
POLITECNICO DI TORINO

Master Degree inMechanical Engineering

Master Degree Thesis

Study of advanced parametric
meshing techniques for gearbox

dynamic analysis

Supervisors
Prof. Carlo Rosso
Ing. Luca Ronchiato

Candidate
Edoardo Di Giuda

July 2019

Summary

In Finite Element Analysis, the characteristics of the mesh (quality and classifica-
tion) play a major role in the final result; such characteristics include: mesh quality,
kinds of elements, mesh refinement, and many others.
It is true indeed that commercial softwares are able, often with good results, to cre-
ate meshes for basically any kind of components. These softwares, however, present
a fundamental limitation. They are not open-source: this means that their code is
not directly available to the consumer and can not be modified in order to adapt the
meshing process to specific cases and requirements. In specific applications, after
the mesh is generated automatically by one of these softwares, it requires to be mod-
ified by hand for it to meet the required characteristics. This post process has two
main issues: first of all it often requires several hours of additional work (and this
represents a cost in terms of labor); second, it introduces the risk of human error.
Hence, the possibility to end up, after hours of work, with an invalid geometry is
more than tangible.
The objective of this thesis is to create a tool which takes care of this issues by
making the process fully automatic. The application of the tool are very specific, as
it was customized in order to create meshes for gearbox components, even though
it can be easily adapted to different scenarios. The tool is not able to directly mesh
3D components; instead, it relies on the possibility to obtain a 3D component from
the transformation of a 2D section of it.
For the application it was developed for, it proved to be very effective since many of
the components (if not all of them) are either axis-symmetric or cyclic-symmetric.

ii

Acknowledgements

I would like to thank my tutors, who helped me in the development of this project:
Ing. Luca Ronchiato who provided fundamental technical support, and Prof. Carlo
Rosso who has always been available any time I needed his help.

I would also like to thank my friends, who made these college years the best I could
possibly hope for.

Lastly, I’d like to thank my family, whose support has been crucial in making me
reach my objectives and goals.

iii

Contents

List of Figures vi

List of Tables viii

1 General Introduction 1
1.1 Introduction . 1
1.2 Why a custom meshing algorithm? 1

1.2.1 Applications . 2
1.3 Proposed achievements . 2
1.4 Introduction of other chapters . 3

2 FEM analysis and Mesh 4
2.1 Introduction . 4
2.2 FE analysis . 4
2.3 Mesh . 5

2.3.1 Types of geometric domain . 5
2.3.2 Types of meshes . 6
2.3.3 Element Shape . 8
2.3.4 Mesh topology . 9

2.4 Conclusions . 10

3 Meshing algorithms 12
3.1 Delaunay triangulation . 12

3.1.1 Empty Circle Property . 12
3.1.2 Four points property . 13
3.1.3 The algorithms . 13

3.2 Q-morph . 16
3.2.1 Front definition and classification 18
3.2.2 Front edge processing . 19
3.2.3 Front closing . 27
3.2.4 Special cases . 28
3.2.5 Topological clean-up and final smoothing 31

iv

3.3 Conclusions . 33

4 Tool development 34
4.1 Pre-existing gears meshing tool . 34
4.2 New tool . 35

4.2.1 Q-morph "tuning" parameters 36
4.2.2 Axis-symmetric solids . 37
4.2.3 Axial Holes pattern . 39
4.2.4 Radial holes pattern . 43

4.3 Merging the parts . 47
4.3.1 Equivalence . 47
4.3.2 Transition mesh . 48

4.4 Test case . 51
4.4.1 Flange . 52
4.4.2 Axis-symmetric 1 . 52
4.4.3 Radial holes pattern . 53
4.4.4 Axis-symmetric 2 . 54
4.4.5 Spur gear . 55
4.4.6 Full component . 56

5 Results and conclusions 58
5.1 Mesh quality . 58

5.1.1 Axis-symmetric . 59
5.1.2 Axial holes pattern . 59
5.1.3 Radial holes pattern . 60
5.1.4 Transition mesh . 60

5.2 Computational time . 61
5.3 Conclusions . 62

v

List of Figures

2.1 Examples of structured grids . 7
2.2 Example of an unstructured grid . 7
2.3 Example of a hybrid grid . 8
2.4 2D cell types . 8
2.5 3D cell types . 9
2.6 Example of a Single-block mesh . 10
2.7 Example of a Multi-block mesh . 10

3.1 Delaunay vs non-Delaunay triangulation 13
3.2 First step of a Scan triangulation . 14
3.3 Further step of Scan triangulation . 15
3.4 Complete Scan triangulation . 15
3.5 Complete Delaunay Triangulation . 16
3.6 Node’s state definition . 18
3.7 Possible states of a front edge . 18
3.8 Side edge selection set-up . 19
3.9 Swap or Split . 20
3.10 Swap . 21
3.11 Split . 21
3.12 Top edge recovery . 22
3.13 Top edge recovered . 23
3.14 Length adjustment - Modified isoparametric smoothing 25
3.15 Angular adjustment - Modified isoparametric smoothing 25
3.16 Front before and after a quadrilateral is formed 26
3.17 Front closing . 27
3.18 Seaming . 29
3.19 Transition seam . 30
3.20 Transition split . 31
3.21 Clean-up nodes classification . 32
3.22 Two-edge nodes elimination . 33

4.1 Input for an axis-symmetric solid . 37

vi

4.2 2D mesh of a generic axis-symmetric input 37
4.3 3D mesh of an axis-symmetric solid 38
4.4 Same solid with and without twist . 39
4.5 Input parameters of a flange . 40
4.6 2D mesh of a flange’s portion . 41
4.7 3D mesh of the portion of a generic flange 42
4.8 3D mesh of a full flange . 42
4.9 Input parameters of a radial flange 44
4.10 2D mesh of a radial flange’s portion 45
4.11 3D mesh of the portion of a generic radial holes pattern 46
4.12 3D mesh of a full radial holes pattern 46
4.13 Reference surfaces for equivalence . 47
4.14 Equivalence outcome . 48
4.15 Reference surfaces for transition mesh 49
4.16 Domain of the transition mesh . 49
4.17 Processing the transition mesh . 50
4.18 Final transition mesh . 50
4.19 Implemented transition mesh . 51
4.20 Flange - particular . 52
4.21 Axis-symmetryc 1 . 52
4.22 Axis-symmetric 1 - particular . 53
4.23 Radial holes pattern - particular . 54
4.24 Axis-symmetryc 2 . 54
4.25 Axis-symmetric 2 - particular . 55
4.26 Spur gear - particular . 56
4.27 Fully-meshed test case - particular . 57

5.1 Performance . 62

vii

List of Tables

4.1 Flange input parameters . 52
4.2 Axis-symmetric 1 mesh input parameters 52
4.3 Radial holes pattern input parameters 53
4.4 Axis-symmetric 2 mesh input parameters 54
4.5 Spur gear input parameters . 55

5.1 Process parameters and mesh quality for axis-symmetric solids 59
5.2 Process parameters and mesh quality for axial holes patterns 60
5.3 Process parameters and mesh quality for radial holes patterns 60
5.4 Process parameters and mesh quality for transition meshes 61

viii

Chapter 1

General Introduction

1.1 Introduction
This initial chapter will focus on the general purpose of this thesis. In particular,
the reasons behind the need of a custom meshing algorithm will be explored, as well
as the objectives that were proposed before the whole development process started.
A brief introduction of the different chapters will follow, in order to make the reader
aware of the general logic and the central idea behind this document.

1.2 Why a custom meshing algorithm?
There is plenty of commercial softwares that are able to create a three-dimensional
mesh starting from a 3D model, so it appears natural to wonder what is the need
to develop a custom meshing algorithm.
First of all, it is useful to point out the fact that such softwares are not open source
and, therefore, they are not very versatile in terms of user options.
Another aspect is the specific application that the tool will be used for: dynamic
analysis for gearbox components. These components, combined with this kind of
analysis, usually require extra care in mesh generation; this means that, when com-
mercial softwares are used, additional time is often spent in optimizing the mesh by
hand (i.e. nodes placement, connectivity change, and so on).
Hence, it appears clearer why the idea of a custom tool for mesh generation is appeal-
ing, as it may results in a major process optimization in terms of time consumption
and labor.
Moreover, as this tool is able to generate lighter meshes, not only we have a reduc-
tion in time spent to create the mesh itself, but also a reduction in computational
time during analysis.
Considering the convenient characteristics that have just been introduced, the objec-
tive of this thesis is the development of a tool that, starting from a two-dimensional

1

1 – General Introduction

geometry, is able to create a three-dimensional mesh with the highest possible num-
ber of hexahedral elements, which are the most suitable for this specific application.
The reason why the starting point is a two-dimensional geometry is that is much eas-
ier to achieve a full-quadrilateral (or at least an almost full-quadrilateral) mesh that,
after applying the proper transformations, can be converted into a three-dimensional
full-hexahedral (or almost full-hexahedral) one.
The environment that was chosen to develop this tool is MATLAB, mainly because
if this environment is properly exploited the whole process can be sped up thanks
to the logic behind the vector operations.

1.2.1 Applications
A tool such as this can find multiple applications, thanks to its high versatility. As
long as the final mesh can be obtained by transformation of a two-dimensional do-
main, the tool can be adapted to the case. In particular, it results to be particularly
efficient when the model is symmetric with respect to a certain axis (that is the
reason why it was developed for gearbox components).

