
Master of Science in Computer Engineering

Master Degree Thesis

Automatic Optimized Firewalls
Orchestration and Configuration

in NFV environment

Supervisors
prof. Riccardo Sisto
prof. Guido Marchetto

dott. Fulvio Valenza

dott. Jalolliddin Yusupov

Candidate

Daniele Bringhenti

Academic Year 2018-2019

This work is subject to the Creative Commons Licence

Summary

The Network Functions Virtualization (NFV) paradigm is a novel networking tech-
nology which, by means of a decoupling between the network functions and the
hardware appliances, allows software processes to be installed as service functions
on general-purpose servers. Among the consequent benefits, this principle entails
further agility and flexibility in the creation of a Service Graph, which is a gener-
alization of the Service Function Chain (SFC) concept, describing how the single
network functions, needed to create a complete end-to-end service, must be orga-
nized and connected.

A problem which, however, arises in the creation of a Service Graph in this
scenario is that this task is typically performed by a service designer; instead,
the security manager is separately in charge of the allocation and configuration of
the Network Security Functions (NSFs) – such as firewalls and anti-spam filters –
needed to protect the network from cybersecurity attacks. Moreover, these opera-
tions are usually performed manually, so they are prone to human errors and the
reaction latency is not negligible whenever the security defences should be updated
according to different or additional security requirements.

In view of these considerations, this thesis contributed to the development of
VEREFOO (VErified REFinement and Optimized Orchestration), a framework
which aims to provide a Security Automation approach as a solution to these open
problems. The main purpose is to perform, on a provided Service Graph, an au-
tomatic optimized allocation and configuration of the NSFs that are necessary to
fulfil an input set of Network Security Requirements, which can be expressed by
the service designer by exploiting a high-level language. The VEREFOO approach
involves the formulation of a MaxSMT problem, whose objectives are to satisfy a
set of hard constraints that always require to be fulfilled and, at the same time, to
achieve the maximum sum of the specific weights that the soft clauses are given. Its
targets are on one side the allocation of the minimum number of NSFs instances to
reduce the resource consumption due to the allocation of the corresponding virtual
functions, on the other side the reduction of the rules describing their configura-
tion to improve the efficiency of the filtering operations. The MaxSMT problem is
formulated so as to provide also a formal verification that the achieved solution is
formally correct.

The major contributions provided by this thesis work have been the formal
definition of the optimization and verification problem and its implementation by
means of z3, a state-of-the-art MaxSMT solver, inside the framework. Among all
the possible NSFs, the focus has been on packet filter, the most common firewall
technology which can filter the received packets according to the values of the IP

3

quintuple. An automatic generation of both the allocation schema and the filtering
policies of the firewalls is, currently, an open problem not well addressed in literature
by itself. Hence, the solution developed in this thesis advances the state of the art.
In order to make this solution really effective, it has been necessary to develop a
number of pruning strategies to minimize the number and the complexity of the
clauses that define the MaxSMT problem.

The implementation has been finally tested extensively in common network sce-
narios and it showed good scalability against the dimension of the Service Graph
and the number of input security requirements; consequently, this thesis demon-
strates that the proposed approach is feasible and that it can provide a valid al-
ternative in enforcing security functions to manual allocation and configuration of
packet filtering firewalls, enabling low latency reaction to changes in security re-
quirements. Furthermore, the approach has been developed to be compliant with
future extensions such as the support of other NSFs in order to enrich its capabili-
ties.

4

Acknowledgements

This thesis represents the conclusions of a five-year path, where I was able not
only to enrich my technical background, but also to understand what are my main
interests and which objectives I should pursue accordingly to them.

First of all, I want to acknowledge the supervisors of my thesis. I thank the
professors who supervised my thesis work, that are professors Sisto and Marchetto:
they gave me the possibility to work on a new research path, that is full of potential-
ities and could really contribute to improve the state-of-the-art of the networking
field. They were always available to listen to what I had achieved and to provide
me their valuable feedback, helping me to improve in different aspects. I also want
to thank Fulvio for all the suggestions he provided me, for his availability even
when he was not in Turin, for sharing his research experience. Then, I have to
thank Jalol for being always available every day, for all the time he spent to help
me to achieve the results of this thesis, for all his daily tips which greatly helped
the work.

Then, I want to acknowledge all the people – my family, my friends and all the
others – who were alongside me in this path. Among all of them, I cannot not
mention my parents and, in particular, my mother: she always helped me, always
listened to me even though she sometimes (i.e. often) did not understand what I
was telling her when asking for her suggestion and, I am sure, will be always on
my side. Then, a thought is for my grandfather, who would have really wanted to
be with me these days.

A path is finishing, but it could be just the beginning of a new one. And, about
this, I want again to thank professor Sisto, for the possibility he is giving me, for
assisting me in the writing of my first research papers and for all the support in
this new path I could potentially follow.

At the moment I am writing these acknowledgements I still do not if I will be
granted to follow this new path, but what I am sure is that no one knows what the
future holds, that is why its potential is infinite.

5

Contents

List of Figures 10

List of Tables 12

Listings 13

1 Introduction 15

1.1 Thesis objective . 15

1.2 Thesis description . 16

2 Software Networking 19

2.1 Service Function Chain . 19

2.2 Software-Defined Networks . 21

2.2.1 Principles of Software-Defined Networks 21

2.2.2 Architecture of an SDN-based model 21

2.2.3 Application of the SDN technology to a SFC 23

2.3 Network Functions Virtualization 24

2.3.1 Principles of Network Functions Virtualization 24

2.3.2 ETSI NFV Model . 26

2.3.3 Application of the NFV technology to a SFC 28

2.4 Network Automation . 29

3 Policy-based Management and Firewall Auto-Configuration 31

3.1 Policy-based Management . 31

3.1.1 Basic terminology . 32

3.1.2 Policy-based Management Framework 33

3.1.3 Policy specification and abstraction 34

3.1.4 Policy refinement and translation 35

3.2 Firewall Auto-Configuration . 37

3.2.1 Firmato: a firewall management toolkit 37

3.2.2 Other works about firewall auto-configuration 38

6

4 Tools: z3 and Verigraph 40

4.1 z3 . 40

4.1.1 Introduction to z3 . 40

4.1.2 The SMT problem . 41

4.1.3 The MaxSMT problem . 42

4.2 Verigraph . 43

4.2.1 Introduction to Verigraph 43

4.2.2 Verigraph Network Model 44

5 VEREFOO Model 47

5.1 Introduction to VEREFOO . 47

5.2 Model description . 48

5.3 Allocation, Distribution and Placement 50

5.4 Scenarios . 51

5.4.1 Automatic Orchestration and Configuration 51

5.4.2 Automatic VNFs Placement 56

5.5 Design and development of ADP module 58

6 Allocation Graph and Forwarding Rules 60

6.1 Service Graph . 60

6.1.1 Description of the Service Graph concept 60

6.1.2 Model of the Service Graph 62

6.1.3 Implementation of the Service Graph in the XML schema . . 62

6.2 Allocation Graph . 65

6.2.1 Description of the Allocation Graph concept 65

6.2.2 Model of the Allocation Graph 67

6.2.3 Implementation of the Allocation Graph in the XML schema 69

6.2.4 Implementation of the Allocation Graph in the framework . 72

6.3 Forwarding Rules . 75

6.3.1 Design of the Forwarding Rules 75

6.3.2 Implementation of the Forwarding Rules 77

7

7 Network Security Requirements 81

7.1 Description of the Network Security Requirements 82

7.2 Model of the Network Security Requirements 84

7.3 Implementation in the XML schema of the Network Security Re-
quirements . 85

7.4 Wildcards . 86

7.4.1 Wildcards original idea and implementation 86

7.4.2 Wildcards new implementation 87

7.4.3 Wildcards management . 88

7.5 Isolation Requirement . 89

7.6 Reachability Requirement . 92

7.7 Identity of the end points of Network Security Requirements 94

7.8 Multiple Network Security Requirements between the same pair of
end points . 96

8 Packet Filter Firewall 99

8.1 Introduction to Packet Filter Firewall 99

8.2 Model of the Filtering Policy of a firewall 100

8.3 Implementation in the XML schema of the Filtering Policy of a firewall101

8.4 Objectives of the MaxSMT problem 103

8.5 Automatic Allocation of Firewalls 103

8.6 Automatic Configuration of the Filtering Policies 104

8.6.1 Packet filter auto-configuration algorithms 105

8.6.2 Configuration of a packet filter in z3 108

8.7 Clarification example about allocation and configuration of firewalls 111

9 Results 115

9.1 Useful terminology . 115

9.2 Comparison with old framework . 117

9.3 Comparison between different working conditions 120

9.3.1 Comparison between graph and chain 120

9.3.2 Comparison between whitelisting and blacklisting 122

9.3.3 Comparison between isolation and reachability 123

9.4 Evaluation of Allocation Nodes number impact 124

9.5 Scalability tests . 126

8

10 Conclusions 129

Bibliography 131

A z3 Java API Manual 134

A.1 Context class . 134

A.1.1 Creation of data types (sorts) 134

A.1.2 Creation of z3 variables . 136

A.1.3 Basic relational logic operators 136

A.1.4 Quantifiers . 137

A.2 Optimize class . 138

A.2.1 How to define a MaxSMT problem instance 138

A.2.2 How to add hard and soft constraints 139

A.2.3 How to get the result . 140

B RESTful APIs for ADP module 142

B.1 Resource Design . 142

B.2 RESTful APIs Design . 143

9

List of Figures

2.1 Example of a Service Function Chain 20

2.2 Representation of the architecture of a Software-Defined Networks
infrastructure . 22

2.3 Example of Service Function Chain modelled with an SDN architec-
ture. 23

2.4 ETSI NFV model representation . 26

2.5 Example of Service Function Chain modelled with a NFV-SDN ar-
chitecture. 28

3.1 IETF Policy-based Management Framework 33

3.2 Model of the policy refinement and translation operations 36

4.1 z3 architectural model . 41

5.1 VEREFOO model . 49

5.2 First scenario of AOC . 52

5.3 Second scenario of AOC . 53

5.4 Third scenario of AOC . 54

5.5 Forth scenario of AOC . 56

5.6 Scenario of AVP . 57

6.1 Graphical example of a Service Graph 64

6.2 Allocation Graph with only Allocation Places between end points . 66

6.3 Graphical example of the automatically generated Allocation Graph 70

6.4 Example of an Allocation Graph to illustrate the maps of an Allo-
cation Place . 73

6.5 Case of study for forwarding rules 78

7.1 Example of isolation requirements 91

7.2 Example of reachability requirement 93

10

7.3 Example of a security requirement from server to client 95

7.4 Example of multiple requirements between the same pair of end points 96

7.5 Firewall Policy result in the old model 97

7.6 Firewall Policy result in the new model 98

8.1 Example of packet filter auto-configuration algorithm 108

8.2 Service Graph of the clarification example 112

8.3 Allocation Graph of the clarification example 112

8.4 Network Security Requirements of the clarification example 113

8.5 Expected outcome of the clarification example 113

9.1 Allocation Graph example to explain useful terminology. 116

9.2 Results of performance tests of the old model 117

9.3 Results of performance tests of the new model without the third
pruning principle . 118

9.4 Results of performance tests of the new model with the third pruning
principle . 119

9.5 Results of performance tests between chain and graph 121

9.6 Results of performance tests between whitelisting and blacklisting . 122

9.7 Results of performance tests between isolation and reachability. . . 123

9.8 Results of performance tests for the evaluation of Allocation Nodes
impact, with fixed Network Security Requirements number 125

9.9 Results of performance tests for the evaluation of Allocation Nodes
impact, with fixed Allocation Places number 125

9.10 Results of scalability tests for Allocation Places 127

9.11 Results of scalability tests for Network Security Requirements . . . 127

9.12 Scalability tests on assertions . 128

B.1 Resource Design . 144

11

List of Tables

B.1 RESTful API Design . 145

12

Listings

4.1 MaxSMT problem in z3 language 43
4.2 MaxSMT solution in z3 language 43
6.1 XML example of multiple Service Graphs 63
6.2 XML example of a Service Graph 63
6.3 XML example of an Allocation Place 69
6.4 XML example of a set of Allocation Constraints 70
6.5 XML example of an automatically generated Allocation Graph . . . 70
6.6 Concise representation of the maps of an Allocation Node 74
6.7 Extended representation of the maps of an Allocation Node 74
6.8 Representation of the content of the lastHops map 75
6.9 Representation of the content of the firstHops map 75
6.10 z3 assertion for a forwarding example with quantifiers 78
6.11 Java implementation of Formula 6.4 80
7.1 XML example of a medium-level reachability requirement 86
7.2 XML example of a medium-level isolation requirement 86
8.1 XML schema for the Filtering Policy 102
8.2 XML example of a Filtering Policy 102
A.1 Java code to create an EnumSort type 135
A.2 Java code to create an DatatypeSort type 135
A.3 Java code to create instances of user-defined types 136
A.4 Java code to show an example about how to use logic operators in z3 137
A.5 Java code to show how quantifiers works 138
A.6 Java code to show how to create an Optimize object 138
A.7 Java code to show how to define a MaxSMT problem 139
A.8 Java code to show how to add constraints 140
A.9 Java code to show how retrieve the result 140

13

Chapter 1

Introduction

1.1 Thesis objective

In the recent years, novel networking technologies have emerged; in particular, the
Network Functions Virtualization (NFV) principle allows an agile deployment of
network functions required to provide a service and the Software-Defined Networks
(SDN) paradigm introduces the possibility to create a forwarding path by means
of a software process. In a scenario characterized by these emerging technologies,
new open research paths can be followed in the next-generation computer networks
and in the cybersecurity context.

If in the traditional approach exploited to create a Service Graph – that is a
combination of single service functions – there was the necessity to install specific
hardware appliances to provide service features like web caching and load balancing,
thanks to these novel networking technologies in the future it could become common
to virtualize the network functions. Virtual functions, actually, can be deployed
dynamically on servers and switched on every time they are needed, while they can
be turned off or their configuration can be changed when different requirements are
provided by the service designer. Virtualization and automation are becoming key
terms in both data centers and Service Provider (SP) networks, where agility and
capability of reacting to events are fundamental factors in order to be compliant
with the scalability of these big scenarios.

Moreover, these concepts can be applied not only to network service functions
like the web cache and the Network Address Translator (NAT), but also to Network
Security Functions (NSFs) like the packet filter firewall and the Intrusion Detection
System (IDS); actually, they can ideally be deployed as virtual services on-demand,
providing a faster reaction to incoming attacks. In addition, to unburden the work-
load of the service designer, their configuration could be automatized by means of a
distribution process, which has the task to create appropriate policy rules to satisfy
the Network Security Requirements (NSRs) representing the security constraints to
be compliant with, such as the need of isolation between a server and a group of
hosts.

The problem which arises, however, is that currently an automatic process to
select the security functions to deploy in order to satisfy a set of high-level Network

15

1 – Introduction

Security Requirements does not exist [1]; instead, the service designer must decide
which are the best functions to use without often using optimal criteria but simple
heuristics or try-and-error approach. The same consideration can be applied to the
configuration of the selected functions; if auto-configuration of network functions
has been researched in traditional network scenarios, like the Firmato [2] toolkit
did for traditional firewalls, in the NFV context the research is now making the
first steps in establishing a method to automatically configure the policy rules.

VEREFOO (VErified REFinement and Optimized Orchestration) is a novel
framework which aims to perform a policy refinement (i.e. translation of high-level
requirements into medium-level expressions), an optimal allocation of the Network
Security Functions required to satisfy these security constraints in a logical topol-
ogy, an optimal distribution of the policy rules on the allocated functions and,
finally, an optimal deployment of the virtualized functions on a substrate network.
For these purposes, it exploits z3, a theorem solver developed by Microsoft Research,
and Verigraph, a framework developed in Politecnico di Torino for the requirements
verification in a Virtual Network Embedding (VNE) scenario.
The benefit which in the future this approach could provide is an automatic way to
configure the network and periodically check if the configuration is compliant with
the security requirements, every time a new constraint is specified or an existing
one is modified.

The thesis objective has been to contribute to the design, implementation and
refinement of an existing framework, with the goal to create the ADP (Allocation,
Distribution, Placement) module of VEREFOO, in charge of solving a MaxSMT
optimization problem related to the automatic allocation of Network Security Func-
tions and configuration of the policy rules. The most relevant goals have been to
extend the usage scenarios and to improve the performance of this module; conse-
quently, new different ways to use the z3 language have been pursued, new features
like the Allocation Graph have been implemented and a further abstraction level
between the creation of routing tables and the specific behaviour of the network
functions has been introduced. Among the Network Security Functions which the
ADP module can allocate and configure, the focus has been on the packet filter
firewall, to provide a complete and functional example of how the security require-
ments specified by the service designer can be distributed in multiple instances of
this firewall technology, while in the meantime establishing their optimal allocation
on the network topology.

1.2 Thesis description

After Chapter 1 briefly introduced the problems to challenge and the goals to
achieve, the rest of the thesis is structured in the following way:

❼ Chapter 2 describes the novel networking paradigms representing the sce-
nario of the thesis work, i.e. the Software-Defined Networks (SDN) and the
Network Functions Virtualization (NFV) principles; the focus is on the rele-
vant details of the possible architectural solutions and the benefits which they

16

1 – Introduction

can bring to the definition of a service through a Service Graph, generalization
of the Service Function Chain concept.

❼ Chapter 3 describes the concept of policy-based management in distributed
systems as a method to formally present a set of goals which the Network
Security Functions must reach by means of their behaviour and configura-
tion. After briefly delineating the basic architectural model of a policy-based
framework, the chapter focuses on one hand on the policy specification and
abstraction, providing an overview of the policy hierarchy and the possible
modelling languages, on the other hand on the processes of policy refinement
and translation, whose purpose is to move between the policy abstraction
levels. Finally, some relevant related works about firewall auto-configuration
are presented, such as Firmato, a firewall management toolkit which inspired
the auto-configuration model of packet filters designed in the thesis work.

❼ Chapter 4 describes the main tools used for the development of the frame-
work: z3, which is a theorem prover from Microsoft Research used to solve
a MaxSMT problem, and Verigraph, whose purpose is the verification of se-
curity requirements in a network characterized by functions deployed in a
virtualized environment.

❼ Chapter 5 provides a complete description of the workflow of VEREFOO
(VErified REFinement and Optimized Orchestration), with a major focus on
the ADP (Allocation, Distribution, Placement) element on which the devel-
opment presented in this thesis mostly concentrated. Usage scenarios are
presented to describe how the framework can be used by a service designer
for the allocation of Network Security Functions on a logical topology - the
Allocation Graph - derived from the definition of a Service Graph, the distri-
bution of the policy rules in the allocated functions and their placement in
the physical infrastructure.

❼ Chapter 6 describes the proposed model and implementation of the Alloca-
tion Graph (i.e. the logical topology on which the Network Security Functions
can be allocated by the ADP element of VEREFOO), the first-order logic for-
mulas and the corresponding implementation in a z3 model of the forwarding
rules by means of which the packets can transit in the network.

❼ Chapter 7 describes the first-order logic formulas and the implementation
of the medium-level reachability and isolation security requirements, which
respectively require that a packet sent by a source end point must reach the
destination or should be blocked by an intermediate middlebox in the network.
The main extensions are highlighted, alongside with the modifications of the
wildcards feature, which increases the expressiveness of the IP addresses by
adding a partial model of the netmask concept inside the data structures
representing the addresses themselves.

❼ Chapter 8 describes the packet filter, the firewall technology on which the
thesis focuses with the goal to present a proof of concept for the allocation
and distribution operations in the logical topology. In this chapter a complete
overview of its formal model and implementation is provided, with an accurate

17

1 – Introduction

description of the soft and hard constraints introduced in the optimization
problem.

❼ Chapter 9 presents the results of some performance tests which were carried
out to show how the new framework version is able to get better performance
than the original one, to understand which goals have been achieved, which
are the current limitations and which further aspects should be addressed in
the future.

❼ Chapter 10 summarizes which goals this thesis work succeeded in reaching,
what are the main research directions that could be followed to improve the
implementation and which features could be introduced to enrich the capa-
bilities of the framework.

❼ Appendix A presents a manual which future developers and maintainers of
the VEREFOO code can exploit to understand how to use the state-of-the-art
z3 MaxSMT solver in the Java language.

❼ Appendix B describes the design of REST-based APIs to interface with the
ADP module of the framework and the implementation of the corresponding
RESTful web service.

18

Chapter 2

Software Networking

This chapter introduces the main concept of Service Function Chain (SFC), which
provides an abstract description of a complete end-to-end service characterized by
single network functions and by their ordering constraints; this concept represents
the basic theory for the creation of a Service Graph, which can be considered a
generalization of a linear SFC. Furthermore, the main limitations of the traditional
deployment approach of an SFC on hardware appliances is briefly illustrated to
clarify which problems must be challenged in this scenario.

Then, with the purpose to show how the limits can be overcome, novel tech-
nologies which have recently introduced new research challenges in the networking
field are presented; the Software-Defined Networks (SDN) and the Networks Func-
tions Virtualization (NFV) put a strong emphasis on the main features of software,
which are agility in the deployment, the ease of re-programmability every time a
modification in the network is needed and the customization of the services for the
different users.

Finally, a brief overview about the principles of Network Automation is high-
lighted to show the benefits of an approach where the configuration of a Service
Function Chain is based not only on the user’s commands, but also on reactions
triggered by events coming from the network itself.

2.1 Service Function Chain

The creation of a complete end-to-end network service usually requires a set of
functions, which should be applied on a specific sequence to the traffic in order to
achieve a result which satisfies the service designer’s needs or the user’s requests.
The concept of Service Function Chain (SFC), corresponding to the description of
the complete service, has been formally presented in the RFC 7665 [3] from which
the following definitions come:

Service Function (SF) It is a function that is responsible for specific treatment
of received packets. A Service Function can act at various layers of a protocol
stack (e.g. at the network layer or other OSI layers). As a logical component,
a service function can be realized as a virtual element or be embedded in a

19

2 – Software Networking

physical network element. One or more Service Functions can be embedded
in the same network element. Multiple occurrences of the service function
can exist in the same administrative domain.

Service Function Chain (SFC) A Service Function Chain defines an ordered
set of abstract service functions and ordering constraints that must be applied
to packets and/or frames and/or flows selected as a result of classification.
The implied order may not be a linear progression as the architecture allows
for SFCs that copy to more than one branch, and also allows for cases where
there is flexibility in the order in which service functions need to be applied.
The term ”service chain” is often used as shorthand for Service Function
Chain.

In Figure 2.1, for example, an end-to-end service between a web client and a
web server is characterized by a specific sequence of elementary blocks: the first
one is a firewall which drops most of the unwanted traffic, the second one is an
Intrusion Detection System (IDS) which can detect attacks based on patterns or
a previous monitoring phase and finally the third one is a reverse proxy whose
main purposes are obfuscation of the real characteristics of the server, web caching
of static contents and spoon-feeding. It is evident how these functions should be
applied to the packets in the path from the client to the server in this specified order
to compensate the relative weaknesses, e.g. the IDS can detect attacks that passed
through the firewall, overcoming its potential implementation flaws or limitations.

Figure 2.1. Example of a Service Function Chain

In the past, in a traditional scenario like the edge of a Service Provider network
or the data center of a Content Provider company, network functions which should
provide a service to a customer were mainly based on hardware appliances. Each
physical middlebox was specifically designed, built and dedicated to implement a
corresponding function and a combination of them represented a Service Function
Chain; a lower level of abstraction was this way provided.

This original approach is evidently characterized by several limitations:

❼ sharing resources between network functions is not feasible because each one is
a dedicated hardware box, even though this feature would be extremely useful
because it would let an unloaded function leave computational resources to
another one in sufferance;

❼ it is not easy to force the traffic to pass though specific elements of the Service
Function Chain because in the IP world the traffic is simply forwarded by
means of a technique of routing by network address ;

20

2 – Software Networking

❼ personalizing the Service Function Chain for each different user is not trivial
because the links between the appliances are fixed;

❼ modifying the structure of a Service Function Chain with a new function is ex-
pensive because it requires the purchase of the dedicated hardware appliance
and its installation could take a significant time;

❼ maintenance of the appliances requires a constant monitoring and work by
the provider of the Service Function Chain.

For the aforementioned reasons, the main tendency in the last years has been
to move both the construction of a path that a packet must follow and the network
functions implementation from the hardware level to the software, with the goal to
get better deployment agility and performance.

2.2 Software-Defined Networks

2.2.1 Principles of Software-Defined Networks

A novel approach which can be followed to unburden the limitations, described
in Section 2.1, due to a traditional hardware implementation of a Service Function
Chain is the Software-Defined Networks (SDN) principle [4]. As the name suggests,
this technology allows the creation of the paths which the packets must follow inside
the physical network by means of a software process.

The pillars of the original SDN theory are three:

1. decoupling between the data plane, which takes decisions about the forward-
ing and manages the low-level modifications of the packets, and the control
plane, which coordinates the forwarding actions building shared data struc-
tures like the filtering database for a bridge or a routing table for a router;

2. centralization of all the control plane functions in a unique module, gener-
ally called SDN Controller, which is the place where all the intelligence of this
technology is situated. Technically the centralization could be logical through
a physical distribution on collaborating nodes, but most of the actual imple-
mentations are based on a physical centralization;

3. definition of southbound and northbound interfaces for the communication
between the SDN Controller and, respectively, the forwarding infrastructure
and the user-level applications or controllers of higher level.

2.2.2 Architecture of an SDN-based model

Figure 2.2 illustrates the typical architecture of a Software-Defined Networks model.

The network infrastructure is characterized by data forwarding elements which
do not necessarily require to be complex routers or vendor-customized devices, but

21

2 – Software Networking

Figure 2.2. Representation of the architecture of a Software-Defined
Networks infrastructure

they can be white-label switches; they are built with simple commodities because
their only role is to forward the input packets to the correct output ports in the
path to reach their final destinations as fast as possible, since efficient forwarding
is the key word in the SDN technology. Every switch is then characterized by a
forwarding table, with a list of rules; they are made by the match fields, which allow
to filter only the packets that satisfy them, and the action fields, which specify the
operations the switch must perform on those packets (e.g. forward to a specific
port, forward to the controller platform, forward at a specific rate, drop the packet,
push or pop a field, overwrite or modify a header field).

The use of simple forwarding elements is acceptable because their application
logic is completely governed by the SDN Controller; through an open southbound
interface, it can receive information from the network, like the packets which did
not match any rules of the switches, and it creates the required forwarding rules
basing the decision on the user’s needs and on events coming from the network.
Then the controller installs the rules on the switches using southbound protocols
like OpenFlow, some REST APIs, Simple Network Management Protocol (SNMP),
Network Configuration Protocol (NETCONF) or RESTCONF.
The fact that a multitude of protocols are available and actually used is motivated

22

2 – Software Networking

by the legacy hardware already installed in the network; even though OpenFlow
was originally proposed as the unique southbound protocol, it would have required
a substitution or a software patch for most of the existing elements which did not
support it. For this reason, in an SDN Controller a Service Abstraction Layer (SAL)
is fundamental to abstract the specificity of the drivers in regard to the applications
which use them to interact with the switches.

Finally, in addition to traditional applications like the Topology Manager and
the Host Tracker which are directly offered by the Network Operating System
of the controller platform, also third-party or external network applications can
interact with the overall infrastructure by means of an open northbound interface,
which is typically REST-based; the graphical dashboard in this scenario has limited
capabilities, such as only showing the results of a monitoring activity, because a
greater emphasis is put on the automatic reactions of the controller based on inputs
from the software itself. Besides the northbound APIs represent the real added
value to the model because they allow the deployment of any high-level network
application.

This infrastructure presents the main benefits of a single-point-of-control through
which the entire network can be managed and the flexibility in the creation of the
forwarding rules, which can be modified according to the actual network behaviour.
However, the controller platform can be both a single-point-of-failure in terms of
security because it can be accessed by all the physical switches in the forwarding
plane and a bottleneck in terms of performance, since the latency with which it
replies to the contacting switches is not negligible.

2.2.3 Application of the SDN technology to a SFC

Figure 2.3. Example of Service Function Chain modelled with an SDN architecture.

23

2 – Software Networking

Supposing that each service function of a Service Function Chain corresponds to
a hardware appliance, they can be linked together with a network of SDN switches,
whose forwarding behaviour can be completely governed by the controller platform.
Figure 2.3 shows how the Service Function Chain represented in Figure 2.2 can be
modelled in an SDN architecture; in this example, firewall, IDS and reverse proxy
are linked to the switch with a single connection, because the flow of the packets and
the crossing order of the middleboxes are determined by the controller platform.

The main advantages this solution provides are, in fact, the following ones:

❼ it is easy to force the IP traffic to pass through specific appliances thanks
to the forwarding rules installed by the controller on the SDN switches, in a
proactive way or as reaction to events coming from the network itself;

❼ changing the configuration of an existing Service Function Chain is relatively
fast, e.g. when a new service is added only a link to a switch should be
installed and then the rules are generated by a software process;

❼ it is possible to personalize the different Service Function Chains according
to users’ needs so that they can share only some of the network functions.

The limitation which cannot be overcome with an infrastructure exclusively
based on the SDN technology is, however, that the appliances are still hardware-
based, so neither sharing computational resources is feasible nor purchasing and
installing a new function are fast operations.

2.3 Network Functions Virtualization

2.3.1 Principles of Network Functions Virtualization

The immediate next step is represented by the concept of Network Functions Vir-
tualization (NFV) [5]. The core idea of this novel technology is that each function
is a software process which does not require any more dedicated hardware, but
it can run on a general-purpose server; so, if SDN focuses on the creation of the
forwarding paths by software, NFV targets the virtualization of the computing.

A first way to implement virtualized network functions is represented by the
traditional Virtual Machines. They are able to provide a strong container isolation
and possibility of enforcing operations by the hypervisor, because every time a new
Virtual Machine is created, a hardware profile is defined and a different Operating
System, with other applications, can be installed on it independently of the hy-
pervisor; it is consequently the best solution for scenarios like a multi-tenant data
center, where protection from accesses to their own services is a fundamental issue
to challenge.
This benefit is obtained at the expense of high memory and disk space requirements,
because of the intrinsic independence from the host; moreover, the live migration of
a Virtual Machine is a burdensome task and it requires algorithms which consider

24

2 – Software Networking

the possibility that a block of memory is modified after being transferred to the
new target zone.

Subsequently lightweight virtualization became the new goal to achieve. A first
attempt is represented by the Linux Containers (LXC), based on the idea of names-
paces in the Linux world: the kernel of the hypervisor can be partitioned in respect
to one (or more) out of seven possible parameters, so that the created namespace
shares all the components of the host kernel related to the specified parameters.
For instance, if the network namespace is created, it shares the networking stack
with the hypervisor, while all the other parts of the kernel (e.g. the file system) are
duplicated and separated.
If the benefit is that the memory occupancy is much lower than what a traditional
Virtual Machine requires, the problems are the difficult management of the differ-
ent parameters of a Linux Container where all the seven kernel components are
shared and the absence of the portability feature: in fact, when a LXC is created
on a machine, it cannot be migrated to another.

