
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Thesis

Consistent management of
dynamic policies in distributed

IoT applications

Supervisors

Prof. Fulvio Corno

Prof. Wouter Joosen

Dr. Bert Lagaisse

Candidate

Susanna Aita

Academic Year 2018-2019

Ai miei genitori e

alle mie nonne

Summary

The Internet of Things (IoT) allows to introduce in the internet world billions of

new devices. Together with new exciting functionalities, IoT leads to new manage-

ment challenges. We are in the context of a smart building, in which the principal

services offered, like access control for areas, climate control and fire detection,

are controlled by IoT applications. These heterogeneous devices must be inter-

connected and must collaborate properly in order to provide services and support

unexpected events or threats.

One of the main goals of this thesis is to achieve a mechanism that controls the

system behaviour through policies. But mostly, we research how to guarantee dy-

namic and consistent adaptation of these policies throughout a distributed system.

In this scenario, it is important to provide the possibility to change the system

behaviour, in order to tackle different situations that can occur during the whole

lifetime of a building. The consistency property is equally fundamental for a correct

functioning of all the operations. Our challenge refers indeed to these problems:

nowadays, the behaviours of the IoT devices are mainly defined upfront and the

possibility to change them dynamically and, furthermore, in a consistent way, has

not been well investigated so far.

After an introduction of the IoT technology, we describe the context of our work,

the problem we aimed at solving and our goals. The core contribution of this thesis

is the development of a flexible middleware, running on the different nodes of the

system, able to handle dynamic policies in consistent way. In fact, our system is

composed by nodes, divided in multiple tiers: the gateways, situated on different

floors of a smart building, connected to some sensors, and a server that handles

all the communications. In addition, the server governs the gateways behaviour

i

triggering the transfer of new policies. At the gateway side these policies must be

correctly managed at run-time. Our developed protocol guarantees that all the

procedures are performed consistently without the need of restarting the processes.

In this context, among all the possible use cases, we mainly focus on the encryption

and decryption one. A node is in charge of the encryption of a message, while an-

other one is responsible for the decryption. The server can trigger the update of a

policy that contains a new encryption algorithm. Both of these nodes must update

the policy consistently in order to exchange the message accurately. If something

goes wrong, the system is not able to retrieve and process the message properly.

The validation tests illustrate that the temporary inconsistent situations that can

occur are correctly managed. The performance tests show that our developed mid-

dleware has a limited impact in time, memory and on the network.

ii

Acknowledgements

This thesis has been accomplished under the supervision of my promoters Prof.

dr. ir. Wouter Joosen and Dr. Bert Lagaisse and my mentor Dimitri Jonckers at

Katholieke Universiteit of Leuven. The most heartfelt thanks go to them that have

supported me during all my thesis work, with willingness and cordiality, since my

first arrival in Belgium. Thanks to their support I have been able to complete this

thesis at my best.

I would sincerely like to thank my promoter at Politecnico di Torino Prof. Fulvio

Corno for his help and assistance from Turin throughout the year.

Inoltre, vorrei ringraziare la mia famiglia: papà Marco e mamma Anna, grazie

per avermi permesso di intraprendere questo percorso dandomi tutto il conforto,

la serenità e tutti i mezzi per portarlo a termine al meglio. Ringrazio mia sorella

Vittoria per avermi spinto ad intraprendere questo percorso Erasmus in particolare

a Leuven, è stata la scelta migliore che potessi fare e le sarò per sempre riconoscente.

Grazie a mio fratello Alessandro per avermi prestato la bicicletta quando avevo

bisogno di svago. Grazie alle mie nonne, Edda e Regina, le donne più forti che io

abbia mai conosciuto. Grazie a Jacopo per avermi supportato e sopportato in tutti

questi cinque anni. Grazie per avermi dato tutto l’amore e la forza per superare

gli ostacoli, per avermi ricordato ogni volta di credere nelle mie capacità e di aver

condiviso con me i momenti di gioia ma anche quelli di difficoltà.

