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Chapter 1

Introduction

Graphs are a general and powerful data structure that can model a large variety
of concepts in many fields:

• computer science (e.g. networks, data, code blocks)

• linguistics (e.g. lexical semantics, phrases)

• physics and chemistry (e.g. atoms, molecules, neurons)

• social sciences (e.g. rumour spreading)

• mathematics (e.g. topologies)

and these are only some of the many applications.

Thus, finding the similarity between two graphs and a measure of similarity be-
tween a set of graphs are crucial topics.

The similarity between graphs can be evaluated computing theMaximum Common
Subgraph (MCS), which consists in finding the largest graph which is isomorphic
to two subgraphs of two given graphs. MCS comes in two forms:

• maximum common induced subgraph, whose aim is to find a graph with as
many vertices as possible which is an induced subgraph of each of the input
graphs

• maximum common partial subgraph, where a common non-induced subgraph
with as many edges as possible is found

Basically, in the non-induced variant, edges must be mapped to existing edges,
but additional edges may be present in the computed subgraph. In this work, the
induced variant will be discussed.
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1 – Introduction

This problem has been widely discussed in literature since the seventies [1][2][3],
but being NP-hard, it remains computationally challenging.

When working with unlabelled graphs, state of the art algorithms [4] that compute
the MCS generally become computationally unfeasible with graphs of only 40
vertices (even if in some cases they can manage graphs of two orders of magnitude
above). Thus, because of the many application fields, most of the efforts were
directed towards finding the best practical approach to the problem.

In 2017, McCreesh, Prosser and Trimble proposedMcSplit [4], a branch-and-bound
algorithm to find MCS for various types of graphs (such as undirected, directed
and labelled) with several labelling strategies.

McSplit is a recursive procedure based on two main ideas: the use of a smart
invariant, and an effective bound prediction formula.

Another critical limitation of state of the art algorithms is that they work with
two graphs at once, while it could be really useful to be able to determine the
MCS among a set of graphs.

This work proposes a different approach to the problem, by not using an exact
algorithm, but an approximate one, Gamy, inspired by theMonte Carlo tree search,
a heuristic search algorithm for decision processes, mostly used in general game
play.

Gamy is aimed at providing satisfying solutions in reasonable times, with its main
feature being the ability to compute the MCS between a set of any number of
input graphs.

1.1 Document Structure
The second chapter of this work will further dive into the current state of the art,
focussing on the McSplit algorithm, while in the third one the Monte Carlo tree
search algorithm will be presented, explaining how it works along with an example
and taking a look at some of its variations.

In the fourth chapter, the Gamy algorithm will be presented and discussed in
detail, with its implementation being shown in chapter five. The sixth chapter
will illustrate the experimental results - both comparing Gamy against McSplit
and both evaluating Gamy’s performances on more than two input graph.

Lastly, the seventh chapter will summarise the obtained results and discuss the
applicability of this new algorithm, along with various extensions that have already
been detected, which will further improve its performances.

4



Chapter 2

Background

2.1 Definitions

Before diving into the state of the art, it is better to clarify some definitions that
will be used throughout this work.

Subgraph Given two graphs, G = (VG, EG) and F = (VF , EF ), where VG and
VF are the set of their vertices, and EG and EF are the set of their edges, F is a
subgraph of G if its set of vertices is a subset of G’s set, i.e. if VF ⊆ VG.

Induced subgraph In order for F to be considered an induced subgraph of G, it
must include all the edges e ∈ EG which have both the endpoints in VF , otherwise
it is called a partial or non-induced subgraph.

Common subgraph Given two graphs G and F , a common subgraph H is a
graph that is simultaneously isomorphic to a subgraph of G and a subgraph of
F .

Maximum common subgraph The maximum common subgraph between two
graphs G and F is the common subgraph with the highest number of vertices as
possible.

Labelled graph A graph is vertex-labelled (edge-labelled) if each of its vertices
(edges) have an associated label (which can be represented in various ways, e.g. a
string, a number, etc.).
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2 – Background

Directed graph A graph is directed if all of its edges are directed from one
vertex to another. Instead, if the edges are bidirectional, i.e. they can be traversed
starting from both its endpoints, the graph is undirected.

Connected graph A graph is connected when a path exists between every pair
of vertices, i.e. starting from any node, there are no unreachable vertices. If the
previous statement is not true, the graph is disconnected.

Figure 2.1 shows various types of subgraphs that can be obtained from a base
graph, while figure 2.2 shows some maximum common subgraphs obtainable from
two base graphs.

(a) Base graph (b) Induced subgraph

(c) Non-induced subgraph (d) Non-connected subgraph

Figure 2.1: An undirected base graph (a) and various types of subgraphs obtainable
from it (b) (c) (d).

2.2 McSplit

McSplit [4] is a recently proposed algorithm proposed by McCreesh,Prosser and
Trimble, and it is one of the most effective algorithm for the MCS problem.

It is a recursive algorithm based on a smart invariant and on an effective bound
prediction formula that reduces the computational effort.
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2 – Background

(a) Undirected graphs G and F

(b) Possible MCS for G and F

Figure 2.2: An undirected base graph (a) and various types of subgraphs obtainable
from it (b) (c) (d).

Invariant The algorithm builds a mapping between the vertices of the input
graphs using a depth-first search, adding a new vertex pair (one for each graph)
to the mapping set at each recursion level: after selecting a pair, a label is added
to all the unmatched vertices according to whether they are adjacent to the just
chosen vertex of their respective graph (for undirected graphs, adjacent vertices
are assigned label 1, non-adjacent ones label 0). Each time a new pair has to be
added to the set, only vertices that have the same label can be added.

Once no more vertices pairs can be chosen, the recursive procedure backtracks and
tries to follow a different path that could lead to a longer set of pairs. After all
the possibilities have been explored, the longest set of pairs found is the MCS of
the input graphs.

Considering the input graphs G (in figure 2.3a) and F (in figure 2.3b) as undirected
for the sake of simplicity, theMcSplit algorithm computes the MCS shown in figure
2.3c.

In table 2.1 the whole process is shown: first the pair a, b is added to the mapping
set M , and the non-mapped vertices are all assigned the label 1 since they all are
connected with the selected vertices; then, the pair b, c is chosen, and only the
vertex d of graph G receives a label 0 since it is not connected; lastly, the pair c, a
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2 – Background

is selected, leaving M in a state in which no more pairs can be chosen, since the
remaining vertices have different labels.

d

a b

c
(a) Graph G

d

b c

a
(b) Graph F

ab bc

ca

(c) MCS between G and F

Figure 2.3: Maximum common subgraph (c) computed among graphs G (a) and
F (b) using McSplit algorithm.

Bound prediction The second main component that characterises the McSplit
algorithm is the bound computation, which is used to prune the space search.

While parsing a branch, the following bound is evaluated:

bound = |M |+
X
l∈L

min(|{v ∈ G : label(v) = l}|, |{v ∈ F : label(v) = l}|) (2.1)

where |M | is the cardinality of the current mapping and L is the actual set of
labels. The algorithm will prune the current branch if the bound is smaller than
the size of the current mapping since it means that there will be no possibility to
find a match longer than the current one.

This operation allows to drastically reduce the computation effort.
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2 – Background

G F

Vertex Label Vertex Label

b 1 c 1
c 1 a 1
d 1 d 1

(a)

G F

Vertex Label Vertex Label

c 11 a 11
d 10 d 11

(b)

G F

Vertex Label Vertex Label

d 101 d 101

(c)

Table 2.1: States of the labels on the non-mapped vertices of G and F as mapping
proceeds. The state of the mapping set in each table is the following: (a)M = a, b
- (b) M = ab, bc - (c) M = abc, bca

Since the MCS can be computed on various types of graphs, McSplit adapts its
algorithm based on those types:

• In case of directed graphs, the adjacency matrix is modified: for each vertex
pair (v, u) ∈ G,F the adjacency matrix element adj[v][u] takes the value 0
if v and u are not adjacent, 1 if the they share a single edge directed from
v to u, 2 if they share a single edge directed from u to v, and 3 if there are
edges in both directions. Thus, the algorithm splits the label class in four.