Dockers were the next lightweight virtualization entity which was proposed and,
despite the principles on which they are based are the same as for Linux Containers,
their success was established by their portability; after a Docker is created, it can be
transferred to another machine by means of an intermediate repository (e.g. Docker
Hub) on which it is pushed or it can be reproduced using a Docker File, containing
a list of operations that must be performed to achieve the same Docker. Also the
potential problem about the separated file system, which would occupy a large disk
space, can be resolved by the existence of a layered file system, where Dockers can
share parts of their file systems between themselves and with the hypervisor. Their
main limitation is basically the labile isolation between containers, which can lead
to potential security issues; for this reason, using Dockers in an environment where
each container belongs to a different tenant could be not the best solution, because
preventing all the possible access attempts becomes difficult in this scenario.

Independently of the technology which is used, an important advantage of the
NFV paradigm is the capability of auto-scalability of the Virtualized Network Func-
tions (VNFs) every time more resources are needed. Two approaches can be fol-
lowed in this context:

❼ scale-up when more resources are assigned to the same VNF. The disadvan-
tages of this approach are that the upper-bound limitation is represented by
the maximum quantity of computation resources of the server on which the
VNF is installed and the implementation of the code (e.g. a mono-thread
application) does not always get benefits from receiving more resources for
itself;

❼ scale-out when more instances of the same VNF are installed. This approach
guarantees parallelization and flexibility, even though it could require a load
balancer which considers both the actual load of each function instance and
the quintuple of the incoming packets to decide the instance in charge of a
specific traffic flow.

Since more Virtualized Networks Functions are needed to provide a network ser-
vice, orchestration management tools must be exploited. The orchestrators which

25

2 – Software Networking

can be used are technologies directly belonging to the cloud world, like VMWare
vSphere or the open-source alternative OpenStack for Virtual Machines on one side,
Kubernetes for Dockers on the other side. Their tasks are to accept commands like
the creation of a new service, to decide which functions should be used to provide
that service, to choose the adequate implementations, to allocate the needed func-
tions on the servers according to requirements based on computational resources
or preferably amount of traffic sent on the network and to monitor the state of the
service with functionalities like load sharing between appliances of the same type
and self-feeling, i.e. redeploying a function if the previous instance is not running
any more.

2.3.2 ETSI NFV Model

The European Telecommunications Standards Institute (ETSI), an independent
standardization organization, formed together with the leading telecom operators
an Internet Specification Group (ISG) with the goal to define a set of vendor-
independent specifications for the Network Functions Virtualization paradigm.

Figure 2.4. ETSI NFV model representation

They established a high-level architectural framework to encompass the manage-
ment of the network functions, to manage their relationships and the intermediate
data flows and to allocate resources accordingly to the needs. These tasks were
divided into three different blocks, which are described in the following:

26

2 – Software Networking

❼ The Network Functions Virtualization Infrastructure (NFVI) block provides
both the hardware where the functions can be placed and the software to
virtualize them (e.g. the Virtual Machine technology that can be used to
deploy the functions). The resources which NFVI offers are the computing
hardware including the CPU and memory needed by a function, the storage
hardware which can be locally attached or distributed through SAN technolo-
gies and the network hardware, characterized by a set of Network Interface
Cards the VNFs can use to communicate. Moreover, a fundamental element
of the NFVI is the virtualization layer, which makes the underlying hardware
available as a virtual substrate.

❼ The Virtualized Network Functions (VNFs) block is characterized by the spe-
cific software functions which exploit the virtualization software provided by
the NFVI block to work without the requirement of dedicated hardware. Each
VNF-block is characterized by two interconnected elements, that are the Vir-
tual Machine (VM) on one side, the Element Management (EM) on the other.
The VM simply implements the network function which must be provided,
whereas the EM implements the management feature to assist the VM during
its life-cycle.

❼ TheManagement and Orchestration (MANO) block manages all the resources
in the infrastructure and virtualization layers, through interactions with both
the NFVI and VNF blocks in the framework and with a complete overview
on the overall network.

Figure 2.4 shows howMANO interacts with the other elements of the framework:

❼ The Virtualized Infrastructure Manager (VIM) manages the computing and
storage hardware as well as the virtualization layer in NFVI; it has a complete
overview on the available resources and on their operational attributes such
as power management, health status, and CPU or memory availability, while
monitoring their performance at the same time.

❼ The VNF Manager (VNFM) is responsible of the actual implementation of
the virtualized functions; it manages both their life-cycle and the scalability
of the assigned resources. In fact, when a new VNF must be instantiated,
VNFM communicates its requirements to VIM, because this module has an
overview on the current status of the resources by means of a monitoring
activity; only after a positive answer, VNFM decides which resources can be
dedicated to the new function.

❼ The NFV Orchestrator (NFVO) has the key role to coordinate the complete
framework, interacting – if necessary – with an external controller like an
SDN Controller or an external application; it overlooks the complete end-to-
end service deployment and interacts with both the billing support system
and the VIM module in order to have a full overview on how the VNFs are
actually deployed on the hardware infrastructure.

27

2 – Software Networking

Figure 2.5. Example of Service Function Chain modelled with a NFV-
SDN architecture.

2.3.3 Application of the NFV technology to a SFC

Thanks to the Network Functions Virtualization technology, each function does not
require to be a specific hardware box in the Service Function Chain, but it can be
a software function installed on a server. The Service Function Chain modelled in
Figure 2.3 can now be represented as in Figure 2.5, where the functions are not
any more specific hardware appliances, but Virtual Machines which can be poten-
tially installed on the same server. The Software-Defined Networks paradigm is
used as a complementary tool: the flow of the packets between the elements of the
Service Function Chain is determined by the rules which an SDN Controller can
lower not only to an external network of SDN switches which put the servers in
communication, but also to the software switches which are created in the hyper-
visor Operating System of each server and which allow the interaction between the
deployed functions.

In addition to the benefits which SDN already introduced, the NFV technology
applied in relation to a Service Function Chain adds other advantages:

❼ there is great flexibility by which a new function can be deployed, since it is
enough to create a new Virtual Machine or Docker in the Operating System
host, instead of purchasing and configuring a hardware box;

❼ it provides dynamic links for the functions inside the same server thanks to
a software switch which can be potentially configured as an SDN switch;

❼ all the virtualized functions on the same server share the computational re-
sources, which can be allocated dynamically according to the needs;

28

2 – Software Networking

❼ it is easy to build a forwarding rule for the software switches in a proactive way
instead of a reactive mode, minimizing the interactions between the switches
and the SDN Controller. In fact, when a Virtual Machine is created, the
MAC address of its virtual Network Interface Card, its position inside the
hypervisor and particularly the port number of the software switch to which
it is linked are well-known, while in a physical network the point of access of
a device cannot be usually predicted in advance.

2.4 Network Automation

These novel paradigms allowed the researchers to put a strong emphasis on the
concept of Network Automation, whose purpose is the deployment of a complete
end-to-end service by configuring automatically not only the single functions in the
edge appointed to provide it, but also the intermediate communication network.
The core idea is the flexibility of reactions in changing the configuration both when
the user introduces a new requirement and when an event arises from the network
itself; in addition, decisions should take care of the current scenario and behaviour
of the subjacent physical level.

This approach is becoming fundamental also in the security scenario, where
the reaction speed is fundamental to face an increasing variety of cybersecurity
attacks which cannot always be predicted in advance. In this case, if a security
manager must manually change the security configuration after receiving an alert
from functions such as an IDS, in an automatic context the configuration changes
could be managed automatically with a slower latency.

For Network Automation, several tools have been developed in the recent years.
They allow to interact with the most common implementations of the SDN and
NFV principles on one side and to define a higher level of abstraction of the inter-
faces they provide, in order to be independent from the specific implementation as
much as possible.

On the edge side, tools like Chef, Puppet and Ansible can cooperate with the
cloud orchestrator, like Openstack, in the deployment of virtualized services on
the servers; they provide play-books which are a set of rules corresponding to a
determinate function and can be translated in the proper low-level configuration.
They can work automatically reacting to the events from the network, not only to
the commands, and exploit YAML (Yet Another Markup Language) as a human-
readable data serialization language for the configuration files.

Instead, on the core side, RESTConf is a management configuration protocol
which allows firstly to manage and historicize the configuration of the appliances
and, at the same time, create and modify configurations themselves independently
from the specific form (e.g. hardware or virtualized appliance) of the function.
This is possible by the cooperation with YANG, a data modelling language which
can create an abstract data model for each different function and provide a service-
agnostic interface through which the input commands are parsified in relation with
the data model placed in the configuration.

29

2 – Software Networking

The goal is to avoid a continuous interaction with the user so that the software
can close a loop of reactions by itself, getting information by the network and
immediately exploiting them to improve the general behaviour without waiting
that a human being would look at the monitoring results to take a decision. On
one hand, a problem which can arise is that this automatic process uses configured
algorithms to decide which changes should be made to the configuration when
triggered by a network event, so it is fundamental that this process has a complete
overview on the entire infrastructure, with sensors which allow to monitor the traffic
and establish which is the normal behaviour. On the other hand, if this problem is
restricted, then the benefit provided by Network Automation is that the system is
able to adapt by itself to the different scenarios.

30

Chapter 3

Policy-based Management and
Firewall Auto-Configuration

This chapter introduces the policy-based approach for the management of network
security issues, providing the basic terminology of the matter and which limitations
of alternative approaches it can overcome.

Then, a brief presentation of network security policy specification is presented
with the goal to illustrate the main typologies which are of interest for this thesis.
Moreover, the problem of policy refinement is introduced to deal with the necessity
of translation from a high-level language to the low-level configuration of specific
network functions deployed to satisfy a policy.

Finally, a brief description of the most relevant techniques in literature about
firewall auto-configuration in policy-based scenarios is presented. Among these
techniques, Firmato, a toolkit for an automatic management and configuration of
firewalls in a traditional network, occupies a central position, since the proposed
ideas have been an inspiration factor for the thesis work.

3.1 Policy-based Management

In distributed systems, security is becoming a fundamental aspect to take in consid-
eration for network functions configuration, because nowadays the Information and
Communications Technology (ICT) is part of every activity and service. Security
properties like data confidentiality and integrity must be enforced to respectively
avoid that attackers could have visibility on the information to protect and could
modify them.

For these reasons, a burdensome task, which a security manager is in charge of,
is to properly configure the network functions implementations which are used to
provide a service, taking in consideration not only the traditional issues of efficiency
and performance, but also the security aspects. However the variety of different
implementations make this task even more difficult, as long as the fact that the
creation or configuration of a security protocol are extremely complex and error
prone.

31

3 – Policy-based Management and Firewall Auto-Configuration

A first approach could be that, trying to adopt the attacker mindset, the security
manager creates an initial configuration, which will not anyway protect from all
the possible attacks since ICT security is, by definition, a reactive process; in fact,
even though all the current attack strategies are correctly prevented, it is evident
that in the future new ones will be discovered and exploited. Then, every time a
misconfiguration is notified or a limitation of the existing configuration is presented,
the security manager edits it trying to improve the robustness of the system until
the cycle naturally repeats.

To overcome this limitation, in literature a policy-based network management
architecture has been proposed. The main idea is to define abstract rules which
describe the behaviour of a system and can be used by a security manager – or also
a service designer without deep knowledge in this field – to verify that the network
functions configuration satisfies the security requirements.

3.1.1 Basic terminology

The RFC 3198 [6] provides formal definitions of the policy term and correlated
aspects; the most important ones will be presented in the following to clarify the
concept of policy-based management.

First of all, a policy can be defined from two alternative perspectives:

1. A policy is a definite goal, course or method of action to guide and determine
present and future decisions. It is actually fundamental both to provide a
formal definition of the expected behaviour – which can be easily referenced
– and to perform, potentially in an automatic way, a formal verification of
the security requirements for a network.

2. A policy is also a set of rules to administer, manage, and control access to
network resources. Each policy can, in fact, refer to a different context (e.g.
different policies can refer to different tenants) and then the inner details
are formalized with single expressions representing the actual requirements
to satisfy.

The creation and enforcement of a policy involve two actors: the subject, which is an
entity or a collection of entities with the authorization to request the satisfiability
of a set of constraints, and the target, that is characterized by the elements affected
by a policy, such as the network devices or the service functions to allocate and
configure.

Then, a policy rule is a basic building block of a policy-based system. It is the
binding of a set of actions to a set of conditions, where the conditions are evaluated
to determine whether the actions should be performed:

❼ A policy condition is a representation of the necessary state and of the prereq-
uisites that define whether a policy rule’s actions should be performed. When
the policy conditions associated with a policy rule are evaluated to true, then
the rule should be enforced, unless other factors such as rule priorities and
decision strategies are taken in consideration.

32

3 – Policy-based Management and Firewall Auto-Configuration

❼ A policy action is instead the formalization of operations which must be
performed to enforce a policy rule, when the conditions of the rule itself are
satisfied. These operations could affect the flow of the network traffic and the
configuration of the network resources.

After the definition of the policy rules, a security manager has an immediate
and complete overview of the protection needed by the system and can verify if the
requirements are violated by a proposed network configuration. These activities
are possible thanks to the matching between the conditions and the actions of a
rule, which are correlated and make the functions configuration dependent on the
requirements.

In this context, a rule-based engine is the tool which can be exploited by a
security manager to evaluate the policy conditions and trigger the corresponding
policy actions, if necessary. A particular rule-based engine may only be capable
of acting upon policy rules that are formatted in a specified way or adhere to a
specific language; for this reason, it is fundamental that the policies are specified
with a proper syntax.

3.1.2 Policy-based Management Framework

Figure 3.1. IETF Policy-based Management Framework

In the RFC 3060 [7], the Internet Engineering Task Force (IETF) proposed a
basic architecture for the policy specification and management, which has been
then further extended in literature with more capabilities specific to the interested
areas.

33

3 – Policy-based Management and Firewall Auto-Configuration

The main elements, whose interactions are shown in Figure 3.1, are the following
four:

❼ the Policy Management Tool (PMT) allows the user to specify the network
security policies which must be enforced and translates them in the form of
single rules or combination of rules, each one of which is characterized by a
set of conditions and a set of actions and is represented in a lower language
than the user’s specifications;

❼ the Policy Repository (PR) is a database of the policies which the Policy
Management Tool created;

❼ the Policy Decision Point (PDP), every time it is notified by the Policy Man-
agement Tool after any modifications of the rules in the Policy Repository, is
in charge of reading the database and taking decisions based on the require-
ments;

❼ the Policy Enforcement Point (PEP) is the module where the decisions taken
by the Policy Decision Point are finally applied and the policy is actually
enforced.

As it can be inferred by the flowchart, most of the operations are automatically
fulfilled by the framework and the only interaction with the security manager is
in the phase of the high-level policies specification. If on one side it can avoid
the mentioned problems about an approach based on notifications of configuration
mistakes, on the other side the complexity is here moved to the policy specification.

If the policies are wrongly specified or they are in conflict, the resulting configu-
ration computed by the Policy Decision Point can be exposed to potential security
attacks or can block traffic which should be allowed. It is, consequently, fundamen-
tal to define a high-level language that the users can exploit to express the network
policies, a translation module of these expressions in lower level rules and a conflict
analysis process to detect conflict anomalies in the requirements.

3.1.3 Policy specification and abstraction

In the specification of the policies, three main levels can be individuated:

❼ high-level policies, which must allow to express all the requirements in a user-
friendly language. Considering an action-object-attribute language, examples
of possible high-level policies expressions are “block all the traffic to social
networks” and “log access to all the websites”.

❼ medium-level policies, which are translated from high-level policies and allow
the creation of an intermediate format, independent from the specificity of the
network functions implementation which will be used to provide the service.
For example, a high-level policy such as “allow all the web traffic” can be
translated in a rule which allows all the packets having as source or destination
TCP port the number 80, independently of the function on which it will be
enforced;

34

3 – Policy-based Management and Firewall Auto-Configuration

❼ low-level policies, corresponding to the proper configuration of the selected
network functions and potentially translated from a set of medium-level poli-
cies, because each function can include more single capabilities. They are
consequently dependent on the chosen function implementation.

In literature several languages have been proposed for the policy representa-
tions: IETF proposed the Policy Core Information Model (PCIM) [7] to work with
the infrastructure model defined in RFC 3060, while the Organization for the Ad-
vancement of Structured Information Standards (OASIS) defined the XML-based
language eXtensible Access Control Markup Language (XACML) [8] for the repre-
sentation of Access Control Policies.

This thesis followed the approach presented by Valenza and Lioy [9], who defined
two user-oriented network security policy languages, called High Security Policy
Language (HSPL) and Medium Security Policy Language (MSPL); the main pur-
pose is to provide an abstraction from the proper low-level configurations of the
functions, which must strictly follow the technical specificities of the corresponding
documentation and that for this reason cannot be adopted for the upper levels of
the aforementioned policy hierarchy.

HSPL is a language used for high-level policy specification and abstraction,
based on a subject-verb-object-parameters paradigm; each expression is, in fact,
characterized by a subject that represents who wants to enforce this network secu-
rity requirement, a verb used to indicate the action which must be performed, an
object as the target of the action and finally additional parameters to provide more
richness and completeness.
The main HSPL characteristic is that it must allow the creation of simple expres-
sions, which can be understood and formulated by end users without specific and
detailed knowledge; a possible auxiliary tool could be a predefined list of the values
for each one of the rule fields. In addition, this language must be extensible and
flexible, so that it provides ease in the introduction of new kind of policies and in
the support of a variety of conditions to respect and actions to perform.

On the other side, MSPL is a language which not only requires extensibility and
flexibility, but it must be able to provide all the information which in the next step
are required for the network functions configuration; for this reason, its targets are
technical people, like the security manager. Anyway, the form in which the MSPL
rules are expressed must be abstract and independent of their specificity in order
not to be linked to specific implementations.

3.1.4 Policy refinement and translation

In the hierarchy presented in Subsection 3.1.3, two fundamental processes which
link the different policy typologies, as showed in Figure 3.2, are:

❼ policy refinement for the transformation of HSPL expressions in MSPL rules;

❼ policy translation for the transformation of MSPL rules in the low-level con-
figuration of the network functions.

35

3 – Policy-based Management and Firewall Auto-Configuration

Figure 3.2. Model of the policy refinement and translation operations

Policy refinement covers a fundamental role because it is the transformation
process which allows the creation of the medium-level policies from the high-level
requirements specified by the end user; furthermore, this process is prone to au-
tomation. The main purposes of policy refinement are, in fact, the following ones,
as they have been identified by Moffett and Sloman [10]:

1. translation from high-level to lower-level policies without losing the informa-
tion carried by the specified requirements;

2. individuation of the resources which are required for the satisfaction of the
policies;

3. verification that the determined low-level policies fulfil the high-level ones and
that the individuated resources are sufficient to properly satisfy them.

Among the refinement techniques which have been proposed in literature, Zhou
and Alves-Foss [11] presented a policy refinement method for Multi-Level Security
systems based on architectural design patterns. Their idea is to represent the re-
quirements by means of policies defined by the triple p=(Intra, Inter, Domain),
where Intra is the set of internal rules related to the specific policy, Inter is the set
of the rules which model the relationships with other policies and Domain is a set
of associated services. Through architectural patterns like Decomposition Pattern,

36

3 – Policy-based Management and Firewall Auto-Configuration

Aggregation Pattern or Elimination Pattern, it is possible to model abstract com-
ponents in a set of refined components of the policies, which do not require to be
the same number as the original ones; then, for each part of the policy, additional
rules are modelled to express how it is linked to the others.

A different goal-based approach was proposed by Bandara et al. [12]. Since the
high-level policies express the behaviour the system should have to satisfy some
goals, this technique tries to connect these goals not only between themselves, but
in the refinement phase also to the specific elements of the system; the purpose
is to establish a complete strategy to reach the goals which have been defined by
the end user. It is a powerful approach because it allows to provide a complete
abstraction of the HSPL rules.

Instead, the policy translation is the process which transforms medium-level se-
curity policies into the low-level configuration of the specific network functions.
Since MSPL expressions must already contain all the needed information, this
phase is trivial because it only requires a syntax change between abstract and
implementation-independent rules and the specific language of the used implemen-
tation.

3.2 Firewall Auto-Configuration

A firewall is an essential element in the design of a network security architecture,
whose main purpose is to block all the dangerous and unwanted traffic incoming
from an external network, where the security level is inferior because it is not
possible to establish who is able to make a connection, to an internal network or
intranet, where a more accurate control on the accesses is provided and monitoring
systems like Intrusion Detection Systems (IDS) are installed.

The critical aspect of the firewall management is to correctly configure its Filter-
ing Policy, that is the set of rules by means of which a firewall decides if a received
packet must be discarded or forwarded to the out-ports. If this task is performed
manually, not only it requires a not negligible time for a security manager because
he must consider several security requirements to be satisfied, but at the same time
it is prone to human errors such as conflicts or anomalies.

For the aforementioned reasons, the firewall Filtering Policy configuration can
be used as an example to introduce the concept of Security Automation, a novel
paradigm which exploits automatic control processes to establish the policies of the
security functionalities in an automatic way, considering a set of requirements or
events coming from the network itself. In this section, the most relevant works in
literature about firewall auto-configuration are presented, with a brief description
of the introduced novelties and their drawbacks; all these studies have been taken
in consideration during this thesis work.

3.2.1 Firmato: a firewall management toolkit

A firewall is usually installed on gateways, like routers or level-2 bridges, and it is
rule-based, because a set of match - action rules are configured in order that, if a

37

3 – Policy-based Management and Firewall Auto-Configuration

packet satisfies the requirements provided by a rule, then the relative actions must
be performed on this packet.

However, the typical approach of a manual configuration performed by the se-
curity manager has some considerable drawbacks, as Bertal et al. [2] detailed:

❼ the probability of a manual misconfiguration is high because the rules are
applied in a specific order to the incoming packets and there is not any kind
of automatic control on potential redundancies of the installed rules inside
the firewall;

❼ the security of the internal network depends on the precise configuration of
these rules, without providing any form of higher abstraction levels;

❼ if more firewalls are present in the network, their configuration is more prob-
lematic because they do not represent a unique repository of rules, which
would be easier to manage and debug.

To overcome these limitations, Firmato is a toolkit proposed to automatically
configure traditional firewalls by exploiting network security policies expressed with
aModel Definition Language (MDL), which allows the creation of roles representing
network permissions for a group of hosts. In this architecture, the Model Compiler
performs a translation of the model created with this medium-level language in
the configuration files of the specific firewalls, distributing the rules belonging to a
single model to multiple instances of this network function. The abstraction levels
which Firmato introduced were on one hand a separation between the policy design
and the vendor specificities of the firewalls, on the other hand a separation between
the policy rules definition and the network topology.

The aspects characterizing Firmato toolkit influenced the design of the ADP
module of VEREFOO, later described in Section 5.3, but its application is related to
traditional networks, where novel technologies like NFV and SDN are not exploited.

3.2.2 Other works about firewall auto-configuration

In the following years, other research works focused on improving the methodology
by means of which firewalls can be configured not only in traditional networks, but
also in the NFV and cloud environment; most of them identify novel techniques
which correct or create the firewall policy, identifying the needed rules to satisfy a
set of security constraints.

Youssef and Bouhoula [13] proposed a fully automatic approach for fixing fire-
wall misconfiguration. The framework they developed, based on a Soundness Com-
pleteness Verification, is both a correction tool because it is able to identify which
rules in a firewall policy should be corrected to remove the presence of some con-
flicts, but it is also an optimization tool. Actually, exploiting Yices [14] as an
SMT solver, its main purpose is to automatically reduce the number of rules in
the policies and establish inference rules that permit to detect and delete the shad-
owed rules. The fundamental aspect which can be extracted by this work is the

38

3 – Policy-based Management and Firewall Auto-Configuration

optimization-oriented approach, but it is still applied to a traditional scenario where
firewalls are hardware middleboxes.

Gember-Jacobson et al. [15] then developed Control Plane Repair (CPR), a
framework which automatically repairs network control planes by exploiting an ab-
stract representation; it is clearly a forward step in the direction where the functions
which compose a Service Graph are independent from the actual implementations
deployed on the physical infrastructure and at the same time it offers an automatic
methodology to identify misconfiguration. Moreover, this approach is based on a
MaxSMT problem to minimize the number of routers and links to update when the
service configuration must be changed. On the other hand, the main limitation is
that it focuses on identifying problems in an existing security configuration, instead
of creating it from a set of security requirements.

Recently, Adi et al. [16] exploited process calculus to verify if the configuration
of network functions, including firewalls, respects a set of security constraints; in
negative case, an automatic modification of their configuration is performed by
means of an enforcement process that imposes the behaviour of the system’s model
as stated by the input requirements. Like in the previous case, the main limitations
are that it only automatically modifies existing wrong configurations and does not
perform any automatic allocation operation of the functions in the Service Graph.

39

Chapter 4

Tools: z3 and Verigraph

In this chapter the two most important tools for this thesis work are presented,
with a short description of their main features and the goals for which they were
needed. In particular, the structure of the chapter is the following:

❼ in Section 4.1, the z3 theorem prover is described, with a focus on how it can
model a MaxSMT problem, which represents a fundamental aspect of the
thesis;

❼ in Section 4.2, the Verigraph tool is illustrated, with a focus on the data
structures and functions that have been used during the development phase
of the thesis.

4.1 z3

4.1.1 Introduction to z3

z3 [17] is a state-of-the-art theorem prover developed by Microsoft Research which
can be used in software analysis and in the verification context to solve all the
Satisfiability Modulo Theories (SMT) problems, representing a generalization of the
Boolean Satisfiability (SAT) problem by the introduction of additional theories, like
equality reasoning, arithmetic, fixed-size bit-vector and quantifiers.

It offers APIs (Application Programming Interfaces) in different high-level pro-
gramming languages, like python, Java, C and C++. In this thesis work, Java
APIs in the version 4.8.1 for 64-bit machines were used. Appendix A provides a
guide about how using the Java z3 APIs exploited in the development phase.

Figure 4.1 describes how the z3 framework works. After receiving a set of for-
mulas through a programming interface, it translates them in a SMTLIB2 file,
according to the language and semantics described by the corresponding interna-
tional initiative to provide a common background for SMT theories. Then, it firstly
tries to apply tactics like pre-processing or heuristics, respectively to limit the total
computation time or to get a suboptimal solution. Finally, it exploits a specific
solver (e.g. SAT, Fixedpoint) to get a solution or, in case an optimization phase is

40

4 – Tools: z3 and Verigraph

Figure 4.1. z3 architectural model

needed, to get the optimal solution; for the optimization purpose, in particular, z3
exploits an optimizer engine, called z3Opt.

4.1.2 The SMT problem

The SAT problem, also called the propositional satisfiability problem, is a tradi-
tional problem in the computer science field whose goal is to determine, given a
propositional formula with a set of propositional boolean variables (i.e. that can
assume as possible values only true or false), if a combination of values for these
variables exists to guarantee the satisfiability of the formulas. A SAT solver, for this
reason, does not require to find the best combination of the propositional variables,
but a single solution among all the possible ones is sufficient.

Nevertheless, the SAT problem is NP-complete. It belongs to NP class, where
NP means ”non-deterministic polynomial time”, because it can be solved in polyno-
mial time using a non-deterministic Turing machine; in other words, the correctness
of the formulas expressed in a NP problem can be evaluated rapidly in a polyno-
mial time, but the time to find a proper solution increases non polynomially with
the size of the problem itself. Besides, it is NP-complete because every other NP
problem can be reduced to the SAT problem in polynomial time.

The language which is exploited by the SAT solvers is the traditional boolean
logic. A generalization is represented by the Satisfiability Modulo Theories (SMT)
problem, where the language is instead the first-order logic, which includes the
boolean operations as a specific case, but it can use several other theories, such as
theories of real numbers, integers, lists, arrays, bit vectors and many other data
structures. Basically, a SMT problem is composed by a set of predicates, where
each predicate is a binary function defined over non-binary variables. Consequently,
the SMT language is much richer than the SAT language, it allows to express more

41

4 – Tools: z3 and Verigraph

complex models and it represents a formalized approach to constraint programming
for constraint satisfaction problems.

To solve SMT problems, z3 can exploit a specific SMT solver integrating search
pruning methods, but also heuristic combinations of algorithmic proof methods
called tactics; they are characterized by several parameters whose tuning is needed
to get good performance results.

4.1.3 The MaxSMT problem

The Maximum Satisfiability Modulo Theories (MaxSMT) problem is an extension
of the SMT problem in the optimization context, where given a set of predicate
clauses containing predicate variables, the goal is to find the optimal values of these
variables which achieve the maximum satisfiability of the clauses.

Like the SMT problem, the MaxSMT problem is NP-complete in terms of worst-
case computational complexity. The main difference is, however, that each clause is
assigned a weight, unitary in the standard version; consequently, it is not sufficient
to find a solution which satisfies the predicate clauses, but among all the possible
solutions the chosen one must maximize the number of satisfied clauses.

The most common MaxSMT variants are:

❼ the weighted MaxSMT, where a different weight can be assigned to each clause
and consequently the research for the best solution prioritizes the satisfiability
of the most valued clauses;

❼ the partial MaxSMT, where some constraints are not relaxable because they
must be satisfied, while other clauses do not require to be necessarily satisfied
for the achievement of a solution;

❼ the weighted partial MaxSMT, which is a combination of the two previous
instances.

Considering a weighted partial MaxSMT problem characterized by S relaxable
clauses si, also called soft constraints, and H clauses hj which must be satisfied,
called hard constraints, a formal definition of the problem can be the following:

max
s∑︂
i=1

wi ∗ si

subject to hj, ∀j ∈ [1, H]

z3 language offers support for modelling both kinds of constraints:

❼ assert declares a hard constraint;

❼ assert-soft declares a soft constraint.