Grazie alle mie migliori amiche: Giulia, Serena e Sofia. Inseparabili compagne di

vita che hanno sempre saputo darmi tutto l’affetto, l’appoggio e la leggerezza di

cui avevo bisogno.

Un ringraziamento speciale e profondo va alla mia compagna di studi Ilaria con la

quale ho avuto la fortuna di condividere più della metà di questo percorso.

iii

Contents

1 Introduction 1

1.1 The Internet of Things paradigm 1

1.2 Challenges and examples . 4

1.2.1 Applications domains . 4

1.2.2 Smart building platforms . 5

1.2.3 Our architecture for the smart building management 6

1.3 Policy based management . 8

1.4 The challenges of distributed policy

management . 9

1.5 Goal . 10

1.6 Contribution . 11

1.7 Approach and results . 11

1.8 Structure of this thesis . 13

2 Background knowledge and related work 14

2.1 Enabling Technologies . 14

2.2 Policy enforcement approach . 16

2.2.1 Characterization of the policies 16

2.2.2 Policy Systems: rule engines 17

2.2.3 A Business Rules Management System: Drools 18

iv

2.3 VersaSense Micro Plug-and-Play (MicroPnP) 20

2.4 Related work . 21

2.4.1 Significant technologies and techniques 21

2.4.2 Dynamic Change Management: quiescence 22

2.4.3 A low disruptive alternative: tranquillity 24

2.4.4 CaPI: a component and policy-based approach 25

2.4.5 Dynamic and selective combination of extensions in component-

based applications . 27

2.4.6 Comparison and comments 28

3 Problem statement, analysis and requirements 30

3.1 Use cases . 30

3.1.1 Access control . 31

3.1.2 Climate and light control . 31

3.1.3 Air quality, fire detection and evacuation 32

3.1.4 Encryption and Decryption functionality 32

3.2 Problem analysis and context diagram 33

3.3 Goals and metrics . 36

3.4 Requirements analysis . 37

3.4.1 Functional requirements . 37

3.4.2 Non-functional requirements 38

4 Dynamic and consistent policy updates 39

4.1 Architecture and design overview 39

4.2 Java RMI communication protocol 41

4.3 Distributed encryption/decryption protocol:

a challenging consistency example 43

v

4.3.1 Design of the standard protocol 44

4.3.2 Design of the updating protocol 46

4.3.3 Multiple senders and multiple receivers 48

4.4 Management protocol for stateful policies 48

5 Proof of Concept (PoC) and implementation 50

5.1 PoC structure overview . 50

5.2 PoC development . 51

5.2.1 Versasense’s Micro Plug-and Play for the gateway implemen-

tation . 54

5.2.2 The procedure for a dynamic update of policies 55

5.2.3 Distributed and consistent protocol implementation 56

5.2.4 Implementation of stateful policy 60

6 Validation 62

6.1 Effective dynamic update of policies 62

6.2 Achievement of consistent updates 63

6.3 Validation tests . 65

6.3.1 Standard scenario . 66

6.3.2 First problematic scenario: delay on the sender 68

6.3.3 Second problematic scenario: delay of an update at receiver

side . 70

6.3.4 Third problematic scenario: delay on message

transmission . 72

7 Evaluation and discussion 74

7.1 Failure model . 74

7.2 Time overhead . 75

vi

7.3 Memory and network overhead . 86

7.4 Limitations and future work . 87

8 Conclusion 89

Bibliography 91

vii

Chapter 1

Introduction

1.1 The Internet of Things paradigm

The Internet of Things (IoT) is an innovative paradigm that is radically changing

the human society and life. The main idea of IoT is the introduction around us of

heterogeneous devices (things) connected to a network. It provides worldwide access

to information, interaction with different machines and with different stakeholders

and cooperation in order to offer innovative and revolutionary services.

In this perspective, a new notion of interconnected and smart objects with

computational capacity is replacing the conventional concept of the internet as

infrastructure network that connects the end-users’ terminals.

Therefore, the term Internet of Things includes: the global network used for the

interconnection of smart objects, the set of technologies essential to achieve this

purpose (e.g. sensors, actuators, cloud services, mobile phones) and the new services

and applications that allow new opportunities in the most different fields that

leverage these technologies [1].

