes of the axle. The characteristics of the three different meshes used for the axle 
are proposed in Table 5.2. 
 

 
Figure 5.5: Axle mesh. (a) coarse mesh (b) medium mesh (c) fine mesh 
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Table 5.3: Number of nodes of the full wheelset model for the three different meshes. 

 Total number of nodes 
Coarse 84636 
Medium  132681 
Fine 141855 

 
 
Table 5.4: Principal stress values for the node located on the most stressed section for the three 
different meshes. 

 Coarse Medium Fine Coarse-medium 
difference [%] 

Medium-fine 
difference [%] 

𝝈𝟏 [MPa] 196,64 210,03 210,79 6.3 0.36 
 
 
The wheels and brake discs were meshed with 8-node linear hexahedral elements. A 
global element size of 3 cm was chosen for the wheel, whereas a global element size 
of 7cm was chosen for the brake discs. The number of nodes of the full wheelset 
model for the three different meshes of the axle is reported in Table 5.3. 
 
The maximum principal stress (𝜎1(𝑡)) evaluated at the node located on the most 
stressed section and at the time instant when both wheels undergo the peak loads are 
presented in  
 
Table 5.4. 
 
The difference in results between the medium and fine meshes is 0.36%. This is 
confirmed by the full principal stress history in one-wheel revolution where no 
evident differences can be noticed from the adoption of the fine and medium meshes, 
see Figure 5.6. The same results are observed by looking at the minimum and mid 
principal stresses.  
 
Consequently, the medium mesh was considered robust enough to perform the 
dynamic analysis. 
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Figure 5.6: Comparison of the maximum principal stress time histories in one revolution of the wheel 
using the three different meshes. 

 

5.3 Results 
The stress-time histories of the node of interest (see Figure 5.7) elaborated by the 
finite element simulation were saved in the Abaqus report file and imported in Matlab 
software.  
 
By looking at the stress state in the hollow axle generated by the periodic loads 
applied to the rolling contact circle of the wheels, it is observed that the loading 
condition is proportional in each revolution of the wheel. A proportional load 
condition results in a constant principal stress direction over time and therefore the 
Sines´criterion can be used to evaluate the equivalent stress state in the axle. The 
proportional loading can be confirmed by looking at the stress state for each 
revolution of the wheel which is presented in Figure 5.8. 
 

 
Figure 5.7: Position of the node used to extract the numerical results. 
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It can be noticed that the stresses are in-phase and therefore the principal stress 
direction does not change over time. Furthermore, the point of interest is very close to 
be parallel to the axial direction and therefore the maximum principal stress should be 
very similar to the normal stress due to the bending when in tension. A proof can be 
given by looking at Figure 5.9 where a maximum difference 8.5% in tension can be 
observed. This confirms that the orientation of the surface where the node of interest 
is located is not completely parallel to the axial direction (x-direction). 
Based on the principal, mid and minimum principal stress-time histories (reported 
respectively in Figure 5.10,Figure 5.11 and Figure 5.12) the alternate and mean 
components appearing in the formulation of the equivalent stress according to Sines’ 

criterion were derived. The values of the alternate and mean components of the 
principal stresses are presented in Table 5.5. 
 

 
Figure 5.8: Normal and tangential stress of the point of interest in one revolution of the wheel. 
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Figure 5.9: Time history in one revolution of the wheels of the maximum principal stress and normal 
stress due to the bending. 

 

 
Figure 5.10: Time history of the maximum principal stress evaluated at the node of interest during one 
revolution of the wheels. 
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Figure 5.11: Time history of the mid principal stress evaluated at the node of interest during one 
revolution of the wheels. 

 

 
Figure 5.12: Time history of the minimum principal stress evaluated at the node of interest during one 
revolution of the wheels. 
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Table 5.5: Alternate (𝜎𝑎,𝑖) and mean (𝜎𝑚,𝑖) component of the ith principal stress. 

 Mean component  
(𝝈𝒎,𝒊) [MPa] 

Alternate component 
(𝝈𝒂,𝒊) [MPa] 

Maximum principal 
stress (𝝈𝟏) 

105.0 105.0 

Mid principal stress  
(𝝈𝟐) 

16.3 30.3 

Minimum principal 
stress (𝝈𝟑)  

-31.6 31.6 

 
The values reported in Table 5.5, along with the mean sensitivity (𝑀) of EA1N steel 
which was calculated and estimated as 0.11 by Eq. (5.4) and by using 600 MPa as 
ultimate strength of the material [24], have been used to deduce the equivalent stress 
in the most stressed section of the axle through Eq. (5.1). The equivalent stress value 
turns out to be 84.7 MPa. 
 
