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Summary

In recent years, the telecommunications sector is witnessing an exponential growth in
the number of devices constantly connected to the network and in the systematic usage
of cloud computing by the Network Service Providers (NSP) for reducing costs while at
the same time providing better and/or new services; this requires the need for a new
way to manage networks. The main approach that is emerged in last years is to exploit
new technologies such as Software Defined Networking (SDN) and Network Function
Virtualization (NFV) to build a dynamic, flexible and above all reliable network model
that allow the management, configuration and automation of highly-available and scal-
able network services. The SDN is an architecture for creation of telecommunications
networks in which the network control plane and the data transport plane are logically
separated. This logical separation allows on the one hand the possibility to manage the
entire network via a single software controller, thus ensuring greater scalability, higher
standards of reliability and network security, and on the other hand the possibility to use
devices, produced by multiple vendors, that no longer contain the management functions
within them, thus allowing the emergence of a dynamic network that is no longer linked
to the very large number of different protocols currently used. Instead, NFV is the pro-
cess that aims to virtualize the network functionalities performed by physical devices in
elementary blocks that can be interconnected to implement communication services. A
virtualized network function (VNF) consists of one or more virtual machines that manage
different software and processes on standard servers, memory devices or even on a cloud
infrastructure, instead of using different hardware devices for each network function. The
NFV is important both to reduce the cost of network nodes (due to the lower complexity
required or in extreme cases by eliminating the need for the physical node itself) and
to integrate it into an SDN-type network management, a context in which NFVs can be
used together.

Despite the rapid adoption of these cloud technologies, there is still lack of a single
system able to design and offer on-demand cloud services, in a simple and fast way,
and also manage the whole network infrastructure, from physical devices to datacenters,
cloud environments and domain controllers. For these reasons, in 2017 a new project,
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ONAP, is born with the purpose of being a comprehensive platform for real-time, policy-
driven orchestration and automation of physical and virtual network elements that will
enable software, network, IT and cloud providers and developers to rapidly automate new
services and support complete lifecycle management.

The ONAP platform is of great interest to service providers for both capabilities
and simplification that it introduces in the network infrastructure management and for
the cost reduction that it would introduce in the provisioning of services to customers.
ONAP exploits SDN and NFV to orchestrate physical/virtual network functions on a
global scale (multi-site and multi-VIM) and instantiates network elements and services
dynamically in closed loop processes able to receive external events and reacting in real
time. In essence, ONAP is the platform above the infrastructure layer that automates the
network. ONAP allows end-users to connect products and services through the infras-
tructure, deployments of VNFs and scaling of the network in a fully automated manner.
The high-level architecture of ONAP contains different software subsystems that are part
of a design-time environment, as well as an execution-time environment to provide auto-
mated instantiation of a network service when needed and managing service demands in
a dynamic way.

In this dissertation we present the work done to create a prototype network service
using the features offered by the ONAP platform. In particular, first we analyze the in-
ternal ONAP architecture, the main components used and the way in which they interact
together to offer ONAP services, and the several installation procedures tested to setting
up ONAP in a cloud environment; then we describe in detail our service prototype built
on ONAP, which can be deployed as often as a customer requires it. This service is de-
signed to provision end-to-end connectivity in real networks composed by heterogeneous
devices and links within a single authoritative domain: it offers a layer 2 connection be-
tween a customer, which could be a single host as well as a branch office, and a service
of any type (such as a firewall, a load balancer, etc.) hosted in a datacenter, usually
located in the Service Provider’s Central Offices. Our service enables the management of
the whole network infrastructure, both by configuring the physical devices that provide
the connection between the datacenter up to the customer premise and by instantiating,
inside datacenter, the VNF that will run the service to which the customer will access.
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Chapter 1

Introduction

1.1 Context and Motivation

New technologies are transforming the way in which service providers and businesses de-
velop, deploy and scale their next-generation networks and services. The new approach
that is maturing in recent years is to adopt a dynamic, flexible and above all reliable
network model, able to adapt to the changes of the future without requiring major main-
tenance efforts or the installation of additional hardware by the network operators. A
network with these features can be developed thanks to an innovative architectural model
such as Software Defined Networking (SDN) and a new way to exploit the functionality of
devices such as Network Function Virtualization (NFV). These two concepts are closely
linked to each other and can entail particular advantages if applied simultaneously, but
are in themselves independent.

• Software Defined Networking (SDN) 1 is an innovative approach to design and de-
velop a telecommunications network. It is proposed to simplify the traditional work
of IP and Ethernet networks, replacing the distributed control logic with a central-
ized control logic. The SDN splits the network control plan from the forwarding
plan, removing the first from the network devices and centralizing it. Network
devices will maintain forwarding functions and can be properly programmed by
a central network controller, using common languages and APIs. The network
controller, known as an SDN controller, also features northbound APIs for pro-
gramming different applications based on their respective communication methods.
This software-driven approach has the effect of simplifying network devices, which
can be implemented with common, low-cost hardware tools and, at the same time,

1Software-Defined Networking: A Comprehensive Survey [1]
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1 – Introduction

allows greater flexibility and ease of network management

• Network Function Virtualization (NFV) 2 is the process of virtualizing network
functionalities performed by physical telecommunications equipment. The major
advantages that the network operator can derive from the NFV usage derive sub-
stantially from the fact that they are no longer bound to the hardware (switches,
servers, storage devices, etc.) necessary to introduce new network services. This
involves a whole series of benefits in economic terms and the time reduction to
market thanks to the virtualization process

The synergy of SDN and NFV solutions allows the network to achieve the best per-
formance. In fact, the SDN provides the NFV with the advantages of a programmable
connection between virtualized network functions; the NFV, on the other hand, makes
available to the SDN the possibility of implementing the network functions through soft-
ware on COTS (Commercial off-the-shelf) servers. Thus, it is possible to virtualize the
SDN controller by implementing it on a cloud that can be easily migrated to any location
based on the needs of the network.

In this context, operators of large networks are challenged to keep up with the size
and costs of the manual changes necessary to implement new service offerings. Many are
trying to exploit SDN and NFV to improve service speed, simplify interoperability and
equipment integration, and reduce the overall costs of CapEx and OpEx.

1.2 Scenario

Nowadays, datacenters and cloud computing are at the center of modern software technol-
ogy, providing more flexibility, better performances and the capabilities to store, manage,
and process data. Within datacenters, network infrastructure and compute resources can
be virtualized, eliminating the need to purchase and maintain expensive hardware de-
vices, and offered as cloud services to datacenter users. For these reasons several new
frameworks are born to simplify the management and the networking of datacenters such
as Openstack and Kubernetes. Openstack is useful for datacenter orchestration and cloud
resources deployment while Kubernetes aims to simplify deployment and scalability of
containerized applications into clustered hosts, on which containers are executed. These
technologies have different purpose but can be used together to provide a scalable, efficient
and easy to manage cloud environment.

2Network Function Virtualization: State-of-the-art and Research Challenges [2]
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1 – Introduction

Despite the increasing usage of cloud technologies, from service provider’s perspec-
tive, there is still shortage of a single system able to design and offer on-demand cloud
services, in a simple and fast way, and also manage the whole network infrastructure,
from physical devices to datacenters, cloud environments and domain controllers. For
these reasons, in the last few years a new project, ONAP, is born with the aim of pre-
senting itself as solution to this lack, providing a comprehensive platform for real-time,
policy-driven orchestration and automation of physical and virtual network elements that
will enable software, network, IT and cloud providers and developers to rapidly automate
new services and support complete lifecycle management.

The ONAP platform is of great interest to service providers both for capabilities and
simplification that it proposes to offer in the network infrastructure management and for
the cost reduction that it would introduce in the workplace. In fact, all work described in
this thesis is carry out in collaboration with TIM company that is working on the ONAP
project and has made its testbed environment available for lab trials.

1.3 Goals

Thesis’s main purpose is to study the ONAP platform in order to understand its architec-
ture and capabilities offered to service providers and then, over ONAP, create a network
service that can be deployed on the fly to customers who request it.

ONAP is a complex framework composed of many components that interact together
to allow the entire lifecycle management of a service, from the design to the distribution
and execution phases. It can be partially/completely installed in a cloud environment
following different installation methods, depending on the available testbed and the nec-
essary requirements. Furthermore, the open-source nature of the ONAP project makes
it possible to have free access to all the code and to customize the platform and its
components to achieve specific objectives.

The service developed on ONAP is a prototype of an EVPL (Ethernet Virtual Private
Line) service that offers, for customers who request it, a layer 2 connection to a service of
any type (such as a firewall, a load balancer, etc.) hosted in a datacenter, usually located
in the Service Provider’s Central Offices. This EVPL service is an extension of a use-
case previously developed in TIM’s labs, called E-CORD. The latter creates on-demand
Ethernet Virtual Circuits between different locations over metro and wide area networks
by using a hierarchy of SDN controllers for the management and configuration of the
physical network infrastructure. For this we have integrated the E-CORD architecture

3



1 – Introduction

within ONAP so that it becomes part of the EVPL service and provides a communica-
tion channel between provider’s and customer’s sites. Moreover, the EVPL service also
manages the datacenter in which the service requested by the customer will run and the
related network infrastructure.

The main advantage of using ONAP as a global orchestration manager consist of
having a single entry point to (1) design, compose and deploy EVPL service instances on
demand, (2) manage, scale and monitor the service instances lifecycle and (3) control the
underlying network infrastructure from customer to service provider by using ONAP’s
default modules or by adding custom software modules that perform the required logic.

1.4 Thesis Organization

The thesis’s structure is organized as follows:

• Chapter 1 Introduction in the first chapter we analyze the scenario in the
cloud environment technologies and the birth of new platform, ONAP, designed
specifically for service providers and network infrastructure management

• Chapter 2 ONAP: Open Network Automation Platform in chapter two
we describe in detail the ONAP project, its architecture and the main components
that compose the platform

• Chapter 3 ONAP workflow in chapter three we present how the ONAP platform
works, from the design and composition of a generic service to the execution phase,
and the main interactions between components

• Chapter 4 ONAP installation in chapter four we discuss two different approch
for installing ONAP and all the technologies and tools studied and used

• Chapter 5 EVPL service implementation in E-CORD in chapter five we
present the E-CORD service, its architecture and the service implementation in
TIM testbed

• Chapter 6 EVPL Service implementation using ONAP in chapter six we
discuss the EVPL service implementation based on the ONAP platform describing
all components that make up the service

• Chapter 7 ONAP current & future directions in chapter seven we discuss
the future developments of the ONAP project and the work evolution in TIM labs

4
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• Chapter 8 Conclusion and Future work in chapter eight we discuss the future
work of the EVPL Service implementated using ONAP and its future updates

5



Chapter 2

ONAP: Open Network
Automation Platform

2.1 Overview

The Open Network Automation Platform (ONAP) project [3] is an initiative that aims
to offer the ability to design, create, orchestrate and manage physical and virtual network
services bringing greater flexibility and lower costs. ONAP is an open source networking
project of the Linux Foundation born in March 2017. It is the result of the union of the two
main orchestrating and networking projects, open source ECOMP (Enhanced Control,
Orchestration, Management & Policy) of AT&T and OPEN-O (Open Orchestrator).

ONAP has the capability to orchestrate physical and virtual network functions on
a global scale (multi-site and multi-VIM). It facilitates the usability of the platform by
providing a set of open and interoperable Northbound REST APIs and by supporting
the modeling of YANG 1 and TOSCA 2 data. Its modular and stratified nature improves
interoperability and simplifies integration, enabling to support multiple environments for
the management of VNF by integrating with different VIM, VNFM, SDN orchestrators
and even common equipment.

The ONAP platform allows to instantiate network elements and services dynamically
in closed loop processes capable of receiving external events and reacting in real time.
This approach is based on the use of three main logical components:

• a design framework that allows to define a service in every aspect, from the modeling

1 YANG data model, Data Modeling Language for the Network Configuration Protocol (NETCONF).
More detail in section 3.1.3

2 TOSCA is a data model standard that can be used to orchestrate network functions virtualization
(NFV) services and applications. More detail in section 3.1.2

6



2 – ONAP: Open Network Automation Platform

of resources and relationships to the specification of the rules that guide the behavior
of the service by defining the applications, analyzes and closed-loop events necessary
for a dynamic management of the service

• an orchestration and control framework that allows the instantiation and manage-
ment of new services when necessary

• an analysis framework that monitors the behavior of the service during its life cycle,
based on the specifications defined in the design phase, and communicates with the
orchestration and control framework for the resources redefinition related to the
service

To achieve these objectives ONAP integrates a portal from which it is possible to
manage all the network infrastructure, from the definition of the customers to whom the
services will be associated to the modeling and distribution phase of a service and its
components.

ONAP is in continuous development, thanks to the work of the community of collab-
orators working on the project, and releases a new version of the framework every six
months. For the work done in this thesis the first version was used, Amsterdam, which
allows to interact only with one of the main cloud management software, Openstack.

2.2 Architecture

ONAP is composed of many software subsystems, which are part of the two main archi-
tecture frameworks:

• Design-time framework: an environment for defining, designing and program-
ming the platform

• Run-time framework: an environment for executing the logic defined in the
design phase

In the next sections we give an overall view of the ONAP’s component but for the
project developed in this thesis only some of the components have been used. The figure
below shows the ONAP Amsterdam architecture and the components, highlighted in
yellow, actually used.

Access to Design-time and Run-time frameworks is provided by the graphical interface
of the ONAP portal and by the command line (CLI).

The ONAP portal allows centralized management to access the framework through
multiple accounts depending on the role to play (designer, tester, governor, operational,

7



2 – ONAP: Open Network Automation Platform

Figure 2.1: Amsterdam architecture

admin), which can be configured within the portal itself. ONAP user interfaces are
intended for users in variety of roles:

• System and network administrators who need to instantiate, manage, and monitor
Resources, Services, and Products on an existing ONAP system

• ONAP administrators who create user accounts, assign roles, and install applica-
tions within ONAP

• Providers of the several assets managed by ONAP :

– Vendors who need to create and integrate ("onboard") low-level Resources,
such as VNFs (virtual network functions) or other single-purpose functions

– Service designers who need to compose complex Services from Resources

– Testers/Approvers who need to test and certify Resources and Services before
they are added to the ONAP catalog

– Product managers who need to define Products from Services (Products in-
clude billing and customer support definitions for external Business Support
Systems)

In this way it is possible to separate all the phases of design, development, testing
and release, from the definition of the customer and the license associated with a service
to its design, verification, approval and distribution. From the portal, the administrator
can load and manage applications and widgets, and manage user access; users can access

8



2 – ONAP: Open Network Automation Platform

applications already in the framework such as SDC, Policy, A&AI UI, CLI.
In addition, the portal provides an SDK to facilitate the development of new applications
by exploiting the systems in the framework (services, APIs, widgets).

2.3 Design-time framework

The design framework is a development environment composed of applications, operating
modes, repositories for the description and definition of resources, services and products.

