
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

A Model-Based Design Embedded
Software Development

Methodology for an
OSEK-Compliant RTOS

Relatore:
Prof. Massimo Violante

Candidato:
Filippo Cottone

Luglio 2019

Acknowledgments

To my family, that supported me in hardest periods of my life like last year. To my
lovely girlfriend, that believes in me day by day, dreaming about a better future.
To my crew, which without that the university years would have been less fun.

I

In the last years, the automotive sector has increasingly focused on control elec-
tronics: it is just sufficient to think that a common car has hundreds of MCU-based
Embedded Systems, suitable for obtaining a more reliable, precise and avant-garde
finished product. This has led to an increase of complexity in development processes.
Due to the continuous demand of higher quality and limitations on time to market,
the concept of Model-Based Software Design has started to be more and more used.
In fields where a missed deadline could harm the user, Real-Time Operating Systems
are a mandatory choice.

Based on results of process analysis aimed to understand how to reduce the time
spent in software development, French and German automotive companies created
the OSEK/DVX consortia, giving life to a standardization of the Embedded software
components that required the biggest effort during development process.

Basing of these concepts, the Embedded Software Development Methodology
proposed in this Thesis aims to futher accelerate the software development process
and standardize it by following rules and metrics imposed by the methodology itself
to avoid the introduction of bugs due to human errors by limiting the developer
to just develop the Board Support Package (if not provided), its relative Simulink
library and the Simulink model. The latter will represent the Task-level application
layer, that will be translated in custom OS code thanks to the developed Simulink
System Target File, dealing with Inter-Process Communications, Priorities, schedul-
ing and Tasks executions. A large variety of cases can be described by modeling
software at the Task-application level.

Furthermore, dealing with a OSEK-Compliant Real-Time Operating System,
the whole OS configurations are obtainable from the same model, providing an
Operating System code generation process to include the necessary resources needed
for the modeled situation, by obtaining the minimum OS memory footprint.

II

Table of contents

Acknowledgments I

1 Theoretical Background 1
1.1 Real-Time System and RTOS . 1
1.2 OSEK/VDX Standards . 3

1.2.1 Tasks Management . 5
1.2.2 Events, Counters and Alarms 7
1.2.3 OIL: OSEK Implementation Language 8

1.3 ERIKA Enterprise RTOS . 9
1.3.1 RT-Druid Development Environment 11

1.4 Target Board: NXP s32k144EVB-Q100 12

2 Model-Based Software Design Background 15
2.1 Using Simulink as Model-Based Design Tool 16

2.1.1 S-functions . 17
2.1.2 Target Language Compiler and Real-Time Workshop 17

3 BSP Extentions 20
3.1 ADC functions . 21
3.2 FlexTimer functions . 23

3.2.1 Counting mode functions . 23
3.2.2 PWM generation functions . 25
3.2.3 PWM Input Capture mode functions 27

3.3 GPIO functions . 28

4 Simulink Library for MBSD 30
4.1 Block Generation Process . 30
4.2 Library Deployment . 34

5 System Target File for RTW Code Generation 36
5.1 MATLAB Model Analysis Function Library 36
5.2 TLC Files for Custom Code Generation 40

6 Code Generation Tests 55
6.1 A first example: single Task . 55
6.2 Depending Tasks with different Rates 63
6.3 Independent Tasks with different Rates 67

III

6.4 Single Task using a Stateflow diagram 69
6.5 Multiple dependent and independent Tasks, Different Rates 73
6.6 Multi-data dependencies, Dependency chains and independent Tasks . 78

7 Conclusions 82

Bibliography 84

IV

Chapter 1

Theoretical Background

1.1 Real-Time System and RTOS

In many embedded systems application fields timing is considered the most impor-

tant and critical factor: in these scenarios, to execute a certain routine after some

additional delay may cause unexpected events or even worse may harm the user

and/or the people around it.

Let’s define a Real-Time System as a system that, by receiving some data and

processing them to compute some results, affects the environment sufficiently ”in

time” by respecting an imposed deadline [1]. Real-Time Systems are usually used

for Safety-Critical or Mission-Critical applications, such as automotive control com-

ponents, medical devices or nuclear systems. Systems of this type must guarantee

a response to a certain event within a certain time frame: if the response is given

later, the Real-Time processing fails.

Caring about timing-constrained execution possible issues, handling Real-Time

Systems that have to execute different routines (let’s call them Tasks) by respecting

different deadlines and ensuring data integrity between them can be very challenging

in complex systems; in order to deal with these issues, many Real-Time Operating

Systems were created during the years.

A Real-Time Operating System or RTOS is defined as a “a background pro-

gram which controls and schedules executions and communications of multiple time

constrained tasks, schedules resource sharing, and distributes the concerns among

tasks”[1].

In order to better understand how to a RTOS works and to have a clear idea on

what it has to deal with, it is needed to consider the following definitions:

1

1 – Theoretical Background

• Preemption: operation through which a Task is temporarily removed from

the running state and moves to the waiting state, due to the necessity of the

CPU to execute another Task or routines;

• Scheduling: Operating System component that implements a scheduling al-

gorithm starting from the Task states, their priorities and the available re-

sources. The scheduling algorithm will take care of choosing a Task to be

executed from the list of ready Tasks depending on the algorithm metrics.

Scheduler helps to improve and optimizing the CPU utilization by organizing

the Task executions and exploiting the Task waiting states by executing other

ones from the ready queue.

A scheduling algorithm is said to be preemptive if preemption is allowed,

due to different kind of necessities, as for example in dealing with Tasks with

different priorities. Preemptive scheduling algorithms are more complex to

implement, due to the CPU context swtich mechanism to move from a Task

execution to another one.

Non-preemptive scheduling algorithms do not allow a CPU context switch

from a Task to another as preemption, so they are easier to implement.

Real-Time systems need to ensure that the Task deadlines are respected, in

order to avoid failures that may lead to harmful situations for the system

user. Starting from this concept and understanding what defined before, many

different scheduling algorithm can be implemented, depending on the situation

and how much critical is the application.

2

1 – Theoretical Background

1.2 OSEK/VDX Standards

During the years, the quantity of microcontrollers used in the automotive industry

has grown very fast: nowadays, the most common cars have up to hundreds of Real-

Time Systems based on such components, due to the high quality requirements,

more secure and efficient vehicles specifications.

A race to higher quality Electronic-based vehicles began. In order to improve

the Software development productivity and as consequence to speed up this pro-

cess without affecting the software quality neither the Real-Time specifications, an

analysis based in Germany and France highlighted the most effort-required points

during the project roadmap. What was discovered was that the major part of the

effort was spent in the development and debug phase of the Operating System, I/O

interfaces and Network Communications.

From this analysis, two consortia started to grow: the french car manufactur-

ers made the so called VDX, that stay for Vehicle Distributed eXecutive; in the

meanwhile, the german autovehicle houses created the OSEK, that comes from the

german acronym ”Offene Systeme und deren Schnittstellen für die Elektronik im

Kraftfahrzeug”, which means ”Open Systems and their Corresponding Interfaces for

Automotive Controllers”.

As defined in [2], “OSEK is a standards body that has produced specifications for

an embedded operating system, a communications stack, and a network management

protocol for automotive embedded systems. It has also produced other related spec-

ifications. OSEK was designed to provide a standard software architecture for the

various electronic control units (ECUs) throughout a car”.

So these consortia started growing basing their ideas on creating standard devel-

opment processes. Later on, they merged together to give life to the OSEK/VDX

open standards.

The main goal was to develop a standard API to reduce the amount of effort

and increase the code reutilization within the vehicle systems. As result, the ISO

17356 standard was born. Many principal parts are included OSEK standard:

• Operating System (OS): included in ISO 17356-1:2005, it expresses the con-

cept of multitasking automotive Real-Time Operating System and introduces

the OS APIs; moreover, the OS specifications model an environment in which

3

1 – Theoretical Background

resources can be efficiently used for automotive control unit application soft-

ware. The OS is meant as a single processor operating system for distributed

ECUs [3].

• Communication (COM): defines communication interfaces for internal ECU

software modules communications and for external nodes, aimed to improve

their portability [4];

• Network Management (NM): a set of node-monitoring services are defined;

they include specifications for the internal interfaces between the internal com-

ponents, the algorithm to access the low power sleep mode, the interface to

interact with the APIs and the procedures for node monitoring [5];

Even if they were developed starting from automotive purposes, the specifications

can easily meet the requirements of a small system with interprocessor communica-

tions [6].

Figure 1.1: OSEK/VDX Application Diagram.

As can be seen in Figure 7.1, the application level is surrounded by the OSEK

standard interfaces except for the I/O and BSP: the developer effort will be most

spent in writing application code and, if not provided, the Board Support Package

as interface to the Hardware referring to the Device Drivers.

4

1 – Theoretical Background

1.2.1 Tasks Management

The OSEK/VDX Standard provides the definition of Task: it is intended as a part of

control software divided by the others due to its Real-Time requirements [7]. Please

remember that, in single core architectures, only a Task can run at once.

The OS scheduler allows a flexible Task management, providing concurrent, syn-

chronous and asynchronous execution.

There exists two different Task types:

1. Basic Tasks: this is the most simple implementation of the task concept;

they start to be executed and terminate. A basic Task release the CPU only

if it terminates its execution, if the OS scheduler decides to switch the active

Task to a higher priority one, or if a ISR has to be executed. Other Task

switching mechanisms such as synchronizations and mutex are not supported.