Finally, the equivalent stress is compared to the fatigue limit value prescribed by the 
technical standard. Reference [32] prescribes 110 MPa as the fatigue limit value for 
the hollow axle beneath the fitting. 
 
In conclusion, since the equivalent stress is lower than the fatigue limit prescribed by 
the technical standard, it is possible to state that the case of warning alarm values 
registered by the WILD does not induce fatigue damage to the hollow non-powered 
wheelset axle of this study. This should be verified in future work where the dynamic 
load is applied as an impact load instead of as a low-frequency sinusoidal load. 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2019:34  57 
 

6 Conclusions and future work 
6.1 Summary 
In conclusion, this thesis has dealt with two different parts that have a common 
denominator: wheel impact load detectors. 
 
In the first part, the performance of the wheel impact load detectors has been 
evaluated through a statistical analysis of the data provided by Lars Fehrlund. More 
specifically, the analysis focused on mean loads and dynamic loads registered by the 
wheel impact load detectors. 
 
The results from the hypothesis testing show that the mean loads cannot be considered 
as completely independent of train speed, despite the mean load generated by the 
wheels is expected not to change over time.  
 
Secondly, the performance of the detectors was evaluated by generating multiple 
linear regression models involving measured dynamic loads, train speed and the time 
when the measurement was performed. The models were compared with the results 
measured for a similar type of wheel tread damage presented in [13]. For a given 
wheel tread damage, reference [13] demonstrated that the dynamic impact load 
increases linearly with train speed. In principle, this outcome complies with the results 
arising from the statistical analysis carried out in this thesis when a lower magnitude 
of the wheel tread damage was considered. 
 
On the contrary, for a more severe form of the wheel tread damage, the dynamic loads 
show a considerable increase over time due to the fast deterioration of the wheel 
tread. Because of the fast deterioration of the tread surface, the influence of the train 
speed on the dynamic load values becomes secondary. 
 
Having proven that the dynamic loads depend significantly on train speed and the 
time of the detection, a comparison of the accuracy of each detector has been 
investigated via a graphical approach. In essence, the dynamic impact loads registered 
for a given wheel within a restricted time window and for a reduced speed interval 
have been plotted in target diagrams. The comparison shows that the dynamic loads 
registered at the Degerbäcken detector station are much more scattered than the 
dynamic loads measured at all other detector stations. Therefore, it is recommended to 
perform a calibration of the wheel impact load detector at Degerbäcken. 
 
The second part of the thesis aimed at developing a parameterized wheelset model. 
For this purpose, a Python script for the Abaqus software has been written. The 
Python script allows to easily alter the rim thickness of the railway wheels. The 
Python script can be extended to include also other wheelset design parameters.  
 
The fatigue resistance of the hollow axle of a non-powered wheelset has been 
assessed. To this aim, a case of warning alarm values registered by a WILD was used 
to define the periodic loads acting on the contact rolling circle of the wheels. It was 
shown that the periodic loads resulted in a proportional loading condition and 
therefore the multiaxial Sines´criterion turned out to be a suitable approach to 
calculate the equivalent stress in the most stressed section. The results showed that the 
selected case of warning alarm values did not induce fatigue damage to the axle. 
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6.2 Future work 
Many different analyses have been left for future work due to lack of time (e.g. the 
finite element simulations were very time consuming and required even days to finish 
a single simulation) and the need of further information (e.g. information concerning 
the gearbox of the modelled wheelset that would have allowed a fatigue analysis of a 
powered wheelset axle). However, in this last chapter new proposals for further 
analyses are presented.  
 
As far as the statistical analysis of the data measured by the WILDs is concerned, data 
registered for different axles of the same locomotive might be analysed and 
compared. For example, it would be of interest to investigate whether certain axles in 
the trainset are more prone to rolling contact fatigue damage than others, and in that 
case whether the degradation rate differs between these axles. Such information might 
suggest a change in maintenance intervals set by the transport authorities. 
 