1.3 Proposed achievements
Before the development process started, the objectives were discussed in such a way
to divide the overall process into a series of smaller steps. The following list presents
said steps:

1. Dividing the components in classes, so as to define the input parameters of
each individual one: the classes that were defined are general axis-symmetric
components, axial holes patterns, radial holes patterns, and transition regions.

2. Developing a 2D-meshing algorithm in MATLAB language: for this step a
pre-existing algorithm for Delaunay triangulation was exploited so as to focus
mainly on the transformation of the mesh into an all-quadrilateral one. The
algorithm logic used to achieve this step was inspired by an algorithm called
q-morph and it will be discussed later in a more detailed way.

3. Defining and developing the transformations to be applied to the two-dimensional
mesh; the required transformations are: rotation for the general axis-symmetric
solid, extrusion for flanges, and coordinates switch and projection for radial
holes patterns and transition regions.

4. Implementing a circular pattern in order to make it easier to create the mesh
for components that present a cyclic symmetry.

2

1 – General Introduction

5. Implement a function to erase and substitute nodes that are within a certain
tolerance one from the other: this function is required to "weld" multiple parts
of a component and perform the previously cited circular pattern.

1.4 Introduction of other chapters
Now, a brief summary of the following chapters, and why they have been organized
in such a way, will follow.
The first of the following chapters will be a brief theoretical introduction to FE
analysis: after a brief discussion on the role that it plays in engineering and an
overview of its equations, the attention will later be focused more on the mesh and
its classifications, discussing pros and cons of the different kinds.
After that, a deeper discussion on meshing algorithms will be required, as it is the
actual theoretical basis of the whole work. Also in this case, a general classification
will be introduced and then the attention will be focused on two algorithms, which
played the main role in the tool development: Delaunay triangulation first and q-
morph later. The last one will be treated much more in detail with respect to the
first one since the Delaunay triangulations represents just the starting point of the
tool.
Then, Chapter 4 will treat the actual tool development, defining the starting point
of the tool and the general logic behind the implemented algorithm.
The final chapter will introduce results and conclusion; in particular, test cases will
be presented, together with computation time, in order to show the factors that
mostly influence the tool’s performance.

3

Chapter 2

FEM analysis and Mesh

2.1 Introduction
In the following chapter, a general overview on FEM analysis will be provided,
focusing more on its importance in engineering-related fields than on the actual
equations on which it relies. After that, the main topic will be discussed: the
importance of the mesh and its general classification.

2.2 FE analysis
The term Finite Element Method comes from the main logic of the method itself:
a certain region of interest, which may refer to a fluid, a solid component, or more
in general to a region in space, is discretized into a set of smaller, simpler elements.
Then, fundamental equations are applied to each one of those elements depending on
the property that is being looked for (it can be the displacement, or the temperature,
the velocity of a fluid, et caetera). The solutions for equations on each element are
then combined in order to obtain the overall solution for the whole domain.
This method is very versatile and find application in a diverse range of problems: it
can be useful in structural analysis, as well as fluid flow analysis, and heat transfer
analysis (as well as many others). Of course the main interest for this thesis is
structural analysis of mechanical components.
Finite Element Analysis (FEA) refers to the practical application of FEM in a
certain problem. Such an analysis often requires a set of partial differential equations
(PDE) to be solved in order to obtain the approximation of the exact solution of
the problem. The aim of a good FEA is to reduce as much as possible such error
and, therefore, to obtain a solution that is as close as possible to the exact one.
The problem, since it is expressed as a set of partial differential equations, is usually
expressed in matrix form. Since, as said before, the main field of application of
this tool will be modal analysis for gearbox components, let’s take a look at the

4

2 – FEM analysis and Mesh

formulation of a linear static analysis of an elastic problem:

¯̄Aū = f̄ (2.1)

where ¯̄A is the stiffness matrix, ū is the displacements vector (which is the unknown
in the problem), and f̄ is the forces vector (which is the vector of known factors).
Of course, the previous equation can be more complex as additional factors (such
as damping) are taken into account.
The last thing that is worth pointing out is that, in order to be able to solve such
a problem, a set of well defined boundary conditions. There are different kinds
of boundary conditions and, depending on the property that they define, they are
classified as:

• Dirichlet boundary condition: the value of the variable of interest is well-
defined on the boundary;

• Neumann boundary condition: the partial derivative of the variable of inter-
est is well-defined on the boundary;

• Robin boundary condition: it is a combination of the previous two.

2.3 Mesh
In general, a mesh M can be defined as the discretization of a certain region of
interest (to which a certain geometry is associated) into a series of smaller, simpler
elements. The mesh is fully defined by a certain set of information, called a tuple.
More in detail, the information describe the vertices V and their connectivity Q in
such a way that each element of the mesh itself is fully defined. Formally, considering
a generic triangular two-dimensional mesh, it is expressed as:

M(V, Q) = ({v1, v2, v3}, {{v1, v2}, {v2, v3}, {v3, v1}}) (2.2)

in which the first set of vertices defines the element itself, and the other three couples
of vertices define the edges of the element.

2.3.1 Types of geometric domain
The first factor to be taken into account, when considering a meshing algorithm, is
the type of domain to be meshed. This characteristic concerns the boundary of our
region only, and not its internal portion.
The first distinction is made in terms of dimensions: it can either be two-dimensional
or three-dimensional. Since this thesis does not approach any 3D meshing algorithm,

5

2 – FEM analysis and Mesh

we will not include details on 3D domains.
When considering 2D domains, the four following types of geometries can be distin-
guished:

• Simple polygon: once a continuous set of edges is defined, the domain is the
region enclosed in it;

• Polygon with holes: similar to the previous one, but a certain internal portion
(or multiple portions) is not included in the domain;

• Multiple domain: it can be either a simple polygon or a polygon with holes,
with the addition of internal boundaries; this comes in handy when a domain
needs to be divided in multiple sub-domains with different geometric charac-
teristics (such as mesh refinement, et caetera);

• Curved domains: any of the previous options, with the addition of curved
sides.

Such a distinction is important in defining the limits of a meshing algorithm, in
terms of types of geometry.

2.3.2 Types of meshes
As the type of geometry is a characteristics of the boundary, the type of mesh regards
the disposition of nodes in the internal region and the way they are connected to
one another.
Three main types of mesh can be identified:

• Structured: the nodes disposition follows a well-defined pattern; the main
pros of this type of mesh are the fact that nodes are easily accessible and
their storage requires less memory, however it is not very versatile in terms of
geometry variability of the domain. In the following pictures, two examples of
structured meshes:

6

2 – FEM analysis and Mesh

(a) Cartesian grid (b) Curvilinear grid

Figure 2.1: Examples of structured grids

• Unstructured: in this case, nodes do not follow a predictable pattern, but at
the same time they adapt way more easily to different kinds of geometry. In
the following picture, an example of unstructured mesh:

Figure 2.2: Example of an unstructured grid

• Hybrid: this type of mesh is a sort of combination of the previous kinds; the
geometry is divided into sub-regions, whose disposition is unstructured, but
each sub-region is organized in a structured fashion.

7

2 – FEM analysis and Mesh

Figure 2.3: Example of a hybrid grid

2.3.3 Element Shape
Another important characteristic is element shape. The first thing that comes to
mind is, of course, the number of edges of the element (when referring to a 2D do-
main) or the number of faces (when referring to a 3D domain).
In 2D, the most common elements are triangles and quadrilaterals; they can be
usually combined in order to achieve a higher number of edges, such as pentagons.

Figure 2.4: 2D cell types

8

2 – FEM analysis and Mesh

In 3D, the most common elements are solid with four (tetrahedrons), five (triangle-
based prisms or square-based pyramids) and six (hexahedrons) faces. They can even
be generic polyhedrons, but they are not as common.

Figure 2.5: 3D cell types

Besides the number of edges or faces, the element shape is also characterized by a
factor called aspect ratio. There is no unique definition of such factor. For the scope
of this thesis, however, we will define the aspect ratio as the ratio of the largest to
the smallest width of the element, where width is defined as the distance between
parallel supporting hyperplanes.

2.3.4 Mesh topology
The last mesh characteristic that we are introducing is the mesh topology. According
to its topology, we distinguish two kinds of mesh:

• Single-block: in this case, the mesh as a whole presents the same characteristics
and there is no adaptation even in regions where it might be required to
generate well-proportioned elements.

9

2 – FEM analysis and Mesh

Figure 2.6: Example of a Single-block mesh

• Multi-block: in this case, instead, the mesh can be divided in different blocks
and this allows to the definitions of characteristics based on user’s needs.

Figure 2.7: Example of a Multi-block mesh

2.4 Conclusions
Summarizing, after having introduced the main characteristics that define a mesh,
we can define which one will be useful in our algorithm development:

• Type of geometric domain: for our particular case, we will consider a generic
polygon with holes; there is also the possibility to introduce a multiple domain
logic, but it was not used as it was not necessary.

10

2 – FEM analysis and Mesh

• Type of mesh: as we are dealing with a different set of geometries, we will
focus on the unstructured type of mesh, as it serves better our purpose.

• Element shape: in 2D we will take advantage of two shapes, triangle and
quadrilaterals. Triangles represent the first step in our mesh generation, as the
domain will first go through an algorithm called Delaunay triangulation; these
triangle will later undergo a series of geometric operations and transformations
that will convert them to quadrilaterals. In 3D, we will focus, instead, on
hexahedrons and triangle-based prisms, as they are obtained through a set of
geometric transformations of triangles and quadrilaterals.