The introduction of the IoT has an unquestionably impact in domestic and

professional life, as in the private and public fields. Some examples of application

scenarios could be domotics, e-health, automation, industrial manufacturing and

intelligent transportation of people and goods.[2]

From 2008, there were already more devices connected to the Internet than people

1

1 – Introduction

on Earth and some studies predict that by 2020 this number will grow beyond 50

billion, as shown in Figure 1.1 [3][4].

Figure 1.1: The growth of Internet of Things devices (Brandon, 2015)

In this context, it is not surprising that new risks, issues and concerns are aris-

ing together with these new exciting services.

The most related one to this thesis and so the main focus is the management

challenge that such high number of interconnected devices arise. A flexible

middleware infrastructure is needed in order to manage technical concerns in

a dynamic and distributed environment. Self-healing and adaptation and are

very important characteristics in order to tackle ordinary and unexpected events

which are very likely in this context.

Due to the high level of devices’ heterogeneity, the traditional communication

schema, security countermeasures and privacy enforcement are not suitable for IoT

devices, also because of their limitation in computing power, memory, energy and

speed.

Another important issue is the lack of standardization and full deployment of the

2

1 – Introduction

IoT paradigm. There are various integration efforts but they are not standardized in

a complete framework. More and more devices are becoming interconnected with

different communication stacks and different complexity. Hence, it is becoming

complicated to manage trusted communication, connection or the authentication

of system access [2].

In order to give a description of the IoT paradigm from different points of view,

it is woth mentioning the interesting article in [3] that analyses briefly the subject

of IoT from the technological, social, economic and cultural points of view:

Technological point of view. By making use of the huge amount of data, or

Big Data, collected by sensors, IoT can be seen as a global network that can connect

virtual and real devices. The article mentions some important characteristics of

these new technologies like omnipresence, ultra-connectivity and difficult control

over this massive quantity of objects in the network.

Social and economic point of view. With the introduction of smart cities,

smart industries and assisted living, IoT is generating an eco-system denoted as

Smart Life. Together with new exciting services and with an inevitable change

in all organizations’ environment, this introduction of smart applications in our

lives leads to new risks in security and in ensuring private life. The IoT is seen

by most of European governments as an important factor of growth and economic

innovation that must be standardized in order to improve services, security and

data protection.

Cultural point of view. Some studies rise the problem of the secondary effect

of internet usage, such as becoming too dependent, isolated, losing concentration

abilities, imagination and cognitive skills.

We are going towards the internet of the future that will be considerably different

from the internet we are used to. It moves the interactions between devices and

people at a virtual level in both professional and social life.

As mentioned before, this thesis mainly deals with the distributed aspect of the

IoT that allows to leverage on the various functionalities of heterogeneous connected

devices, to spread the workload of the system in different machines and to control

the whole architecture at different levels. In this scenario issues related to how

3

1 – Introduction

to send, store, represent, search, interconnect and organize information generated

by the IoT devices become very challenging. Therefore, a middleware between the

technological level and the applications plays a key role in the correct management

of the infrastructure.

1.2 Challenges and examples

The actual goal of this thesis is to examine the possibility to employ dynamic

policies in the management of the IoT systems. The basic idea of the IoT is to

enable enhanced environments like buildings, campuses or cities, sharing resources

and creating new exciting services.

It is made possible by the interaction among heterogeneous devices that cooperate

to reach common goals.

1.2.1 Applications domains

Thanks to its capability to connect disparate objects of our daily lives, the IoT has

introduced several applications and smart services. Some of them are [5],[4]:

1. Smart cities: nowadays it is possible to automate and manage a whole city

via internet, such as controlling traffic signals, monitoring pollution levels and

seismic vibration buildings, tracking vehicle parking, surveillance of public

areas and waste management.

2. Domestic applications: currently people can control many of the house

tasks without the need of being near the devices. For example, controlling

and adapting the consumption of electricity or water, monitoring details like

room temperature, noise, oxygen or dust levels or turning ON/OFF devices

using a smartphone.