Further, it might be interesting to dig deeper into the numerous provided Excel files 
with data registered by the wheel impact load detectors to find a time period within 
which different detectors detected dynamic impact loads at the same train speed and 
within a restricted time window (order of a few days). This would allow for a better 
comparison between the performance of different detectors. 
 
The Python code might be used to estimate to which extent the dynamic flexibility 
and fatigue resistance of the wheelset is influenced after reprofiling the railway 
wheels. 
 
The fatigue analysis performed in Section 5 should be repeated for a time history of 
the wheel load corresponding to a wheel-rail impact. The impact loading will include 
a wide range of excitation frequencies that may affect the stresses in the axle in a 
different way than the harmonic load applied in this thesis. The fatigue resistance of a 
powered wheelset axle might be evaluated for warning alarm values of the wheel 
impact load detectors. Eventual fatigue damage induced to the axle might encourage 
further studies aimed at assessing a precise time window (dependent on the measured 
loads) within which the authorities should take action and make maintenance of the 
wheels. 
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Appendix A  
As anticipated in Section 3.2, a Matlab code was written to analyse the data registered 
by WILDs. A detailed description of the Matlab code is reported in this appendix. 

A1 General description of the Matlab Code 
The Matlab Code consists of several functions and a main body which allows to 
display pictures and save parameters of interest related to the statistical analysis 
described in Section 3.3 and Section 3.4. In this section, a description of all functions 
that have been implemented is presented: 

•  import: this function allows to import data from Excel Format file to Matlab. 
This function has been implemented in such a way to exclude data detected at 
Mellansjö USP MJ MDS and Mellansjö NSP HJ MDS detector stations and 
data registered for low train speed, whose reasons have been mentioned in 
Section 3.2.1. 
It takes as input the name of Excel file and the rows including the data, 
whereas it returns the following outputs: 

i. num_data: matrix made of seven columns corresponding respectively 
to train speed, mean load on the left wheel, mean load on the right 
wheel, peak impact load on the left wheel, peak impact load on the 
right wheel, dynamic impact load on the left wheel, dynamic impact 
load on the right wheel. 

ii. text_data: cell array containing three columns corresponding 
respectively to time instants at which data have been registered, 
detector station name and travelling direction of the locomotive. 

iii. raw_data: cell array including both text_data and num_data. 
iv. time: datetime vector containing the time instants at which data have 

been registered. 

• name: this function allows to save the name of the different detector stations 
appearing in the first column of text_data in a string vector. It takes as input 
text_data, whereas it returns as output NameDetectorStation. 

• data_station: this function allows to save data and time instants at which they 
have been registered for each detector station in a cell array. It takes as inputs 
NameDetectorStation, text_data, num_data, time, whereas it returns the 
following outputs: 

i. time_stat: cell array containing time instants at which data have been 
measured for each detector station; 

ii. index: index position in text_data of data related to each detector 
station 

iii. data: cell array containing numerical data for each detector station. 

• index_for_speed: this function allows to store indices corresponding to data 
detected within three different speed ranges. This function takes as inputs 
NameDetectorStation, data, and time. It returns two output parameters: 

i. index_speed: is a cell array including the indices defining the data 
detected for each station and within three specified speed ranges; 
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ii. overall_index_speed: is a cell array including the indices defining 
the data detected within three specified speed ranges. 

• Plot_dyn: this function allows to plot the dynamic impact loads over time. The 
scattered distribution is showed for three different speed ranges. It takes as 
input parameters time, num_data, overall_index_speed, Axlenumber. 