• Mesh topology: at last, for our case, a simple single-block topology will be
enough, without needing a more complex multi-block one.

11

Chapter 3

Meshing algorithms

In this chapter, we will focus our attention on meshing algorithms. First of all,
we will start with the introduction of a triangulation algorithm, called Delaunay
triangulation. As this algorithm represents just the starting point of the tool, the
main attention will be focused on the q-morph. This is an indirect algorithm which,
starting from a given triangulation (obtained with the Delaunay one), will transform
the domain in a set of quadrilaterals, by applying a series of transformation.

3.1 Delaunay triangulation
In order to fully understand the logic behind this algorithm, we need to introduce
some theoretical concepts.

3.1.1 Empty Circle Property
Given a triangle, its circumcircle is defined as the unique circle passing through its
three vertices. A triangulation is defined as a Delaunay triangulation if and only
if the circumcircle of each triangle is empty; i.e. it does not contain any other
point of any other triangle. In Figure 3.1 we can see as, starting from four points,
we can connect them in order to form two triangles; however, only one of these
configurations can be considered a Delaunay triangulation.

12

3 – Meshing algorithms

(a) Delaunay triangulation (b) Not a Delaunay triangulation

Figure 3.1: Delaunay vs non-Delaunay triangulation

As we can see, in Figure 3.1a both circumcircles do not contain any other point,
while in Figure 3.1b both circumcircles contain an extra point which violates the
requirement of the Delaunay triangulation.

3.1.2 Four points property
Another important characteristics of this triangulation is given by the four points
property: for any four points in convex position and not laying on the same circle,
there is exactly one Delaunay triangulation. This property proves to be very useful,
if not fundamental, in every algorithm.

3.1.3 The algorithms
There is no unique way to generate a Delaunay triangulation, however all of the
algorithms share the following steps:

1. Placing nodes on the boundary

2. Placing nodes on the inner region

3. Optimize inner nodes placing

There are different approaches to perform the second and third steps, based on a
required value of mesh refinement:

• Nodes can be placed according to a series of structured grids, that are oppor-
tunely combined

13

3 – Meshing algorithms

• Nodes can be placed in successive layers, as a sort of advancing front starting
from the boundary

• Nodes can be placed according to a random distribution, in a way that "over-
populates" the region with internal nodes; nodes are then filtered out and
refined

Now that both internal and boundary nodes are placed, the actual triangulation
takes place. As stated before, there are different algorithms that are able to suc-
cessfully carry out the process and reach a Delaunay triangulation. Since they are
basically equivalent in terms of final results, we will go through an algorithm called
The Lawson Flip Algorithm.
Since this algorithm is an indirect one, it requires a preliminar step where a generic
triangulation is built. For this purpose, we will introduce the Scan Algorithm.

The Scan Algorithm A triangulation obtained by the Scan Algorithm usually
presents elements with a very poor aspect ratio; it is performed in the following way:

1. This algorithm starts by placing four nodes, three colinear and an extra one,
and by connecting the latter to the previous three.

Figure 3.2: First step of a Scan triangulation

2. Further nodes, surrounding the original connections, are added, according to
node density requirements, and connected to the "visible" ones; this means
that the new nodes are connected in such a way that new resulting edges do
not intersect old ones.

14

3 – Meshing algorithms

Figure 3.3: Further step of Scan triangulation

3. The process keeps going until the whole domain has been covered

Figure 3.4: Complete Scan triangulation

The Lawson Flip Algorithm Starting from the previously built triangulation,
the Lawson Flip Algorithm is a recursive process that proceeds as follows:

1. If any sub-triangulation in convex position that is not Delaunay is found, it is
replaced with the corresponding Delaunay one by performing a flip, as shown
in Figure 3.1;

2. Once a sub-triangulation has been "fixed", the search continues for another
one;

3. The process continues until all the sub-triangulations are substituted with the
corresponding Delaunay ones.

15

3 – Meshing algorithms

The overall result is much better with respect to the one obtained by the Scan
Algorithm, as it can be observed in Figure 3.5:

Figure 3.5: Complete Delaunay Triangulation

3.2 Q-morph
Now that the preliminar triangulation algorithm has been properly covered, the ac-
tual algorithm that is the fundamental logic of the developed tool can be accurately
described more in detail.
The Q-morph, similarly to the Delaunay algorithm, is an indirect algorithm that
requires a base triangulation to work with. It is defined as an advancing front
method, meaning that quadrilaterals are formed starting from the domain’s bound-
ary towards the inner region. Quadrilaterals are placed one row after the other until
the whole domain has been processed.
When defining the algorithm’s logic, it can be divided in the following steps:

1. Background mesh: as previously stated, the algorithm requires a back-
ground triangular mesh; this step represents an important one, since the final
size of the quadrilaterals will more or less match the one of the initial triangles;
hence it is important to properly design the characteristics of the triangulation.

2. Front definition: as it was said before, the method is called an advancing-
front method; this means that it is crucial to define the initial front. Of course
it can be easily defined as the set of edges that make up the boundary; this
translates as the set of edges which are part of only one triangle.

16

3 – Meshing algorithms

3. Front edge classification: now that the front has been defined, it needs to
be classified; edges are classified according to their state. The state of an edge
defines how the surrounding ones will be used in defining the quadrilateral; we
will see what this means more in details later.

4. Front edge processing: this is the step where the quadrilateral is actually
formed from the edge that is being processed. It is probably the most complex
and fundamental step. In fact, it can be divided into a series of sub-steps:

(a) Side edge definition: starting from the front edge, in order to form a
quadrilateral, two side edges are required; depending on the edge’s state,
none, one, or two side edges will have to be defined according to the
surrounding mesh. There are three main mechanisms to define a side
edge: it can be defined as an existing edge in the existing mesh; it can
be obtained by swapping diagonals; or it can be obtained by splitting an
existing edge.

(b) Top edge recovery: once the two sides are defined, the top edge must be
recovered; also in this case, there are two options: the top edge might
already exist in the background triangular mesh (in which case there is
no need of further operations) or there may be the need of a series of
swaps in order to recover it. The detailed mechanism will be explored
later.

(c) Quadrilateral formation: once the four sides of the quadrilateral are de-
fined, the last step is to delete from the mesh the triangles that are within
the quadrilateral itself, plus any residual edge and node.

(d) Local smoothing: a local smoothing is applied, in order to improve the
mesh quality in the region surrounding the newly formed quadrilateral;
there are different options to choose from, when talking about mesh
smoothing; the techniques that are used will be discussed more in de-
tail later.

(e) Local front reclassification: finally, the front is updated in the region
surrounding the newly formed quadrilateral and the state is updated (as
it may have changed due to the geometric transformations that were
applied in the process).

5. Topological clean-up: once all the quadrilaterals have been processed, the
mesh undergoes a topological clean-up; this operation consists in local change
of connectivity in order to improve the mesh quality.

6. Smoothing: a last global smoothing is applied.
Now some of the previous steps will be discussed more in detail, as they represent
a crucial point in the algorithm.

17

3 – Meshing algorithms

3.2.1 Front definition and classification
In Figure 3.6, the process of defining the state of a node on the current front is
shown. The state of a node can be either 0 or 1; given a generic node Nk and its
two consecutive front edges, its state is determined depending on the value of the
angle αk; this angle is the one formed by the mentioned front edges. The state is
hence determined as follows:

state =
1, if αk < 3

4π

0, if αk ≥ 3
4π

(3.1)

In the specific case represented in Figure 3.6, it is clear that the node is in state 0.

Figure 3.6: Node’s state definition

As the edges are defined by two nodes, their state can be Í00Í, Í01Í, Í10Í, or Í11Í.

(a) ’00’ (b) ’01’ (c) ’10’ (d) ’11’

Figure 3.7: Possible states of a front edge

18

3 – Meshing algorithms

3.2.2 Front edge processing
Among the different sub-steps that constitute this major point, the following ones
are those which require some additional explanation: side edge processing, top edge
recovery, and smoothing.

Side edge processing As previously stated, a node can be in a state that can be
either 0 or 1 and it defines whether the side edge must be recovered or not. In case
the node is in state 0, and hence it requires a side edge recovery process, different
options are available. Let’s first take a look at the general setup, and we will then
see which are the discriminant factors that lean towards an option rather than the
other.

General set-up We can observe a generic setup for the side edge selection in Fig-
ure 3.8; the node Nk is in state 0 and requires a side edge selection. As a first step,
being EF1 and EF2 the front edges that share node Nk, the vector Vk is built in such a
way that it passes through Nk and is parallel to the bisector of EF1 and EF2. We can
identify a certain tolerance angular region, by moving around Vk of a certain value Ô.

Figure 3.8: Side edge selection set-up

Now that the setup is clear, we can introduce the different options.

Edge selected from base triangulation In case an edge that already exists
in the base triangulation falls in the tolerance region around Vk, this very edge is
selected as the side edge; if there are multiple edges in this interval, the closest to
Vk is selected.

19

3 – Meshing algorithms

If the previous operation is not possible (i.e. no edge falls in the tolerance interval),
two options are available: the swap ans the split operations

Swap or Split In Figure 3.9, a situation where swap or split must be adopted is
presented.