• In case of vertex-labelled graphs, the algorithm starts from a set of label
classes, one for each different label belonging to the input graphs, and the
invariant keeps this label information while it traverses the tree.
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Chapter 3

Monte Carlo Tree Search

3.1 Introduction

Monte Carlo tree search (MCTS) is a heuristic search algorithm introduced by
Rémi Coulom in 2006, used to calculate the most promising next move in a
decision-making problem, combining the precision of tree search with the gen-
erality of random simulation.

The classic environment in which Monte Carlo tree search is used are discrete,
deterministic games with perfect information:

• discrete: the set of moves and positions is finite

• deterministic: every move has a set outcome

• game: players competing against each other

• perfect information: both players see everything

Games like chess or Go fall under this definition, but while Deep Blue [5], a chess-
playing computer by IBM, beat the world chess champion in 1997, no Go engine
ever became close to human masters because of the combinatorial complexity of
the game. That was until 2015, when Google’s AlphaGo [6], an AI playing Go,
exploited Monte Carlo tree search in combination with deep learning, becoming
the first computer Go program able to beat a human professional Go player, with
no handicaps and on a full sized 19x19 board.

Besides board games like Go, chess and shogi [7], Monte Carlo tree search has also
been exploited in games with incomplete information like bridge [8] or poker [9],
and as well as in real-time video games, like Total War: Rome II’s implementation
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3 – Monte Carlo Tree Search

in the high-level campaign AI [10].

Monte Carlo tree search is a hot topic right now in the AI field, with lots of
research paper being written about it, suggesting variations, optimisations and
enhancements.

3.2 Algorithm

Monte Carlo tree search is based on two concepts: that the value of an action can
be approximated exploiting random simulation, and that these obtained values
can be used to tune the policy in the direction of a best-first strategy. During
MCTS execution, a game tree is built step-by-step, guided by the results provided
by each iteration. The value of the moves is estimated using the tree, and the
estimations become more accurate while the tree grows.

Before taking a more accurate look at how the algorithm works, it is necessary to
clarify the meaning in this context of some terms that will be used:

• Search: a set of traversal down the game tree.

• Game tree: a tree in which every node represent a state of the game.

• Traversal : a path from the root node to a not fully expanded node (i.e. a
node that has unvisited children).

• Move: a transition from a node to one of its children .

• Root node: the node representing the initial state of the game.

• Terminal node: a node that cannot have any children, meaning that the
game has ended.

• Expandable node: a node that is not terminal and that has unvisited (unex-
panded) children.

Each iteration of MCTS consists of four steps:

• Selection

• Expansion

• Simulation

• Backpropagation
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3 – Monte Carlo Tree Search

Selection In the selection step, a traversal is performed: starting from the root
node R, optimal child nodes are recursively selected until an expandable node L
is reached. At the beginning of MCTS, only the root node R is in the tree, so it
will be the first to be selected.

Subsequent selections will instead choose at each level of the tree the node that
maximises some quantity (like in the multi-armed bandit problem where the player
picks each turn a bandit that maximises the estimated reward), stopping when an
expandable node is reached. The typical approach in selecting the most promising
node is the UCT (Upper Confidence bounds applied to Trees) formula, which is
the UCB (Upper Confidence Bound) formula applied to trees.

The UCT score for the node i (Ui) is computed in the following way:

Ui = Xi + c

s
lnNp

Ni

(3.1)

where Xi is the estimated value of the ith node, Np is the number of times the
parent of the ith node has been visited, Ni is the number of times the ith node
has been visited and c is a constant. Note that a node’s visits count increases only
when a simulation starts from the node itself or from one of its descendants.

The left part of the formula, Xi, is called exploitation component, representing
the accumulated reward for that node (e.g. in a game like tic-tac-toe, it estimates
the win ratio of the node i). In competitive games the exploitation component
is always computed relative to the player who moves at node i, meaning that
the perspective changes while traversing the game tree, based on the node being
traversed through: perspective is opposite for any two consecutive nodes.

If used alone, this component would lead the selection on a greedy path, favouring
those nodes that result in a winning playout early in the search and abandoning
the ones that were unlucky during the random playout resulting in a loss.

The right part of the formula,
q

lnNp

Ni
, called the exploration component, fixes this

behaviour by favouring those nodes that have been rarely visited, even more, if
their parent has been visited a lot.

Lastly, the parameter c ≥ 0 (which is usually set empirically) regulates the trade-
off between choosing nodes that seem lucrative (when c is set to a low value) and
rather unexplored nodes (c set to a high value).

Before nodes’ UCT scores become reliable, the nodes need to be visited a certain
number of times: their estimates will typically be unreliable at the start of a search,
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3 – Monte Carlo Tree Search

but converge to more reliable ones after sufficient time, and even become perfect
given infinite time.

Expansion In this step, the selected node L is expanded (unless it is a terminal
node), creating one or more child nodes and choosing a node C among them. A
particular version of Monte Carlo tree search, called pure Monte Carlo game search,
expands all the possible child nodes of the selected node L and then run a playout
from every one of them in the simulation step, but although this approach is more
exhaustive, it is much slower since even low reward paths are expanded.

Simulation Simulation (or playout) is a single act of gameplay, meaning a se-
quence of moves starting at the expanded node C and ending in a terminal node:
it consists in playing a game till the end starting from the state in the node C,
according to a certain rollout policy function:

RolloutPolicy : si → ai (3.2)

that given the state si produces the ai move. Since lots of simulations need to be
performed, the rollout policy has to be quick, so in practice, it is often a uniform
random.

A simulation results in the evaluation of the reached state, that usually, for games,
refers to a win, a loss or a draw, but in its simplest form a simulation does not have
to end at a terminal node, in which case any other value specific to the particular
application scenario is a legit result.

Backpropagation Backpropagation is a traversal from the leaf node C back
to the root node R, performed once the simulation is over, propagating back the
results, computing or updating specific statistics for all the nodes in the path from
C to R, thus guaranteeing that every node’s statistics reflect the results of the
simulations started in all their descendants.

Termination The Monte Carlo tree search steps are performed cyclically many
times, and the whole process will stop when a specific condition is met, usually
when a timeout expires. At this point, the most promising move has to be chosen,
and it typically is the one with the highest number of visits (Ni), since it means
that most of the times it was considered the most lucrative node according to the
UCT formula.
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3 – Monte Carlo Tree Search

3.3 Tic-Tac-Toe Example

For this example, the exact UCT formula used becomes:

Ui =
Wi

Ni

+ c

s
lnNp

Ni

(3.3)

whereWi is the accumulated value of the ith node (e.g. the sum of wins and losses
from that node), thus the exploitation component represents the win ratio of the
ith node.

In tic-tac-toe, the game can end in three different states: win, loss or tie, which will
be valued +1, -1 and 0 respectively. It is important to note that in this example,
W reflects whether the player using X won or lost, so during selection, when it is
O’s turn, the sign of W is flipped. Moreover, the pure Monte Carlo game search
approach will be used.

In figure 3.1 the root node s0 is chosen in the selection process since, at this point,
no other node exists yet, and it is then expanded in all the possible combina-
tions.

Figure 3.1: Selection of the root node s0 and expansion of all the five possible
children [11].

At this point a random simulation is run for all the child nodes expanded in the
previous step: in figure 3.2 a sample playout from the node s0,1 is shown, which
ends in a win, thus increasing the value of s0,1 by 1.
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3 – Monte Carlo Tree Search

Figure 3.2: Simulation run for the node s0,1 until an end state is reached [11].