Listing 4.1 shows an example of weighted partial MaxSMT modelled in z3 lan-
guage, while Listing 4.2 shows the corresponding solution:

42

4 – Tools: z3 and Verigraph

(declare-const a Bool)

(declare-const b Bool)

(declare-const c Bool)

(declare-const d Bool)

(declare-const e Bool)

(assert-soft a :weight 3 :id A)

(assert-soft b :weight 2 :id A)

(assert-soft c :weight 1 :id A)

(assert-soft d :weight 2 :id A)

(assert-soft e :weight 3 :id A)

(assert (not (and b d)))

(assert (not (or e b)))

(assert (not (and a c)))

(check-sat)

(get-model)

(get-objectives)

Listing 4.1. MaxSMT problem in z3 language

sat

(model

(define-fun c () Bool

false)

(define-fun a () Bool

true)

(define-fun d () Bool

true)

(define-fun b () Bool

false)

(define-fun e () Bool

false)

)

(objectives

(A 6)

)

Listing 4.2. MaxSMT solution in z3 language

4.2 Verigraph

4.2.1 Introduction to Verigraph

Verigraph [18] is a tool developed by the Netgroup working group at Politecnico di
Torino to verify the satisfiability of network policies within network graphs. The
scenario in which Verigraph was developed is the Service Provider DevOps (SP-
DevOp) context, where the four principles of DevOps methodologies which were

43

4 – Tools: z3 and Verigraph

originally designed to work in a data center environment are applied to a Service
Provider infrastructure [19]:

Observability The first phase of the process monitors the state of the network
and analyses the flows of the packets.

Trobleshooting After a preliminary analysis, the operation quality is evaluated
to identify potential risks.

Verification Before creating or changing the configuration of some network func-
tions to solve the previously identified risks, automatic tools must perform a
formal verification of the satisfiability of the policies in the network in which
they must be enforced.

Development The new configuration of the network functions is developed and
deployed.

These four phases represent a development cycle, because when a new configu-
ration is deployed or a new network function in installed, then a sequent monitoring
phase is needed to understand the new behaviour of the network.

In this context, Verigraph can perform a Service Graph verification in an NFV
and cloud context; Section 5.1 will define the concept of Service Graph with more
accuracy, but it basically represents the logical topology of a network where each
node is characterized by a specific network function, such as a traffic monitor or a
web cache.

4.2.2 Verigraph Network Model

Verigraph exploits z3 to define a formal model of a network, by means of data
structures and methods which represent the fundaments of the ADP module of
VEREFOO, described in Section 5.3. This subsection briefly describes the most
relevant aspects of the model and provides useful terminology which will be recur-
rent in this thesis.

A packet which a node of the network can receive, process and send is modelled
with the following features:

src it is the IP address of the node which sends the packet to reach a specific
destination in the network;

dst it is the IP address of the node to which the packet is sent by a specific source
in the network;

inner src it is the source IP address of the encapsulated packet, if an encapsulation
operation has been performed;

inner dest it is the destination IP address of the encapsulated packet, if an en-
capsulation operation has been performed;

44

4 – Tools: z3 and Verigraph

origin it is the name or the IP address of the node which created the IP payload
and it can be different from the source IP address if the original packet has
been modified by middleboxes such as a NAT;

origin body it is the original body of the packet created by the source, without
any alteration;

body it is the body of the packet, sent by a previous hop to the next hop in the
path from the source and the destination, with possible modifications;

seq it is the sequence number of the packet inside a level 4 flow;

proto it is the protocol type of the packet (the supported protocols are HTTP,
POP3 and SMTP);

emailFrom it is the email address of the sender, in case the protocol type is POP3
or SMTP;

url it is the URL of the resource obtained by means of HTTP;

options it is a field which describes the most relevant options of the packet headers;

encrypted it is a flag which notifies if the body is encrypted or the packet is
encapsulated in another.

The methods offered by Verigraph to model the flow of the packets inside the
network are the sending and receiving actions, expressions which can be further
used in the definition of soft and hard constraints in a MaxSMT problem:

send(n1, n2, pk0) this method creates the z3 expression representing the event
of sending the packet pk0 from the node n1 to node n2 ;

recv(n1, n2, pk0) this method creates the z3 expression representing the event
of receiving a packet pk0, sent by the node n1 to node n2.

By means of the packet data structure and the two methods above described, it
is possible to define a complete formal model of a loop-free network, where a client
can interact with a server through a graph, from which all the possible chains are
extracted to establish if the source of a packet can reach its target destination.

During the flow of the packet through the graph modelled with this tool, it
can pass through a set of middleboxes. This term was coined by Lixia Zhang
and the RFC 3234 [20] defines a middlebox as “any intermediary device performing
functions other than the normal, standard functions of an IP router on the datagram
path between a source host and destination host”.

The most relevant middleboxes which are modelled in Verigraph are the follow-
ing:

❼ anti-spam, which drops packets with a POP3 message containing an URL
from a blacklisted mail client or server;

45

4 – Tools: z3 and Verigraph

❼ Network Address Translator (NAT), with a stateful behaviour which allows
the propagation of a packet to an external address if the internal IP address
has been previously registered in the module and allows packets directed to
internal addresses if they belong from external addresses;

❼ web cache, which can store the contents of web servers to provide them to
web clients by means of HTTP messages;

❼ ACL firewall (blacklisting packet filter), which drops a received packet if the
source, the destination or the combination of the two addresses are present
in a blacklist;

❼ field modifier, which can modify the fields of the received packets before for-
warding them;

❼ Intrusion Detection System (IDS), which can monitor the presence of specified
words inside the received packets;

❼ VPN access and VPN exit, which represent the end points of a VPN tunnel
where the original packets are encapsulated in external packets whose source
and destination addresses are those of these two middleboxes.

The developed framework, VEREFOO, which will be described in Chapter 5,
inherited the verification model from Verigraph and used it as foundation to provide
the allocation of the Network Security Functions in a logical topology, their auto-
configuration to satisfy Network Security Requirements and the placement of the
corresponding VNFs in the substrate network.

46

Chapter 5

VEREFOO Model

5.1 Introduction to VEREFOO

VEREFOO (VErified REfinement and Optimized Orchestration) is a framework
whose main purposes are a refinement of the high-level Network Security Require-
ments (NSRs), an optimal allocation and automatic configuration of the selected
Network Security Functions (NSFs) to satisfy the security constraints and the place-
ment of each implementation of all the virtual functions of the Service Graph on the
servers of a physical substrate network. It exploits the z3Opt engine for solving the
Maximum Satisfiability Modulo Theories (MaxSMT) problem in a cloud context, in
which it works closely with an NFV orchestrator for the deployment of the correct
implementation of the selected Network Security Functions.

For a better comprehension of the general description of the complete framework
presented in this chapter, in this section a glossary of useful and recurrent terms is
provided:

Service Graph It is a logical topology characterized by a set of network func-
tions, which are used by a service designer, i.e. the person in charge of the
service definition, to compose a complete end-to-end service; some examples
are the web cache, the load balancer and the traffic monitor. It is basically a
generalization of the concept of Service Function Chain presented in Section
2.1: in fact, if an SFC is a chain of network functions, a Service Graph is a
more complex topology, where multiple paths can exist between every pair
of end points and some loops can be present. The model of a Service Graph
requires, consequently, more constraints to take in consideration. In the con-
text of VEREFOO, nevertheless, the creation of a Service Graph does not
require to consider any security requirements, so it does not include Network
Security Functions such as firewalls and anti-spam filters.

Allocation Graph It is a logical topology, internally created from a Service Graph,
which is characterized by the same set of network functions of the Service
Graph itself, but also by additional nodes. These extra elements are place-
holders called Allocation Places, where a Network Security Function could
be allocated if this is its optimal position. More generally, if at least one

47

5 – VEREFOO Model

placeholder exists, in this thesis work a graph is called Allocation Graph, be-
cause the decision to allocate a specific Network Security Function on it has
not already be taken. The configuration of the Network Security Functions
allocated in the Allocation Graph is automatically provided, while the other
network functions or the nodes which behave as simple forwarders to prop-
agate the packets in all the possible paths require their configuration to be
defined by the service designer.
Both the Service and the Allocation Graphs do not necessarily correspond
to the topology of the physical infrastructure by means of network slicing,
a key principle of Software-Defined Networks. A more detailed description,
alongside with details about their implementations, is provided in Section 6.2.

Physical Graph It is the physical infrastructure on which the specific implemen-
tations of the network functions of the original Service Graph and the Network
Security Functions allocated in the Allocation Graph must be placed, with a
proper low-level configuration. It is composed by a set of servers which in-
terconnect the end points and are characterized by parameters like the CPU
usage, RAM availability, number of deployable functions; these parameters
are used to establish, if possible, the best placement schema of the functions
on the servers. It clearly exploits the concept of Network Functions Virtual-
ization, presented in Section 2.3.

5.2 Model description

Figure 5.1 presents a complete overview of the framework. In this section, a brief
description of each module is provided with the purpose to give a general idea of the
workflow; then, in the next sections, more details are showed about the framework
element on which this thesis work focused.

The service designer who uses the framework can introduce as input:

❼ a set of Network Security Requirements to express the security constraints
which must be satisfied, by exploiting a high-level or a medium-level language
depending on the experience level of the user, through a Policy GUI which
must make the creation of the requirements easier;

❼ a Service Graph or, in alternative, directly an Allocation Graph – if he feels
confident about defining at priori the positions of the Allocation Places where
the Network Security Functions can be installed – through a Service GUI,
which provides access to a Network Functions Catalogue from which the user
can decide which functions – simple network functions or also Network Secu-
rity Functions – immediately allocate on his graph.

A preliminary phase is represented by the Policy ANalysis (PAN); the goal
of this module, which receives in input the Network Security Requirements, is to
perform a conflict analysis, to determine if some of the requirements are in conflict,
and to create the minimal set of constraints which must be respected in the network.
It can provide an early non-enforceability report to the service designer in case the

48

5 – VEREFOO Model

Figure 5.1. VEREFOO model

input security requirements are characterized by mistakes which cannot be solved
by means of this automatic process but require a reformulation by the user.

If the specified security requirements are expressed in a high-level language,
the High-to-Medium (H2M) module performs a refinement to get a corresponding
set of medium-level Network Security Requirements, which contain all the useful
information for the future creation of the policies of the Network Security Functions
automatically allocated on the graph and the low-level configuration of the VNFs
placed on the substrate network.

Then, a key role is covered by the NF Selection (SE) module; based on the
input high-level and medium-level Network Security Requirements, it decides which
Network Security Functions are required to satisfy them, choosing them from a pre-
built catalogue, which is the same list the service designer has access through the
Service GUI. This step can require an optimization process by means of which the
optimal set of Network Security Functions is selected, even though it does not have
any knowledge about the topology of the Allocation Graph and this aspect could
represent a possible limitation.

The Allocation, Distribution and Placement (ADP) module is the central el-
ement of the architecture, whose purpose is to compute a Service Graph with
the added Network Security Functions or a Physical Graph receiving as input the
medium-level Network Security Requirements, the list of selected Network Security
Functions and the original Service Graph or directly the Allocation Graph; more
details are provided in the next sections, because it is the module for which this
thesis provided a contribution in the development.

49

5 – VEREFOO Model

An additional output of the ADP element is the list of medium-level policy rules
by means of which each network function instance must be configured; then, the
corresponding low-level configuration that depends on the specific implementation
of the deployed function is generated by the Medium-to-Level (M2L) module, which
performs a translation of the vendor-independent expressions into the specific rules
which must be set on the proper function.

5.3 Allocation, Distribution and Placement

The ADP module of VEREFOO uses z3Opt as a MaxSMT solver and Verigraph
as a tool for Network Security Requirements verification to provide three main
features:

1. given a list of Network Security Functions selected by the NF Selection mod-
ule, it orchestrates their allocation on the Allocation Graph – received in
input or obtained from the processed Service Graph – in order to satisfy the
input Network Security Requirements expressed by means of the medium-
level language;

2. in contemporary with the allocation phase, a second task is the distribution
of the policy rules on the allocated Network Security Functions, always ex-
pressed in medium-level language but not necessarily identical to the input
Network Security Requirements formulation, because the requirements can
be minimized according to optimization goals;

3. in a secondary step, after the creation of the Service Graph enriched with the
Network Security Functions, the VNFs implementing the network functions
of the original Service Graph and the added Network Security Functions are
placed in the physical infrastructure following the principle of minimizing the
resource consumption and at the same time the policy rules of the Network
Security Functions are translated in the low-level configuration of the VNFs
themselves.

An important aspect is that these tasks must be performed with some opti-
mization goals, in order to reach the purpose of the framework of an optimized
orchestration in NFV environment:

❼ minimizing the number of allocated Network Security Functions, so that the
corresponding number of VNFs to deploy on the substrate network is infe-
rior, with evident benefits for the resource consumption independently of the
deployment strategies which are adopted;

❼ minimizing the number of policy rules configured for each allocated Network
Security Function to satisfy the input Network Security Requirements (e.g. if
a group of input requirements express the need of isolation between a group
of end points belonging to the same IP subnetwork and a server, these con-
straints can be satisfied by a single policy rule of a packet filter by means of a

50

5 – VEREFOO Model

CIDR address range and, in the framework, of the wildcards tool, which will
be explained in more details in Section 7.4). This step is fundamental not
only to save memory for storing the policy rules, but particularly to improve
the efficiency of the security operations; in the specific case of a packet filter
firewalls, is the set of configured rules is shorter, the decision to forward or
drop any packet will require less time.

These goals are expressed in form of soft constraints of a weighted partial
MaxSMT problem, previously described in the Section 4.1.3, because the optimal
result would be to use the minimum amount of resources that are needed for the
deployment of the VNFs on the network and for their configuration; at the same
time, the medium-level Network Security Requirements and the topology of the in-
put Service Graph or Allocation Graph are modelled by means of hard constraints,
which cannot be relaxable and require satisfiability to let the solver achieve a solu-
tion. However, for sake of conciseness, in the remainder of this thesis the weighted
partial MaxSMT problem will be simply referred to as a MaxSMT problem.

5.4 Scenarios

The usage scenarios of the ADP element of VEREFOO can be divided in two
different tasks, which can be performed independently or combined, depending on
the user’s needs:

❼ AOC (Automatic Orchestration and Configuration), if the objective is to al-
locate in the placeholders of the Allocation Graph and configure the selected
Network Security Functions, identified in a previous step of the overall pro-
cess, to satisfy the input set of medium-level Network Security Requirements;

❼ AVP (Automatic VNFs Placement), if the objective is to place the VNFs
implementing all the network functions of the output Service Graph of the
AOC task on the Physical Graph representing the underlying substrate in-
frastructure characterized by a set of servers between the end points of the
network.

5.4.1 Automatic Orchestration and Configuration

In the first scenario of the Automatic Orchestration and Configuration task, illus-
trated in Figure 5.2, the initial security configuration of the network should be
achieved. For this purpose, the ADP module can receive as input:

1. the list of medium-level Network Security Requirements which must be sat-
isfied and which could come from the high-level user specifications;

2. the list of the selected Network Security Functions to satisfy the corresponding
Network Security Requirements;

51

5 – VEREFOO Model

Figure 5.2. First scenario of AOC

3. the Service Graph, i.e. the logical topology made by the network functions
which are included to offer an end-to-end complete service, with some possible
indications about the positions where the Network Security Functions must
or must not be placed, if the service designer has some sufficient security
knowledge to take these decisions.

In this situation the output could be:

❼ in case of success, a Service Graph enriched by the Network Security Func-
tions which have been optimally allocated in the Allocation Graph automat-
ically generated from the input logical topology and whose configuration has
been automatically created and presented to the service designer by means of
medium-level policy rules to satisfy the input Network Security Requirements;

❼ in case of failure, a non-enforceability report to notify the service designer
about the impossibility to compute the Service Graph and to underline which
problems occurred during the execution of the module in charge of the MaxSMT
problem instance. The main reasons for which in this scenario the ADP el-
ement could not succeed in computing the result could be that the selected
Network Security Functions are not sufficient to satisfy all the Network Secu-
rity Requirements, the placeholders of the Allocation Graph are not sufficient
to allocate all the needed Network Security Functions or a proper configura-
tion cannot be computed because of the topology of the input Service Graph.

This first scenario is a fundamental step when a new complete network security
configuration must be automatically computed; however it is not always the most
common scenario, since a partial configuration has often already been achieved.

52

5 – VEREFOO Model

Figure 5.3. Second scenario of AOC

For this reason, another typical usage scenario of the ADP element is the sce-
nario illustrated in Figure 5.3, which usually occurs in an intermediate phase of
the network management after the computation of a previous Service Graph. The
goal is to compute a new Service Graph starting from a Service Graph enriched by
some Network Security Functions, already deployed and potentially configured.
Consequently, in this scenario the ADP module can receive as input:

1. the list of medium-level Network Security Requirements which must be sat-
isfied and which could come from the high-level user specifications;

2. the list of the selected Network Security Functions to satisfy the corresponding
Network Security Requirements;

3. a Service Graph, in which some Network Security Functions are already
present with a configuration previously computed or to be later configured
by the framework; it could be the result of a manual operation or an an-
tecedent run of the ADP element on a original Service Graph without any
security property. The presence of these Network Security Functions and,
if present, their configuration cannot be modified by the framework or they
are subject to modifications depending of user’s preferences. In addition, the
service designer can provide some possible indications about places where the
new Network Security Functions must or must not be placed, if the service
designer has some sufficient security knowledge to take these decisions.

In this situation the output could be:

53

5 – VEREFOO Model

❼ in case of success, a new Service Graph where additional Network Security
Functions have been optimally allocated in the Allocation Graph, while keep-
ing the already existing NSFs, and their configuration is automatically created
to satisfy the input medium-level Network Security Requirements. It is worth
mentioning that, if the NSFs already present in the input Service Graph are
provided to the framework without any configuration, it can be computed by
the ADP module without any modification about their position in the service;

❼ in case of failure, a non-enforceability report to notify the service designer
about the impossibility to compute the Service Graph and to underline which
problems occurred. The main reasons for which in this scenario the ADP
element could not succeed in computing the result could be that the already
present Network Security Functions or their previous configuration do not
allow a satisfaction of all the input security requirements, if the user does not
want to modify them, or the Allocation Places are not sufficient to allocate
the new needed NSFs to satisfy the requirements.

Figure 5.4. Third scenario of AOC

A third possible usage scenario of the ADP element is the scenario illustrated in
Figure 5.3, where a service designer who feels confident about his knowledge in the
security field wants to define all the possible placeholders where a Network Security
Function can be installed by the framework. In this case, the ADP module can
receive as input:

1. the list of medium-level Network Security Requirements which must be sat-
isfied and which could come from the high-level user specifications;

54

5 – VEREFOO Model

2. the list of the selected Network Security Functions to satisfy the corresponding
Network Security Requirements;

3. directly an Allocation Graph, where the service designer specifies not only
the network functions which compose the service, but also all the possible
Allocation Places where the Network Security Functions can be automatically
allocated. Additionally, he can immediately introduce the presence of some
NSFs with a manually computed configuration or to be later configured by
the framework. The presence of these Network Security Functions and, if
present, their configuration cannot be modified by the framework or they
are subject to modifications depending of user’s preferences. The framework
cannot decide to put the selected NSFs in other places than the Allocation
Places specifically provided by the service designer.

In this situation the output could be:

❼ in case of success, a Service Graph where the Network Security Functions have
been optimally allocated in the Allocation Graph, while keeping the already
existing NSFs, if some of them were already present, and their configuration
is automatically created to satisfy the input medium-level Network Security
Requirements. It is worth mentioning that, if the NSFs already present in
the input Allocation Graph are provided to the framework without any con-
figuration, it can be computed by the ADP module without any modification
about their position in the service;

❼ in case of failure, a non-enforceability report to notify the service designer
about the impossibility to compute the Service Graph and to underline which
problems occurred. The main reasons for which in this scenario the ADP
element could not succeed in computing the result could be that the already
present Network Security Functions or their previous configuration do not
allow a satisfaction of the input security requirements, if the user does not
want to modify them, or the Allocation Places specifically provided by the
designer are not sufficient to allocate the new needed NSFs to satisfy all the
requirements.

The scenario illustrated in Figure 5.5 is, instead, a special case, where the
goal is the verification of an already existing Service Graph according to a set of
Network Security Requirements to satisfy, without allocating new Network Security
Functions. This task is typically performed when the service designer wants to
understand if a previous computation of the ADP element is sufficient to satisfy
an extended set of security requirements, without immediately having to place
and configure new Network Security Functions, which would require more time
and resources; another use case is when the designer only requests VEREFOO
to automatically compute the configuration of the NSFs, without changing their
allocation on the logical topology.
Based on this premise, for this purpose the ADP module can receive as input:

1. the list of the medium-level Network Security Requirements which must be
satisfied and which could come from the high-level user specifications;

55

5 – VEREFOO Model

Figure 5.5. Forth scenario of AOC

2. a Service Graph, where all the nodes are already characterized by a specific
service network function or Network Security Function, whose configuration
can be either empty, if it should be filled by VEREFOO, or already defined,
if computed with a previous run of the framework or manually.

In this situation the output could be:

❼ in case of success, a notification about the positive outcome is presented to
the service designer and, if requested, the configuration of the already allo-
cated Network Security Functions is computed with respect to the specified
medium-level Network Security Requirements to satisfy;

❼ in case of failure, a non-enforceability report to notify the service designer
about the impossibility to satisfy the Network Security Requirements with the
provided Service Graph or the impossibility to compute a proper configuration
of the provided Network Security Functions. The main reasons for which in
this scenario the ADP element could not succeed in computing the result
could be that the new set of Network Security Requirements is more restrictive
than the original one of a previous run of the framework or the provided
Network Security Functions are not sufficient to satisfy the requirements.

5.4.2 Automatic VNFs Placement

The main goal of the Automatic VNFs Placement task, illustrated in Figure 5.6, is
to deploy the antecedently computed Service Graph on a physical network, char-
acterized by real servers with possible limitations in terms of CPU usage, RAM

56

5 – VEREFOO Model

Figure 5.6. Scenario of AVP

availability, number of deployable network functions and performance. In the typ-
ical scenario of the AVP task, the ADP module can receive as input:

1. a Service Graph, where the nodes are already characterized by a service net-
work function or a Network Security Function, whose configuration has been
already computed manually or with a previous run of the framework;

2. a Physical Graph, which represents the characteristics (e.g. CPU power,
RAM) of the physical servers of the real network to be administrated and
their connections;

3. a set of VNFs requirements, representing the deployment constraints of each
VNF which implements a specific service network function or Network Se-
curity Function; each VNF could, in fact, require a minimum amount of
resources to be deployed on a server of the Physical Graph, where potentially
other VNFs could be already installed consuming part of the total amount
of computational resources. Other requirements could be, then, related to
the maximum latency of the links that interconnect two servers on which two
adjacent functions of the Service Graph are deployed.

In this situation the output could be:

❼ in case of success, the placement of all the functions of the Service Graph
on the servers of the Physical Graph, so that the logical interconnections of
the nodes in the Service Graph are respected and modelled as virtual links
between the VNFs;

57

5 – VEREFOO Model

❼ in case of failure, a non-enforceability report to notify the service designer
about the impossibility to deploy the VNFs in the Physical Graph because of
lack of resources, like number of servers or total CPU and RAM availability.

This task can be combined with any of the previous scenario described in Subsec-
tion 5.4.1. This way, in just one step the service designer can get the configuration
of the selected Network Security Functions based on the required medium-level
Network Security Functions, perform the formal verification of all the security con-
straints and finally deploy the VNFs implementing the functions of the Service
Graph on the physical infrastructure.

5.5 Design and development of ADP module

This thesis focused on the design and development of the ADP module of VERE-
FOO, refining an existing framework which was already able to perform the Net-
work Security Requirements verification in Service Function Chains, a basic auto-
configuration of firewalls to satisfy medium-level requirements and the deployment
of VNFs on the physical infrastructure, but with not good performance in the first
two features, on which the focus of this thesis has been.

The goals have been to redesign the critical first-order logic formulas of the
MaxSMT problem, to implement new components like the Allocation Graph and
to change a consistent part of the original framework to be compliant with the new
designed formulas and the introduced data structures, so that a deeper indepen-
dence between the forwarding rules (i.e. establishing the previous and next hops)
and the intrinsic characteristics of the functions (i.e. the Access Control List of a
packet filter) could be reached and better performance could be achieved.

The rest of the thesis presents the following work on the ADP module:

❼ Chapter 6 on one side describes the design and the implementation of the
Allocation Graph, on the other side the model of the new first-order logic for-
mulas and the corresponding implementation in a z3 model of the forwarding
rules in this newly logical topology;

❼ Chapter 7 describes how first-order logic formulas and the implementation
of the medium-level reachability and isolation Network Security Requirements
were redesigned, focusing on their implementation in the Allocation Graph,
the refined aspects and particularly on their extensions (i.e. verification of
requirements between any pair of clients or server). It also presents the mod-
ifications made to the formulas related to wildcards to solve some existing
misconfigurations and improve the performance;

❼ Chapter 8 describes how the auto-configuration of the packet filter was ex-
tended, to achieve a complete distribution of the policy rules in a larger set
of firewalls and with the wildcards feature rehabilitated, and how the alloca-
tion of the packet filters has been performed in the newly created Allocation
Graph.

58

5 – VEREFOO Model

Furthermore, Appendix B describes the design of REST-based APIs to in-
terface with the ADP module of the framework and the implementation of the
corresponding RESTful web service.

59

Chapter 6

Allocation Graph and Forwarding
Rules

In this chapter, a complete overview of the logical topologies which the framework
can accept as input – the Service Graph or the Allocation Graph – is presented.
First of all, a description of their implementations in the XML schema and in
the framework is provided, with the assumption that for the Service Graph these
components are inherited from a previous version of the framework.

Moreover, a newly designed formal model of the two graphs for the first scenario
of the Automatic Orchestration and Configuration task, described in Section 5.3,
will be presented alongside; the other scenarios represent specific cases of the first
one and the models can be partially different, but they can be easily retrieved from
the one here described.

About the Allocation Graph, since it is a new feature introduced in the frame-
work, the thesis contributed in all the aspects of its implementation inside VERE-
FOO, contributing to define an automatic way to generate it from an input Service
Graph which the service designer can define by means of an XML file.

Then, the design and implementation of the first-order logic formulas of the
forwarding rules for Allocation Places are illustrated; their goal is to allow the
transit of the packets between the nodes of the Allocation Graph from a source
and a destination of a Network Security Requirement, taking in consideration both
the scenarios in which a packet filter capability has been installed on an Allocation
Place by the framework during the optimization phase or this placeholder node
simply behaves as a forwarder.

6.1 Service Graph

6.1.1 Description of the Service Graph concept

Exploiting the novel paradigm of Software-Defined Networks through which it is
possible to decouple the logical view of the network from the physical hosts as it
was illustrated in Section 2.2, it is possible to firstly separately manage the two

60

6 – Allocation Graph and Forwarding Rules

planes and in a second time a service designer, who uses the framework, is allowed
to consequently deploy the logical topology on the real infrastructure.

In this scenario, a Service Graph, generalization of the Service Function Chain
concept illustrated in Section 2.1, represents the logical topology of an end-to-
end service, characterized by a set of network functions – e.g. traffic monitor and
web cache – that do not enforce any security defence but simply contribute to the
definition of the service.

In the developed framework, a selection of network functions that the service
designer can exploit in order to define a Service Graph were inherited by Verigraph.
Some of these functions do not influence the configuration of the Network Security
Functions given the input security requirements, while the behaviour of others has
an impact which is already defined. Moreover, each network function is charac-
terized by a number of functionalities, which contribute to the definition of the
complete service by means of their composition.

A first observation is that the switch, a network function which exclusively
forwards the incoming packets to an out-port selected by means of a forwarding
table, is a low-level function; consequently, the service designer does not include it
in the Service Graph, because the switch does not contribute to the definition of
the service. On the other hand, this function can be exploited by the framework to
be temporarily placed on an Allocation Place, when the optimizer establishes that
a firewall is not needed in that position.

Then, the other network functions considered in the selected portfolio of Veri-
graph are characterized by the following classes of functionalities:

❼ functionalities such as traffic monitoring can change the value of internal
counters and to notify the network administrator every time the inspection
performed on a packet they have received requires an intervention. However,
they do not modify the received packets and they can send them to all the
possible meaningful directions; so the presence of a traffic monitor does not
influence the configuration of the firewall policies.

❼ functionalities such as load balancing decide where the input traffic flow must
be forwarded exploiting a specific logic with internal decisions, such as the
current load of each server of the cluster. However, also a load balancer does
not influence how the firewall policies are defined, because the rules deal with
the end points of the network and we cannot say at priori to which server a
load balancer will forward a packet. Consequently, it is as if the load balancer
has to send a packet to every server of the cluster to perform the requirements
verification.

❼ functionalities such as NAT are able to modify some header fields, like re-
placing private IP addresses with public ones. Because of this action, the
rules which should be configured on a firewall could be different, according
to the position in the Service Graph the packet filter is allocated; neverthe-
less, the input security requirements do not need any further modification,
because they provide constraints about kinds of traffic flow between pair of
end points.

61

6 – Allocation Graph and Forwarding Rules

❼ functionalities such as web caching takes forwarding decisions according to
information which is typically external from the IP quintuple values, because
the web cache, for example, analyses the URL of the resource which a client
has requested to a web server and checks if this content is already present
in itself. However, parameters such as URLs concern the application layer of
the ISO/OSI stack whereas the packet filter firewalls base their forwarding
behaviour on IP addresses and ports; consequently, also in the web cache case
it is not possible to establish when a packet is dropped and a packet filter
would not be needed.

6.1.2 Model of the Service Graph

The model of a Service Graph, received by the framework as input and where no
firewall instance has still been allocated, is the following:

GS = (NS, LS)

A Service Graph is, actually, characterized by two sets:

1. NS is the set of all the network nodes of the Service Graph and it can be
formalized as

NS = ES ∪ SS

In more details, ES is a set characterized by the edge terminals of the service;
with this term, not only a client or a server are referred, but also subnetworks
where multiple end points are represented as a single one. Instead, SS is a
second set and it is composed by service functions (e.g. web cache, NAT),
which could be needed to define a complete end-to-end service. Each element
of NS is uniquely identified by a non-negative integer number k.

2. LS is the set of the links interconnecting a pair of elements of NS, i.e. lij ∈
LS, i /= j implies that ni ∈ NS is directly connected to nj ∈ NS; the Service
Graph is, in fact, modelled as a directed graph.

It is worth underlining that these model does not allow by itself the allocation of
the firewalls, because every node of the graph is already characterized by a specific
function. For this reason, an automatic transformation into an Allocation Graph
will be needed, before the optimizer engine can establish the allocation schema and
the configuration of the firewall instances.

6.1.3 Implementation of the Service Graph in the XML
schema

In the XML schema, the graph element models a Service Graph which can be defined
by the service designer and received as input by VEREFOO. It is characterized

62

6 – Allocation Graph and Forwarding Rules

by a unique numeric ID, a boolean attribute called serviceGraph and a sequence
of node elements. The presence of the identifier allows the user to specify more
than one input logical topology if he wants to deploy them simultaneously on the
same physical infrastructure, as it is shown in Listing 6.1. Then, the serviceGraph
attribute must have the value true if the XML file represents a Service Graph,
because the false value – which is the default value – corresponds to an Allocation
Graph.

<graphs>

<graph id="0">

...

</graph>

<graph id="1">

...