The design time framework facilitates reuse of models, further improving efficiency
as more and more models become available. Resources, services, products, and their
management and control functions can all be modeled using a common set of specifica-
tions and policies for controlling behavior and process execution. Process specifications
automatically sequence instantiation, delivery and lifecycle management for resources,
services, products and the ONAP platform components themselves. The design frame-
work consists of the following subsystems:

• SDC: Service Design and Creation is the graphical application of ONAP for mod-
eling and design

• Policy Creation: is a subsystem that maintains, distributes, and operates on the
set of rules that underlie ONAP’s control, orchestration, and management functions

• CLAMP: Closed Loop Automation Management Platform, is a platform for de-
signing and managing control loops. It is used to design a closed loop, configure it
with specific parameters for a particular network service, then deploying and unde-
ploying it. Once deployed, the user can also update the loop with new parameters
during runtime, as well as suspending and restarting it

• VNF SDK: VNF Software Development Kit, is a development tool designing and
uploading new VNFs inside the SDC

2.3.1 Service Design and Creation

SDC is the ONAP visual modeling and design tool. It creates internal metadata that
describes assets used by all ONAP components, both at design time and run time.

The SDC manages the content of a catalog, and logical assemblies of selected catalog
items to completely define how and when VNFs are realized in a target environment.
A complete virtual assembly of specific catalog items, together with selected workflows
and instance configuration data, completely defines how the deployment, activation, and
life-cycle management of VNFs are accomplished. Selected sub-assemblies may also be
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represented in the catalog and may be combined with other catalog items, including other
sub-assemblies.

In the context of a catalog containing TOSCA nodes that are assembled to form a
TOSCA blueprint within the SDC, it is expected that such nodes convey (as properties)
all of the workflows and/or workflow fragments needed to realize the node in some specific
target environment. In this way, any assembly of such nodes, defined in a blueprint, can
be used to define the end-to-end workflow needed to realize the VNF associated with
the TOSCA blueprint. All TOSCA informations provided to the SDC are divided into
different entities and stored as vertices of a graph; the relationships between these entities,
and their logical connections are stored as links. The SDC uses Titan Graph DB to create
the graph while persistence is provided by the Cassandra database.

SDC manages two levels of assets:

• Resource: implemented either entirely in software, or as software that interacts
with a hardware device. Each Resource is a combination of one or more Virtual
Function Components (VFCs), along with all the information necessary to instan-
tiate, update, delete, and manage the Resource. A Resource also includes license-
related information. There are three kinds of Resource: Infrastructure (the Cloud
resources, e.g., Compute, Storage); Network (network connectivity functions and
elements); Application (features and capabilities of a software application, such as
a load-balancing function).

• Service: a well formed object comprising one or more Resources. Service Designers
create Services from Resources, and include all of the information about the Service
needed to instantiate, update, delete, and manage the Service

The definitions of assets include Information Artifacts and Deployment Artifacts.
Information Artifacts are provided by the vendor of an asset such as a VNF; they describe
characteristics of the asset. Some of these artifacts are supporting documents intended
for human readers only, whereas others contain data that will be imported into the ONAP
environment when the asset is onboarded.

Once assets are on-boarded, the information provided by the vendor is translated into
SDC internal resource models. The service provider will use SDC to further enrich the
resource model to meet the provider’s environment, and additionally compose resources
into service models. The model includes not only the description of the asset but also
references to ONAP functions needed for lifecycle management of the asset. The tested
models will then be distributed to the ONAP execution environment as Deployment
Artifacts.
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The Deployment Artifacts include the asset definition (a Resource or Service) with
instructions to ONAP for creation and management of an instance of the asset in the
network. Currently, SDC imports and retains information from Heat Templates for cloud
infrastructure creation, YANG XML files for state data manipulated by the Network
Configuration Protocol, TOSCA files for specifying cloud infrastructure, and certain ven-
dor provided scripts. In the future, SDC may import BPMN 3 flows files for specifying
business processes and their interconnections in a service-oriented architecture.

The SDC consists of three main components:

• Catalog: is the repository for resources and services. These elements are added to
the catalog using Design Studio

• Design Studio: is used to create, modify, and add resources and services to the
Catalog

• Distribution Studio: is used to distribute information about resource and service
models to the several components of the execution environment

In addition, the SDC integrates Jersey, a RESTful Web Services framework, to expose a
set of APIs to the outside used by ONAP components.

Distribution Flow

For the deployment phase the SDC communicates with the execution environment
using the DMaaP component, Data Movement as a Platform. The SDC defines two ob-
jects (topic) within the DMaaP, one to publish notifications and one to read notifications
about the status of an event. It also provides a client (SDC Distribution Client) that
allows the management of communications with the DMaaP and perform several opera-
tions: register to a topic, receive notifications about a topic, send notifications about the
status of an event, define and download only the artifacts of interest, delete registration
from a topic. The components that integrate the distribution client are: A& AI, SDN-C,
MSO, DCAE and APP-C. Once a service is deployed, the SDC sends a notification to
a topic with information about the artifacts related to the service, including the name,
type, URL for the download and a checksum to validate the integrity once downloaded .
All components registered to that topic receive a notification, identifying which artifacts

3 Business Process Model and Notation (BPMN) is a graphical representation for specifying business
processes in a business process model. More detail in section 3.1.5
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to download based on their type, and contact the SDC for download via REST API.
Once the artifacts are downloaded, the application sends a status notification to inform
the SDC.

Figure 2.2: Distribution Flow

Runtime components can choose whether to receive specific types of artifacts or to
receive the whole TOSCA package (CSAR 4 file). In the case of single artifacts each
application implements its own logic to read and manage them, while for the CSAR file
there is a specific module. This module, the SDC TOSCA parser, analyzes the CSAR
and retrieves the artifacts contained in it, required by the application.

2.4 Run-time framework

The Run-time framework executes the rules and policies defined and distributed by the
Design-time framework. This allows the distribution of criteria and models among the
ONAP modules such as the Master Service Orchestrator (MSO), the Controllers (SDN-
C, APP-C, VF-C), the DCAE (Data Collection, Analytics and Events) and the A&AI
(Active and Available Inventory). These components use a set of common services that
provide support for logging, access control and data management. The VID (Virtual
Infrastructure Deployment) application allows users to instantiate services, with their
components, and to perform infrastructural change operations such as resizing and up-
dating software of existing VNF instances. In addition, the External API framework
provides a standard interface between the Business Support System (BSS) and the sev-
eral ONAP components (MSO, A&AI, SDC, etc.). This provides an abstract view of

4Cloud Service Archive: is an archive defined by the OASIS TOSCA standard. It is a compressed file
that includes a TOSCA model of a network service and all the necessary scripts or files that a VNF needs
for its lifecycle from creation to termination.
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the platform, facilitating the integration of an operator’s existing BSS/OSS environment
without excessive costs.

2.4.1 Master Service Orchestrator

The Master Service Orchestrator (MSO) component executes the specified processes by
automating sequences of activities, tasks, rules and policies needed for on-demand cre-
ation, modification or removal of network, application or infrastructure services and re-
sources. MSO provides orchestration at a very high level, with an end-to-end view of the
infrastructure, network, applications, and facilitates additional orchestration that takes
place within underlying controllers. It also marshals data between the several controllers
so that the process steps and components required for execution of a task or service are
available when needed. The MSO’s primary function is the automation of end-to-end
service instance provisioning activities. MSO is responsible for the instantiation and re-
lease, and subsequent migration and relocation of VNFs in support of overall end-to-end
service instantiation, operations and management. MSO executes well-defined processes
to complete its objectives and is typically triggered by the receipt of service requests gen-
erated by other ONAP components, by external APIs or by BSS/OSS. The orchestration
procedure is obtained from the Service Design and Creation (SDC) component, where
all service designs are created and exposed/distributed for consumption. MSO runs au-
tonomously within ONAP and the orchestration engine is a reusable service.
Any component of the architecture can execute process workflows. The service model
maintains consistency and reusability across all orchestration activities and ensures con-
sistent methods, structure and version of the workflow execution environment. Orchestra-
tion processes interact with other platform components or external systems via standard
and well-defined APIs. Controllers (Network and Application) participate in service in-
stantiation and are the primary players in ongoing service management; for example,
control loop actions, service migration and scaling, service configuration, and service
management activities. Each controller instance supports some form of orchestration to
manage operations within its scope.
In future releases Orchestration process flows will be defined in the Service Design and
Creation subsystem (SDC). These process flows start with a template that may include
common functions such as homing determination, selection of Infrastructure, network and
application controllers, consultation of policies and interrogation of Active and Available
Inventory (AAI) to obtain information needed to guide the process flows. MSO does not
provide any process-based functionality without a workflow for the requested activity:
in the Amsterdam release the process flows are designed directly in MSO using BPMN.
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MSO interrogates AAI to obtain information regarding existing Network and Applica-
tion Controllers to support a service request. AAI provides the addresses of candidate
controllers that are able to support the service request.

MSO may then interrogate the controller to validate its continued available capacity.
MSO and the controllers report reference information back to AAI upon completion of a
service request to be used in subsequent operations. As previously stated, orchestration is
performed by several components, primarily the MSO and the Application and Network
Controllers. Each will perform orchestration for: service delivery or changes to an existing
service; service scaling, optimization, or migration; capacity management. Regardless of
the focus of the orchestration, all workflows must include steps to update AAI with
configuration information, identifiers and IP Addresses.

Figure 2.3: High Level Architecture and Interfaces

Furthermore MSO interacts with Openstack cloud platform for instantion of virtual
resources using well-defined Openstack APIs, primarily to communicate with Heat and
Keystone components.

Network Controller Orchestration

MSO obtains compatible Network Controller information from AAI and in turn re-
quests LAN or WAN connectivity to be established and configured. This may be done by
requesting the Network Controller to obtain its resource procedure from SDC. It is the
responsibility of MSO to request (virtual) network connectivity between the components
and to ensure that the selected Network Controller successfully completes the network
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configuration workflow. A service may have LAN, WAN and access requirements, each
of which must be included in the procedure and configured to meet the instance specific
customer or service requirements at each level. Physical access might need to be pro-
visioned in the legacy provisioning systems prior to requesting MSO to instantiate the
service.

Application Controller Orchestration

MSO sends requests to Application Controllers to obtain the application-specific com-
ponent of the service procedure from SDC and execute the orchestration workflow. MSO
ensures that the Application Controller successfully completes its resource configuration
as defined by the procedure. As with Network Controllers, all workflows, whether fo-
cused on instantiation, configuration or scaling, will be obtained or originate from SDC.
In addition, workflows also report their actions to AAI as well as to MSO.

Moreover not all changes in network or service behavior are the result of orchestration.
Policies and rules (in the Policy subsystem) inform the Controller such that it can enable
service behavior changes.

2.4.2 Active and Available Inventory

Active and Available Inventory (AAI) is the ONAP subsystem that provides real-time
views of system’s resources, services, products and their relationships with each other.
AAI (sometimes referred to as A&AI) not only forms a registry of active, available, and
assigned assets, it also maintains up-to-date views of the multidimensional relationships
among these assets, including their relevance to different components of ONAP.

In addition to inventory and topology management, AAI provides the ability to do in-
ventory administration. Data in AAI is continually updated in real-time by the controllers
as they make changes in the network environment. Because AAI is metadata-driven, new
resources and services can be added quickly with Service Design and Creation (SDC)
catalog definitions, using the AAI model loader, thus eliminating the need for lengthy
development cycles. In addition, new inventory item types can be added quickly through
schema configuration files.

AAI provides standard APIs to enable queries for inventory and topology. Queries
can be supported for a specific asset or a collection of assets.

The AAI subsystem uses graph data technology to store relationships between inven-
tory items. Graph traversals can then be used to identify chains of dependencies between
items. Relationships captured by AAI include "top-to-bottom" relationships such as those
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Figure 2.4: AAI functional diagram

defined in SDC when products are composed of services, and services are composed of
resources. It also includes “side-to-side” relationships such as end-to-end connectivity of
virtualized functions to form service chains.

AAI’s data model is composed of vertexes and edges with their attributes. There are
two kind of edge: parent/child and cousin. Parent/child edge refers to nesting of node
types and re-use of node types, which means a node type can belong to more than one
parent node type; while cousin edge means that several types can be related to each other
in multiple ways.

AAI Provides a UI front-end, nick-named “Sparky”, which allows users to view the
graph of actual instance objects (generic-vnfs, service instances, pnfs, l3-networks, etc)
and analyze data. This model visualization exposes the model to designers or operators
to display graphically the set of node types and the relationships between them.

2.4.3 Network Controller

The SDN Controller (SDN-C) is the entry point for network management and control
in ONAP. It manages the state of a network resource, in terms of configuration and
instantiation, and is the primary agent in ongoing management, such as control loop
actions, migration, and scaling. SDNC knows the network resource type and its related
properties from the TOSCA CSAR file created in SDC. Based on those information it
will retrieve network parameters from external component(s).

SDNC is based on Opendaylight 5 controller framework that supports a model driven
service abstraction layer (MD-SAL), api handlers, operational and configuration trees,

5OpenDaylight (ODL) is a modular open platform for customizing and automating networks of any
size and scale [4]
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Figure 2.5: SDNC Network Controller

and an adapter framework for integrating with controlled devices, virtual functions, and
cloud infrastructure. Within this framework the Service Logic Interpreter (SLI) addition
provides an extensible scripting language for expressing service logic through a Directed
Graph (DG) builder. SLI can be extended by adding Java classes that can be called as a
node in a DG to support frequent complex operations. SLI is in charge to check if a DG
exists, get it from the SDNC Database and execute it. All DGs are stored in SDNC DB.

The northbound interface is composed of several providers that expose a set of REST-
CONF APIs. The API handlers is the component responsible to handle received API re-
quests and delegate the execution workflow to SLI. Those APIs are used to interact with
different components: DMaaP, for event notifications; SDC, for the distributions phase
(receive and consume TOSCA models); MSO, for orchestration workflow logic; control
loop applications. Northbound APIs are modelled via YANG and YANG-generated Java
classes are available to parse xml files. These files are stored in the MD-SAL Logical-
DataStore.

Southbound interface is made up of Java plugins (adapters) to interact with the un-
derlying domains/networks with different protocol/mechanism. The DG workflow defines
the application logic and one or more plugins can be called. Provider and plugin are up-
loaded in SDNC as bundle in the Opendaylight environment.

In addition, SDNC reports the status of each workflow execution to both the Active
and Available Inventory and the Master Service Orchestrator.
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2.4.4 Application Controller

The Application Controller (APP-C) is responsible for handling the Life Cycle Manage-
ment (LCM) of Virtual Network Functions and is based, like SDNC, on Opendaylight
controller framework. APP-C performs actions such as controlling, modifying, starting or
stopping virtual applications and/or their components. A virtual application is composed
of a maximum of four layers: Service, Virtual Network Function (VNF), Virtual Network
Function Component (VNFC), Virtual Machine (VM). A Life Cycle Management com-
mand may affect any number of these layers.

The APP-C Provider module exposes the endpoints for each action supported by
APP-C. This module uses the YANG model to define the YANG Remote Processing
Call (RPC) and data model, in other words, the input and output parameters for each
action. The Provider module is responsible for validating the RPC input and for re-
jecting any malformed input. After successful validation, the APP-C Provider calls the
Dispatcher to continue the request processing. The APP-C Dispatcher component pro-
cesses requests received by the API Request Handler from other ONAP components such
as MSO, DCAE, and the Portal. The Dispatcher checks the conditions are sufficient for
performing the request and selects the correct Direct Graph (DG) workflow for execution,
or rejects the request. When the DG execution is complete, the Dispatching function is
responsible for notifying the initiator of the operation with the request execution result
(Success/Error) and updates the VNF state in Active and Available Inventory. The SLI
framework is responsible for executing Directed Graphs (DGs). The Dispatcher invokes
the SLI framework to execute a specific DG based on the input action. The SLI executes
the DG and returns a success or failure response to the caller. APP-C can use several
adapters to connect to VNFs. The IAAS adapter is provided with the ODL platforms
and is the southbound adapter for APP-C. It connects with the OpenDaylight controller
to perform several operations on VNFs such as restart, migrate, rebuild etc. The IAAS
Adapter is effectively used as a DG plugin in that the services exposed by the adapter
are called from DGs.