3. Connected industry: industrial automation is made possible by the in-

troduction of IoT. Nowadays it is easier to monitor energy consumption and

storage conditions along the supply chain. A smart product management sys-

tem can track products for traceability aims, control the rotation of products

4

1 – Introduction

in the shelves and control the warehouses. In the agricultural sector IoT can,

for example, improve the consumption of water by select the right level of

irrigation.

4. Logistics and Transportation: new technologies arise in this field such as

Machine to Machine (M2M) that allows the communication between cars in

order to reduce the possibilities of incidents. It also provides the technology

to keep track of the public transport system, in order to control, for example,

the densities of pedestrian and traffic and to identify damages in the road.

In this thesis we focus on the domestic applications but in the scenario of a

smart building and its management. The following sections will introduce it in

detail.

1.2.2 Smart building platforms

In particular we are in the context of a smart building in which new and existing

devices are integrated into the IoT platform. It includes the use and implementa-

tion of building technology systems that involves numerous advanced facilities like

automation systems, telecommunications, user systems and life safety [6]. Several

are the possibilities to implement an architecture for a smart building. They are

mainly divided in centralized and distributed. As far as the centralized architecture

is concerned, the bright side involves an easier configuration, simpler control and

a central collecting of data. On the other hand, this architecture presents a single

point of failure and more limited decisional capacity.

A distributed architecture instead is a more evolute and rich solution. It allows to

spread the workload at different points, to retrieve information faster and perform

operation in place. This kind of architecture involves heterogeneous and dynamic

assets that collaborate in order to accommodate multiple functionalities and mul-

tiple stakeholders. For these reasons, the most straightforward way to govern this

platform involves the use of policies. They enforce quality and functional require-

ments over numerous devices and device types, they describe the behaviour and

the operations of the components and must be adapted and changeable throughout

5

1 – Introduction

time[7].

1.2.3 Our architecture for the smart building management

The proposed platform shown in Figure 1.2, taken from the paper in [7], presents

the IoT architectures that we have chosen among all the possible ones. It consists in

a distributed setting that includes devices like temperature sensors and controllers

for access, window, elevator and fire detector all connected to the gateways. These

gateways are connected to a local service back-end, which manages one deployment

domain (one building) and the interfaces for connecting with stakeholders and ex-

ternal systems. Applications are instantiated and activated in the local service

back-end and in the involved gateways. For example, the Figure 1.2 below shows

that an app instance of the physical access control application is running at both

gateways. GW1 can govern access to a door with badge reader, while GW2 has a

door with a numeric keypad for users to authenticate.

Different stakeholders utilise the services offered by the local service back-end:

building maintenance managers, platform administrators and building security man-

agers.

Figure 1.2: Architectural view of the IoT platform

6

1 – Introduction

The integration between devices and subsystems and the possibility to unify

the access to them through the IoT system allows users to share resources between

applications and tenants. Furthermore this communication results in efficiency

gains such as discover the optimal climate control schedule, the optimal energy

usage and detect alarmed or emergency situations thanks to the data collected at

different points.

As shown in Figure 1.2 the smart building is a large Cyber-Physical System

(CPS) composed by the integration of systems such as lighting, heating, ventila-

tion, air-conditioning (HVAC), access control, e.g. locks and motion detection, IT

network and IT infrastructure devices and so on.

It is worth mentioning some use cases correlated to a smart building:

• (Physical) Access control: it manages access to private areas in the building.

It controls locks and monitor presence in the various locations. For this

purpose, in the mentioned Figure we could see a badge reader connected to a

door-lock and some cameras, managed by GW1 and keypad that allows the

entrance connected by GW2.

• Climate and light control: it regulates the temperature in the rooms and

monitors the level of comfort. Based on the measurement of the light it can

establish the right level without wasting energy. In the Figure, connected to

GW2, is present air-conditioning sensors linked to a fan.

• Air quality, fire detection and evacuation: it can analyse the characteristics

of the air condition and can raise an alarm in case of dangerous results found.