</graph>

</graphs>

Listing 6.1. XML example of multiple Service Graphs

Each graph element is, then, composed by a set of node elements; each one of
them represents the basic unit of the logical topology on which either the service
designer can specify a network function or the framework itself can allocate a fire-
wall instance.

Each node is characterized by :

❼ the name attribute, representing the node unique name, which can be a string
internally mapped to an IP address or directly a network address;

❼ the functional type attribute, representing the function which is assigned to
the specific node of the Service Graph;

❼ a list of neighbour elements, each one of which represents an adjacent node
towards which a packet can be directly sent. In this case, to model a bidirec-
tional connection, it is important to specify each node of the pair as neighbour
of the other;

❼ a configuration element, which represents the behaviour of the installed net-
work function, with all the details needed by the framework to further define
the proper hard constraints of the MaxSMT problem.

A complete example of an XML file describing a Service Graph is provided by
means of Listing 6.2, where the graph showed in Figure 6.1 is represented.

<graph id="0" serviceGraph="true">

<node functional_type="WEBCLIENT" name="10.0.0.1">

<neighbour name="20.0.0.1"/>

<configuration description="WebClient_Description"

name="configurationWC1">

<webclient nameWebServer="30.0.0.1"/>

63

6 – Allocation Graph and Forwarding Rules

Figure 6.1. Graphical example of a Service Graph

</configuration>

</node>

<node functional_type="WEBCLIENT" name="10.0.0.2">

<neighbour name="20.0.0.1"/>

<configuration description="WebClient_Description"

name="configurationWC2">

<webclient nameWebServer="30.0.0.2"/>

</configuration>

</node>

<node functional_type="CACHE" name="20.0.0.1">

<neighbour name="10.0.0.1"/>

<neighbour name="10.0.0.2"/>

<neighbour name="20.0.0.2"/>

<configuration description="Cache_description"

name="configurationCache">

<cache>

<resource>10.0.0.1</resource>

<resource>10.0.0.2</resource>

</cache>

</configuration>

</node>

<node functional_type="NAT" name="20.0.0.2">

<neighbour name="20.0.0.1"/>

<neighbour name="30.0.0.1"/>

<neighbour name="30.0.0.2"/>

<configuration description="NAT_Description"

name="configurationNAT">

<nat>

<source>10.0.0.1</source>

<source>10.0.0.2</source>

</nat>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.0.1">

<neighbour name="20.0.0.2"/>

64

6 – Allocation Graph and Forwarding Rules

<configuration description="WebServer_description"

name="configurationWS1">

<webserver>

<name>30.0.0.1</name>

</webserver>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.0.2">

<neighbour name="20.0.0.2"/>

<configuration description="WebServer_description"

name="configurationWS1">

<webserver>

<name>30.0.0.2</name>

</webserver>

</configuration>

</node>

</graph>

Listing 6.2. XML example of a Service Graph

6.2 Allocation Graph

6.2.1 Description of the Allocation Graph concept

The Service Graph provided by the service designer is automatically processed to
create an internal representation called Allocation Graph, which is a core novelty
this thesis work introduced. If the service designer does not specify any specific
constraint, an Allocation Place is created replacing any link between a pair of nodes,
such as end points or network functions; this element is a placeholder position
where the MaxSMT solver, after solving the optimization problem, could establish
if a firewall is needed to be allocated so as to achieve the optimal solution in terms
of allocation schema.

Nevertheless, it is legitimate that the service designer has technical knowledge
about the configuration of security defenses, if for example he also covers the role
of security manager in the company of a Service Provider. In this case, he has the
faculty to impose that a firewall should be placed in a specific Allocation Place,
preventing the solver from removing it; secondly, the user can forbid the allocation
of a firewall between a pair of nodes, if he feels that it would be useless to place an
instance there. These additional features improve the capabilities of the framework,
because this way it can be exploited with multiple strategies, for instance allowing
to reduce the solution space by forbidding some firewalls and thus decreasing the
execution time even though it could lead to an unsatisfiability of the optimization
problem. Furthermore, forcing a firewall in a specific position is a useful feature to
represent networks where not only virtualized functions are deployed, but even some
hardware appliances are still present; in this scenario, these additional elements are
perfectly represented by means of this tool.

65

6 – Allocation Graph and Forwarding Rules

Furthermore, if the service designer has both a clear idea how the final Service
Graph would be computed and which are the only positions where the allocation
of a firewall is a meaningful choice according to his technical knowledge, then he
can decide to immediately introduce an Allocation Graph to the framework. An
extreme case of this scenario occurs when the service designer creates a logical
topology where only Allocation Places are present, as in Figure 6.2. This Alloca-
tion Graph can be, actually, exploited to understand which are the best allocation
schema and configuration of the firewalls to install in the final service while ignor-
ing all the network functions which do not have any impact on the output of the
framework; it is, besides, the perfect scenario where the service designer can focus
only on the Network Security Functions without caring about other middleboxes.
For these reasons, this Allocation Graph is the most suitable to carry out perfor-
mance tests, because it is possible to get results which exclusively depend on the
the clauses of the MaxSMT problem related to firewalls and the Network Security
Requirements – which nonetheless are the most critical and essential part of the
framework.

Figure 6.2. Allocation Graph with only Allocation Places between end points

Despite these benefits which are provided by a manual contribution in the con-
figuration or creation of an Allocation Graph, nevertheless, it is important to un-
derline that a consequence of these features could be a solution that is not optimal,
since some combinations of the values assigned to the MaxSMT internal variables
are pruned, even though they could be acceptable or even optimal, by means of
heuristic choices taken by the user. It is, however, a possibility which the framework
provides so that the user is offered a large set of options among which to choose
according to his preferences and a trade-off between optimality and performance.

Each Allocation Place of this graph can have two possible roles at the beginning
of the framework execution:

❼ if the Allocation Place is not collocated in any path between sources and
destinations of the specified Network Security Requirements, then it remains
empty and can be eliminated from the topology, without having any impact on
the performance of the framework because in the MaxSMT problem instance
no clauses are defined for it;

66

6 – Allocation Graph and Forwarding Rules

❼ if the Allocation Place is collocated in at least one path between sources
and destinations of the specified Network Security Requirements, then the
framework must consider the possibility to allocate a firewall in this position
and a set of hard and soft constraints are introduced in the MaxSMT problem
instance.

After the computation of the MaxSMT problem, for each Allocation Place two
possible results could have been established:

❼ if a firewall has been allocated, the Allocation Place is kept in the output of
the framework and is configured with a Filtering Policy which establishes, for
each received packet, if it must be forwarded or dropped;

❼ if no firewall has been allocated, the Allocation Place has a simple forwarding
behaviour, since it forwards each received packet to all the possible out-ports,
and it can be removed by means of a post-processing task.

After each node of the Allocation Graph is finally assigned a specific role, the
corresponding virtual implementation can be consequently deployed to the sub-
strate servers of a Physical Graph. The separation of the two phases provides
the fundamental independence between the required capabilities and the functions
which represent their implementation; in fact, the choices which can be made about
the logical topology of the Service or Allocation Graph are not influenced by the
fact that the physical infrastructure is formed by hardware appliances or by normal
servers on which Virtual Network Functions can be installed. In the first case, the
assumption is that each physical middlebox can be associated with one logical node
of the Allocation Graph, while in the second case it is possible to deploy more VNFs
contemporary on the same server, reducing the amount of traffic on the links and
the effective number of required servers.

6.2.2 Model of the Allocation Graph

Considering the scenario in which an Allocation Graph is automatically generated
by a Service Graph specified as input by the service designer, the formal model of
the Allocation Graph is:

GA = (NA, LA)

GA is characterized by two sets, as for the GS model:

1. NA is the set of all the nodes of the Allocation Graph, independently from
their role and behaviour in the network and in the service, each one of which
is characterized by a unique identifier.

2. LA is the set of the links interconnecting a pair of elements belonging to NA

set, i.e. lij ∈ LA, i /= j implies that ni ∈ NA is directly connected to nj ∈ NA;
as it is evident from this definition, also the Allocation Graph is modelled as
a directed graph.

67

6 – Allocation Graph and Forwarding Rules

Respect to GS, the model of the set of nodes in GA is more complex because
of the presence of the newly introduced Allocation Places. Actually, this set is
modelled as:

NA = EA ∪ SA ∪ PA

The three sets which compose NA are the following ones:

1. EA is the set of the end points of the topology. Since the automatic generation
of the Allocation Graph does not modify the end points, then:

EA = ES

2. SA is the set of the service functions requested by the service designer. Since
the automatic generation of the Allocation Graph does not modify the be-
haviour of these functions, then:

SA = SS

3. PA is the set of the Allocation Places where a firewall can be potentially
placed.

For each pk ∈ PA, the function allocated, when applied to this element, returns a
boolean true result if a firewall instance has been effectively allocated on pk, false if
the Allocation Place has a simple forwarding behaviour when the optimizer engine
establishes that there is no need – or it is not feasible because of other constraints –
to place a firewall instance in that position. By default, the returned value is false
so that, if possible, no firewall is allocated on the logical topology; nevertheless, the
value can be forced to true by the service designer or by the optimizer engine when
needed to satisfy the input Network Security Requirements.

Furthermore, for every lij ∈ LS, i /= j, the service designer has the faculty to
perform two different actions which have an impact on the automatic generation of
the Allocation Graph:

❼ forbidden(lij) forbids the creation of an Allocation Place correspondent to
this link, so that no firewall instance will be placed by the optimizer engine in
this position. A consequence, however, could be the potential unsatisfiability
of the MaxSMT problem;

❼ forced(lij) obligates the allocation of a firewall in this position, despite this
could lead to an unoptimized solution.

The two actions can never be performed together in the same lij ∈ LS, because
otherwise they would be in conflict.

According to the choices made by the service designer, the other constraints
relative to the population of PA, LA sets and to the values returned by the allocated
function when applied to a pk ∈ PA are the following:

∀ lij ∈ LS. ¬forbidden(lij) ∧ ¬forced(lij)
=⇒ pij ∈ PA ∧ lipij ∈ LA ∧ lpijj ∈ LA

(6.1)

68

6 – Allocation Graph and Forwarding Rules

∀ lij ∈ LS. forbidden(lij) =⇒ lij ∈ LA (6.2)

∀ lij ∈ LS. forced(lij) =⇒ pij ∈ PA ∧ lipij ∈ LA

∧ lpijj ∈ LA ∧ allocated(pij) = true
(6.3)

The three Formulas 6.1, 6.2 and 6.3 are mutually exclusive: according to the
choice made by the user, some elements are defined in the corresponding sets of the
Allocation Graph. Particularly, Formula 6.1 is exploited to represent the typical
scenario, where for each link lij ∈ LS, i /= j an Allocation Place is created because no
additional constraints are defined by the user. In this scenario, only the Allocation
Place is created, while the allocation of the firewall could be decided upon different
constraints – typically some soft clauses –.

It is possible to underline that among these three possibilities only Formula 6.3
sets a definitive value for the allocated function when applied to a specific Allocation
Place; in this case, solving the corresponding MaxSMT problem requires to satisfy
this hard constraint.

6.2.3 Implementation of the Allocation Graph in the XML
schema

The implementation of the Allocation Graph in the XML schema was created con-
sidering the Service Graph structure as a starting point. With respect to the
Service Graph, actually, the main difference is the possibility to specify node el-
ements without either any functional type attribute or any configuration internal
element, because these values will be established by the framework after solving
the MaxSMT problem. Listing 6.3 shows a simple example of an Allocation Place,
which can be added to an XML file by the service designer or automatically by the
framework itself.

<node name="10.0.0.1">

<neighbour name="10.0.0.2" />

<neighbour name="10.0.0.3" />

</node>

Listing 6.3. XML example of an Allocation Place

Inside the Constraints element of an input XML file, the service designer can
specify the forced and forbidden action on a pair of nodes by adding an Alloca-
tionConstraints element, which represents another novelty introduced during the
thesis work. It contains a set of AllocationConstraint elements, each one of which
is characterized by:

❼ a type attribute, which can have the two alternative string values forced or
forbidden;

❼ a nodeA attribute, which identifies the first extremity node of the link on
which the constraint is defined;

69

6 – Allocation Graph and Forwarding Rules

❼ a nodeB attribute, which identifies the second extremity node of the link on
which the constraint is defined.

To provide an example of how the automatic generation of an XML file describ-
ing an Allocation Graph is performed, it is possible to consider the XML file of the
Service Graph presented in Listing 6.2. The supposition is that, alongside with this
Service Graph, the service designer provides the set of constraints, related to the
allocation of firewall instances, described in Listing 6.4.

<Constraints>

<NodeConstraints/>

<LinkConstraints/>

<AllocationConstraints>

<AllocationConstraint type="forbidden" nodeA="10.0.0.2"

nodeB="20.0.0.1"/>

<AllocationConstraint type="forced" nodeA="20.0.0.2"

nodeB="30.0.0.1"/>

</AllocationConstraints>

</Constraints>

Listing 6.4. XML example of a set of Allocation Constraints

The XML file automatically generated by the framework, describing the Alloca-
tion Graph which is then modelled in the MaxSMT problem, is provided in Listing
6.5 and graphically represented in Figure 6.3. It is worth noticing how also the
elements which were present in the original XML file have been modified, such as
the neighbour elements; moreover, the firewall which has been introduced is still
without configuration, which will be established only after solving the optimization
problem in a second moment.

Figure 6.3. Graphical example of the automatically generated Allocation Graph

<graph id="0">

<node functional_type="WEBCLIENT" name="10.0.0.1">

<neighbour name="20.0.0.1"/>

<configuration description="WebClient_Description"

name="configurationWC1">

<webclient nameWebServer="30.0.0.1"/>

</configuration>

</node>

70

6 – Allocation Graph and Forwarding Rules

<node functional_type="WEBCLIENT" name="10.0.0.2">

<neighbour name="40.0.0.1"/>

<configuration description="WebClient_Description"

name="configurationWC2">

<webclient nameWebServer="30.0.0.2"/>

</configuration>

</node>

<node name="40.0.0.1">

<neighbour name="10.0.0.2"/>

<neighbour name="20.0.0.1"/>

</node>

<node functional_type="CACHE" name="20.0.0.1">

<neighbour name="10.0.0.1"/>

<neighbour name="40.0.0.1"/>

<neighbour name="40.0.0.2"/>

<configuration description="Cache_description"

name="configurationCache">

<cache>

<resource>10.0.0.1</resource>

<resource>10.0.0.2</resource>

</cache>

</configuration>

</node>

<node name="40.0.0.2">

<neighbour name="20.0.0.1"/>

<neighbour name="20.0.0.2"/>

</node>

<node functional_type="NAT" name="20.0.0.2">

<neighbour name="40.0.0.2"/>

<neighbour name="40.0.0.3"/>

<neighbour name="40.0.0.4"/>

<configuration description="NAT_Description"

name="configurationNAT">

<nat>

<source>10.0.0.1</source>

<source>10.0.0.2</source>

</nat>

</configuration>

</node>

<node functional_type="FIREWALL" name="40.0.0.3">

<neighbour name="20.0.0.2"/>

<neighbour name="30.0.0.1"/>

<configuration description="Firewall_Description"

name="configurationFW">

<firewall />

</configuration>

</node>

<node name="40.0.0.4">

<neighbour name="20.0.0.2"/>

<neighbour name="30.0.0.2"/>

71

6 – Allocation Graph and Forwarding Rules

</node>

<node functional_type="WEBSERVER" name="30.0.0.1">

<neighbour name="40.0.0.3"/>

<configuration description="WebServer_description"

name="configurationWS1">

<webserver>

<name>30.0.0.1</name>

</webserver>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.0.2">

<neighbour name="40.0.0.4"/>

<configuration description="WebServer_description"

name="configurationWS1">

<webserver>

<name>30.0.0.2</name>

</webserver>

</configuration>

</node>

</graph>

Listing 6.5. XML example of an automatically generated Allocation Graph

6.2.4 Implementation of the Allocation Graph in the frame-
work

In the framework, the Allocation Graph can be automatically generated by the
newly developed AllocationGraphGenerator class, given an input Service Graph
and a set of allocation constraints; if, instead, the service designer immediately
specifies an Allocation Graph as input, the role of this class is not needed.

Each node of the Allocation Graph is internally represented as an object of the
Allocation Node class. The Allocation Node class is an extension of the JAXB-
annotated Node class corresponding to the homonymous element in the XML
schema; the purposes of its creation are to internally implement the hashCode
and equals methods so that the instances can be used as keys in maps or in sets
and to store all the necessary information for the creation of forwarding rules and
routing tables.

In fact, in order to achieve independence by the formulas for the forwarding
rules which will be described in Section 6.3 and the data on which they are applied,
four maps are provided inside each instance of this class:

❼ a map called leftHops, where the key is the node from which the packet has
been received and the value is the set of the nodes to which the packet can be
sent to reach the destinations of the isolation and reachability requirements;

❼ a map called rightHops, where the key is the node to which the packet has
been sent and the value is the set of the nodes from which the packet can

72

6 – Allocation Graph and Forwarding Rules

have been received traversing the network to reach the destinations of the
isolation and reachability requirements;

❼ a map called lastHops, where the key is the source of a security requirement
and the value is the set of the nodes which can be the last hops to reach the
destination;

❼ a map called firstHops, where the key is the destination of a security require-
ment and the value is the set of the nodes which can be the first hops to reach
it starting from a corresponding source.

According to the specific network capability which could be deployed on a node
of the Allocation Graph, the forwarding rules will be different, but they will use the
same data, stored in these maps thanks to a recursive visit of the topology done
before the installation of the functions.

In addition, the NFAllocationManager class can manage all the information
about the Allocation Nodes and it implements both the algorithmic decision thanks
to which a function is deployed on a node and the invocation of the specific methods
which can create the z3 formulas after the computation of the previously explained
maps.

Figure 6.4. Example of an Allocation Graph to illustrate the maps of
an Allocation Place

To provide a better comprehension of this feature, an example is provided by
means of Figure 6.4, where the supposed Network Security Requirement to satisfy
is a reachability (or indifferently isolation) requirement from the end point e1 to
the end point e2.

Through a recursive visit of the logical topology, the following chains of nodes
are extracted as possible loop-free paths between the two hosts:

❼ e1 − p3 − p5 − p6 − p8 − e2

❼ e1 − p3 − p5 − p6 − p7 − p9 − e2

❼ e1 − p3 − p5 − p6 − p4 − p7 − p9 − e2

73

6 – Allocation Graph and Forwarding Rules

❼ e1 − p4 − p6 − p8 − e2

❼ e1 − p4 − p6 − p7 − p9 − e2

❼ e1 − p4 − p7 − p6 − p8 − e2

❼ e1 − p4 − p7 − p9 − e2

Focusing on p6, his leftHops can be p4, p5 and p7 because a packet can come
from them according to the effective path which is traversed, while the rightHops
are p4, p7 and p8 because they are the possible next hops of its routing table; it is
possible to notice, for example, that p5 is not a rightHop for p6 because otherwise
a loop in the forwarding would be created.

After the visit of the graph, the concise representation of the contents of the
leftHops and rightHops maps of p6 is provided in Listing 6.6.

leftHops(p6)={ p4 = [p7, p8], p5 = [p4, p7, p8], p7 = [p8]}

rightHops(p6)={ p4 = [p5], p7 = [p4, p5], p8 = [p4, p5, p7]}

Listing 6.6. Concise representation of the maps of an Allocation Node

Another useful piece of terminology which can be exploited to simplify the
representation and the understanding of the contents of these maps is that, given
lH a specific leftHop of p6, the function rightHop(lH, p6) returns the set of all the
possible next hops where the packets can be forwarded, after being received by p6
from the direction of lH. Vice versa, the same terminology can be applied, given rH
a specific rightHop of p6, to the function leftHop(rH, p6); in this case, the returned
set is composed by the nodes from which the packet can have been received, if it
has been sent to rH.

An extended representation of the maps of the example in exam is, furthermore,
provided in Listing 6.7, where the two aforementioned functions are exploited.

leftHops(p6) = { p4, p5, p7 }

rightHops(p4, p6) = { p7, p8 }

rightHops(p5, p6) = { p4, p7, p8 }

rightHops(p7, p6) = { p8 }

rightHops(p6) = { p4, p7, p8 }

leftHops(p4, p6) = { p5 }

leftHops(p7, p6) = { p4, p5 }

leftHops(p8, p6) = { p4, p5, p7 }

Listing 6.7. Extended representation of the maps of an Allocation Node

Moreover, a complete explanation of the reasons for which, given a rightHop or
a leftHop, a correspondent list of nodes is associated is here provided:

❼ if p6 receives a packet from p4 as leftHop, then it can send this packet only to
p7 or p8, because they are the only rightHops through which the destination
can be reached if the packet comes from p4;

74

6 – Allocation Graph and Forwarding Rules

❼ if p6 receives a packet from p5 as leftHop, then it can send this packet to
either p4, p7 or p8, because they are the only rightHops through which the
destination can be reached if the packet comes from p5;

❼ if p6 receives a packet from p7 as leftHop, then it can send this packet only
to p8, because it is the only rightHop through which the destination can be
reached if the packet comes from p7;

❼ if p6 sends a packet to p4 as rightHop, then this packet could have been
received only from p5 because it is the only leftHop passing from which the
destination can be reached continuing through p4;

❼ if p6 sends a packet to p7 as rightHop, then this packet could have been received
either from p4 or from p5, because both of them are leftHops candidates
passing from which the destination can be reached continuing through p7;

❼ if p6 sends a packet to p8 as rightHop, then this packet could have been received
from p4, p5 or p7, because all of them are leftHops candidates passing from
which the destination can be reached continuing through p8.

Moving then the focus on the end point e1, since both p8 and p9 can potentially
be the last nodes traversed by a packet sent to the network by e1 to reach the
destination e2, the content of its lastHops map is represented in Listing 6.8.

lastHops(e1) = { e2 = [p8, p9] }

Listing 6.8. Representation of the content of the lastHops map

Symmetrically, since both p3 and p4 can potentially be the first nodes traversed
by a packet sent to the network by e1 to reach the destination e2, the content of
the firstHops maps of e2 is represented in Listing 6.9.

firstHops(e2) = { e1 = [p3, p4] }

Listing 6.9. Representation of the content of the firstHops map

6.3 Forwarding Rules

6.3.1 Design of the Forwarding Rules

In designing the forwarding rules by means of which a node decides if a received
packet must be forwarded to some next hops or dropped, it is possible to highlight
two different cases:

❼ for all the network functions which the service designer can exploit to create a
Service Graph, the design of the construction of the routing tables defined in
Verigraph has been kept. However, since the original formulas for forwarding
rules were able to consider only loop-free paths, where at maximum one left
hop and one right hop exist for a node traversed by a packet, some modifica-
tions were needed to cover a more complex scenario, where potentially each

75

6 – Allocation Graph and Forwarding Rules

node, including clients and servers, can be linked to a multiplicity of other
nodes to every other direction;

❼ for all the Allocation Places, new first-order logic formulas have been intro-
duced during this thesis work. Furthermore, since in each Allocation Place
a firewall can be installed, this forwarding behaviour is shared also by the
packet filtering capability.

In the following part of this subsection, the focus will be on presenting the new
formulas introduced for the Allocation Places, which have been a critical phase of
the modelling work of this thesis. For a better comprehension of the formulas which
will be afterwards presented, useful terminology is provided in the following:

pk0 it is the variable representing a packet;

recv(n1, n2, pk0) it is an expression which means that node n2 has received the
packet pk0 from node n1;

send(n1, n2, pk0) it is an expression which means that node n1 has sent a packet
pk0 to node n2;

behaviour(pk, pk0) it is a variable representing the matching of the Filtering Policy
of the allocated firewall with the packet pk0 and is present only when the
packet filtering capability is used on the specific Allocation Place.

The forwarding rules are modelled by the following FOL formulas, which a
consider a generic packet (called pk0 in the first-order logic) that an intermediate
Allocation Place pk ∈ PA should manage:

∀ lH ∈ leftHops(pk). (∃ pk0. recv(lH, pk, pk0) ∧ behaviour(pk, pk0)
∧ allocated(pk) =⇒ ∀rH ∈ rightHops(lH, pk). send(pk, rH, pk0))

(6.4)

∀ rH ∈ rightHops(pk). (∃ pk0. send(pk, rH, pk0) ∧ behaviour(pk, pk0)
∧ allocated(pk) =⇒ ∃lH ∈ leftHops(rH, pk). recv(lH, pk, pk0))

(6.5)

∀ lH ∈ leftHops(pk). (∃ pk0. recv(lH, pk, pk0) ∧ ¬allocated(pk)
=⇒ ∀rH ∈ rightHops(lH, pk). send(pk, rH, pk0))

(6.6)

∀ rH ∈ rightHops(pk). (∃ pk0. send(pk, rH, pk0) ∧ ¬allocated(pk)
=⇒ ∃lH ∈ leftHops(rH, pk). recv(lH, pk, pk0))

(6.7)

Formula 6.4 states that, if the Allocation Place has received a packet from a
leftHop, a firewall is effectively allocated and its behaviour does not drop the packet,
then it must be sent to every rightHop which allow to reach the destination, given
the leftHop of provenance; this way all the possible paths to reach a destination are
tried.

76

6 – Allocation Graph and Forwarding Rules

Formula 6.5 states that, if the Allocation Place has sent a packet to a rightHop,
a firewall is effectively allocated and its behaviour does not drop the packet, then
it must have been received from at least one leftHop from which the source could
have sent a packet; it is in fact acceptable that some leftHops do not let packets
transit because of their functionalities.

Formula 6.6 states that, if the Allocation Place has received a packet from a
leftHop and no firewall is actually allocated, then the packet must be sent to every
rightHop which allow to reach the destination, given the leftHop of provenance; in
fact, the behaviour is that of a forwarder, so that all the possible paths to reach a
destination are tried every time a packet is received.

Formula 6.7 states that, if the Allocation Place has sent a packet to a rightHop
and no firewall is actually allocated, then the packet must have been received
from at least one leftHop from which the source could have sent a packet; it is
in fact acceptable that some leftHops do not let packets transit because of their
functionalities.

Formulas 6.4 and 6.5 work in couple, similarly as Formulas 6.6 and 6.7, in
order to guarantee the correctness of both the formulations of the isolation and
reachability Network Security Requirements, which will be presented in Sections
7.5 and 7.6.

Actually, on one side, without Formulas 6.4 and 6.6, the optimizer engine, while
trying to satisfy an isolation requirement, could make false the result of the send
functions even when the corresponding recv function is true, if the only exploited
forwarding rules were Formulas 6.5 and 6.7.

On the other side, without Formulas 6.5 and 6.7, the optimizer engine, while
trying to satisfy a reachability requirement, could make true the result of the send
functions even when the corresponding recv function is false, if the only exploited
forwarding rules were Formulas 6.4 and 6.6.

6.3.2 Implementation of the Forwarding Rules

Two different ways to implement the forwarding rules through which nodes can
propagate the packets they have received have been evaluated in comparison:

❼ they can be built using quantifiers;

❼ they can be built strictly using the information about left and right hops in
the paths related to every requirement.

The first solution was adopted by the original version of the framework, which
made an abundant use of quantifiers : they are a particular type of variable which
allows to express a larger set of elements than just a single one inside a formula. To
provide an example with the goal to clarify the meaning of a quantifier variable, we
can consider the z3 assertion presented in Listing 6.10 and related to a node called
node1 with neighbours node2 and node3 and on which the decision to deploy a
packet filter should be taken by the framework:

77

6 – Allocation Graph and Forwarding Rules

(assert (forall ((pk0 packet) (n0 node))

(=> (and (recv n0 node1 pk0) (not

packet_filter_used_node0))

(and (send node1 node2 pk0) (send node1 node3

pk0)))))

Listing 6.10. z3 assertion for a forwarding example with quantifiers

The explanation of this assertion is that for each packet pk0 which the node
node1 has potentially received from each node n0, if the packet filter is not installed,
then it must send the same packet to another node node2.

This way there is no distinction about leftHops and rightHops, because the
quantifier variable n0 can represent every other instance of that type, i.e. it repre-
sents all the network nodes in the graph; the formula is, consequently, more concise
and does not require the collection of the information in the maps described in
Subsection 6.2.4.

However, the use of quantifiers leads to very bad performance, because in each
formula involving them, all the possible variables of the same type are considered
by the optimizer. Consequently, the number of solutions that z3 investigates is too
huge to make large network instances feasible to be managed by the framework.

The second solution, adopted and developed by this thesis work to overcome the
limitation of the original approach, requires that in the formulas of the forwarding
rules each variable representing a node is not defined as a quantifier, but as the spe-
cific corresponding name of that precise node inside the z3 model which coincides
with the IP address or the alternative unique name for simplicity of implementa-
tion. This is possible only thanks to the Allocation Graph implementation and
the construction of the internal maps of each Allocation Node from which informa-
tion about previous and next hops can be easily and efficiently retrieved when the
forwarding rules must be built in a second time.

An example is provided by means of Figure 6.5 to make clearer the differences
between the two solutions.

Figure 6.5. Case of study for forwarding rules

78

6 – Allocation Graph and Forwarding Rules

Considering exclusively the forwarding rule represented by Formula 6.4 through
which the Allocation Place p6 must decide according to the behaviour of the in-
stalled firewall functionality if a packet coming from e1 should be sent towards e3,
it can be implemented in the framework in two different ways.

If quantifiers are used, the rule is modelled by the following formula:

∃ n0. recv(n0, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6)
⇒ send(p6, p7, pk0) (6.8)

In this formula, n0 is a quantifier representing all the possible variables of type
node inside the same z3 model. As a consequence, when the optimizer parses the
input hard and soft constraints, Formula 6.8 is expanded creating a different for-
mula for each one of the different node present in the network:

recv(e1, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)
recv(e2, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)
recv(e3, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)
recv(p4, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)
recv(p5, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)
recv(p6, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)
recv(p7, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p7, pk0)

In this first solution, all the possible events of receiving a packet from any node
of the network, including p6 itself, are considered. The advantage of this approach
is that Formula 6.8 is much compact and can be built using only information about
the next hops towards a destination; actually, the quantifier is a powerful and
expressive tool, which provides expressiveness and clearness. On the other hand,
the performance results take a severe hit by this feature, because the optimizer is
forced to consider a huge number of constraints; if the network is made by 100
nodes, than the single formula is expanded by z3 in 100 separated constraints,
dramatically increasing the size of the solution space.

If the maps described in Subsection 6.2.4 are exploited instead of the quantifiers,
the rule is immediately modelled by the following formulas, without needing a
translation by the optimizer:

recv(p4, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p4, pk0)
recv(p5, p6, pk0) ∧ behaviour(p6, pk0) ∧ allocated(p6) ⇒ send(p6, p4, pk0)

This second approach is feasible because a recursive visit of the graph can
provide the information that a packet, related to the requirement whose source is e1
and destination is e3, can be received by p6 exclusively from p4 or p5 and it makes
sense to send it only to p7 to reach its real destination, avoiding to consider both
useless paths which do not allow to reach possible destinations and left hops from
which it is evident that a packet would never be received. More computation time
to build these data structures is required, but it is always negligible in comparison
to the working time of the optimizer.