Figure 3.9: Swap or Split

As we can see, there is no edge falling within the tolerance interval around Vk; in
this case, the following considerations are made: once E1 and E2 are found (they
are the edges that contain the vector Vk), the triangle that is adjacent to the one
delimited by the two edges is found; depending on the position of the furthest vertex
Nm of said triangle, swap or split are applied. More in detail, in order to perform
the swap operation, the following conditions must be met:β < Ô

ëNkNmë <
√

3ëEF 1ë+ëEF 2ë
2

(3.2)

where β is the angle between vector Vk and the vector going from Nk to Nm, and
ëNkNmë is the distance between Nk and Nm. If these conditions are met, then the
diagonal that intersects Vk is swapped in favor of the one going from Nk and Nm,
as it is shown in Figure 3.10.

20

3 – Meshing algorithms

Figure 3.10: Swap

If the swap operation cannot be performed, due to a violation of one of the previous
conditions, the split operation takes place. In this process, the edge that intersects
vector Vk is split at the intersection point Nn itself. This creates two additional
triangles, an additional point, and three additional edges, that need to be taken into
account in the future.
Figure 3.11 shows the result of such operation

Figure 3.11: Split

Top edge recovery Now that the side edges are defined, there is nothing left, in
order to have the four edges of our quadrilateral, than to recover the top edge. It

21

3 – Meshing algorithms

must be pointed out that this operation is not necessary and it is required if and
only if the top edge does not exist in the base triangulation already. In which case,
it is recovered by means of an iterative process.
In Figure 3.12, we can see a setup where the top edge recovery is required; in the
picture we can identify different elements: NC and ND are the ending nodes of our
side edges, the dashed line S is the line connecting the two nodes (i.e. the top edge
to be recovered) and E1,E2, E3, and E4 are the edges intersecting S.

Figure 3.12: Top edge recovery

The process to recover the top edge is summarized in the following points:

1. The set of edges En, intersecting S, is stored in a list;

2. The first edge of the list is selected, and the two triangles that it divides are
found;

3. The swap operation is performed;

4. The result of the swap operation is checked for consistency: it may happen
that the triangles become inverted or that the swapped diagonal still intersects
the line S;

5. If the swap operation is successful, the edge E is deleted by the list and the
next one is selected; otherwise, the edge is put in the last position of the list
and another edge is selected to attempt the swap;

6. the operation continues until the top edge is recovered or it fails multiple times;
in the last situation the top edge is not recovered anymore and the q-morph
proceeds with the processing of another front edge.

22

3 – Meshing algorithms

Figure 3.13: Top edge recovered

In Figure 3.13, the result of a successful top edge recovery is shown.
Since the quadrilateral-formation step is nothing but the elimination of the trian-
gles, nodes, and edges that are within the four edges, we will pass directly to the
smoothing process.

Smoothing Smoothing is essential to bring the mesh back to an acceptable con-
dition, after it gets altered by the series of geometric transformations required to
form a quadrilateral. However, depending on each node’s specific connectivity, a
different kind of smoothing is applied. In particular, we distinguish two different
kinds of nodes: inner/outer nodes, and front nodes.
For the first class of nodes, a simple Laplacian smoothing is preferred, since it is
not computationally expensive and it gives good results. For the second kinds of
nodes, however, a simple Laplacian is too generic and does not provide certain cru-
cial characteristics to the final result; therefore a very specific smoothing process,
called modified isoparametric smoothing, is preferred.

Laplacian smoothing This kind of smoothing is applied to the nodes that are not
locate on the current front. It is relatively fast and it is able to reach convergence in
a few iterations. This process tends to move nodes to the centroid of the surrounding
ones. If a certain node Nk is connected to a number of nodes m, then the Laplacian
smoothing calculates the new position of point Nk as:

þPNk
=

Pm
i=1

þPNi

m
(3.3)

where þPNk
is the vector corresponding to the position of node Nk and, similarly, þPNi

is the vector corresponding to the position of the nodes connected to Nk.

Modified isoparametric smoothing With respect to a simple Laplacian smooth-
ing, this alternative method is way more complex, as it tries to provide additional
characteristics to the final result; in particular, the reason why this method is ap-
plied to the nodes on the current front is that it is able to move nodes in such a

23

3 – Meshing algorithms

way that it create well-proportioned quadrilaterals and a smooth continuous front,
at the same time. This method is applied to the nodes that are on the current front
and are in contact with exactly two quadrilaterals. Let’s go step-by-step through
this process.

1. Isoparametric smoothing: the first step is calculating the change in position
the the node would undergo, if a simple isoparametric smoothing was applied.
Let’s suppose that a certain node Nk, with position þVk, is surrounded by a
number n of quadrilaterals. The position given by its isoparametric smoothing
is given by:

þVkÍ = 1
n

nX
m=1

(þVmj + þVml − þVmz) (3.4)

where þVmj and þVml are the positions of the nodes that are directly connected
to Nk, and þVmz is the position of the node that is diagonally opposed to Nk.
Therefore, we obtain a theoretical change in position equal to:

∆A = þVkÍ − þVk (3.5)

2. Length adjustment: we now calculate a modified value of ∆A, based on the
following formula:

∆B = þVj − þVk + (∆A + þVk − þVj)
lD
lA

(3.6)

where lA is the length of the edge ¯NkNj if the isoparametric smoothing was
applied, and is calculated as:

lA = ë þViÍ − þVjë, (3.7)

lD is an ideal length of ¯NkNj, based on the characteristics of the surrounding
mesh, and calculated as:

lD = ë þVk−1 − þVj−1ë + ë þVj−1 − þVjë + ë þVk+1 − þVj+1ë
4 + n

+

+ë þVj+1 − þVjë + Pn
i=1ë þVk − þVtië

4 + n
(3.8)

and þVj is the position of the node behind the front and connected to Nk. In
order to fully understand of the previous formulas, Figure 3.14 can provide an
easy reference:

24

3 – Meshing algorithms

Figure 3.14: Length adjustment - Modified isoparametric smoothing

3. Angular adjustment: the following adjustment is probably the most complex,
since it consists in a series of angles and intersection calculations. It is calcu-
lated as:

∆C = þ
PB2 − þPk (3.9)

While þPk is just the vector connecting Nk to Nk, in order to explain what þPB2 is
and how it is calculated, it is necessary to introduce a graphic representation:

Figure 3.15: Angular adjustment - Modified isoparametric smoothing

First of all, the vectors þPk−1, þPk, and þPk+1 are calculated as the vectors which
go from Nj to respectively Nk−1, Nk, and Nk+1. Then, the vector þPB1 is
obtained by positioning its tail on Nj and orienting it in the direction of the
bisector of the vectors þPk−1 and þPk+1. The angle of vector þPB2 is obtained

25

3 – Meshing algorithms

by positioning its tail on Nj and orienting it in the direction of the bisector
of vectors þPk and þPB1. Finally, the point Q is determined as the intersection
between þPB2 and the line connecting Nk−1 and Nk+1. The norm of þPB2 depends
on lD and lQ:

ë þPB2ë =

lQ+lD

2 if lD > lQ

lD otherwise
(3.10)

where lQ is the distance between Nk and Q.
We can now define the angular adjustment as:

∆C = þPB2 − þVk (3.11)

4. Modified isoparametric smoothing: the actual variation in position is finally
calculated as an average between the length adjustment and the angular ad-
justment:

∆k = ∆B + ∆C

2 (3.12)

Even though, as it can be seen, this method requires much more calculations with
respect to the simple Laplacian, it is also true that it requires less iterations to reach
convergence, and the nodes that requires it are much fewer than the common ones.

Front reclassification The formation of a new quadrilateral introduces the ne-
cessity to update the front information: in particular, both edges’ connectivity and
nodes’ state must be updated. We can see in Figure 3.16 how the front changes
after a quadrilateral is formed.

(a) Before (b) After

Figure 3.16: Front before and after a quadrilateral is formed

First of all, we notice that three new edges are introduced in the front: in Fig-
ure 3.16a, edge NANB is part of the front; in Figure 3.16b, the edge NANB is
substituted by three new ones (NAND, NDNC , and NCNB). Second, the state of

26

3 – Meshing algorithms

nodes NA and NB passes from Í0Í (as the angle between the subsequent edges is
roughly π) to Í1Í (as the angle becomes roughly π

2). Finally, two new nodes are
introduced in the front (ND and NC) and their state is Í0Í (as the angle between the
edges is roughly 3

2π).

3.2.3 Front closing
One of the most appealing algorithm of the 1-morph algorithm is that it is able to
ensure an all-quadrilateral mesh, as long as the number of edges on the initial front
(i.e. the boundary of the domain) is even. In case this condition is not met, the
algorithm generates necessarily a single triangle.
However, even if the starting number of edges is even, in order to get the promised
final result, extra care must be provided during side edge selection. It might happen
(it actually always happens sooner or later during the process) that the edge, selected
as the side edge, has the ending node on the same loop (a continuous, unbroken line
of edges on the front) as the one on which the front edge is located. For a better
understanding, let’s take a look at Figure 3.17:

(a) Before split (b) After split

Figure 3.17: Front closing

Node Nk requires the definition of a side edge, as it is in state Í0Í. If the edge selected
as a possible side edge is Ek with the ending node Nm located on the same front,
the following consideration must be made: If Nk and Nm are not on the same loop,
then there is no problem and the edge is selected; however, if they belong to the
same loop, it means that the selection of k as side edge will cause the unbroken loop
to break down into two sub-loops (Loop 1 and Loop 2). Now, in order to ensure a
final all-quadrilateral mesh, the number of edges on both resulting loops must be

27

3 – Meshing algorithms

even. If they are not even, edge Ek is split at its midpoint as in Figure 3.17b.
It is worth to point out the fact that, in such situations, it might happen that the
edge that intersects the bisector during the side edge selection (the one named E0
in Figure 3.8) is an edge on the current front. As such, since the swap or split
operations would compromise the front itself, a larger value of Ô is selected so that
it is more likely to select an edge from the base triangulation.