So, The Task will switch its status among the running, ready and suspended

state:

• Running state: The Task code is running on the CPU;

• Ready state: The Task is ready to move to the running state, it is waiting

for the scheduler to be chosen;

• Suspended state: the Task reaches this state through a system service.

All the possible transitions are represented in the follwing state diagram.

Figure 1.2: Basic Task Transition Diagram [7].

5

1 – Theoretical Background

2. Extended Tasks: As said, basic Tasks cannot synchronize each others, nei-

ther waiting for other Tasks to be executed and then continuing. Features like

these are introduced in the extended Tasks.

The waiting state is now added to the state diagram; Tasks will reach it from

the running state and they will remain in this state until an Event for which

the Task is waiting for rises. If a Task waits for an Event that has already

rose, it remains in the running state: it means that the events has to be

cleared in order to be re-evaluated. An extended Task terminates only if it

self-terminates, leading to a lower OS complexity.

Definition of the Event OS object is found in section 1.2.2

Figure 1.3: Extended Task Transition Diagram [7].

Managin the waiting state increases the complexity of the OS that has to use

more complex resources with respect to using just basic Tasks, as for example

Semaphores.

6

1 – Theoretical Background

1.2.2 Events, Counters and Alarms

The OSEK standard provides as well the possibility to define, declare and manage

Events. Each regular application specific triggers can rise particular events: a

timer overflow, for example, can be considered an event; a Task that terminates is

potentially considered as an event too. These kind of OS objects can be logically

connected to the extended Tasks conformance classes ECC1 and ECC2, that can

handle them in different manners (wait for an event, set an event).

Tipically, common events are related to Counters: thinking about a Task, in

order to implement a periodic execution, a counter can be exploited to count up to

the corresponding period in clock ticks generating an event each time the value is

reached.

What the standard OS offers is to define how the counters advance and the

Alarms related to such counters. When Alarm expires, the OS services can be used

to perform different actions, such as activate a Task, call a callback routine, set a

particular Event, and so on.

In summary, Events can be seen as correlation between Tasks and the OS timing,

by recurring on Alarms, or between Tasks that want to communicate to each other,

by synchronizing their execution or to let a Task to be run before another one.

In full-preemptive OS implementations, the Events trigger the scheduler, in order

to evaluate which Task has the right to run by considering that particular Event.

Figure 1.4: Event-based Tasks Synchronization [7].

7

1 – Theoretical Background

1.2.3 OIL: OSEK Implementation Language

The 6th part of the standard (ISO 17356-6:2006) specifies the OSEK Implemen-

tation Language (OIL), i.e. the configuration language used to describe the ap-

plication in a way to ensure the software portability defined by the OSEK standard.

The OIL configuration file configures the OSEK application for a specified CPU; so,

each CPU will have its own OIL description, with its fixed specified Task list and

custom configurations. Each OSEK application is composed by different OIL objects

such as Tasks, Alarms, Events, Counters, and all the resources and configurations

needed to let the application works correctly. Particular Extended Conformance

Class objects such as Semaphores have to be specified here too.

Dealing with a standard, additional custom objects cannot be created.

In particular, the OIL file contains two different parts: the system implementa-

tion definition, in which the CPU information need to be provided, and the appli-

cation definition, describing the attributes of the application objects [8].

The configuration file will be used to generate the Operating System, by defining

the proper Tasks and includes the needed OS software modules. This generation

process ensure the composition of a very compact kernel, allowing a well OS memory

size optimization.

Figure 1.5: OSEK/VDX OS Development Process [8].

8

1 – Theoretical Background

Thanks to the OSEK generation process, the developer will have to write only

the OIL configuration file and the application code, by specifying the application

functions and the Task bodies.

1.3 ERIKA Enterprise RTOS

The involved Real-Time Operating System is a made in Italy open source RTOS

implementation of the OSEK/VDX API; it is compatible with many different well

used microcontrollers such as the ARM M and R family, Infineon TriCore, Arduino,

Altera Nios II, and so on. Being based on the OSEK/VDX standard, it supports all

the previously mentioned features about OS objects such as Tasks, Events, Counters,

Alarms, and so on.

Figure 1.6: ERIKA Enterprise logo.

With the help of this OS, the potential power of the multicore architecture

can be exploited, being fully compatible and configurable for Real-Time parallel

code running on architectures like these. The RTOS Reference Manual presents

it by saying that “Erika Enterprise offers the availability of a real-time scheduler

and resource managers allowing the full exploitation of the power of new generation

micro controllers and multicore platforms while guaranteeing predictable real-time

performance and retaining the programming model of conventional single processor

architectures”. [9]

Being a Real-Time Operating System, it supports:

• Preemptive and non-preemtive multitasking management;

• Fixed Priority Scheduling. Priority levels are set by the developer into the

OIL file;

• Shared Resources, by implementing the Immediate Priority Ceiling (IPC)

to solve any possible Priority Inversion Problems: without its usage, a higher

9

1 – Theoretical Background

priority Task can be preempted by another lower priority Task while waiting for

a Task to releasing the shared resource. The IPC imposes that a Task holding

a shared resouce acquires the higest priority between the Tasks sharing that

resource;

• Stack Sharing between Tasks, as SRAM optimization;

• Hook functions before and after each context switch;

As mentioned above, it is a fully OSEK/VDX-based OS; to reduce the overall

kernel footprint, 4 different conformance classes are provided in Erika Enterprise:

they allow the OS to support just Basic Tasks (BCC1 and BCC2 conformance

classes) or Extended Tasks (ECC1 and ECC2). The latter support all the additional

features introduced in part 1.2.1 talking about extended Tasks, as for example the

Synchronization and Events management primitive(up to n per Task, where n is

the Microcontroller Architecture parallelism). These feature will be well used in

the proposed software development approach, to periodically activate Tasks or to

synchronize two dependent Tasks, one producing useful data to the other.

Figure 1.7: Conformance Classes Supported Features [9].

10

1 – Theoretical Background

Conformance classes ending with 1 (BCC1, ECC1) cannot store pending Task

activations; instead, the ones ending with 2 (BCC2, ECC2) can store pending Tasks

activations, and the maximum capacity is specified on the ACTIVATION field on

the OIL Task specification. The number of allowed different Task priorities in BCC2

are 8; in ECC2, up to 16 different ones can be handled. By using Conformance

classes ending with 1, n different priorities can exist, where n is the Microcontroller

Architecture parallelism. Other kind of features are treated as integer numbers. For

each Task, there can exist up to 2n -1 Alarms, Application modes and Resources.

1.3.1 RT-Druid Development Environment

A full-custom Eclipse-based development environment for ERIKA Enterprise RTOS

is also provided. RT-Druid allows to wrie, compile, run and analyze OS code and

application code in a user-friendly manner. Being Eclipse-based, it is composed by

different plugins. What is taken in consideration is the RT-Druid Code Generator: it

allows to generate the whole Operating System code structure by simply analyzing

the developed OIL RTOS configuration file or the AUTOSAR XML file; during

this process, many different ERIKA Enterprise code generation routines are used,

and the Operating System will include the needed resources to handle the custom

application code. The developer has just to know how to include in the OIL file the

needed resources and how to use them in the application code.

RT-Druid can also integrate the Cygwin development environment, in order to

improve the functionalities allowing scripting features.

One of the most important features of RT-Druid is the ease of adaptation when

changing architecture from single core to multi core or viceversa: the application

code won’t be affected by any changes, it’s sufficient just to make some easy modi-

fications on the configuration files and re-launch the build process. The application

code design will result independent from multi-core issues, accelerating the develop-

ment phase.

11

1 – Theoretical Background

1.4 Target Board: NXP s32k144EVB-Q100

What was developed is a Model-Based Design development methodology for Task-

level Erika Enterprise RTOS application code.

The target hardware used for evaluation tests and as base for developing the re-

quested Firmware was the S32K144EVB-Q100 board from NXP Semiconductors.

The board is shown in the following figure:

Figure 1.8: NXP S32K144EVB-Q100 Evaluation Board.

Being an prototyping Evaluation Board, it has many built-in interaction com-

ponents such as users buttons, touch electrodes, a potentiometer and a RGB LED.

An external power supply connector is present too. With these components the

developers can easly simulate situations and events that can commonly rise to the

applications: pushing a button can be intented as an unexpected sporadic event or

an external Interrupt; turning on a LED can be intented as activate a electrome-

chanical component, and so on.

The S32K144 SoC is thought for embedded automotive applications, so the eval-

uation board contains a CAN interface and a LIN interface as well: they are two of

the mainly used serial communication protocols in the automotive field, ensuring a

good level of reliability and connection dinstance. For example, the CAN protocol

can be used for master/slave communications up to 1 Km, by paying as price a

decrease in the data rate.

Many jumper inputs are also available, that can be used as GPIO, as connection

12

1 – Theoretical Background

for the peripheral IOs or channels, or simply as Power Supply/Ground pin. The

pinout mapping allows the board to be Arduino-compatible.

Figure 1.9: Board Main Components.

This SoC is based on the Arm Cortex-M4 MCU, a commonly used architecture

in embedded system applications. It also contains many system peripherals that can

be used for various different purposes; for example, they allow the device to support

communication protocols like I2C, UART and SPI, to generate PWM signals, to

perform Analog-to-Digital conversions, to transfer data without affecting the CPU

usage.

The device is Functional safety compliant with ISO26262, including self-check

13

1 – Theoretical Background

peripherals as Watchdog timer, voltage monitors, memory protection, clock monitors

and cyclic redundancy checking.

NXP Semiconductors provides also a Design Studio useful to write bare metal

C code to load on the board; in this case, it will not be intended as application

software for a Real-Time Operating System running on the device.