2.4.5 Data Movement as a Platform

Data Movement as a Platform (DMaaP) is a platform for high performing and cost
effective data movement services that transports and processes data from any source
to any target with the format, quality, security, and concurrency required to serve the
business and customer needs.
DMaaP has four components:

• Message Router (MR): is a reliable, high-volume publisher/subscriber messaging
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service with a RESTful HTTP API. The service is built over Apache Kafka [5].

• Data Router (DR): is a common framework by which data producers can make
data available to data consumers and a way for potential consumers to find feeds
with the data they require. The interface to DR is exposed as a RESTful web
service known as the DR Publishing and Delivery API.

• Data Movement Director (DMD): is a client to DMaaP platform to publish
and subscribe data.

• Data Bus Controller: provides API to create topics and grant the associated
pub/sub permissions.

In ONAP Amsterdam release, only unauthenticated topics are supported. Unauthenti-
cated topics are created upon first message publish transaction. Therefore, the only step
needed is for the publisher and subscriber to agree on the topic name.

Producer components implements an HTTP client which publishes on a topic using
the MR Producer API. While consumer components implements an HTTP server to
receive notification messages related on topics on which they are subscribed.

2.4.6 Data Collection Analytics Events

The Data Collection, Analytics, and Events (DCAE) is the ONAP subsystem that sup-
ports closed loop control and higher-level correlation for business and operations activi-
ties. DCAE collects performance, usage, and configuration data; provides computation
of analytics; aids in trouble-shooting and management; and publishes event, data, and
analytics to the rest of the ONAP system for FCAPS (Fault Configuration Accounting
Performance Security) functionality.

The primary functions of the DCAE subsystem are:

• collect, ingest, transform and store data as necessary for analysis

• provide a framework for development of analytics

These functions enable closed-loop responses by several ONAP components to events or
other conditions in the network.

DCAE provides the ability to detect anomalous conditions in the network. Such con-
ditions, might be, for example, fault conditions that need healing or capacity conditions
that require resource scaling. DCAE gathers performance, usage, and configuration data
about the managed environment, such as about virtual network functions and their un-
derlying infrastructure. This data is then distributed to several analytic micro-services,
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and if anomalies or significant events are detected, the results trigger appropriate ac-
tions. In addition, the micro-services might persist the data (or some transformations
of the data). In addition to supporting closed-loop control, DCAE also makes the data
and events available for higher-level correlation by business and operations activities,
including BSS/OSS.

The DCAE Platform consists of several functional components: Collection Frame-
work, Data Movement, Storage Lakes, Analytic Framework, and Analytic Applications.
In large scale deployments, DCAE components are generally distributed in multiple sites
that are organized hierarchically. For example, to provide DCAE function for a large
scale ONAP system that covers multiple sites spanning across a large geographical area,
there will be edge DCAE sites, central DCAE sites, and so on. Edge sites are physically
close to the network functions under collection, for reasons such as processing latency,
data transport, and security, but often have limited computing and communications re-
sources. On the other hand, central sites generally have more processing capacity and
better connectivity to the rest of the ONAP system. This hierarchical organization offers
better flexibility, performance, resilience, and security.

2.4.7 Multi-VIM/Cloud

Multi-VIM/Cloud is the component that has the goal to enable ONAP to deploy, run and
manage network services and VNFs on multiple virtualized infrastructure environments,
for example OpenStack, Kubernetes, VMware and so on. It decouples the evolution of
ONAP platform from the evolution of underlying cloud infrastructure, and minimizes
the impact on the deployed ONAP while upgrading the underlying cloud infrastructures
independently.

Multi-VIM/Cloud is a plugable and extensible framework that provides a Cloud Me-
diation Layer which includes the following functional modules:

• Provider Registry: to register infrastructure site/location/region and their at-
tributes and capabilities in A&AI

• Infra Resource: to manage resource request (compute, storage and memory)
from MSO, DCAE, or other ONAP components, so as to get VM created and VNF
instantiated at the right infrastructure

• SDN Overlay: to configure overlay network via local SDN controllers for the
corresponding cloud infrastructure

• VNF Resource LCM: to perform VM lifecycle management as requested by
VNFM (APP-C or VF-C)
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• FCAPS: to report infrastructure resource metrics (utilization, availability, health,
performance) to DCAE Collectors

Multi-VIM/Cloud exposes a common northbound interface (NBI) of the functional
modules to be consumed by other ONAP components (MSO, SDN-C, APP-C, VF-C,
DCAE etc). In addition, it provides the ability to generate or extend NBI based on the
functional model of underlying infrastructure. In Amsterdam release Multi-VIM/Cloud
is not used and the interaction wih underlying VIM (Openstack) is handled by MSO.
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Chapter 3

ONAP Workflow

ONAP is a complex platform composed of many subsystems that interact to allow new
service creation and network infrastructure management. This chapter describe the
steps necessary to offer these functionalities, starting from the preliminary stages of
environment configuration to then move on to the service design, distribution and
execution.

3.1 Service design

First of all this phase involves the definition of data structures, templates and additional
software modules so that the service is properly distributed. It is important to note that
ONAP is an open source framework and all the documentation and code are available.
This allows service providers to use the default features that ONAP provides or to cus-
tomize the platform for achieving their goals. Service design implies to define what types
of data, modules and interactions are required and how modify the ONAP’s framework
if it is necessary. The services can be built in different ways:

• a service composed only of resources representing external network modules (phys-
ical or virtual)

• a service composed only of virtual resources in cloud environments (VIM) managed
by ONAP

• a service composed of both virtual resources and resources representing external
network modules

Based on service type the performed operations can be different; for example, a service
composed only of virtual resources requires the loading of templates that describe their
structure while a service composed only of resources representing external network mod-
ules requires to modify the SDNC with additional code so that it interacts with external

22



3 – ONAP Workflow

modules. ONAP provides default data structures and functionalities but it may be nec-
essary to provide additional files and templates in the Design-time framework or modify
other ONAP components by adding software modules to reach the required functionali-
ties.

The operations, taken into consideration in this thesis, for service creation are the
following:

• define Heat Orchestration Templates (HOT) to create network resources and virtual
machines in Openstack

• add TOSCA models in SDC to describe new kinds of resources

• define YANG models to describe custom RPC and data models required by SDNC
workflows

• preload manually network parameters into SDNC for cloud resources creation or
customize SDNC to retrieve this parameters autonomously from external compo-
nents

• create new BPMNs and upload them inside MSO to define custom workflow logic

• prepare APIs to manage AAI and trigger workflows in MSO and SDNC

3.1.1 Heat Orchestration Template

Heat is an Openstack service to create and orchestrate composite cloud applications using
a declarative template format through an OpenStack-native REST API. A Heat template
describes the infrastructure for a cloud application in text files which are readable and
writable by humans, and can be managed by version control tools. Templates specify the
relationships between resources (e.g. this volume is connected to this server) and this
enables Heat to call out to the OpenStack APIs to create all of your infrastructure in
the correct order to completely launch your application. The templates allow creation of
most OpenStack resource types (such as instances, floating ips, volumes, security groups,
users, etc), as well as some more advanced functionality such as instance high availability,
instance autoscaling, and nested stacks. In Heat templates it is possible to specify the
input parameters, defined in the parameters section of a HOT template, required from
resources. This helps to make a template more easily reusable by avoiding hardcoded
assumptions and allows users to customize a template during deployment.

From an ONAP’s perspective, the Heat templates are used to model different kinds of
VNFs that will compose a service. Each VNF can be composed from one or more cloud
resourses, Virtual Function (VF) modules, and each VF module is described by its own
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HOT. In this manner we can model VNFs, such as router, network and virtual machine,
and provide network input paramaters during the Runtime phase.

3.1.2 TOSCA model

TOSCA [6] is a data model that can be used for creating templates or data descriptions
of applications and infrastructure for cloud services. It can also be used to define the
relationships among these services, as well as their operational behavior. This can happen
independently of the supplier creating the service or the technology infrastructure used to
deliver it. TOSCA abstracts configuration data away from specific hardware or services
to make cloud services more interoperable and portable and to enable the automation of
software-defined networks, in combination with NFV and clouds, to simplify end-to-end
service orchestration.

TOSCA can deliver a declarative description of the application topology for a network
or cloud environment that includes all its components, which may include the need for
load balancing, networking, computing resources, and other software.

In ONAP, TOSCA is used by SDC to describe services, resources and their relation-
ships. SDC offers the possibility of adding new TOSCA models to define new types of
resources through APIs, by UI or by running custom scripts. After uploading TOSCA
models, SDC stores these new resource types in the Catalog and make them available to
designers.

3.1.3 YANG model

YANG [7] is a data modeling language for NETCONF and RESTCONF configuration
management protocols. Together, NETCONF/RESTCONF and YANG provide the tools
that network administrators need to automate configuration tasks across heterogeneous
devices in a software-defined network. The YANG data modeling language provides
descriptions of a network’s nodes and their interactions. Each YANG module defines a
hierarchy of data that can be used for configuration, state data, Remote Procedure Calls
and notifications. Modules can import data from other external modules and include
data from sub-modules.

RESTCONF is a REST like protocol running over HTTP for accessing data defined
in YANG using datastores defined in NETCONF. It uses HTTP methods to provide
CRUD (Create, Read, Update, Delete) operations on a conceptual datastore containing
YANG-defined data. Request and response data can be in XML or JSON format.

In ONAP, the RESTCONF protocol is used to describe and call providers in the SDNC
northbound interface from other components, like BSS/OSS and MSO. The provider Java
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classes are generated from YANG model using compile tools (e.g. Maven [8]) and they
are responsible to get and set xml data into the MD-SAL datastore.

3.1.4 SDNC network parameters

In the ONAP infrastructure logic, the component responsible for network management is
SDNC. This implies that MSO, when executes its workflow, has to (1) call SDNC APIs
to retrieve network parameters for cloud resources or (2) delegate the interaction with
external network modules.

In the first case, the API to call is the preload provider’s API that allow to specify
network parameters (gateway address, DHCP property, ip-version, IP address, and so
on) for cloud resources, such as virtual networks and VNFs. It is also possible to define
a custom provider that takes care of retrieving network parameters without having to
preload them manually. SDNC stores these informations in its datastore and sends them
to MSO when it is required.

In the second case, the API to call is the provider’s API that allow interactions with
external modules. Since these modules has proprietary logics and operating modes, it is
necessary to define the entire SDNC workflow logic, composed by northbound providers,
DGs and plugins.

3.1.5 BPMN workflow definition

Business Process Model and Notation (BPMN) [9] is a standard for business process
modeling that provides a graphical notation for specifying business processes in a Business
Process Diagram, based on a flowcharting technique very similar to activity diagrams
from Unified Modeling Language (UML). The objective of BPMN is to support business
process management, for both technical users and business users, by providing a notation
that is intuitive to business users, yet able to represent complex process semantics. Inside
BPMN diagram is possible to specify the references to external scripts for execution of
custom tasks. There are many system that integrate with BPMN standard for workflow
and process automation, one of the most used is Camunda [10]. The latter is a Java-based
framework composed of the following main components:

• Process Engine: a Java library responsible for executing BPMN processes

• Camunda Modeler: a modeling tool for BPMN diagrams

• Camunda Cockpit: a web application for process monitoring and operations that
allows to search for process instances, inspect their state and repair broken instances

25



3 – ONAP Workflow

Within ONAP, BPMN and Camunda are used from MSO to execute process instances. It
is also possible to model new BPMN diagrams and upload them inside MSO to perform
custom workflows.

3.1.6 APIs definition

ONAP provides a large number of API interfaces to command several components, like
SDC, MSO, AAI, SDNC and so on. Each component exposes a set of REST-based APIs
documented in the ONAP wiki and this makes possible to perform any operation or array
of operations using BSS/OSS.

Automation of a service instantiation is still missing in community ONAP Amsterdam
since many APIs are to be called from an external component even for very simple services.
Inside this thesis the used APIs are all standard APIs belonging to the Amsterdam release
documentation.

3.2 Onboarding and Distribution

This section describe how SDC works to define and distribute a service model to the Run-
time framework. The main steps to do for service creation are: VNF creation, customer
definition and service composition, distribution. The VNF creation is necessary only for
description and instantiation of custom cloud resources in Openstack because a service
can be composed also using TOSCA nodes already present in SDC.

3.2.1 VNF creation

VNFs are composed from one or more modules (VNFCs) and these work together to
perform the actions of the VNFs. A module is a subset of the resources of a VNF
described in a Heat template. Each module is described in a separate Heat template and
an Incremental Module is a growth or scaling unit.

In ONAP, a single VNF should be composed from one or more Heat Orchestration
Templates, each of which represents a subset of the overall VNF. These component parts
are referred to as “VF Modules”. During orchestration, these modules are deployed
incrementally to create the complete VNF and additional incremental modules may be
deployed at different times to scale portions of the VNF. All VNFs must have one base
VNF module template and that module is the first one deployed: the base template.
This base module must include all the shared resources of the VNF including private
networks, server groups and security groups. It must also expose all shared resources by
their UUID (universally unique identifier). The base module may include an initial set
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of VMs and may be operational as a stand-alone minimum configuration of the VNF. A
VNF may also have one or more incremental modules which define additional resources
that may be added to an existing VNF and each module, base or incremental, must be
described by a complete Heat template. These incremental modules should define logical
growth units of the VNF.

A well-defined VNF, with all Heat templates, can be onboarded in SDC from GUI as
Vendor Software Product (VSP). A VSP is transformed in a TOSCA blueprint by SDC
engine and then it can be used as TOSCA node type during the service composition.

The virtual infrastructure manager used by ONAP to handle the creation of cloud
resources is Openstack. The latter exposes a set of APIs that allow creation of most
OpenStack resource types and this resources, once created, are referred to as stacks.

3.2.2 Service creation

Service creation consists of service attributes definition and service distribution through
GUI of SDC. This GUI allows to design entirely the service accross different user account
with different roles (such as designer, tester, governor). Each service is thought to be

Figure 3.1: SDC Service design
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associated with additional informations (such as vendor name, description, and so on)
and a Vendor Licence Model (VLM) must to be specified. After license creation, we can
onboard all VNFs required by the service as VSPs and import them inside SDC’s Catalog
as TOSCA node types.

A service is composed from the GUI by adding resources and relationships among
VNFs, PNFs and Networks; these resources can be both default and custom TOSCA
node types and for each of them is possible to customize Tosca properties and specify the
input parameters necessary during execution.

Service distribution

At this point the service definition is complete and its model can be distributed to the
Runtime framework. SDC provides an interface for distributing the modeled service,
TOSCA artifacts and CSAR file, to SDNC, AAI and MSO using DMaaP notitications.
Once a service artifact is downloaded/deployed, a consumer application publishes a sta-
tus notification; in this way SDC knows the state of the distribution accross different
components.

From the Tosca artifacts, MSO stores in its Catalog the models of the resource types,
dependencies, parameters and Heat templates that compose the service. This gives MSO
the knowledge to handle the orchestration for service’s instance creation.

