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Abstract

Communications in automotive field became critical since electronic comput-

ers have been embedded in cars to implement safety features. Being a safety

component, each of them have to stand some standard of security in order

to avoid jeopardizing human lives. For this matter, communications between

components in automotive field need to pass a process of validation. The

majority of these communications happens on the Controller Area Network.

Since its introduction, it has become the most common network protocol used

in automotive field. This serial bus system is the main actor of this thesis:

here is reported how a test platform has been designed in order to specifically

test and stress this protocol. The developed module, called “DIANA Distur-

bance Tool”, have been designed starting from a digital design, continuing

with the firmware and ending with the analog design, all in such a way as to

comply with the existing test bench, the Digital Instrument for Automatic

Network Analysis (DIANA). The digital design is the core of the project

and provides the possibility to introduce both logic and analog errors and to

generate a trigger signal when a specific event occurs. The firmware interacts
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between the hardware and the external test bench, granting the entire control

of the digital design. The hardware is controlled in order to act on the bus,

eventually applying errors. Furthermore, an application able to control the

system and to send and receive CAN messages has been developed for testing

purposes. The design has been tested with behavioral testbenches and with

the help of an Integrated Logic Analyzer. The next step is to integrate the

project with the DIANA platform and to improve it to make it compatible

with the CAN FD protocol.
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Introduction

Since the production of first self-propelled vehicles, humans wanted to im-
plement comfort and safety features to make transportation pleasant and
riskless. This means the introduction of more and more facilities and equip-
ment in order to achieve such goals. Furthermore, in the last years, mechan-
ical parts are being replaced by electronic components to satisfy customers’
desire of innovative vehicles and to comply with stricter regulations about
exhaust emissions. In addition, the incorporation of automation techniques
and luxury features triggered a rapid increase in the use of onboard electron-
ics. This is the beginning of the electrification era [1].

Over the years it has been noticed that computers controlling a feature, called
Electronic Control Unit (ECU), could drastically enhance vehicle functional-
ity if connected together in order to interact and exchange information. These
interconnections were initially realized between each ECU with a physical
channel allocated for each signal (point-to-point wiring). This resulted in a
massive effort to wire an entire vehicle and excessive complexity in diagnose
faults and making modifications. A bus architecture is the only solution for
this problem.

Depending on the criticality, the bandwidth and the purpose of the trans-
ferred messages, different networks exist. Among them, the Controller Area
Network (CAN) is the most widely used communication protocol for in-
vehicle networks. Nowadays every new car has at least one CAN system

1



Introduction

onboard [2].

Scope

The CAN protocol can be defined as a robust high-speed1 signal information
platform, characterized by reliable data transmissions that satisfy real-time
requirements. Be reliable it does not means that it is fault free. Vehicles with
CAN are subject to electronic faults as well as older vehicles. Communica-
tion problems can occurs if a physical error appears on the bus (wires become
grounded, shorted or break), if a problem arise in one ECU (dead battery
can cause settings loss) or if an ECU is not behaving properly (e.g. writing
on the bus messages not compliant with the protocol).

Creating a platform able to arbitrarily introduce such errors, in order to test
the correctness of transactions on the bus, is the goal of this thesis. The
main design will be written in VHDL and will be able to inject both logic
and hardware perturbations. It will be ready to be used with the DIANA
testbench, in place of the existing Vector CANstress, in order to carry out all
the disturbances generated in the current state for verification of the testing
standards imposed by the FCA carmaker.

1The CAN protocol speed is highly dependent on the wire length: on short connections
(<40m) it can reach 1 Mbit/s. See chapter 1 – Controller Area Network for more info.
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Chapter 1

Controller Area Network

1.1 History

In 1986 Robert Bosch GmbH introduced the Controller Area Network (CAN)
protocol at the Society of Automotive Engineers. It was a revolutionary solu-
tion to growing material costs, production time and communication reliabil-
ity. The protocol was an innovation for its non destructive bus arbitration, no
central bus master, error detection and handling capabilities. Furthermore,
adding CAN hardware to each ECU allowed the creation of a single serial
bus network, superseding point-to-point wiring connections. Just one year
after, the first CAN controller chips were available [3].
The Bosch CAN specification 2.0 [4] were released in the early 1990s and the
ISO 11898 [5] standard was published shortly after. In 2012 Bosh released
the CAN Flexible Data rate (CAN FD) (see section 1.5 for more).

Today more than 70 ECUs communicating via the CAN network can be
found in vehicles and the protocol has spread in many other industries with
different technical applications1.

1CAN is used in elevator systems, ships, trains, aircraft, x-ray machines and other
medical equipment, logging equipment, tractors and combines, coffee makers and other
major appliances [2].
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1 – Controller Area Network

1.2 Description

The Controller Area Network is a very reliable multi-master serial bus system
whose description covers both the Physical Layer (PL) and the Data Link
Layer (DLL) of the ISO/OSI seven layer model (see Figure 1.1). The CAN
protocol specifies the data communication model. It covers the Data Link
Layer (Medium Access Control (MAC), Logical Link Control (LLC)) and
the Physical Layer (Physical Layer Signalling (PLS)), treated in section 1.4.
CAN specifications also cover the reference model for data communication
in the Physical Layer (Physical Medium Attachment (PMA) and Physical
Medium Specification (PMS)), treated in section 1.3. No CAN standard ex-
ist for the Medium Dependent Interface (MDI)2.

7
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PMA CAN Transceiver
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Figure 1.1: CAN Standard and Implementation referred to ISO/OSI levels

2The CiA DS-102 recommends the use of a SUB-D9 connector and specify pin assign-
ments. This is a de facto standard.
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1 – Controller Area Network

The network consists of a number of ECUs, called CAN nodes, connected to
a physical bus, usually in a line topology (some alternatives contemplate the
use of a passive star topology). A node should implement a CAN driver (as an
interface for the application, usually a micro controller), a CAN controller
and a CAN transceiver. The maximum number of nodes is defined as 32
but more nodes can be used depending on the quality of the network3 and
transceivers.
Each node can transmit on the bus only when is free and the message is
broadcasted in the network, readable from every node. There are no ad-
dresses, in fact the transmission is message-based (event-driven): each node
can select relevant messages (by message identifier and node filtering) and
ignore the others.

1.3 CAN Physical Layer

The Physical Layer defines how the actual transfer of bits between different
nodes happen with respect to electrical properties. The physical transmission
media is a two-wire differential (relative to a common ground) electric cable,
often an Unshielded Twisted Pair (UTP). The two CAN differential signals
are called CAN_H and CAN_L. Using a differential line allows to effectively
reduce interference from other components in the vehicle. The transmitter
drives differential voltages to signal a logic 0 (dominant). Logic 1 (recessive)
is assumed when no node is driving the bus.

1.3.1 Signal Level and Bit Representation

The Physical Layer Signalling (PLS) is in charge of managing timing and
synchronization of signals on the bus. Both high-speed and low-speed ver-
sions of the protocol defines voltage levels for dominant and recessive logic

3Important factors are capacitive load, overall line length, network termination concept
and connecting line type.
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1 – Controller Area Network

values on the bus (see Table 1.1). Furthermore specifications on timing re-
quirements for transitions (D→R, R→D) are given for transceivers.

CAN types Logic Value
CAN_H CAN_L Differential

V V V

High speed
0 D 3,5 1,5 2,0
1 R 2,5 2,5 0

Low speed
0 D 3,6 1,4 2,2
1 R 0 5,0 -5,0

Table 1.1: CAN bus levels for high-speed and low-speed standards. Typical (nominal) values for transmission
are reported (see ISO [6], [7] for more details)

The bit coding used in CAN is the Non Return to Zero (NRZ) which means
that each bit is coded with a single value. This brings to synchronization
problems that will be treated in subsection 1.4.1 – Bit Timing and Synchro-
nization, since CAN does not expect the use of an external clock signal. A
“wired-and” cabling (open collector) is performed: when at least one node is
transmitting a dominant value, a logic 0 (D) will be forced on the bus; only
if every node is transmitting a recessive value4, a logic 1 (R) will be detected
on the bus.

1.3.2 Transmission Medium

The typical transmission medium is a twisted pair conductor of an unshielded
wire. Twisting makes differential signal communications more effective to-
wards electromagnetic disturbs.

4When a node is in sleep state or simply does not want to transmit anything, its CAN
controller will broadcast a recessive value on the bus.
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1 – Controller Area Network

1.4 CAN Protocol

The definition of the CAN protocol includes specifications for PLS that de-
scribes bit timing and synchronization (see subsection 1.4.1) and for the Data
Link Layer. In turn the DLL is divided in the Object Layer, that mainly man-
ages message filtering (see subsection 1.4.2) and the Transfer Layer, that is
the kernel of the CAN (see subsection 1.4.3).

1.4.1 Bit Timing and Synchronization

Synchronization is performed at the start of a message (R→D edge, hard-
sync) and is repeated at each bit change. Thanks to the use of the “bit
stuffing” technique a minimum number of transition is assured: controllers
transmitting on the bus insert a complementary bit (stuff bit) after five homo-
geneous bits. Stuffing is performed starting from the Start Of Frame (SOF)
bit until the end of the CRC field. A receiver uses stuff bits for resynchro-
nization (soft-sync) and ignore them for data computing.

The duration of a bit, called Nominal Bit Time, can be divided into separate
non-overlapping time segments (as can be seen in Figure 1.2) of the duration
of a multiple of a time quantum (tq)5. These segments are:

• Synchronization segment (SYNC_SEG): is the initial part of the bit time,
where there is an edge of the transition, used to synchronize the nodes.
It is 1 time quantum long.

• Propagation time segment (PROP_SEG): portion of bit time dedicated for
delay times compensation6. Can be from 1 to 8 tq.

5A time quantum is a fixed unit of time, multiple of a local oscillator period (usually
programmable to be from 1 to 32×).

6It is twice the sum of the signals propagation time on the bus line, the input comparator
delay, and the output driver delay [4].
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1 – Controller Area Network

• Phase Buffer Segment 1 and 2 (PHASE_SEG1/2): time used to compensate
phase errors. These segments are resized at each resynchronization of a
maximum number of tq equal to a Synch Jump Width (SJW) value.
The first can be from 1 to 8 tq, the second is the maximum between
PHASE_SEG1 and the information processing time (that is at least of 2
tq).