In order to develop the Firmware used as base for the reference Simulink Library,

the Device Reference Manual was taken as main consulting document, to better

understand the peripheral Hardware structure, how they work and what are the

configuration and control signals needed to manage to exploit the peripheral as

desiderd.

Moreover, it also includes the OpenSDA Low-Cost Debug and Programming

Interface. As its User’s Guide says, “OpenSDA is an open-standard serial and

debug adapter. It bridges serial and debug communications between a USB host

and an embedded target processor”[10].

Figure 1.10: OpenSDA Block Diagram [10].

14

Chapter 2

Model-Based Software Design

Background

In order to being able to go deeper in what was developed, some Model-Based Design

concepts have to be introduced.

“Model-Based Design is a mathematical and visual approach for the devel-

opment of complex control systems. It is systematic use of models throughout the

development process for design, analysis, simulation, automatic code generation and

verification. It is broadly used in motion control, industrial equipment, aerospace,

and automotive applications” [11].

It provides a block-based approach for software development, providing the pos-

sibility to design, simulate and validate full-custom models representing different

kind of modules, as for example Control Units for electromechanical components;

starting from the model, the code generation can be performed, in order to use the

resulting code to build an executable that can run on the target device.

Embedded Software developers can use this approach to simulate some software

parts to understand whether algorithms works fine or not. If satisfied from the

obtained results, they can choose to generate the code and integrate it in the main

project.

The main advantages of Model-Based Design are:

• Accelerating development times: Code Generation can lead to a non

negligible time saving during the development process. In time-constraint

projects, MBSD can be very helpful;

• Reducing prototyping costs: Simulation tools as Simulink can match the

hardware performance requirements, so by simulating instead of periodically

prototyping allows to save huge quantities of money and prototyping time;

15

2 – Model-Based Software Design Background

• Model Reutilization: The same model (or submodel) can be easily reused

and integrated in other models in more than one project; this allows the de-

veloper to save more time during his whole worklife;

• Reducing SW Bugs: with the help of a well developed Code Generation

flow, the resulting code is conform to a kind of “standardization”, i.e. it

allows the Model-Based Designer to exploit the specific programming skills

and knowledge of the developer who wrote the code generation templates,

metrics and guidelines for the target device. This will lead to a huge reduction

of software bugs on the generated code and reduces the difficulty of developing

such software.

2.1 Using Simulink as Model-Based Design Tool

One of the most used tools for MBSD is Simulink, a modeling software for design and

simuliation of dynamic systems. It is fully integrated in MATLAB, so its powerful

resources can be exploited to model such high quality and precise models.

Moreover, Simulink allows code generation starting from models by using Em-

bedded Coder. With this process, C, C++, optimized MEX functions and HDL

code can be easily generated.

Dealing with C code generation, three main group of functions are generated:

• Initialize function: runs only once, it aims to setup the model and allocate

the memory used to run the model step function;

• Step function: contains the model related C code; it will be periodically

executed. Many applications use a fixed execution period, many others a

variable one. It can be set in Simulink configurations;

• Terminate function: runs only once when the model software is not needed

anymore, it aims to free the memory used by the model step function. If the

step function will run forever, this function will be never called.

16

2 – Model-Based Software Design Background

2.1.1 S-functions

In order to use some full-custom C code as for example and hand-written C algorithm

or internal developed function calls, Simulink supports S-functions, i.e. a computer

language description of a Simulink Block written in the target language. They are

compiled as MEX files using the mex utility, to let MATLAB execution engine load

and execute them [12].

Thanks to S-functions, the developer has the opportunity to add its custom

code and mixing it to the models, by making Simulink a very flexible Model-Based

development environment. In summary, they represent custom code packed in a

Simulink block, supporting input and output ports, and custom masks to let the

block user choosing as many functions parameters as the S-function developer wants.

2.1.2 Target Language Compiler and Real-Time Workshop

Even if Simulink offers a very huge potential for simulations, without code generation

the models would remain just simulation objects. In order to perform the code

generation process, Simulink includes a tool formerly called Real-Time Workshop,

best known as Simulink Coder. This tool provides for the creation of model-based

Software intended for real-time control of target-specific Hardware[13].

By analyzing the model structure, Simulink is able to generate the desidered

code useful to emulate the model behavior in software. This process requires that

each block is translated to the target language code. For this reason, the Target

Language Compiler Tool, or TLC, is included in Simulink, allowing the developer

to customize the generated code accordingly to the requested platform starting from

any model. It’s used to convert the model into C code. In order to proceed with

this process, as first step of the RTW, the model is translated in a written form file,

called model.rtw, then the TLC will analyze it as a text processor to compose the

opportune generated code. Optionally, after the code generation, a build process

can start, to directly produce an executable program via a cross-compile operation.

In this last step, different compilers can be used, depending on the target device

that has to execute the program. For example, ARM-based devices will need the

.elf executable file. The executable can be automatically loaded into the target

Hardware.

17

2 – Model-Based Software Design Background

The TLC needs many different files to work correctly. All of them compose the

TLC program. They are used to interpret the Simulink .rtw file and create the

target code; they allow the system to produce code depending on where the code

has to run, by following some metrics and templates dictated by the TLC code

directives. There exist two kind of TLC files:

• System Target Files: They contain general information as for example the

code language to be generated, the TLC templates to include, the name used

to find it on the Simulink STF browser or setting inerithance from other STF.

It can be thought as the main TLC file in the file collection.

• Block Target Files: They impose the code generation related to a block

type when a block of that particular type is found when analyzing the rtw file.

Each block will have the corresponding block.tlc file.

Figure 2.1 shows the complete Real-Time Workshop flow.

Figure 2.1: Code Generation flow with RTW [14].

18

2 – Model-Based Software Design Background

It’s common to do not use the whole flow, but just stopping at the code generation

step; in cases like this, the Model-Based Designer will manually integrate the code

in its project. It may happen when other software parts are already developed or

in project in which the whole software is not only what it has to develop, as for

example in situations with different development teams.

19

Chapter 3

BSP Extentions

Erika Enterprise OS is independent of the particular target used board: as seen,

it can run in many different architectures and SoCs. The board-specific code used

as interface from the Operating System (and application code) to the Hardware is

called Board Support Package, or simply BSP.

The following layered scheme will show its position in the Software-to-Hardware

hierarchy.

Figure 3.1: SW-to-HW Hierarchy.

The BSP provides a standard way for initializing, using and deinitializing the

device’s Hardware. It is a higher abstraction of the driver software concept. The

first step needed to create the Simulink library aimed for Code Generation was to

enhance the BSP of the RTOS for the target board.

In particular, the improvements were focused on two of the most important

20

3 – BSP Extentions

peripherals: the Analog-to-Digital Converter and the FlexTimer Module. This last

can be used for many different purposes, so the BSP was developed in order to use

all of them. GPIO functions were also developed.

3.1 ADC functions

The Analog-to-Digital Converter functions allow the programmer to choose between

one of the two ADCs modules and one of the channel for the conversion, from 0 to

15. It is also possible to choose the opportune conversion resolution, depending on

the purpose of the conversion. The Conversion is SW-triggered.

As can be seen in the device Reference Manual, all of the ADCs Single Ended

Channels are connected to the Alternate Mode 0 of the related pin, that is the default

one when the device is turned on, so the functions will not care about setting it to

a proper value.

• FUNC(void, APPL CODE) adc setup(uint32 t instance): Activates the

ADC clock and initializes the ADC registers given an instance; after having

called this function, the ADC is ready to work, it just has to be triggered to

begin a conversion. In particular:

– The ADC Peripheral Clock Control Register PCC ADCx is written to

enable the peripheral Clock, where x is the Converter instance, i.e. ADC0

or 1. Here, the Peripheral Clock Source Select PCS is set to option 2 and

after the Clock Gate Control CGC bit is set;

– The ADC Status Control Register 3 ADCx SC3 is written to enable the

conversion Hardware Averaging, in order to have more precise converted

values. The amount of samples for this operation is specified in this

register too, so it’s fixed to the maximum one (32 samples averaged);

– The ADC Status Control Register 3 ADCx SC3 is also written to start

the calibration sequence; by setting the CAL bit, the sequence starts and

cannot be interrupted. For calibration, it is mandatory to use averaging

with the maximum samples number;

21

3 – BSP Extentions

• FUNC(uint16 t, APPL CODE) adc get value(uint32 t instance, uint8 t

chanIndex, uint8 t resolution): Starts the ADC conversion by using the given

ADC and channel. The resolution has to be specified when this function is

called.

– A constant structure is taken as reference, containing the ADC default

values about clock divisor, resolution, clock source, trigger mode, and

other meaningful parameters needed to let the ADC peripheral working

correctly;

– The specified conversion resolution is used to update the structure field

in order to let the drivers set the MODE field in the ADC Configuration

Register 1 ADCx CFG1 ;

– In order to implement a SW-triggered conversion, a change on the ADCH

Input channel select field of the ADC Status and Control Register 1 A

ADCx SC1A (corresponding to the channel 0 SC1 register) has to occur:

the new contained value must correspond to the input ADC Single Ended

Channel. In order to allow adjacent conversions from the same channel

source, after each conversion an idle value is written on the register, in

order to ensure a data change during the next conversion;

– At the end, before reading the converted data, the function will wait

until a conversion is completed, by waiting for the ”Convertion Active”

bit (ACAT field) in the ADCx SC2 register to be cleared.