3.3 Execution-time phase

Runtime Framework is the responsible for the service instantiation and provides APIs
to command the several components. The core of orchestration is inside MSO that exe-
cutes BPMN workflows and handles interactions with AAI and SDNC. By default MSO
provides a large number of APIs to start the execution of predefined BPMN workflows,
which are responsible for distributing the resources belonging to the service one at a time.
In addition MSO provides the capabilities to personalize the instantiation of a resource
using custom BPMN workflows. One advantage of this approach is that the service must
not be instantiate entirely but we can deploy only desired resources.

In Amsterdam there is no help for automation of a service instantiation therefore a
service is deployed sending an ordered sequence of APIs from BSS/OSS and each API
has the job to trigger a precise phase for service instantiation.
Automation can be provided only for custom services mainly in two ways:

• Global BPMN: is a BPMN diagram that contain all the logic to instantiate,
entirely or partially, a service
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• API Handler modification: modify the MSO API Handler by adding new APIs
with their own logic for service deployment

During execution, MSO and SDNC perform their own workflows and interact with AAI
to store and retrieve information about resource instances and relationships.

3.3.1 MSO workflow

MSO uses two database during the orchestration for service instantiation: Request DB
and Catalog DB. Request DB is used to track open and completed requests while Cat-
alog DB is populated via SDC adapter with the informations contained in the TOSCA
artifacts. After a service distribution, MSO contains in Catalog DB different types of
data:

• Heat templates: are used from Network and VNF adapters to instantiate cloud
resources in Openstack

• Resource models: are the several modules that compose the service; they can be
of four types: service, network, VNF, VF modules. The service model represents
the root resource of the service and has relationships with other resource models
belonging to the service

• Resource recipes: represent the mapping between resource models and a BPMN
workflow. Each resource model has its own recipe table where a resource model
name is associated with a BPMN diagram name; in this way is possible to change
the BPMN workflow executed for a resource instantiation

When an API request arrives, API Handler is in charge to manage the request and parse
the body to retrieve model information about the resource to be instantiated. Using the
model name of the resource, API handler queries recipe table to knows the name of the
BPMN process to execute. The Camunda Execution Engine exposes a REST endpoint
to which the API Handler send requests for BPMN execution. The message sent by
the API Handler to this endpoint is a JSON wrapper, containing all information about
incoming request, and the connection is kept open until the main process flow sends back
a response.

The BPMN workflow describes the orchestration logic; it includes either calls to nested
BPMNs or execution of scripts, written in Java or Groovy code, that interacts with other
ONAP components. During flow execution, BPMN performs the following main tasks:

• stores and retrieves informations from AAI related to resource instances
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Figure 3.2: MSO Structure

• interacts with SDNC providers through SDNC adapter to request and configure
network resources

• interacts with Network Adapter and VNF Adapter to instantiate virtual networks
and VMs in Openstack. These adapters use Heat templates stored in Catalog DB
to create a stack via Heat REST APIs

3.3.2 APIs dependencies

Any type of service requires additional informations before being deployed, so we have to
populate AAI via REST APIs with the following data:

• Customer: identy the client who requested the service

• CloudRegion: specify id and name of the Openstack Tenant where the cloud
resources (VMs, virtual networks) will be instantiated

• Service subscription: this is just a label and maps to the service-type we associate
with the customer entry and used as part of instantiation phase

Moreover there are some principles to keep in mind for service instantiation:

• service model must be instantiated before other resource models belonging to the
service. This is because each resource model (network, VNF or VF module) to be
implemented requires a relationships with a service instance
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• VNF model must be instantiated before VF modules of which it is composed. This
is because each VF module to be deployed requires a relationships with a VNF
instance

• VF module and virtual network model require network parameters before being
instantiated. This parameters can be provided either with preload API or by adding
custom logic inside SDNC

3.3.3 Interactions with SDNC and AAI

The interactions between MSO, SDNC and AAI are not predefined at all but they are
described inside BPMN workflows, so each BPMN execution will perform different kind
of interactions with SDNC and AAI.

To give a better idea of how these components work together, let’s suppose to instan-
tiate a simple service composed only of a virtual network. We can distiguish three distinct
steps: service instance creation, preload network parameters, virtual network creation.

Service instance creation

From BSS/OSS we send an API request to MSO with a body containing information
data about service model to be instantiated. The API handler takes in charge the request
and, based on “service_recipe” table, invokes BPMN workflow associated with service
model name. This BPMN has the main task to create an entry in AAI representing a
service instance to which other resource instances, belonging to the same service, will be
correlated. In this way AAI creates a hierarchical tree of relationships among instances
for describing the service.

Preload network parameters

From BSS/OSS we send an API request to SDNC for the Preload Network provider with
a body containing network parameters for the virtual network. Then the provider calls
the Service Logic Interpreter that checks if a Directed Graph exists for the requested
API, gets it from the SDNC Database and executes it. In this case the DG saves network
parameters into the MDSAL Datastore.

Virtual network creation

From BSS/OSS we send an API request to MSO with a body containing information data
about network model to be instantiated. The API handler invokes BPMN workflow,
associated with network model name, that queries the SDNC to know which network
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to use for the requested network type. SDNC saves in AAI the network parameters,
stored previously in MDSAL, with a unique identifier (UUID) and returns it to MSO.
At this point BPMN workflow queries the AAI using the UUID got from SDN-C to get
the network parameters and invokes the Network Adapter that retrieves Heat template
of virtual network from Catalog DB and merges it with network parameters got from
the AAI. Finally Network Adapter uses Openstack APIs to create a stack, sending Heat
template with network parameters.
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Chapter 4

ONAP Installation

This chapter describes how to setting up the ONAP platform in a cloud environment
using two different installation modes based on Openstack.
Furthermore, in the first section, we also give a description of the tools required to prepare
the underlying cloud infrastructure needed before launching the ONAP installation.

4.1 Tools required for installation

4.1.1 Openstack

The OpenStack (OS) [11] project is an open source cloud computing platform for all types
of clouds, which aims to be simple to implement, massively scalable, and feature rich.
OpenStack lets users deploy virtual machines and other instances that handle different
tasks for managing a cloud environment. It makes horizontal scaling easy, which means
that tasks that benefit from running concurrently can easily serve more or fewer users on
the fly by just spinning up more instances.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a set of
interrelated services. Each service offers an application programming interface (API)
that facilitates this integration. Depending on the needs, it is possible to install some
or all services. The following list describes the main core services that make up the
OpenStack architecture:

• Compute (Nova): manages the lifecycle of compute instances in an OpenStack
environment. It is used for deploying and managing large numbers of virtual ma-
chines and other instances on demand to handle computing tasks

• Network (Neutron): enables Network-Connectivity-as-a-Service for other Open-
Stack services. It provides an API for users to define networks and the attachments
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Figure 4.1: Openstack Logical Architecture

into them. It ensures that each of the components of an OpenStack deployment
can communicate with one another quickly and efficiently

• Image storage (Glance): provides image services to OpenStack. In this case,
"images" refers to images (or virtual copies) of hard disks. Glance allows these
images to be used as templates when deploying new virtual machine instances

• Object storage (Swift): is a storage system for objects and files. Rather than the
traditional idea of a referring to files by their location on a disk drive, developers
can instead refer to a unique identifier referring to the file or piece of information
and let OpenStack decide where to store this information. This makes scaling easy,
as developers don’t have the worry about the capacity on a single system behind
the software

• Block Storage (Cinder): provides persistent block storage to running instances

• Identity (Keystone): provides an authentication and authorization service for
other OpenStack services. It is essentially a central list of all of the users of the
OpenStack cloud, mapped against all of the services provided by the cloud, which
they have permission to use

• Orchestration (Heat): orchestrates multiple composite cloud applications by us-
ing either the native HOT template format or the AWS CloudFormation template
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format, through both an OpenStack-native REST API and a CloudFormation-
compatible Query API. In this way, it allows developers to store the requirements
of a cloud application in a file that defines what resources are necessary for that
application

• Dashboard (Horizon): is a web-based self-service portal to interact with un-
derlying OpenStack services, such as launching an instance, assigning IP addresses
and configuring access controls. Developers can access all of the components of
OpenStack individually through an API, but the dashboard provides system ad-
ministrators a look at what is going on in the cloud, and to manage it as needed

• DNS (Designate): is a multi-tenant DNS as a Service (DNSaaS) for OpenStack.
It provides a standard, open API that can be used to program DNS with integrated
Keystone authentication

A standard network architecture design includes a cloud controller host, a network gate-
way host, and a number of hypervisors for hosting virtual machines. The cloud controller
and network gateway can be on the same host.

Networking architecture

The OpenStack Networking service resides on the Controller node and provides an API
that allows users to set up and define network connectivity and addressing in the cloud.
OpenStack Networking handles the creation and management of a virtual networking
infrastructure, including networks, switches, subnets, and routers for devices managed by
the OpenStack Compute service. It consists of the neutron-server, a database for persis-
tent storage, and any number of plugin agents. A wide choice of plugins are available.
For example, the open vSwitch and linuxbridge plugins utilize native Linux networking
mechanisms, while other plugins interface with external devices or SDN controllers. The
Modular Layer 2 (ML2) plugin is a framework allowing OpenStack Neutron to simul-
taneously utilize the many layer 2 networking technologies found in complex real-world
datacenters. It cleanly separates management of network types from the mechanisms for
accessing those networks (e.g., VLANs, VxLAN, GRE, etc.).

The Network node handles the majority of the networking workload. It hosts the
DHCP agent, the Layer-3 (L3) agent and the Layer-2 (L2) agent. In addition to plugins
that require an agent, it runs an instance of the plugin agent to perform local networking
configuration. Both the Open vSwitch and Linux Bridge mechanism drivers include an
agent.

The Compute node hosts the compute instances themselves. To connect compute
instances to the networking services, Compute nodes must run the L2 agent. Like the
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Figure 4.2: Openstack Networks

Network node that handle data packets it must also run an instance of the plugin agent
for local networking configuration.

Openstack allows users to create tenant networks for connectivity within projects;
they are fully isolated by default and are not shared with other projects. Networking
supports a range of tenant network types:

• Flat: All instances reside on the same network, which can also be shared with the
hosts. No VLAN tagging or other network segregation takes place

• Local: Instances reside on the local compute host and are effectively isolated from
any external networks.

• VLAN: OpenStack Networking enables to create multiple provider or tenant net-
works using VLAN IDs (802.1Q tagged) that correspond to VLANs present in the
physical network. This allows instances to communicate with each other across the
environment.

• VXLAN and GRE: they use network overlays to support private communication be-
tween instances. Tunneling encapsulates network traffic between physical Network-
ing hosts and allows VLANs to span multiple physical hosts. Instances communicate
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as if they share the same layer 2 network. Open vSwitch supports tunneling with
the VXLAN and GRE encapsulation protocols. A Networking router is required to
enable traffic to traverse outside of the GRE or VXLAN tenant network.

4.1.2 Kubernetes

Kubernetes [12] (commonly stylized as K8s) is an open source system for orchestration and
container management. It was developed by the Google team and is now maintained by
the Cloud Native Computing Foundation (CNCF). Kubernetes facilitates the deployment
and scalability of containerized applications and easily and efficiently manages clustered
hosts on which containers are executed. It works with a range of container tools, including
Docker.

Kubernetes follows a master-slave architecture; it consists of a Master controller and
a set nodes. A node is a worker machine, previously known as a minion. A node may
be a VM or physical machine, depending on the cluster. Each node contains the services
necessary to run pods and is managed by the master components. The services on a node
include the container runtime, kubelet and kube-proxy.

The minion nodes pool together their resources to form a more powerful machine.
When you deploy programs onto the cluster, it intelligently handles distributing work to
the individual nodes for you. If any nodes are added or removed, the cluster will shift
around work as necessary.

Kubernetes is composed of several parts that are designed to be loosely coupled and
extensible to meet different workloads. The main components are the following:

• Pod: the pods are the atomic unit on the Kubernetes platform. Each pod wraps
one or more containers into a higher-level structure and is tied to the node where it
is scheduled. Any containers in a pod share the same resources and the same local
network. Containers run in a shared context on the same node while maintaining
a level of isolation from the others

• Kubelet: is responsible for the running state of each node, ensuring that all con-
tainers on the node are healthy, and it takes care of starting, stopping, and main-
taining application containers

• API Server: is the main management point of the entire cluster. It serves up the
Kubernetes API and is the front-end for the control plane

• Controller Manager: is a daemon that incorporates the control core loops sup-
plied with Kubernetes. In practice, a controller checks the status of the cluster
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using the API Server monitoring function and, when notified, makes the necessary
changes to move the current state to the desired state

• Scheduler: looks for unscheduled pods and binds them to nodes, based on resource
availability, quality of service requirements, and other constraints

• Etcd: is a distributed, consistent, and highly available key-value repository that
stores the configuration data of the cluster. It is used for configuration management,
service discovery, and coordinating distributed work

Moreover Kubernetes provides a partitioning of the resources that it manages into non-
overlapping sets called namespaces. Namespaces are a way to divide cluster resources
between multiple users.

Services

Applications running in a Kubernetes cluster find and communicate with each other,
and the outside world, through the Services. A Kubernetes Service is an abstraction
which defines a logical set of Pods and a policy by which to access them - sometimes
called a micro-service. Services can be exposed in different ways by specifying a type
that determine accessibility from inside and outside of cluster. There are several types of
Services:

• ClusterIP: exposes a service on an internal IP in the cluster, which makes the service
only reachable from any container (even from different pods) within the same cluster

• NodePort: is a ClusterIP service with an additional capability, it is reachable on
each Node’s IP at a static port (the NodePort). A ClusterIP service, to which the
NodePort service will route, is automatically created. In thi way it is possible to
contact the NodePort service from outside the cluster

• LoadBalancer: combines the capabilities of a NodePort with the ability to setup
a complete ingress path. It exposes the service externally using a cloud provider’s
load balancer. NodePort and ClusterIP services, to which the external load balancer
will route, are automatically created.

4.1.3 Rancher and Helm

Rancher [13] is a container management platform for controlling multiple Kubernetes
clusters running anywhere, on any provider. It also allows to manage cluster nodes,
adding, removing, deploying applications through a unique web interface. Rancher uses
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Docker as the underlying container runtime and coordinate running containers between
multiple physical/virtual nodes. Rancher also includes modular infrastructure services
including networking and load balancing.

Rancher adds significant value on top of Kubernetes, primarily by centralizing role-
based access control for all clusters and giving global admins the ability to control cluster
access from one location. It then enables detailed monitoring and alerting for clusters
and their resources and integrates directly with Helm.

Helm [14] is an application package manager running atop Kubernetes. It allows
describing the application structure through convenient helm-charts and managing it
with simple commands. Helm Charts enable to define, install, and upgrade even complex
Kubernetes application and simplifies the management of microservices. The main benefit
of this approach is the ability to consider scalability from the start. For example an
application composed of clearly defined microservices can scale only the ones we need to
scale, adding more Kubernetes nodes and pods to the cluster.

4.2 Testbed environment

ONAP can be deployed in different ways, depending on the requirements of the service
provider. In this chapter we describe two types of installations we have tested: ONAP
on Openstack and Onap on Kubernetes on Openstack. Both of them require an existing
Openstack installation with the following base components deployed in the infrastructure:
Cinder, Glance, Heat, Horizon, Keystone, Neutron, Nova, Designate. For these ONAP
installations we used the OpenStack Ocata release but it is possible to use several Cloud
providers offering OpenStack based solutions.

The figure below shows the structure and the available resources of Openstack Ocata
used for the ONAP installation.