Oscillator

Prescaler

NOMINAL BIT TIME

PROP SEG PHASE SEG 1

1 tq 8 tq 5 tq 2 tq

Sample point

Previous
Bit

SYNC 
SEG

PHASE
SEG 2

Next
Bit

Figure 1.2: Partition of Bit Time with an oscillator clock of 64 MHz (not visible in the chart), prescaler of
2, 16 tq and sample point at 87.5 % for a speed of 1 Mbit/s. Changing the prescaler, maintaining the same
values of other parameters, allows to achieve other CAN speed

1.4.2 Object Layer

Characteristics of the Object Layer depends on the particular hardware
(CAN controller) in use. Here is implemented message filtering for each node
based on the message identifier. Management of messages to be transmitted
and interface with Application Layer (Level 7 of ISO/OSI) are also defined.

1.4.3 Transfer Layer

This layer is the kernel of the CAN protocol: most of the standards applies
here. It is a bridge between the Physical Layer and the Object Layer, and
describes message types (frames), node arbitration, error detection and fault
confinement.

8



1 – Controller Area Network

1.4.3.1 Data Frame

The Data Frame is the most used message type and serve to transmit data. It
can transport a maximum payload of eight bytes. Its format can vary between
the Standard Controller Area Network (CAN) and the Extended format as
can be seen in Figure 1.3.

Data Frame

1 bit 12/32 bit 6 bit 0-8 byte 15 bit 1 bit 1 bit 1 bit 7 bit 3 bit

Control Field CRC Field ACK Field

11 bit 1 bit 1 bit 1 bit 4 bit

Identifier r0 DLC     Standard Format

11 bit 1 bit 1 bit 18 bit 1 bit 1 bit 1 bit 4 bit

r1 r0 DLC     Extended Format

Arbitration Field Control Field

Bus 
idle

S
O
F

Data
Field

CRC 
sequence

D
E
L

A
C
K

D
E
L

E
O
F

I
T
M

Bus 
idle

Arbitration
Field

R
T
R

I
D
E

Base 
Identifier

S
R
R

I
D
E

Extended
Identifier

R
T
R

Figure 1.3: Comparison of CAN Data Frame in Standard and Extended Format

SOF The Start Of Frame (SOF) is a dominant bit that assure hard syn-
chronization between all nodes. It can only be transmitted if the bus is in
idle state.

Arbitration Field The 11 bit Identifier (ID) sets the priority of the frame
and is used by other nodes to identify the content of the message (lower
identifiers have higher priority). The extended format expects an additional
identifier field of 18 bits. The Remote Transmission Request (RTR) bit is
used to distinguish between data frame (D) and remote frame (R). In the
extended format this bit is moved after the second identifier and in its place
is introduced the Substitute Remote Request (SRR) bit, which is always
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1 – Controller Area Network

recessive.

Control Field The Identifier (IDE) distinguish between standard format
(D) and extended format (R)7. The Data Length Code (DLC) is a 4 bits field
that codify the number of payload bytes that will be transmitted in the data
field. Reserved bits r0 and r1 are irrelevant and transmitted as dominant.

Data Field Is the payload of the frame. It can be from 0 to 8 bytes, as
dictated by the DLC.

CRC Field Includes a 15 bits checksum sequence of Cycle Redundancy
Check type8 , computed from SOF until the Data Field and a recessive de-
limiter.

ACK Field Acknowledge field. The ACK slot bit is transmitted recessive
and overwritten dominant from receivers if they acknowledge the CRC se-
quence. It follows a 1 bit recessive delimiter.

EOF The End Of Frame (EOF) signals the end of the frame with 7 reces-
sive bits.

1.4.3.2 Remote Frame

This type of frame has the same structure of a Data Frame except for the data
field, which is empty. It is used by nodes to request some specific (identified
by the ID) data. Here the RTR bit is recessive9.

7Both Data and Remote standard format frames have the priority. For the extended
format, the IDE bit is considered to be in the Arbitration field.

8CRC polynomial = 0x4599, initialization at zero.
9If another node is transmitting a data frame with the same ID, it will have the priority

and supersede the remote request, since it is already the answer to the requested data.
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1 – Controller Area Network

1.4.3.3 Error Frame

Is a special message that explicitly violates the CAN stuffing rule. It is trans-
mitted by a node that detects an error in a message and can be active (trans-
mit dominant bits) or passive (transmit recessive bits, possibly overwritten
by dominant bits by other nodes), depending on the node status. After the
error flag the controller transmit recessive bits until it detects a recessive bit
on the bus (other nodes have finished sending their dominant flags) and send
seven more recessive bits (see Figure 1.4).

Error Frame

6 bit 0-6 bit 8 bit 3 bit

Error flag Error delimiter

Superposition of Error Flags

Previous 
frame

I
T
M

Figure 1.4: CAN active Error Frame

1.4.3.4 Overload Frame

Similarly to the active Error Frame, is composed by an Overload flag of
6 dominant bits (and eventual overload flag echo from other nodes) and
a 8 recessive bits Overload delimiter. It can only be transmitted during an
Intermission sequence, signalling the overload condition of the node (the node
is too busy and requires a delay before the next data reception) and imposing
a delay for future data transmission.

1.4.3.5 Interframe Space

The Interframe Space is a sequence of recessive bits that separate any kind
of frame from Data and Remote Frames. It consist of 3 recessive bits, Inter-
mission (ITM), after which the bus is considered to be in idle state (remains

11



1 – Controller Area Network

recessive) until the next frame is transmitted. Intermission can only be in-
terrupted by an Overload Frame.

1.4.3.6 Bus Access and Arbitration

Unlike other networks protocols (such as Ethernet), CAN uses a nondestruc-
tive bus arbitration approach. If two or more nodes start transmitting at the
same time, the bus access conflict is resolved by a bit-wise arbitration dur-
ing the Identifier transmission (MSB first). If a controller detect a dominant
value on the bus when transmitting a recessive value, the node acknowledge
that has lost arbitration and must withdraw without sending one more bit
[4]. This method is called Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) and ensure a prioritization of CAN messages among the
network.

1.4.3.7 Error Detection and Signalling

There are five error types:

• Bit Error: generated by a node transmitting on the bus that detects a bit
value different than the one sent. Exceptions are the Arbitration Field,
the ACK slot and a passive Error Flag.

• Stuff Error: detected by a node if the bit stuffing method is not respected
(the sixth bit of a sequence to be stuffed does not generate a transition).

• CRC Error: generated by a node if the internally computed CRC is
different from the one broadcasted on the bus10.

• Form Error: detected if a field with fixed bit contains an illegal value
(e.g. reserved bit r0 or r1 transmitted recessive).

10Thanks to CRC, up to 5 randomly distributed errors and any odd number of errors
in a message are detected.
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1 – Controller Area Network

• ACK Error: detected by the transmitter if the ACK slot is not overwrit-
ten dominant.

A node can signal a detected error sending an Error Frame. Transmission of
CRC errors starts after the ACK delimiter, for other errors it starts imme-
diately.

1.4.3.8 Message Validation

A transmitter can consider a message as valid when no error occurs from the
SOF until the EOF. When errors are detected, re-transmission starts auto-
matically as soon as the bus is idle.

Receivers consider valid a message when the are no errors until the last but
one bit of the EOF. Each receiver that correctly detects a data or remote
frame, sends a dominant bit on the ACK slot.

1.4.3.9 Fault Confinement

Each CAN node has a Receive Error Counter (REC) and a Transmit Error
Counter (TEC). Starting from an ‘error active’ state when REC & TEC <
128, a node can normally take part in bus communications and send active
Error Flag. When REC | TEC ≥ 128 (but <256) the node is in ‘error passive’
state: it can only send passive Error Flag and has to wait a Suspend Trans-
mission Time (8 bits) before sending multiple frames. Finally, when REC
| TEC ≥ 256 the node is in ‘bus off’ state and can not interfere with bus
transactions. A node in ‘bus off’ state can become active after an hardware
reset or 128 occurrence of 11 consecutive recessive bits are detected on the
bus. The REC and TEC are increased when errors occurs (errors have dif-
ferent weights) and decreased on successful operations accordingly to CAN
specifications (see [4, pp. 24-26]).

13



1 – Controller Area Network

1.5 CAN Flexible Data Rate

With a raising number of ECUs in vehicles and increasing complexity of
functions, CAN buses are becoming more and more crowded and bus load is
breaking its bandwidth limits (1 Mbit/s). Other protocols, such as Media Ori-
ented Systems Transport (MOST) that reaches up to 150 Mbit/s, are being
used for infotainment purposes while a more expensive protocol, the FlexRay
(up to 10 Mbit/s), is used for deterministic scopes. Local Interconnect Net-
work (LIN) is used as a cheap alternative for low-speed interconnections.
Nevertheless, CAN remains the predominant bus system in vehicles for its
implementation flexibility and cost effectiveness.

The limiting factor of the Controller Area Network is due to its multiple
access capabilities. Since several nodes can transmit on the bus at the same
time, the Nominal Bit Time must not be shorter than twice the propagation
time of the signal between the two most distant nodes. This happens during
the arbitration phase and in the ACK slot. In between these two fields,
increasing the bit rate is safe (only one node is transmitting): this is the
fundamental idea of the CAN Flexible Data rate (CAN FD).

CAN FD Data Frame

Control Field CRC Field

Identifier r DLC CRC seq EOF ITM

1 bit 11 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 4 bit 0-64 byte 4 bit 17/21 bit 1 bit 1 bit 1 bit 7 bit 3 bit

1 bit 11 bit 1 bit 1 bit 1 bit 4 bit 0-8 byte 15 bit 1 bit 1 bit 1 bit 7 bit 3 bit

Identifier r0 DLC CRC seq EOF ITM

Control Field CRC Field

Data Frame

Arbitration
Field

ACK 
Field

Bus 
idle

S
O
F

R

S

I
D
E

F
D
F

B
R
S

E
S
I

Data
Field

Stuff 
count

D
E
L

A
C
K

D
E
L

Bus 
idle

Bus 
idle

S
O
F

R
T
R

I
D
E

Data
Field

D
E
L

A
C
K

D
E
L

Bus 
idle

Arbitration
Field

ACK 
Field

R

Figure 1.5: CAN FD Data Frame (above) compared to Classic CAN (below)
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1 – Controller Area Network

CAN FD, standardized in ISO 11898-1 [5], is backward compatible11 with
classic CAN and offers speeds up to 8 Mbit/s with a 0-64 bytes payload
while reducing data overhead, bus load problems and data segmentation.
The data frame transmission (Figure 1.5) differs from Classical CAN for the
use of the ‘r0’ reserved bit as a recessive Flexible Data rate Format (FDF) bit.
There are no remote frames, the RTR bit is replaced by the dominant Remote
Request Substitution (RRS) bit. The Bit Rate Switch (BRS) bit dictate the
possibility to have an higher transmission speed (between the BRS and the
CRC delimiter) when dominant. Stuffing rules and CRC calculation differs
to guarantee data reliability.