A2 Matlab Code 
%FUNCTION IMPORT 

function [num_data,text_data,raw_data,time]=import(excelFile,raws) 1 
[num_data,text_data,raw_data] = xlsread(excelFile,1,raws); 2 
%In each excel file there is one empty column between column 'time' 3 
%and column 'detector station'.  4 
%Goal: delete it. 5 
text_data=[text_data(:,1) text_data(:,3) text_data(:,4)]; 6 
%Delete data corresponding to stations Mellansjö_USP_HJ_MDS & Mellansjö_NSP_HJ_MDS 7 
index=find(text_data(:,2)~="Mellansjö_USP_HJ_MDS" & 8 
text_data(:,2)~="Mellansjö_NSP_HJ_MDS"); 9 
text_data = [text_data(index,1) text_data(index,2) text_data(index,3)]; 10 
Dynamic_load_L=num_data(:,3)-num_data(:,2); 11 
Dynamic_load_R=num_data(:,5)-num_data(:,4); 12 
num_data=[num_data Dynamic_load_L Dynamic_load_R]; 13 
num_data=[num_data(index,1) num_data(index,2) num_data(index,3) num_data(index,4) 14 
num_data(index,5) num_data(index,6) num_data(index,7)]; 15 
%Delete data corresponding to a train speed lower than 40km/h 16 
index=find(num_data(:,1)>=40); 17 
text_data = [text_data(index,1) text_data(index,2) text_data(index,3)]; 18 
num_data=[num_data(index,1) num_data(index,2) num_data(index,3) num_data(index,4) 19 
num_data(index,5) num_data(index,6) num_data(index,7)]; 20 
%Extract time instants data 21 
time = cellfun(@datenum,text_data(:,1)); 22 
time=datetime(time,'ConvertFrom','datenum'); 23 
end 24 
 

%FUNCTION name 
function [nameDetectorStation]=name(text_data) 25 
nameDetectorStation=unique(text_data(:,2)); 26 
end 27 
 

%FUNCTION data_station 
function [time_stat index  data] = data_station(NameDetectorStation,text_data,num_data,time) 28 
%1-Save the index corresponding to each detector station in a cell array 29 
%2-Save the data corresponding to each station 30 
%3-Save time data for each station 31 
for j=1:7 32 
for i=1:length(NameDetectorStation)  33 
 index{i} = {DetectorStation(NameDetectorStation(i),text_data)}; 34 
 data{i,j} = num_data(index{1,i}{1,1},j); 35 
 time_stat{i} = time(index{1,i}{1,1});    36 
end 37 
end 38 
end 39 
 

%FUNCTION index_for_speed 
function [index_speed,overall_index_speed] = index_for_speed(NameDetectorStation,data,num_data)  40 
% set the speed intervals:  
% first interval: 40 km/h - 80 km/h 
% Second interval: 80 km/h - 100 km/h 
% Third interval: 100 km/h - 145 km/h  
for i = 1:length(NameDetectorStation) 41 
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overall_index_speed{1} = find(num_data(:,1)>=40 & num_data(:,1)<=79.5); 42 
index_speed{i,1} = find(data{i,1}>=40 & data{i,1}<=79.5); 43 
overall_index_speed{2} = find(num_data(:,1)>=80 & num_data(:,1)<=99.5); 44 
index_speed{i,2} = find(data{i,1}>=80 & data{i,1}<=99.5); 45 
overall_index_speed{3} = find(num_data(:,1)>=100 & num_data(:,1)<=145); 46 
index_speed{i,3} = find(data{i,1}>=100 & data{i,1}<=145); 47 
end 48 
 

%FUNCTION Plot_dyn 
function  Plot_dyn(time, num_data,overall_index_speed,AxleNumber) 49 
  
Max_L=max(num_data(:,6)); 50 
Max_R=max(num_data(:,7)); 51 
Max=max(Max_L,Max_R); 52 
Min_L=min(num_data(:,6)); 53 
Min_R=min(num_data(:,7)); 54 
Min=min(Min_L,Min_R); 55 
  
subplot(1,2,1) 56 
scatter(time(overall_index_speed{1,1}),num_data(overall_index_speed{1,1},6),'r','s') 57 
hold on  58 
scatter(time(overall_index_speed{1,2}),num_data(overall_index_speed{1,2},6),'k','*') 59 
hold on  60 
scatter(time(overall_index_speed{1,3}),num_data(overall_index_speed{1,3},6),'b') 61 
grid on 62 
grid minor 63 
title({sprintf('Axle %d',AxleNumber)}) 64 
ylabel('Dynamic load on the left wheel [kN]') 65 
legend('Speed range: 40-80km/h','Speed range: 80-100km/h','Speed range: 100-145km/h') 66 
ylim([Min Max]) 67 
  
subplot(1,2,2) 68 
scatter(time(overall_index_speed{1,1}),num_data(overall_index_speed{1,1},7),'r','s') 69 
hold on  70 
scatter(time(overall_index_speed{1,2}),num_data(overall_index_speed{1,2},7),'k','*') 71 
hold on  72 
scatter(time(overall_index_speed{1,3}),num_data(overall_index_speed{1,3},7),'b') 73 
grid on 74 
grid minor 75 
title({sprintf('Axle %d',AxleNumber)}) 76 
ylabel('Dynamic load on the right wheel [kN]') 77 
legend('Speed range: 40-80km/h','Speed range: 80-100km/h','Speed range: 100-145km/h') 78 
ylim([Min Max]) 79 
end 80 
 