The Openstack installation is composed of one server (OSC) that acts as Cloud con-
troller and six server (OSA) that act as Compute nodes. In this case the Controller node
and the Network node are on the same host. The Cloud controller exposes all OpenStack
APIs, including the network API, to tenants and anyone on the Internet via the API
network. Compute nodes and Cloud controller are connected together via Management
Network for Openstack services and VM’s communication.

Moroever the virtual router, within Cloud controller, connects tenant networks with
External Network and so to the Internet. It also provides the ability to connect to
instances directly from an external network using floating IP addresses.
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Figure 4.3: Openstack testbed

4.3 ONAP on Openstack

This ONAP installation is made directly on Openstack using a predefined Heat template
that spins up all the ONAP components. The Heat template refers to an environment file
in which all the default parameter values are defined and it can be deployed via Horizon
dashboard or Command Line (using the OpenStack Heat service). By modifying the
template resources, we can customize the ONAP installation so that only the desired
components are distributed.

When the Heat template is executed, the OpenStack Heat engine creates a new stack
with the resources defined in the template, based on the parameters values defined in the
environment file. Each ONAP component is represented by one or more VM.

4.3.1 Requirements

ONAP on Openstack installation requires the following resources:

• 29 VM

• 148 vCPU

• 336 GB RAM

• 3 TB Ephemeral HD

• 29 floating IP addresses
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Most of the resources are required by the DCAE deployment, in fact it takes 15 VMs.
In addition the following artifacts must be deployed on the OpenStack infrastructure:

• a public SSH key to access the several VMs

• private SSH key and public SSH key to be used between DCAE VMs

• three images: Ubuntu 14.04, Ubuntu 16.04 and CentOS 7

• a set of flavors: small, medium, large, medium, large, xlarge, xxlarge

The default installation assumes that the Default security group of Openstack is config-
ured to enable full access between VMs representing the ONAP components.

The OpenStack infrastructure must enable Internet access and it is necessary to have
an External network already configured properly. The External network ID will have to
be provided in the Heat environment file.

4.3.2 Heat template and parameters

The Heat template is composed of two sections: parameters and resources. The parameter
section contains the declaration and description of the parameters that will be used to
setting up ONAP. The resource section contains the definition of:

• Operation And Management (OAM) private network, which ONAP components
use to communicate with each other and with VNFs

• ONAP Virtual Machines (VMs)

• virtual interfaces towards the OAM network

• disk volumes

ONAP VMs have a private IP address in the OAM private network space and use floating
IP addresses for remote access and connection to repositories. A router that connects
the ONAP Private Management Network to the External network is also created. Fur-
thermore each VM runs a post-instantiation script that downloads and installs software
dependencies (e.g. Java JDK, gcc, make, Python, ...), ONAP software packages and
Docker containers from remote repositories.

ONAP installs a DNS server used to resolve IP addresses in the ONAP OAM private
network. ONAP Amsterdam release also requires OpenStack Designate DNS support
for the DCAE platform, so as to allow IP address discovery and communication among
DCAE elements. This is required because the ONAP Heat template only installs the
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DCAE bootstrap container, which will in turn install the entire DCAE platform. As
such, at installation time, the IP addresses of the DCAE components are unknown.

In the environment file it is necessary to customize some parameters that need to be
set depending on the user’s environment:

• Openstack parameters: ID of the External network, ID and credentials about tenant
on which VMs will be deployed, URL endpoints (like Keystone and Horizon), images
and flavors, public SSH key to access VMs

• network parameters: CIDR of OAM network, DNS IPs, private IP addresses of
VMs

• DCAE parameters: informations about DCAE VMs (like SSH key pair and addi-
tional VM image IDs/names), configuration parameters relate to DNSaaS support
provided by Designate

4.4 ONAP on Kubernetes on Openstack

This ONAP installation is based on a Kubernetes cluster created on an OpenStack en-
vironment. ONAP is deployed using the ONAP Operations Manager (OOM) which pro-
vides the ability to manage the entire life-cycle of an ONAP installation, from the initial
deployment to final decommissioning. OOM can be deployed on a private set of physical
hosts or VMs (or even a combination of the two) and it uses the Kubernetes/Helm system
as a complete ONAP management system to drive all user driven life-cycle management
operations:

• Deploy: a comprehensive set of Helm charts describe the composition of each of the
ONAP components and the relationships within and between components. Using
this model Helm is able to deploy all or partially the ONAP platform

• Configure: each project within ONAP has its own configuration data generally
consisting of environment variables, configuration files, and database initial values.
It is possible to modify Helm charts to customize the ONAP installation

• Monitor: ONAP includes mechanisms to monitor the real-time health of its com-
ponents

• Scale: many of the ONAP components are horizontally scalable which allows them
to adapt to expected offered load
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• Heal: the Helm charts implement automatic recoverability of ONAP components
when individual components fail. This mechanism ensures that, after a failure, all
of the ONAP components restart successfully

• Upgrade: Helm has built-in capabilities to enable the upgrade of pods without
causing a loss of the service being provided by that pod or pods

• Delete: existing deployments can be partially or fully removed once they are no
longer needed

4.4.1 Requirements

Onap is installed on an underlying cloud infrastructure composed of: 1 VM running
Rancher and one or more VM representing Kubernetes nodes. The following minimal
resources are required for a full ONAP deployment (all components including DCAE):

Number VM vCPUs RAM (GB) Disk (GB) Floating IPs

Rancher 1 2 4 40 -

Kubernetes 1 8 80-128 100 -

DCAE 15 44 88 880 15

Total 17 54 156-220 1020 15

As in the previous installation the DCAE takes most of the resources; customizing ONAP
to deploy only components that are needed drastically reduce the requirements. For
our installation we haven’t installed the DCAE and we have changed the number and
the flavor of VMs allocated for Kubernetes nodes to host ONAP components. We have
created 5 VMs, each of one with floating IP: 1 VM for Rancher and 4 VMs for Kubernetes
nodes. ONAP VMs have a private IP address to communicate with each other and use
floating IP addresses for remote access and connection to repositories. Also in this case
an External network and a router enable Internet access from all VMs and the Default
security group of Openstack is configured to allow full access between VMs.
Moreover on the OpenStack infrastructure we have deployed the following artifacts:

• a SSH keypair to access the several VMs
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• one image, Ubuntu 16.04, used for all VMs

• two flavors: one for Rancher VM (4 vCPUs, 4 GB RAM, 80 GB Disk) and one for
Kubernetes VMs (6 vCPUs, 30 GB RAM, 80 GB Disk)

4.4.2 Cloud infrastructure

This section describes the steps for the installation of Kubernetes on an OpenStack
environment with Rancher. Firstly we have to create a VM that acts as Master node in
which runs Rancher, Helm, Docker and a NFS (Network File System) server; this node
will not be used to host ONAP itself, it will be used exclusively by Rancher. Secondly
we create the VMs for Kubernetes, each of which runs Docker, Helm agents and a NFS
common.

At this point we can access the Rancher UI from Master node to create the Kubernetes
environment and then add VMs representing the Kubernetes nodes. After a Kubernetes
environment has been created, the infrastructure services will not be started until at
least one host is added. The process of adding hosts is the same steps for all container
orchestration types. Once the first host has been added, Rancher will automatically
start the deployment of the infrastructure services including the Kubernetes services (i.e.
master, kubelet, etcd, proxy, etc.). The Master Node runs Rancher and Helm clients
and connects to all the Kubernetes nodes in the cluster. Kubernetes nodes, in turn, run
Kubernetes and Helm agents, which receive, execute, and respond to commands issued
by the Master Node (e.g. kubectl 1 or helm operations).

Furthermore deploying applications to a cluster requires Kubernetes nodes to share
a common, distributed filesystem. In this case the Master node plays the role of NFS
Master while all the other cluster nodes play the role of NFS slaves.

4.4.3 OOM deployment

OOM deploys and manages ONAP on a pre-established Kubernetes cluster but the lifecy-
cle of this cluster is independent of the life-cycle of the ONAP components themselves. In
fact we can clone the OOM repository, from ONAP Gerrit for the desidered release (Am-
sterdam in our case), in the Master node and then start the OOM deployment. Much like
an OpenStack environment, the Kubernetes environment may be used for an extended
period of time, possibly spanning multiple ONAP releases.

The Helm model of ONAP used by OOM is composed of a set of hierarchical Helm
charts that define the structure of the ONAP components, the configuration of these

1kubectl: Kubernetes command-line tool for deploying and managing applications on Kubernetes.
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Figure 4.4: K8s cluster with Rancher

components and the related set of Kubernetes resources. These Helm charts describe the
desired state of an ONAP deployment and instruct the Kubernetes container manager as
to how to maintain the deployment in this state. Furthermore these dependencies dictate
the order in which the containers are started for the first time so that such dependencies
are always met without arbitrary sleep times between container startups. When an initial
deployment of ONAP is requested the current state of the system is empty so ONAP
is deployed by the Kubernetes manager as a set of Docker containers on one or more
predetermined hosts. When deploying on virtual machines the resulting system will be
very similar to “Heat” based deployments, i.e. Docker containers running within a set
of VMs, the primary difference being that the allocation of containers to VMs is done
dynamically with OOM and statically with “Heat”.

Each ONAP component consists of a group of containers with shared storage and
networking that are grouped together into a set of Kubernetes pods. In Amsterdam
release, pods are mapped one-to-one to docker containers and a namespace is created for
each of the ONAP components. The Kubernetes namespace concept allows for multiple
instances of a component (such as all of ONAP) to coexist with other components in the
same Kubernetes cluster by isolating them entirely. In addition these namespaces expose
services that provide external connectivity to pods; OOM uses the Kubernetes service
abstraction to provide a consistent access point for each component independent of the
pod or container architecture of that component. For example, the SDNC component may
introduce OpenDaylight clustering and change the number of pods in this component but
this change will be isolated from the other ONAP components by the service abstraction.
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A service can include a load balancer on its ingress to distribute traffic between the pods
and even react to dynamic changes in the number of pods.

During the OOM deployment it is possible to follow the progress of the ONAP instal-
lation and the pods creation using kubectl or the Rancher GUI.

4.5 Evaluation

In this chapter we have discussed two different ways of installing the ONAP platform.
Both configure ONAP and allow access to the services exposed by the several components
but they have advantages and disadvantages in terms of resource usage, flexibility and
complexity.

Comparing the two installations, we have decided to use ONAP on Kubernetes on
Openstack as the environment on which develop the service described in Chapter 6.
Despite the greater complexity of installation and infrastructure management this choice
offers important benefits:

• limited resource usage: as opposed to VMs that require a guest operating sys-
tem be deployed along with the application, containers provide similar application
encapsulation with neither the computing, memory and storage overhead

• lifecycle management: Kubernetes and Rancher compose a comprehensive sys-
tem for managing the lifecycle of containerized applications. Their use as a platform
manager ease the deployment of ONAP, provide fault tolerance and horizontal scal-
ability, and enable seamless upgrades

• rapid deployment: eliminating the guest operating system results in containers
coming into service much faster than a VM equivalent
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Chapter 5

EVPL service implementation in
ECORD

In this chapter we discuss in detail the E-CORD use-case developed in TIM labs describing
its architecture, implementation and execution phase. We focus on this service because it
will be integrated and used within ONAP to build the EVPL service presented in chapter
6.

5.1 Overview

Enterprise CORD (E-CORD) is a use-case that offers enterprise connectivity services
over metro and wide area networks and it is based on the architecture of another project,
CORD, which aims to bring datacenter economics and cloud agility to service providers.
Through E-CORD we can create on-demand EVPL1 services by using a hierarchical
approach of SDN controllers that manage the several portions of the network and interact
with physical devices.

In the following sections we first analyze the CORD project, the features it proposes
and its architecture, and then move on to the description of the E-CORD use-case and
its actual implementation within TIM labs.

1Ethernet virtual private line (EVPL) is a data service, defined by the MEF, which connects two
Ethernet ports on a WAN and provides a point-to-point or point-to-multipoint connection between a pair
of UNI.
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5.2 CORD

CORD (Central Office Re-architected as a Datacenter) [15] is an architecture for the
Telco Central Office that combines SDN, NFV, and elastic cloud services - all running
on commodity hardware - to build cost-effective, agile networks with significantly lower
CAPEX/OPEX and to enable rapid service creation and monetization. The goal of
CORD is not only to replace today’s purpose-built hardware devices with their more
agile software-based counterparts, but also to make the Central Office an integral part of
every Telco’s larger cloud strategy, enabling them to offer more valuable services.

A reference implementation of CORD consists of a collection of commodity servers,
interconnected by a fabric constructed from white-box switches, and disaggregated access
technologies with open source software to provide an extensible service delivery platform.
This gives network operators the means to configure, control, and extend CORD to meet
their operational and business objectives. As shown in Fig. 5.1, the switching fabric is
organized in a leaf-spine topology to optimize for traffic flowing east-to-west - between
the access network that connects customers to the Central Office and the upstream links
that connect the Central Office to the operator’s backbone. The NFV and SDN control
plane is composed by ONOS (described in next section), Openstack and XoS [16] as
orchestrator. All controller entities run on Docker containers along with the deployed
VNFs. On top of the software infrastructure different use-case domains leveraged on
CORD: Residential, Mobile and Enterprise.

Figure 5.1: CORD infrastructure
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CORD offers an open-source reference platform for unified network resource orches-
tration from a centralised vantage point and fine-grained bandwidth and connectivity
service on demand. As End-to-end connectivity involves the control of multiple hetero-
geneous underlying networks, the CORD infrastructure separates the controllers into a
domain-agnostic one, the global orchestrator, and multiple domain-specific controllers.
This way it is easier to maintain the platform up and running during temporary down
times due to failures or software releases.

5.2.1 ONOS

ONOS (Open Network Operating System) [17] is an SDN operating system for network
operators that is designed for scalability, high performance and high availability and to
make it easy to create apps and services. It can run as a distributed system across multiple
servers, running multiple ONOS instances that are identical in terms of their software
stack. The ONOS kernel and core services, as well as ONOS applications, are written in
Java as bundles that are managed by the Apache Karaf OSGi container [18]. OSGi is a
component system for Java that allows modules to be installed and run dynamically in a
single JVM. Since ONOS runs in the JVM, it can run on several underlying OS platforms.
ONOS allows to build carrier-grade solutions that leverage the economics of white box
merchant silicon hardware while offering the flexibility to create and deploy new dynamic
network services without the need to alter the dataplane systems. It provides the control
plane by managing the entire network rather than a single device and eliminating the
need to run routing and switching control protocols inside the network fabric. However,
for each device a single controller instance acts as a master, while the others are ready
to step in if a failure occurs. With these mechanisms in place, ONOS achieves scalability
and resiliency.

ONOS maintains a global network view to manage and share network state across
ONOS servers in a cluster. This abstraction provides a graph model of the network
which corresponds to the underlying network structure. Network topology and state dis-
covered by each ONOS instance such as switch, port, link, and host information is used to
construct the global network view. Applications then read from the global network view
to make forwarding and policy decisions, which are in turn written to the network view.
As applications update and annotate the view, these changes are sent to the ONOS south-
bound modules and programmed on the appropriate physical device. The southbound
modules manage the physical topology, react to network events and program/configure
the devices leveraging on different protocols. The ONOS platform is not directly tied to
a closed set of protocols, but it provides its own set of high-level abstractions and models,
which it exposes to the application programmers, that enable model generation and, by
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extension, code/API generation from models. This generalisation can overlay any specific
modelling language although YANG has emerged as the data modelling language for the
networking domain.