11CAN FD ECUs can manage both classical CAN and FD messages. Classical CAN
controllers that receives FD messages will raise a form error on bit r0.

15



Chapter 2

DIANA Disturbance Tool

Introduction

The scope of the project is to design an electronic embedded system able to
inject perturbations on the CAN bus. This tool should be able to implement
main functions of the “Vector Informatic CANStress” commercial product,
that is currently used in the Intecs DIANA test bench, in order to supersede
it. The Disturbance Tool should be able to generate all perturbations cur-
rently used in the Automatic Test Equipment for the verification of testing
standards imposed by the FCA carmaker.

2.1 DIANA testbench

The Digital Instrument for Automatic Network Analysis (DIANA) is a test
bench able to automate the validation process of network layer of the control
units [8]. In particular it enables the validation of all layers of the ECU CAN
stack. Is composed by different sub-systems:

• A National Instrument PXI system and its connectivity panel

• An application able to control the PXI board and to execute functions

16



2 – DIANA Disturbance Tool

and generate reports

• An ECU that is the Device Under Test

• A physical CAN bus.

The type of disturb to be generated can be set from the DIANA software
(and CANstress gui), located in the PXI controller. An automatic process
can be performed by loading in the tool a script file. This file allows to au-
tomatically launch test procedures standardized by the carmaker.

2.2 Disturbance Tool Specifications

The DIANA, in order to perform some Network Management and CAN BUS
physical layer tests, needs an external system capable of generating Logic
and Analog disturbs. Furthermore a trigger functionality is needed in order
to recognize specific patterns inside a message.

Logic perturbations Some bits of the message are modified from recessive
to dominant1. In particular, after any field in the frame, a programmable
number of stuffing bits could be inserted for a programmable number of
repetitions.

Analog perturbations Physical fault are generated between the CAN
BUS lines. In particular:

• CANH - CANL short circuit

• CANL - VBAT short circuit

• CANH - GND short circuit

1A logic bit can not be changed from dominant to recessive (using a CAN compliant
controller) because of the CAN protocol electrical properties (see subsection 1.3.1).

17



2 – DIANA Disturbance Tool

• CANH open circuit

• CANL open circuit

Trigger The tool should generate a trigger signal in any point of the CAN
frame, even without a disturb. The tool should generate a trigger upon the
recognition of a single bit or a field in the CAN frame.

HW and SW Integration The tool should be integrated into the DI-
ANA without the need to modify the current test scripts already present. It
should communicate via USB by emulating a serial port and generate dis-
turbs directly on the CAN BUS. In Figure 2.1 can be seen the whole system
interconnection.

DIANA Disturbance Tool

Hardware Application

Digital
Instrument for
Automatic
Network
Analysis

C
A

N
 B

U
S

ECU
under
test

CAN BUS

Figure 2.1: DIANA - Disturbance tool connection

All these functionalities have to be performed in real time. For this reason
the choice of an FPGA based system is optimal for its performance and to
reduce design and production costs.
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2 – DIANA Disturbance Tool

2.3 Project Partitioning

The design have been partitioned in four sub-systems (see Figure 2.2) that
will be treated separately in this thesis :

• Digital Design: VHDL code to be deployed on a FPGA. It includes all the
components needed to generate logic errors and triggers. It also includes
the analog error activation logic (see chapter 3)

• Firmware: C code running on the FPGA core in order to receive serial
commands and set registers value of the digital design (see chapter 4)

• Analog design: hardware circuit used to input error and read messages
on the CAN BUS (see chapter 5)

• Graphical User Interface: Application that simplify sending serial com-
mands to the FPGA using a graphical environment (see chapter 6)

DIANA Disturbance Tool

ZedBoard

Digital Design
(VHDL)

Analog Design
(PCB)

ZYNQ
Processing

System
(Firmware)

Digital
Instrument for
Automatic
Network
Analysis

S
e

ria
l I

F

C
A

N
 B

U
S

ECU
under test

ECU
under testCAN BUS

CAN BUS

GUI
(Serial terminal)

Figure 2.2: Disturbance tool project sub-parts
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Chapter 3

Digital Design

Introduction

The digital design includes all the VHDL code, to be deployed on the FPGA,
that describes the behavior of various sub-systems capable of generating dis-
turbance and trigger as the project specifications (see section 2.2 – Distur-
bance Tool Specifications).

A Block Design is used to integrate the developed VHDL entity in the form
of an IP core with the Processing System (section 3.2) with the use of an
AXI peripheral interconnection (section 3.3). A reset controller module called
rst_ps7 is used to manage system reset and a clocking wizard called clk_wiz
is used to scale the system clock to the actual value of 160 MHz. The repre-
sentation of the Block Design is in Figure 3.1 – “View of Block Design from
Vivado”.
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3 – Digital Design

3.1 Disturbance Tool

Five components belong to the Disturbance Tool design (canstress_v1_0
entity) as can bee seen in Figure 3.2 and they will be further detailed below.

Disturbance Tool

AXI IF

Logic Error Generator

Analog Error Generator

Configuration
Registers

Trigger Logic

CAN Sniffer

   trigger_out

CAN RX

can_tx

cm_sig

Figure 3.2: Disturbance Tool components

3.1.1 CAN Sniffer

The can_sniffer is a real-time CAN protocol sniffer able to recognize the
current field type of the transmitted message and extract its data, making all
the information available to other components. It is a controller from open-
cores [9] based on the Philips SJA1000 stand-alone CAN controller that has
been heavily modified in order to be silent on the bus, disabling transmission
and Wishbone features1. A diagram of its component can be seen in Fig-
ure 3.3.

1The opencores controller uses the Wishbone bus for its configuration. The CAN sniffer
configuration takes places thanks to the CAN Registers (subsubsection 3.1.1.1).
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CAN sniffer

config_reg

Bit Stream
Processor

CAN
Registers

Bit Timing
Logic

new_frame

CAN RX

tx_point

field_type

field_value

field_ready

bit_n

bit_de_stuff

Figure 3.3: CAN sniffer components

3.1.1.1 CAN Registers

These are local registers that holds information of the controller (sniffer) such
as configuration parameters, errors counters, acceptance masks, data to be
transmitted and some others protocol info.

The acquisition of configuration parameters have changed by removing the
wishbone functionalities and implementing a system for reading the general
configuration register (described in subsection 3.1.5). When in configuration
mode (config_mode=0x01) the Bit Timing Register (BTR) 0 and 1 are read
and stored as new parameters for the controller (see Figure 3.4) and made
available to others components.

The acceptance mask registers are forced to the value 0xFF while acceptance
code registers to 0x00. In this way the controller will not perform acceptance
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Sheet1

Page 1

bit n 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset name

0x00 config config_mode -
BTR1 BTR0

TS TSEG2 TSEG1 SJW BRP

Figure 3.4: Configuration register, line 0: CAN sniffer configuration

filtering, reading all input messages without discarding anyone.

The read and listen_only signals are forced active, virtually disabling the
possibility of transmitting messages.

3.1.1.2 Bit Timing Logic

The Bit Timing Logic (BTL) is in charge of sampling input bits at the right
time, based on the controller configuration. The prescaler value is used to
divide the system clock into a clock suitable for reading messages on the bus.
This value have to be set at the system startup and all controllers on the
CAN BUS have to agree to the transmission speed.

Several VHDL process implements the division of the nominal bit time into
quantum and segments, following the rules discussed in subsection 1.4.1 –
Bit Timing and Synchronization.

The sync, hard-sync and late edge detection logic is in charge of moving the
sample point at the correct time to perform sampling and triple sampling, if
enabled.

As output from the sniffer it provides the new_frame signal that coincides
with the hard_sync: it rises for one clock cycle when the first dominant
bit, Start Of Frame (SOF) bit, is detected on the bus. It also generates
the tx_point that signals the exact moment when a controller should start
transmitting on the bus the current bit value. Is used when transmitting
dominant bits in the Logic Error Generator (see subsection 3.1.3) and to
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synchronize the trigger signal with the bit transmission in the Trigger Logic
(see subsection 3.1.2).

3.1.1.3 Bit Stream Processor

The Bit Stream Processor (BSP) receives the sampled bit value and recon-
struct the CAN message, generating information about the message field and
its value.

The input bit stream pass through a counter that count consecutive repeti-
tion of the same value. If five dominant or recessive bits in a row are detected,
the bit_de_stuff signal rises indicating that the successive bit should be
discarded.

Another counter is used to count received bits from the start of the message.
The bit_n signal is reset at the start of the frame and increased if the new
read bit is not a stuffing bit.

To understand which field is currently being transmitted on the bus, several
VHDL processes generates signals indicating which field (or special bit) the
bit just read is part of. In this way the field_type value is deduced based
on these signals.

Signals in the form of go_rx_<field_name> are generated in a combinational
way. These are really useful to discern when a field should start on the bus.
Similar signals are produced for the error and overload frames and in general
for error detected on the bus. The field_ready signal is a combination of
the previous start signals.

The field_value is the value of the field indicated by the field_type sig-
nal. It can be considered correct and stable only from when the field_ready
is high and is valid until its next rise.
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The Cycle Redundancy Check (CRC) and Acceptance Code Filter (ACF)
are disabled as well as other logic that implements error recognition and
transmission management. Their code is still present (even if is not being
used) because it might be useful for adding additional functionalities. It does
not impact on design size or performance, since unused modules are not
synthesized nor implemented during the building phase.

3.1.2 Trigger Logic

This module is in charge of generating a trigger when a series of conditions
on the frame are met. It get to read configuration data from general registers
that contains, for each CAN field, information about if the match have to be
performed and, possibly, with what value.

A VHDL process generate a frame signal that is high when a frame is being
transmitted on the bus, that is from the new_frame signal until the Inter-
mission field begins. This is like an enable signal since operations can only
occur when a frame is on the bus.

There are two trigger modes: bit trigger and mask trigger. When the mode bit
is at 1 in the trigger line of general registers (see Figure 3.5) the bit trigger
mode is active.

Sheet1

Page 1

bit n 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset name

0x3C trigger trigger_enable - bit_trigger_n - err ovf mode

Figure 3.5: Configuration register, line 15: Trigger Logic configuration

In bit trigger mode a trigger is risen (in sync with the tx_point) when the
configured number bit_trigger_n coincides with the current bit_n received
from the CAN Sniffer. Bit trigger is not performed nor calculated when in
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idle, error or overload field or when the current bit is a stuff bit.