%MAIN BODY 
%% AXLE 1                                      
clc  81 
clear all 82 
AxleNumber=1; 83 
% NOTATION: name_X: X stands for the axle being considered 
[num_data_1,text_data_1,raw_data_1,time_1] = import('Ax 1','B8:J907'); 84 
NameDetectorStation_1 = name(text_data_1); 85 
NameDetectorStation_1 = string(NameDetectorStation_1);   86 
[time_stat_1 index_1  data_1] = 87 
data_station(NameDetectorStation_1,text_data_1,num_data_1,time_1); 88 
year=2018; 89 
  
%PLOT DYNAMIC LOADS OVER TIME 
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[index_speed_1,overall_index_speed_1]= 90 
index_for_speed(NameDetectorStation_1,data_1,num_data_1); 91 
figure() 92 
hold on 93 
Plot_dyn(time_1, num_data_1,overall_index_speed_1,AxleNumber) 94 
figure() 95 
  

%% MEAN LOADS AS A FUNCTION OF THE TRAIN SPEED 
t_start = datetime(year,3,18,0,0,0); 96 
 t_end = datetime(year+1,1,29,0,0,0); 97 
 discriminating_limit=30; 98 
for i=1:length(NameDetectorStation_1) 99 
    if length(data_1{i,6})>100 100 
    time_stat_1{1,i}=time_stat_1{1,i}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end))); 101 
        for j=1:7 102 
    data_1{i,j}=data_1{i,j}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end))); 103 
        end 104 
    end 105 
end 106 
for i=1:length(NameDetectorStation_1) 107 
    if length(data_1{i,1})>discriminating_limit 108 
     
%SET Y-AXIS LIMITS 
Average_L = mean(data_1{i,2}) 109 
Min_L=min(data_1{i,2}) 110 
Max_L=max(data_1{i,2}) 111 
Average_R = mean(data_1{i,4}) 112 
Min_R=min(data_1{i,4}) 113 
Max_R=max(data_1{i,4}) 114 
Min=min(Min_R,Min_L); 115 
Max=max(Max_R,Max_L); 116 
  
mdl_L = fitlm(data_1{i,1},data_1{i,2}) 117 
subplot(1,2,1) 118 
plot(mdl_L) 119 
grid on 120 
grid minor 121 
AxleNumber=1; 122 
title({sprintf('Axle %d',AxleNumber),'March 2018 - January 2019',sprintf('Detector Station: 123 
%s',NameDetectorStation_1(i))}) 124 
xlabel('Train Speed [km/h]') 125 
ylabel('Mean load on the left wheel [kN]') 126 
legend('Observed data','Fitted linear model') 127 
ylim([Min Max]) 128 
mdl_R = fitlm(data_1{i,1},data_1{i,4}) 129 
subplot(1,2,2) 130 
plot(mdl_R) 131 
grid on 132 
grid minor 133 
AxleNumber=1; 134 
title({sprintf('Axle %d',AxleNumber),'March 2018 - January 2019',sprintf('Detector Station: 135 
%s',NameDetectorStation_1(i))}) 136 
xlabel('Train Speed [km/h]') 137 
ylabel('Mean Load on the right wheel [kN]') 138 
legend('Observed data','Linear Regression') 139 
ylim([Min Max]) 140 
figure() 141 
subplot(2,3,1) 142 
plotResiduals(mdl_L,'fitted','ResidualType','studentized') 143 
xlabel('Fitted values','FontSize',18) 144 
ylabel('Residuals','FontSize',18) 145 
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subplot(2,3,4) 146 
plotResiduals(mdl_R,'fitted','ResidualType','studentized') 147 
xlabel('Fitted values','FontSize',18) 148 
ylabel('Residuals','FontSize',18) 149 
subplot(2,3,2) 150 
plotResiduals(mdl_L,'probability','ResidualType','studentized') 151 
xlabel('Residuals','FontSize',18) 152 
ylabel('Probability','FontSize',18) 153 
subplot(2,3,5) 154 
plotResiduals(mdl_R,'probability','ResidualType','studentized') 155 
xlabel('Residuals','FontSize',18) 156 
ylabel('Probability','FontSize',18) 157 
if i~=length(NameDetectorStation_1) 158 
              figure()   159 
    else  160 
    end 161 
    end 162 
end 163 
 