5.3 Architecture

The CORD architecture is composed of a two layer hierarchy of controllers, the root global
controller and the leafs local controllers. Each controller is represented by an ONOS
instance able to store and distribute the state between the instances of a cluster. The
global controller creates, updates and maintains an abstract global view of the network. It
interacts with the underlying ONOS controllers to gain knowledge of the network topology
and manage the virtual devices of which it is aware of. On the other hand, leaf controllers
handle the real network infrastructure by interacting directly with physical devices and
each of them maintains its own abstract topology view of the network portion it manages.

The global node has three main logical components:

• Service orchestrator: application that exports northbound APIs to outside of the
platform and splits service requests into instructions targeting the local controllers

• Virtual Provider: receives notifications from the underlying domains about de-
vices, ports and inter-connection links between devices

• HTTP-Channel: communication channel to talk with the underlying domain
controllers

While in each local controller we have:

• BigSwitch Service: topology aggregation mechanism to aggregate topology ele-
ments into virtual topology data structures

• HTTP-Channel: communication channel to talk with the global controller to
notify topology elements and receives network provisioning requests

• Network Application: domain-specific application that implements the network
provisioning (forwarding, filtering rules, policing, etc.). It interacts with the whole
local topology to fully exploit physical device capabilities

The communication channel for bidirectional data exchange between controllers is
implemented as a client/server REST channel. In the global controller we have a server
to sense topology events from the underlying domains, and a client to propagate service
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Figure 5.2: ECORD architecture

requests to remote domains. While in local controllers we have a server to receive service
requests and a client to send the topology events published by the BigSwitch service.
The HTTP client component implements as many Java APIs as the number of specific
services offered by the platform and registers itself as a listener object. When a service
request arrives at the global node, the request is generally divided into several instruc-
tions targeting the virtual domain devices and, for each device, the orchestration service
calls all the registered listeners among which only the one that implements the commu-
nication with the domain the device belongs to process instructions for that device. The
endpoints of the remote domain, the IP, the port and the credentials are provided by the
configuration.

Within each local controller the Network Application component translates incoming
service requests from the global node into some actions on the network. The implemen-
tation of this component encapsulates specific logic and code to define and manage the
several device drivers, which can use YANG/NETCONF, SNMP, REST, Openflow and
any other protocol to interact with physical devices. Fig. 5.2 illustrates an example of
three network domain under the control of local ONOS controllers: an access network
with Customer Premise Equipments (CPEs) connected to an Ethernet Edge device; a
leaf-spine fabric composed of white-box switches; a transport optical network composed
of ROADM switches.
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5.3.1 Topology abstraction

The global node maintains an abstract view of the underlying topology to improve scal-
ability and to separate domain-specific and domain-agnostic concerns. For each local
controller, a BigSwitchService component exposes one abstract device to the global node:
it represents an aggregation of the real network elements that compose the topology of
a local site. In this way, the global ONOS has fewer devices and link data structures to
deal with. Path computation will involve only these aggregated items, while the actual
network provisioning will be achieved by the local site controllers. The relevant topology
information for the global node are the connect points representing the demarcation line
between a Service Provider and its customers network, the connect points between two
Service Provider networks, and relative ports characterization relevant to the services
deployed at the global level. The local controller’s BigSwitchService aggregates the phys-
ical devices into a single device data structure with related relevant connect points to
expose to the global controller via an HTTP channel. The connect points are marked as
UNI (User-to-Network Interface) for those facing the customer side and NNI (Network-
to-Network Interfaces) for those neighboring with an external network, following the
terminology adopted by the MEF consortium [19]. The BigSwitchService is responsible
to apply the one-to-one mapping between physical and virtual connect points and to no-
tify the global about those changes in the local topology that would affect the aggregated
virtual topology; it listens for events of the local topology and propagates events related
to the virtual topology.

5.4 Enterprise CORD

E-CORD [20] builds on the same CORD infrastructure to support enterprise customers,
alongside residential and mobile customers, and provides enterprise connectivity services
(L2 and L3VPN). In addition, service providers can offer services that go far beyond
simple connectivity services, as they can include Virtual Network Functions and service
composition to support cloud-based enterprise services. In turn, enterprise customers can
use E-CORD to rapidly create on-demand networks between any number of endpoints or
company branches. These networks are dynamically configurable, implying connection
attributes and SLAs can be specified and provisioned on the fly. Furthermore, enterprise
customers may choose to run network functions such as firewalls, WAN accelerators,
traffic analytic tools, virtual routers, etc. as on-demand services that are provisioned and
maintained inside the service provider network.

The E-CORD architecture is composed as follows:
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• multiple Central Office/Local POD: identified also as E-CORD sites, they are
standard CORD sites equipped with specific access equipment, such as an Ethernet
edge switch, and are usually located in the Service Providers’ Central Offices. A
CORD site is used to connect the enterprise user to the service provider network and
run value added user services at the edge of the network; it comprises one or more
compute nodes, and one or more fabric switches. Upstream, the POD connects to
the service provider metro/transport network

• a Transport Network: provides connectivity between the several CORD sites. It
can be almost anything, from an optical network to a single packet switch, and can
be composed of white-boxes, legacy equipment, or a mix of both

• a Global node: it is a single machine running in the Service Provider’s network,
used as general orchestrator that coordinates between all the local PODs of the E-
CORD deployment. It is composed by an instance of XoS, for NFV orchestration,
and one ONOS instance, for SDN control plane

5.4.1 Testbed

Based on E-CORD architecture, we have chosen to take a hierarchical approach where
there is a WAN orchestration layer that acts as SDN control plane for connecting multiple
CORD sites together via Carrier Ethernet circuits established on-demand.

Figure 5.3: E-CORD Point-to-point Carrier Ethernet Service
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The Service Orchestrator is the Carrier Ethernet application that exports APIs to
setup, tear down and update Ethernet Virtual Circuits (EVCs) spanning multiple sites.
An EVC is identified by a service tag (outer vlan tag of the 802.1ad protocol), one or more
customer vlan tags (802.1q) mapped to the service tag, a bandwidth profile and a set of
UNI ports among which we want to create the layer-2 VPN based on Ethernet. The EVC
request is split by the Service Orchestrator into as many forwarding constructs as the
number of virtual devices along the path between the UNIs. The forwarding constructs
are sent to the local controllers which are responsible to allocate the appropriate network
resources.

Each CORD site uses two ONOS controllers to manage the physical network: (1)
ONOS Access runs the application that controls the edge network, including the CPE
devices and the Ethernet Edge (EE) devices, and (2) ONOS Fabric runs the application
configuring the cross connections within the fabric of CORD to bridge the CPEs to the
transport network and eventually to the remote sites; alternatively, it bridges customer’s
traffic to a chain of VNFs before being routed to the Internet gateway. While the transport
network is managed by a single local ONOS instance (ONOS Transport) that runs the
application for configuring an optical network to bridge several CORD sites.

(a) ONOS-Bigswitch Abstraction (b) ONOS-Global Abstracted view

Figure 5.4: E-CORD topology abstraction

The global ONOS controller builds the global network view from the abstract devices
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received by underlying controllers: one abstract device, representing the transport net-
work, is exposed by ONOS Transport and two abstract devices, representing the CPEs
and the fabric, are exposed by ONOS Access and ONOS Fabric for each CORD site.
Fig. 5.4a shows the device abstraction performed by the Bigswitch Service of the local
controllers for CORD sites and transport network, while Fig. 5.4b shows an example of
the abstracted topology seen by global node of a network composed of three CORD sites
interconnected by the transport network.

In our implementation of E-CORD the CPEs are directly connected to the switching
fabric without the EE devices, while the transport network is composed by ROADM
switches, one for each CORD site, connected to the leaf switch of the fabric to simulate
the optical transport network. The southbound protocols used to control the devices are
Netconf for the CPE, Openflow 1.3 for the fabric switches and OpenFlow 1.3 + Optical
Transport Protocol Extensions (ONF TS-022) for the ROADMs. The CPE in use is a
custom SFP of Microsemi, the ea1000 featured with an embedded Linux operating system
and a FPGA board programmable via Yang/Netconf. The fabric whitebox switches are
EdgeCore 5712 and the ROADM are custom disaggregated appliances provided by TIM.

5.4.2 Environment details

In order to provision end-to-end connectivity, users can request for a Point-to-point Car-
rier Ethernet Service through the Service Portal running on the Service Orchestrator. In
response to that request, WAN orchestration layer will determine which sites needs to be
involved, which path to go through the transport network and what kind of services and
policies needs to be applied (such as bandwidth profiles). Then, high-level description
of what actions each CORD sites and transport network must take will be sent down to
each ONOS controller.

In the following sections we describe (1) the primary initialization phase to configure
the E-CORD infrastructure and (2) the instructions sent by global ONOS to manage an
incoming user request for EVC creation.

Infrastructure configuration

The ONOS controllers must be initialized so that they are aware of the network infras-
tructure and can interact together. To do this, through the ONOS API, we perform the
following operations:

• CPE device creation: each ONOS Access receives information on the CPEs it
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has to manage. For each CPE it is specified the protocol to use, the IP and the
port to which connect, and hardware information

• ONOS Global node initialization: it receives endpoint information about un-
derlying domains (CORD sites and transport network). This allows to use the
HTTP-Channel for communication with the several ONOS controllers

• Local controllers initialization: each ONOS controllers receive (1) information
on the global ONOS endpoint for HTTP-Channel communications, (2) domain-
specific information regarding network ports, devices and applications, and (3)
information on MEF connect points marked as UNI, ENNI (Egress NNI), INNI
(Ingress NNI) such that the BigSwitch Service is able to abstract a single device to
be sent to the global ONOS

EVC creation

An API request for EVC creation contains a pair of UNI endpoints, the bandwidth profile
to be applied and a list of customer vlan tags (c-tags) enabled to use such EVC. Then
the global node generate a service vlan tag (s-tag) and sends a set of APIs, via HTTP-
Channel, to all the ONOS controllers involved in the path among UNI endpoints received.
Fig. 5.5 illustrates the sequence of APIs sent to create an EVC between two CORD sites,
both represented by an ONOS Access and an ONOS Fabric, connected by the transport
network.

Figure 5.5: EVC creation

The forwarding constructs (FCs) instruct ONOS controllers to install flow rules into
the physical devices. Each FC specifies: the s-tag, to identify the EVC, and a pair of MEF
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ports, related to the abstract device of the ONOS controller to which the FC is directed.
These MEF ports represent the demarcation points of a specific domain among which a
local controller must create the cross connection; as the EE device is not present the FC
on the ONOS Access domain is pointing to the same port (both a UNI and NNI port).
Furthermore, since the EVC is a bidirectional channel, for each forwarding construct the
global node sends two APIs, each of which represents one direction.

In addition to forwarding constructs each ONOS Access receives two APIs: one (cre-
ateBwp) to create the bandwidth profile within the CPE for a given list of c-tags and one
(applyBwp) to enable the EVC once all forwarding constructs have been sent.
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Chapter 6

EVPL Service implementation
using ONAP

In the following chapter we first give a description of how we have used ONAP to create
an EVPL service and provide a Layer 2 link between two endpoints; then we discuss the
components developed and the steps necessary to configure and offer this service.

6.1 Overview

The main idea behind our EVPL service implementation is to take advantage from E-
CORD use-case to create a point-to-point EVC between two endpoints and offer a full
Layer 2 communication. The endpoints can be of any type, such as datacenters located
in different sites that require communication among them or a customer who is offered
access to a service hosted in a datacenter.

In this context, the ONAP platform is used as a global orchestration manager to
perform the following operations:

• integrate E-CORD into ONAP so that it manages multiple CORD sites and the
Transport network between them

• design the EVPL service model in the SDC and distribute it to the Runtime frame-
work

• create a global BPMN that orchestrates the EVPL service creation/deletion, man-
aging all the interactions between ONAP components and external devices (such as
Openstack and CORD domains). This approach simplifies and speeds up the ser-
vice deployment by allowing the use of a single API to the MSO to trigger execution
of the global BPMN
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• manage the Openstack environment to deploy a virtual machine when a new request
to create the EVPL service arrives. This VM acts as one of the endpoints connected
through the EVC. It is equipped with a floating IP to enable access from outside
the datacenter, in this case from the customer connected to the other side of the
EVC

As shown in Fig. 6.1, ONAP knows and manages the whole network topology up to the
customer’s CPE. This allows us to calculate the best route between the customer’s CPE
and the nearest provider’s CPE, where the datacenter that will host the virtual machine is
connected. Another important aspect concerns the network infrastructure that connects
the datacenters to the CPEs and how this is managed. In section 6.3 we discuss the
design choices made to connect Openstack to a CORD site while maintaining a Layer 2
communications.

Figure 6.1: ONAP-EVPL infrastructure

The main advantages of adopting ONAP as a global orchestrator compared to an
ECORD-type solution based only on the ONOS network controller are the following:

• it is possible to design a service by composing it with TOSCA resources defined in
the SDC. This allows us to create complex services that include the management
and control of both external network modules, such as ONOS leaf controllers or
any other configurable device, and cloud resources such as VNFs

• the TOSCA modeling allows us to describe E-CORD as a reusable resource within
the SDC. In this way we can either replicate exactly the E-CORD use-case by de-
ploying a service composed only of this resource or use this resource as a component
of a more complex service
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6.2 ONAP-ECORD integration

ONAP replaces the ONOS global node of E-CORD becoming the orchestration manager
of the leaf ONOS controllers. Using ONAP as a global orchestrator we have exploited the
platform capabilities to model an EVC as a TOSCA network resource (called ECORD
EVC ) within the SDC. The properties associated with the TOSCA node will be assigned
as input attributes in the resource model and used by the orchestration API. This resource
model will be used to guide the orchestration in the MSO, which processes API requests
and interacts with the SDNC. The latter is the component responsible to communicate
with underlying ONOS controllers; based on the parameters received from the MSO,
SDNC sends instructions, via the HTTP-Channel, to the several CORD sites and to the
optical transport network for EVCs management.

Figure 6.2: ONAP-ECORD infrastructure

Moreover ONAP must be aware of the underlying topology before being able to deploy
an EVC. This goal is achieved by using a new component (the Topology service) inside
SDNC that is in charge to get the topology from ONOS controllers and store it into
the AAI. Through a script execution all ONOS controllers are configured with endpoint
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information about new global controller (in this case ONAP) and with underlying devices
modellization; in this way, for each ONOS controller the BigSwitch Service can represent
its own topology with a single abstract device and send it to Topology service.

The AAI acts as a common database between the components; it is used by the
Topology service, which will store the resources representing the network infrastructure,
and by SO/SDNC, which will consume the AAI topology and will insert/update
service-level information for each EVC addition.

Now we discuss of modellization and changes made on ONAP components (MSO,
AAI and SDNC) to support and integrate the E-CORD use-case.

6.2.1 MSO

In order to accomplish the incoming API requests we have designed a BPMN, composed
of sub-BPMNs and Groovy scripts, be able to orchestrate the creation/deletion of an
EVC. It is associated with the ECORD EVC resource model in the Catalog DB such
that the API Handler can trigger its execution.

The BPMN workflow performs the following main operations:

• parses informations sent through orchestration API related to the EVC (resource
model and network parameters) and checks if it is associated with a service instance
in the AAI

• sends a request with EVC service parameters, via the SDNC adapter, to the SDNC
provider responsible for the EVC creation/deletion. This request is formatted ac-
cording to the provider’s YANG model

• updates the request status in the Catalog DB and returns a success/failure response
to the API client

6.2.2 AAI

The AAI allows us to build an abstract global view of the E-CORD infrastructure by
providing predefined data structures that can be used to fully describe the resources and
relationships that make up a network infrastructure. Furthermore the AAI provides a set
of well-defined APIs through which the SDNC is able to represent the physical topology
and the EVCs.