3.2.4 Special cases
The logic that was described up to now is just a general set of instructions that
the algorithm follows in order to process triangles into quadrilaterals. However,
there might be some cases that require special attention and a more specific set of
instructions in order to process them. We distinguish three different special cases:
seaming, transition seam, and transition split. Let’s introduce first the factors that
determine when such cases come into play.

• Smallest tolerable angle (Ô): if the angle between two consecutive edges on
the front is smaller that Ô, seaming is applied; there are two different values
for Ô, and whether one or the other is considered depends on the number of
quadrilateral that the central node shares.

• Maximum length ratio (rmax): if the ratio between the length of two consecu-
tive edges on the front is greater than rmax, either transition seam or transition
split is applied.

• Number of quadrilaterals (nQ): the number of quadrilaterals in contact with a
node on the front determines the value of epsilon that must be considered for
special cases application. In particular we usually have:

Ô =
Ô1 if nQ > 5

Ô2 otherwise
(3.13)

with Ô1 < Ô2.

Seaming Being α the angle between two consecutive edges on the front, and r the
ratio of lengths between the same two edges, the seaming operation is performed
when the following conditions are met:α < Ô

r ≤ rmax
(3.14)

28

3 – Meshing algorithms

(a) Before seaming (b) After seaming

Figure 3.18: Seaming

In Figure 3.18a, we can see a situation where seaming is required. The angle α,
corresponding to the central node Nk is smaller than the limit Ô and the ratio r does
not exceed the limit value rmax. The operation proceeds in the following way:

1. Considering a counter-clockwise ordering of the nodes on the front, the node
immediately before and immediately after the central one are found (respec-
tively Nk−1 and Nk+1, and so is the edge E0 connecting the two.

2. If edge E0 does not already exist in the base triangulation, it is recovered with
a mechanism that is very similar with the one used to recover the top edge.

3. The new position of node Nk+1 is calculated at the midpoint of E0.

4. The triangles included in the region delimited by Nk, Nk+1, Nt, and Nk−1,
as well as the nodes and the edges, are deleted from the triangulation. In
addition, also the edges NkNk−1 and Nk−1Nt are deleted, and the connectivity
is modified in such a way that any residual edge connected to Nk−1 results
now connected to Nk+1.

5. Finally, smoothing is applied locally.

The final result of seaming can be observed in Figure 3.18b.

Transition seam When the following conditions are met, transition split is per-
formed: α < Ô

r > rmax
(3.15)

29

3 – Meshing algorithms

(a) Before transition seam (b) After transition seam (c) After quad formation

Figure 3.19: Transition seam

In Figure 3.19a, we can observe a situation where transition seam is required. In
particular, the main difference between this operation and a normal seaming is that
we are also able to deal with the transition of edge length between consecutive edges
and smooth it out. The operation proceeds as follows:

1. As before, nodes Nk−1 and Nk−1 (and therefore edges EF1 and EF2) are found
as the node immediately before and immediately after the central one Nk.

2. The longest edge (in this case EF1) is split at its midpoint Nk− 1
2
. This cause the

formation of two new triangles: one given by splitting the triangle in contact
with the long edge, and the other formed by portioning the quadrilateral in
contact with the same edge.

3. Once we reach the situation shown in Figure 3.19b, the front is processed by
considering EF as the front edge and EFL and EFR as side edges.

4. Finally, the mesh is locally smoothed.

We can observe the condition of the mesh, after the quadrilateral is formed and the
mesh is smoothed, in Figure 3.19c.

Transition split The conditions required for the transition split to happen are
the following ones: α ≥ Ô

r > rmax
(3.16)

30

3 – Meshing algorithms

(a) Before transition split (b) After transition split (c) After quad formation

Figure 3.20: Transition split

in Figure 3.21, the transformation which the mesh undergoes during transition split
is shown. As we can see, a more smooth transition is required between consecutive
edges, but the angle that they form is way too large to perform the transition seam.
The process can be divided in the folloqing steps:

1. As usual, the nodes immediately after and immediately before the central one
are found (Nk+1 and Nk−1 respectively).

2. Two new nodes are added to the mesh: the first one is obtained by splitting
the long edge (in this case EF1 at its midpoint), and the other is positioned
at the centroid of the quad in contact with the long edge.

3. As a result, two triangles and a quad are also added: one of the triangles
come from the splitting of the triangle in contact with the long edge, while the
quadrilateral and the other triangles come from the splitting of the quadrilat-
eral that is in contact also with the long edge.

4. Then, the front is processed by considering EF as the front edge, and EFL and
EFR as side edges.

5. The mesh is locally smoothed.

In Figure 3.20c, the mesh after the whole process can be observed.

3.2.5 Topological clean-up and final smoothing
The final step is represented by an operation called topological clean-up. During this
process, nodes and connectivity are changed throughout the whole mesh in order
to reduce as much as possible the number of irregular nodes; by definition, in a
quadrilateral mesh, a node is said to be irregular when it is connected to a number
of nodes different from four.
There is a very diverse series of operations that actually take place during clean-up.

31

3 – Meshing algorithms

However, in the actual implementation, only one specific case was considered in
order to reduce time consumption (usually a full cleanup requires as much time as
full algorithm right before it is executed). The set of operations that are performed
depends on the classification of the nodes. The nodes are classified according to
their surrounding and their connections.
First of all, let’s take a look at how the nodes are selected as eligible for a possible
cleanup:

(a) Neighboring definition (b) Node’s valence

Figure 3.21: Clean-up nodes classification

In Figure 3.21a, we consider e general node internal to the mesh c. We define the
edges that are directly connected to the node as neighboring edges (in this case e0,
e1, e2, and e3). We define the nodes surrounding the central node as neighboring
nodes (in this case all nodes from n0 to n7); it is worth noticing that a node can be
defined as a surrounding one even if it is not directly connected to c.
Now, we define the valence of a node as the number of quadrilaterals that the node
itself shares. If a node’s connectivity and position can not be changed during the
process (i.e. boundary nodes) they are assigned the arbitrary value of 0.
In Figure 3.21b a practical example is shown: we have a central node connected
to four quadrilaterals and it is surrounded by various irregular nodes. A certain
"identification tag" will be attached to the node itself, and it will be defined in
the following way: the first number is the valence of the central node; then, after a
dash, the valences of the neighboring nodes are reported in a counterclockwise order.
Therefore node c will have the following classification: 4 − 43545000.
The classification is fundamental in defining the operations that will be performed
on the node and its surrounding, as the clean-up process is based on looking for
well-known patterns (identified by a specific tag) and acting on them. We will now
introduce the only case that is considered in the tool during the cleanup step.

32

3 – Meshing algorithms

Two-edge node elimination In Figure 3.22, an example of such a case is pre-
sented. The central node c is connected to exactly two edges and shares exactly two
quadrilaterals. Its classification is 2−4444; however in general, this kind of clean-up
is applied to any node whose classification is 2 − xxxx.

Figure 3.22: Two-edge nodes elimination

The mesh is processed in the following way (in the region surrounding the central
node):

1. The central node is erased, as well as one of the two quadrilaterals.

2. In the residual quadrilateral, the central node is replaced by n2.

3. Finally, the two edges connected to the central node are also erased, and
smoothing is applied locally.

The reason why this case was the only one considered during cleanup is that it
is quite easy and fast too individuate in the mesh, and it also removes critically
misshaped quadrilateral elements (which are basically triangles before the cleanup
is applied).

3.3 Conclusions
The two algorithms that were introduced in this chapter (i.e. the Delaunay triangu-
lation and the Q-morph) are at the basis of the developed tool; they work back to
back, as the domain first undergoes a process of triangulation, and then is processed
according to the q-morph algorithm.
Since the triangulation will be performed by a pre-existing tool, the main atten-
tion will be focused on the q-morph implementation in MATLAB environment. In
particular the next chapter will explain in general the development process for our
specific application.

33

Chapter 4

Tool development

The need for this tool derived from the necessity to create meshes for gearbox com-
ponents. Hence, a very specific set of components were identified, and the input
parameters for each one of them were defined. Even though the developed tool is
able to basically mesh any two-dimensional domain, the kinds of three-dimensional
transformations in order to reach a 3D mesh are specific and differs for each class
of components.

4.1 Pre-existing gears meshing tool
A previously developed tool had the task to create meshes for gears, given a certain
set of input parameters that fully define the gear’s geometry and its mesh refine-
ment. The tool is able to create meshes for spur, helical, and conical gears by
dividing the tooth’s section in ordered regions (either three or five depending on
the gear’s characteristics), and meshing them individually according to a structured
grid. Three-dimensional transformations are then applied in order to pass from a
simple 2D section to the full 3D tooth first, and to the whole gear later.
The algorithm follows a completely different logic with respect to the ones that were
introduced in Chapter 3, as the mesh does not share compatible characteristics with
their process: first of all the mesh is structured, so it relies on the fact that a well-
known geometry will be given as an input; second, the algorithm is not able to deal
with domains with holes (according to the definition introduced in Chapter 2).
Therefore it is a very specific tool that performs a very specific task, with variability
sufficient enough to span across a various set of input parameters, that changes the
actual dimensions of the mesh but does not affect its topology.
In order to provide a clear picture of the interaction between this tool and the
newly-developed one, it is worth to introduce the input parameters for a gear.