– The result is stored in the ADC Data Result Register ADCx Rn, where

n represent the channel identifier (A represents channel 0, B represents

channel 1 and so on). The value is so returned.

• FUNC(void, APPL CODE) adc unset(uint32 t instance): Deactivates

the ADC clock and deinitializes the ADC registers given an instance.

– All of the previous set configuration and status registers are cleared;

– The ADC Clock is disabled by clearing the CGC field in the PCC ADCx

register;

22

3 – BSP Extentions

3.2 FlexTimer functions

Timers are well used in many embedded applications, in different manners. With

the FlexTimer Module, or FTM, it is possible to count up to a certain number of

clock ticks starting a Interrupt Service Routine, or ISR, after, to generate Pulse

Width Modulation signals to drive particular loads or to count how many clock

ticks is long an input square wave. The new BSP functions allow the Operating

System and the programmer to use in a very flexible way the timers FTM0, FTM1,

FTM2 and FTM3; each of them has its own channels that can be used for the

above mentioned different purposes, without restrictions. Each FTM Channel can be

directly connected to a on-board Port configured in input, as for example in capture

mode, or output direction, as for example to generate PWM signals: information

about channels mapping are contained in the device description input multiplexing

excel file that can be found as attachment of the Device Reference Manual.

3.2.1 Counting mode functions

• FUNC(void, APPL CODE) ftm setup(uint32 t instance, uint8 t clock div):

Activates the FTM clock and initializes the FTM registers given an instance.

To do so, a default configuration structure was created, containing the timer

settings needed to let it works properly: the structure clock prescaler field

is immediately updated with the user-defined function parameter; the other

custom fields will be updated with the other function calls such as the PWM

generation, the counting mode or the input capture.

– The peripheral Clock is activated, by setting in the PCC FTMx register

the CGC bit;

– The Features Model Selection register FTMx MODE is updated in order

to enable the free running Counter mode, by setting the FTMEN bit;

– The structure fields are written in the Timer configuration Registers.

The specified clock prescaler is written on the Status and Control register

FTMx SC, in the 3-bit field Prescaler PS; this value allows a 7-bit counter

to reduce the FTM clock frequency, dividing the FTM source clock by a

power of 2 up to 128. Figure 3.2 shows its behavior.

23

3 – BSP Extentions

Figure 3.2: FTM Prescaler behavior [15].

• FUNC(void, APPL CODE) ftm count(uint32 t instance, uint16 t initial value,

uint16 t final value): Starts upcounting from the specified initial value to fi-

nal value. At the end of the counting phase, the Interrupt Service Routine

is called; a custom FTMn Ovf Reload IRQHandler() has to be written by the

programmer, where n is the instance number of the FTM. In particular:

– The initial value from which the counter start to count and the final value

that has to be reached by counting are passed by the programmer, and

they are written respectively into the Counter Initial Value FTMx CNTIN

and Modulo FTMx MOD Timer Registers;

– After this, the Counter Clock Source is connected to the counter by set-

ting the opportune bits of the field CLKS into the Status and Control

Register FTMx SC, so it will start counting.

When reaching the MOD value, the Timer Overflow Flag bit TOF of the

FTMx SC register is Hardware-set and an Timer Overflow Interrupt rises.

In order to manage other future interrupts, it has to be cleared, otherwise

they will be ignored. A common developer choice is to clear the Overflow flag

inside the Interrupt Service Routine.

24

3 – BSP Extentions

Figure 3.3: FTM Counting mode behavior [15].

• FUNC(void, APPL CODE) ftm unset(uint32 t instance): Deactivates

the FTM clock and deinitializes the FTM registers given an instance;

3.2.2 PWM generation functions

• FUNC(void, APPL CODE) ftm pwm setup(uint32 t instance, uint8 t chanIn-

dex, uint8 t clock div, uint16 t duty cicle, uint32 t frequency): Initializes the

FTM to generate an Edge-aligned PWM signal by using a certain channel as

output. Before this function returns, the PWM signal starts to be generated

by using the specified FTM channel. The Pulse frequency and duty cycle have

to be specified when calling this function; the programmer can also set the

opportune clock divisor. Getting more in details:

– a default structure is instantiated, containing the basic configurations to

let the PWM be generated, as for example the pin direction, a default

pin port and index, and so on;

– The structure fields are so modified accordingly to the function param-

eters; many values are derived from the channel parameter due to the

dependency: it’s used as index to read an array of structure fields such

25

3 – BSP Extentions

as the pin port, the port index and the alternate muxing mode. This al-

lows the programmer to use all of the timer channels by ignoring to know

many hardware configurations that have to be performed. The channel

index is chosen among the values of an enum definition, allowing also a

more user-friendly way to choose the FTM channel.

– The function ftm setup is called to initialize the FTM as explained above;

– Some of the structure parameters are used to configure the pin in output

mode and connecting it to the opportune FTM channel. To do so, a bit

corresponding to the port index into the opportune Port Data Direction

Register GPIOn PDDR, where n is the port letter from A to E, is set. To

use the chosen pin as Timer channel, the alternate mode will be written

into the Pin Control Register PORT PCRn, on the MUX field; this field

defines which alternate mode use, but they are chip-specific, as specified

in the reference manual;

– In order to develop a Hardware-independent BSP interface, The Duty

Cycle is passed as a paramater from 0 to 100, expressing the percentage

of high period of a square wave in its complete period (high + low period),

defined by the wave frequency. However, the register configurations allow

a maximum duty cycle value of 0x8000h: this was done to have a greater

Duty Cycle resolution, hence to get a better control on the average value

of the PWM wave. The user specified parameter is so normalized with

respect to the maximum allowed value corresponding to the 100% of Duty

Cycle.

After the normalization, the value is used by the PWM drivers to compute

the counter value corresponding to time in which the generated wave has

to perform a falling edge: this computation also involves the developer

specified frequency (in Hz), that will be also converted to a period value

in timer clock ticks. In this way, it is more easy to understand how

much clock ticks correspond to the specified Duty Cycle. As result of all

of these computations, the first edge value is written into the Channel

Value Register FTMx CnV, where n is the channel index, and will be used

as match value. The firmware imposes this mechanism by setting into the

26

3 – BSP Extentions

Channel n Status and Control FTMx CnSC the Edge or Level Select A

and B fields, ELSA and ELSB, to 0 and 1. In this way, the channel output

is forced high when a counter overflow occurs and the counter restarts

counting, and it’s set low when the counter value matches the previously

computed value, corresponding to the Duty Cycle in clock ticks.

Figure 3.4: FTM Edge-aligned PWM Generation [15].

• FUNC(void, APPL CODE) ftm pwm unset(uint32 t instance): Stops the

counter, deactivates the FTM clock and deinitializes the registers used for the

PWM configuration;

3.2.3 PWM Input Capture mode functions

• FUNC(void, APPL CODE) ftm capture setup(uint32 t instance, uint8 t

chanIndex, uint8 t clock div): Initializes the FTM in capture mode.

– As for the PWM mode, many of the parameters depend on the FTM

channel to be used, so the same array of structure fields is read by using

the developer-defined channel parameter; so the same configurations will

be done for the port configuration and alternate mode muxing, except

for the port direction that has to be set to input for the capture purpose;

– The function ftm setup is called to initialize the FTM as explained above;

– A default structure is taken as reference, containing the necessary config-

uration values to perform a Rising-Edge Aligned Period-On Cap-

ture Signal Measurement , i.e. to count how much clock ticks are

contained between a rising edge and the corresponding falling edge. In

27

3 – BSP Extentions

order to allow the maximum precision, the maximum Counter value is

set to maximum allowed value on 16 bits, 0xFFFF = 65535. The mea-

surement will act in continuous mode; in this way, the capture value will

be continuously updated when detecting a rising edge and a falling one.

– The maximum Counter value is written into the FTMx MOD Modulo

Register; the continuous mode is imposed by opportunely setting the

Mode Selection A and B fields, MSA and MSB, into Channel n Status

and Control Register FTMx CnSC ;

– Before enabling the clock, the Interrupt request for the channel is enabled;

it indicates that the capture measurement is completed, and the Channel

n Value Register FTMx CnV is updated with the captured data;

– At the end, the FTM Clock Source is set, and the peripheral will start

to be ready to capture a signal;

• FUNC(uint16 t, APPL CODE) ftm capture get value(uint32 t instance,

uint8 t chanIndex): Returns a 16-bit value that indicates how much clock ticks

are contained in the square wave recevied as input from the specified channel.

Being the FTM configured in continuous capture mode, the function reads the

last captured 16-bit value from the FTMx CnV register;

• FUNC(void, APPL CODE) ftm capture unset(uint32 t instance, uint8 t

chanIndex): Deinitializes the the Capture configuration for the specified FTM

channel;

3.3 GPIO functions

Some functions related to the General Purpose IO usage were included in the BSP

extention. Board built-in LEDs and buttons are directly connected to the GPIO

registers.

• FUNC (void, APPL CODE) GPIO port config input(uint8 t port, uint8 t

index): Configures the opportune port in GPIO mode, in input direction;

28

3 – BSP Extentions

• FUNC (void, APPL CODE) GPIO port config output(uint8 t port, uint8 t

index): Configures the opportune port in GPIO mode, in output direction;

• FUNC (void, APPL CODE) GPIO write(uint8 t port, uint8 t index, uint8 t

val): Writes the given digital value val on a GPIO; the on-board RGB LED is

directly connected to the GPIOs, with an inverted logic (0 means LED on, 1

means LED off). In order to set or clear the GPIO digital value, the opportune

Port Data Output Register GPIOn PDOR bit is set or cleared; there is a bit

for each GPIO pin;

• FUNC (uint8 t, APPL CODE) GPIO read(uint8 t port, uint8 t index):

Reads the digital value from a GPIO. The on-board buttons and the touch

electrodes are directly connected to the GPIOs. The function returns the

digital value (0 or 1), that wil be read from the Port Data Input Register

PDIR, by reading the opportune bit.