Figure 3.3 shows the state of the tree once a playout is run for all the expanded
nodes: for each node, two values are stored, N, the number of times that node has
been visited and W, the accumulated value of wins and losses.

Figure 3.3: Results of the playouts of all the expanded nodes [11].

Once the simulation is run for all the child nodes, the results are propagated back
up to the root node, reaching the situation showed in figure 3.4.

At this point, the process restarts, but now that more than one leaf node is present,
the selection step will exploit the UCT scores to direct the traversal.

Figure 3.5 shows the UCT scores for the child nodes considering c = 1, thus
node s0,1 will be selected, which will be first expanded, then a simulation will be
performed for all its child nodes, and lastly, the obtained results will be propagated
back to the root node, obtaining the situation showed in figure 3.6.
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3 – Monte Carlo Tree Search

Figure 3.4: Backpropagation of the results until the root node s0 [11].

This process continues until all the possible moves are expanded, obtaining the
state showed in figure 3.7.

Now that the process is completed, the best possible move is the one with the
highest visits count, since it means that most of the times it was considered the
most lucrative node, which in this case is s0,1

3.4 Advantages and Disadvantages

Monte Carlo tree search has various advantages with respect to traditional tree
search methods:

• Aheuristic: it does not need any tactical or strategical knowledge about the
domain in which it is operating in order to make reasonable decisions. The
only things it needs to know are the permitted moves and the game-end
conditions. This trait allows MCTS to be reused in different games with
little modifications and to be effectively employed in general game playing.

• Asymmetric: the game tree grows asymmetrically (figure 3.8), since the
algorithm tends to visits more promising nodes more often, thus focussing
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3 – Monte Carlo Tree Search

Figure 3.5: UCT scores with c = 1 [11].

most of the search time in the more relevant parts of the tree. For this
reason, MCTS is well suited for games with large branching factors, where
instead standard depth-based or breadth-based search methods struggle.

• Anytime: the algorithm can be stopped at any time, returning the most
promising result found until that point.

• Elegant : the algorithm, especially in its base version, is straightforward to
implement.

However, like any algorithm, it also has some drawbacks:

• Playing strength: in its basic form, the algorithm may fail to find good moves
within a reasonable time, even for games of medium complexity. This is due
to the size of the combinatorial move space and the fact that there may be
key nodes that are not be visited enough times to give reliable estimates.
For example, there may be one single move that leads to a win against an
expert player, but given the nature of the algorithm, it may be overlooked.

• Speed : converging to a good solution may require many iterations, and this is
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Figure 3.6: Selection of s0,1, expansion, simulation and backpropagation [11].

especially true for more general applications that cannot be easily optimised.

3.5 Improvements
Several enhancements can be made to the algorithm, in order to improve its speed
and efficiency.

Expert policies Monte Carlo tree search can employ either light or heavy play-
outs. Light playouts are essentially random moves, thus improving speed, while
heavy playouts make use of various heuristics to compute the next move. These
heuristics may exploit the results of the previous playouts or be based on expert
knowledge of a specific game. This means that certain nodes are given a higher
weight because they represent the move that an expert human player is more likely
to make.
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Figure 3.7: State of the tree after completely visiting it [11].

The UCT formula including expert policies becomes:

Ui =
Wi

Ni

+ cPi

s
lnNp

Ni

(3.4)

with Pi = π(ai|si), where, given a certain expert policy π, it represents the prob-
ability of choosing the ith action ai from the state si.

As with the previous UCT formula, the score trades off between lucrative and
unexplored nodes, but now, the expert policy is guiding node exploration, directing
it towards moves that would more likely be made by an expert of that dominion.
Thus, this addition makes playouts more realistic, obtaining reliable reward values
in fewer iterations, but in exchange losing speed and generality. It is also important
to consider that expert policies are very difficult to generate, and even then, it is
hard to verify that they are optimal.

Going back to the tic-tac-toe example, figure 3.9 shows the probabilities of each
move, given the current state s0: an expert, seeing that two Os are on the same
column, would almost surely place the X on that same column to prevent the
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Figure 3.8: Sample showing how Monte Carlo tree search explores a tree asym-
metrically [12].

opponent from winning the game.

Domain independent improvements Some other improvements are more
general and can be applied to all problem domains. They are typically applied
in the node selection, but others are also applied to the simulation (e.g. preferring
some moves with respect to others). Since this kind of improvements, enhance the
results without losing generality, most studies are focussed in this direction.

Parallelisation Monte Carlo tree search is perfectly suited for parallelisation,
being indeed able of being parallelised on different levels:

• Leaf parallelisation: after the expansion phase, many playouts are run in
parallel from the chosen node C.

• Root parallelisation: several game trees are built independently in parallel
and moves are selected gathering statistic from all of them.

• Tree parallelisation: the game tree is built in parallel, managing synchroni-
sation in order to avoid simultaneous writes.
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Figure 3.9: Probabilities Pi of choosing a certain move, based on the expert policy
π [11].

3.6 Variations
Given its generality, Monte Carlo tree search can be applied in many flavours to
better perform in each different dominion in which it is applied [13]:

Flat UCB In this variation, the leaf nodes of the trees are effectively treated as
a single multi-armed bandit problem. It has been demonstrated that this approach
maintains the adaptivity of the UCT formula while improving its regret bound-
aries in some worst cases, where UCT was observed to be excessively optimistic
[14].

Bandit Algorithm for Smooth Trees (BAST) This is an extension of the flat
UCB model that makes assumptions on the smoothness of the rewards to identify
and prune suboptimal branches, which is in contrast with plain UCT where all the
branches are indefinitely expanded [14].

Temporal Difference Learning Monte Carlo tree search learns based on the
values of states or of the state-action pairs, using this information to decide which
action to take, behaviour in common with temporal difference learning (TDL). A
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significant difference is that TDL algorithms do not build trees, but under certain
conditions, it can be equivalent to MCTS [15], i.e. when all the state values can
directly be stored in a table. TDL learns the long-term values of the states, which
will then guide the future behaviour, while MCTS estimates temporary reward
values for the nodes to choose the next move. An approach combining both these
algorithms has been proposed [16], which uses the concepts of permanent and
transient memory to differentiate how MCTS and TDL handle the two types of
state value estimation. TDL can learn heuristic value functions to influence the
selection and simulation policies.

Single-Player MCTS (SP-MCTS) A variant for single players game, which
adds a new term to the UCT formula representing the possible deviation of the
node:

Ui = Xi + c

s
lnNp

Ni

+

s
σ2 +

D

Ni

(3.5)

where σ2 represents the node’s i simulation results variance, and D is a constant.
The term D

Ni
increases the standard deviation for nodes that have a low visits

count, making rewards for said nodes more uncertain. Another difference between
with respect to standard UCT is the usage of heuristically guided default policies
during selection phase [17].

Multi-player MCTS When a game with more than two players is considered,
the base idea of a player trying to maximise his reward and of an opponent trying
to minimise it, cease to be valid. The simplest way to exploit Monte Carlo tree
search in multi-player games is to use the maxn idea: a vector of rewards is stored
for each node, and the selection step operates by trying to maximise the UCT
score using the appropriate component of the reward vector [18].

Another addition in multi-player games is considering coalitions [19], i.e. a group
of players playing together against other players/coalitions. In this case, the same
maxn approach is used, but a rule is added so that simulations avoid making
moves that would negatively affect players in the same coalitions, and rewards are
differently computed, considering that said players belongs to the same coalition.
Coalitions can be handled in several ways:

• Paranoid UCT : the player considers that all the other players are in the
same coalition against him.

• UCT with Alliances : the coalitions are explicitly provided to the algorithm.
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• Confident UCT : independent searches are performed for each possible coali-
tion, and the move is chosen according to the most promising coalition.