When in mask trigger mode (mode bit at 0) a mask comparison between the
read value (field_value) of the current field (field_type) and the match
value stored in the general registers is performed. The compare_mask func-
tion perform a bit by bit comparison only if the corresponding bit in the
mask register is at 1. If at least one masked bit does not match, the function
returns 0. If all masked bit match, it return 1. If no mask is applied (mask is
all zeros), the function returns 0. If the function has returned 1, the match
is confirmed and the triggered is risen (in sync with the tx_point).

To manage the transmission of different consecutive data sets, a counter
called data_counter is increased upon the reception of a new data byte
and used to address the data_array, needed for the mask comparison. The
data_array is an array of general configuration register lines (line 5 and 7)
splitted bytewise: each line of the array holds a single byte as it would be
transmitted on the bus. Another array, the data_array_en, is generated in
the same way (from line 6 and 8) and contains the masks of each single byte.

The trigger_out signal is risen only for one clock cycle (the general clock
cycle used is scaled from the system one to 160 MHz). When the trigger has
risen at least once during a frame transmission, a triggered signal is set to
high until a new frame begins.

3.1.3 Logic Error Generator

The Logic Error Generator is the module in charge of generating dominants
bit on the CAN BUS. It can produce a maximum of 127 stuffing bits for a
maximum of 127 repetitions after any of the field in a message. The logic
line in the configuration register (as shown in Figure 3.6) allows to set these
values.
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Sheet1

Page 1

bit n 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset name

0x40 logic logic_error_enable - stuff_field stuff_count stuff_num

Figure 3.6: Configuration register, line 16: Logic Error Generator configuration

Stuffing, and therefore the transmission of a dominant bit, can occur only
between the start_stuff and end_stuff impulses. When the current field
(field_type) is the same field set in the configuration registers, the next
field is the one to be stuffed and, as soon as it begins, the start_stuff pulse
is generated and the stuffing process begins.

At the beginning of the stuffing process an internal bit_cnt is set to the num-
ber of consecutive stuffing bits (stuff_num). At every tx_point the value to
be transmitted on the bus (can_tx) is updated and the bit_cnt decreased.
When the counter is at zero the end_stuff impulse is generated and the
stuffing stops, transmitting a recessive value on can_tx.

This process is repeated for a rep_cnt times (initialized with a stuff_count
value), allowing the generation of multiple consecutive errors on the CAN
BUS.

The stuff_complete signal is risen when all repetition of stuffing occurrences
are over (rep_cnt=0) and remains high until a new stuff configuration is set.

3.1.4 Analog Error Generator

This is a simple logic that set the relays activation signals (cm_sig) based on
the values of the configuration register (see Figure 3.7). When the
analog_error_enable=0x01 the signals are updated and the error_active
signal rises if at least one relay is active. When errors are disabled by the
register, all values for relays activation are set to zero.
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Sheet1

Page 1

bit n 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset name

0x44 relays analog_error_enable -
cm_sig (6:0)

FD-1L FD-1H 1L-2L 1H-2H L-VB H-GND H-L

Figure 3.7: Configuration register, line 17: Analog Error Generator configuration

3.1.5 Configuration Registers

The register file is a set of registers that interfaces with the processor through
an AXI4 Lite bus2. The AXI clock is the same used for the entire system,
as said before, set to 160 MHz. In the “can_type.vhd” some constants are
defined for register size and addresses values (see Listing 1). The AXI data
and address width depends on the register size.

There are 17 registers 32 bit wide therefore 5 bits for the addressing are
enough. More registers (up to a total of 25 = 32) can always be added later
without major modifications, for example to save data regarding CAN FD
fields . The constant REG_WRITE_END signals the last writable register. Regis-
ters after the 17th (in this case the 18 only) are not writable. This mechanism
could be improved in the future adding a bit for each register signalling its
read/write access permission.

Constants for register addresses are used to easily recognize them in the code.
The whole register file can be seen in Figure 3.8.

Some VHDL processes manage the AXI4 Lite standard signals3:

• AWREADY – Write address ready: slave is ready to accept a write address
and control signals. Since the slave (register file) only perform read and
writes from the master, it will always be ready for any operation.

2The AXI4 Lite is part of the ARM AMBA AXI control interface.
3The master in the communication is the SoC processor, the slave is the register file.
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26 ...
27 constant REG_DATA_WIDTH : integer := 32;
28 constant REG_ADDR_WIDTH : integer := 5;
29

30 constant AXI_DATA_WIDTH : integer := REG_DATA_WIDTH;
31 constant AXI_ADDR_WIDTH : integer := REG_ADDR_WIDTH+2;
32

33 constant REG_START : integer := 0;
34 constant REG_WRITE_END : integer := 17;
35 constant REG_LENGTH : integer := 19;
36

37 subtype register_line is std_logic_vector(REG_DATA_WIDTH-1 downto
0);↪→

38 type register_type is array(0 to REG_LENGTH-1) of register_line;
39

40 constant config_addr : integer := 0;
41 constant arb_addr : integer := 1;
42 constant ctrl_addr : integer := 3;
43 constant data_addr1 : integer := 5;
44 constant data_addr2 : integer := 7;
45 constant crc_addr : integer := 9;
46 constant ack_addr : integer := 11;
47 constant end_addr : integer := 13;
48 constant trigger_addr : integer := 15;
49 constant logic_addr : integer := 16;
50 constant relays_addr : integer := 17;
51 constant out_addr : integer := 18;
52 ...

Listing 1: Some constant definitions from can_type.vhd

• AWADDR – Write address: 32 bit wide, only a latch is performed.

• WREADY – Write (data) ready: slave is ready to receive a data write, no
outstanding transactions are expected.

• BVALID – Write response valid: slave acknowledge the write response.

• BRESP – Write response: slave return the status of the write transaction,
always "00".

• ARADDR – Read address: equals to REG_ADDR_WIDTH+2=7, latched.
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• ARREADY – Read address ready: slave is ready to receive read address
and control signals. As the AWREADY, slave is always ready to perform a
read operation.

• RVALID – Read valid: slave acknowledge the read data process

• RRESP – Read response: slave return the status of the data transfer, "00"
is an OK response.

Sheet2

Page 1

bit n 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N offset name

0 0x00 config config_mode -
BTR1 BTR0

TS TSEG2 TSEG1 SJW BRP

1 0x04 arb
rtr2 rtr1 ide id1 id2

2 0x08 arb_en

3 0x0C ctrl
- r1 r0 dlc

4 0x10 ctrl_en

5 0x14 data1
data_byte(3) data_byte(2) data_byte(1) data_byte(0)

6 0x18 data1_en

7 0x1C data2
data_byte(7) data_byte(6) data_byte(5) data_byte(4)

8 0x20 data2_en

9 0x24 crc
- del crc

10 0x28 crc_en

11 0x2C ack
- del ack

12 0x30 ack_en

13 0x34 end
- eof itm

14 0x38 end_en

15 0x3C trigger trigger_enable - bit_trigger_n - err ovf mode

16 0x40 logic logic_error_enable - stuff_field stuff_count stuff_num

17 0x44 relays analog_error_enable -
cm_sig (6:0)

FD-1L FD-1H 1L-2L 1H-2H L-VB H-GND H-L

18 0x48 out can_bus_failure error_active stuff_complete triggered

Figure 3.8: Configuration registers

Data writes are performed when WREADY, WVALID, AWREADY and AWVALID are
high and only if the write address (AWADDR) is in the allowed range, between
the REG_START and the REG_WRITE_END, thus from 0 to 17 inclusive. Each
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of the 4 byte of a register can be written individually using the AXI WSTRB
signal. Writes are directly performed to the registers signal, of the type
register_type (see lines 37-38 of Listing 1), which actually implements the
register file. During this write process, hardware components can directly
write in the out register through to the register_in port. This avoid the
usage of the AXI protocol for writes of a single register from components in-
ternal to the design, simplifying the digital design structure and preventing
useless signals crowding.

Reads are performed in two VHDL processes. The reg_data_out signal holds
the register file value at the address ARADDR until it is output on the RDATA
signal (when ARREADY and ARVALID are both high).

Reads and writes to registers with AXI are performed only by the SoC pro-
cessor (see section 3.2). Internal VHDL components have direct access to the
lines of the register file they need for read operations and can directly write
in the out register (line out_addr=18). This simplifies and speeds up the
numerous I/O transactions.

3.2 ZYNQ Processing System

The ZYNQ Processing System is an Intellectual Property (IP) from Xilinx
that provides a software interface around the Zynq-7000 System on Chip
(SoC) integrated in the zedboard (see section 4.1 – Zedboard for more info
about the hardware platform). Using the Vivado IP Integrator is possible
to integrate the processing system with customized VHDL designs and em-
bedded IP cores. It is generally used to manage (enable and disable) I/O
peripherals, AXI ports, MIO, EMIO, clocking and interrupts (see Figure 3.9
for a system internal view).
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Figure 3.9: Internal view of the Block Design of the Zynq Processing System: modules highlighted are active
and ready to use

In the system a quad SPI Flash memory is used to store the configuration
of the Programmable Logic and the system program. Two CAN peripherals
are used for testing purposes (more on that in section 4.1 – Zedboard) and a
UART port to manage the serial interface with a baud rate of 115200 bit/s
(see section 4.2 – Serial Interface). Clock is let to be managed by the Clock-
ing Wizard.

3.3 AXI Interconnect

The Advanced eXtensible Interface (AXI) Interconnect is a Xilinx IP used
to connect the Processing System, that acts as a master, to the Disturbance
Tool, the register file in it that is the slave, with an AXI4 LITE bus in mem-
ory mapped way. Its configuration is simple and is let to be managed by the
Vivado tool.
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Firmware

Introduction

This section will deal with the firmware deployed in the Zedboard develop-
ment kit and how it interacts with the Digital Design and with the DIANA
testbench with its serial interface.

4.1 Zedboard

The Zedboard is a Xilinx development kit built around a ZYNQ 7000 All
Programmable System on Chip (SoC) for high-end embedded-system appli-
cations. In particular it features a ZYNQ XC7Z020-CLG484-1 SoC based on
a dual ARM Cortex A9 MPCore1 with 512 MB of RAM, 256 Mb of Quad-
SPI Flash, onboard USB JTAG interface for programming and an Artix-7
Field Programmable Gate Array with 85K programmable Logic Cells.

The Quad-SPI will accommodate the Digital Design (saved as a bitstream im-
age generated from Vivado), that will be deployed at each reset to the FPGA

132-bit processor by ARM implementing the ARMv7-A architecture.
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fabric, and the firmware code that will be running on the ARM MPCore. The
firmware creation, build and deployment (program of the flash memory) is
performed in C using the Xilinx Software Development Kit (SDK).