29

Chapter 4

Simulink Library for MBSD

After the extention of the BSP for the target board, a Simulink Library was created

starting from the new BSP functions. It consists in a group of Simulink blocks that

can be instantiated on the models in order generate custom C code by using the

new BSP functions. All of them were created by using the MATLAB Legacy Code

Tool, in order to create the S-functions used to generate the opportune code with

Embedded Coder in Simulink. The following procedure was executed just once for

each block to be created, and so for each new function. After creating all blocks, the

whole collection composes the library, so this process is not intended to be performed

each time a block has to be used.

4.1 Block Generation Process

For sake of explanation, let’s analyze step by step the procedure to create the block

that implements the function “adc get value”:

1. Using the MATLAB command line or by creating a script, execute the follow-

ing code:

• def0 = legacy code(’initialize’): creates and initializes the structure

def0, that will be filled with the needed useful information;

30

4 – Simulink Library for MBSD

• def0.HeaderFiles = {’hal.h’}: specifies the header file containing the

function declaration.

• def0.SFunctionName = ’adc get value’ : specifies the function name;

• def0.OutputFcnSpec = ’uint16 y1 = adc get value(uint32 p1,

uint8 p2, uint8 p3)’ : specifies the function usage; yi is the ith block

output port, pi the ith function parameter (specified by using the mask)

and, if present, ui refers to the ith block input port.

• legacy code(’sfcn cmex generate’, def0): Generates the source C

file containing the new created S-function;

• legacy code(’sfcn tlc generate’, def0): Generates the TLC file, needed

to recognize the blocks of adc get value type from Embedded Coder dur-

ing the Code Generation Process;

• legacy code(’slblock generate’, def0): Opens a new Simulink win-

dow containing the new created block;

• mex ’adc get value.c’ : Compile the S-function; if this step is skipped,

Simulink will not find the opportune S-function for the block of this type.

For the purpose of simple code generation, the source file containing

the S-function is not important; it is useful just to complete the code

generation process.

2. Once the block is created, the library user would be able to set the function

parameters in a user-friendly manner. So, a mask for the new block is needed.

• By right clicking on the block go to Mask → Edit Mask. A new window

appears;

• Click on the ”Parameters & Dialog” tab. Here, you can specify all the

parameters configurations; some of the most important ones are presented

in the following:

31

4 – Simulink Library for MBSD

In this window, you can specify the mask name (1), a reference to the

mask description (2), change the parameter mask names (3), choose the

default value of the parameters (4) and set the parameter configuration

type (5). This last allows you to leave to the user as many freedom as

you want. For example, if the parameter has no fixed assumable values,

the type can be set to ”edit”; instead, if the parameter has some fixed

assumable values, the best choice is the popup, that allows the user to

choose among the elements of a non-editable list, treated in front end as

strings, and in back end (i.e. during the code generation) as incremental

integer value. However, there are many other useful selectable types

(combobox, radiobox, ...) that can be used depending on the application.

The mask description that is referenced in this tab has to be written in

the Documentation Tab.

• After having set everything, the mask is ready to be used, so the gener-

ated code will depend on the parameter as expected. The effects of the

previous points are highlighted in the following mask window:

32

4 – Simulink Library for MBSD

Even if the popup choice seems to be the most reasonable because it limits the

freedom of the user to the programmer’s choices, MATLAB treat every choice as a

incremental integer number starting from 1. So, the first choice on the popup will

generate 1, the second will generate 2, and so on. For this reason, the previously

developed BSP function were adapted to the MATLAB enumerations: if MAT-

LAB GEN CODE is defined into hal.h, the parameter inputs will be properly

adjusted; otherwise, if it is not the case to deal with generated code, by not defining

it the developer could do not mind about this offset adjustments and proceed with

its task development coding by using the BSP enumerations, that allows to write a

more readable code.

When the parameter values have to be specified by the user (like for example

by using an edit parameter cofiguration type), in order to allow the user to insert a

reasonable value for the specified parameters some constraint about the input was

necessary. Keep in mind that not all the configuration types are constraintable.

33

4 – Simulink Library for MBSD

To create a constraint:

1. Go to the mask editor (Right click on the block, cick on Mask→ Edit Mask...);

2. Click on the parameter that has to be constrained;

3. in the property editor, under the Attributes voice, click on the Constraint

popup and click on “Add new constraint”; a new window opens;

4. Insert a name for the new constraint on the opportune edit field;

5. Set the opportune constraints on the minimum and/or maximum accepted

values, on the sign, on the type and so on. If needed, a custom MATLAB

expression can be used as constraint;

The created constraint can also be applied to other configuration parameters;

when created, it will appear on the above mentioned constraint popup so it can be

chosen.

4.2 Library Deployment

When all the blocks for each new function of the BSP and their corresponding masks

were created, the complete library was saved and deployed, in order to find it in the

Simulink Browser. This process is also useful to easly find the block by double

clicking on the model and writing one of the created library block name.

The following MATLAB function was developed and executed, and the deploy-

ment succeeded.

34

4 – Simulink Library for MBSD

Figure 4.1: MATLAB code for Simulink Library integration

After the deployment, by refreshing the Simulink browser, the deployed library

will appear and the Designer can easly access to it. Remember that once deployed

the new Simulink Library will be always visible, even after restarting MATLAB; so,

the previously block creating method will not be needed anymore:

Figure 4.2: Developed library in the Simulink Library Browser

35

Chapter 5

System Target File for RTW Code

Generation

Simulink should be able to generate Erika RTOS-compatbile code starting from the

model. A System Target File aimed to create the Task C file and the OIL OS

configuration file was created.

5.1 MATLAB Model Analysis Function Library

The following MATLAB functions were developed to be called during the RTW by

the TLC files: they aim to easily provide information about the Model having as

additional result a more readable TLC code.

• get task period(model, task name): given a model and a task name, it returns

the task sample time in milliseconds;

36

5 – System Target File for RTW Code Generation

• get input task from RT(model,rt name): given a model and a Rate Transition

block name, this function returns the Rate Transition writer Task name;

• get output task from RT(model,rt name): given a model and a Rate Transition

block name, this function returns the Rate Transition reader Task name;

37

5 – System Target File for RTW Code Generation

• get RT input(model,rt name): given a model and a Rate Transition block

name, this function returns the Rate Transition input variable name;

• get RT output(model,rt name): given a model and a Rate Transition block

name, this function returns the Rate Transition output variable name;

38

5 – System Target File for RTW Code Generation

• get task priority(model,taskname): given a model and a Task name, this func-

tion returns the Task priority, following the Rate Monotonic rules;

In TLC coding, it is easy to get the Rate Transition name list, but it is not to get

the connected Subsystems neither the variable names; so, for each Rate Transition

Block found, these functions will be called in order to get the opportune information

needed for code generation.

39

5 – System Target File for RTW Code Generation

5.2 TLC Files for Custom Code Generation

The proposed System Target File enables Simulink to generate Tasks running at

different rates and managing Inter-Process Communications. Moreover, it imposes

Tasks priorities following the Rate Monotonic Scheduling Algorithm metrics: by

doing a static analysis during the code generation process, Tasks with minor cycle

duration will have assigned a higher priority. Please keep in mind that in OSEK OS

the higest priority level is 1.

The System Target File provides also the OS Oil Configuration File generation,

by defining the OS objects needed to let the generated Tasks working opportunely

as described in the Model.

In particular, different TLC files with different purposes were created:

• mbd s32k14 erika rtos.tlc: System Target File. It contains the header

needed to be recognized by Simulink as TLC file in the model Configuration

Parameters; many internal parameters such as the code format, the model

name and the Language are set here. The other TLC files are included in this

one.

Moreover it contains the specification through which this STF becomes de-

rived from the standard ”ert.tlc”, so all of the ERT options and code genera-

tion styles are inherited. The suffix for the generated directory name is also

specified here;

40

5 – System Target File for RTW Code Generation

• mbd oil erika rtos.tlc: This is the configuration oil file template; it works

similarly to the task template, but what is generated is the RTOS configuration

file, by defining the opportune tasks and, by analyzing their sample time,

alarms and events that allow to set the periodicity of each task and other

needed OS objects.

Let’s start analyzing how it is composed:

In the first lines, some basic information about the target device and CPU are

provided, such as the operating frequency, the CPU, SoC and Board model

and so on; due to the fact that the development board was chosen at the

beginning, these information are fixed, so there are no dependencies between

the template and the model:

Figure 5.1: TLC Oil file - Target device and CPU information.

Moreover, the additional hook functions have to be specified here. The pro-

posed oil file specifies just an idle hook function.

A special resource, the RES SCHEDULER, is also supported by Erika En-

terprise RTOS. It has a ceiling equal to the highest priority. So, a task lock-

ing RES SCHEDULER becomes non-preemptive. If needed, the USERESS-

CHEDULER parameter has to be set to TRUE [9]. The proposed configu-

ration set it to FALSE.

41

5 – System Target File for RTW Code Generation

In case of depending tasks with different rates, the semaphores have to be

defined in the “USEEXTENSIONAPI ” section, contained inside the “OS”

section. The used naming rule will impose the composition of the semaphore

name to be dependent to both the writer and reader Task, so it will be

{writer task name} {reader task name} sem:

Figure 5.2: TLC Oil file - Semaphore specifications.