Multi-agent MCTS The simulation phase of the standard UCT may be seen as
a single agent playing against itself, but if instead, multiple agents are considered,
some improvements can be made. More specifically, these multiple agents are
obtained by assigning different priorities to the heuristics used, and it has been
observed that using the right subset of agents, improves playing strength, because
there is an increase in the exploration of the search space. The drawback is that
it is computationally intensive to find the set of agents with the correct properties
[20].

Real-time MCTS Traditional games are turn-based, usually giving players time
to think about the next move. Unfortunately, this is not true for real-time scenar-
ios, where there is constant progress without any waiting, so it is crucial to act
swiftly. Real-time games are mostly represented by video games, which also often
possess other features that increase the complexity of the problem:

• Uncertainty

• Massive branching factor

• Simultaneous moves

• Open-endedness

For all this reasons, developing an efficient algorithm for this dominion is chal-
lenging, but Monte Carlo tree search is well suited for it since it can stop at any
time, thing that is crucial in this games where time is limited, and also because of
its asymmetric exploration of the tree, allowing to better explore the space in the
short time available.
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Chapter 4

Gamy Approach

TheGamy algorithm has been developed with the main goal of allowing to compute
the MCS among multiple input graphs simultaneously, overtaking the limit of
comparing two graphs at a time. Its design also aims at providing an efficient
solution to the problem when the graphs reach the thousands of vertices, situation
in which exact algorithms often become unfeasible.

4.1 Overview

Finding the MCS between graphs is a complex problem that involves various dif-
ficulties, the main being the large branching factor, that grows swiftly with the
number of vertices in the graphs.

Before continuing, it is essential to define the meaning of equivalence between
vertices:

given two graphs, G = (VG, EG) and H = (VH , EH), and two vertices a ∈ VG, with
label L, and b ∈ VH , with label K, a is equivalent b if and only if L ≡ K and, if
any of a’s parents (or children) belongs to an equivalence class γ (meaning that it
has been defined equivalent to another vertex), also b must have matching parents
(or children) in that same equivalence class γ.

This definition applies in the same way to n different vertices from n different
graphs, and it also applies to unlabelled graphs, with only the parents and children
restrictions applying.

To get a better grasp of this definition, let us take a look at an example, where
the goal is to prove the equivalence between two vertices.
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4 – Gamy Approach

Starting from the situation shown in figure 4.1, the goal is to prove that vertices
d and w are equivalent. Since no other equivalence has been chosen yet, the only
necessary condition is for the two vertices to have the same label, which in this
case is true (both are labelled J): the two vertices are thus equivalent.

Figure 4.1: Starting state showing graphs G and H with no chosen equivalence,
where right next to each vertex its label is shown.

Instead, if the situation was the one shown in figure 4.2, where an equivalence
between vertices a and k has been chosen already, vertices d and w cannot belong
to the same equivalence class any more, since d has a parent in an equivalence
class (coloured in red), while w does not.

Lastly, in figure 4.3, an equivalence was chosen between vertices a and z, thus
allowing d and w to be equivalent since they both have the same label and have
parents belonging to the same equivalence class.

In order to apply an algorithm inspired by the Monte Carlo tree search to the
MCS problem, several issues had to be addressed:

• How to handle graph vertices in order to choose equivalences among them
conveniently?

• What do nodes in the Monte Carlo tree represent?
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4 – Gamy Approach

Figure 4.2: Graphs G and H with an equivalence found between vertices a and k,
making the equivalence between d and w invalid.

• What is the estimated reward of a Monte Carlo node?

• Which policies have to be used to select the node to expand and to perform
a simulation?

• Which values should be backpropagated?

Note: even though the term node can also be used to refer to a graph’s vertices,
only the latter will be used to refer to them, while node will always refer to nodes
in the Monte Carlo tree.

4.2 Main Components

4.2.1 Hyper Partitions

One of the first addressed issues was how to manage the vertices of the input
graphs in order to simplify and optimise (both in terms of speed and memory con-
sumption) their storage and the choice of the equivalences. To solve this problem,
the hyper partitions technique was conceived.
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Figure 4.3: Graphs G and H with an equivalence found between vertices a and z,
allowing to select the equivalence between d and w.

Split At the root of this technique, a split is performed: given some generic
partitions containing vertices, a set S of some specific vertices is taken, and then
each partition is split, removing from it the vertices contained in the set S, and
placing them in a new partition. All the newly created partitions are then grouped
under a new unique partition (hence the term hyper partitions): in this way, a node
will have several hyper partitions, and it can choose one at random, pick a random
vertex for each inner partition, and thus obtain a valid equivalence.

This technique allows choosing equivalences while maintaining a convenient data
structure from which, given a hyper partition, it is always possible to safely choose
new equivalences ranging from 2 to n vertices (based on how many inner partitions
are then selected). Moreover, with this approach, it is also easy to discard vertices
that cannot be any longer equivalent to any other vertex because of the restrictions
applied after choosing an equivalence: in fact, given n input graphs, the hyper
partitions which do not contain at least two non-empty partitions (i.e. that can
obtain at least a two-vertices equivalence) can be discarded.

Partition hope The most important property of a hyper partition is the hope,
whose value represents how many equivalences can probably be obtained from that
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hyper partition. It is computed in the following way:

PH =
kX

i=0

jmi ∗ xi (4.1)

where:

• k is the number of equivalences that may be chosen in the hyper partition in
the best possible combination, i.e. longer equivalences are preferred.

• j ≥ 1 is a constant called equivalence modifier which gives more value to
longer equivalences the higher it is chosen (j = 1 gives the same value to
equivalences of different lengths)

• mi is the length of the ith equivalence

• xi is a modifier representing the likelihood of the ith equivalence

In particular:

xi = xi−1 ∗ h (4.2)

with x0 = 1 and h < 1 being a constant called partition hope reducer. More
specifically the xi modifier starts at one because the first equivalence can surely be
chosen from that hyper partition, but then decreases at each sum, since there will be
less probability to choose subsequent equivalences because of the new restrictions
arising at each choice.

4.2.2 Monte Carlo Nodes

A node in the Monte Carlo tree represents a state of the game, which in the MCS
case, consists of a set of already chosen valid equivalences, and a set of vertices
still available to be picked. To represent these structures and to calculate the
node’s estimated reward, several properties have been defined for a Monte Carlo
node.

Partition Manager A structure used to store and manage all the hyper parti-
tions belonging to the node, thus representing the pool to choose the equivalences
from.

History A structure containing all the already chosen equivalences.

28



4 – Gamy Approach

Hope The hope of a node, like for the hyper partition, is a value that represents
how many equivalences can hopefully be obtained from that node:

H = (
lX

i=0

jmi ∗ xi) ∗ c (4.3)

which is similar to the partition hope formula, but now l represents the number
of all the equivalences in all the partitions (still in the best possible combination).
The constant c > 0 is called node hope modifier, used to regulate the final value of
the hope.

If the hope of a node was just the sum of the partition hopes, its value would not
have accurately represented the decrease of likelihood of an equivalence, since in
the partition hope formula the xi modifier is reset after the calculation on each
partition, while in this case, it keeps decreasing after the sum of each equivalence
of each partition.

In relation to the UCT formula, the hope corresponds to the exploration com-
ponent, since a node with a high hope is probably able to be expanded a lot,
obtaining lots of equivalences.

Fact The fact represents the value of obtained equivalences, i.e. the combined
value of all equivalences in the history :

F = (
pX

i=0

jmi) ∗ f (4.4)

where:

• p represents the number of chosen equivalences

• f > 0 is a constant used to balance the final value of the node’s fact.

Here the xi modifier is missing, since there is no uncertainty on those equivalences,
being them already picked.

With respect to the UCT formula, the fact corresponds to the exploitation com-
ponent, since it represents the certain current value obtained by that node.