34

4 – Tool development

Geometric parameters:

• Number of teeth z

• Module mn

• Pressure angle α

• Tip diameter dtip

• Root diameter droot

• Fillet type fillet

• Circular tooth thickness tp

• Width w

• External/Internal diameter die

Mesh parameters:

• Number of elements on the profile
Nprofile

• Number of elements on the fillet
Nfillet

• Number of elements on upper rim
Nrim−top

• Number of elements on lower rim
Nrim−bottom

• Number of elements on the root
Nroot

• Number of elements along the
width Nwidth

4.2 New tool
Of course the gear is just a small part of the whole component whose mesh is
required. The objective of this newly developed tool is to create the remaining parts
so that they can be opportunely merged together and obtain the final, fully-meshed
components. It is necessary for the two tools to interact with one another.
First of all, it is important to specify which kind of component is treated and how
we will divide it in its individual parts. The tool is applied to gearbox components,
in particular to shafts. Usually a shaft can be divided in such a way that two classes
of parts are found:

• Axis-symmetric solids: generic portions of the shaft that can be obtained by
revolving a section around the main axis;

• Cyclic-symmetric solids: a portion where a specific feature follows a circular
pattern and is repeated along the whole circumference.

However, defining just a generic cyclic-symmetric solid is not enough; an additional
distinction is required, depending on the feature to be repeated along the circum-
ference:

• Axial holes pattern: components that present holes in the axial direction;

• Radial holes pattern: components that present holes in the radial direction.

35

4 – Tool development

They differ in the set of input parameters and the way they are processed in 3D.
Therefore we will deal with three different mesh categories: axis-symmetric solids,
axial holes patterns, and radial holes patterns. For each one of them, the required
geometric parameters will be introduced, as well as a whole series of parameters
that affect the processing logic depending on how they are set. Since this last set
of parameters is shared by each class, even though the actual values change, we will
introduce them first.

4.2.1 Q-morph "tuning" parameters
These factors, which influence the way the algorithm process the front, are basically
the parameters that were introduced in Section 3.2.2 and Section 3.2.4:

• βlim: it was noticed that limiting the value of the bisector to a certain maxi-
mum helps having well-shaped quadrilaterals; selecting a value that is too close
to π

2 , however, increases the chance of applying swaps or splits, and locally af-
fects the quality of the mesh. Leaving the value without constraint increases
the risk of creating badly-shaped elements in correspondence of acute angles.

• ∆Ô1: this value represents the tolerance around the bisector for the selection
of the side edge; an higher value increases the chance of selecting an edge that
is not appropriate for the front edge that is being processed (similar to leaving
no constraint to the bisector angle); on the contrary, selecting a value that is
too low increases the chance of performing split operations and it would affect
locally the quality of the mesh.

• ∆Ô2: the value of tolerance that is used in case we are not able to perform
swap or split operations; the effects are basically the same as for ∆Ô1, with
the difference that selecting an high value of ∆Ô2 reduces the chances for the
algorithm to get stuck.

• rmax: the maximum acceptable ratio of consecutive edges’ lengths; selecting a
value that is too low would increase the risk to perform transition splits one
after the other in the same region. This would cause some regions of the mesh
to have an abundance of nodes and elements that are not properly sized with
respect to the rest.

• Ô1: not to be confused with ∆Ô1, this is the angle considered for special cases,
when the number of quadrilaterals in contact with the node is larger than five;
a value that is too low would increase the chance to create elements with the
shape of a rhombus, where a seaming would have probably fit better; on the
contrary, a value too high would increase the risk to generate badly shaped
quadrilaterals.

36

4 – Tool development

• Ô2: not to be confused with ∆Ô2, this is similar to Ô1 but for nodes that are in
contact with a number of quadrilaterals that is smaller than or equal to four;
the effects are similar to the ones of Ô1.

Proper examples of the effect on the resulting mesh will be given for each specific
class, therefore motivating why certain values works better for certain geometries.

4.2.2 Axis-symmetric solids
This is probably the class of components that can be either the most complex or the
easiest. This is due to the fact that basically we can have any kind of geometry, with
a series of complex features. No matter how complex the domain gets, it should not
be a problem for the tool as it relies on algorithms that very easily adapt to any
shape and element’s size.
The input parameters for this class is given in the form of two matrices:

• Nodes matrix N : this is an Nx2 matrix in which each row represents the x-y
coordinates of each node on the domain’s boundary.

• Edges matrix E: this is an Ex2 matrix in which each row represents an edge
of the domain; in particular each row contains two indeces, which refer to the
rows of the N matrix which contain the coordinates of the endpoints of the
edge itself.

Figure 4.1: Input for an axis-symmetric solid

In Figure 4.1, a representation of the input matrices N and E can be observed.

(a) After Delaunay (b) After q-morph

Figure 4.2: 2D mesh of a generic axis-symmetric input

37

4 – Tool development

In Figure 4.2, the actual mesh-generating process is represented; in particular the
effects of both main steps are clearly visible: first the Delaunay triangulation dis-
cretizes the domain into a series of triangles, as shown in Figure 4.2a, then the
q-morph performs the transformations in order to obtain a quadrilateral mesh, as
shown in Figure 4.2b. It is also worth noticing that the number of edges on the
domain’s boudnary is odd and, hence, a single triangle was generated as imposed
by the algorithm’s logic.
Once the two-dimensional domain is fully meshed, the solid is obtained by a simple
rotation around the main axis. In order to define the angular spacing between the
consecutive rotations of the original mesh, the following parameter is required:

• Number of slices along the circumference Nc: this defined in how many slices
the components will be split; hence it defines how many times the original mesh
will be repeated and the angular spacing between consecutive repetitions.

• Twist angle β: it might happen that the components is required to be merged
with a gear that is either helicoidal or conical, and hence its profile needs
to follow the twisted profile of the teeth. In order to do so, the angle β (in
addition to two axial coordinates) is provided.

(a) View a
(b) View b

Figure 4.3: 3D mesh of an axis-symmetric solid

In Figure 4.4, the fully-meshed 3d component is shown in two different views.
The following pictures show the effect of the input parameter β.

38

4 – Tool development

(a) β = 0 deg (b) β = 15 deg

Figure 4.4: Same solid with and without twist

4.2.3 Axial Holes pattern
Differently from a generic axis-symmetric solid, axial holes patterns rely on a more
standard kind of geometry that can hence be obtained by a series of input param-
eters. In particular, the characteristics that are required for the definition of a
geometry are:
Geometric parameters:

• Thickness t: this parameters determines the axial thickness of the component;

• Internal radius ri and external radius ro: considering the circular crown, this
two parameters define its boundary;

• Radial position of the hole rh: this parameter determines the circumference
along which the centers of the holes lay on;

• Radius of the holes rhole: determines the radius of the holes;

• Number of holes Nhole: this parameters defines how many holes will be placed
on the circular crown; it also defines the angular region that will be meshed in
2D and, hence, how many times the feature will be repeated along the circular
crown.

Mesh parameters:

• Radial number of elements Nr: this parameter defines how many elements will
be placed on the boundary along the radius (i.e. on the segment connecting
the inner circle with the outer circle);

• Number of elements of the inner Nri and external radius Nro: these two param-
eters define how many elements will be placed on the boundary, respectively
on the inner and outer circumferences of the circular crown;

39

4 – Tool development

• Number of elements on the holes Nh: determines how many elements will be
placed on the circumference of each hole;

• Number of axial slices Nt: the number of slices that the flange will be divided
in, along its thickness.

Figure 4.5: Input parameters of a flange

The flange is a very effective example that shows the actual potential of the 2D
meshing algorithm; it is a domain that presents two initial boundaries, an internal
and an external one, and it is managed with no problem by the q-morph.

40

4 – Tool development

(a) After Delaunay (b) After q-morph

Figure 4.6: 2D mesh of a flange’s portion

In Figure 4.6, the effect of the algorithm on the portion of a generic flange is observed.
The triangular domain is shown in Figure 4.6a, while the final quadrilateral result is
shown in Figure 4.6b. Also in this case, the initial number of edges on the boundary
was odd and, hence, as a result a single triangle was generated.
Once the two-dimensional section is fully meshed, the transformation that is applied
is nothing more than a simple extrusion. The 2D section is repeated for a number
of times equal to Nt, each time opportunely spaced in order to cover the entire
thickness of the flange.

41

4 – Tool development

Figure 4.7: 3D mesh of the portion of a generic flange

Finally, in order to cover the whole circumference, the single feature is repeated
following a circular pattern.

(a) View a (b) Particular

Figure 4.8: 3D mesh of a full flange

In Figure 4.8, the result of the full process to generate the mesh of a flange is shown.
It is interesting to notice that the triangle, that was generated in the two-dimensional
mesh elaboration, has now become a series of triangle-based prisms (highlighted in
red in Figure 4.7, while in blue in Figure 4.8.
When applying the circular pattern, there is only one issue: the nodes at the in-
terfaces overlap one with the other. This needs to be taken care of; however, since
the mesh is an unstructured one, and nodes do not follow an predetermined order.