In order to easily get the writer and the reader task name, the developed library

functions get input task from RT and get output task from RT are used.

Other fixed specifications are included in the oil template; the following lines

will specify the library for the target device. As said in part 1.2.2, in order to

exploit alarms and events to impose the task periodicity, the conformance class

has to be specified in the Oil file; being a fixed information, the specification

will not depend on the model:

42

5 – System Target File for RTW Code Generation

Figure 5.3: TLC Oil file - Library and conformance class specifications.

Application source files, such as the file containing the task definitions, the file

containing the main function that will start the operating system, the BSP and

the generated model source file, have to be specified under the APPDATA

field. The model source file name will depend on the model name.

Figure 5.4: TLC Oil file - Application files and System Timer specifications.

A counter is also included in the specifications: it will be used as System

Timer, and will use as hardware source the Systick device timer, to avoid

using general purpose timers (FTM) that can be used for different application

purposes.

43

5 – System Target File for RTW Code Generation

Before going on with the Task specifications, in order to avoid the Priority

Inversion Problem between Tasks an Erika Enterprise OS object, the Re-

source, is used: for each Rate Transition Block connected between a lower

priority Task and a higher priority one, a Resource will be declared; the used

nomenclature is {writer task name} {reader task name} res.

Figure 5.5: TLC Oil file - Resource declarations.

During the Real-Time Workshop, the template reads the generated model

RTW file and finds any non-virtual subsystems at the depth 1 starting from

the model root, that corresponds to the top level of the module. In this way,

the name of each Task is easily reachable. In order to set the task cycle period,

Erika Enterprise allows the tasks to be Event-sensitive. The events can be

periodically set by the OS configurable alarms. To exploit these OS objects,

the alarm will inherit the period from the opportune Simulink Subsystem. So,

each Task will wait for its “wake up” event generated at the same period of

the task on the design by the periodc alarm; after waiting, the event is cleared

and the task execution starts. The whole described code is contained in a

endless loop. So, the last part of the Oil template will contain the task, events

and alarms specifications. The declared task names, alarm names and event

names depend on the Subsystem names, in accordance with the C generated

44

5 – System Target File for RTW Code Generation

code. As can be seen in Figure 5.6, for each Task in the model, its name is

extracted from the model itself, the sample time is easily obtained by calling

the developed MATLAB function get task period.

Moreover, the Task priority is also defined here: it will depend on the Task

periodicity, accordingly to the Rate Monotonic scheduling algorithm. For

this purpose, the developed library function get task priority is called.

Figure 5.6: TLC Oil file - Data getting and Task specification.

The TLC code contains some print lines for the Diagnostic Viewer; printing

strings is a very good way to debug the TLC file templates during the devel-

opment process.

In case the Task has a higher priority with respect to other Tasks that generate

data for its execution, the resources must be specified in its specification,

so for each Rate Transition connected to the Task, if it has lower priority

writer Tasks, the opportune resource will be added to the Task specifications

accordingly to the nomenclature imposed in figure 5.5

45

5 – System Target File for RTW Code Generation

Figure 5.7: TLC Oil file - Task Resources specifications.

Events will be specified with the name ScheduleEvent taskname , and the

alarms with the name Alarm taskname . The alarm will be periodically

generated, setting the CYCLETIME parameter to the Task sample time.

Figure 5.8: TLC Oil file - Data getting and Task specification.

46

5 – System Target File for RTW Code Generation

• mbd task erika rtos.tlc: This is the task file template; by analyzing the

model RTW file, it is possible to understand whether the Tasks are indepen-

dent or not, the quantity of tasks, their sample time, priority and the data

dependency between them. So, considering all of these information, the C file

containing the Task implementations is generated. To better understand the

content of this file, it is better to proceed step by step:

The model-specific header files are included to the source. After this, the

counters needed to manage the rate transition blocks will be declared: so, for

each rate transition found in the model, a 16-bits volatile variable is declared,

by following the naming rule writer task reader task RT count, and ini-

tialized to 0, considered the moment in which a data update is needed. In case

of no data dependencies between Tasks, no counters will be declared here.

Figure 5.9: TLC Task file - Includes and RT counters.

47

5 – System Target File for RTW Code Generation

Each Task definition, for both independent and dependent ones, starts with

a common code part: the activation mechanism. Exploiting the Extended

Conformance Class, as said in part 1.2.1, the task will never terminate, it just

moves its status among running, ready and waiting in an endless loop. Each

time its step function is executed, it will move in waiting state, waiting for

the next event to be woken up. So, in order to wait for an event, the OS API

function WaitEvent is used: thanks to it, the task moves in waiting state;

when the event comes due to the generation of the alarm, it will pass to the

ready state, and when possible to the running one, clearing the event for the

next task execution and executing its body:

Figure 5.10: TLC Task file - Task definition and waiting mechanism.

In case of dependent Tasks with different rates, they will be connected through

a Rate Transition in the model; with its presence, Simulink will generate a

schedule function that depends on the block rates; so it alternates the tasks

execution depending on their rates and guarantee the data determinism as a

rate transition does. This function would be nicely used, but just in the case

in which the model contains only two tasks, one dependent to the other; in

different cases, as for example by adding an independent task to the model

or another couple of depending tasks, the scheduling function wil contain also

the step function calls to the other additional tasks, so using it to be called

48

5 – System Target File for RTW Code Generation

in a single task would be out of the concept of Real-Time tasks execution,

preemption-based scheduling and all of the benefits that a RTOS can give

to the System. So, in order to mantain a general rule on code generation,

the Rate Transition code generation behavior (i.e. for each dependent tasks

undersand when it is time to update the data and just after this let the other

task to be executed) is independently generated for each couple of dependent

tasks; the updating of the data is treated as a race condition, in which the

reading task will wait the writing task to complete the writing operation; for

this synchronization purpose, Erika Enterprise built-in Semaphores are used.

For each task, before generating the related step function call containing the

model Task generated code, the template will check whether there are passive

dependencies related to the Task, i.e. situations in which the Task receives

data from other Tasks (Reader Task). In case there exist, before launching

the step function the above synchronization technique has to be implemented;

it depends on the involved Task rates:

– Lower rate Writer: the reader will down-count how much times it was

executed; when reaching 0, i.e. the time in which it expects a data up-

dating because of the execution of the writer, it will move spontaneously

to the wait state by using the semaphore defined in the OIL file aimed

to manage the Rate Transition between the two tasks and the counter

value is restarted to a value equal to the ratio between the involved Task

sample times. So, in any cases, the writer Task will be executed before

the reader, ensuring data determinism for the shared variable;

– Higher rate Writer: the reader will wait anytime it executes, waiting

for the execution of the faster writer in order to use coherent data.

49

5 – System Target File for RTW Code Generation

Figure 5.11: TLC Task file - Shared Variables Management, Reader point of view.

In case of a independent Task, this template piece of code will not generate

any code.

While analyzing all the Rate Transition Blocks connected to the Task, if there

exist situations in which the Task generates data for an higher-priority one,

in order to avoid the Priority Inversion Problem, the resource OS object is

exploited to let the Task temporary changing its priority to the highest priority

between Tasks sharing that resource. To do this, the function GetResource is

used. The Operating System knows the Tasks that share that resource from

the Oil file, in which each of them has its own resource list specified into the

Task specification.

Figure 5.12: TLC Task file - Resource Locking for priority rising.

50

5 – System Target File for RTW Code Generation

In any cases, after having waited for the opportune data to be updated, getting

resouces or just because an independent Task is analyzed, the step function

call follows. A counter to keep track of how much times the task was executed

is incremented.

Figure 5.13: TLC Task file - Step function call.

As seen, The task names and the opportune initialize, step and terminate

function names will depend on the non-virtual Subsystem names and the model

name.

After the step function execution, if some active dependencies involves the

analyzed Task, i.e. situations in which it produces data for other Tasks (writer

Task), these data will be updated accordingly to the relation between the

sample rates:

– Lower rate Writer: it will update the data and then freeing the semaphore

by using the PostSem OS API, independently on the reader rate, because

it expects that the reader Task will stop its execution moving in waiting

state each time the writer has to be executed. The previously locked

Resource is released too, in order to restore the original Task priority;

– Higher rate Writer, it will take care of down-counting each time it

is executed, in order to understand when to update the data, use the

PostSem function and restarting the counter to a value that expresses

the ratio between the two sample times.

51

5 – System Target File for RTW Code Generation

Figure 5.14: TLC Task file - Shared Variables Management, Writer point of view.

What is obtained is the exact behavior that Simulink provides to the Model-

Based Designer when using Rate Transition blocks.

What is exploited of the standard ERT code generation is the data structure

containing the declaration of the variables from the Task to the Rate Transition

and from the Rate Transition to the other Task. They are declared in a

structure of data signals in the model.h file.

52

5 – System Target File for RTW Code Generation

• mbdtargettemplate erika rtos.tlc: Writes all the additional model files

starting from the buffers filled by the other TLC files, i.e. the OS configuration

file conf.oil and the task file task.c. This file will take care of indent the new

additional files.

Figure 5.15: TLC Target Template file.

In summary, the generated code lets the tasks wait for the periodic event gen-

erated by the alarm once per task period and call the step functions generated by

Embedded Coder, and in case of depending tasks, the mechanism to update the

data in a secure manner is also involved.

In order to allow Simulink to find the System Target File and by consequence

to allow the user to choose it from the list of the possible System Target Files,

all of them were placed in the same directory in the following MATLAB path:

’$matlab root/$matlab version/rtw/c/erika rtos/ ’.