After presenting this practical example, the Java implementation of Formula 6.4
is provided in Listing 6.11 to have a complete overview on how forwarding rules are

79

6 – Allocation Graph and Forwarding Rules

actually built in the Java APIs which exploit the z3 language to model the relative
hard constraints inside the MaxSMT problem.

for(Map.Entry<AllocationNode, Set<AllocationNode>> entry :

source.getLeftHops().entrySet()) {

AllocationNode an = entry.getKey();

Expr e = an.getZ3Name();

BoolExpr recv= (BoolExpr) nctx.recv.apply(e, fw, p_0);

List<Expr> list = entry.getValue().stream().map(n ->

n.getZ3Name()).collect(Collectors.toList());

List<Expr> sendNeighbours = list.stream().map(n ->

(BoolExpr) nctx.send.apply(fw, n,

p_0)).distinct().collect(Collectors.toList());

BoolExpr[] tmp = new BoolExpr[list.size()];

BoolExpr enumerateSend =

ctx.mkAnd(sendNeighbours.toArray(tmp));

if(autoplace) {

constraints.add(ctx.mkForall(new Expr[] { p_0 },

ctx.mkImplies(ctx.mkAnd((BoolExpr) recv,

behaviour, used), ctx.mkAnd(enumerateSend)),

1, null, null, null, null));

}

}

Listing 6.11. Java implementation of Formula 6.4

80

Chapter 7

Network Security Requirements

After defining a Service Graph, the service designer can specify a set of Network Se-
curity Requirements which must be satisfied by an automatic allocation of firewalls
on the generated Allocation Graph. Among all the kinds of security constraints
which can be specified, this thesis focused on connectivity requirements, i.e. reach-
ability and isolation properties. The isolation and reachability constraints can
specify the respective need of blocking or allowing a communication between two
end points or two subnetworks including a multiplicity of nodes. In the original
version of the framework, however, these features were exclusively applied to an
interaction established from a client to a server in a limited scenario.

For this reason, first of all a more complete model has been introduced in relation
to the Network Security Requirements which deal with the packet filters rules, i.e.
these security requirements are based on the components of the IP quintuple. A
general description is provided in Section 7.1, while the formal model is presented
in Section 7.2 and the relative implementation, inherited by the previous framework
version, in the XML schema is described in Section 7.3.

An overview about how this thesis contributed to the modification of the wild-
cards feature for IP addresses is provided in Section 7.4; it is a traversal concept
which is exploited not only in the components of the Network Security Require-
ments, but also in other aspects of the framework such as the definition of the end
points of a Service or Allocation Graph and the auto-configuration of the firewall
policy rules. Improving the performance which can be achieved through this feature
has been a critical step of the overall work.

A second step was to remodel the first-order logic formulas and, accordingly,
their implementation in the framework in order to allow interactions between end
points in some scenarios where loops are present and in the scenarios where an end
point is linked to multiple nodes; when a loop of links is present, in fact, if all the
loop-less paths from the source to the destination are not tried it is impossible to
understand if the requirement is really satisfied. The new formulas are presented
in Section 7.5 for the isolation property, Section 7.6 for the reachability property.

A third step was to improve the performance by removing the quantifiers, whose
problems have already been explained in Section 7.4, together with the new imple-
mentations developed to overcome these limitations.

81

7 – Network Security Requirements

A further extension, presented in Section 7.7, has allowed to express the Network
Security Requirements for every pair of end points in the Allocation Graph or in
the Service Graph, independently of their specific role (i.e. client or server), in
order to model a more realistic network environment; this has been achieved by
exploiting the introduction itself of the Allocation Graph, as it has been explained
in Section 6.2.

Finally, as described in Section 7.8, the FOL formulas introduced to model the
Network Security Requirements have allowed, as a consequence, the possibility that
the same source can generate different kinds of traffic flow, characterized by different
port numbers and transport-level protocols, avoiding to exploit pre-processing and
post-processing tasks to manage multiple security requirements between the same
pair of end points.

7.1 Description of the Network Security Require-

ments

The Network Security Requirements represent the second input of VEREFOO and
they can be formulated by the user of the framework exploiting two different rep-
resentations, according to his experience in terms of security:

1. if the service designer does not know all the security details of the configu-
rations of the Network Security Functions to be deployed, when he has to
define the input requirements, he can exploit a high-level representation, that
is flexible to manage and simple to understand. In this user-friendly approach,
each end point of the service is characterized by a unique identifier, that is a
label which can then be mapped to an IP address. To cite an example, it is
legitimate to request that the MongoDB database must not be reachable by
a Tomcat server, even though their current IP addresses (and even ports) are
not known, because these parameters can be established by the framework
automatically, exploiting the identifiers of each end point.

2. if instead the service designer knows how security functions are actually con-
figured and he is confident in his capabilities, he can decide to immediately
exploit a medium-level representation, including details such as IP addresses
and ports so that the tool can immediately use them to define the MaxSMT
problem, without needing an additional operation of translation. Moreover,
these representations are formulated so that they do not regard the set-up
of the virtual functions, which is dependent on different vendors and can be
easily computed afterwards.

In VEREFOO, the H2M module, described in Section 5.2, performs a transla-
tion from the high-level requirements to the medium-level representations; conse-
quently, the ADP module receives exclusively the constraints expressed by means
of a medium-level language and which do not need any further modification. The
thesis work considered this aspect as an assumption in defining a new model for
representing the security constraints.

82

7 – Network Security Requirements

In more details, the Network Security Requirements which this thesis analysed
are the connectivity requirements between a pair of end points; in particular, they
can be classified in two different types:

❼ reachability property, if an end point must be able to reach another one by
exploiting at least an allowed path in the graph;

❼ isolation property, if an end point must not reach another one through any
possible route.

In addition, the service designer can specify a general behaviour as input to
VEREFOO. The general behaviour describes how the framework should manage
all the kinds of traffic for which the service designer has not formulated any specific
security requirement and it can assume three possible values:

❼ whitelisting, if all the communications for which no specific requirement is
formulated should be blocked;

❼ blacklisting, if all the communications for which no specific requirement is
formulated should be allowed;

❼ specific, if the way how all the communications for which no specific require-
ment is formulated are handled is not important for the service designer.

The third alternative, i.e. the specific general behaviour, represents a Don’t
Care scenario where the user of the framework is interested in enforcing a set of
specific security requirements between selected pairs of end points, without caring
about all the other communications. This decision on one side requires that the
service designer is able to clearly identify all the kinds of traffic for which some
security constraints must be satisfied in the provided Service Graph, on the other
side it allows the framework to exploit this approach by reaching the goals expressed
through the soft clauses of the MaxSMT problem exclusively focusing on the specific
Network Security Requirements.

If a specific general behaviour is adopted, nevertheless, it is fundamental that the
PAN module of VEREFOO, described in Section 5.2, performs a conflict analysis
of the specific Network Security Requirements set, since the constraints specified
must be conflict-free; this problem, on the other hand, is not present with the
whitelisting or blacklisting approaches, because the user is allowed to respectively
specify only reachability or isolation properties.

During this thesis, where the development of the ADP module represented the
core of all the work, the assumption was that the general behaviour adopted is
always specific, because the other two cases can be brought back to this approach
by means of pre-processing tasks. For this reason, a second assumption is that the
input set of Network Security Requirements is always expressed in a medium-level
language and that it is conflict-free.

83

7 – Network Security Requirements

7.2 Model of the Network Security Requirements

The set of the specific Network Security Requirements which the service designer
can personally define and must be satisfied on an input Service Graph is represented
by the letter R in the formal model.

Each requirement in this set, i.e. each security requirement, is formulated ex-
ploiting the following components of a medium-level representation:

[ruleType, IPSrc, IPDst, portSrc, portDst, tranportProto]

Each expression is characterized by the following six elements:

❼ ruleType can have the values reachability property or isolation property and
specifies which kind of constraints should be satisfied for a specific kind of
communication;

❼ IPSrc is the source IP address of the communication for which the requirement
is specified;

❼ IPDst is the destination IP address of the communication for which the re-
quirement is specified;

❼ portSrc is the transport-level source port of the communication for which the
requirement is specified;

❼ portDst is the transport-level destination port of the communication for which
the requirement is specified;

❼ transportProto is the transport-level protocol of the communication for which
the requirement is specified.

For the representation of the IP addresses, i.e. IPSrc and IPDst, the traditional
dot-decimal notation has been exploited:

ip1.ip2.ip3.ip4

where ipi, ∀i ∈ {1,2,3,4}, can be an integer in the interval from 0 to 255, extremes
included, or alternatively a wildcard element, identified with ∗. This symbol allows
to have a unique statement for both a network address and the corresponding
netmask, instead of two separate elements: for example, the 20.6.8.∗ representation
can be used to express the end points that are present in the network 20.6.8.0/24,
while the 30.2. ∗ .∗ representation characterizes the network 30.2.0.0/16. Further
information about the new implementation of this feature, which this thesis work
contributed to, is provided in Section 7.4.

The IP addresses which are specified as source and destination in the Network
Security Requirements do not necessarily coincide with the IP addresses of the
end points of the Service Graph; for instance, if the service designer provides a
reachability property between the source 10.0.0.∗ and the destination 30.0.0.1, then

84

7 – Network Security Requirements

if in the Service Graph the two nodes 10.0.0.1 and 10.0.0.2 are present two kinds
of traffic should be actually allowed. For this reason, a pre-processing task already
existent in the framework was exploited so that, when the formulas of reachability
and isolation properties are built in the model of the MaxSMT problem, each
property refers to IP addresses effectively assigned to nodes in the logical topology.
In the aforementioned examples, the pre-processing task, from those input security
requirements, would easily create two separate requirements, where the first has
10.0.0.1 as source, while the second has 10.0.0.2 as source.

Then, the source and destination transport-level ports portSrc and portDst can
be formulated by means of a single number or an interval of numbers, considering
a range from 0 to 65535. To clarify this concept, if it is required that the source
10.5.8.4 must not be able to reach the destination 20.3.6.1 is the port numbers are
included in the interval [1000, 2000], the traffic flow between the two end points
must be blocked if the packets are characterized by a source port number included
in this interval, so that the isolation requirement is satisfied.

Finally, the transportProto element represents the layer-4 protocol which is used
above the IP layer; the formulation can have TCP and UDP as possible values or,
also for this component, the wildcard ∗. In this case, ∗ requires that the satisfiability
of the property must be guaranteed considering the possibility that the source can
send both TCP and UDP packets.

7.3 Implementation in the XML schema of the

Network Security Requirements

The implementation in the XML schema, inherited by the previous version of the
framework, of the reachability and isolation requirements is made by Property ele-
ments, each one of which is characterized by the following attributes:

name it is the kind of requirement (i.e. reachability or isolation);

src it is the identifier (e.g. IP address) of the source node of the requirement;

dst it is the identifier (e.g. IP address) of the destination node of the requirement;

src port it is the number or interval of numbers for the source port;

dst port it is the number or interval of numbers for the destination port;

l4 proto it is the type of layer 4 protocol (i.e. TCP or UDP).

A couple of examples, taken from an XML input file of the framework, are
presented in the following.

Listing 7.1 states a reachability requirement according to which every node
belonging to the subnetwork 10.0.0.0/24 must be able to reach the destination IP
address 20.0.0.2 to the port with number 80. It is possible to underline that, to
express the wildcards feature, the number -1 is exploited to be compliant with the
implementation of this feature in z3, which will be presented in Section 7.4.

85

7 – Network Security Requirements

<Property graph="0" name="ReachabilityProperty" src="10.0.0.-1"

dst="20.0.0.2" dst_port="80" />

Listing 7.1. XML example of a medium-level reachability requirement

Listing 7.2 states an isolation requirement according to which the node with
the IP address 10.1.1.1 must not be allowed to contact any node in the subnetwork
130.192.0.0/16 listening to port 80, if the source node is using any number port
between 2000 and 3000.

<Property graph="0" name="IsolationProperty" src="10.1.1.1"

dst="130.192.-1-.-1" src_port="[2000-3000]" dst_port="80"/>

Listing 7.2. XML example of a medium-level isolation requirement

7.4 Wildcards

The wildcards feature, introduced in the framework to model netmasks, is exploited
in different components of the ADP module, from the implementation of the for-
warding rules, to the definition of the Network Security Requirements and the
firewall Filtering Policies. The main reason for its adoption has been that it can
make much more powerful all the formulas where this feature is exploited.

Firstly, since the feature was already present in the old version of VEREFOO,
the problems related to the previous implementation of this feature are presented;
then, solutions to solve the incorrect logic formulations and to provide a more
efficient management are provided.

7.4.1 Wildcards original idea and implementation

In the VEREFOO framework, wildcards are used to represent both an IP address
and its netmask within a unique data structure; the goal is to minimize the number
of variables which the z3 optimizer engine will receive as input, since each IP
address itself, modelled as a Datatype structure, is composed by four variables, each
one an integer representing a component of the address. In particular, to express
that a part of an IP address is not related to a single host but a subnetwork, the
conventional symbol ∗ is used for that part; to provide an example, the network
10.0.1.0/24 or 10.0.1.0 255.255.255.0 is modelled in VEREFOO as 10.0.1.∗. In the
z3 language, since it is not possible to represent the symbol ∗, it is substituted by
the conventional value of -1.

Wildcards are a powerful tool which, in their original idea, would lead to min-
imize the number of rules z3Opt would evaluate as possible during the process of
firewall auto-configuration, because they can directly merge single rules related to
separated Network Security Requirements in a more limited number. The trade-
off between the impossibility to express netmasks different from /24, /16, /8 and
/0, being limited to a classful addressing scenario, and the potential future perfor-
mance improvements was considered fair enough to introduce this feature in the
framework.

86

7 – Network Security Requirements

However, the problem which initially arose was that, despite the original previ-
sions, the performance which could be achieved as a result was worse than expected;
for this reason, the feature was temporarily disabled and a post-processing task
had the duty to merge the single rules which the optimizer had again to separately
compute, in order to show the service designer the optimal output he effectively ex-
pected. This was not anyway an acceptable solution, because wildcards are clearly
an essential factor in the VEREFOO implementation and in correctly modelling a
Service Graph in a real usage environment.

First of all, the wildcards implementation was inspected in order to find a way to
refine them. They were used in several circumstances, such as comparison between
two IP addresses, the matching between a packet IP header and an IP address in
the forwarding of the packet and the firewall auto-configured rules.
To cite as an example the first instance, the old implementation of the comparison
between two IP addresses, called ip1 and ip2, was realized as showed in the following
formula:

∀i ∈ {1,2,3,4} . ip1i == ip2i ∨ ip1i == ∗ ∨ ip2i == ∗ =⇒ ip1 == ip2 (7.1)

What can immediately be noticed is that this implementation considers the four
components of an IP address with wildcards, or in other words the four components
of a netmask, as parallel and independent one from each other, despite it not being
true. Actually, in a binary netmask, when a bit is set to 0 all the following ones must
be 0 too and, in the same way, in VEREFOO if an IP address contains the value
∗ for one of its components, also the right-side elements should be ∗. Considering
on the other hand the four components as parallel, IP addresses like 10.0.∗.3 were
created, having as consequence the need of a pre-processing task but particularly
increasing by a big factor the space of solutions investigated by Z3Opt, despite that
most of them were clearly incorrect without needing an analysis made by such a
powerful but slow tool.

7.4.2 Wildcards new implementation

To solve the problem presented in Subsection 7.4.1, alternative formulas have been
introduced to represent a hierarchical structure of an IP address with wildcards for
all the scenarios on which they are used.

Considering again the the comparison between two IP addresses, called ip1
and ip2, to provide an example of the new implementation of this feature, the
correspondent new formula is the following:

(∀i ∈ {1,2,3,4} . ip1i == ∗) ∨ (∀i ∈ {1,2,3,4} . ip2i == ∗)∨
(ip11 == ip21 ∧ ((∀i ∈ {2,3,4} . ip1i == ∗) ∨ (∀i ∈ {2,3,4} . ip2i == ∗)))∨

((∀i ∈ {1,2} . ip1i == ip2i) ∧ ((∀i ∈ {3,4} . ip1i == ∗) ∨ (∀i ∈ {3,4} . ip2i == ∗)))∨
((∀i ∈ {1,2,3} . ip1i == ip2i) ∧ ((ip14 == ∗) ∨ (ip4i == ∗)))∨

(∀i ∈ {1,2,3,4} . ip1i == ip2i) =⇒ ip1 == ip2

(7.2)

87

7 – Network Security Requirements

In this formula, the cases which are considered as possible are basically two:

1. the two IP addresses do not have any ∗ values and in this case they must be
completely equal;

2. one of the two IP addresses have a ∗ value; then it must have the right
components as ∗ and the left components equal to the other IP address.

Hard constraints to further remark this hierarchy have also been enforced, so
that enabling again wildcards has been possible.

Consequences of the introduction of these formulas and the rehabilitation of the
usage of wildcards have been several and all of them important to achieve better
performance in some algorithms:

❼ there are less combinations evaluated as possible by z3Opt during the hierar-
chical construction of each Datatype variable representing an IP address with
wildcards;

❼ it is possible to specify as input end point in the Allocation Graph or in the
Service Graph for the framework not only single clients, but also subnetworks
(e.g. 10.0.1.∗) since now the firewall rules can match correctly with this kind
of addresses;

❼ there is no need any more of the post-processing task which was previously
exploited and implemented by Z3Translator class in the original framework,
where the single firewall rules were merged, because z3Opt now tries to con-
figure the minimum number of rules in each firewall and therefore it directly
tries to use wildcards. This aspect is fundamental for the firewall auto-
configuration algorithms because it will let the framework work with a re-
duced solution space.

7.4.3 Wildcards management

To manage wildcards, all the possible IP addresses with wildcards should be gen-
erated from all the IP addresses which are configured to the node of the Allocation
Graph or of the Service Graph in input to the framework, before applying any
heuristic and algorithm for the allocation of the Network Security Functions on the
Allocation Places and their configuration.

For this purpose, the WildcardManager class has been introduced to the frame-
work. At the beginning of the application, it builds all the possible address ranges
from each distinct IP address existing on the Allocation or Service Graph, classi-
fying them in four different levels according to the number of the position of the
first -1 element – as the symbol ∗ is represented in the z3 language – from left-side;
for instance, an address range like 10.-1.-1.-1 is of level two, while 10.0.0.-1 is of
level four. After making this division, the calculated information is stored in four
separated maps, where the key is represented by the address range with wildcards,
while the value is the list of all the correspondent single IP addresses associated

88

7 – Network Security Requirements

to it; this way their retrieval can be done efficiently in terms of computation time,
every time a Network Security Function should be configured with rules regarding
IP addresses.

The most important method of the class is the areAggregable method, which
receives two sets of IP addresses and returns a true boolean value if the first set can
be aggregated in one larger address range with wildcards which does not include any
IP address present in the second set; this feature is fundamental to implement the
pruning algorithm through which auto-configuration of packet filters is performed,
as it will be explained in Section 8.6.1 in more details.

7.5 Isolation Requirement

In VEREFOO, an isolation requirement is used to express the constraint for which
a specific kind of communication from a source to a destination must be prohibited;
in this thesis work, it basically indicates that the packets of this communication
should be dropped by a packet filter according to the values of the IP quintuple.

Before presenting the constraints which are defined in the MaxSMT problem for
an isolation requirement, the match function is introduced. Given a packet pk0 and
a security requirement r, the packet satisfies this requirement if each element of the
requirement itself corresponds to the packet field, considering anyway that some
elements can be a number or an interval. The behaviour of the match function is
showed in Formula 7.3.

r.match(pk0) ⇔ pk0.origin ⊆ r.IPSrc ∧ pk0.IPDst ⊆ r.IPDst ∧
pk0.portSrc ⊆ r.portSrc ∧ pk0.portDst ⊆ r.portDst ∧

pk0.transportProto ⊆ r.transportProto

(7.3)

Another function which must be introduced is the addr function; when it is
applied on any node of the Service Graph or Allocation Graph, it returns the IP
address with which this node is configured. This function is, consequently, exploited
when defining the constraints for a Network Security Requirements in the creation
of the packet by the source or in the verification that the packet has been correctly
received or not by the destination.

Given these assumptions, considering r ∈ R a specific isolation requirement, the
constraints which must be defined to guarantee its satisfiability are expressed by
means of the following Formulas 7.4, 7.5, 7.6, which are the results of the remod-
elling phase performed during this thesis work.

∃ei, ej ∈ EA. addr(ei) == r.IPSrc ∧ addr(ej) == r.IPDst (7.4)

∀k : nk ∈ NA ∧ lik ∈ LA. ∃pk0. send(ei, nk, pk0) ∧ r.match(pk0) (7.5)

∀k : nk ∈ NA ∧ lkj ∈ LA. ∀pk0. (recv(nk, ej, pk0) ∧
pk0.IPDst = addr(ej) =⇒ ¬ r.match(pk0))

(7.6)

89

7 – Network Security Requirements

Only a combination of all the three formulas can lead to a correct verification
of an isolation requirement, since each one has a precise purpose:

1. Formula 7.4 states that in the network a node with the same IP address of
the source must exist and the same can be stated for the destination, because
otherwise it is obvious that the packet will not ever be sent by a non-existent
source or will never reach a non-existent destination node.

2. Formula 7.5 states that the source node of the isolation property should send
to each one of its firstHops a packet whose destination coincide with the
destination of the requirement itself, so that potentially all the possible paths
inside the network can be exploited;

3. Formula 7.6 states that, if the destination node has received a packet from
any of its lastHops, then the origin of the packets must not be the source
of the requirement itself because otherwise it would mean that the source
succeeded in reaching the destination.

Out of these formulas, the second one is essential to avoid some loops inside the
network alongside with the forwarding rules which have been explained in Section
6.3; in fact, if the source node sent a packet to at least one of its neighbours and not
to all of them, the optimizer would clearly decide to create only one packet, being
able to reach the minimum cost for the optimization problem but using as a starting
point a first-order logic formula which can be considered correct exclusively for a
chain of nodes. The main problem in the previous implementation was, in fact,
that not all the possible neighbours necessarily received a packet from the source
of an isolation requirement and the verification of the constraint was consequently
wrongly declared as satisfied by the MaxSMT solver.

It is worth mentioning that, in the implementation of the formulas in z3, the
content of the maps firstHops of the source nodes and lastHops of the destination
nodes are exploited to avoid the usage of quantifiers also in this context. This
approach provided another contribution in improving the overall performance of
the framework.

A complete example is presented in the following with Figure 7.1 to explain how
these first-order logic formulas are sufficient and necessary to provide a complete
verification of the satisfiability of an isolation requirement in a scenario where some
loops between nodes are present, each end point is linked to more than one node
and the requirements are all in the same direction.

In this example, the end point 10.0.0.1 is linked to the packet filters fw1 and fw2,
the end point 10.0.0.2 is linked to the packet filters fw1 and fw2 while the end point
20.0.0.1 is linked to the packet filters fw1 and fw3; besides the three packet filters
are linked creating a loop. The suppositions are that all the three packet filters
work in blacklisting mode and that they cannot be removed by the specified logical
topology because of some constraints which the service designer imposed, e.g. these
firewalls are physical middleboxes which cannot be removed from the substrate
network. For sake of simplicity, all the Network Security Requirements which will
be considered in this example exclusively deal with IP addresses, supposing that the

90

7 – Network Security Requirements

Figure 7.1. Example of isolation requirements

wildcards feature is exploited to represent both the ports and the transport-level
protocol.

Two Network Security Requirements are specified in this scenario:

❼ isolation property from 10.0.0.1 to 20.0.0.1;

❼ isolation property from 10.0.0.2 to 20.0.0.1.

Formula 7.4 guarantees firstly that in the network the end points specified as
sources and destinations of the two requirements – 10.0.0.1, 10.0.0.2, 20.0.0.1 –
exist; this is necessary to model respectively the events of sending the packets
by the source and receiving packets by the destination. About this aspect, it
is possible to underline again that, if the service designer has specified a single
isolation property from 10.0.0.∗ to 20.0.0.1, the constraints would have been the
same because this requirement is automatically translated by a pre-processing task
into the two aforementioned requirements.

Then, Formula 7.5 states that each source must send a packet, which matches
the corresponding security requirement, to every neighbour through which a path
towards the destination actually exists. This approach presents a new perspective
in regard to the old design and implementation of the framework, where only loop-
free chains were correctly analysed and for this reason any source would just send
a packet to the network. However, if we suppose that both 10.0.0.1 and 10.0.0.2
would send a packet only to fw1, then a single packet filter rule which blocks all
the traffic distributed in fw1 would be considered sufficient by z3 to satisfy the
input requirements, when the result is actually incorrect because other paths exist
from the sources to the final destination.
Instead, if they send a packet to both of their neighbours, at least two rules must
be configured on the packet filters, for instance a rule on fw1 and a second one on
fw2. This way all the possible paths are characterized by at least a blocking wall
for the propagation of the packets.

91

7 – Network Security Requirements

Finally, Formula 7.6 states that, if the end point 20.0.0.1 receives a packet,
then this packet must not match the security requirement, since the related com-
munication must be blocked. For instance, if an end point 10.0.0.3 is added in
the network with a link to fw3, it can send a packet towards 20.0.0.1, which is
acceptable because it does not contradict the specified set of security requirements.

7.6 Reachability Requirement

In VEREFOO, a reachability requirement is used to express the constraint for which
a specific kind of communication from a source to a destination must be allowed;
in this thesis work, it basically indicates that the packets of this communication
should not be dropped by any intermediate packet filter according to the values of
the IP quintuple.

Considering that the function match and addr, described in Section 7.5, are
valid also for describing the model and implementation of a reachability require-
ment, given r ∈ R a specific reachability requirement, the constraints which must
be defined to guarantee its satisfiability are expressed by means of the following
Formulas 7.7, 7.8, 7.9. In this case, differently from the isolation requirement, the
formulas did not need a complete logic change, but they were reformulated to be
compliant with the newly introduced model and to work with the new concepts of
firstHops and lastHops to further increase the performance.

∃ei, ej ∈ EA. addr(ei) == r.IPSrc ∧ addr(ej) == r.IPDst (7.7)

∃k : nk ∈ NA ∧ lik ∈ LA. ∃pk0. send(ei, nk, pk0) ∧ r.match(pk0) (7.8)

∃k : nk ∈ NA ∧ lkj ∈ LA. ∃pk0. recv(nk, ej, pk0) ∧
pk0.IPDst = addr(ej) ∧ r.match(p0)

(7.9)

Only a combination of all the three formulas can lead to a correct satisfiability
and verification of a reachability requirement, since each one has a precise purpose:

1. Formula 7.7 states that in the network a node with the same IP address of
the source must exist and the same can be stated for the destination, because
otherwise it is obvious that the packet will not ever be sent by a non-existent
source or will never reach a non-existent destination node;

2. Formula 7.8 states that the source node of the reachability requirement must
send a packet which matches the requirement itself to at least one firstHop,
not necessarily to every neighbour since the existence of one path is enough
to satisfy the reachability requirement;

3. Formula 7.9 states that the destination node must receive a packet which
matches the requirement itself from at least one of its lastHops, because it
means that at least a path has been found.

92

7 – Network Security Requirements

It is important to underline that without Formula 7.9 there is the possibility
that other nodes than the actual source of the requirement send a packet towards
the same destination, while without Formula 7.8 there would be no proof that
the packet sent by the correct source ever reached the destination. Then, all the
considerations which were made about the firstHops and lastHops made for the
isolation case are still valid also for the reachability requirements.

A complete example is presented in the following with Figure 7.2 to explain how
these first-order logic formulas are sufficient and necessary to provide a complete
verification of the satisfiability of a reachability requirement in a scenario where
some loops between nodes are present and each end point is linked to more than
one node.

Figure 7.2. Example of reachability requirement

In this example, the end point 10.0.0.1 is linked to the packet filters fw1 and fw2,
the end point 10.0.0.2 is linked to the packet filters fw1 and fw2 while the end point
20.0.0.1 is linked to the packet filters fw1 and fw3; besides, the three packet filters
are linked creating a loop. The suppositions are that all the three packet filters
work in blacklisting mode and that they cannot be removed by the specified logical
topology because of some constraints which the service designer imposed, e.g. these
firewalls are physical middleboxes which cannot be removed from the substrate
network. For sake of simplicity, all the Network Security Requirements which will
be considered in this example exclusively deal with IP addresses, supposing that
the wildcards features is exploited to represent both the ports and the transport-
level protocol; besides, they are specified for kinds of traffic which flow in the same
direction.

Two Network Security Requirements are specified in this scenario:

❼ isolation property from 10.0.0.1 to 20.0.0.1;

❼ reachability property from 10.0.0.2 to 20.0.0.1.

93

7 – Network Security Requirements

Formula 7.7 guarantees firstly that in the network the end points specified as
source and destination of the security requirements – 10.0.0.1, 10.0.0.2, 20.0.0.1 –
exist; this is necessary to model respectively the events of sending the packets by
the source and receiving packets by the destination.

Formula 7.8 states that the source must send a packet which matches the re-
quirement to at least one firstHop which opens a path towards the destination.
This approach derives from the application of the De Morgan Law to Formula 7.5:
if all the paths must be considered between source and destination to prove the
isolation, on the other hand to prove a reachability it is sufficient to demonstrate
that at least one packet which matches the requirement has successfully reached
the destination. Consequently, if 10.0.0.2 sends a packet only to fw1, since its
configured rule explicitly blocks only packets coming from 10.0.0.1, it is allowed to
cross this packet filter and has two different paths to reach the target destination.
A packet sent to fw2 would instead be blocked; forcing the model to create this
additional sending event would not be a mistake because the result would be cor-
rect, but it would decrease the overall performance of the framework since more
packets would transit in the network and the set of constraints to satisfy the input
requirements would not be any more the minimum set.

Finally, Formula 7.6 states that the end point 20.0.0.1 must receive at least
a packet which matches the corresponding reachability requirement. In addition,
in this formula there are not either any constraints about the maximum number
of received packets which satisfy this condition or about packets with a different
origin, because these aspects are not influential in the satisfaction of the reachability
requirement.

7.7 Identity of the end points of Network Secu-

rity Requirements

In the previous versions of the framework, the reachability and isolation require-
ments could be specified only between a client as source and a server as a desti-
nation; this aspect was, however, a deep limitation, since network functions like
packet filters could just be used to protect servers, losing a consistent part of their
real capabilities.