42

4 – Tool development

Fortunately it is well known where the duplicated nodes will end up in space and,
hence, they will be opportunely selected by spacial filtering and deleted. Of course,
it is also necessary that the deleted nodes are replaced by their original counterparts.

4.2.4 Radial holes pattern
Radial flanges are probably the most simple domain that the tool will have to deal
with. They are similar to simple flanges, in the fact that they are geometries with
holes, with the addition that the outer boundary is a simple rectangle and not a
mix of straight lines and circumference arches.
The input parameter in order to fully define their geometry are:

• Axial length L: determines the

• Internal ri and external ro radius: They define the internal and external cylin-
drical surfaces that delimit the radial flange; their difference of course gives
the radial thickness of the component;

• Axial position of the holes Lh: determines the axial distance of the circumfer-
ence on which the centers of the holes lay;

• Holes radius rh: determined the radius of each holes;

• Number of holes Nhole: defines the number of times that the single hole is
repeated along the circumference; this also defines the angular region that the
single feature occupies.

Mesh parameters:

• Number of elements along the axial direction NL: this parameter defines how
many elements will be placed at the interface between consecutive portions of
the flange;

• Number of circumference elements Nc: defines how many elements will be a
part of the circumference arches that delimit the flange along the axis;

• Number of elements along the radius Nr: defines in how many layers will be
divided the flange, in the radial direction (similar to Nt for the simple flange);

• Number of elements on the holes Nh: defines in how many elements each single
hole’s circumference will be divided in.

43

4 – Tool development

Figure 4.9: Input parameters of a radial flange

In Figure 4.9, a certain dimension is labeled as C, even thoud this is not an input
parameter, it is derived frome them as:

C = 2π

Nholes

ro (4.1)

and it is the length of the arch of a single portion of the radial flange.

44

4 – Tool development

(a) After Delaunay (b) After q-morph

Figure 4.10: 2D mesh of a radial flange’s portion

In Figure 4.10, the final result of the two-dimensional meshing process is shown. As
it can be noticed, the final mesh results to be quite regular, but it still presents some
irregularities due to the different shape and number of edges on the two initial loops.

After the two-dimensional mesh is obtained, in order to transform it to the three-
dimensional component, the following ordered set of geometric transformations is
applied:

1. First a change of coordinates is performed in order to transform the flat domain
to a portion of a cylindrical surface;

2. Then, points are projected towards the central axis; each projected set of nodes
will be equally spaced along the radial direction in such a way to divide the
whole thickness of the component according to the input parameter Nr;

3. The single portion is then repeated according to a circular pattern in order to
cover the whole circumference.

45

4 – Tool development

Figure 4.11: 3D mesh of the portion of a generic radial holes pattern

(a) View a (b) Particular

Figure 4.12: 3D mesh of a full radial holes pattern

46

4 – Tool development

4.3 Merging the parts
Once each component is fully meshed, they require to be bonded together. In order
to achieve a proper merging of the different parts, it is crucial to provide the right
information: a segment in space for each component must be defined so that the
relative coordinates at which the bonding happens is determined; also the kind of
bonding must be defined as we can have two different cases: equivalence or transition
mesh. Figures will be shown for each specific example in order to make it clearer.

4.3.1 Equivalence
The term equivalence is used when referring to the process of deleting, or more
properly merging, nodes that are within a certain tolerance distance one within the
other in such a way that there are not overlapping or interfering geometries. When
two parts are to be joined at a specific interface, there will be a whole set of nodes
defined in both meshes, with a different index but with the same position in space.
Duplicated nodes must hence be erased and the reference indices in both meshes
must be properly updated.
As it was said before, since meshes are built according to a non-structured algorithm
and hence nodes do not follow a pre-determined order, in order to properly identify
overlapping nodes, without consuming too much time in the process, the nodes of
both meshes are first filtered according to their position in space. In this way the
amount of data to be processed is much liter with respect to the complete mesh.
The overlapping nodes are then erased and references are updated.
In the following example, a flange and an axis-symmetric solid are to be merged: the
merging surface of the flange is its internal cylindrical face, while the axis-symmetric
solid will be merged on the most external cylindrical surface.

(a) Merging surface of the flange (b) Merging surface of the axis-symmetric

Figure 4.13: Reference surfaces for equivalence

The outcome of the operations is shown in Figure 4.16:

47

4 – Tool development

Figure 4.14: Equivalence outcome

In order to prove the effectiveness of the equivalence, the change in number of nodes
is calculated and compared to the expected one. The feedback is also visual as the
component does not present any flaws of gaps, even though a set of nodes has been
erased from the mesh. This also proves that the updated references to the nodes’
IDs was successful.

4.3.2 Transition mesh
The situation becomes more complex when a transition mesh is required. As it was
said before, the solids that are being generated are either axis-symmetric or cyclic-
symmetric; this means that each one of them will present a specific periodicity. As
a result, it may happen sometimes (quite often actually) that the number of nodes
along the circumference of a certain part differs from the one of the part it must be
joined with. To solve this situation, a transition mesh is created.
Since the solution to the problem is not easy, not in a way to be universally valid
at least, the following one was proposed as long as a specific condition is respected:
it is required that the number of radial slices on the two portions to be joined is
equal. In this way a strategy that is similar to the one used to generate the radial
holes patterns is used:

1. First the number on nodes along both circumferences is calculated;

2. Then the greater common divider of the two numbers is found, so that the
meshing algorithm is not applied to the whole surface but only to a small
portions of it;

3. The surface to be meshed is built and then processed;

48

4 – Tool development

4. The mesh is then treated exactly as in the radial holes pattern: first there is
a change in coordinates in order to adapt the planar domain to the original
surface, then the two-dimensional mesh is projected in order to obtain the
single three-dimensional portion of the transition mesh, and finally a circular
pattern is applied in order to cover the whole circumference.

The risk of this solution is that it might happen that no common divider (other
than one) is found and, hence, the whole cylindrical surface needs to undergo the
2D meshing algorithm. This would cause the total computational time to increase.
However, since such a situation is quite rare, it is acceptable.

(a) Merging surface of the axis-symmetric (b) Merging surface of the radial holes

Figure 4.15: Reference surfaces for transition mesh

Once the parameters have been determined, the domain of the transition mesh can
be assembled:

Figure 4.16: Domain of the transition mesh

The domain is then processed as usual:

49

4 – Tool development

(a) After Delaunay (b) After q-morph

Figure 4.17: Processing the transition mesh

The 2D outcome results to be quite distorted and with a poor elements’ quality;
this is due to the fact that the upper and the lower edge are made by a different
number of edges, while they have the same length.
Once the two-dimensional mesh is ready, the three-dimensional transformations are
obtained, as well as the circular pattern.

(a) Single portion (b) Full transition mesh

Figure 4.18: Final transition mesh

Finally, the transition mesh is implemented in the geometry. The mesh is first
properly moved in space in order to match the surfaces that it must join together.
Then, the equivalence is applied on both surfaces in order to remove overlapping
features ans avoid interference.

50

4 – Tool development

Figure 4.19: Implemented transition mesh

4.4 Test case
In order to prove the correct functioning of the tool, a simple test case was designed
in such a way that each function was properly tested; the test case is made up by the
following parts: a flange, a radial holes pattern, two axis-symmetric pieces, and a
spur gear. The merging techniques are also tested: both equivalence and transition
are introduced in the case. This test case also proves the correct interaction between
the two distinct tools: the one that was developed for this thesis, and the one for
gears’ meshes.
In order to avoid repeating the previous steps, after the input parameters for each
component will be provided, the geometry of each piece will be shown directly.

51

4 – Tool development

4.4.1 Flange

Table 4.1: Flange input parameters

Geometry parameters
t [mm] 5
ri [mm] 140
ro [mm] 160
rh [mm] 5
rhole [mm] 150
Nhole [-] 20

Mesh parameters
Nr [-] 20
Nri [-] 44
Nro [-] 51
Nh [-] 32
Nt [-] 5

Figure 4.20: Flange - particular

4.4.2 Axis-symmetric 1

Figure 4.21: Axis-symmetryc 1

Table 4.2: Axis-symmetric 1 mesh input
parameters

Mesh parameters
Nc [-] 880
β [deg] 0

52

4 – Tool development

Figure 4.22: Axis-symmetric 1 - particular

4.4.3 Radial holes pattern

Table 4.3: Radial holes pattern input parameters

Geometry parameters
L [mm] 15
ri [mm] 120
ro [mm] 124
Lh [mm] 7.5
rh [mm] 5
Nhole [-] 20

Mesh parameters
NL [-] 15
Nc [-] 39
Nr [-] 5
Nh [-] 32

53

4 – Tool development

Figure 4.23: Radial holes pattern - particular

4.4.4 Axis-symmetric 2

Figure 4.24: Axis-symmetryc 2

Table 4.4: Axis-symmetric 2 mesh input
parameters

Mesh parameters
Nc [-] 880
β [deg] 0

54

4 – Tool development

Figure 4.25: Axis-symmetric 2 - particular

4.4.5 Spur gear

Table 4.5: Spur gear input parameters

Geometry parameters
z [-] 44
mn [mm] 5
αn [deg] 22.5
dtip [mm] 210
droot [mm] 230
fillet [-] full
tp [mm] 7.785
w [mm] 40
die [mm] 240

Mesh parameters
Nprofile [-] 10
Nfillet [-] 8
Nrim−top [-] 6
Nrim−bottom [-] 4
Nroot [-] \
Nw [-] 40

55

4 – Tool development

Figure 4.26: Spur gear - particular

4.4.6 Full component
Finally, the different parts were merged together by exploiting both equivalence and
transition in the following order:

1. Flange - Axis-symmetric 1: equivalence

2. Axis-symmetric 1 - Radial holes pattern: transition

3. Radial holes pattern - Axis-symmetric 2: transition

4. Axis-symmetric 2 - Spur gear: equivalence

56

4 – Tool development

Figure 4.27: Fully-meshed test case - particular

The total elapsed time, from start to finish, was about 200 seconds (or 3 minutes
and 20 seconds). This execution time was greatly influenced by the creation of
the second transition mesh: due to a difference in periodicity between the radial
holes pattern the axis-symmetric 2 a great portion of the cylindrical surface had to
undergo the q-morph; this process alone took about 140 seconds (about 70% of the
overall computational time).