Two CAN controllers are configured and used in this project mainly for test-
ing purposes. Thanks to them is possible to simply send and receive CAN
messages to test the behavior of the design. This two modules can be useful
in the future.

4.2 Serial Interface

Communications between the DIANA and the Disturbance Tool take place
via a serial interface on a USB cable. The only function provided in the Xil-
inx libraries for reading data from the UART is the XUartPs_RecvByte that
receives a byte from the serial device in a blocking way (polling occurs on
the peripheral blocking the system). This is not a problem since the system
functions only upon the reception of a command.

The main function perform an initial setup of the peripherals and the system,
and then enters an infinite (until a reset) while loop. In the loop the functions
to read from serial, parse the result and execute it are executed.

4.2.1 Read Line

Since read from serial occurs one character (1 byte) at a time, the read_line
function is in charge of reading characters from the input buffers until an enter
char (ASCII code = 13) or a LINE_MAX_LENGTH number of chars are read.
A global variable cmd_line is used to store the result. Only alphanumeric
chars and backspace are elaborated. No special nor escape characters are
managed thus the serial terminal does not allow to move the cursor or perform
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advanced task. This function is therefore implementing a serial terminal with
basic functionalities.

4.2.2 Parse Line

In the parse_line function the line read from the terminal is parsed. The
cmd_line is split into substring separated by a space using the strtok func-
tion. This create the vector args which holds the command in the position
0 and its arguments in the following array addresses.

4.2.3 Execute

Here the command (argument zero of the vector) is compared to a constant
list of possible commands called commands_str (defined as in Listing 2).
On match the corresponding function (with the same index) in the vector
commands_func is directly called and its result will be returned as the result
of the execute function. If the args vector is empty (the user pressed enter
without inserting any command) the function will return NOERR. If the com-
mand is not present in the list (i.e. is an invalid command) the function will
return FAILURE.

175 ...
176 //List of functions pointers corresponding to each command
177 const int (*commands_func[])() = { cmd_help, cmd_configure,

cmd_register, cmd_send };↪→

178

179 //List of command names
180 const char *commands_str[] = {
181 "help",
182 "configure",
183 "register",
184 "send"
185 };
186 ...

Listing 2: Commands constant definitions from can_test.c
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If the execution returned SUCCESS (the only way is that the function called
by execute i.e. args[0] returns SUCCESS) an OK return value will be printed
on the serial terminal. If it returned a FAILURE, KO will be printed instead.
KO is returned for parsing errors too.

> help

Intecs CANstress 0.5

usage: [help] [configure]* [register] [send]** <command>

help <value> : shows this help.
use any command argument for more info

(e.g. > help send)↪→

configure <value> : configure internal and PL CAN controllers.
speed : configure speed

sp : configure sample point

register <value> : configure internal and PL CAN sample point.
get : get register value
set : set register value

enable : enable register
disable : disable register
toggle : toggle register value

send <value> : send a CAN frame.
CAN<n> : CAN device that will transmit (CAN0 or CAN1)

type "help send" for info about the frame setup

* configuration of PL CAN controller can also be directly performed
setting appropriate registers↪→

** send option available only for testing purpose while internal
controllers are implemented↪→

Listing 3: Terminal output of the help command

A help command is available to display some information about the func-
tioning of all others commands. If executed alone it returns a general text (see
Listing 3), if followed by any of the other commands (‘configure’, ‘register’,
‘send’), it will return information about it.
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4.3 Disturbance Tool Configuration

Initial configurations of the Disturbance Tool consists on the first setup of
the two CAN controllers (see section 4.4). The CANConfig function configures
the Programmable Logic CAN (the VHDL sniffer) as well as the two external
ones calculating and setting the Baud Rate Prescaler Register (BRPR) and
the Bit Timing Register (BTR) based on the sample point sp and speed
global configuration variables (see Table 4.1 for configuration values). The
SJW value is always set to 1. The final CONFIG_REG value is the bitwise OR
between itself (the value in the table) and the prescaler value and it is sent
to be written in the register file at the configuration offset (line 0).

Sample point 0 (87.5%) 1 (90%)
SEG1 12 7
SEG2 1 0
CONFIG_REG 0x1C40 0x0740

Prescaler
when

speed is

0 (1000 Kbps) 4 7
1 (500 Kbps) 9 15
2 (250 Kbps) 19 31
3 (125 Kbps) 39 63

Table 4.1: CAN controllers configuration parameters

The same configuration could be performed using the configure command,
as can be seen in Listing 4. As said in the help command, configuration of
the Programmable Logic CAN controller (the sniffer) can also be directly
performed setting appropriate registers (see section 4.5) but this method is
faster and prevents the entry of unsuitable values in the registers. Using
the reset option will reset the two internal controller as well as the VHDL
sniffer, imposing sp=0 (87.5%) and speed=0 (1000 Kbps).
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> help configure

Intecs CANstress 0.5

usage: configure [options]

Available options:

speed <value> : configure internal and PL CAN controllers speed.
0 : 1000 Kbps (default)
1 : 500 Kbps
2 : 250 Kbps
3 : 125 Kbps

sp <value> : configure internal and PL CAN sample point.
0 : 87.5 % (default)
1 : 90 %

reset : reset internal CAN controllers.

Listing 4: Terminal output of the help configure command

4.4 CAN Peripherals Usage

The two CAN controllers are managed by the XCanPs libraries. At startup a
self-test is run to verify basic sanity of the device and the driver.
In the initial configuration, the system interrupt controller is set to respond
calling the interrupt handler, that determines its source and calls the appro-
priate callback function. It can handle events interrupts such as RX FIFO
Overflow/Underflow, Bus Off status, TX FIFO full, lost arbitration and error
interrupts such as ACK, bit, stuff, form and CRC errors. Only the Bus Off
status will perform a reset of the controllers (otherwise they would not be
usable, see subsubsection 1.4.3.9 – Fault Confinement) while other interrupts
will only print to terminal a status message. Messages ant their error codes
can bee seen in Listing 8 and will be treated in chapter 6 – Graphical User
Interface.
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> help send

Intecs CANstress 0.5

usage: send <can> [sorted_options]

Available options: (must be in this order)

<can> : Select CAN controller that will send the message.
: 0 for CAN0, 1 for CAN1

<rtr> : Remote Transmission Request bit.
: 0 for Data Frame, 1 for Remote Frame

<ide> : Identifier Extension bit.
: 0 for standard CAN, 1 for Extended CAN

<id> : Identifier.
: 11 bit hex value, MSB first

<id_e> : Extended Identifier, only if ide = 1.
: 18 bit hex value, MSB first

<dlc> : Data Length Code.
: int number of data bytes in payload, from 0 to 8

<data1> : First 4 bytes of data (if data frame).
: 32 bit hex value, MSB first

<data2> : Second 4 bytes of data (if data frame). Used if dlc > 4.
: 32 bit hex value, MSB first

Listing 5: Terminal output of the help send command

Messages can be sent from these peripherals with the send command (see
Listing 5). Order of arguments matters and each CAN field can be cus-
tomized. The cmd_send function called in the execution phase will call the
frame_set function that is in charge of reading the arguments and compos-
ing the CAN message to be sent (TxFrame). Here each argument is controlled
to be compliant with the CAN protocol and an error will be returned if it is
not. In the end the SendFrame function will send the frame (a status message
will be printed on serial terminal) calling the XCanPs_Send and catching any
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errors.

A receive handler (RecvHandler) will be called if a controller recognize a
new CAN message on the bus, if is not the controller that is transmitting
the message. No filtering is active so any new message will be detected. A
status message will be printed on the serial terminal stating the info about
the incoming frame. Errors on read are reported too.

4.5 Registers Usage

The last serial command, called register, allows to read and write the regis-
ters activating the Disturbance Tool functions (see Listing 7 for all command
options).

59 ...
60 /* registers offset address */
61 #define CONFIG_OFFSET 0x00
62 #define ARB_OFFSET 0x04
63 #define ARB_EN_OFFSET 0x08
64 #define CTRL_OFFSET 0x0C
65 #define CTRL_EN_OFFSET 0x10
66 #define DATA1_OFFSET 0x14
67 #define DATA1_EN_OFFSET 0x18
68 #define DATA2_OFFSET 0x1C
69 #define DATA2_EN_OFFSET 0x20
70 #define CRC_OFFSET 0x24
71 #define CRC_EN_OFFSET 0x28
72 #define ACK_OFFSET 0x2C
73 #define ACK_EN_OFFSET 0x30
74 #define END_OFFSET 0x34
75 #define END_EN_OFFSET 0x38
76 #define TRIGGER_OFFSET 0x3C
77 #define LOGIC_OFFSET 0x40
78 #define RELAYS_OFFSET 0x44
79 #define OUT_OFFSET 0x48
80 ...

Listing 6: Offset constant definitions from can_test.c
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> help register

Intecs CANstress 0.5

usage: register [options]

Available options:

get <addr> : get value of register at specified address offset.
reg_addr : register offset, from 0x00 to 0x48, 32bit aligned

(multiple of 4)↪→

set <a> <v> : set value of register at specified address offset.
reg_addr : register offset, from 0x00 to 0x44, 32bit aligned

(multiple of 4)↪→

reg_value : 32 bit hexadecimal value to be put into register

enable <addr> : enable configuration register.
reg_addr_en : register offset enable, from 0x3F to 0x47, 32bit

aligned (multiple of 4)↪→

disable <addr> : disable configuration register.
reg_addr_en : register offset enable, from 0x3F to 0x47, 32bit

aligned (multiple of 4)↪→

toggle <addr> : toggle configuration register.
reg_addr_en : register offset enable, from 0x3F to 0x47, 32bit

aligned (multiple of 4)↪→

Listing 7: Terminal output of the help register command

With the get and set options is possible to respectively read and write the
registers using as address the offsets like reported in Listing 6. Validity checks
on the address and value are performed. Register line at OUT_OFFSET can only
be read as designed. Operation on registers are performed through the AXI
bus.

The enable, disable and toggle options are only available as shortcut for
setting or toggling the higher part of the register as it is in most case the
activation byte for a function (see subsection 3.1.5 – Configuration Registers
for register partitioning).
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Chapter 5

Analog design

Introduction

This chapter will cover the design of the hardware that is in charge of manag-
ing the Zedboard I/Os and connecting them to the ECU and to the DIANA
testbench. While the schematics were designed to be used in a real word
scenario, the PCB was designed only to perform tests in the initial phase of
this project (see chapter 7 – Verification).