Thanks to the flexibility of the Allocation Graph and the new data structures
created in the core of the framework, described previously in Section 6.2, it was
possible to create an extension so that any node of the network can be specified
as a source or a destination of a security requirement, allowing as a consequence
interactions from client to client, from server to server and also from server to client.
This was reached by creating all the possible loop-free paths inside the Allocation
Graph not from clients to servers, but from sources to destinations of the Network
Security Requirements.

The two classes of the framework which got the most significant modifications
for this purpose are:

94

7 – Network Security Requirements

❼ LinkCreator class, which creates all the possible paths for every pair made by
a source and the corresponding destination;

❼ LinkProvider class, which allows to efficiently retrieve the created paths.

Moreover, every time a recursive visit of the graph is needed these paths are
considered instead of the original chains, so that there is not any need to build
them more than once.

In the following part of this section, an example is provided by means of Figure
7.3 to describe the extensions which have been defined.

Figure 7.3. Example of a security requirement from server to client

In this scenario, 10.0.0.1 and 10.0.0.2 are two web clients, 20.0.0.1 is a web server
and the intermediate middleboxes are three firewalls in blacklisting mode, which
are in fixed positions according to some constraints set by the service designer and
cannot be removed by the framework. The two Network Security Requirements
which the user specifies as input are:

❼ isolation property from every client belonging to the network 10.0.0.0/24 to
the server 20.0.0.1;

❼ reachability property from the server 20.0.0.1 to every client belonging to the
network 10.0.0.0/24.

In the past, the z3 model would not have been able to reach a valid solution; after
the modifications, instead, the auto-configuration of the firewalls must consider also
the packets sent by the server to the clients. The most interesting consideration
is that in this example the communication is basically bidirectional, because the
packets sent by the server to a client follow the same path, in the opposite sense, as

95

7 – Network Security Requirements

the packets created by the client; as a consequence, it becomes more burdensome
for the optimizer to find the optimal solution.

In this case, the result which is achieved is that, in all the three firewalls, a
single blocking rule is configured, whose source is the full route 0.0.0.0/0, modelled
by means of the wildcards as ∗.∗.∗.∗, and whose destination is the server 30.0.0.1.
This rule is sufficient to block all the traffic coming to the clients and, since its
default behaviour is the blacklisting, the packets sent by the servers are not dropped
but they can reach their targets.

7.8 Multiple Network Security Requirements be-

tween the same pair of end points

In the management of real networks, it is common that more than a single Net-
work Security Requirement involve the same pair of end points. For example, when
a server offers multiple services on different transport-level port numbers, some
clients could be allowed to contact it only for a specific service, while they could
be prohibited to request the others; this traditional scenario is represented in Fig-
ure 7.4, where the client 10.0.0.1 must be able to reach the server 20.0.0.1 at the
destination port 80, while it must not contact it at the destination port 90.

Figure 7.4. Example of multiple requirements between the same pair of end points

It is worth underlining, in particular, that the two Network Security Require-
ments defined in this example share all the parameters of the IP quintuple except
for a single one, the transport-level destination port; consequently, the firewall
FW1 which is allocated between the two end points, under the hypothesis of a
whitelisting configuration mode, should define a specific rule to allow the traffic
which targets the destination port 80.

However, in the old z3 model for the representation of the Network Security Re-
quirements, the presence of some hard constraints forced each traffic source to send
packets with the same values of the source port, destination port and transport-level
protocol. Consequently, to manage the possibility of multiple security requirements
between the same pair of end points, a pre-processing task was introduced, to mul-
tiply the source by a factor which was equal to the number of security requirements

96

7 – Network Security Requirements

where the same destination was involved. This way, each one of these artificial
sources could send packets with different ports and transport-level protocols.

This approach is, nevertheless, characterized by several limitations. First of all,
in terms of performance and scalability, wildcards and pruning strategies cannot
be used any more to reduce the firewall rules; in fact, each artificial source – called
virtual node – is characterized by a name which cannot be divided into the tradi-
tional four elements of an IP address. Moreover, since the total number of nodes
and links in the network increases, then also the solution space of the z3 model
increases with the introduction of additional constraints.

Figure 7.5. Firewall Policy result in the old model

But, among all the drawbacks of this approach, the most critical one is a lacking
adherence of the model to the reality. Considering the previous example, Figure
7.5 shows how the policy for firewall FW1 was configured after the execution of the
framework. After the client 10.0.0.1 is split in two different end points, each one is
then characterized by a different name (10.0.0.1 A and 10.0.0.1 B), that not only
are not IP addresses, but are actually different strings. Consequently, the firewall
does not interpret these virtual nodes as a single one and, when the policy must
be decided, a specific rule is simply configured to allow the traffic coming from
10.0.0.1 A, despite it not existing in reality. The achieved result is correct for the
pre-processed graph, but it is not adherent to the real network.

After the introduction of the formulas illustrated in Sections 7.5 and 7.6 to
model the isolation and reachability properties, the result which is achieved by
means of a simulation of the framework is different, as it is showed in Figure 7.6.
Now, instead of splitting the source of the two Network Security Requirements, the
client 10.0.0.1 is simply allowed to send packets with different ports and transport-
level protocols. The firewall, consequently, is automatically configured with a single

97

7 – Network Security Requirements

Figure 7.6. Firewall Policy result in the new model

rule, which allows the packets with 80 as destination port to pass and blocks all
the others.

The same concept can be applied in scenarios where the multiple Network Se-
curity Requirements, defined for the same pair of end points, differ for other pa-
rameters, such as the source port or the transport-level protocol. This way, richer
scenarios can be introduced in the framework to get the optimal firewall alloca-
tion and configuration, the resulting model is compliant with the IP addresses of
the nodes in the input Service Graph and the filtering policy rules exploit all the
features which have been designed for all the elements of the IP quintuple.

98

Chapter 8

Packet Filter Firewall

The automatic allocation and auto-configuration of packet filter firewalls repre-
sent a central component of this thesis work; this aspect is built on all the newly
introduced features, like the Allocation Graph, and the remodelling of other ele-
ments such as the Network Security Requirements. It is also a central aspect of the
Security Automation approach representing the foundation of VEREFOO.

After Section 8.1 provides a brief description about the capabilities of a packet
filter, Section 8.2 defines the structure of the Filtering Policy of a firewall which has
been defined, whereas Section 8.3 illustrates the XML elements which the thesis
inherited from the previous framework and exploited to represent the modelled
Filtering Policies.

Then, the remainder of this chapter focuses on describing in Section 8.6 how
the automatic allocation feature has been introduced in the ADP module, while in
8.6.1 how the constraints related to the auto-configuration feature of the Filtering
Policies have been remodelled to achieve better performance and to exploit the
wildcards feature.

Finally, in Section 8.7 a complete clarification example is illustrated, showing
how the framework is able to compute the optimal allocation schema and config-
uration of virtual firewalls starting from a Service Graph and a set of Network
Security Requirements; the purpose of this final section is to show a complete
workflow and, at the same time, how the goals related to the soft constraints are
effectively achieved.

8.1 Introduction to Packet Filter Firewall

The packet filter is a technology of firewall which is able to make a decision about
forwarding each incoming packet basing it exclusively on IP addresses and ports of
both source and destination, information collocated respectively in the layer three
(network) and four (transport) of the ISO/OSI stack.

Its main advantages are that it is easy to implement, it is application indepen-
dent and overall its performance is very good because it is able to avoid incoming

99

8 – Packet Filter Firewall

Denial-Of-Service attacks processing the packets in the first levels of the networking
stack of the Operating System.

On the other hand, its configuration is not trivial, because rules regarding ap-
plication layer, TCP flux and UDP datagrams should be translated in rules which
regards only IP addresses and ports; besides, the provided security level is low,
because decisions are based on a restricted basin of information. In addition, if
only a packet filter is used as security control, it is difficult to authenticate users
and to support services like FTP based on a dynamic allocation of ports.

Despite its flows, a packet filter is one of the most important and used Network
Security Function inside a network, because the screening router on which it is
installed can easily drop most of the packet belonging to prohibited communication,
unburdening more complex appliances like an Application-Level Gateway or a Deep
Packet Inspector.

8.2 Model of the Filtering Policy of a firewall

Each firewall is characterized by a Filtering Policy representing the configuration
according to which this Network Security Function decides if a received packet
must be discarded or should be forwarded to the out-ports which allow to reach
its destination. The Filtering Policy can be established by the service designer for
a firewall which he decides to allocate in a specific position of the input Service
Graph, if he has sufficient knowledge in the security field or if this policy comes as
a result of a previous run of the framework; otherwise, by default for each firewall
which is automatically allocated on the Allocation Graph the ADP module provides
a complete configuration.

Remembering from Subsection 6.2.2 that PA is the set of the Allocation Places
of an Allocation Graph, given pk ∈ PA an Allocation Place where a firewall can be
allocated, the related Filtering Policy is characterized by two components:

❼ a default action δk;

❼ a set of policy rules Ψk, which establish that a packet which matches their
conditions should be managed with the corresponding actions. The assump-
tion is that all the policy rules are not redundant between themselves.

When a packet is received by a packet filter, firstly the conditions of each policy
rule in the Ψk set are applied to the field of the packets; if the matching between
a rule and the packet is positive, then the corresponding action – which can be
ALLOW or DENY – decides if the packet can be forwarded or must be discarded.
If no rule matches the fields of the packets, it is managed according to the default
action δk, which has less priority then all the other rules.

The default action δk can be assigned two different values:

1. δk = DENY, if the firewall configuration is whitelisting;

2. δk = ALLOW, if the firewall configuration is blacklisting.

100

8 – Packet Filter Firewall

Each rule in Ψk is, instead, characterized by the following model:

[actionType - IPSrc - IPDst - portSrc - portDst - transportProto]

where:

❼ actionType can have the values ALLOW or DENY and specifies which action
must be performed on each packet which satisfies the conditions of the rule;

❼ IPSrc is the source IP address of the communication for which the action is
applied;

❼ IPDst is the destination IP address of the communication for which the action
is applied;

❼ portSrc is the transport-level source port of the communication for which the
action is applied;

❼ portDst is the transport-level destination port of the communication for which
the action is applied;

❼ transportProto is the transport-level protocol of the communication for which
the action is applied.

8.3 Implementation in the XML schema of the

Filtering Policy of a firewall

A packet filter is represented in the XML schema by a node element whose func-
tional type attribute has FIREWALL as value. In addition to the traditional in-
ternal elements of a node, such as the set of neighbours elements, a packet filter is
also characterized by a specific configuration which contains a firewall element.

A firewall element has a defaultAction attribute, which can be assigned the value
ALLOW orDENY depending on the configuration mode – respectively, blacklisting
or whitelisting – and a set of elements, representing the Filtering Policy rules and
expressed by means of a medium-level representation.

Each Filtering Policy element is characterized by the following attributes:

❼ the action element, which expresses the rule action (ALLOW or DENY);

❼ the source element, which expresses the source IP address of the rule (it can
also be the corresponding unique identifier or a larger address range which
corresponds to a subnetwork including more than just one host);

❼ the destination element, which expresses the destination IP address of the
policy (it can also be the corresponding unique identifier or a larger address
range which corresponds to a subnetwork including more than just one end
point);

101

8 – Packet Filter Firewall

❼ the protocol element, which expresses the transport-level protocol (TCP, UDP
or any);

❼ the src port element, which expresses the transport-level source port (it must
be a number between 0 and 65535, a range or it can be empty if the rule is
only specified for IP addresses);

❼ the dst port element, which expresses the transport-level destination port (it
must be a number between 0 and 65535, a range or it can be empty if the
rule is only specified for IP addresses);

❼ the directional element, which expresses if the rule is valid for both the di-
rections or if it is valid only for the specified direction.

Several combinations can be made from these six information pieces, especially
specifying address ranges and port intervals, so that richer rule expressions can be
defined.

The model of a single Filtering Policy rule which is defined in the XML schema
is showed in Listing 8.1.

<xsd:element name="elements">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="action" type="ActionTypes"

minOccurs="0" default="DENY"/>

<xsd:element name="source" type="xsd:string"/>

<xsd:element name="destination" type="xsd:string" />

<xsd:element name="protocol" type="L4ProtocolTypes"

minOccurs="0" default="ANY"/>

<xsd:element name="src_port" type="xsd:string"

minOccurs="0"/>

<xsd:element name="dst_port" type="xsd:string"

minOccurs="0"/>

<xsd:element name="directional" type="xsd:boolean"

minOccurs="0" default="true"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 8.1. XML schema for the Filtering Policy

An example of Filtering Policy which the framework could automatically gen-
erate is, furthermore, showed in Listing 8.2.

<node name="10.0.0.2" functional_type="FIREWALL" >

<neighbour name="10.0.0.1" />

<neighbour name="10.0.0.4" />

<configuration description="Firewall_configuration"

name="Configuration01">

<firewall defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>10.0.0.4</destination>

<protocol>ANY</protocol>

102

8 – Packet Filter Firewall

<src_port>*</src_port>

<dst_port>80</dst_port>

</elements>

</firewall>

</configuration>

</node>

Listing 8.2. XML example of a Filtering Policy

8.4 Objectives of the MaxSMT problem

The two main objectives of the MaxSMT problem, in relation to the firewalls which
can protect the Service Graph from some cybersecurity attacks, are the following
two:

1. the minimization of the number of firewalls which are allocated in the Al-
location Graph, so that the resource consumption will be minimized when
the VNFs implementing the packet filters are deployed on a substrate net-
work, independently from the actual requirements of each virtual instance
(e.g. RAM, CPU) which are not considered in the defined approach because
already managed by another existent part of the ADP module;

2. the minimization of the number of rules for each firewall Filtering Policy, so
that the resulting configuration is more easily read by the service designer
and can be managed or modified with less risks in making the typical human
errors; additionally, the minimum set of rules would also require the minimum
amount of memory to store them in the corresponding virtual function, when
deployed. The most important motivation of this objective is however that,
with less rules, the filtering operations are faster, because they have to parse
a shorter list.

These two objectives are independent from a theoretical point of view, but they
are modelled by means of shared variables in the z3 model of the MaxSMT problem,
so that the optimal solutions are achieved for both of them contemporary. However,
as it will be clearer after all the first-order logic formulas will have been presented,
the priority is assigned to the minimization of the number of allocated firewalls,
since deploying an additional function is much more expensive than adding a new
rule in an existing firewall instance.

8.5 Automatic Allocation of Firewalls

The automatic definition of the allocation schema of the firewalls on the Allocation
Graph, given a set of Network Security Requirements, represents a fundamental
novelty introduced by this thesis work in the ADP module. In the past, the frame-
work was actually able to manage with not good performance only the creation

103

8 – Packet Filter Firewall

of the auto-configuration of static firewalls, whose position was established before-
hand, and at the end of the execution it could remove some optional firewalls if
they were proved useless by the optimizer.

The newly proposed approach, on the other hand, works on an Allocation Graph
which comes from a Service Graph, so the service designer has not to manually
define all the places where a firewall can be allocated, unless he wants to perform
this operations by means of a set of additional constraints, already described in
Subsection 6.2.2. This is fundamental because the actual optimal solution can be
reached only when the complete space of possible solutions in terms of allocation
is exhaustively explored.

Since the optimal solution would be that there is no need to instantiate virtual
functions for the packet filtering operation, then for each Allocation Place a single
soft constraint is defined to express the preference for which no firewall is allocated
on the Allocation Graph. The complete set of these soft clauses is represented in
Formula 8.1, where ck is the weight assigned to the corresponding soft clause and
which participates to the MaxSMT objective sum to maximize, if the clause itself
is satisfied.

∀k : pk ∈ PA. Soft(allocated(pk) = false, ck) (8.1)

An indication about the value which is assigned to the ck cost will be provided
at the end of Section 8.6, because ck depends on the costs assigned to the soft con-
straints related to the auto-configuration of the Filtering Policy. However, a thumb
rule which can give an idea about the priority criteria defined in this MaxSMT
problem is that this cost must be bigger than the sum of the costs of every other
soft clauses related to the same Allocation Place. This choice is critical not only
to reach the real objectives, but also in terms of performance, because when the
optimizer engine establishes that a firewall must not be allocated on a specific Al-
location Place, then it does not make sense to try to satisfy all the soft constraints
related to the definition of the policy rules, because they would be anyway never
satisfied.

8.6 Automatic Configuration of the Filtering Poli-

cies

After receiving an input R set of Network Security Requirements, the ADP module
must establish the minimum set of Filtering Policy rules for each allocated firewall.
Given as assumption that the the default action δk of each firewall which can
theoretically allocated on a specific Allocation Place is established by the service
designer – DENY if he prefers to have a higher level of security, ALLOW if he
prefers to keep the configuration of the firewall as much simple as possible –, the
critical problem is represented by the identification of how many rules in the worst
case a firewall allocated in pk ∈ PA could effectively need. For each one of these
placeholder rules – from here on they are called placeholders because the decisions
about their effective usefulness has still not been established –, the optimizer engine

104

8 – Packet Filter Firewall

would finally decide if they are needed and configure them if necessary; for this
purpose, a set of hard and soft constraints are introduced in the MaxSMT problem
instance for each rule. Consequently, it is essential to limit the cardinality of this
set of placeholder rules.

A dummy approach – which was followed in the old version of this framework
– was to introduce, for the Filtering Policy of each Allocation Place pk ∈ PA of
the Allocation Graph, a placeholder rule in Ψk for each input Network Security
Requirement. In other words, if theoretically in the framework N Network Security
Requirements are specified and F firewalls are deployed in the logical topology, then
a trivial solution could be to create in the z3 model N equivalent rules for each packet
filter, with a resulting total number of N*F rules. However, this methodology leads
to an optimized process, because several security requirements do not actually need
the configuration of a specific rule.

A central work performed during this thesis, consequently, has been to identify
some pruning strategies by means of which it is possible to reduce the cardinality of
the set of placeholder rules, identifying the only security requirements which could
actually need a specific rule in the Filtering Policy of a firewall. Then, a second
step has been to remodel the soft constraints through which the auto-configuration
of each packet filter is achieved, so that a reduction of their number could lead the
framework to achieve better performance.

8.6.1 Packet filter auto-configuration algorithms

The pruning strategies which have been developed have the purpose to create, for
each pk ∈ PA, the minimum set Rk, that is the minimum set of the Network Secu-
rity Requirements which effectively interest a firewall potentially allocated in this
position and could require the configuration of a specific rule in the corresponding
Filtering Policy. This step is critical for the performance, because the cardinality
of this set is the size itself of the set of placeholder rules Ψk.

The first two principles which were identified to reach this goal are the following:

1. a firewall could be interested by a Network Security Requirement only if
the packets related to this requirement pass through the Allocation Place on
which the packet filter could be installed;

2. a specific rule could be needed in the Filtering Policy of a firewall to satisfy a
Network Security Requirement only if this constraint is not already enforced
by the default action of the packet filter itself – in other words, only if the
requirement type (i.e. reachability or isolation) is of the opposite packet fil-
ter’s default action, because for a whitelisting packet filter only requirements
about reachability constraints should be considered since the others are au-
tomatically managed by the default action (and vice versa).

To exploit these principles, the following two functions can be introduced:

❼ path(IPSrc, pk, IPDst) returns true if pk ∈ PA is present in at least a path
between the IP addresses specified as source and destination;

105

8 – Packet Filter Firewall

❼ enforce(δk, r) returns true if the requirement r ∈ R is automatically enforced
by the default rule δk of the firewall instance, so it does not require any specific
firewall rule in Ψk.

Consequently, given the set of all the input Network Security Requirements
R and an Allocation Place pk ∈ PA with a specific default action δk, then the
construction of the initial content of the Rk set is performed as showed in Formula
8.2, where both of the above introduced functions are exploited contemporary.

∀r ∈ R. ∀pk ∈ PA. (path(r.IPSrc, pk, r.IPDst) ∧
¬ enforce(δk, r) =⇒ r ∈ Rk)

(8.2)

Moreover, a third principle has been later introduced to further reduce the car-
dinality of this Rk set by means of considerations about the possibility to directly
merge some security requirements in a single one. For example, it is possible to
suppose that a blacklisting firewall is interested by two different isolation require-
ments where the first one is related to the communication from 10.0.0.1 to 20.0.0.1,
while the second one from 10.0.0.2 to 20.0.0.1, and that no other requirements in-
terest this firewall; then, by exploiting the wildcards feature, rehabilitated in the
framework after the modification performed during this thesis work, the packet fil-
ter would actually need a single rule to manage the traffic from 10.0.0.∗ to 20.0.0.1,
instead of two. For this purpose, if this scenario is identified before introducing
the constraints in the z3 model of the MaxSMT problem, it is possible to further
reduce the cardinality of the Rk set and, consequently, the number of placeholder
rules in Ψk.

On the other hand, if in the aforementioned example a third requirement is
introduced – in particular, a reachability requirement from 10.0.0.3 to 20.0.0.1 –
, even if this constraint is already managed by the default action, since the rule
which blocks all the traffic from 10.0.0.∗ to 20.0.0.1 has higher priority, it would
block also the packets coming from 10.0.0.3. Consequently, it has been fundamental
to identify only the cases where this cardinality reduction can be applied to the Rk

set.

According to the working mode of a firewall – blacklisting or whitelisting –,
this third principle is structured in a different way; both cases are presented in the
following, to help the understanding of how this algorithm works.

In case of a blacklisting firewall, if:

1. a subset of isolation requirements in Rk have the same destination,

2. in these isolation requirements the sources can be grouped in a larger IP
address range (e.g. 10.0.∗.∗, ∗.∗.∗.∗),

3. the other isolation and reachability requirements with the same destination
and whose packets pass through the packet filter do not have sources included
in that address range

106

8 – Packet Filter Firewall

then the packet filter can have only one DENY placeholder rule for all this subset
of isolation requirements.

Dually, in case of a whitelisting firewall, if:

1. a subset of reachability requirements in Rk has the same destination,

2. in those reachability requirements the sources can be grouped in a larger IP
address range (e.g. 10.0.∗.∗, ∗.∗.∗.∗),

3. the other isolation and reachability requirements with the same destination
and whose packets pass through the packet filter do not have sources included
in that address range

then the packet filter can have only one ALLOW placeholder rule for all this subset
of reachability requirements.

The same consideration can be applied when the algorithm tries to merge a
set of Network Security Requirements which share the same source, instead of the
same destination; in the presented algorithms, actually, it is sufficient to replace
the term source with the term destination and vice versa.

The complete algorithm, which exploits all the three described principles, is
implemented in the PacketFilterManager class, which decides if a packet filter is
interested in a Network Security Requirement, verifies if the default action of the
packet filter is orthogonal to the security type and overall minimizes the number
of placeholder rules inside each firewall as much as possible, to reduce the final
number of soft and hard constraints inside the z3 model.

Figure 8.1 can be used to provide an example and clarify how the developed
packet filter auto-configuration algorithms work.

In this scenario, all the five packet filters are configured in blacklisting mode
and three Network Security Requirements are stated:

1. an isolation requirement from 10.0.0.1 to 20.0.0.1;

2. an isolation requirement from 10.0.0.2 to 20.0.0.1;

3. a reachability requirement from 10.0.1.1 to 20.0.0.1.

Initially all packet filters have a rule for each Network Security Requirement,
independently of the requirement type and the fact that packets belonging to the
satisfaction of a requirement actually cross the firewalls.

Firstly, the first principle – based on the path function – establishes that the
packet filters in p1, p2 and p3 can configure only one rule instead of three, because
respectively their interested requirements are exclusively Requirement1 for the first,
Requirement2 for the second and Requirement3 for the third. Instead, the firewall
in p4 could require two rules because it is crossed by packets related to Requirement1
and Requirement2, while the firewall in p5 could require three rules, directly one
for each requirement.
This step is fundamental, because it provides the most consistent reduction of rules

107

8 – Packet Filter Firewall

Figure 8.1. Example of packet filter auto-configuration algorithm

number despite being quite simple to implement through the recursive visit of the
Allocation Graph.

Secondly, the second principle – based on the enforce function – establishes that
the firewall in p3 can avoid to configure any rule, because the only requirement which
is of interest for this packet filter is Requirement3, a reachability property with an
equivalent type of the default action of the blacklisting mode; for the same reason,
the firewall in p5 could require at most only two rules instead of three. On the
other hand, this principle does not influence the number of placeholder rules of any
other packet filter, for which the interested requirements are isolation properties.

Thirdly, the third principle – based on the wildcards features – establishes that
both the firewalls in p4 and p5 require only one placeholder rule, because using
wildcards it is sufficient to block packets coming from 10.0.0.1 and 10.0.0.2, since
these IP addresses can be merged in the address range 10.0.0.0/24, equivalent to
10.0.0.∗ in the framework formulation and configurable in the z3 model as 10.0.0.-1
by means of soft constraints.

8.6.2 Configuration of a packet filter in z3

After defining the cardinality of the Rk set, the next step has been to remodel the
clauses of the MaxSMT problem exploited to auto-configure the needed Filtering
Policy rules, since the previous model was not sufficiently optimized.

108

8 – Packet Filter Firewall

Inside the z3 model, a first hard constraint defines the default behaviour of
the packet filter, according to the choice (blacklisting or whitelisting) made by the
service designer if he decided to introduce some packet filters on the topology or if
the input file comes from a previous run of the framework; otherwise, whitelisting
working mode is the default choice of VEREFOO for the firewall Filtering Policies
to achieve better security, despite it being more difficult to configure.

In particular, Formula 8.3 describes the hard constraint for a blacklisting con-
figuration, while Formula 8.4 describes the hard constraint for a whitelisting con-
figuration.

δk = ALLOW (8.3)

δk = DENY (8.4)

Then, in order to provide the auto-configuration feature of the specific rules,
for each requirement in Rk which a packet filter must manage, a corresponding
possible rule must be created inside the z3 model; then, the optimizer is in charge
of deciding if that rule is needed and, in this case, to valorize its components.

First of all, the combination of the soft constraint represented by the Formula 8.5
and the hard constraint expressed in the Formula 8.6 is exploited to represent the
ideal condition in which no firewall rule is configured. Basically, a rule is considered
as not configured if the source and destination IP addresses are not set.

∀ψi ∈ Ψk. Soft(ψi.IPSrc = ∅ ∧ ψi.IPDst = ∅, cki1) (8.5)

∀ψi ∈ Ψk. ψi.IPSrc = ∅ ∧ ψi.IPDst = ∅ =⇒ ψi = ∅ (8.6)

In more details, Formula 8.5 states that the best situation, for each placeholder
rule, is that the two main components – source and destination IP addresses – are
not actually configured by the optimizer engine, whereas Formula 8.6 states that,
if in a placeholder rule the source and destination IP addresses are not configured,
then the rule itself is considered empty, i.e. not configured and useless.

In the original version of the framework, instead of the single soft constraint
8.5 for each rule, eight soft constraints were defined, each one for an element of an
IP address. This way not only z3Opt had a large space of solutions to investigate
because of the presence of eight separated soft constraints, but incorrect situa-
tions could also be reached as result because this problem deals with optimization.
Firstly, an IP address like 10.0.∗.3 could be configured in a rule, since each one of
the four components is considered as independent; instead, if a component is ab-
sent, also the others should be ∅. Secondly, if the source IP address is ∅, then also
the destination must be the same, because otherwise only half rule is configured
while the remaining part is empty.

If however at least a placeholder rule is configured, then the firewall must be
allocated on the corresponding Allocation Place, because it means that this rule
is needed to satisfy an input Network Security Requirement. Therefore, the hard

109

8 – Packet Filter Firewall

constraint represented in Formula 8.7 is introduced in the z3 model, in order to state
that if at least one rule in the Filtering Policy is not empty, i.e. it is configured,
then the firewall must be necessarily allocated.

∃ψi ∈ Ψk : ψi /= ∅ =⇒ allocated(pk) = true (8.7)

If the soft constraint presented in 8.5 cannot be respected, the second ideal sce-
nario would be that the placeholder rule which needs to be configured would use
the wildcards feature in each component of the IP quintuple; this is achieved by
means of additional eleven soft constraints, which contribute to a total of thirteen
soft clauses for each placeholder rule, alongside with 8.5. This way, the possibility
that this rule satisfies contemporary more than just one Network Security Require-
ment is higher. These soft constraints are presented by means of the following FOL
formulas:

∀ψi ∈ Ψk.∀j ∈ {1,2,3,4} . Soft(ψi.IPSrcj = ∗, cki2j) (8.8)

∀ψi ∈ Ψk.∀j ∈ {1,2,3,4} . Soft(ψi.IPDstj = ∗, cki3j) (8.9)

∀ψi ∈ Ψk. Soft(ψi.pSrc = [0, 65535], cki4) (8.10)

∀ψi ∈ Ψk. Soft(ψi.pDst = [0, 65535], cki5) (8.11)

∀ψi ∈ Ψk. Soft(ψi.tProto = ∗, cki6) (8.12)

It is essential that the sum of the costs assigned to the soft constraints expressed
by Formulas 8.8 and 8.9 is inferior than the cost assigned to the clause represented
by Formula 8.5. In fact, the wildcards feature is considered less primary than the
absence of configuration itself of the firewall rule. This way, the optimizer always
evaluates as better the possibility to avoid the construction of the rule before trying
to set the wildcards for its components.

∀ψi ∈ Ψk.
4∑︂
j=1

(cki2j + cki3j) < cki1 (8.13)

Another constraint is related to the cost assigned to the soft constraint repre-
sented by Formula 8.1; since the ideal situation is that the firewall instance is not
allocated, then this clause has a higher priority than the others.

∑︂
i:ψi∈Ψk

(︂
cki1 +

4∑︂
j=1

(cki2j + cki3j)
)︂
< ck (8.14)

Finally, the behaviour function, which is exploited by the forwarding rules de-
scribed in Section 6.3, is built upon the configured Filtering Policy rules. Basically,

110

8 – Packet Filter Firewall

this function represents how the specific rules which could be configured on a firewall
should match any received packet; it is clear that the construction of the firewall
behaviour is, however, different accordingly to the default action of the packet filter
itself and accordingly to the two different scenarios in which there are configured
rules or no placeholder rule has been effectively valorized by the optimizer.

For this reason, four alternative ways are showed to define how this function
works on a generic packet pk0:

1. Formula 8.15 describes how behaviour is built when the firewall is in whitelist-
ing working mode and at least a rule is configured;

2. Formula 8.16 describes how behaviour is built when the firewall is in whitelist-
ing working mode and no rule is configured;

3. Formula 8.17 describes how behaviour is built when the firewall is in black-
listing working mode and at least a rule is configured;

4. Formula 8.18 describes how behaviour is built when the firewall is in black-
listing working mode and no rule is configured;

In these formulas, it is worth underlining that the notation Ψk = ∅ means that
the optimizer engine has not configured any specific rule for the firewall in pk.