%% DYNAMIC IMPACT LOADS AS A FUNCTION OF THE TRAIN SPEED AND TIME 
t_start = datetime(year,10,18,0,0,0); 164 
t_end = datetime(year,12,18,0,0,0); 165 
  
for i=1:length(NameDetectorStation_1) 166 
if length(time_stat_1{1,i}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end))))>5 167 
  
x=time_stat_1{1,i}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end))); 168 
x1=datenum(time_stat_1{1,i}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end)))); 169 
x2=data_1{i,1}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end))); 170 
y=data_1{i,7}(find((time_stat_1{1,i}>t_start) & (time_stat_1{1,i} < t_end))); 171 
  
X=[ones(size(x1)) x1 x2];   172 
[b,bint,r,rint,stats]=regress(y,X); 173 
scatter3(x,x2,y,'filled') 174 
XX = [x1 x2]; 175 
mdl = fitlm(XX,y) 176 
residuals{i} = mdl.RMSE.^2; 177 
R_adjusted{i} = mdl.Rsquared.Adjusted; 178 
anova(mdl,'summary') 179 
PRESS{i} = sum((table2array(mdl.Residuals(:,3))./(1-diag(mdl.Diagnostics.HatMatrix))).^2); 180 
hold on 181 
x1fit = min(x1):1:max(x1); 182 
x2fit = min(x2):1:max(x2); 183 
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit); 184 
YFIT = b(1)  + b(2)*X1FIT + b(3)*X2FIT;  185 
mesh(datetime(X1FIT,'ConvertFrom','datenum'),X2FIT,YFIT) 186 
ylabel('Train speed [km/h]','FontSize',13) 187 
zlabel('Dynamic load [kN]','FontSize',13) 188 
title({sprintf('Axle %d',AxleNumber),'October 18th - December 18th',sprintf('Detector Station: 189 
%s',NameDetectorStation_1(i))}) 190 
figure() 191 
subplot(1,2,1) 192 
plotResiduals(mdl,'probability','ResidualType','studentized') 193 
subplot(1,2,2) 194 
plotResiduals(mdl,'fitted','ResidualType','Raw') 195 
ylabel('Residuals','FontSize',16) 196 
xlabel('Fitted values','FontSize',16) 197 
title('Plot of residuals vs. fitted values','FontSize',16) 198 
if i~=length(NameDetectorStation_1) 199 
              figure()   200 
    else  201 
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    end 202 
end 203 
end 204 
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Appendix B 
Supplementary information about what has been proposed in this thesis project may 
be found in this appendix. 
 

B1 Complementary information to Section 3.3 
Supplementary graphs to the analysis proposed in Section 3.3 are hereunder reported. 
More specifically, diagrams showing the simple linear fitted model involving train 
speed and mean wheel loads are reported. Additionally, for each linear model are 
presented plots of studentized residual against fitted values and normal probability 
plots of the residuals.  
Additional figures helping the readability and the checking of information provided in 
Table 3.1. 
 

 
Figure B1.1: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014341 between March 18th 2018 and January 29th 
2019 at Bodsjön detector station. 

 

 
Figure B1.2: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
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detected for the left wheel of the first axle of locomotive 917400014341 between March 18th 2018 and 
January 29th 2019 at Bodsjön detector station. 

 

 
Figure B1.3: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014341 between March 18th 2018 and January 29th 
2019 at Skorped detector station. 

 
 

 
Figure B1.4: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014341 between March 18th 2018 and 
January 29th 2019 at Skorped detector station. 
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Figure B1.5: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014341 between March 18th 2018 and January 29th 
2019 at Sunderbyns Sjukhus detector station. 

 
 

 
Figure B1.6: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014341 between March 18th 2018 and 
January 29th 2019 at Sunderbyns Sjukhus detector station. 
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Additional figures helping the readability and the checking of information provided in 
Table 3.2. 
 