57

Chapter 5

Results and conclusions

Two main aspects are of interest when describing the effectiveness of a meshing
tool: mesh quality and computational time. The attention will also be focused, very
rapidly, on the data conversion in such a way that the mesh can be used by FE
analysis softwares.

5.1 Mesh quality
When evaluating the quality of a mesh, there is not a unique way to do it; there are
different methods, each one as valid as the other. In this specific case, the distortion
metric β will be adopted, as it provides useful information on both edges and angles
of the elements. The metric is defined as follows: given a quadrilateral, four triangles
can be formed by opportunely combining its four vertices; for the i − th triangle
with vertices A, B, and C the distortion metric α is calculated as follows:

αi = I2
√

3 ëCA × CBë
ëCAë2 + ëABë2 + ëBCë2 (5.1)

where

I =
1 if the triangle is not inverted

−1 if the triangle is inverted
(5.2)

The distortion metric β is finally defined as:

β = {min(α1, α2, α3, α4)} (5.3)

In this way, however, a perfect square would result in a distortion metric β =
√

3
2 ; in

order to set a maximum scale equal to 1, the values are normalized in the following
way:

βn = 2 β√
3

(5.4)

58

5 – Results and conclusions

A value of β smaller than one would mean a quadrilateral with an angle greater
than π. In order to provide a clear picture on the overall mesh, three values will be
considered: maximum distortion metric βmax, minimum distortion metric βmin, and
average distortion metric βavg.

βmax = max{βj} (5.5)
βmin = min{βj} (5.6)

βavg =
Pn
j=1 βj

n
(5.7)

In particular, the attention will be focused on how the parameters that were in-
troduced in Section 4.2.1 affect the mesh quality for each specific subclass. This
will help understand why certain values were selected as the standard for the dif-
ferent geometries. Since, many tests were made in order to determine the best set
of parameters for each class, only the final values will be shown, alongside with the
resulting quality of the mesh.

5.1.1 Axis-symmetric
Since the geometry of these components does not follow any standard, the param-
eters were set in such a way to adapt the algorithm more easily and with little
constraints:

Table 5.1: Process parameters and mesh quality for axis-symmetric solids

Process parameters
βlim [deg] 105
∆Ô1 [deg] 35
∆Ô2 [deg] 50
rmax [-] 2.5
Ô1 [deg] 25
Ô2 [deg] 35

Mesh quality
βmax [-] 0.999
βmin [-] 0.423
βavg [-] 0.958

5.1.2 Axial holes pattern
For axial holes pattern, the template domain always follows the same topology and,
hence, is more predictable. A set of parameters which allowed the quads to follow
the circular trajectory of the arches was selected.

59

5 – Results and conclusions

Table 5.2: Process parameters and mesh quality for axial holes patterns

Process parameters
βlim [deg] 100
∆Ô1 [deg] 20
∆Ô2 [deg] 30
rmax [-] 2.5
Ô1 [deg] 30
Ô2 [deg] 45

Mesh quality
βmax [-] 0.999
βmin [-] 0.314
βavg [-] 0.929

5.1.3 Radial holes pattern
Similarly to axial holes, the domain has a predictable topology each time. In this
case, however, since the outer loop is square-shaped, a set of parameters to ensure
the selection of almost perfect quadrilateral was preferred.

Table 5.3: Process parameters and mesh quality for radial holes patterns

Process parameters
βlim [deg] 95
∆Ô1 [deg] 30
∆Ô2 [deg] 45
rmax [-] 2.5
Ô1 [deg] 20
Ô2 [deg] 30

Mesh quality
βmax [-] 0.999
βmin [-] 0.400
βavg [-] 0.919

5.1.4 Transition mesh
Also in this case the pattern is very predictable, as the shape of the domain can
wither be a rectangle or an unrolled cone. However, in the latter case, the cone is
shaped in such a way that, when unrolled, the circular arches have a long radius
and, hence, they are almost flat. Due to this reasons, a set of parameters to ensure
square elements was selected, with the freedom required to compensate the uneven
number of nodes.

60

5 – Results and conclusions

Table 5.4: Process parameters and mesh quality for transition meshes

Process parameters
βlim [deg] 95
∆Ô1 [deg] 35
∆Ô2 [deg] 50
rmax [-] 2.5
Ô1 [deg] 25
Ô2 [deg] 35

Mesh quality
βmax [-] 0.997
βmin [-] 0.640
βavg [-] 0.959

5.2 Computational time
In this section, the attention will be focused on how the computational time is
affected by the different input parameters; as it can be easily guessed, the main
factor is the number of elements of the mesh. In particular, the parameter that will
be correlated with computational time is:

• Number of triangles in the starting mesh Ntria

Since the process that takes up most of the time is the implementation of the q-
morph algorithm (whether it is for an input component or a transition mesh), the
time required by this algorithm will be the base for time efficiency considerations.
Since, in addition, the only mesh characteristic that affects the computational time
is the number of starting triangles, and not the shape of the domain, a simple
square domain will be considered as the starting point; the mesh refinement will be
increased step by step, and the elapsed time recorded.
The results are summed up in the following figure:

61

5 – Results and conclusions

Figure 5.1: Performance

The computational time increases in an almost linear way as the number of elements
rise. It might seem that the process becomes way too long, especially for a number of
elements greater than 1500, as it takes more than 20 seconds for it to be completed.
However, it must be remembered that the real strength of this tool is the fact that
it relies on the symmetry of the components: considering the test case presented
in Section 4.4, the sections of the different components did not exceed the 2000
triangles in the starting mesh; the real problem was represented by the transition
mesh, which required a mesh of about 6000 triangles, as the parts to be connected
did not present very compatible periodicity.

5.3 Conclusions
The application of the tool proved to be successful in different test cases. There is
still room for improvement, especially regarding the qmorph performance. It repre-
sents, however, a valid and solid meshing tool and, with the proper modifications,
it can be applied to a way broader range of possibilities.

62

Bibliography

[1] Steven J Owen et al. “Q-Morph: an indirect approach to advancing front quad
meshing”. In: International Journal for Numerical Methods in Engineering 44.9
(1999), pp. 1317–1340.

[2] Ted D Blacker and Michael B Stephenson. “Paving: A new approach to auto-
mated quadrilateral mesh generation”. In: International Journal for Numerical
Methods in Engineering 32.4 (1991), pp. 811–847.

[3] Scott A Canann, Joseph R Tristano, Matthew L Staten, et al. “An Approach
to Combined Laplacian and Optimization-Based Smoothing for Triangular,
Quadrilateral, and Quad-Dominant Meshes.” In: IMR. Citeseer. 1998, pp. 479–
494.

[4] Jörg-Rüdiger Sack and Jorge Urrutia. Handbook of computational geometry.
Elsevier, 1999.

[5] Paul Kinney. “Cleanup: Improving quadrilateral finite element meshes”. In: 6th
International Meshing Roundtable. 1997, pp. 437–447.

[6] Scott A Canann, SN Muthukrishnan, and RK Phillips. “Topological improve-
ment procedures for quadrilateral finite element meshes”. In: Engineering with
Computers 14.2 (1998), pp. 168–177.

63

	List of Figures
	List of Tables
	General Introduction
	Introduction
	Why a custom meshing algorithm?
	Applications

	Proposed achievements
	Introduction of other chapters

	FEM analysis and Mesh
	Introduction
	FE analysis
	Mesh
	Types of geometric domain
	Types of meshes
	Element Shape
	Mesh topology

	Conclusions

	Meshing algorithms
	Delaunay triangulation
	Empty Circle Property
	Four points property
	The algorithms

	Q-morph
	Front definition and classification
	Front edge processing
	Front closing
	Special cases
	Topological clean-up and final smoothing

	Conclusions

	Tool development
	Pre-existing gears meshing tool
	New tool
	Q-morph "tuning" parameters
	Axis-symmetric solids
	Axial Holes pattern
	Radial holes pattern

	Merging the parts
	Equivalence
	Transition mesh

	Test case
	Flange
	Axis-symmetric 1
	Radial holes pattern
	Axis-symmetric 2
	Spur gear
	Full component

	Results and conclusions
	Mesh quality
	Axis-symmetric
	Axial holes pattern
	Radial holes pattern
	Transition mesh

	Computational time
	Conclusions