Ψk /= ∅ ∧ δk = DENY =⇒

behaviour(pk, pk0) =
⋁︂
i

ri.match(pk0)
(8.15)

Ψk = ∅ ∧ δk = DENY =⇒
behaviour(pk, pk0) = false

(8.16)

Ψk /= ∅ ∧ δk = ALLOW =⇒

behaviour(pk, pk0) = ¬
(︃⋁︂

i

ri.match(pk0)

)︃
(8.17)

Ψk = ∅ ∧ δk = ALLOW =⇒
behaviour(pk, pk0) = true

(8.18)

8.7 Clarification example about allocation and

configuration of firewalls

The two objectives of the MaxSMT problem, i.e. the optimal allocation schema
and configuration of the packet filter firewalls, are achieved with respect of a set
of Network Security Requirements. A clarification example will be presented in
the following, through a series of figures and consequent considerations, in order

111

8 – Packet Filter Firewall

to clearly show how the aforementioned objectives are achieved in the methodol-
ogy presented in this thesis. This subsection basically represents a summary of
the whole approach, showing the workflow by means of which a Service Graph is
optimally enriched with network security defences from cybersecurity attacks.

First of all, Figure 8.2 represents the Service Graph that has been defined by
means of a composition of only service network functions, without any specific
constraints regarding the automatic allocation of the firewalls. This network service
is then translated into the Allocation Graph showed in Figure 8.3; since between
any pair of nodes an Allocation Place is created, in this example the complete
solution space will be explored to achieve the optimal allocation schema.

Figure 8.2. Service Graph of the clarification example

Figure 8.3. Allocation Graph of the clarification example

Secondly, Figure 8.4 represents a set of Network Security Requirements that
have been defined alongside a specific general behaviour and that represent which
traffic flows must be denied or allowed inside the service.

According to the objectives explained in this section, finally the outcome which
is provided is the result showed in Figure 8.5; in fact, a correct solution could be
achieved and a non-enforceability report was not needed.

112

8 – Packet Filter Firewall

Figure 8.4. Network Security Requirements of the clarification example

From the outcome, it is possible to underline that in the optimal allocation
schema two firewalls are needed, because the Service Graph has a ramified ar-
chitecture where the traffic flows pass through different paths, differently from a
traditional Service Function Chain. Nevertheless, if this task had been performed
manually, it could have led to allocate more than two firewalls, i.e. one firewall
before each end point of the service. The final solution could have been correct,
but not optimal, leading to resource consumption for the servers where the VNFs
would have been deployed.

Then, with regards to the auto-configuration of the firewall policies, each one is
characterized by a single specific rule, in addition to a DENY default action that is
characteristic of a whitelisting mode. In particular, fw2 allows all the TCP traffic
targeted to the destination port with number 80, blocking all the other communica-
tions. A manual creation of rules which must consider several combinations of the
IP quintuple components is not a trivial task, particularly when the number of rules
increases. Moreover, in a distributed architecture where multiple firewall instances
are deployed, it becomes difficult not to make human errors while configuring the

Figure 8.5. Expected outcome of the clarification example

113

8 – Packet Filter Firewall

rules in more than a single firewall.

Moreover, it is possible to underline that the wildcards feature is often used
by the solver in the definition of the policy rules, proving itself as a fundamental
element to improve the expressiveness of the framework and to minimize the total
number of rules that must be configured.

114

Chapter 9

Results

In this chapter the results of the performance tests carried out on the developed
framework are illustrated, in order to show which goals have been achieved and to
understand which limitations should be refined in the future.

The structure of this chapter is the following:

❼ in Section 9.1 useful terminology to understand the scenarios in which the
framework has been tested is provided;

❼ in Section 9.2 a comparison with the previous implementation of the frame-
work is showed;

❼ in Section 9.3 the comparison in terms of performance between different work-
ing conditions is showed, such as a comparison between chain and graph, be-
tween blacklisting and whitelisting working modes or between isolation and
reachability requirements;

❼ in Section 9.4 the impact of Allocation Nodes which are not possible place-
holders, as illustrated in Section 9.1, will be investigated;

❼ in Section 9.5 the results of scalability tests are illustrated to understand
which are the most relevant problems to be addressed in the future.

All the tests have been performed on a workstation with an Intel Core i5 CPU
at 2.40-3.00 GHz and 4.00 GB of RAM, with the exception of the scalability tests
of Section 9.5, for which a more powerful machine with an Intel Core i7 CPU at
3.40 GHz and 32.00 GB of RAM has been exploited.

9.1 Useful terminology

The implementation of the Allocation Graph concept in the framework, as it has
been described in Section 6.2, introduced the possibility to perform an optimal
allocation of Network Security Functions in a multiplicity of nodes inside a logical
topology automatically generated from a Service Graph; the independence of this

115

9 – Results

Figure 9.1. Allocation Graph example to explain useful terminology.

abstract network from the substrate hardware infrastructure represents a key aspect
of the SDN and NFV principles.

With the goal to provide a better comprehension of how the developed features
were tested, Figure 9.1 presents an Allocation Graph example which will be now
used to present useful terminology for understanding the results of performance
tests. In this example only a Network Security Requirement is established, that is
an isolation requirement between the web client with IP address 10.0.0.1 as a source
and the web server responding at the IP address 20.0.0.1 as the destination. Despite
the presence of another web client with address 10.0.0.2, the specified Network
Security Requirement is not influenced by packets sent by this end point, which
are not considered by the ADP module in solving the MaxSAT problem for the
optimal allocation of firewalls and the automatic configuration of Filtering Policy
rules.

In this example, all the nodes of the Allocation Graph - both green and or-
ange - are called Allocation Nodes : they represent the complete topology which
VEREFOO must analyse before solving the optimization problem, independently
from the characteristics of the specified Network Security Requirements.

Nevertheless, with a careful look at this scenario, it becomes evident how the
orange Allocation Node will not be considered by the z3Opt engine as a possible
choice where an instance of a packet filter would be allocated; in fact, the packets
which the client 10.0.0.1 sends towards the corresponding web server 20.0.0.1 will
not ever be able to reach it by passing through the orange node. For comparison,
if in another scenario an additional Network Security Requirement involving the
client 10.0.0.2 is introduced, then also this node is a potential candidate for the
allocation phase.

Consequently, the termAllocation Places orPlaceholders is effectively used
only to represent the subset of Allocation Nodes - represented with the green colour
in the provided example - which, inside the complete logical topology, the ADP
module will effectively consider as candidates for the allocation of firewalls, after

116

9 – Results

a preliminary visit of the graph based on the source and destination specifications
of all the Network Security Requirements. Normally, if the service designer does
not make any significant mistake in defining the Service Graph and the Network
Security Requirements, in this typical scenario all the Allocation Nodes are actually
Allocation Places and there is no distinction between the two terms.

For this reason, with the only exception of the results showed in Section 9.4, all
the other tests have been carried out in scenarios where all the Allocation Nodes
are also possible Allocation Places for Network Security Functions. This choice is
motivated, as it will be further explained in the dedicated section, by the fact that
in future the impact due to the present of Allocation Nodes not involved in any
Network Security Requirement could be severely minimized, since it is exclusively
related to the presence of a set of hard constraints of the MaxSMT problem.

9.2 Comparison with old framework

The old version of the framework was tested with the maximum numbers of 3 packet
filters – fixed on specific positions – and 4 Network Security Requirements, because
increasing these numbers would lead to a not acceptable, long time before the ending
of the run; the main performance limitations were, in fact, due to a not appropriate
usage of the wildcards feature as illustrated in Section 7.4 and scalability issues,
since the specification of soft constraints was not minimized and pruning strategies
were not adopted. Moreover, the formal model of the auto-configuration of firewalls

Figure 9.2. Results of performance tests of the old model

117

9 – Results

was characterized by redundant soft clauses and the absence of the Allocation Graph
did not allow the framework to automatically decide which are the best positions
for the packet filters.

The only scenario considered for this test is the scenario represented in Figure
5.5 of Section 5.4.1 because the old framework did not support the existence of the
Allocation Graph; consequently, the provided input is the Service Graph where the
packet filters are installed on specific nodes and the ADP module must provide only
the auto-configuration of their Filtering Policies, without exploiting the allocation
feature. This evidently represents a limitation for the new version of the framework,
because the clauses of the MaxSMT problem have been designed assigning the
automatic allocation a central role, by means of the high weight assigned to the
soft constraint represented by Formula 8.1.

The comparison was performed in a scenario where a group of clients are linked
to a server by means of a chain of packet filters; for each pair client-server an isola-
tion requirement is specified and the working mode of the firewalls is blacklisting.

Figure 9.2 shows that the old version of the framework had severe scalability
issues when both the number of packet filters and the number of Network Security
Requirements increase. The first issue is related to the fact that redundant soft
constraints were modelled for the auto-configuration of a rule (e.g. instead of a
single soft constraint to represent the absence of a rule, eight clauses were orig-
inally present in the MaxSMT problem), while the second problem is related to
the implementation of forwarding rules with quantifiers and the absence of pruning

Figure 9.3. Results of performance tests of the new model without the
third pruning principle

118

9 – Results

algorithms to reduce the number of rules which could be configured on a specific
packet filter according common sense principles.
Furthermore, if this old version is tested with a bigger number of packet filters
or Network Security Requirements, the optimization problem becomes unfeasible,
clearly showing the limitations of this implementation.

Figure 9.3, instead, shows the results achieved with the ADP module, used ex-
clusively in distribution phase as mentioned, without the algorithm based on the
third pruning principle described in Subsection 8.6.1 and that would exploit the
wildcards feature to further improve the performance; in this way, only the im-
provements in terms of design of the constraints can be evaluated.
For the most complex example (3 packet filters and 4 Network Security Require-
ments), the time is much inferior than the results got with the previous implemen-
tation; even though in each packer filter all the four policy rules are tentatively
placed, z3Opt is able to efficiently parse all the relaxable and not-relaxable clauses.
If in scenarios designed for scalability tests the absence of pruning and heuristics
can be critical, for simple networks the ADP already shows better performance
without them.

Figure 9.4. Results of performance tests of the new model with the
third pruning principle

Finally, Figure 9.4 shows the results achieved when the third principle of fire-
wall auto-configuration algorithm was enabled. In this case all the execution time
estimations are not superior than 5 seconds, because the usage of wildcards - which
requires more soft constraints - is compensated by the minimization of the rules
which can be configured on any packet filter. It is besides interesting to notice how
the required time for the pre-processing computation is always negligible compared

119

9 – Results

to the time spent by the optimizer engine; the same consideration will apply also
to all the next performance tests.

It is worth mentioning that, as it will be shown in Section 9.5, the new framework
implementation can achieve more scalable results also in scenarios with a number of
packet filters and Network Security Requirements bigger than, respectively, three
and four, since the whole design phase considered scalability as a central aspect;
in those scenarios, the old implementation did not properly work and an extended
comparison cannot be carried out – in addition, also the allocation phase introduced
in the new implementation cannot be compared with the most similar feature of the
old framework, which was the removal of useless firewall, because they are based
on a different approach and the second one has again scalability issue.

9.3 Comparison between different working con-

ditions

In this section, all the performance tests have been carried while the reduction
algorithm based on the enforce function, described in Subsection 8.6.1, is disabled
in order to create the worst conditions. In fact, if active, it would prune some
decisions of the locations where some rules could be configured - this action has
a clear benefit for the effective usage of the framework, but it would simplify the
results of the performance tests without making it possible to understand the impact
of the constraints of the z3 model.

The most common working conditions which have been studied are the following:

❼ in Subsection 9.3.1 a comparison between two different kinds of logical topol-
ogy, a ramified graph and a linear chain;

❼ in Subsection 9.3.2 a comparison between the possible working modes of a
packet filter, whitelisting and blacklisting;

❼ in Subsection 9.3.3 a comparison between the enforcement of isolation and
reachability requirements.

All the comparisons have been evaluated by progressively increasing both the
number of Allocation Places and of Network Security Requirements from a scenario
to the next one, even though the increase of the placeholders is higher than the
corresponding increase of the Network Security Requirements because of difference
scalability, as it will be showed in Section 9.5 in more details.

9.3.1 Comparison between graph and chain

The chain is a linear topology where the total number of Allocation Nodes coincide
with the number of possible Allocation Places and where for each Network Security
Requirement the packets generated in the model for the functions allocation and
for the configuration of the Filtering Policies cross every node. On the other hand,

120

9 – Results

a graph is characterized by a ramified structure, where clients and servers are at-
tached to different nodes and the paths are not necessarily overlapping. These two
topologies have been tested with whitelisting packet filters and isolation require-
ments.

Figure 9.5. Results of performance tests between chain and graph

The results in Figure 9.5 shows as performance is better when the enforcement of
the Network Security Requirements is performed in a ramified graph; this difference
is not detectable in very small scenarios, but when the number of Allocation Places
is at least 18 and the number of Network Security Requirements is around 9 the
computation time to auto-configure and allocate packet filters in a chain is around
the double than in a graph.

The reason of these results is that, in a chain, all the nodes are crossed by packets
related to each Network Security Requirement, while in a ramified graph each packet
passes through a limited set of Allocation Places. Consequently, the number of hard
constraints is different; we find this way an experimental proof that not only the
soft, but also the hard clauses are critical for the performance of the framework
implementation. In the scenario of a chain, the number of hard constraints per
node is higher but they do not contribute in a reduction to the solution space,
because instead they define additional events of receiving and sending packets.

Consequently, all the future comparisons will be carried out in Allocation Graphs
modelled as chains, in order to further understand the capabilities of the framework
in a worse condition, which nonetheless is easily subject to perform scalability tests.

121

9 – Results

9.3.2 Comparison between whitelisting and blacklisting

The service designer, when using the framework, can decide the default action, i.e.
the working mode, of the packet filters the ADP module will tentatively place in
the Allocation Graph; the choice is among whitelisting, if the firewall drops all
the packets without further specifications about, and blacklisting, if the firewall
lets the packets pass through unless exceptions are defined. It is also possible to
specify different default actions for each packet filter instance, even though a similar
configuration could easily lead to conflicts and makes the result more difficult to
understand or debug. If, on the other hand, the service designer does not provide
any indication as input, the framework adopts whitelisting as preferred mode, since
it is the working mode which allows a higher level of security because it is not
necessary to strictly identify all the kinds of traffic flow which must be prohibited.

Inside the z3 model, the formulas which have been built for the two different
working modes are very similar and they correspond to the same number of con-
straints, as it has been showed in Subsection 8.6.2. As a consequence, the expected
performance should be similar. This prevision has been proved in a topology where
isolation requirements must be enforced and where all the Allocation Places are po-
tentially crossed by a packet relative to the requirements, unless a firewall instance
is installed to block it.

Figure 9.6. Results of performance tests between whitelisting and blacklisting

The results are showed in Figure 9.7. Even when increasing the number of Al-
location Places and of Network Security Requirements, the differences in terms of
performance are negligible. This confirms the hypothesis that the choice between

122

9 – Results

these two different working modes does not have a central impact on the execu-
tion time of the framework, but the only consequence is the different issues each
one brings with it, i.e. whitelisting is more difficult to configure accurately, while
blacklisting offers a lower security level if the requirements are not fully correctly
specified.

9.3.3 Comparison between isolation and reachability

When the service designer decides which kinds of Network Security Requirements to
specify as input for VEREFOO, he can choose between the isolation requirement,
if he wants to avoid a specific communication, or reachability requirement, if he
wants to allow the relative kind of traffic. As it has been described in Sections 7.5
and 7.6, these two types of Network Security Requirements are modelled in the z3
instance of the MaxSMT problem with different kinds of hard constraints, so an
interesting test case which has been studied is relative to the comparison between
a scenario where only reachability requirements are specified with another scenario
where, instead, the service designer only introduced some isolation requirements.

The tests relative to this comparison have been carried out on an Allocation
Graph, where the number of Allocation Places coincides with the total number of
Allocation Nodes, the packets generated by each Network Security Requirement
cross every Allocation Place and all the firewalls which can be allocated are con-
figured in whitelisting mode.

Figure 9.7. Results of performance tests between isolation and reachability.

The results of the tests are showed in Figure 9.7. Since the simplest Allocation

123

9 – Results

Graphs where the number of Allocation Places and Network Security Requirements
are limited, it is evident how the computation time required by the framework to
compute a correct allocation schema and configuration of the needed firewalls is
generally bigger for reachability requirements than for isolation requirements in
the tested conditions.

This experimental result can be explained by the fact that, in case a reacha-
bility must be enforced, the related packets must effectively cross all the allocated
firewalls, while in the case of an isolation requirement the packet could be blocked
by one of the first firewalls it encounters. Furthermore, when the hard constraints
are specified for the reachability, it is requested that the destination receives a
packet whose characteristics respect the values of the specified requirement. This
is a pressing constraint because it forces the existence of this packet to be received;
on the other hand, in the isolation case, the corresponding constraint is that no
packet received by the destination should match the input requirement, without
requiring the specific existence of a received packet.

9.4 Evaluation of Allocation Nodes number im-

pact

In all the previous tests, the number of Allocation Nodes, which according to the
definitions provided in Section 9.1 were not possible Allocation Places or Place-
holders, was equal to zero, because every node was interested by at least a Network
Security Requirement and crossed by at least a packet for the configuration of the
Filtering Policy rules. This section focuses, instead, on scenarios where the logical
topology the service designer provides as input is characterized by nodes which will
not be considered by the ADP module in the allocation and configuration tasks.

Theoretically, the number of these Allocation Nodes should not have any impact
on the performance of the framework because the construction of the model for the
optimizer engine does not include either any soft constraint about the allocation
of firewalls and configuration of policy rules nor any hard constraint for express-
ing the forwarding rules, since their routing tables are basically empty after the
recursive visit of the graph. However, the experimental results do not match with
this prediction, as it is shown by Figure 9.8 and Figure 9.9, where respectively the
impact of these Allocation Nodes is evaluated considering as fixed parameter the
number of Network Security Requirements or possible Allocation Places.

The two charts show how, if the number of total Allocation Places is 50, the
resulting performance is similar to the scenarios with the same working conditions
where the Allocation Nodes which are not placeholders do not exist; the over-
head which they introduce is in fact negligible. On the other hand, doubling their
number to 100, the execution time of the framework doubles as well, also for the
simplest topology with a limited number of placeholders and Network Security
Requirements.

These results can be explained by the fact the, despite for the optimization prob-
lem these nodes do not have any impact, however for each one of them a limited set

124

9 – Results

Figure 9.8. Results of performance tests for the evaluation of Allocation Nodes
impact, with fixed Network Security Requirements number

Figure 9.9. Results of performance tests for the evaluation of Allocation Nodes
impact, with fixed Allocation Places number

125

9 – Results

of hard not-relaxable constraints are built; some examples are the constraint which
correlates the unique identifier of the node with the z3 data structure representing
its IP address and the constraints which in the definition of the packet data type
structure make use of quantifiers as node variables.

If in the current state of the work it could represent a potential issue, not only it
is related to very big scenarios where the service designer introduces a big number of
useless Allocation Nodes, but since the overhead is limited to the hard constraints
a further refinement of the inner implementation of the framework could lead to
the elimination of the aforementioned hard constraints, since they do not have any
utility.

9.5 Scalability tests

Finally, a series of scalability tests have been carried out in scenarios where the
number of Allocation Places is the same as the number of Allocation Nodes, the re-
quested Network Security Requirements are isolation properties and all the firewalls
which can be allocated to satisfy them are configured in whitelisting mode.

The three metrics which have been identified as the most critical for the scala-
bility tests are the following:

❼ number of Allocation Places where the firewalls can be allocated;

❼ number of input Network Security Requirements;

❼ number of assertions – including both soft and hard constraints – in the z3
instance of the MaxSMT problem.

First of all, focusing on the first two metrics – numbers of Allocation Places
and of Network Security Requirements –, the approach which has been followed to
perform the scalability tests has been to increase one metric to a higher value, while
the other is kept fixed, to understand to which extend the first metric is scalable.

Given this assumption, the results of the performance tests which have been
carried out to understand the scalability of the developed framework are showed
in Figure 9.10 for the Allocation Places, whereas in Figure 9.11 for the Network
Security Requirements.

First of all, by analyzing the two charts, it is evident that the increase of the
execution time is not exponential, independently from which metric is considered
(Allocation Places or Network Security Requirements); this is fundamental result,
given the intrinsic computational cost of a MaxSMT problem. Moreover, the frame-
work is able to manage also Allocation Graphs of bigger sizes, where more end
points or service functions are present, and the MaxSMT solver can achieve the op-
timal allocation schema and configuration of the firewalls, if the number of Network
Security Requirements is not really high.

It is, then, possible to notice that an increment of the Network Security Re-
quirements number produces a higher computation time then the same increment

126

9 – Results

Figure 9.10. Results of scalability tests for Allocation Places

Figure 9.11. Results of scalability tests for Network Security Requirements

of the Allocation Places number. The reason of this experimental result is that
the verification of the satisfiability of a NSR must be carried out in all the service
by the creation of a packet which flows across all the possible paths, whereas the
constraints introduced by an Allocation Place and the corresponding firewalls only
concern the traffic flow which crosses it.

Finally, the third metric – the number of assertions of the MaxSMT problem –
has been considered, exploiting the results achieved with the scalability tests carried
out for the other two metrics to build the chart showed in Figure 9.12, retrieving for

127

9 – Results

each instance the number of assertions of the corresponding z3 model. This metric,
actually, is related to the previous two, since the number of soft constraints depend
on how many Allocation Places are present in the service, whereas the number of
hard constraints depends on the cardinality of the Network Security Requirements
set.

Figure 9.12. Scalability tests on assertions

This chart shows that the increase of the computation time is typically lin-
ear also when the cardinality of the MaxSMT clauses set increases; the result is
achieved considering as fixed both the input requirements, so that bigger number
of clauses is exclusively caused by constraints that are related to the service com-
position or to the firewalls that have been allocated. It is important to underline,
actually, that this number includes both the soft and hard constraints of the opti-
mization problem, because not all the hard constraints allow to limit the size of the
solution space, but some of them increase this size and can have an impact on the
performance which is the comparable to the impact of a soft constraint – which,
evidently, requires additional computation time because the optimizer must try to
satisfy all the soft clauses to reach the optimal solution.

128

Chapter 10

Conclusions

During the thesis work, major improvements of the ADP module of VEREFOO
have been designed and developed, with the purpose of extending the capabilities
of the framework and, at the same time, achieving better performance results than
the previous version. This work has been performed with the future goal of using
the developed framework in an NFV environment, by exploiting all the advan-
tages provided by the decoupling between the virtual functions and the physical
infrastructure.

Firstly, a complete study about which are the most important scenarios of usage
for the framework has been carried out, to understand which components were
missing and which other elements required be improved to be compliant with the
proposed goals. After identifying them, the focus has been on the design and
development of the allocation and configuration phases for the firewalls, which
represent one of the most important Network Security Functions.

Then, a new internal level of abstraction has been introduced through the design
and the implementation of the Allocation Graph, a logical topology coming from the
Service Graph where in some placeholders the firewalls can be allocated to satisfy
the input Network Security Requirements; furthermore, an automatic mechanism
for the creation of the Allocation Graph has been defined. Then, the forwarding
rules by means of which the firewalls can forward the received packets have been
completely remodelled, so that the usage of the quantifiers feature for the nodes of
the graph has been removed and better scalability has been reached.

Moreover, after defining a more complete model of the connectivity Network
Security Requirements which a service designer can specify as input to VEREFOO,
the model of the isolation property has been changed because the previous one was
able to properly support exclusively chains, while the model of the reachability
property has been refined to avoid the use of quantifiers and to be compliant with
the introduction of the Allocation Graph and with the richer model of the security
requirements themselves. While implementing these novelties, further extensions
have been introduced, such as the possibility to specify a server as a source of a
Network Security Requirement and a client as a destination, allowing bidirectional
communications and the creation of richer scenarios. In addition, the wildcards
feature has been modified so that it is now effectively usable in the framework.

129

10 – Conclusions

A central work has subsequently been to define the formal model of the auto-
matic allocation of firewalls on the placeholders of the Allocation Graph and to
change the model of the automatic configuration, since the precedent one led to
not good performance when exploiting the wildcards. In this context, some pruning
strategies have been pursued and introduced, to reduce the number of soft and hard
constraints which must be defined in the z3 model for the configuration of firewalls,
given the input set of Network Security Requirements.

After all these works have been concluded, a series of performance tests have
been carried out both to understand the differences in terms of computation time
between the possible working conditions and to study the scalability achieved by the
new version of the framework. About this aspect, the result which has been achieved
is that the scalability is quite improved in respect with the previous implementation,
both about the placeholders’ number where the firewalls can be allocated and the
input Network Security Requirements number.

Future works about the ADP module of VEREFOO could be to introduce a
larger set of network functions which the service designer can exploit to define the
Service Graph, to model additional Network Security Functions such as anti-spam
filters and Web Application Firewalls to enrich the capabilities of the framework
and to define new types of Network Security Requirements which could consider
additional features – e.g. at application layer – of the communications to allow or
to block.

130

Bibliography

[1] C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini, “A novel
approach for integrating security policy enforcement with dynamic network
virtualization,” in Proceedings of the 1st IEEE Conference on Network
Softwarization, NetSoft 2015, London, United Kingdom, April 13-17, 2015,
2015, pp. 1–5. [Online]. Available: https://doi.org/10.1109/NETSOFT.2015.
7116152

[2] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Trans. Comput. Syst., vol. 22, no. 4, pp. 381–420,
2004. [Online]. Available: https://doi.org/10.1145/1035582.1035583

[3] J. M. Halpern and C. Pignataro, “Service function chaining (SFC)
architecture,” RFC, vol. 7665, pp. 1–32, 2015. [Online]. Available:
https://doi.org/10.17487/RFC7665

[4] D. Kreutz, F. M. V. Ramos, P. J. E. Veŕıssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015. [Online].
Available: https://doi.org/10.1109/JPROC.2014.2371999

[5] R. Chayapathi, S. F. Hassan, and P. Shah, Network Functions Virtualization
(NFV) with a Touch of SDN. Addison-Wesley Professional, 2016.

[6] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, and S. Waldbusser, “Terminology for
policy-based management,” RFC, vol. 3198, pp. 1–21, 2001. [Online].
Available: https://doi.org/10.17487/RFC3198

[7] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model - version 1 specification,” RFC, vol. 3060, pp. 1–100, 2001.
[Online]. Available: https://doi.org/10.17487/RFC3060

[8] A. Matheus, “How to declare access control policies for XML structured
information objects using oasis’ extensible access control markup language
(XACML),” in 38th Hawaii International Conference on System Sciences
(HICSS-38 2005), CD-ROM / Abstracts Proceedings, 3-6 January 2005, Big
Island, HI, USA, 2005. [Online]. Available: https://doi.org/10.1109/HICSS.
2005.300

[9] F. Valenza and A. Lioy, “User-oriented network security policy specification,”
J. Internet Serv. Inf. Secur., vol. 8, no. 2, pp. 33–47, 2018. [Online]. Available:
https://doi.org/10.22667/JISIS.2018.05.31.033

[10] J. D. Moffett and M. S. Sloman, “Policy hierarchies for distributed systems
management,” IEEE Journal on Selected Areas in Communications, vol. 11,
no. 9, pp. 1404–1414, Dec 1993.

131

https://doi.org/10.1109/NETSOFT.2015.7116152
https://doi.org/10.1109/NETSOFT.2015.7116152
https://doi.org/10.1145/1035582.1035583
https://doi.org/10.17487/RFC7665
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.17487/RFC3198
https://doi.org/10.17487/RFC3060
https://doi.org/10.1109/HICSS.2005.300
https://doi.org/10.1109/HICSS.2005.300
https://doi.org/10.22667/JISIS.2018.05.31.033

Bibliography

[11] J. Zhou and J. Alves-Foss, “Security policy refinement and enforcement
for the design of multi-level secure systems,” Journal of Computer
Security, vol. 16, no. 2, pp. 107–131, 2008. [Online]. Available:
http://content.iospress.com/articles/journal-of-computer-security/jcs300

[12] A. K. Bandara, E. Lupu, J. D. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in 5th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2004), 7-9 June
2004, Yorktown Heights, NY, USA, 2004, pp. 229–239. [Online]. Available:
https://doi.org/10.1109/POLICY.2004.1309175

[13] N. B. Youssef and A. Bouhoula, “A fully automatic approach for
fixing firewall misconfigurations,” in 11th IEEE International Conference
on Computer and Information Technology, CIT 2011, Pafos, Cyprus,
31 August-2 September 2011, 2011, pp. 461–466. [Online]. Available:
https://doi.org/10.1109/CIT.2011.84

[14] B. Dutertre, “Yices 2.2,” in Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, 2014, pp. 737–744.
[Online]. Available: https://doi.org/10.1007/978-3-319-08867-9 49

[15] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu, “Automatically
repairing network control planes using an abstract representation,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, 2017, pp. 359–373. [Online]. Available:
https://doi.org/10.1145/3132747.3132753

[16] K. Adi, L. Hamza, and L. Pene, “Automatic security policy enforcement
in computer systems,” Computers & Security, vol. 73, pp. 156–171, 2018.
[Online]. Available: https://doi.org/10.1016/j.cose.2017.10.012

[17] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 24

[18] “Verigraph repository,” https://github.com/netgroup-polito/verigraph, ac-
cessed: 2019-04-29.

[19] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and R. Sisto,
“Formal verification of virtual network function graphs in an sp-devops
context,” in Service Oriented and Cloud Computing - 4th European Conference,
ESOCC 2015, Taormina, Italy, September 15-17, 2015. Proceedings, 2015, pp.
253–262. [Online]. Available: https://doi.org/10.1007/978-3-319-24072-5 18

[20] B. E. Carpenter and S. W. Brim, “Middleboxes: Taxonomy and
issues,” RFC, vol. 3234, pp. 1–27, 2002. [Online]. Available: https:
//doi.org/10.17487/RFC3234

[21] “Z3 programming guide,” http://theory.stanford.edu/∼nikolaj/
programmingz3.html, accessed: 2019-04-29.

132

http://content.iospress.com/articles/journal-of-computer-security/jcs300
https://doi.org/10.1109/POLICY.2004.1309175
https://doi.org/10.1109/CIT.2011.84
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1145/3132747.3132753
https://doi.org/10.1016/j.cose.2017.10.012
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/netgroup-polito/verigraph
https://doi.org/10.1007/978-3-319-24072-5_18
https://doi.org/10.17487/RFC3234
https://doi.org/10.17487/RFC3234
http://theory.stanford.edu/~nikolaj/programmingz3.html
http://theory.stanford.edu/~nikolaj/programmingz3.html

Appendices

133

Appendix A

z3 Java API Manual

In this Appendix some guidelines about how to use the Java z3 APIs are provided
in order to help the readers and future maintainers of the framework to have a
better idea of how a MaxSMT problem can be formulated using the z3 optimizer
engine. A complete guide about how to use the z3 language, independently of the
high-level programming APIs adopted, can be found in [21].