Both hope and fact are balanced by a constant, and usually, especially for graphs
with a high number of vertices, f is set to a higher value than c. The reasoning
behind this choice is that for the first iterations of the algorithm, nodes’ hope will
always be higher than their fact since the hope will start at its maximum value,
while the fact will start at 0 and grow slowly.
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Weight The weight of a node is its estimated value, and it is a combination of
its hope and fact :

W = H + F (4.5)

This value is used to indicate how worthy is a node, combining both how much it
can still be expanded and how good results it has already obtained.

Lastly, it is essential to note that only equivalences with a length of at least two (i.e.
that involve at least two graphs) contribute to the various parameters (partition
hope, node’s hope and fact).

Figure 4.4 shows the results of the calculations for all the properties of a sample
Monte Carlo node, where a few important things can be noted:

• Partition HP00 has a partition hope of zero since no equivalence of length of
at least two can be made.

• In the partition HP01 the best possible combination of equivalences is one
of length 3, and two of length 2, which leaves a vertex unchosen, and which
will not thus contribute to the partition hope.

• Since the equivalence modifier j is equal to 2, the partition HP2 has a higher
partition hope than HP01, even if it can form one less equivalence, but being
them both of length 3, its final value is higher.

4.3 Algorithm
The algorithm inspired by the Monte Carlo tree search was conceived to perform
better in this particular application, with one of the main peculiarities being that
in the MCS problem there are no multiple players competing against each other,
and no negative valued moves can be performed, only more or less worthy.

4.3.1 Initialization

Initial partitions Initially, given n input graphs, n partitions are created, each
containing all the vertices of a given graph and they are stored under a unique
hyper partition, like showed in figure 4.5, which is referred to the graphs in figure
4.1. The vertices in the partitions are then sorted by degree.

First split A first split is performed, with the aim of separating all the vertices
based on their labels, thus, considering a total of m different labels, generating at
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Figure 4.4: Example showing the values of the properties of a Monte Carlo node.
For this example, the following constant values were used: j = 2, h = 0.7, f = 1,
c = 2.

most n ∗m separated partitions, and this is achieved by splitting the initial hyper
partition m times, where at each iteration the set SM contains all the vertices with
a given label M . The result of this first split can be observed in figure 4.6.

After this initial split, partitions of different graphs which contains vertices with
the same label, are grouped into separate hyper partitions (obtaining at most m
different hyper partitions). This results in the possibility of choosing one hyper
partition, then one random vertex for each inner partition, and always obtaining
a valid equivalence.

This, and all the subsequent split that will be performed, will not alter the order of
the vertices in the partitions: the sorting by degree will always be preserved.
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Figure 4.5: Initial state of the root node’s hyper partitions after reading the input
graphs.

Given this initial hyper partitions, the root node of the Monte Carlo tree is gener-
ated, calculating its hope (to which the weight will be equal since at this point its
fact is zero), and it will be the starting point of the search.

4.3.2 Selection

At each iteration, a node to be expanded is selected. Besides the first iteration,
where the only node that can be selected is a root node, the selection is made on
a list of candidate nodes which possess two particular features:

• expandable: there is still at least one equivalence of two or more nodes that
can be chosen

• promising: only nodes whose weight is higher than the best fact ever found
are considered worthy of exploring

The only exception in admitting a non-promising node is when an input parameter
that controls the minimum number of candidates available for expansion is set to
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Figure 4.6: State of the root node after the first split based on vertices’ labels.

a value greater than one: in this situation, if the number of candidates is not high
enough, even if a node is not promising, it is considered a valid candidate.

To select a node to expand from the candidates, a fitness-proportionate selection
algorithm is used, called roulette wheel selection, a genetic algorithm where each
member of the population (in this case the candidate nodes) is allocated a section
of an imaginary roulette wheel: each section of the roulette wheel has a different
size, which is proportional to the individual’s fitness. In this specific case, the
fitness is represented by the weight of a Monte Carlo node, thus candidates with
a higher weight will have a higher chance to be chosen when the roulette wheel is
spun.
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4.3.3 Expansion

Equivalence selection Once a node has been selected, a new equivalence has to
be chosen in order to expand it. First, a hyper partition must be chosen, and this is
again done using the roulette wheel selection, where the population is composed by
the various hyper partitions, and the fitness is the partitions’ hope. After spinning
the wheel and picking the winning partition, an equivalence must be chosen: for
each partition, a vertex is chosen using the tournament selection, which is another
genetic algorithm used to select one individual among a population. In particular,
several tournament rounds are run among a few individuals chosen at random,
with the winner passing on to the next round. The winner is again the individual
with the best fitness, and in this case, it corresponds to the vertex with the highest
degree.

This equivalence selection step is repeated if one of the followings happen:

• given the selected hyper partition, if an equivalence formed by at least two
vertices is not found

• the new node which will be formed with the new equivalence, has already
been expanded (this may happen because different choices along the tree
could lead to the same result)

If this happens, different partitions are selected from the same node until there
are no more available partitions to pick vertices from: at this point, another hyper
partition from the same node and its partitions are explored again. If no valid
equivalence that leads to a new node can be found, the node is marked as exhausted,
meaning that it has been fully explored, and it is thus removed from the candidates’
list; the selection step is then performed again.

Instead, once a valid equivalence is found, the new node has to be expanded, thus
the first step is to generate its new hyper partitions.

Subsequent splits The split technique is performed twice each time an equiva-
lence is chosen because at this point the vertices’ parents and children restrictions
deriving from the new equivalence also need to be considered: the inner partitions
are firstly split using as set the one containing all the parents of the vertices just
picked for the equivalence, and then using the set containing all their children
vertices. Lastly, the newly generated partitions are grouped into new hyper parti-
tions. Considering again the graphs showed in figure 4.1, suppose the equivalence
between vertices d and w has been chosen: the first split will be done using as set
all the parent vertices of d and w, i.e. a, b, c, n and z, obtaining the result of figure
4.7, the second one on the set containing all their child vertices, i.e. e, f and j,
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obtaining the final state showed in figure 4.8.
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Figure 4.7: After choosing the equivalence between d and w, the hyper partitions
are split based on the parent vertices of d and w.

At this point, the new node is initialised, and some conditions are checked to decide
its course.

Exhausted First, there is a check on the node’s hope: if H = 0 it means that
no more equivalences can be obtained from this node, and it is thus marked as
exhausted (it will not be included in the candidates list).

Bad weight The Monte Carlo tree keeps track of the highest fact reached by
nodes, and uses this parameter to decide if the node is worthy to be explored, in
which case the node is marked as closed, meaning that it was still expandable, but
not considered valuable to.
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Figure 4.8: Right after splitting on their parents’ vertices, another split is per-
formed on the children of d and w, obtaining the final state of the Monte Carlo
node.

If it is true that:

W ∗ b < Fmax (4.6)

the node is not considered valuable, and it is closed. The constant b > 0 is called
bad weight ratio and, based on its value, increases or decreases the ratio of closed
nodes.

There are two cases in which even a node with bad weight can be inserted among
the candidates:

• a minimum number of candidates is set, and it is currently not reached
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• there is a node among the candidates whose weight is lower than the one of
the just expanded node

In the second case, the former node is removed from the candidates and marked
as closed, and the one just expanded is inserted in the candidate list.

It is important to note that since at each expansion a new best fact may be found,
when the selection process starts and a candidate is selected, before expanding it,
a bad weight check is performed on it, that if fails will exclude the node from the
candidates (except if the minimum number of candidates is not met), mark it as
closed, and proceed in selecting another candidate.

4.3.4 Simulation

Contrary from the classic MCTS algorithm, no simulation is performed in this
case, since reaching an end state for every expanded node has been found to
be counterproductive in such a scenario with a high branching factor, and even
simulating for a finite number of levels (proceeding as in the expansion phase) did
not improve the results. Thus the chosen approach is to expand nodes one-by-
one.