53

5 – System Target File for RTW Code Generation

The custom Erika Enterprise System Target File is now able to be chosen in the

Embedded Coder configuration options before staring the code generation process:

Figure 5.16: Erika Enterprise RTOS Task TLC file selection.

Due to the purpose of simple code generation, no makefile has to be generated;

so, only the Generate code only checkbox has to be set.

54

Chapter 6

Code Generation Tests

The following model examples aims to let the Model-Based Designer understand how

to use the Simulink Library dealing with some common modelling situations. All of

them were tested in order to verify whether the code behavior well met the model

specifications running the specified Task-level application on the target Board.

6.1 A first example: single Task

As example of code generation, let’s consider the following simple specifications:

A task has to use one of the target board ADCs to convert the value of the board

potentiometer each 500 ms: whenever the converted value is greater than the imposed

threshold of 2000, the embedded blue LED is turned on, otherwise is turned off. Let’s

proceed step by step:

Figure 6.1: Task Activation Alarm Timing Diagram.

1. Create a new Simulink Model; here, create an empty Subsystem and call it

”Task trial”:

Figure 6.2: Empty Task Subsystem

55

6 – Code Generation Tests

2. Modify the Subsystem parameters in order to let it be treated as atomic unit,

with a sample time of 500 ms. To do so, right click on the subsystem and

select Block Parameters (Subsystem):

Figure 6.3: Subsystem Main Parameters

56

6 – Code Generation Tests

For code generation reasons,set the function packaging to Nonreusable function

and Function name option to Use Subsystem name on the Code Generation

tab:

Figure 6.4: Subsystem Code Generation Parameters

3. After this first configuration phase, it is time to fill the Task Subsystem

with the Erika Enterprise Simulink Library Blocks. Instantiate an initialize

Simulink block, and delete everything into it except for the event listener:

Figure 6.5: Initialize Block

57

6 – Code Generation Tests

4. Inside the Initialize block, add the adc setup block configured for setting the

ADC0 by using its block mask:

Figure 6.6: adc setup Mask configuration

5. Inside the Initialize block, add the GPIO port config output block configured

for setting the blue LED as GPIO output by using its block mask:

Figure 6.7: GPIO port config output Mask configuration

58

6 – Code Generation Tests

6. Inside the Task Subsystem block, instantiate the blocks adc get value and

GPIO write from the implemented Erika Enterprise library, connect them with

some other standard Simulink blocks (constants, switch) and configure them

as follows:

Figure 6.8: adc get value block configuration

Figure 6.9: GPIO write block configuration

59

6 – Code Generation Tests

7. Configure the Solver in discrete and Fixed-step type in the Solver tab of the

Coder Configuration Parameters;

8. Set the System Target File as mbd s32k14 erika rtos.tlc, select Generate code

only and deselect Generate Makefile in the Code Generation tab of the Coder

Configuration Parameters;

9. Generate the code by clicking on the Embedded Coder button;

If everything is opportunely set and modeled, the code generation succeed. Let’s

analyze the generated code:

• Starting from the conf.oil file, the C file containing all of the model generated

functions is included to the needed external files:

Figure 6.10: conf.oil file external files includes

It also includes the Task configurations and the related Event and Alarm to

execute it periodically with the specified sample time:

Figure 6.11: conf.oil: task, alarm and event definition.

60

6 – Code Generation Tests

• The task.c will contain the following task implementation:

Figure 6.12: task.c - Task definition.

As can be read, it will wait for the opportune event, triggered from the RTOS

each 500 ms as specified in the OIL file, and then the opportune step function

will be called. After this, it will wait again for the next event, and so on and

so forth.

61

6 – Code Generation Tests

• About the single task model.c file, the function that will be called are sin-

gle task mod Task trial Init(), corresponding to the initialize function, abd

single task model Task trial(), corresponding to the step function.

Figure 6.13: Model Init function.

Figure 6.14: Model Step function.

62

6 – Code Generation Tests

6.2 Depending Tasks with different Rates

As exention of the first example, it will be taken in consideration a model that

describes a situation in which there is a data dependency between two tasks with

different rates. Let’s have a look to the following specifications:

A task has to use one of the target board ADCs to convert the value of the

board potentiometer each 500 ms: whenever the converted value is greater than the

imposed threshold of 2000, the embedded red LED is turned on, otherwise is turned

off. Additionally, a second Task will update the blue LED status accordingly to value

of the red LED each 2 s.

So, for each second task call, the first one will be called four times.

Figure 6.15: Tasks Activation Alarm Timing Diagram.

To ensure a deterministic data transfer, a Rate Transition block between the two

tasks is needed. The model appears as follow:

Figure 6.16: Different Rates Tasks Model.

63

6 – Code Generation Tests

With the custom STF, the Rate Transition block presence will generate the

emulation of the ERT scheduler function generated by Embedded Coder that counts,

for each period corresponding to the minimum between the two task periods, how

much times the slower task step function is called; whenever the counter reaches a

value equal to the division between the higher task period and the lower one, the

data is updated and the semaphore will signal the slower task, so it will be executed

and the counter restarts.

Considering that the Task periods are known from the beginning, static analysis

like this can be done;

In this case, the faster task is the writer one: so, it will take care of counting the

periods and update the data.

Figure 6.17: Writer Task (faster).

64

6 – Code Generation Tests

As mentioned on the chapter regarding the System Target File, in case of depen-

dencies between tasks with different rates the TLC files will generate a semaphore

declaration inside the OIL configuration file; in order to handle its reference, it was

decided to assign its name depending on the involved task names.

Figure 6.18: OIL Semaphore specification.

Figure 6.19: Reader Task (slower).

65

6 – Code Generation Tests

As can be seen from the Tasks definitions and step functions, they use a struct

containing the input and output variables to exchange the data: this is what we ad-

ditionally exploit about the ERT code generation. The struct and the instantiation

of the struct are contained in the model header file.

Figure 6.20: Data Communication Struct.

Figure 6.21: Task1 Step Function.

Figure 6.22: Task2 Step Function.

66

6 – Code Generation Tests

6.3 Independent Tasks with different Rates

In this case, the system specifications require the presence of three different tasks,

each of them with a different rate:

A task has to read each 500 ms the value of the target board button1; when it

is pushed, the green LED is turn on. Another task has to use one of the target

board ADCs to convert the value of the board potentiometer each 1.5 s: whenever

the converted value is greater than the imposed threshold of 2000, the embedded blue

LED is turned on, otherwise is turned off. A third will read each 1 s the value of

the board button0 to control the red LED.

Figure 6.23: Tasks Activation Alarm Timing Diagram.

Figure 6.24: Multi Task Subsystems.

67

6 – Code Generation Tests

As can be read in the specifications, the three tasks have no dependencies, so

the tasks events will be periodically generated at each individual task period and

the OS scheduler will take care about managing the preemption in case of different

priority. Here are presented the tasks models. The first and the third task will have

the same model, but with different set mask parameters. The generated OIL file

will contain the definition of three different tasks, three events and alarms with the

opportune period, depending on the relating task.

Figure 6.25: Task 1 and 3 (Buttons read) model.

Figure 6.26: Task 2 (Potentiometer read) model.

68

6 – Code Generation Tests

6.4 Single Task using a Stateflow diagram

Sometimes, Model Based Designers may need to add some stateflow control on their

models. Let’s take as example the following specifications:

A task has to use one of the target board ADCs to convert the value of the board

potentiometer each 10 ms. Then, an analysis of the signal has to be done: if the

corresponding digital value is less than 1500, just the red LED turns on; if it is

between 1500 and 3000, just the yellow LED turns on; if it is greather than 3000,

just the blue LED turns on.

By using the stateflow diagram, the specifications are satisfied in a straightfor-

ward way. the diagram will receive as input the converted ADC value and will drive

with 3 different signals the GPIO LED status, depending on the value.

Figure 6.27: Analog analyzer Task model.

69

6 – Code Generation Tests

Each state has to clear the undesiderable LEDs (remember that in the target

board writing 0 on the GPIO means to turn on the corresponding LED).

Figure 6.28: Stateflow Diagram.

By analyzing the generated code, it is clear that the diagram presence generates

the possible states that can be reached in the model C file:

Figure 6.29: Diagram State definitions.

Moreover, the model Header file contains the custom structure that the code will

use to store the LEDs values and the structure needed to store the actual state:

Figure 6.30: Diagram Struct definitions.

70

6 – Code Generation Tests

Finally, the step function that will be called by the Task, is generated as follows.

As can be seen, the ADC value is read, then this value is used to set the opportune

state and LEDs values; after this, the three GPIO values are updated with the new

values.

71

6 – Code Generation Tests

Figure 6.31: Model Step Function.

72

6 – Code Generation Tests

6.5 Multiple dependent and independent Tasks,

Different Rates

A generic case that can be described by a model implies the presence of independent

and dependent tasks, each of them with its own rate, maybe different to the others.

Let’s have a look to the following specifications:

A Task has to read the value of the on-board button0 each each 500 ms; another

Task will use the Button0 value to turn off the green LED, each 1500 ms. In the

meanwhile, a Task has to read the value of the on-boad Button1 each 1000 ms, and

another one will use the Button1 value to turn off the red LED each 250 ms. In

parallel, a Task has to take care of toggling the blue LED each 250 ms.

Figure 6.32: Task Activation Alarm Timing Diagram .