A.1 Context class

TheContext class represents the core of every z3 model, independently of the usage
of the optimizer engine; it allows the definition of new types, internally called sorts,
and new expressions of existing or user-defined data types.

A.1.1 Creation of data types (sorts)

To retrieve a built-in traditional data type, so that it can further be used for the
creation of new expressions, methods which should be invoked are named mkType-
Sort, where Type is the name of the specific data type. Relevant examples are the
following:

❼ mkBoolSort to represent a boolean type;

❼ mkIntSort to represent an integer number type;

❼ mkRealSort to represent a floating-point number type;

❼ mkStringSort to represent a String type.

Two alternative techniques are instead offered by z3 to create user-defined data
types, EnumSort and DatatypeSort.

An EnumSort allows the creation of enumerative data types, where each element
of this type can be assigned a value of a predefined set (similarly as for the enum
construct in high level programming languages like C and Java).

134

A – z3 Java API Manual

The Java code presented in the Listing A.1 is an example, used in the framework
to create an enumerative type for the nodes of the network: nodes is an array of
String, each one of which represents the unique identifier of the node. The created
EnumSort node type, with name Node, allows to create instances which can be
assigned a String value belonging to the array provided in the constructor.

EnumSort node = ctx.mkEnumSort("Node", nodes);

Listing A.1. Java code to create an EnumSort type

A DatatypeSort offers more richness in expressiveness, because it allows the
creation of a complex data type which includes other multiple data types as fields
(similarly as the struct construct in common high level programming languages).
The Java code presented in the Listing A.2 is an example, used in the framework
to create a complex structured type for the packets which flow in the network. In
respect to the previous case, the steps to perform are multiple:

1. an array of String labels must be created, where each one represents the name
of the internal field of the external type;

2. an array of Sort elements, where for each component of the user-defined type
the developer wants to create its corresponding z3 data type must be provided
by means of a mkTypeSort method;

3. a Constructor object must be created with the method mkConstructor of
Context class, whose four main important parameters are, in order, the name
of the type the developed is going to define, the name of the function used
to identify instances of this type, the array of String labels and the array of
Sort elements;

4. finally the DatatypeSort object is created with the mkDatatypeSort method,
which accepts as input the name of the new user-defined type and an array
of Constructor used for its internal representation.

String[] fieldNames = new String[]{

"src","dest","inner_src","inner_dest","origin","orig_body","body",

"seq", "lv4proto", "src_port", "dest_port", "proto",

"emailFrom","url","options","encrypted"};

Sort[] srt = new Sort[]{

address,address,address,address,node,ctx.mkIntSort(),

ctx.mkIntSort(),ctx.mkIntSort(),ctx.mkIntSort(),

port_range,port_range,

ctx.mkIntSort(),ctx.mkIntSort(),ctx.mkIntSort(),

ctx.mkIntSort(),ctx.mkBoolSort()};

Constructor packetcon = ctx.mkConstructor("packet", "is_packet",

fieldNames, srt, null);

DatatypeSort packet = ctx.mkDatatypeSort("packet", new

Constructor[] {packetcon});

Listing A.2. Java code to create an DatatypeSort type

135

A – z3 Java API Manual

A.1.2 Creation of z3 variables

The Expr class instances represent constant variables whose values do not change
but they can be determined by the developer by means of hard-constraints or
automatically by z3 optimizer engine through the definition of soft constraints.

To create z3 instances of in-built data types, it is possible to invoke specific
methods returning a object of a corresponding subclass of Expr class; all these
methods require an input parameter, which is a String representing the name of
the variable to create. In these cases, specifying the Sort is not required because
the type is inferred by z3. A selection of standard method are provided in the
following:

❼ mkBoolConst to create a BoolExpr variable;

❼ mkIntConst to create an IntExpr variable;

❼ mkRealConst to represent a RealExpr variable.

It is worth noticing that the StringSort type does not have an immediate equiv-
alent class for the instances. For all the Sorts which cannot be mapped to corre-
sponding Expr, like the user-defined types, the only solution is to use the mkConst
method, which has the following prototype:

Expr mkConst (Symbol name, Sort range)

where name is the name of the variable (it can be a normal String or an Expr
variable), while range is the Sort type of which the developed wants to create an
instance.
Listing A.3 provides an example where a packet variable and a node variable are
created; their value is not defined in this first step, but only an identifying name is
assigned. As first parameters, in this example a combination of a DatatypeExpr, fw,
and of a String is provided, to show how the name of the variable can be formulated
with different kind of objects.

Expr p_0 = ctx.mkConst(fw +"_firewall_send_p_0", nctx.packet);

Expr n_0 = ctx.mkConst(fw + "_firewall_send_n_0", nctx.node);

Listing A.3. Java code to create instances of user-defined types

A.1.3 Basic relational logic operators

Among the Java APIs, some method can be invoked to create formulas in the
relation logic by means of traditional operators like and, or, xor. In the following
the prototypes and the description of the most relevant ones are presented:

BoolExpr mkNot (BoolExpr a) This method creates a new BoolExpr object
by negating the input BoolExpr variable.

136

A – z3 Java API Manual

BoolExpr mkAnd (BoolExpr...t) This method creates a new BoolExpr object
by means of the and operation applied to the input BoolExpr variables.

BoolExpr mkOr (BoolExpr...t) This method creates a new BoolExpr object
by means of the or operation applied to the input BoolExpr variables.

BoolExpr mkXor (BoolExpr t1, BoolExpr t2) This method creates a new
BoolExpr object by means of the xor operation applied to the two input
BoolExpr variables.

BoolExpr mkEq (Expr x, Expr y) This method creates a new BoolExpr ob-
ject stating the the input Expr variables should have the same value.

BoolExpr mkImplies (BoolExpr t1, BoolExpr t2) This method creates a new
BoolExpr object where the t2 object is considered true if the t1 object is stated
as true.

A concise example is provided in Listing A.4, where the BoolExpr behaviour
variable, representing the behaviour of a packet filter, is created by negating an or
combination of the auto-configured rules; the mkOr method receives, in fact, an
array of BoolExpr instances as input.

BoolExpr behaviour = ctx.mkNot(ctx.mkOr(rules.toArray(tmp)));

Listing A.4. Java code to show an example about how to use logic operators in z3

A couple of useful methods offered by Context class are, in addition, mkTrue()
and mkFalse() methods, which respectively returns aBoolExpr object set to the
true or false boolean value; they are fundamental, to force boolean expressions to
a specific value in hard constraints.

A.1.4 Quantifiers

Quantifiers are a powerful feature which allows the specification of formulas for the
set of all the instances of a specific data type; the syntax makes the work of the
developer easier, because the number of formulas and variables involved is much
less, but on the other hand performances are worst - this is the reason for which
all the formulas involving quantifiers for nodes in the network were removed during
this thesis work. Nevertheless packets are still often referred through quantifiers,
for this reason this guide provides this section to describe how to use this feature.

The Java method that can be invoked to create a formula involving quantifiers
is the following:

Quantifier mkForall (Sort[] sorts, Symbol[] names, Expr body, int weight,
Pattern[] patterns, Expr[] noPatterns, Symbol quantifierID, Symbol skolemID)

where the most important input arguments (the others can be set to null) are:

sorts the Sorts, e.g. data types, of the variables expressed through quantifiers

137

A – z3 Java API Manual

names the names of the variables

body the body of the quantifier, i.e. the formula involving variables with quanti-
fiers

weight the importance of using the quantifier during association (default value is
0)

Listing A.5 provides an example, where a formula involving a quantifier for the
packet type is involved: basically, this formula is evaluated for every instance of
this Sort defined in the z3 model. It is so evident how it leads to a gradation of
performances, in relation to the number of instances - only for packets it is still
acceptable, since their number is limited.

Quantifier quantifier = ctx.mkForall(new Expr[] { p_0 },

ctx.mkImplies(ctx.mkAnd((BoolExpr) recv,

behaviour, used), ctx.mkAnd(enumerateSend)),

1, null, null, null, null);

Listing A.5. Java code to show how quantifiers works

A.2 Optimize class

The Optimize class is the key element for the formulation of a MaxSMT problem;
in VEREFOO it has been used to solve a weighted partial MaxSMT problem.
The reference class for a SMT problem is, instead, the Solver class, exploited in
Verigraph; despite this, most of the methods which can be invoked on a Optimize
object have equivalent methods in the Solver class (e.g. Optimize class provides
the Push() method, while Solver class calls it push()).

As showed in Listing A.6, through the method mkOptimize, an Optimize object
is created. It can later be used to add constraints and parameters before invoking
the z3 optimizer engine to decide if the problem is satisfiable.

Optimize solver = ctx.mkOptimize();

Listing A.6. Java code to show how to create an Optimize object

A.2.1 How to define a MaxSMT problem instance

The workflow to define and solve a MaxSMT problem by using an Optimize object
can be summed up with the following points:

1. an Optimize object is created (from this moment, it will be called solver as
the name of the Optimize variable used in the framework);

2. a backtracking point is created with the Push() method;

3. the soft and hard constraints are added;

138

A – z3 Java API Manual

4. some parameters are setted by means of the method setParameters, which
requests a Params object as input;

5. the method Check() is invoked to get a Status object representing the result
of the z3 optimizer engine;

6. finally the Pop() method backtracks the backtracking point previously cre-
ated.

Listing A.7 provides an example representing the flow of methods to invoke
for the definition of a MaxSMT problem instance; it is worth noticing how in
the Params object the proper engine is selected. The method addConstraints() is
instead an internal method of the VEREFOO framework, in charge of adding all
the hard and soft constraints on the Optimize object.

Optimize solver = ctx.mkOptimize();

solver.Push();

addConstraints();

Params p = ctx.mkParams();

p.add("maxsat_engine", ctx.mkSymbol("wmax"));

p.add("maxres.wmax", true);

solver.setParameters(p);

Status result = this.solver.Check();

solver.Pop();

Listing A.7. Java code to show how to define a MaxSMT problem

A.2.2 How to add hard and soft constraints

The creation of a hard constraint - that is a not-relaxable clause which the z3 opti-
mizer engine must satisfy to provide a satisfiability result to the problem instance
independently of the achieved cost - or of a soft constraint - that is not required to
be satisfied, despite the engine tried to do it - is trivial, because they are generic
BoolExpr objets defined by means of methods like the ones presented in A.1.3.

Then, in order to add hard constraints in the MaxSMT problem instance, the
method Add can be invoked on the Optimize object (Assert is another method
representing an alias of Add); its prototype is the following:

void Add (BoolExpr...constraints)

where it is possible to add more hard constraints at the same time.

To add of a soft constraint, instead, a specific method of Optimize class - the
AssertSoft method - is required:

Handle AssertSoft (BoolExpr constraint, int weight, String group)

where the three input parameters are:

139

A – z3 Java API Manual

constraint It is the BoolExpr object representing the relaxable clause.

weight It is the weight, i.e. the importance of the constraint; the higher this value
is, the bigger the priority to satisfy this constraint is, even though not strictly
needed.

group It is the name of the group of soft constraints, if a partitioning is needed.

Supposing that hardConstraint and softConstraint are two BoolExpr objects
representing respectively a not-relaxable and a relaxable clause, then Listing A.8
provides an example about how the aforementioned method can be invoked to add
these constraints in a MaxSMT problem instance through the Optimize object here
called solver. These methods must be invoked after the Push() method.

solver.Add(hardConstraint);

solver.AssertSoft(softConstraint, 100, "fw_group");

Listing A.8. Java code to show how to add constraints

A.2.3 How to get the result

The Status object returned by the invocation of the Check method on the Optimize
object can have three different values:

1. Status.UNSATISFIABLE, if the optimizer engine did not find any solution
for the problem (e.g. it does not exist any combination of the values assigned
to the variables in the soft constraints which satisfies all the hard constraints);

2. Status.UNKNOWN, if the optimizer engine did not succeed in finding a solu-
tion because of external factors even though satisfiability could be theoreti-
cally reached (e.g. problems could be that the execution runs out of memory
or a segment of the problem is undecidable as in some non-linear integer
arithmetic expressions);

3. Status.SATISFIABLE, if the optimal solution to satisfy the MaxSMT problem
was successfully determined by the optimizer engine.

If the result is Status.SATISFIABLE, then it is possible to retrieve the Model
object invoking the method getModel() on the Optimize object, as it is shown in
Listing A.9.

Model model = null;

if (result == Status.SATISFIABLE) {

model = this.solver.getModel();

}

Listing A.9. Java code to show how retrieve the result

140

A – z3 Java API Manual

The method toString(), if applied to the Model object, allows to retrieve all
the assertions of the z3 instance of the MaxSMT problem, so that it is possible to
understand which soft constraints have been effectively satisfied; instead, if a result
of satisfiability has been reached, it already means that all the hard constrains have
been satisfied.

Alternatively, the most recent versions of z3 support a new method, getAsser-
tions(), which, if invoked on the Model object, returns an array of BoolExpr ele-
ments representing the clauses of the MaxSMT problem.

141

Appendix B

RESTful APIs for ADP module

A new REST-based interface has been designed for theADP (Allocation-Distribution-
Placement) module to allow an interaction with all the other components of the
framework and the service designer. This interface is integrated in the Spring Boot
framework, which directly embeds Tomcat and does not require to deploy WAR
files; it is, consequently, a versatile, user-friendly and efficient tool which can be
exploited to interact with the main functionalities provided by the ADP module

B.1 Resource Design

Figure B.1 shows how the design of the resources identified five main areas of
interest, for which information should be stored in a database:

❼ A graph resource represents an Allocation or Service Graph, identified by
a long unique identifier gid. Each graph is characterized by a set of nodes
resources, identified by their unique string name nid ; other important fea-
tures of a node are its neighbours, useful to model the links in the network,
and the possible configuration in case it is provided by the service designer;
additionally, some constraints can be introduced about the requirements of
some functions to deploy or about the automatic generation of an Allocation
Graph.

❼ A requirements resource represents a set of Network Security Requirements
which can be introduced in the ADP module either directly by the service
designer of another module, the H2M, of VEREFOO. Each requirements el-
ement is identified by a unique identifier rid and is characterized by a set of
properties representing the reachability and isolation constraints.

❼ A substrate resource represents the physical network on which the VNFs can
be placed; it is identified by a unique identifier sid and is characterized by a
set of hosts representing the physical servers.

❼ A function resource represents a Network Security Function which the ADP
module can allocate on the logical topology and is uniquely identified by

142

B – RESTful APIs for ADP module

its name fid (at the current state of the art, only packet filter firewall is
supported).

❼ A simulation resource represents the result of a VEREFOO run, if the out-
come is positive; the corresponding Service Graph or Physical Graph, with all
the information about the satisfied Network Security Requirements, is stored
with a unique identifier sid.

B.2 RESTful APIs Design

Table B.1 shows the complete design of the Rest APIs because on the above de-
scribed resources. The main principles which were followed in this operation and in
the subsequent implementation by means of the Java Enterprise Edition JAX-RS
framework are the following:

❼ a singleton class has been developed to store the data provided by the service
designer in the main memory, so that they can be retrieved and combined in
a single data structures on which the simulation of the ADP module is then
performed;

❼ all the operations are managed to be performed in a concurrent environment,
by exploiting Java data structures like ConcurrentHashMap and the synchro-
nized keyword for the critical methods;

❼ every time there is a reference in the graph to an element which still does
not exists (e.g. a neighbour), if this inconsistency cannot be automatically
managed, then a Bad Request status is provided to the user.

The simulation can, furthermore, be launched in two alternative ways:

1. the service designer can introduce a NFV element in the Request body to
ask the ADP module to perform the simulation on this data structure;

2. the service designer can specify a set of identifiers as query parameters in the
Request, so that the related resources are automatically retrieved and, if they
are sufficient to perform a simulation, it is launched.

143

B – RESTful APIs for ADP module

Figure B.1. Resource Design

144

B – RESTful APIs for ADP module

T
ab

le
B
.1
:
R
E
S
T
fu
l
A
P
I
D
es
ig
n

R
es
ou

rc
e

V
er
b

Q
u
er
y

pa
ra
m
e-

te
rs

R
eq
u
es
t

B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

ad
p
/g
ra
p
h
s

P
O
S
T

G
ra
p
h

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

G
ra
p
h
s

C
re
at
e
a
n
ew

gr
ap

h
.

ad
p
/g
ra
p
h
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

G
ra
p
h
s

R
et
ri
ev
e
al
l
th
e
gr
ap

h
s

in
th
e
d
at
ab

as
e.

ad
p
/g
ra
p
h
s

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e
al
l
th
e
gr
ap

h
s.

ad
p
/g
ra
p
h
s/
{g
id
}

P
U
T

G
ra
p
h

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e

an
ex
is
ti
n
g

gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

G
ra
p
h

R
et
ri
ev
e
a
gr
ap

h
b
y
it
s

ID
.

ad
p
/g
ra
p
h
s/
{g
id
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

an
ex
is
ti
n
g

gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

n
o
d
es

P
O
S
T

n
id

=
u
n
iq
u
e

n
am

e
of

th
e

n
o
d
e

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

N
o
d
e

C
re
at
e
a
n
ew

n
o
d
e
fo
r

a
gi
ve
n
gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

n
o
d
es
/{
n
id
}

P
U
T

N
o
d
e

20
4

N
o
C
on

te
n
t

40
0

B
ad

R
eq
u
es
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e

an
ex
is
ti
n
g

n
o
d
e
of

a
gi
ve
n
gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

n
o
d
es
/{
n
id
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

N
o
d
e

R
et
ri
ev
e
a

n
o
d
e
of

a
gi
ve
n
gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

n
o
d
es
/{
n
id
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

a
n
o
d
e

of
a

gi
ve
n
gr
ap

h
.

145

B – RESTful APIs for ADP module

R
es
ou

rc
e

V
er
b

Q
u
er
y

pa
ra
m
e-

te
rs

R
eq
u
es
t

B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

ad
p
/g
ra
p
h
s/
{g
id
}/

n
o
d
es
/{
n
id
}/

n
ei
gh

-
b
ou

rs

P
O
S
T

N
ei
gh

b
ou

r
20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

40
9

C
on

fl
ic
t

A
d
d
a
n
ew

n
ei
gh

b
ou

r
fo
r
th
e
n
o
d
e.

ad
p
/g
ra
p
h
s/
{g
id
}

n
o
d
es
/{
n
id
}/

n
ei
gh

-
b
ou

rs

D
E
L
E
T
E

n
ei
gh
bo
u
r

=
n
am

e
of

th
e

n
ei
gh

b
ou

r
to

re
m
ov
e

20
4

N
o
C
on

te
n
t

40
0

B
ad

R
eq
u
es
t

40
4

N
ot

F
ou

n
d

D
el
et
e

th
e

n
ei
gh

b
ou

r
of

th
e
n
o
d
e.

ad
p
/g
ra
p
h
s/
{g
id
}/

n
o
d
es
/{
n
id
}/

co
n
fi
gu

-
ra
ti
on

P
U
T

C
on

fi
gu

ra
–

ti
on

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e
th
e
co
n
fi
gu

ra
-

ti
on

of
th
e
n
o
d
e.

ad
p
/g
ra
p
h
s/
{g
id
}

n
o
d
es
/{
n
id
}/

co
n
fi
gu

-
ra
ti
on

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

th
e

co
n
fi
gu

ra
-

ti
on

of
th
e
n
o
d
e.

ad
p
/g
ra
p
h
s/
{g
id
}/

P
O
S
T

C
on

st
ra
in
ts

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

C
on

st
ra
in
ts

D
efi
n
e

a
se
t

of
co
n
-

st
ra
in
ts

fo
r
th
e
gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

co
n
st
ra
in
ts

P
U
T

C
on

st
ra
in
ts

20
4

N
o
C
on

te
n
t

40
0

B
ad

R
eq
u
es
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e

th
e

co
n
-

st
ra
in
ts

of
th
e
gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

co
n
st
ra
in
ts

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

C
on

st
ra
in
ts

R
et
ri
ev
e

th
e

co
n
-

st
ra
in
ts

of
th
e
gr
ap

h
.

ad
p
/g
ra
p
h
s/
{g
id
}/

co
n
st
ra
in
ts

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e
th
e
co
n
st
ra
in
ts

of
th
e
gr
ap

h
.

146

B – RESTful APIs for ADP module

R
es
ou

rc
e

V
er
b

Q
u
er
y

pa
ra
m
e-

te
rs

R
eq
u
es
t

B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

ad
p
/r
eq
u
ir
em

en
ts

P
O
S
T

P
ro
p
er
ty

D
efi
n
it
io
n

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

P
ro
p
er
ty

D
ef
-

in
it
io
n

C
re
at
e
a
n
ew

se
cu
ri
ty

re
q
u
ir
em

en
ts

se
t.

ad
p
/r
eq
u
ir
em

en
ts

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

L
is
t

⟨P
ro
pe
rt
y

D
ef
in
it
io
n
⟩

R
et
ri
ev
e
al
l
th
e
se
cu
-

ri
ty

re
q
u
ir
em

en
ts

se
ts
.

ad
p
/r
eq
u
ir
em

en
ts

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e
al
l
th
e
se
cu
ri
ty

re
q
u
ir
em

en
ts

se
ts
.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}

P
U
T

P
ro
p
er
ty

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e
an

ex
is
ti
n
g
re
-

q
u
ir
em

en
ts

se
t.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

P
ro
p
er
ty

R
et
ri
ev
e

an
ex
is
ti
n
g

re
q
u
ir
em

en
ts

se
t.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e
an

ex
is
ti
n
g
re
-

q
u
ir
em

en
ts

se
t.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}/

p
ro
p
er
ty

P
O
S
T

P
ro
p
er
ty

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

P
ro
p
er
ty

C
re
at
e
a
n
ew

se
cu
ri
ty

re
q
u
ir
em

en
t.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}/

p
ro
p
er
ty
/{
p
id
}

P
U
T

P
ro
p
er
ty

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e
an

ex
is
ti
n
g
se
-

cu
ri
ty

re
q
u
ir
em

en
t
of

a
gi
ve
n
se
t.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}/

p
ro
p
er
ty
/{
p
id
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

P
ro
p
er
ty

R
et
ri
ev
e
a
se
cu
ri
ty

re
-

q
u
ir
em

en
t
of

a
gi
ve
n

se
t.

ad
p
/r
eq
u
ir
em

en
ts
/{
ri
d
}/

p
ro
p
er
ty
/{
p
id
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

a
se
cu
ri
ty

re
-

q
u
ir
em

en
t
of

a
gi
ve
n

se
t.

147

B – RESTful APIs for ADP module

R
es
ou

rc
e

V
er
b

Q
u
er
y

pa
ra
m
e-

te
rs

R
eq
u
es
t

B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

ad
p
/s
u
b
st
ra
te
s

P
O
S
T

H
os
ts

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

H
os
ts

C
re
at
e

a
n
ew

su
b
-

st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

L
is
t
⟨H

os
ts
⟩

R
et
ri
ev
e

al
l
th
e

su
b
-

st
ra
te

n
et
w
or
k
s
in

th
e

d
at
ab

as
e.

ad
p
/s
u
b
st
ra
te
s

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

al
l

th
e

su
b
-

st
ra
te

n
et
w
or
k
s.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}

P
U
T

H
os
ts

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e

an
ex
is
ti
n
g

su
b
st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

H
os
ts

R
et
ri
ev
e

an
ex
is
ti
n
g

su
b
st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

an
ex
is
ti
n
g

su
b
st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

h
os
ts

P
O
S
T

h
id

=
u
n
iq
u
e

n
am

e
of

th
e
h
os
t

H
os
t

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

H
os
t

C
re
at
e
a
n
ew

h
os
t.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

h
os
ts
/{
h
id
}

P
U
T

H
os
t

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e

an
ex
is
ti
n
g

h
os
t
of

a
gi
ve
n

su
b
-

st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

h
os
ts
/{
h
id
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

H
os
t

R
et
ri
ev
e

an
ex
is
ti
n
g

h
os
t
of

a
gi
ve
n

su
b
-

st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

h
os
ts
/{
h
id
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e

an
ex
is
t-

in
g

h
os
t

of
a

gi
ve
n

su
b
st
ra
te

n
et
w
or
k
.

148

B – RESTful APIs for ADP module

R
es
ou

rc
e

V
er
b

Q
u
er
y

pa
ra
m
e-

te
rs

R
eq
u
es
t

B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

P
O
S
T

C
on

n
ec
ti
on

s
20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

40
9

C
on

fl
ic
t

C
on

n
ec
ti
on

s
D
efi
n
e
a
se
t
of

co
n
n
ec
-

ti
on

s
fo
r
th
e
su
b
st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

co
n
n
ec
ti
on

s
P
U
T

C
on

n
ec
ti
on

s
20
4

N
o
C
on

te
n
t

40
0

B
ad

R
eq
u
es
t

40
4

N
ot

F
ou

n
d

U
p
d
at
e

th
e

co
n
n
ec
-

ti
on

s
fo
r
th
e
su
b
st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

co
n
n
ec
ti
on

s
G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

C
on

n
ec
ti
on

s
R
et
ri
ev
e

th
e

co
n
n
ec
-

ti
on

s
of

th
e
su
b
st
ra
te

n
et
w
or
k
.

ad
p
/s
u
b
st
ra
te
s/
{s
id
}/

co
n
n
ec
ti
on

s
D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e
th
e
th
e
co
n
n
ec
-

ti
on

s
of

th
e
su
b
st
ra
te

n
et
w
or
k
.

ad
p
/f
u
n
ct
io
n
s

P
O
S
T

S
tr
in
g

20
1

C
re
at
ed

40
9

C
on

fl
ic
t

S
tr
in
g

C
re
at
e
a
n
ew

fu
n
ct
io
n

ty
p
e.

ad
p
/f
u
n
ct
io
n
s/
{fi

d
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

S
tr
in
g

R
et
ri
ev
e

a
fu
n
ct
io
n

ty
p
e.

ad
p
/f
u
n
ct
io
n
s/
{fi

d
}

D
E
L
E
T
E

20
4

N
o
C
on

te
n
t

40
4

N
ot

F
ou

n
d

D
el
et
e
a
n
ew

fu
n
ct
io
n

ty
p
e.

149

B – RESTful APIs for ADP module

R
es
ou

rc
e

V
er
b

Q
u
er
y

pa
ra
m
e-

te
rs

R
eq
u
es
t

B
od
y

S
ta
tu
s

R
es
po
n
se

B
od
y

D
es
cr
ip
ti
on

ad
p
/s
im

u
la
ti
on

s
P
O
S
T

N
F
V

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

N
F
V

R
u
n

a
si
m
u
la
ti
on

b
as
ed

on
a

N
F
V

co
m
p
le
te

el
em

en
t.

ad
p
/s
im

u
la
ti
on

s
P
O
S
T

gi
d

=
id

of
th
e

gr
ap

h
;

ri
d

=
id

of
th
e

re
q
u
ir
em

en
ts

se
t;

si
d

=
id

of
th
e

su
b
st
ra
te
;

fi
d

=
n
am

e
of

th
e

fu
n
ct
io
n

(m
u
lt
ip
le

ar
e

p
os
si
b
le
)

20
1

C
re
at
ed

40
0

B
ad

R
eq
u
es
t

N
F
V

R
u
n

a
si
m
u
la
ti
on

b
as
ed

on
a

se
t

of
re
so
u
rc
es

re
tr
ie
ve
d
,
if

th
ey

ex
is
t,

ex
p
lo
it
in
g

th
e
in
p
u
t
p
ar
am

et
er
s.

ad
p
/s
im

u
la
ti
on

s/
{s
m
id
}

G
E
T

20
0

O
k

40
4

N
ot

F
ou

n
d

N
F
V

R
et
ri
ev
e
th
e
re
su
lt

of
a
p
as
t
si
m
u
la
ti
on

.

150

	List of Figures
	List of Tables
	Listings
	Introduction
	Thesis objective
	Thesis description

	Software Networking
	Service Function Chain
	Software-Defined Networks
	Principles of Software-Defined Networks
	Architecture of an SDN-based model
	Application of the SDN technology to a SFC

	Network Functions Virtualization
	Principles of Network Functions Virtualization
	ETSI NFV Model
	Application of the NFV technology to a SFC

	Network Automation

	Policy-based Management and Firewall Auto-Configuration
	Policy-based Management
	Basic terminology
	Policy-based Management Framework
	Policy specification and abstraction
	Policy refinement and translation

	Firewall Auto-Configuration
	Firmato: a firewall management toolkit
	Other works about firewall auto-configuration

	Tools: z3 and Verigraph
	z3
	Introduction to z3
	The SMT problem
	The MaxSMT problem

	Verigraph
	Introduction to Verigraph
	Verigraph Network Model

	VEREFOO Model
	Introduction to VEREFOO
	Model description
	Allocation, Distribution and Placement
	Scenarios
	Automatic Orchestration and Configuration
	Automatic VNFs Placement

	Design and development of ADP module

	Allocation Graph and Forwarding Rules
	Service Graph
	Description of the Service Graph concept
	Model of the Service Graph
	Implementation of the Service Graph in the XML schema

	Allocation Graph
	Description of the Allocation Graph concept
	Model of the Allocation Graph
	Implementation of the Allocation Graph in the XML schema
	Implementation of the Allocation Graph in the framework

	Forwarding Rules
	Design of the Forwarding Rules
	Implementation of the Forwarding Rules

	Network Security Requirements
	Description of the Network Security Requirements
	Model of the Network Security Requirements
	Implementation in the XML schema of the Network Security Requirements
	Wildcards
	Wildcards original idea and implementation
	Wildcards new implementation
	Wildcards management

	Isolation Requirement
	Reachability Requirement
	Identity of the end points of Network Security Requirements
	Multiple Network Security Requirements between the same pair of end points

	Packet Filter Firewall
	Introduction to Packet Filter Firewall
	Model of the Filtering Policy of a firewall
	Implementation in the XML schema of the Filtering Policy of a firewall
	Objectives of the MaxSMT problem
	Automatic Allocation of Firewalls
	Automatic Configuration of the Filtering Policies
	Packet filter auto-configuration algorithms
	Configuration of a packet filter in z3

	Clarification example about allocation and configuration of firewalls

	Results
	Useful terminology
	Comparison with old framework
	Comparison between different working conditions
	Comparison between graph and chain
	Comparison between whitelisting and blacklisting
	Comparison between isolation and reachability

	Evaluation of Allocation Nodes number impact
	Scalability tests

	Conclusions
	Bibliography
	z3 Java API Manual
	Context class
	Creation of data types (sorts)
	Creation of z3 variables
	Basic relational logic operators
	Quantifiers

	Optimize class
	How to define a MaxSMT problem instance
	How to add hard and soft constraints
	How to get the result

	RESTful APIs for ADP module
	Resource Design
	RESTful APIs Design