The schematics and Printed Circuit Board (PCB) have been designed with
the KiCad Electronics Design Automation Suite in a Linux environment.

5.1 Schematics

Schematics design was performed by Intecs Solutions and revised for the
scope of this thesis. Have been redrawn on the KiCad schematic editor
(Eeschema). Will not be available for consultation on this document.

Two CAN transceivers, one for the standard CAN and one for the CAN FD,
are in charge of reading messages for the sniffer functionalities and writing
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dominant bits (stuffing bits) for the generation of logic errors. They connect
to the bus in a mutually exclusive way thanks to the use of two Single Pole
Double Throw (SPDT) relays (one for the CANH line and one for the CANL
line), activated by the cm_sig(5) and cm_sig(6) signals.

A relay network receive all cm_sig(0:4) to perform analog errors. Five Sin-
gle Pole Single Throw (SPST) relays accomplish the connection of a CAN
BUS line to a logic level (or another CAN line) and the other two relays are
the ones mentioned before. Each relay is driven by an NPN transistor that
converts the 3.3V levels of the Zedboard into a 5V level and provides the
load (the relay coil) enough current. A flyback diode is used to eliminate any
voltage spike on the coil (inductive load).

The trigger generation is managed by another NPN transistor on a 5V supply
and a low-pass filter to reduce noise disturbance.

CANstress external board Rev: 1.0

Intecs Solutions S.p.A 2019-06-05

References Value Footprint Quantity

1

C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13,

C14, C15, C16, C17, C18, C19, C20, C21, C22, C24,

C25, C26, C28, C29, C30, C31, C32

10nF C_Disc_D5.0mm_W2.5mm_P2.50mm 28

2 C1, C2, C23 100nF C_Disc_D5.0mm_W2.5mm_P2.50mm 3

3 C27 1nF C_Disc_D5.0mm_W2.5mm_P2.50mm 1

4 R4, R5, R6, R8, R17, R18, R19, R22 10K R_Axial_DIN0411_L9.9mm_D3.6mm_P12.70mm_Horizontal 8

5 R2, R3, R7, R15, R16 866 R_Axial_DIN0411_L9.9mm_D3.6mm_P12.70mm_Horizontal 5

6 R1, R14 511 R_Axial_DIN0411_L9.9mm_D3.6mm_P12.70mm_Horizontal 2

7 R10, R11 3.3k R_Axial_DIN0411_L9.9mm_D3.6mm_P12.70mm_Horizontal 2

8 R20, R21 1K R_Axial_DIN0411_L9.9mm_D3.6mm_P12.70mm_Horizontal 2

9 R12, R13 500 R_Axial_DIN0414_L11.9mm_D4.5mm_P20.32mm_Horizontal 2

10 R9 1K R_Axial_DIN0414_L11.9mm_D4.5mm_P20.32mm_Horizontal 1

11 D1, D2, D3, D4, D5, D6, D7 1N4001 D_DO-41_SOD81_P7.62mm_Horizontal 7

12 U1 TCAN330GDR TCAN330GDR_on_SOIC-8-DIP 1

13 U2 TJA1055T/3/C,518 TJA1055T_on_SOIC-14-DIP 1

14 K1, K5 TSC-105D3H,000 Relay_SPDT_HsinDa_Y14 2

15 K2, K3, K4, K6, K7 G5NB-1A4_DC5 Relay_SPST_Omron-G5NB-1A4-DC5 5

16 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 PN2222A TO-92_Inline 8

17 J1, J2, J3, J4, J5, J6 ST_01x02 Altech_AK300_1x02_P5.00mm_45-Degree 6

18 J7, J8, J9 Conn_01x08 PinHeader_1x08_P2.54mm_Vertical 3

Figure 5.1: Bill of material for the purchase request
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5.2 Printed circuit board

The Printed Circuit Board (PCB) have been designed from scratch starting
from the schematics and using the KiCad PCB layout editor (PcbNew).

Figure 5.2: PCB front view with components footprint and silk layer

For the ease of component mounting and soldering, the vast majority of foot-
prints have been chosen of the Trough Hole Technology (THT) type. The two
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transceivers (U1 and U2 in Figure 5.2) are the only components available in
a small Surface Mount Device (SMD) footprint and will be placed with the
help of a SOIC to DIP adapter.

PCB tracks were optimized (during the place and routing phase) for the CAN
differential lines, trying to keep them as close as possible and of the same
global length in order to reduce disturbance.

Figure 5.3: 3D render of the Disturbance Tool board

The PCB is ready to be manufactured for testing purposes but the arrival
of the components is not foreseen before the end of this thesis, which is why
it will not be possible to carry out tests on this design. A realistic 3D image
have been rendered to give the idea of the finished product (see Figure 5.3).
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Chapter 6

Graphical User Interface

Introduction

The Graphical User Interface (GUI) have been designed in order to simplify
testing procedures in absence of the DIANA testbench. Instead of sending
commands through the serial terminal, a graphical interface permits to mod-
ify the Disturbance Tools settings easily and quickly.

The design took place in a Linux environment with the GTK toolkit but it
is compatible with both Linux and Windows Operating Systems. Compiled
on Linux with GCC, on Windows with MSYS2. The use of the Glade Rapid
Application Development (RAD) tool simplifies the graphic interface design
process.

6.1 Serial Interface

The libserialport is the library used for managing serial ports in the ap-
plication. It is written in C, is cross-platform and it was chosen because it
is compatible with both Linux and Windows. Is distributed under a GNU
LGPL license.
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A set of return values have been defined (in the firmware) to agree on the
transmission status of a message between the application and the firmware
on the Zedboard. The "OK" status is returned when the command sent on
serial has been successfully executed. The "KO" message is a general message
signalling a failure on the execution of the received command. All the other
messages in a ‘K<val>’ format are error messages and in an ‘O<val>’ for-
mat are success messages. They are codified as can be seen in Listing 8, with
res_val as a list of possible response values and res_val_ext as a list of
descriptions with corresponding indexes.

80 ...
81 const char * res_val_ext[] = {"OK", "ERR",
82 "Error while receiving a frame",
83 "Frame received correctly",
84 "Frame sent correctly",
85 "ACK error",
86 "BIT error",
87 "STUFF error",
88 "FORM error",
89 "CRC error",
90 "Error: entering bus off state",
91 "Lost ARBitration error"};
92 const char * res_val[] = {"OK", "KO", "KREC", "OREC", "OSEN", "KACK",
93 "KBIT", "KSTU", "KFOR", "KCRC", "KBOF", "KLAR"};
94 ...

Listing 8: Serial return values from CANstress_gui.h

The serial_write function is in charge of sending commands to the device
and reading the response. If errors occurs on writing, the function will be
re-called for a WR_ERR_MAX number of times after which, if still not writing,
the application will disconnect the device returning a write error. On suc-
cessful writes, the response is read and parsed, searching for error messages
as defined in Listing 8. If reads fails for a TO_ERR_MAX number of times, the
application will disconnect the device returning a timeout error.

The serial_check function will be called before each write operation on the
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serial device to check if the device is still connected to the pc and responding
to commands.

6.2 Graphical Interface

The interface is divided in several windows that will be treated down below.
If the application is launched from a terminal, debug messages (such as ex-
tended messages on error, full serial communication messages etc.) will be
available for debugging purposes.

6.2.1 Connection Window

At startup the application loads the connection window (see Figure 6.1),
scanning for serial devices connected to the pc and displaying a list of them
calling the serial_update function.

Figure 6.1: Screen of the application connection window
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To get the list of serial devices connected to the pc, the serial_update func-
tion uses the libserialport library if on a Linux client or a custom made
win_get_devices function that enumerates COM ports using SetupAPI on
Windows.

The first device of the list is proposed as device to be connected to (can be
manually changed). When clicking the connect button, the serial_connect
function will be called checking if the name of the device entered is valid (the
device exists) and trying to connect to if. On success the connection window
will be hidden and the main window will show up.

6.2.2 Main Window

The main window have a menu bar with four options with a drop down menu:

• File – allow to reconnect to the serial device (loading the connection
window) and to exit from the application. In future version will permit
to load configuration files.

• Configure – give the option to configure the CAN speed, sample point
and to reset them, as discussed in section 4.3 – Disturbance Tool Con-
figuration, using the commands shown in Listing 4.

• View – has two check boxes for enabling and disabling the “Debug” per-
spective and tho show and hide the “Send window” (see subsection 6.2.3).

• Help – show the possibility to display the “About” window (see subsec-
tion 6.2.4).

A stack with three options permits to switch between the “trigger”, “stuff”
and “analog” application tabs. To the right three icons will show the status
of the three aforementioned functions.
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6.2.2.1 Trigger

The trigger tab allows to easily setup the Disturbance Tool to generate a
trigger. Each section of each field could be set with a boolean value "0" or
"1" or a “don’t care” value "X". This last one will set the mask registers to 0.

Figure 6.2: Screen of the application main window, trigger tab with configuration for test as in subsubsec-
tion 7.2.2.2 – Trigger Tests

Applying the configuration will only set all the registers values into the de-
sign. The trigger function can be activated clicking on the “Toggle trigger”
button. These two buttons will display a status message on their right side.
If the debug perspective is active, values of all registers will be shown on the
right side of the application (in Figure 6.2 the dubug perspective is disabled
for spacing issue). Enabling the BIT triggering will hide all CAN fields and
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will show the “bit n” field.

6.2.2.2 Stuff

The stuff tab allows to set the stuff bit number and repetitions and the field
after which stuffing should take place. Apply and Toggle buttons functions
as said above. In Figure 6.3 the debug perspective is active and shows the
value of the logic and the out registers lines.

Figure 6.3: Screen of the application main window, stuff tab (debug view active) with configuration for test
as in subsubsection 7.2.2.3 – Logic Error Tests

6.2.2.3 Analog

The analog tab provides three check boxes for the shorting and two for the
open circuit errors (see Figure 6.4). Apply and Toggle buttons functions as
said above. The debug perspective will show the relays and the out registers
lines.

52



6 – Graphical User Interface

Figure 6.4: Screen of the application main window, analog tab (debug view active) with analog error activated
(trigger and stuff are active too).

Figure 6.5: Screen of the application send window, with configuration for test as in subsubsection 7.2.2.3
– Logic Error Tests. Message has been sent correctly (OK), Stuffing error and Lost Arbitration error are
reported
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6.2.3 Send Window

The send window allows to send CAN messages choosing between the “CAN0”
and “CAN1” as transmitting controllers. Both data and remote frames can
be sent and standard and extended CAN formats can be chosen. Send status
is reported rigth to the Send button. Eventual errors are reported too. See
Figure 6.5 for more details.