Air sensors are connected to both gateway in the Figure.

• Encryption and decryption functionality: due to the huge amount of data ex-

change an application able to correctly encrypt and decrypt all these message

is required in order to accomplish the security requirements.

In this work, we will focus mainly on the management of dynamic policies for

IoT systems. All the mentioned functionalities offered by an IoT platform can

be governed by policies and these must be implemented and enforced on various

7

1 – Introduction

devices and with different granularities.

In particular we are interested in implementing dynamic policies in a distributed

IoT system and in handling them in a consistent and coherent way throughout the

platform.

We have mentioned several times the term policy without gave an accurate

description of it. Therefore, the following Section 1.3 gives a general overview and

includes some example of the use of policies in this context.

1.3 Policy based management

Policy-based management is, in general, a technology that can simplify the handling

of networks and distributed systems. In this thesis, we are more focus in this latter

task. Thanks to this approach, also managers and directors, not expert in IT, can

manage the different assets of a distributed system in a uncomplicated and flexible

way by deploying and enforcing a set of policies that rule their behaviour. Policies

are collection of rules that are independent from the technology below. They aim

at enhancing the hard-coded functionality of the systems without modifying the

underlying implementation. This allows to change the systems actions without the

need to interrupt the running operations. [8],[9],[10].

Generally, the policies can be categorized into three types: pure event driven

{Event-Condition-Action ECA}, periodic check {[E]CA} and obligation or imposed

decision {[EC]A}. In this thesis, we are mainly dealing with the first type.

We add below some examples of security and platform management policies, feasible

in our smart building context:

• Access control fire doors: ”Only the hazard monitoring application is allowed

to send commands to the fire doors.”

EVENT: Command to fire door device

CONDITION: Source command = hazard monitoring app

ACTION: Allow command (grant)

8

1 – Introduction

• Access control cameras: ”No application other than the access control appli-

cation is allowed to send commands to a camera that is being used by the

access control application.”

EVENT: Command to camera device D

CONDITION: Source command different from access

control app

ACTION: Block command

• Monitoring of hazard monitoring application devices: ”If any IoT device used

by the hazard monitoring app has not been heard of for 5 minutes, log the

event and raise a low-priority alert for the building maintenance manager.”

EVENT: No heartbeat of device_x used by hazard

monitoring application in last 5 minutes

CONDITION: No planned outage

ACTION: Log event AND High-priority unavailability

alert to local back-end

In order to handle and execute business rules at run-time within a program

environment, we can leverage on different software called Policy System that has

been developed. In particular, we use Drools that processes data, facts and rules

and produces results using a rule engine.

1.4 The challenges of distributed policy

management

The opportunities enabled by IoT, together with new exciting services, cause new

management challenges.

This thesis will examine how to express the new requirements as policies and

how to enforce them in a distributed and dynamic IoT context, by using RedHat

Drools, a general and non ad-hoc Policy System.

9

1 – Introduction

In the IoT context the possibility to implement dynamic and event-based poli-

cies has not been well investigated. The components’ behaviour is mainly defined

upfront, hard-coded in the architecture and allows limited changes.

Furthermore, the consistent dynamic updates of the policies over the distributed

system is still a challenge. In this scenario of dynamic changes, it is fundamental to

provide a protocol that guarantees consistency, coherency and robustness among

the nodes of the system, before, during and after every run-time changes. For

example, referring to the use cases in Subsection 1.2.3 a lack of consistency in the

access control policies can cause a free entrance in locations that must be protected.

An inconsistent management of evacuation policy can cause panic and misleading

situations. As another example, in a scenario that involves the encryption and

decryption of messages, a lack of consistency and robustness can lead to an incorrect

retrieval of information that would cause unexpected results.

1.5 Goal

The key goal of this thesis is to research the feasibility of supporting dynamic poli-

cies, made by a set of rules, and to develop an event-based middleware platform to

support these distributed and dynamic policies in an IoT systems.