4.3.5 Backpropagation

Each time a new node is created, the difference between its hope and the one of
its parent is computed. If this value is negative, this difference is propagated back
up till the root node:

P = H −Hp (4.7)

where:

• P is the initial value to be propagated (if P ≥ 0 there is no propagation)

• H is the hope of the newly created node

• Hp is the hope of its parent

This value is backpropagated in the following way:

Hpi = Hpi + P ∗ s (4.8)

where:
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• Hpi is the hope of the ith parent node, climbing the tree back to the root
node

• s is a variable used to reduce the propagated value as it goes up, starting at
s = v and being modified in this way: s = s ∗ r (with v ≤ 1, propagation
initial value, and r < 1, propagation reducer, being constants) after each
propagation

The reasoning behind the propagation conditions is that if the number of vertices
in the examined graphs is very high (and also if the partition hope reducer h is
set to a low value), the values of the nodes’ hope is flattened, thus if expanding a
node, i.e. selecting an equivalence and splitting its hyper partitions, results in a
new node whose hope is still the same as its parent’s, it means that probably that
is a path which will lead to lots of expansions, thus valuable.

Figure 4.9 shows an example of backpropagation after the expansion of a new
node.

H = 85.6

H = 67.8

H = 67.8

H = 55.2

Root node

P = 55.2 - 67.8 = - 12.6  

v = 0.8

r = 0.7

 - 12.6 * 0.8 = - 10.08  

 - 12.6 * 0.8 * 0.7 = - 7.056  

 - 12.6 * 0.8 * 0.7 * 0.7 = - 4.9392 

Figure 4.9: Example showing how P is calculated and backpropagated after the
expansion of a new node, considering v = 0.8 and r = 0.7 (for the sake of simplicity
only the affected path of the tree is shown).
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4.3.6 Termination

There are two termination conditions:

• Timeout: once the timeout given as input expires, the program stops ex-
panding the tree and compute the final results

• Exhaustion: all the nodes in the tree have been either marked as closed or
exhausted

It is important to note that when the program is terminated by exhaustion, it
does not mean that all the possible existing nodes of the Monte Carlo tree have
been explored, but only those who could be generated given that particular input
parameters: by changing them, there could be a much bigger exploration (which
could even lead to worse results) or a much smaller one.

Once the search is over, all the statistics are computed, among which the final
result that is represented by an equivalence index e, where 0 ≤ e ≤ 1. This
index represents how similar the input graphs are, and it is computed comparing
the obtained results with the best possible case, i.e. given n input graphs, x
equivalences of length n (x being the number of nodes of the smallest graph), y
equivalences of length n− 1 (y being the number of nodes of the second smallest
graph minus x), and so on.

4.3.7 Parameters

Several input parameters can be set (some of which have already been introduced)
in order to influence the tree search:

• Timeout : defines after how many seconds the search should stop. If set to
zero, the search will continue until exhaustion.

• Equivalence modifier : influences the value of equivalences. Set to one makes
equivalence of different length the same value, while it gives more value to
longer equivalences the higher it is set.

• Hope reducer : reduces the value of subsequent equivalences in the calculation
of the partition hope and node’s hope, representing the decrease in the like-
lihood of the feasibility of an equivalence because of the various restrictions
applying each time one is chosen.

• Node hope modifier : modifies the value of a Monte Carlo node’s hope after
it has been computed.

• Fact modifier : modifies the value of a Monte Carlo node’s fact after it has
been computed.
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• Bad weight ratio: a value with whom the weight of a node is multiplied
when it is compared with the best fact. A value greater than one closes fewer
nodes, lesser than one, increases the number of closed nodes.

• Propagation initial value: a multiplier for the hope difference between a new
node and its parent (the value to be propagated) that defines the initial value
that is actually propagated.

• Propagation reducer : reduces the value to be propagated each time it is
propagated up one level of the tree.

• Minimum candidates : sets the minimum number of candidates to be ex-
panded, thus accepting even nodes with a bad weight in case this minimum
is not satisfied.

• Vertex labels : a boolean value that if set to one enables the labels on vertices,
if set to zero disables them. In the latter case, there are no restrictions
based on labels to form equivalences, only those based on the edges between
vertices.

Additional details on these parameters are available in table 5.1.
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Chapter 5

Implementation

5.1 Main Data Structures

5.1.1 Partition Manager

The hyper partitions of a node are managed by an object called Partition Manager,
which contains the data vector, a vector of all the vertices (represented by integers)
still available in that particular node, and a vector of Partitions.

Each Partition is composed of a partition hope, that estimates the value of that
partition, and a vector of partition heads, which is at most of length n, where n is
the number of input graphs.

These structures are organised so that each value in the partition heads vector
represent a certain vertex and it also corresponds to an index on the data vector,
which is another vertex belonging to the same partition as the head. The just
found vertex will behave the same way, representing both a particular vertex and
the index for the next one, thus forming a chain containing all the vertices of a
graph belonging to a certain partition. The end of the chain is specified by the
special value −1. An example of this structure is shown in figure 5.1, which also
includes a view of the node as a Venn diagram.

This kind of structure allows to obtain a very good trade-off between memory
consumption and access times.

5.1.2 History

A History contains a set of vectors of integers. The integers represent the vertices,
and the vectors of vertices constitute the chosen equivalences. The choice of the
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Figure 5.1: Example showing how the chains of data are linked (for the sake of
clarity only one chain is explicitly showed). It is also worthy to note that while
equivalences of length 3 can be obtained selecting partition P0, one of the heads
of partition P1 is equal to −1, thus that particular graph has no vertices on that
partition, so at most equivalences of length 2 can be obtained from P1.

set was due to the fact that in this way the equivalences are ordered according to
a certain criterion (it is not important which particular one), thus it is possible to
detect Monte Carlo nodes that reached the same equivalences even if they followed
different paths on the tree, thus avoiding duplicate nodes.
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5.1.3 Node Selector

The Node Selector is composed by a vector of pointers to the nodes that can be
selected for expansion and a double value that is the sum of all their weights. It is
responsible for selecting a node to expand among the valid candidates: a random
number x, with 0 < x < 1 is selected, and then the normalized weight of each
candidate is subtracted from it: as soon as x goes below 0, the node that whose
weight was just subtracted is chosen as candidate.

5.1.4 Monte Carlo Node

A Monte Carlo node simply contains a Partition Manager relative to its hyper
partitions, a pointer to its History (which is stored in the Monte Carlo tree), a
vector of pointers to its child nodes and two more pointers, one towards its parent
node and another towards the Monte Carlo tree.

Lastly, it contains three double values: hope, fact and weight, which have already
been discussed in section 4.2.2.

5.1.5 Monte Carlo Tree

The Monte Carlo tree contains a vector of the input graphs, a Node Selector,
pointers to the root node and to the one with the best fact, and a map containing
the key-value pairs History-pointer to the node.

It also contains a Monte Carlo Tree Helper which is in charge of handling compu-
tation, storage and output of all the statistics.
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5.2 Input Parameters
Below a table is shown which contains all the input parameters of Gamy (only
excluding the input graphs and the results folder paths).

For each parameter data type, value constraints and direct effects (as the parameter
value is increased) on the various properties are shown.

Table 5.1: Settable input parameters.