By imposing a Rate Monotonic Scheluing behavior, each Task will have its own

priority level, pedending on its cycle period. This will not affect the data determin-

ism, neither Priority Inversion Solution, due to the fact that the OS object Resource

is used.

73

6 – Code Generation Tests

The situation described above can be moleded as two pairs of dependent tasks

that use a Rate Transition to transfer data to the opportune one, and a single

independent task, that toggles the Blue LED without caring about the other ones.

A pair of the dependent ones describes the situation in which the writer task is slower

than the reader, the other one describes the opposite situation, i.e. the writer task is

faster than the reader. So, the following Simulink model describes the specifications:

Figure 6.33: Generic Model.

74

6 – Code Generation Tests

The independent task model contains a memory block, that will be responsible

to mantain the previous LED value in order to toggle it; this is translated as two

variable declarations during code generation:

Figure 6.34: blue LED blink model.

Figure 6.35: blue LED blink Step Function.

75

6 – Code Generation Tests

After setting all of the Task periods and the configuration for code generation,

what is generated is the already analyzed OIL configuration Tasks, Semaphores,

Alarms and Events definitions by using the opportune names and periods; task.c

will contain the definition of the independent task, as seen on the other examples,

the definition of the two dependent tasks with the faster writer, as handled in the

second example (Depending Tasks with different Rates) and introduces the case with

a slower writer and faster reader:

Figure 6.36: button1 read Task (slower writer).

As can be seen, the writer task will not wait any events to update the task;

if the two tasks arrive together, the reader will have to wait for the second one

in any cases, so an implicit prioritization comes (i.e. the writer task is executed

firstly, by updating the shared data and let the reader task continue, as the Rate

Transition behavior imposes). During the writer Task Execution, as said in part 5.2,

76

6 – Code Generation Tests

its priority is rised to the highest priority among the Tasks sharing the produced

data, by locking the shared Resource. After updating the data, the Resource is

released and the reader will be executed without waiting the writer until a new

write comes, and so on.

Figure 6.37: red LED write Task(faster reader).

The faster reader will wait each time it expects a data update event, as a Rate

Transition presence would have imposed. In this way, the data determinism is fully

respected. The follwing timing diagram gives a better idea about the synchronization

between tasks:

Figure 6.38: red LED write Task Synchronization.

77

6 – Code Generation Tests

6.6 Multi-data dependencies, Dependency chains

and independent Tasks

The most generic case is presented in the following. The proposed specifications

will imply indpendent Tasks, dependent Tasks with writer with higher and lower

priorities with respect to their reader Tasks, and data dependency chains:

A Task has to blink the on-board blue LED each 250 ms; in the meanwhile, a

Task has to read the value of the on-board button0 and another one has to read the

value of the on-board potentiometer, respectively each 200 and 500 ms: these two

produced data will be read by a Task each 1000 ms, that will take care of updating

the red LED status with the button value if the potentiometer converted value is

greater than 2000, otherwise the digital 1 will be written on the LED. Each 100 ms,

a Task has to update the value of the green LED by copying the value of the red LED.

In parallel, a Task will generate a PWM signal, by increasing the Duty Cycle of 25%

each 1000 ms, restarting to the starting value of 25% when reaching the 100% Duty

Cycle.

Figure 6.39: Tasks Activation Alarm Timing Diagram.

78

6 – Code Generation Tests

The corresponding model appears as follows:

Figure 6.40: Task-level Simulink Model.

The variable Duty Cycle is generated by the Task pwm stairs, by the following

model:

Figure 6.41: Duty Cycle stairs generator model (pwm stairs Task).

In order to refer to the previous Duty Cycle value, a memory block is used.

Moreover, the BSP function ftm pwm setup expects a 16-bit parameter for the Duty

Cycle, so a data conversion type block is needed. The model was simulated, and

what is obtained is the expected waveform representing the Duty Cycle changing,

each step time corresponding to the Task cycle period of 1 second:

79

6 – Code Generation Tests

Figure 6.42: Duty Cycle Scope.

The obtained code is similar to the previous analyzed cases, except for the con-

trol LED Task, that shares data with three different Tasks, two as inputs and one

as output: the specified Task cycle periods impose priorities such that the higher

priority reader task control green, at the end of the chain, will transfer its priority

to the writer Task control LED, at the middle of the chain, in case the shared data

has to be updated (each 10 executions of the reader Task), due to the Immediate

Priority Ceiling: the blue LED blinking Task will not be temporary able to pre-

empt it because of the priority transfer, so there will not be any Priority Inversion

Problems. At the end of its Task body, the Resource is released and the priority

comes back to its normal value.

80

6 – Code Generation Tests

Figure 6.43: control LED Task body.

81

Chapter 7

Conclusions

The presented Model-Based methodology allows a faster development of the whole

software stack: starting from the Simulink model, the Task application layer is

generated; the Operating System is generated too, containing the necessary resources

for the upper layer, because of the generation of the Oil configuration file dependent

on the Model itself.

Thanks to the OSEK OS code generation and to Simulink Embedded coder, the

process results faster and easier for the developer, taking into account that it only has

to create a Simulink Library starting from the Board Support Package. This leads

the devlopers to focus more on high quality Board Support Package development.

Figure 7.1: System Code Generation Diagram.

About integrating the generated code, due to the fact that what are generated

are fully compilable syntax-error-free files, the integration of the generated code to

82

7 – Conclusions

an existing project results quite easy.

• The OIL file, the task.c file, the model C file and all of the header files can

just simply copied and pasted to the project working directory.

• After this, it is just sufficient to add inside the hal.h header file the definition of

MATLAB GEN CODE in order to activate the MATLAB generated code

interface previously introduced in part 4.1.

• At the end, a call to the model initialize function has to be added just before

the StartOS function call into the main function, that will start the Operating

System.

In order to run the generated code, what is needed is first of all to clean the

Erika project and recompile the OS, due to the possible new OIL configuration file,

and then rebuild the project. After this, the code is ready to run.

Possible improvements on what developed can be related to the autobuild process

after code generation: as said, the Real-Time Workshop can continue to generate

a device-specific executable and loading it directly to the target Hardware. Going

to this direction, starting from the Task application level model, the development

would be completely independent on Erika Enterprise RTOS even if all of its features

would be exploited. Moreover, by loading automatically the executable on the target

device, Simulink external mode can be used in order to allow the host (PC) to

communicate with the model running on the device during runtime. These processes

can improve the model debug features; with the actual used Eclipse environment,

no Task schedulability analysis can be performed freely: this new possible features

can lead the developer to become Eclipse-independent by moving the debug process

into the MATLAB environment.

83

Bibliography

[1] Kai Qian, David Haring, and Li Cao. Embedded Software Development with C.

Springer Publishing Company, Incorporated, 1st edition, 2009.

[2] Wikipedia. Osek — wikipedia, l’enciclopedia libera, 2019. [Online; checked on

12th of May, 2019].

[3] Road vehicles – Open interface for embedded automotive applications – Part

3: OSEK/VDX Operating System (OS). Standard, International Organization

for Standardization, Geneva, CH, March 2005.

[4] Road vehicles – Open interface for embedded automotive applications – Part

4: OSEK/VDX Communication (COM). Standard, International Organization

for Standardization, Geneva, CH, March 2005.

[5] Road vehicles – Open interface for embedded automotive applications – Part

5: OSEK/VDX Network Management (NM). Standard, International Organi-

zation for Standardization, Geneva, CH, March 2006.

[6] Joseph Lemieux. Programming in the OSEK/VDX Environment. CMP Books,

1st edition, 2009.

[7] OSEK. OSEK/VDX - Operating System. OSEK.

[8] OSEK. OSEK/VDX - System Generation. OIL: OSEK Implementation Lan-

guage. OSEK.

[9] Evidence S.r.l. ERIKA Enterprise Manual, Real-Time made easy. 1.4.5 edition,

2012.

[10] Inc. Frescale Semiconductor. OpenSDA - User’s Guide. Freescale.

[11] Why Adopt Model-Based Design for Embedded Control Software Development?

White paper, Mathworks, Natick, USA, 2014.

[12] The Mathworks Inc. Writing S-functions. The Mathworks.

[13] Evgeni Perelroyzen. Digital integrated circuits : Design-for-Test Using Simulink

and Stateflow. CRC Press, 2007.

[14] The Mathworks Inc. Real-Time Workshop For Use with SIMULINK. The

Mathworks.

84

Bibliography

[15] NXP Semiconductors. S32K1xx Series Reference Manual. NXP Semiconduc-

tors.

85

	Acknowledgments
	Theoretical Background
	Real-Time System and RTOS
	OSEK/VDX Standards
	Tasks Management
	Events, Counters and Alarms
	OIL: OSEK Implementation Language

	ERIKA Enterprise RTOS
	RT-Druid Development Environment

	Target Board: NXP s32k144EVB-Q100

	Model-Based Software Design Background
	Using Simulink as Model-Based Design Tool
	S-functions
	Target Language Compiler and Real-Time Workshop

	BSP Extentions
	ADC functions
	FlexTimer functions
	Counting mode functions
	PWM generation functions
	PWM Input Capture mode functions

	GPIO functions

	Simulink Library for MBSD
	Block Generation Process
	Library Deployment

	System Target File for RTW Code Generation
	MATLAB Model Analysis Function Library
	TLC Files for Custom Code Generation

	Code Generation Tests
	A first example: single Task
	Depending Tasks with different Rates
	Independent Tasks with different Rates
	Single Task using a Stateflow diagram
	Multiple dependent and independent Tasks, Different Rates
	Multi-data dependencies, Dependency chains and independent Tasks

	Conclusions
	Bibliography