The main challenging goal is to achieve consistent distributed adaptation of dy-

namic policies. Therefore we divide the middleware in two key subsystems: a

functional and a management level. The first is a distributed level that guarantees

the communication between the different nodes, the second one is in charge of the

correct distribution of the policies, it is responsible for deploying updates of the

policy sets over the distributed nodes, it should replace policies consistently on

multiple machines and handle the queue of events when changes are required.

We will perform measurements about the performances, about the computational

load and about the time requested to carry out all the phases involved in the dy-

namic update of the policies.

We will investigate if the already existing policy engines like Drools are suitable for

this task and their advantages compared to hard-coded rules.

10

1 – Introduction

1.6 Contribution

The main contributions of this thesis is to support dynamic policies in a distributed

IoT architecture giving the possibility to change them in case of need. Moreover,

we guarantee consistency through all the nodes of the system during and after this

phase.

We researched and managed to build an event-based middleware platform able to

deal with the different IoT services and applications through the use of policies and

their dynamic updates. We succeed in proposing a solution that is:

1. Able to support dynamic update of policies

2. Consistent through all the components of the IoT system

3. Well-performing

Therefore, we identify three Research Questions that we aim at answering to:

RQ1 Does our middleware support dynamic update of policies?

RQ2 Is the consistency guaranteed during the phases?

RQ3 Are all the operations carried out in a reasonable amount of time?

1.7 Approach and results

As better described in Section 2.4, we took inspiration from already investigated

solutions, to come up with a protocol for an IoT system that performs consistent

and fast update of policies.

In particular the notion of tranquillity in [11], approved to be a sufficient condition

for updatability, is the closest to our implementation. During the upload of a new

policy the devices become passive and cannot be engaged in a transaction, initiate

a new one and process any requests.

Therefore, the main results of this thesis are:

11

1 – Introduction

• Achieve the usage of dynamic policies in an IoT context.

• Distribute and change them in a consistent way through all the nodes.

• Propose a design for the overall architecture that consists in multiple and

different devices in which the qualities listed above are guaranteed.

• Validate and evaluate our achievements in a Proof of Concept.

Together with the main contributions we achieve some other results that are in

the scope of this thesis.

• Literature review focused on dynamic and consistent update of system.

• Adapting these mechanism to the IoT context.

• Description of the use cases for a smart building setting that requires the

usage and update of policies.

• Description and actuation of Drools as Policy System in the different devices.

• Research the use of Java RMI as a communication protocol

We validate our contributions and results in the encryption/decryption use case

described in Section 3.1 and explained in details in Section 4.3.

It involves the encryption of messages at one side of the system and the following

decryption at another side. A policy defines which algorithm they must use for per-

forming the actions. Since the two sides must necessarily agree with the algorithm

used, this example, better that any other, highlights if the consistent property is

guaranteed: if they are not aligned with the use of the same algorithm the protocol

fails in correctly retrieving the messages.

12

1 – Introduction

1.8 Structure of this thesis

This first Chapter of the thesis have presented an introduction of the IoT technology

followed by the context of our work. Furthermore, we have described the problem

we aim at solving, our goals and contributions.

The rest of this thesis is structured as follows: In Chapter 2 we introduce

the background knowledge, enabling technologies and related work that have con-

tributed to the achievement of our goals. In Chapter 3 we give an overview of

the use cases that allow to better explain the challenges we want to achieve. Fur-

thermore, we perform a more detailed analysis of the problem, of the goal and on

the requirements, considering the background knowledge presented in the previous

Chapter. The Chapter 4 presents our solution for the challenges defined before. In

Chapter 5 we describe our implementation for the Proof on Concept (Poc). The

Chapter 6 and the Chapter 7 present respectively the validation and evaluation test

of our PoC and finally, in Chapter 8 we draw the conclusion of our accomplishments.

13

Chapter 2

Background knowledge and

related work

In this Chapter we present the knowledge required to better understand the problem

we want to solve, the goal we aim at achieving and our accomplished work.