Parameter Type Constraints Effects on growing
Timeout t unsigned int t ≥ 0 /

Equivalence modifier em double em ≥ 0
partition hope ↑
node’s hope ↑

fact ↑

Hope reducer hr double 0 < hr < 1
partition hope ↓
node’s hope ↓

Node hope modifier nhm double nhm > 0 node’s hope ↑
Fact modifier fm double fm > 0 fact ↑

Bad weight ratio bwr double bwr > 0 /
Propagation initial value piv double 0 < piv ≤ 1 node’s hope ↓

Propagation reducer pr double 0 < pr < 1 node’s hope ↓
Minimum candidates mc unsigned int mc ≥ 1 /

Vertex labels l unsigned int l == 0|1 /
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5.3 Pseudocode
Main

Input: search_params, input_graphs
Result: initialise and start Monte Carlo tree search
read input_graphs ;
create initial partitions with graphs’ vertices;
sort initial_partitions by vertices degree;
//vertices with more edges are first in the partitions
get a list labels_list of all the labels;
for label l in labels_list do

get a set vertices_l of all the vertices with label l ;
split initial_partitions on vertices_l ;

end
create root node root_node using initial_partitions ;
initialise Monte Carlo tree with root_node and search_params ;
start Monte Carlo tree search;

Search

Object: Monte Carlo Tree
Result: perform Monte Carlo tree search
while timeout IS NOT expired AND tree IS NOT exhausted do

if size of candidates > 0 then
select a node n using roulette wheel algorithm on candidates;
//candidates with higher weight have higher chances of

being selected
if n HAS NOT bad weight then

expand n;
if n IS exhausted then

remove n from candidates;
end

else
remove n from candidates;

end
else

exhausted = TRUE;
//no more candidates means that the tree is exhausted

end
end
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Expand

Object: Monte Carlo Node
Input: node n to expand
Output: is n still expandable
Result: expand the selected node
copy node’s hyper partitions in hps_copy ;
while size of hps_copy > 0 do

select an hyper partition hp using roulette wheel algorithm;
//hyper_partitions with higher hope have higher chances of

being selected
while TRUE do

create new empty equivalence new_eq ;
for partition in hp do

if partition IS NOT empty then
select vertex in partition using the tournament selection
algorithm;
remove vertex from partition;
//this does not modify the original structure since

it is done on a copy
insert vertex into new_eq ;

end
end
if size of new_eq < 2 then

break;
//an equivalence of at least two can’t be made from this

hyper partition so another one is chosen
end
create a copy of the node’s history history_copy ;
add new_eq to history_copy ;
if node with history history_copy DOES NOT exist in the tree then

create new node;
return TRUE;
//node is still expandable

end
end

end
return FALSE;
//node can’t be expanded anymore
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Split

Object: Partition Manager
Input: set vertices_set of vertices to split on
Result: hyper partitions split according to vertices_set
create new empty hyper partition new_hp;
for hyper partition current_hp in hyper partitions do

create new empty partition new_part ;
for partition head part_head in current_hp do

set part_head as current_vertex ;
while current_vertex IS NOT chain end do

if current_vertex IS IN vertices_set then
insert current_vertex into new_part ;
relink the modified data chain excluding current_vertex ;

end
current_vertex = next vertex in the chain;

end
end
if new_part IS NOT empty then

calculate new_part hope;
insert new_part into new_hp;

end
if current_hp IS NOT empty then

recalculate current_hp hope;
//hp hope needs to be recalculated since some of its

vertices have been removed
else

discard current_hp;
end

end
add new_hp into the node’s hyper partitions list;
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Create New Node

Input: node to expand n_exp, new equivalence new_eq
Result: create a new node in the tree
copy n_exp partitions in new_partitions ;
for vertex v in new_eq do

remove v from new_partitions ;
end
create empty list from_vertices ;
create empty list to_vertices ;
for vertex v in new_eq do

insert all parent vertices of v into from_vertices ;
insert all children vertices of v into to_vertices ;

end
split new_partitions on from_vertices ;
split new_partitions on to_vertices ;
create new_node using new_partitions;
copy history of n_exp into new_history ;
calculate new_node hope, fact and weight;
if new_node HAS NOT bad weight then

add new_eq to new_history ;
set new_node history equal to new_history ;
set new_node parent equal to new_node;
insert new_node into nodes list;
add new_node to n_exp children;
if new_node IS the new best solution then

update best fact with new_node fact;
end
if new_node hope IS NOT EQUAL TO 0 then

insert new_node into candidates;
end

end
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Bad weight

Object: MonteCarloTree
Input: node n
Output: has n bad weight
Result: determine if n has a bad weight, i.e. if it is not worthy to expand
if n IS IN candidates then

if size of candidates < MIN_CANDIDATES OR fact of n IS EQUAL TO
best fact in the tree OR weight of n * BAD_WEIGHT_RATIO < best
fact in the tree then

return false;
else

return true;
end

else
if weight of n * BAD_WEIGHT_RATIO < best fact in the tree then

for candidate c in candidates do
if weight of c < weight of n then

remove c from candidates;
add n to candidates;
return false;

end
end
return true;

else
return false;

end
end
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Experimental analysis

6.1 Graphs Sets

Several experiments were run in order to evaluate the performance and the quality
of Gamy. In particular, tests were performed on four sets of graphs:

• S: small graphs with at most 100 vertices, with an edges to vertices ratio
ranging from 10:1 to 300:1

• B: larger graphs with a number of vertices ranging from 2710 to 4882, with
an average edges to vertices ratio of 2:1

• G: graphs with a number of vertices ranging from 700 to 4000, with a high
average edges to vertices ratio, ranging from 173:1 to 1658:1

• M: graphs generated from a base graph of 2710 vertices (taken from set
G), to which vertices and edges were added, maintaining the same edges to
vertices ratio

All the graphs are in dimacs format, and they are vertex-labelled and directed.

Graphs belonging to the B set (and thus toM) are graphs that represent Android
applications. An example of a small undirected graph of this type is shown in
figure 6.1.

6.2 Tests

The tests that were run are classified in the following way:
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Figure 6.1: Graph representing an Android program, where the various icons rep-
resent vertices with a certain label.

• T1: couples of all the graphs combination from set S with a timeout of 100
seconds

– T11 : directed edges, labels on vertices enabled

– T12 : undirected edges, labels on vertices enabled

– T13 : directed edges, labels on vertices disabled

– T14 : undirected edges, labels on vertices disabled

• T2: couples of all the graphs combination from set B with a timeout of 100
seconds

– T21 : directed edges, labels on vertices enabled

– T22 : undirected edges, labels on vertices enabled

– T23 : directed edges, labels on vertices disabled
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– T24 : undirected edges, labels on vertices disabled

• T3: couples of all the graphs combination from set G with directed edges,
labels on vertices enabled and a timeout of 10 seconds

• T4: given any couple of graphs (G,F ) ∈ B tests on the following combina-
tions:

(G,F )

(G,G, F, F )

(G,G,G, F, F, F )

(G,G,G,G, F, F, F, F )
with directed edges, labels on vertices enabled and a timeout of 100 seconds

• T5: tests using as input 2 to n graphs from setM, with n being the number
of graphs belonging to G, with directed edges, labels on vertices enabled and
a timeout of 200 seconds

Tests T1, T2, T3 were run on both Gamy and McSplit, to compare the differences
between the results obtained by the two algorithms.

More specifically, tests T1 were performed to observe how Gamy performs in a
scope in which it is not optimised to run since exhaustive algorithms perform
better on smaller graphs.

The most significant tests are T4 and T5, since no other algorithm is able to compute
the MCS between multiple graphs simultaneously. For this reason, there will be
no other algorithm that can be used to compare the results obtained by Gamy in
these tests.

All the tests run using Gamy were run multiple times with different input param-
eters, selecting then the best results obtained.

6.3 Results
Tests on small graphs In T1 tests, Gamy obviously never managed to find
more equivalences than McSplit, but surprisingly it always got really close to it,
with just 1-3 fewer equivalences found, and in some cases even finding the same
number.

Even ifMcSplit is more reliable with this graphs, it needs a correct timeout to be set
in advance, since setting it too low may not result into finding many equivalences,
while setting it too high leads to lot of wasted computational time. On the other
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hand Gamy prunes the search space, stopping itself in very short times and finding
a solution which is really close (or the same) to the one found by McSplit.

This is emphasised in tests T12 , T13 and T14 , where McSplit almost always reaches
the timeout, while Gamy terminates.