The physical topology is composed of the ONOS Controllers (ONOS Access, ONOS
Fabric, ONOS Transport), each of which is modeled using the following AAI data
structures:
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• pnf : a physical network function represents a physical node of the network, in this
case an ONOS controller, providing a description of it. A pnf is connected with a
complex, an esr, and one or more p-interfaces

• p-interfaces: represent physical ports belonging to an ONOS controller. These
interfaces are characterized by a name-identifier (in this case a port number), a role
(UNI, INNI, ENNI) and other attributes

• physical link: is the object used to link two p-interfaces; it describe the physical
connection between ONOS controllers

• complex: associates a domain to a physical location. A complex has relationships
with all pnfs composing such domain

• esr: an external system register is used to store connectivity information for a given
ONOS controller such as name, url endpoint, credentials and so on. An esr is always
associated with a pnf while topology creation

Since each ONOS Controller can handle multiple EVCs, we have modeled each EVC
over physical topology as follows:

• logical link: is the object that abstract the Cross Connections and used Bandwidth
Profile, for an EVC, related to an ONOS controller

• l-interfaces: represent the two sides of a Forward-Construct for a given EVC on
a given domain; each l-interface is associated with a p-interface, a logical link, and
a vlan

• vlan: represent the c-tag/s-tag combination related to an EVC

Moreover the service instance, to which an EVC belongs, will be linked to all Forwarding-
Constructs across the domains used along the path; this is represented by the relationship
to the logical-links (each one is specific to a single EVC on that domain). There is also
a configuration object which links to the MDSAL endpoint in SDNC where the EVC
configuration is stored. This is purely symbolic as SDNC does not rely on this AAI
information, but other components could.
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6.2.3 SDNC

As mentioned above, the SDNC has the task of interacting with the several domains to
know underlying network topology and manage EVCs. For this reason we have imple-
mented two new services within the SDNC: (1) Topology service that receives, processes
and stores the abstract topology seen by each ONOS controller and (2) ECORD-EVC
service that handle MSO REST API call to create (activate)/delete (deactivate) an EVC.

Topology service

The Topology service is composed of a provider, described by YANG data modellization,
and a Direct Graph, which defines the workflow. No plugins are required since the
Topology service will only interact with AAI.

The Topology provider is defined by the following Remote Procedure Call:

rpc cord -topology - service {
description "RPC to receive a cord topology service ";
input {

list ports {
leaf port {

type string ;
description "Name that identifies the

p-interface , represented by a port
number ";

example : value "3";
}
leaf type {

type string ;
description " Indicates the physical

properties of the p- interface (e.g.
fiber , copper , OCh)";

example : value "fiber";
}
leaf domainId {

type string ;
description " Unique name of physical

network function ";
example : value " 163.162.95.51 -onos -cord";
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}
leaf interlinkId {

type string ;
description " Indicates the physical link

name to which the p- interface is
connected ";

example : value "site1 -cpe - fabric ";
}
leaf mefPortType {

type string ;
description "Role specification for

p- interface hardware (e.g. UNI , INNI ,
ENNI)";

example : value "UNI":
}
uses annotations ;
description " annotations contains other port

details such as port speed , lambda
wavelength (for optical domain ), etc.";

}
}
output {

uses response - common ;
}

}

Listing 6.1: RPC for Topology service (YANG Data Model)

For each ONOS controller, the Bigswitch service abstracts a single device and for each
device ports (UNI, INNI or ENNI) sends information according to this RPC. After, the
provider’s Java code calls the Service Logic Interpreter which checks if the DG related
with the Topology provider exists, takes it from the SDNC DB and executes it.

The DG workflow performs several operations: (1) save all input data (domainId, port-
Type, portName, etc.) related to a port, (2) creates the AAI modellization of the ONOS
controller, to which the port belongs, with the proper data depending on whether the
port is tied to a CORD site or to the optical transport network, (3) queries the AAI to
know what informations it already contains regarding that specific domain, and stores
via AAI APIs the missing data structures (pnf, complex, esr, physical link, p-interface).
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ECORD-EVC service

The ECORD-EVC service, like the Topology service, is composed of a provider, a DG
and also southbound plugins to the CORD/Transport domains.

The ECORD-EVC provider responds to the following RPC:

rpc cord -service - operation {
description "RPC to create / delete an EVC using

provided service information and other details
given in payload ";

input {
uses sdnc -request - header ;
uses request - information ;
uses service - information ;
uses model - information ;
uses evc - information ;

}
output {

uses response - common ;
}

}

Listing 6.2: RPC for ECORD-EVC service (YANG Data Model)

The data structures within the ’input’ statement describe information received from the
MSO (in order to focusing on EVC management, only the evc-information YANG
model is reported):

• sdnc-request-header: identifies the request received from SDNC Adapter. It
contains an identifier (activate or deactivate) representing the action for EVC and
the MSO URL endpoint to which send success/failure response

• request-information: contains information on the initial orchestration API sent
to the MSO

• service-information: contains data about the service instance (id, service type),
to which the ECORD EVC resource model belongs, and the client who has re-
quested the service
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• model-information: represents the ECORD EVC resource model (id, name, etc.)

• evc-information: contains all information related to an EVC (Bandwidth Profile,
c-tags list, EVC type, UNI endpoint list). This data structure is necessary only for
EVC creation

container evc - information {
leaf evc -type {

type string ;
description "Name that identifies

the EVC type";
mandatory true;
example : value " POINT_TO_POINT ";

}
container ctags -list {

description "Set of vlan c-tags to
be associated with the EVC";

leaf -list c-tag {
type string ;
mandatory true;
example : value "100";

}
}
container uni -endpoint -list {

list uni - endpoint {
description "Pair of UNI

endpoint among which EVC
will be created "

key " endpoint ";
leaf endpoint {

type string ;
description "The

endpoint is defined
as
pnfName / portNumber ";

mandatory true;
example : value

" 163.162.95.51 -onos -cord/3";
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}
leaf role {

type string ;
description

" Indicates the
user role used to
access the CPE";

mandatory true;
example : value "ROOT";

}
}

}
uses bw - profile ;
description "bw - profile contains the

bandwidth profile for the EVC";
example : value "CBS:100 , EBS:10 , CIR:10000 ,

EIR:1000";
}

Listing 6.3: evc-information Data Type (YANG Data Model)

When an API request to create/delete an EVC comes from MSO, according to cord-
service-operation RPC, the ECORD-EVC provider performs several main operations:
(1) checks if the service instance is already associated with an EVC and if so retrieves
EVC information from MDSAL, (2) calls SLI that checks if the relevant DG exists and
executes it, (3) saves EVC service information into MDSAL; these data contain the service
instance id, the action for EVC, the EVC information and the EVC service status once
DG workflow is finished. The (1) is useful only for EVC deletion in fact through service
instance id we can identify the EVC into MDSAL and what needs to be deleted; while for
EVC creation the EVC information are provided by MSO (using evc-information data
structure).

Depending on action parameter value inside sdnc-request-header data structure, the
DG carry out different workflows:

• action = activate

The DG fetches AAI physical topology of ONOS controllers, processes data and
builds a graph that represent the network. This graph captures capacity availability
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for all CORD sites and wavelength compatibility in optical domain; it is composed
by a Vertices list and an Edges list: the first list contains the graph vertices, each
identified as combination of pnf & p-interface, while the second list contains all links
between the vertices (the cross connections between p-interfaces on the same pnf and
the physical links between p-interfaces on different devices). After graph creation,
a Dijkstra algorihtm is applied on the graph to find the best path among the pair of
UNI endpoint received from MSO. If a path is found the DG generates a unique vlan
s-tag accross pnfs involved in the path and configure, through southbound plugins,
underlying ONOS controllers with bandwidth profile and forwarding constructs;
the APIs, sent toward ONOS controllers to create the EVC, are the same APIs
depicted in Fig. 5.5 but in this case SDNC plays the role of global ONOS. Finally,
if EVC creation is successful, the DG updates AAI service-level information: l-
interfaces, logical-links, vlans, service instance relationships and EVC configuration
object (which links to MDSAL).

• action = deactivate

The DG uses EVC information, retrieved by provider from MDSAL, to build and
send the instructions toward ONOS controllers for deleting forwarding consructs
and bandwith profile related to such EVC. Then, using the service instance id, it
retrieves all EVC relationships from AAI, recalculates the capacity availability for
each p-interface and restore vlan s-tag value among those avalaible. Finally the DG
deletes all logical links, l-interfaces, vlans and EVC configuration object related to
the service instance id.

6.3 Openstack-CPE connection

The connection between datacenter and CPE can be designed in different ways depending
on service provider network infrastructure, but always maintaining a layer 2 communica-
tion required by the EVPL service. For lab trials we have used a Huawei switch (called
gateway) to interconnect an Openstack instance to a CPE:

• the Openstack-gateway connection is made through a VxLAN tunnel so that it
is possible to cross whatever layer 3 network among them. Within Openstack
Network node we install VxLAN flow rules inside OVS switch (called br-ex) that
represents the demarcation point between Openstack network and external network
infrastructure

• on other side the gateway has a NIC directly connected to the customer-side port (c-
port) of the CPE and this connection is configured manually using MAC forwarding
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rules

In order to manage the Openstack-CPE connection using ONAP platform we have (1)
modelled VxLAN tunnel as a TOSCA network resource with related properties within
SDC, (2) created AAI modellization of physical network topology and logical connec-
tions (VxLAN tunnels), (3) added a VxLAN service within SDNC that is in charge for
creation/deletion of VxLAN tunnels. The VxLAN resource model will be distributed to
the Runtime framework and used by MSO during orchestration workflow to create/delete
on-demand VxLAN tunnels.

6.3.1 AAI topology

Openstack-CPE network infrastructures and VxLAN tunnels can be represented via AAI
APIs using the same AAI data structures seen in section 6.2.2. Pnfs, p-interfaces, phys-
ical links, esr and complexes are used to model the physical network view while logical
links, l-interfaces and vlans describe VxLAN tunnels among Openstack instances and the
gateways.

Figure 6.3: Openstack-CPE modellization

Fig. 6.3 illustrates the AAI modelizzation of two complexes connected with CPEs.
Each complex represents a physical domain composed of (1) br-ex pnf that describes OVS
switch within an Openstack instance and (2) gateway pnf that describes Huawei switch
used to interconnect Openstack to CPE.
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6.3.2 VxLAN service

The VxLAN service senses MSO API request for VxLAN tunnel management and inter-
acts with physical devices (br-ex and gateway) of a complex to install/remove VxLAN
flow rules. This service is composed of:

• a VxLAN provider that processes MSO request, retrieves VxLAN tunnel in-
formation (if any) from MDSAL, executes DG workflow and then saves VxLAN
tunnel information into MDSAL. The YANG data modellization of the provider
defines RPC, parameters and data structures required to create/delete a VxLAN
tunnel. For VxLAN tunnel creation the provider receives information on: VxLAN
resource model, service instance to which this resource belongs, pnf names among
which create VxLAN tunnel, floating IP address of an Openstack VM whose traffic
will flow through VxLAN tunnel

• a DG which defines workflows for creation/deletion of VxLAN tunnel. The DG
retrieves AAI physical topology, selects the relevant complex on which create/delete
VxLAN tunnel using pnf names received by MSO and then sends instructions via
southbound plugins toward br-ex and gateway of such complex. Moreover, if the
workflow execution is successful, the DG updates AAI service-level information
(l-interfaces, logical-link, vlans, service instance relationships) related to the creat-
ed/deleted VxLAN tunnel

6.4 Service design

Within SDC the EVPL service is modeled with custom/default TOSCA resource types
and then distributed to the Runtime framework; this enables service model usage by
BSS/OSS to create/delete on demand EVPL service instances. The TOSCA resources
describe the several components of the EVPL service (cloud resources, EVC, VxLAN
tunnel) and guide the orchestration workflow in the MSO.

In order to specify the datacenter that will host the virtual machine we can proceed
in different ways: (1) design a single EVPL service model which uses a specific Openstack
image and/or flavor in the VM’s HOT template that will be triggered by customer service
selection, (2) design a single EVPL service model which uses a set of images and/or
flavors options in the VM’s HOT template; the specific image/flavor will be selected in
the portal/MSO according to customer choices, (3) design multiple EVPL service models;
each service has the corresponding image and flavor in the associate VM’s HOT template
to be selected in the portal/MSO according to customer choices. In the latter case, the
user will specify the model name of the preferred VNF via MSO API.
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For lab trials we have chose the (1) option and composed the EVPL service model
with five resources:

• a virtual machine that represents host in which will run the service to be offered
to the customer. This VM is onboarded as VNF using a HEAT template that
describes: static properties (such as public SSH key, image name, flavor, security
group, floating IP) and input network attributes which will be provided during
Runtime orchestration workflow.

• a virtual router connected on one side to Openstack external network and on the
other to a private network. This router allows us to assign VM’s floating IP and
make it accessible from the outside. As for VM, the router is described by HEAT
template and onboarded as VNF

• a virtual private network used to connect VM to virtual router. The SDC al-
ready provides TOSCA model and HEAT template that describe a generic Neutron
net in Openstack, so it is not required to design and onboard this resource as VNF.
As for VM and router, input network attributes will be assigned during Runtime
execution

• a ECORD EVC resource that represents the EVC between customer’s CPE and
provider’s CPE. The properties related to this TOSCA resource are: UNI endpoints
(domains and ports), UNI roles, EVC type, c-tags list and bandwidth profile

• a VxLAN resource that represents the VxLAN tunnel between provider’s gate-
way and br-ex hosted in Openstack. The properties related to this TOSCA resource
are VxLAN endpoints and VM floating IP

Figure 6.4: EVPL service logical view
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After service distribution, the MSO Catalog DB contains all artifacts related to the
EVPL service: (1) models of VNFs and VF modules that describe router and VM, (2)
models of network resources for EVC, VxLAN tunnel and generic Neutron net and (3)
the service model that represent the whole EVPL service and has relationships with all
other resource models.

6.5 Orchestration workflow

The deployment of an EVPL service instance is made by running a global BPMN that
is responsible of interacting with the several ONAP components and the external de-
vices. This global BPMN defines the logic to select the best datacenter on which deploy
cloud resources and the sequence of operations required to create the EVPL network
infrastructure. The BPMN workflow is triggered by sending an API, to the MSO, which
contains the information related to the EVPL service model and the network parameters
to be used; this allows us to create EVPL service instances on the fly and assign them to
customers who request the service.

6.5.1 Environment configuration

The global BPMN workflow relies on preloaded AAI information and SDNC providers
endpoint to carry out the EVPL service instantiation. For a correct BPMN execution,
the AAI must contain information on: (1) list of Openstack tenants, each of ones is
related to a list of images, (2) EVPL service label, (3) customers related to the EVPL
service subscription and related to the Openstack tenants available, (4) Openstack-CPE
modellization for each Openstack tenant available, (5) ONOS controllers modellization.
While for network infrastructure operations, the SDNC must contain the following ser-
vices up and running: (1) the ECORD-EVC service for EVC creation, (2) the VxLAN
service for VxLAN tunnel creation, and (3) a new service, called BESTDESTSEARCH,
that selects the best complex to use for EVPL service deployment. The latter service
receives the customer CPE endpoint, the bandwidth profile for the EVC and a list of
gateway endpoint; then it computes all paths via Dijkstra algorithm between customer
CPE and each gateway, selects the best path and returns the result to MSO.