 
Figure B1.7: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014341 between March 18th 2018 and January 
29th 2019 at Degerbäcken detector station. 

 
 

 
Figure B1.8: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014341 between March 18th 2018 and 
January 29th 2019 at Degerbäcken detector station. 
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Figure B1.9: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014341 between March 18th 2018 and January 
29th 2019 at Skorped detector station. 

 
 

 
Figure B1.10: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014341 between March 18th 2018 and 
January 29th 2019 at Skorped detector station. 
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Figure B1.11: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014341 between March 18th 2018 and January 
29th 2019 at Sunderbyns Sjukhus detector station. 

 
 

 
Figure B1.12: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014341 between March 18th 2018 and 
January 29th 2019 at Sunderbyns Sjukhus detector station. 
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Additional figures helping the readability and the checking of information provided in 
Table 3.3. 
 

 
Figure B1.13: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 29th 
2019 at Degerbäcken detector station. 

 
 

 
Figure B1.14: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Degerbäcken detector station. 
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Figure B1.15: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 29th 
2019 at Jörn detector station. 

 
 

 
Figure B1.16: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Jörn detector station. 
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Figure B1.17: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 29th 
2019 at Koler detector station. 

 
 

 
Figure B1.18: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Koler detector station. 
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Figure B1.19: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 29th 
2019 at Sunderbyns Sjukhus detector station. 

 
 

 
Figure B1.20: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Koler detector station. 
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Additional figures helping the readability and the checking of information provided in 
Table 3.4. 
 

 
Figure B1.21: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 
29th 2019 at Degerbäcken detector station. 

 
 

 
Figure B1.22: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Degerbäcken detector station. 
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Figure B1.23: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 
29th 2019 at Jörn detector station. 

 
 

 
Figure B1.24: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Jörn detector station. 
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Figure B1.25: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 
29th 2019 at Skorped detector station. 

 
 

 
Figure B1.26: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Skorped detector station. 
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Figure B1.27: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and January 
29th 2019 at Sunderbyns Sjukhus detector station. 

 
 

 
Figure B1.28: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the right wheel of the first axle of locomotive 917400014234 between March 18th 2018 and 
January 29th 2019 at Sunderbyns Sjukhus detector station. 
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Additional figures helping the readability and the checking of information provided in 
Table 3.5. 
 

 
Figure B1.29: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 29th 
2019 at Degerbäcken detector station. 

 
 

 
Figure B1.30: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Degerbacken detector station. 
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Figure B1.31: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 29th 
2019 at Jörn detector station. 

 
 

 
Figure B1.32: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Jörn detector station. 
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Figure B1.33: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 29th 
2019 at Skorped detector station. 

 
 

 
Figure B1.34: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Skorped detector station. 
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Figure B1.35: Simple linear regression model between train speed and mean wheel loads detected for 
the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 29th 
2019 at Sunderbyns Sjukhus detector station. 

 
 

 
Figure B1.36: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Sunderbyns Sjukhus detector station. 
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Additional figures helping the readability and the checking of information provided in 
Table 3.6. 
 

 
Figure B1.37: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 
29th 2019 at Degerbäcken detector station. 

 
 

 
Figure B1.38: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Degerbäcken detector station. 
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Figure B1.39: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 
29th 2019 at Koler detector station. 

 
 

 
Figure B1.40: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Koler detector station. 
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Figure B1.41: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 
29th 2019 at Skorped detector station. 

 
 

 
Figure B1.42: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Skorped detector station. 
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Figure B1.43: Simple linear regression model between train speed and mean wheel loads detected for 
the right wheel of the first axle of locomotive 917400014235 between March 18th 2018 and January 
29th 2019 at Sunderbyns Sjukhus detector station. 