The averages of equivalences found and of computational time of both Gamy and
McSplit are shown in the following table:

Table 6.1: Averages of equivalences found (Eqs) and of computational time (T )
running T1 tests.

Test Gamy Eqs McSplit Eqs Gamy T McSplit T
T11 6,24 7,54 0,23 528,31
T12 8,04 9,99 0,30 50031,78
T13 9,72 11,39 0,35 20313,29
T14 6,33 7,54 0,25 527,54

As already said, McSplit found more equivalences on average, but it also spent
lot more time running. Reducing the timeout for the tests on McSplit would have
probably left the number of equivalences found almost unaltered, but this is not
something that can be known a priori.

Tests on big graphs Like shown in table 6.2, also on graphs belonging to the
B set, McSplit provides better results on average, while Gamy remain faster in the
execution time.

Actually, taking a look at the actual results in table 6.3, it is possible to notice that
when the difference of vertices between two graphs becomes high, Gamy is able
to obtain more equivalences, often in a very short time. More tests were made,
raising the timeout for McSplit to 3000 seconds for those same input graphs, but
it was not able to find more equivalences than it already had.

Table 6.2: Averages of equivalences found (Eqs) and of computational time (T )
running T2 tests.

Test Gamy Eqs McSplit Eqs Gamy T McSplit T
T21 1878,47 2307,20 56317,07 60374,87
T22 1894,40 2338,20 38347,47 62228,73
T23 1887,80 2378,40 49831,80 60388,40
T24 1907,20 2307,20 36232,87 60375,40
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Table 6.3: Extract of results obtained from tests T24 , where rows in which Gamy
obtains better results than McSplit are highlighted.

Gamy McSplit
G0 G1 N° Eqs Eq index Time N° Eqs T Eq Diff
2762 2710 1884 0,695203 100000 2550 100007 -666
2765 2710 1878 0,692989 42570 2574 100006 -696
2765 2762 1869 0,676684 1426 2761 306 -892
2766 2710 1859 0,685978 10810 2574 100006 -715
2766 2762 1885 0,682476 1474 2761 133 -876
2766 2765 1889 0,683183 9133 2765 96 -876
4882 2710 1919 0,708118 21038 1509 100456 410
4882 2762 1914 0,692976 100001 1574 100402 340
4882 2765 1962 0,709584 1924 1559 101637 403
4882 2766 1951 0,705351 10372 1574 101687 377
2762 2710 1876 0,692251 40942 2548 100007 -672
2762 2762 1920 0,695148 1641 2762 103 -842
2762 2765 1923 0,696235 100088 2761 125 -838
2762 2766 1896 0,686459 100134 2761 261 -865
2762 4882 1983 0,717958 1940 1575 100399 408

Tests on large dense graphs Table 6.4 shows the averages for tests T3: here
the gap in equivalences found is much shorter, and while the one in computational
time also is, McSplit went in timeout almost in all cases, while Gamy didn’t.

The results on this tests confirmed that Gamy is able to find more equivalences
when the difference in vertices between the input graphs is bigger, but highlighted
that it is able to find more also when the graphs are not that large but are really
dense.

Table 6.4: Averages of equivalences found (Eqs) and of computational time (T )
running T3 tests.

Test Gamy Eqs McSplit Eqs Gamy T McSplit T
T3 14,78 15,48 7775,714 9857,04

Tests with the same graphs multiple times in input This tests (T4) were
aimed at analysing the stability of Gamy on the feature that makes it unique,
i.e. being able to work on multiple graphs as input. In particular, the goal was
to obtain a similar equivalence index when running the algorithm on the various
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combinations of the same couple of graphs: the results confirmed this hypothe-
sis since all the tests on different couples, have a really low variance among the
equivalence indexes of the various combinations.

Tests with large graphs sharing a common base This last group of tests
(T5) were performed on graphs belonging to set M, that share a common base
of 2710 vertices: this means that given any combination of input graphs, the
number of longest equivalences - which is equal to the number of input graphs - is
guaranteed to be at minimum 2710 (additional vertices and edges were randomly
added to the graphs).

Table 6.5 shows the obtained results, and a fair amount of the minimum guaranteed
equivalences were found, with an average of 66,36%.

Table 6.5: Extract of results from tests T5, where LE represents the number of
longest equivalences found, PT the percentage of LE over the total of 2710, TE
is the number of total equivalences found (also considering the other lengths) and
EI represents the equivalence index.

Input graphs vertices LE PT TE EI
3010 - 3610 1911 70,5 1911 0,635
3010 - 3410 - 3610 1807 66,7 2107 0,610
2810 - 3010 - 3410 - 3610 1764 65,1 2193 0,633
2810 - 3010 - 3410 - 3610 - 3710 1765 65,1 2318 0,624
2810 - 3010 - 3410 - 3610 - 3710 - 4010 1767 65,2 2450 0,621
2810 - 3010 - 3210 - 3410 - 3610 - 3710 - 4010 1776 65,5 2517 0,622

Concluding, the tests that were run also showed that Gamy has a low average
RAM usage (considering the problem it is facing) of around 35 MB (for both small
and larger graphs), with the only outsiders being the tests on dense graphs, which
were characterized by an average RAM usage of 88 MB.
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Conclusions

Gamy is still an immature algorithm, but the results showed its potential and
applicability.

Even when employed in cases for which it was not specifically designed for, like
comparing small graphs, it obtained fair results in excellent times, even being able
to overtake McSplit on larger or denser graphs.

In its main application scenario, i.e. comparing any number of graphs simultane-
ously, it obtained great, consistent results.

It is also worthy mentioning that Gamy is a really flexible algorithm, since tuning
its parameters correctly, it can employ a greedy approach, that provides highly
approximated results, but with a minimal computational time and memory usage,
or a more exhaustive one, obtaining a behaviour closer to exact algorithms, which
obtains more precise results, but requiring longer times and more memory.

7.1 Future work

The proposed algorithm has large room for improvement, and many areas that
can be enhanced have already been identified.

7.1.1 Input Parameter Calibration

The algorithm uses lots of input parameters that influence the search. Although
they are strongly linked among themselves, each of them influences unique aspects
of the search, and for each set of input graphs, various combinations of them were
tried. Still, since there were lots of graphs combinations, specifying many values
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for each input parameter would have lead to a drastic increase in testing time.
Considering:

• 9 input parameters (timeout is not included)

• 3 different values for each input parameter

• 20 different graphs

• graphs tested only in couples

each couple of graph would have been tested 19683, so with 190 different combi-
nations (for 20 graphs) and a timeout of 100 seconds for each graph, this would
have resulted in a test time of 103882.5 hours, which are almost 12 years.

A more focused study will be performed in order to better understand the rela-
tionship among them and with the input graphs structure, possibly performing a
prior analysis to tune the parameters dynamically based on some features of the
graphs that have to be analysed.

7.1.2 Simulation

The simulation phase is not included in the algorithm, and the selected node is
just expanded of one level, using the newly generated node as new solution.

In fact a well-performing simulation phase could help to direct the search towards
lucrative paths, avoiding less worthy ones.

A valid solution may be using a greedy algorithm in the simulation phase using
three stop conditions:

• time: a certain amount of time is passed

• nodes: a certain number of nodes down the tree have been explored

• exhaustion: the simulation path can’t be expanded any more

Work will be made in developing and analysing this approach.

7.1.3 Parallelisation

The algorithm has been implemented in single thread, but it can drastically im-
prove its performances since it can be parallelised on different levels (as already
discussed in paragraph 3.5):
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• Leaf parallelisation: given an implemented simulation phase, several different
ones can be run in parallel from the selected node, gathering more significant
information about that path.

• Root parallelisation: several independent search trees are built, and informa-
tion about branches, equivalences and nodes’ statistics are exchanged among
them, so that more thoughtful choices can be made during the search.

• Tree parallelisation: different nodes are selected and then expanded in par-
allel, speeding up the search.
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