6.5.2 BPMN execution

When an API to create EVPL service instance arrives at MSO the API Handler takes
charge of the request and triggers the execution of the BPMN associated with the EVPL
service model in the Catalog DB. The API request contains all information required to
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guide the orchestration workflow: (1) the EVPL service model, (2) the customer UNI
endpoint and the network parameters to be used for cloud resources and EVC and (3)
the customer that requests EVPL service. These information will be passed to Camunda
engine and used during global BPMN execution to manage the several parts of EVPL
service deployment. Fig. 6.5 illustrates BPMN structure and main workflow phases; the
workflow is composed of a sequence of functional blocks: those with the bold margin
represent sub-BPMNs called during execution while the others runs functions defined in
Groovy scripts.

Figure 6.5: Global BPMN

Phase 1 : Best datacenter selection

In this phase the BPMN retrieves the HEAT template associated to VM’s VNF from Cat-
alog DB and uses the related image name to find, in the AAI, all Openstack datacenter
that are able to manage VM deployment and also the related Openstack-CPE modelliza-
tion. After, these information are used to send a request to the BESTDESTSEARCH
service that computes the best path between the customer UNI and each gateway whose
has a relationship with a candidate datacenter. We assume a distance of 0 between the
gateway and the br-ex, so the path computation will be between the customer UNI and
the interface of the gateway facing the provider network (the Microsemi CPE); path com-
putation must also satisfies bandwidth constraint. The SDNC returns a single gateway
as a result of path computation and from the gateway we now know which (1) complex
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is the selected candidate to host the VM and (2) provider’s CPE has to be used for the
EVC creation. At this point all information required for EVPL network infrastructure
deployment are avalaible.

Phase 2 : Cloud resources creation

The BPMN uses the EVPL service model to retrieve, from Catalog DB, the several
resource models belonging to the service and to perform the following operations:

• create the EVPL service instance in the AAI; this AAI resource is the root node to
which will be linked all other resource instances during execution

• create cloud resources (router, virtual LAN network and VM) into Openstack in-
stance selected during phase 1. Firstly, the BPMN makes the network parameters
preload into SDNC and instantiate the virtual network through Network Adapter.
Secondly, it deploys recursively all VNFs related to the EVPL service model and,
for each VNF, it carries out VF modules preload and instantiation through VNF
Adapter.

At the end of this phase, the VM is connected to the router through virtual LAN
network and equipped with a floating IP that will be used during VxLAN tunnel
creation. The AAI will contain the service instance connected to two VNFs and to one
network resource.

Phase 3 : EVC and VxLAN tunnel creation

Once cloud resources are created, the global BPMN calls the sub-BPMN responsible for
the EVC creation (described in section 6.2.1). This sub-BPMN builds the request for the
ECORD-EVC service within SDNC to create the EVC between customer CPE and the
CPE (p-interface) plugged into the gateway that has a relationship with the datacenter
complex selected previously. The EVC network parameters (customer’s UNI endpoint,
EVC type, c-tags list, bandwidth profile) to be used come from initial orchestration API
while the provider’s UNI endpoint comes from the selected provider’s CPE in phase 1.

When the EVC creation is finished, the BPMN creates the VxLAN tunnel between
br-ex of the selected complex and related gateway. To do this it sends request to VxLAN
service inside SDNC with network parameters to setup a logical-link VxLAN tunnel; the
parameters contains the endpoints for br-ex and gateway, identified as combination of
pnf & p-interface, and the VM floating IP for installing flow rules into physical devices.

After the last phase the BPMN completes its workflow execution updating the EVPL
request status in the Catalog DB and sending a success/failure response to the API client
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that has generated the initial orchestration API. Furthermore the AAI will contain the
tree representation of the EVPL service with the service instance linked to all other
resource instances: logical-links representing the EVC and the VxLAN tunnel, two VNFs
representing router and VM, one network resource representing virtual LAN network. If
any errors occur during workflow execution, the BPMN runs a sub-process to delete all
the resources instantiated up to that time and restores the system to a consistent state.

At this point any client, connected to the customer CPE, can access the VM hosted in
Openstack through a full layer 2 communication and use the service that the VM exposes.
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Chapter 7

ONAP current & future directions

7.1 Key concepts

In this section we provide details on what are the objectives and basic principles on
which the ONAP project is based and what ONAP is doing to harmonize open source
and standards. We focus on three areas of ONAP-related industry standards and best
practices: architecture, model-driven approaches, and APIs.

Architecture

ONAP is a platform above the network infrastructure layer that automates the opera-
tion and management of the entire network that is, both virtual and physical network
functions. It allows operators to connect their products and services through the infras-
tructure and scale the network in a fully automated manner. In other words, ONAP
aims to provide a utility network abstraction to the business layer, making services that
demand just-in-time networking capabilities more attainable. The separation of concerns
(SoC) design pattern is key in modeling the scope of ONAP: it is focused on modeling the
information and related management functions in the service and resource layers, while
its entire ecosystem spans many vertical industries and business scenarios, from end-user
products to infrastructure layer.

There are a few ONAP architecture design principles that guide the realization of the
platform:

• ONAP creates an open, model- and metadata-driven reference platform for service
providers to support full lifecycle management of cloud-centric, software-controlled
networks (SDN/NFV). The target goals include: (1) a modular, model-driven, and
microservices-based architecture, (2) a layered management architecture including
orchestrator, controllers, and multi-cloud (multi-VIM) infrastructure abstractions,
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and (3) well-defined APIs for all modules to foster interoperability both within
ONAP and across complementary projects and applications

• ONAP must support a common approach to manage various network functions
and related lifecycle management from different vendors. This approach includes:
(1) all ONAP platform modules must be product/service/resource-agnostic, with
a common information model for all vendors to follow, and (2) support standards
for consistency across vendor products, such as standard templates for instantia-
tions, standard language for configuration, standard telemetry for monitoring and
management, and so on.

• Enable service providers to define and onboard resources to support any type of
infrastructure and services, and to define analytics and policies that will be used
at runtime. The design goals include: (1) unified models between design-time and
runtime modules to facilitate end-to-end, zero-touch operations, (2) well-defined
northbound APIs for all modules, and (3) a central design studio where all required
artifacts are designed, tested/certified and distributed.

Model-driven approach

Model-driven is a widely adopted principle of IT system design, and often a business
requirement in large enterprises or complex ecosystem operations. In this approach, the
business logic of the software application is specified through the model at a higher level of
abstraction, which is decoupled from the implementation code in a specific programming
language. Running code can be generated or behaviours can be changed through model
transformation techniques, such as code generation or interpreting/executing the models.
Therefore, a model-driven approach enables enterprises to sustain technology changes and
gain the agility to support multiple business and service scenarios. For example, within
the current ONAP release (‘Amsterdam’), only a few modules are using the model gener-
ated code, such as A&AI. The majority of the ONAP core modules are “template-driven”,
i.e., using the common execution engine as a service-independent platform to parse and
execute templates for services and resource lifecycle management. Those models/tem-
plates are described in domain-specific languages (DSLs), such as TOSCA, YANG, etc.
To support service and resource management that is model/template-driven, ONAP fea-
tures the separation of Design Time and Run Time environments: the Service Design
& Creation module (SDC) in Design Time is responsible for the design, encapsulation,
certification, and distribution of the related models/templates; the Run Time modules
are responsible for parsing and executing the distributed templates.

Moreover, there are four modeling domains in ONAP: deployment, closed-loop, SDN,
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and configuration. Further, each domain model can be subdivided into an information
model and a data model: the information model describes the concept and the relationship
among those concepts at an abstract level, while the data model adheres to the semantics
described in the information model with strict syntax specifications within its domain.
The data model facilitates system coding without ambiguity. For example, with the
template-driven approach, there is no need for any code modification to ONAP when
deploying a new service if its deployment requirements can be described with the ONAP
information model using ONAP data modeling templates.

APIs

To enable service providers and users of ONAP to quickly integrate ONAP with their
existing systems, such as the OSS/BSS, ONAP embraces an architecture with well-defined
APIs that fosters interoperability both within ONAP and across complementary projects
and applications. The ONAP API design principles include: (1) support for self-service
and user-focused business objectives, (2) ease of integration via standardized APIs, and
(3) model-driven approach (API code generation instead of static coding per scenario)
and agnostic to VNF, resource, product, and service type. There are two categories of
APIs in the ONAP platform, which adhere to the above design principles:

• ONAP External APIs: These allow ONAP to be viewed as a “black box” by
providing an abstracted view of the ONAP platform’s capabilities. They can also be
used for connecting to systems where ONAP uses the capabilities of other systems.

• ONAP Internal APIs: These are APIs exposed by individual ONAP modules
with the primary goals of exchanging information with other modules and jointly
fulfill the functions provided by ONAP.

The ONAP External API Framework project provides the entry point for external
API interfaces for the northbound OSS/BSS interface. It shields the ONAP details from
the consumer interfaces as well as providing the consistency required for internal modules,
such as authentication and authorization.

7.2 ONAP releases

Amsterdam is the first version of the ONAP project and is the one used for the de-
velopment of this thesis; it came out in 2017 with the aim to anticipate as much as
possible the learning of the main concepts tied to a new way of designing and managing
networks: enable VNFs provisioning, facilitate a centralized and simplified Life Cycle
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Management of all services, decrease vendor lock-in. The Amsterdam release provides a
good coverage of the basic functionalities and the possibility of a strong customization
with in-house developments but it is very complex architecturally and not mature from
an operational point of view. Indeed, (1) the automation of a service instantiation is
still missing, (2) only a cloud provider (Openstack) is supported for the deployment of
VNFs and virtual network devices, (3) installation and configuration via Helm charts are
complex and not user-friendly and the platform is still unreliable and not high-available,
for example power outage highly impacts infrastructure (Kubernetes and Openstack) and
ONAP stability; also re-installing Amsterdam ONAP is not always an easy task because
of software changes that do not grant backward compatibility or issues to access remote
images repository.

The activities of the ONAP community are articulated around Projects and Releases.
The Release Lifecycle should be considered as a sub process of the overarching Project
Lifecycle. The latter should be seen as a long term endeavor whereas the Release Lifecycle
has a short term goal. From 2017, ONAP has adopted a 6 months release cadence for
Release Lifecycle. Fig. 7.1 shows the releases following the first version, Bejing and
Casablanca, compared according to the improvements and features offered, on a scale
from 0 to 10.

Figure 7.1: ONAP Releases

ONAP Casablanca is the project’s third release and has been enhanced with respect
to maturity, policy-driven orchestration, ETSI based NFV onboarding, stability and per-
formance in support of real world deployments. Moreover, it brings additional support for
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cross-stack deployments across new and existing use cases such as virtual CPE (vCPE),
virtual Firewall (vFW), 5G and Cross-Carrier VPN (CCVPN), as well as enhancements
to cloud-native VPN. The 5G blueprint is a multi-release effort, with Casablanca intro-
ducing the first set of capabilities around PNF integration, edge automation, real-time
analytics, network slicing, data modeling, homing, scaling, and network optimization.

Casablanca also includes new features, architectural changes, deployability enhance-
ments and bug fixes. Some of these highlights include:

• the design time environment includes two new dashboards to simplify design activ-
ities

• the VNF testing is enhanced to help ease deployment pains and improve VNF
quality and interoperability across real-world deployments

• the runtime environment includes new lifecycle management functions in both the
Service Orchestrator (MSO) and its three controllers, expanded hardware platform
awareness (HPA) to improve performance, geo-redundancy, support for ETSI NFV
for VNFM compatibility, MultiCloud enhancements, and edge cloud onboarding

7.3 ONAP evolution in TIM labs

In 2018, TIM company in its Innovation labs began to get in touch with the ONAP project
to understand what it is, what capabilities it enables and how it could improve network
management and the deployment of high-available and scalable services. Therefore, we
decided to use the ONAP Amsterdam release to (1) start learning about the platform
with respect to architecture, cloud infrastructure required to host ONAP, installation
procedures and features offered and (2) design and deploy a new service (the EVPL
service discussed in chapter 6) over the ONAP framework.

After these first steps, TIM’s work on ONAP has evolved focusing on the following
main objectives:

• installation improvements: creation of scripts that automate the installation
and manage all the software infrastructure on which ONAP is deployed. In this
way it is easier to deal with the software upgrade versioning and the change from
one ONAP release to another. Furthermore, these scripts use local repositories in
order to avoid problems accessing remote image repositories and accelerating the
configuration of ONAP
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• CI/CD automation: is a method for the frequent deployment of apps to cus-
tomers, which involves the introduction of automation in the application develop-
ment phases. Mainly, it is based on the concepts of continuous integration, distri-
bution and deployment. The CI/CD approach overcomes the difficulties associated
with the integration of new code by introducing constant automation and con-
tinuous monitoring throughout the application lifecycle, from integration and test
phases to distribution and deployment phases

• Flex Communication Service: is a new service intended to provide a flexible
service for enterprises: it offers either L2 connectivity or L3 connectivity or both
ones. No constrain is set for customer that is free to start the service as a pure
Internet access of the Headquarter or as a layer 2 service among the headquarter
and one or more subsidiaries. At any time customer may request Internet access
for some of its sites, a vFW is instantiated and configurated and some relevant pa-
rameters are monitored in order to make vFW scale-out/scale-in happen according
to configuration
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Chapter 8

Conclusion and Future work

8.1 Conclusion

The first conclusion we can reach is that using ONAP as a global orchestration platform
we are able to design and offer on the fly high-avalaible and scalable cloud services and
also manage whatever network infrastructure, from physical devices to datacenters, cloud
environments and domain controllers. The modular and layered nature of ONAP allows
us to describe/integrate every single component of a service within the platform itself
and to define custom business process models to orchestrate the service deployment. For
our EVPL service we have exploited the features of only 4 components of the many that
constitute the ONAP platform:

• SDC has been used to design and compose the service with all its components and
distribute it to the Runtime framework

• MSO has been used to define, through BPMN business models, the entire orches-
tration and interact with AAI/SDNC to make up the service

• SDNC: has been used to deal with all the networking system, from the preload-
ing of network parameters to the interactions with ONOS controllers, Openstack
environment and Huawei switch for configuring the network infrastructure

• AAI has been used as a common database between the other components (SDC,
MSO, SDNC) to store information about: the service (such as customers, Open-
stack environments, and so on), the entire network topology and all the resources
instantiated (and the related relationships) during the global BPMN execution

As described in chapter 6, our EVPL service allows to manage the whole connection
from the customer’s CPE to the service provider’s datacenter, configuring the cloud
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resources within Openstack, the connection between Openstack and the provider’s CPE,
and the EVC between the provider’s CPE and that of customer.

8.2 Future work

From the development of our service prototype, we have begun to understand how ONAP
operates, some of the capabilities it offers and the main interactions between the platform
components. In the next months, we are going to update the EVPL service in order to
improve its features and performance by using other ONAP components and adding, if
required, other software modules.
Furthermore, we want extend this service with the DCAE component to collect, ingest,
transform and store data for analysis and provide the ability to detect anomalous condi-
tions in the network, for example, fault conditions that need healing or capacity conditions
that require resource scaling. The gathered data is distributed to various analytic micro-
services, and if anomalies or significant events are detected, the results trigger appropriate
actions.
Finally, given the frequent updating of the platform by the ONAP community, we want
to keep up with ONAP releases and continuously integrate our service into them.
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