 
 

 
Figure B1.44: Plot of studentized residuals versus fitted values (on the left) and probability plot (on the 
right) derived from the simple linear regression model between train speed and mean wheel loads 
detected for the left wheel of the first axle of locomotive 917400014235 between March 18th 2018 and 
January 29th 2019 at Sunderbyns Sjukhus detector station. 
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Figure B1.45: Scattered data of dynamic impact loads acting for the left wheel of the first axle of 
locomotive 917400014341 registered by WILDs over one year period. The data have been plotted for 
three different train speed ranges. 
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Figure B1.46: Target diagrams involving dynamic impact loads registered at each detector station and 
referring to the right wheel of the first axle of the locomotive identified by the vehicle number 
917400014341. Data were measured between October 18th and October 30th 2018 and correspond to a 
measured train speed ranging between 98 km/h and 102 km/h. The green dashed line indicates the 
mean value of dynamic loads. The blue solid lines represent an accuracy of 5%, the red solid lines an 
accuracy of 10% whereas the black solid lines an accuracy of 20% computed with respect to the mean 
value. 
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Figure B1.47: Target diagrams involving dynamic impact loads registered at each detector station and 
referring to the right wheel of the first axle of the locomotive identified by the vehicle number 
917400014341. Data were measured between October 31st and November 11th 2018 and correspond to 
a measured train speed ranging between 98 km/h and 102 km/h. The green dashed line indicates the 
mean value of dynamic loads. The blue solid lines represent an accuracy of 5%, the red solid lines an 
accuracy of 10% whereas the black solid lines an accuracy of 20% computed with respect to the mean 
value. 
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B2 Complementary information to Section 3.4 
Further results related to the analysis proposed in Section 3.4 may be found in this 
section. 
 
Table 3. 1:Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 deriving by the adoption of different 
regression models involving respectively the regressor variables indicated in the rightmost cells of the 
table. Analysis involved dynamic impact loads measured for the right wheel of the first axle of 
locomotive 917400014341 at the Bodsjön detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014341 
Bodsjön 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 54.43 0.061 29.67 x     
1 56.30 0.583 13.12  x    
2 57.67 0.598 12.67 x x    
2 56.31 0.583 13.12  x x   
2 55.78 0.650 11.03  x  x  
3 57.21 0.650 10.97 x x  x  
4 60.77 0.640 11.1 x x  x x 
 
Table 3. 2: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 deriving by the adoption of different 
regression models involving respectively the regressor variables indicated in the rightmost cells of the 
table. Analysis involved dynamic impact loads measured for the left wheel of the first axle of 
locomotive 917400014341 at the Bodsjön detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014341 
Bodsjön 

N° of regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 54.46 -0.015 47.91 x     
1 56.89 0.593 19.26  x    
2 59.03 0.594 19.54 x x    
2 56.895 0.592 19.25  x x   
2 61.79 0.620 17.82  x  x  
3 62.92 0.622 17.83 x x  x  
4 61.82 0.640 16.72 x x  x x 
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Table 3. 3: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗

2  and  𝑀𝑆𝑟𝑒𝑠 deriving by the adoption of different 
regression models involving respectively the regressor variables indicated in the rightmost cells of the 
table. Analysis involved dynamic impact loads measured for the right wheel of the first axle of 
locomotive 917400014234 at the Bodsjön detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014234 
Bodsjön 

Number of 
regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 54.69 0.205 67.22 x     
1 55.28 0.265 62.12  x    
2 60.11 0.480 43.97 x x    
2 55.28 0.265 62.12  x x   
2 58.37 0.357 54.32  x  x  
3 63.39 0.537 39.14 x x  x  
4 77.72 0.530 39.70 x x  x x 
 

Table 3. 4: Results in terms of PRESS statistics, 𝑅𝐴𝑑𝑗
2  and  𝑀𝑆𝑟𝑒𝑠 deriving by the adoption of different 

regression models involving respectively the regressor variables indicated in the rightmost cells of the 
table. Analysis involved dynamic impact loads measured for the left wheel of the first axle of 
locomotive 917400014234 at the Bodsjön detector station between October 18th and December 18th. 

LOCOMOTIVE 917400014234 
Bodsjön 

Number of 
regressor 
variables 

PRESS 𝑅𝐴𝑑𝑗
2  𝑀𝑆𝑟𝑒𝑠 𝑡 𝑣 𝑡2 𝑣2 𝑣3 

1 65.99 0.292 39.56 x     
1 65.23 0.142 47.98  x    
2 74.07 0.444 31,09 x x    
2 65.23 0.142 47.98  x x   
2 70.98 0.163 46.80  x  x  
3 83.90 0.444 31.08 x x  x  
4 148.09 0.429 31.89 x x  x x 
 
 