6.2.4 About Window

The about window (Figure 6.6) shows information about the GUI applica-
tion version, copyrights and credits.

Figure 6.6: Screen of the application about window
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Chapter 7

Verification

Introduction

Verification have been performed in two phases: on the digital design at an
early stage of the project and on the whole design, including hardware (not
the PCB), when the project was complete.

7.1 Behavioral Verification

Behavioral verification have been performed on Vivado as a simulation of
components behavior. Each of the five components of the digital design have
been tested separately and will be treated below.

7.1.1 Sniffer Testbench

The sniffer was the first module to be developed and the most complex to be
tested separately. A procedure called send_frame is used to receive a stream
of bits (the frame to be sent) and convert it into a CAN messages, taking
into accounts stuffing bits and interframe space.
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In Figure 7.1 an example waveform of a CAN message is shown at a trans-
mission speed of 1000 Kbit/s. The new_frame signal rises at the detection
of the SOF bit and activates the bit counter (bit_n signal) and the other
functions. Even if the bit counter value (bit_n) is not always readable in the
figure, we can see that it does not update when a stuffing bit is detected on
the bus. When the field_ready signal rises, the previous field on the bus is
finished and a new field begins. The value of the previous field is available in
the field_value signal until the end of the current (next) field. For example
when the field is 9 (data field) we can see that the field value is 1 because it
refers to the previous field, the DLC, and its value is correct, since only one
byte of data is being transmitted.

Figure 7.1: Waveform from sniffer testbench: ID=0x07, data=0x00, crc=0x2989

Some test cases have been chosen trying to send different frames (standard
and extended, data and remote) with different payloads and data length at
different CAN speeds. Some tests were performed causing CRC errors, ACK
errors and generating overload and error frames. Messages were sent out of
sync (waiting a time different than a period) to check the hard sync and soft
sync capabilities. All tests passed successfully.

7.1.2 Trigger Testbench

The testbench of the trigger logic includes the sniffer too. It is necessary to
generate all the signals needed for the correct functioning of the trigger logic.
A registers_forced signal of type register_type is used to emulate the
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register file, not used in this testbench.

Figure 7.2: Waveform from trigger testbench: ID=0x07, data=0x00, crc=0x2989

209 ...
210 – mask_trigger, forcing register value
211 registers_forced(arb_addr) <= x"001c0000"; – id1 match
212 registers_forced(arb_addr+1) <= x"1ffc0000"; – id1 masked
213 registers_forced(ctrl_addr) <= x"00000000";
214 registers_forced(ctrl_addr+1) <= x"00000000";
215 registers_forced(data_addr1) <= x"00000000"; – data match
216 registers_forced(data_addr1+1) <= x"000000ff"; – data mask enable
217 registers_forced(data_addr2) <= x"00000000";
218 registers_forced(data_addr2+1) <= x"00000000";
219 registers_forced(crc_addr) <= x"0000a989"; – crc and del match
220 registers_forced(crc_addr+1) <= x"0000ffff"; – crc and del enable
221 registers_forced(ack_addr) <= x"00000003"; – ack and del match
222 registers_forced(ack_addr+1) <= x"00000003"; – ack and del enable
223 registers_forced(end_addr) <= x"00000000";
224 registers_forced(end_addr+1) <= x"00000000";
225 ...

Listing 9: Line of code in trigger_logic_tb.vhd for register configuration for the output in Figure 7.2

In Figure 7.2 the same frame of the figure in the sniffer testbench is sent.
Before that, registers have been configured as in Listing 9 to trigger on id1
match at value 0x07, data match with value 0x00, CRC match with value
0x2989 and CRC delimiter match (the value in register is different because
it includes the 1 of the del value), trigger on ACK bit and ACK delimiter
bit. From the figure we can see that the trigger_out is actually generated
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at the end of the field of type 1 (id1), 9 (data), 10 (CRC), 11 (CRC del) and
13 (ACK del). The trigger is not generated on the ACK bit (12) because the
trigger value was set to 1 but the actual value was 0.

Other test cases have been chosen trying a wide variety of different values
for the various field of different CAN frames (data, remote, extended etc).
Trigger have been tested also on erroneous CAN messages that generates
error frames or overload frames. Trigger at a bit number have been tested
too. All behavioral test were performed successfully.

7.1.3 Logic Error Testbench

The testbench for the logic error generator module includes the sniffer com-
ponent for the generation of some useful signals. The send_frame proce-
dure (used in the Sniffer Testbench) is used to send CAN messages on the
bus (signal tx) emulating a transmitting controller. The logic error module
transmits on the signal tx_stuff. Another procedure called error_check is
in charge of reading the bus and checking the CAN stuffing rule (see subsub-
section 1.4.3.7 – Error Detection and Signalling for errors info). If stuffing
rule is violated, it generates an error frame on the tx_err signal, acting like a
controller. The error signal is high for the whole duration of the error frame.
The final transmission on the bus will be the combination (logic or, due to
CAN specifications) of three values: the signal of the transmitting controller
(tx), the dominant bits eventually injected by the logic error module and
a third controller generating the error frame. This resulting signal is called
can_bus.

In Figure 7.3 a behavioral simulation of a test case is shown. The module
has been configured to generate 8 stuffing bits (no repetitions) after the field
1 (id1). The configuration register is therefore written at its logic address
with the value 0x00010008 (see subsection 3.1.5 – Configuration Registers
for register info). After the module activation a frame is sent on the CAN
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Figure 7.3: Waveform from logic error testbench with error generated after id1

BUS. Stuffing begins after the first field (stuffing from the rtr1) and con-
tinues until the first stuffing bit is not generated as recessive. Here the con-
troller reading the bus (error_check procedure) acknowledge the stuff error
and starts transmitting the error frame. The sniffer notices the error too
(field_type=16, error frame). As soon as the stuff finishes, even if the stuff-
ing bits have become bits of the error frame, the logic error module signals
the end of the stuffing procedure raising the stuff_complete signal which
will remain high until a new configuration (de-activation and activation) of
the module. When the error message finishes, the transmitting controller re-
tries the transmission of the previous message on the bus, as it would do a
real controller.

This testing procedure have been used for testing the error generation (and
the behavior of the sniffer at error reception). Tests on stuffing different CAN
messages at different positions (field) with different stuff bit length and rep-
etitions have been performed to ensure the correct behavior of the digital
design.
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7.1.4 Register Test

Register verification have been performed on a separated Vivado Block De-
sign that can be seen in Figure 7.4. The design includes a Zynq processing
system with a similar configuration to the one in the digital design (see sec-
tion 3.2 – ZYNQ Processing System). The config_registers is the register
file component used in the digital design (see subsection 3.1.5 – Configura-
tion Registers) and is the device under test.

Figure 7.4: Block Design of the configuration register digital design

To test the correctness of the AXI4 Lite protocol implementation, the design
have been synthesized and uploaded on the Zedboard with a test firmware.
The firmware is in charge of writing different values in the register at dif-
ferent address offset and then reading them back to check the consistency.
Tests have been performed with different system clock speeds and writing to
the read-only register have been tested too.

For the purpose of this test the functions used to read and write a register
(get_register and set_register) and to enable and disable it (write 1 or
0 in the first byte) have been developed and are used in the final version of
the firmware.
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7.2 Hardware Verification

Hardware verification have been performed using the two CAN controllers
integrated in the firmware design (included specifically for this purpose, see
Figure 7.5), since it was not possible to prepare a complete test platform
with the DIANA and an ECU (device under test).

DIANA Disturbance Tool

ZedBoard

Digital Design
(VHDL)

Analog Design
(PCB)

ZYNQ
Processing

System
(ARM CORE)

C
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U
S

PC

Application
(GUI)
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S
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DIANA

CAN 1

CAN 2

Figure 7.5: CAN controllers inside the Zedboard

Messages are sent from the application (serial commands could be used
too) and will tell the integrated controller to generate the appropriate CAN
frame on the Zedboard dedicated output pins. Three CAN transceiver boards
(based on a TJA1051 chip) are used to interconnect the two controllers and
the sniffer to the CAN BUS as can bee seen in Figure 7.6.
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Figure 7.6: System configuration for Hardware testing with external transceiver boards

7.2.1 Integrated Logic Analyzer

Messages and some other digital design signals can be tracked in the Vivado
application by means of the Xilinx Integrated Logic Analyzer (ILA). It is
an IP, inserted in the design at the synthesis stage, that acts like a logic
analyzer. It allows to monitor internal signals otherwise not visible and its
activation can be triggered by a signal equation or edge transition.

Introducing the logic analyzer in the design, the number of FPGA LUTs in-
creased from 1 713 to 8 235, not a problem for the Zynq 7020 that have 53 200
LUTs, with an utilization factor of 15%. The current settings allow to start
the monitoring when a new frame is detected (rising edge of the new_frame
signal) and to access some signals (such as the sample and tx points, field
ready, type and values, etc) for debugging purposes. Choosing a sample data
depth of 216 = 65 536 for the ILA, the utilization of the Programmable Logic
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block ram (BRAM) reaches the 71%. This means that increasing the data
depth to the next step (217 = 131 072) is not possible since there are not
enough BRAM (reducing the number of monitored signals could be a solu-
tion but it would reduce the visibility within the design).

Because the ILA is synchronous to the design and the system clock is chosen
at 160 MHz, the monitoring bus time1 tILA is of:

tILA = data_depth × 1
fclk

= 216

160 MHz
≈ 409,6 µs (7.1)

With a maximum CAN frame length of 128 bits for an extended message2 and
taking into account (in the worst case) a maximum number of 26 stuffing bits
and 3 interframe spacing bits, the maximum Data Rate (DR) for different
speeds would be:

DRspeed ≥ speed (Kbit/s)
max_num_of_bits_in_frame

= speed (Kbit/s)
128 + 26 + 3

DR125 ≥ 125 Kbit/s

157 ≈ 796 frames/s tfr125 ≈ 1256 µs

DR250 ≥ 250 Kbit/s

157 ≈ 1592 frames/s tfr250 ≈ 628 µs

DR500 ≥ 500 Kbit/s

157 ≈ 3184 frames/s tfr500 ≈ 314 µs

DR1000 ≥ 1000 Kbit/s

157 ≈ 6369 frames/s tfr1000 ≈ 157 µs

(7.2)

1The time that elapses between the trigger (if chosen at the beginning of the window)
until the memory is completely full.

2The maximum length is calculated, for an extended message with 8 bytes of data,
summing the number of bits field by field as 1+11+1+1+18+1+2+4+64+15+1+1+1+7 =
128 bits.
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With their inverse being the maximum time that a frame takes to be trans-
ferred (tfr) for different speeds. Being the ILA monitoring time of 409,6µs,
using speeds of 125 Kbit/s and 250 Kbit/s does not allow to see the entire
CAN frame if it is too long while using 1000 Kbit/s permits to see on average
three long frames (2,6 in the worst case). That is why the maximum speed
is used for the majority of the tests performed.

7.2.2 Hardware Tests

Tests with hardware have been performed with test cases similar to the be-
havioral ones. The use of an oscilloscope connected to both CANH and CANL
signals confirmed the correct functioning of the ILA and allows to see the
analog CAN BUS waveforms (connection diagram in Figure 7.6).

Down below are reported some test cases for the different digital design
modules. Other tests have been performed with extended messages, multiple
data values and length, remote message and various other configurations,
trying different modules at the same time.

7.2.2.1 Sniffer Tests

Sniffer have been tested sending various CAN messages and checking their
correct reception and analysis (retrieving of the field values) with the help
of the ILA and the oscilloscope. The integrated CAN controllers have been
tested with this method at the same time.

As an example, a simple CAN message can be seen in Figure 7.7 (is the
same example of the sniffer and trigger behavioral testbench). Here is shown
how the two integrated CAN controllers work. The CAN0 device is the one
transmitting on the BUS and both the CAN1 and the sniffer (signal rx_i) are
receiving the information. In the ACK slot CAN0 is transmitting a recessive
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Figure 7.7: Waveform from ILA, transmission of a CAN message.

bit while CAN1 is overwriting with a dominant value, resulting a 0 in all RX
signals, communicating to the transmitting controller the correct reception
of the message.

7.2.2.2 Trigger Tests

The trigger module have been tested trying the generation of triggers with
different masks in every CAN field. Bit triggering have also been tested at
different positions.

As a test case for testing trigger functionalities, the application have been
setup with the following settings (see Figure 6.2 for a view of the application
window):

• id1: 01000000111

• DLC: xx10

• data0(0): 11001010 (hex 0xCA)

• data0(1): 11xxxxxx

The application debug terminal returned the registers configuration values
that can be seen in Listing 10, confirming the correct application of values
and masks.
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Writing configuration:
arb: 0x081C0000, arb_m: 0x1FFC0000.
ctrl: 0x00000002, ctrl_m: 0xFFFFFFC3.
data0: 0x0000C0CA, data0_m: 0x0000C0FF.
data1: 0x00000000, data1_m: 0x00000000.
crc: 0x00000000, crc_m: 0xFFFF0000.
ack: 0x00000000, ack_m: 0xFFFFFFFC.
end: 0x00000000, end_m: 0xFFFFFC00.

Listing 10: Terminal message from GUI on trigger application button press

In Figure 7.8 is shown the ILA waveforms when sending a message with
id1=0x207, DLC=0x02 and data=0x0000CAFE. A correct trigger_out signal
is risen after the id1 (match of the exact value), after the DLC (match of
value with mask), after the first data byte (complete match of value 0xCA)
and after the second data byte (mask match with value 0xFE). The triggered
signal is risen after the first trigger and will remain high until a new frame
is received.

Figure 7.8: Waveform from ILA, triggering on a CAN message
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7.2.2.3 Logic Error Tests

Tests for the Logic Error generation module have been performed trying dif-
ferent configurations, stuffing every CAN field (one at a time) with different
number of stuff bits for different repetition times. In this way several errors
can be generated: stuffing a fixed bit (such as reserved or delimiters) with an
illegal value will generate form errors, stuffing on CRC field could3 generate
CRC errors, stuffing a stuff bit will generate a stuff error (see subsubsec-
tion 1.4.3.7 – Error Detection and Signalling for errors description).

Figure 7.9: Waveform from ILA, logic error on a CAN message

The test case shown in Figure 7.9 uses the trigger function to generate a
trigger signal on error frames and the logic error module to inject dominant
bits on the message (see Figure 6.3 for a view of the application window).
The stuffing is set to start after the idle field (so the id1 field will be stuffed)
and two stuffing bits will be sent only one time (no repetitions). The message
sent have an id1=0x0207 so that the second bit is 1 and will be stuffed (see

3If the transmitting controller detects that the bit on the bus is different from the one
it want to transmit, it will generate a bit error before the completion of the CRC field
(neglecting an eventual CRC error).
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Figure 6.5 for a view of the send window). The tx_o signal (transmission
signal from the logic error component) starts at the beginning of the id1 field
(in sync with the tx_point) and lasts 2 CAN bit time. When stuffing ends
(no repetitions have been set) the stuff_complete signal rises and will be
high until the next configuration of the logic error module.

> send 0 0 0 207 8 CAFECAFE 01234567

INT: CAN0–– Stuff ERROR detected –n1–––
KSTU01
INT: CAN0–– Lost bus arbitration ––––
KLAR0
INT: CAN1–– Stuff ERROR detected –n2–––
KSTU12

STU error from CAN0
LAR error from CAN0

CAN0 sent a frame!

CAN0 sending frame...
ID: 0x40E00000
DLC: 0x80000000
DATA1: 0xCAFECAFE
DATA2: 0x01234567

OK

CAN1 received a frame:
ID: 0x40E00000
DLC: 0x800061E8
DATA1: 0xCAFECAFE
DATA2: 0x01234567

Listing 11: Terminal message from GUI on logic error test.

When the transmitting controller on the BUS, the CAN0, detects that the
second bit of the id1 is dominant (instead of its transmitted recessive value),
a Lost Arbitration error (KLAR, see section 6.1 – Serial Interface for error info)
is generated. The controller understands that another device is transmitting

68



7 – Verification

on the line with an higher message priority (id) and stops its transmission.
The bus remains recessive for 6 CAN bit time (no other controller is really
transmitting after CAN0 lost bus access) and a stuff error (KSTU) is detected
and signaled from both CAN0 and CAN1. The two controllers start sending
an error frame. When the bus returns idle, CAN0 tries to send again the
message it was trying to send before it lost the arbitration.

In the application debug terminal (Listing 11) can be seen the CAN0 device
sending the frame and detecting the Lost Arbitration. Both controllers detect
stuff errors and, at the end, the message is sent and received correctly. Line
order is not (always) correct because of the different interrupt priority of the
routines for sending/receiving messages, detecting errors and printing on the
UART.

7.2.2.4 Analog Error Tests

Tests for the analog error generation module was performed in a different way
since the relay network and the PCB board were not available at the time of
testing. All the possible configuration from the application have been tested,
checking the output of the design with the help of the leds integrated on the
Zedboard (leds from LD0 to LD6 were mapped on the cm_sig). Consistency
of output from the board pins for the different test cases were checked with
a digital voltmeter.

In Figure 7.10 it can be seen an oscilloscope view of the two CAN line with
CANH on CH1 (upper half of the signal) and CANL on CH2 (lower half)
when a message with id1=0x207, DLC=1 and data=0xAB is sent. An offset
of 2,5V have been set so that the two differential signals are aligned with
origin (abscissa).
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Figure 7.10: Oscilloscope view of a CAN message

To perform various tests, a single short at a time has been manually applied
to the system (physically connecting the wires) and the output was controlled
on the oscilloscope (to see CANH and CANL signals) and on the ILA (to
see the effective message). All tests confirmed the correct functioning of the
analog error design.
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The scope of this thesis was to create a system able to inject disturbances
on a CAN BUS in order to supersede the Vector CANstress tool used in the
DIANA testbench.

The designed system proved to be very effective in reading CAN messages
and analyze them in order to extract information and proceed with their use
in different ways. Its strength is in being able to predict which one should
(could) be the next field, based on the protocol, and associate the data read
on the bus to the corresponding field. In this way is possible to analyze the
data passing on the bus and then perform certain actions almost immedi-
ately. In particular, actions are undertaken by different modules, based on
their configuration and activation, eventually introducing disturbances on
the bus or generating a trigger signal, if certain conditions are met.

These peculiarities allow the Disturbance Tool to be able to carry out the
expected functionalities, satisfying all the imposed specifications and require-
ments.

The planned work will be to test it at its best (introducing code coverage or
formal verification tests) and with the help of the PCB in a real system with
the DIANA and an ECU. More automation can be introduced by adding the
capability of reading a script file with configuration parameters and with the
possibility of performing tests in batches, saving the results in a log file.
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Furthermore the design versatility will allow it to be easily improved in the
future to introduce new features, such as CAN FD support or advanced field
conditional checking, and even to be used as a CAN message analyzer, thanks
to the two embedded controllers.
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Acronyms

ACF Acceptance Code Filter

ACK Acknowledge

ASCII American Standard Code for Information Interchange

ATE Automatic Test Equipment

AXI Advanced eXtensible Interface

BRPR Baud Rate Prescaler Register

BRS Bit Rate Switch

BSP Bit Stream Processor

BTL Bit Timing Logic

BTR Bit Timing Register

CAN Controller Area Network

CAN FD CAN Flexible Data rate

CiA CAN in Automation

CRC Cycle Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DIANA Digital Instrument for Automatic Network Analysis

DIP Dual In-line Package

DLC Data Length Code

DLL Data Link Layer

ECU Electronic Control Unit
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Acronyms

ECUs Electronic Control Units

EOF End Of Frame

FDF Flexible Data rate Format

FIFO First In First Out

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GIMP GNU Image Manipulation Program

GNU GNU’s Not Unix

GTK GIMP ToolKit

GUI Graphical User Interface

IDE Identifier

ILA Integrated Logic Analyzer

IP Intellectual Property

ISO International Organization for Standardization

ITM Intermission

LGPL Lesser General Public License

LIN Local Interconnect Network

LLC Logical Link Control

MAC Medium Access Control

MDI Medium Dependent Interface

MOST Media Oriented Systems Transport

MSB Most Significant Bit

MSYS2 Minimal SYStem 2

NRZ Non Return to Zero

OSI Open System Interconnection

PCB Printed Circuit Board
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Acronyms

PL Physical Layer

PLS Physical Layer Signalling

PMA Physical Medium Attachment

PMS Physical Medium Specification

RAD Rapid Application Development

REC Receive Error Counter

RRS Remote Request Substitution

RTR Remote Transmission Request

SDK Software Development Kit

SJW Synch Jump Width

SMD Surface Mount Device

SoC System on Chip

SOF Start Of Frame

SOIC Small Outline Integrated Circuit

SPDT Single Pole Double Throw

SPST Single Pole Single Throw

SRR Substitute Remote Request

TEC Transmit Error Counter

THT Trough Hole Technology

tq time quantum

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

UTP Unshielded Twisted Pair

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits
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