In Section 2.1 we describe the current technologies that enable the Internet of

Things paradigm. In Section 2.2 we introduce the policy enforcement approach

and the policy systems available, in particular the one that we employ: Drools. In

Section 2.3 we present the device used for developing our prototype as an example

of a real IoT platform. Finally, in Section 2.4 we discuss about and compare four

papers from which we find inspiration for the development of the consistent protocol

among multiple nodes.

2.1 Enabling Technologies

The term Internet of Things was originally first presented in 1999 by Kevin Ashton,

the founder of MIT auto-identification centre. Ashton has claimed:

”The Internet of Things has the potential to change the world, just as the internet

did. Maybe even more so.” [4].

We have already empathized the huge and increasing number of devices connected

to the internet and in addition, with the involving of software, hardware, instal-

lation costs and management services, IoT becomes the most significant device

14

2 – Background knowledge and related work

market that will add $1.7 trillion in value to the global economy in 2019 [4].

In 2012 IoT was defined by ITU as: ”a global infrastructure for the information

society, enabling advanced services by interconnecting (physical and virtual) things

based on, existing and evolving, interoperable information and communication tech-

nologies” [12].

Nowadays, the technological development allows to include in the IoT paradigm

the comprehensive infrastructure that interconnect physical and virtual devices,

such as Wireless Sensors Networks (WSNs) and Cloud Computing [4].

Communication protocols and wireless mediums have an essential function in the

IoT system. They are the enabling technologies that allow the various devices to

exchange their data over the network and most of them represent a low cost and

simple deployment solution for IoT.

It is worth mentioning the most commonly used nowadays [5],[4].

RFID technology utilizes radio frequency for the transmission of data and thanks

to the miniature size of the RFID tags they can be employed in any area.

The IEEE 802.11, most known as Wi-Fi, is a world wide used wireless medium

that provides a way to send and receive signals, commands and data and it is

characterized by simplicity and low installation and maintenance costs.

Bluetooth is an acclaimed standard among mobile phones in which the new

technologies are ”Bluetooth Low Energy” (BLE) and ”Bluetooth smart” that are

widely used particularly among the wearable electronic devices.

Another important communication protocol for IoT is ZigBee. It is suitable

for applications that need more powerful battery, secure networking devices and a

low rate for data.

Besides, Near Field Communication (NFC) is designed for a safe, wireless

and bilateral communication of devices situated in a very short distance. As ex-

ample, it is used for performing contactless payment transactions and for accessing

digital contents.

Furthermore, some of the most common IoT protocols are: 6LoWPAN, IPv6

15

2 – Background knowledge and related work

over Low Power Wireless Personal Area Network, and MQTT, Message Queu-

ing Telemetry Transport. The former is based on the IP standard so it can be

connected straight to other IP networks, it supports low bandwidth, different net-

work topologies, power consumption, mobility and unreliability [4]. The latter is

a lightweight messaging protocol characterized by small size, low power usage and

ease of implementation.

2.2 Policy enforcement approach

The policy enforcement is a mechanism able to force an application to follow a

set of defined actions. In the following subsections we describe the nature of the

policies and two of the most common rule engines: Drools and Esper.

2.2.1 Characterization of the policies

The policies can be seen as a set of operating rules established for performing ac-

tions, maintaining order and organization on data and on the operations.

They support separation of concerns and modularization of rules that need a dedi-

cated suitable paradigm, next to the hard-coded implementation of the application

behaviour.

In a distributed IoT context these policies allows interoperability and standardiza-

tion, that are essential in the IoT development.

They might change in a consistent way through all the environments, they are

spread in more than one device and in more then one kind of device (like gateway

and server). Furthermore, they are dynamic, they must encapsulate configurable

solutions and they might change themselves in case of unexpected events or in order

to tune the performance of the applications.

In our building management context we mainly focus on monitoring the environ-

ment values and provide a way to correctly handle the data transferred.

In general, the policies can be used for a variety of concerns listed here:

16

2 – Background knowledge and related work

1. Security:

• Access control

• Encryption/decryption of the data

• Security obligations

• Handling security incidents and data anomalies

• Availability

2. Platform management:

• Performance

• Updating

• Maintenance

3. Specific application policies

• Supporting app policy enforcement

• Meta-application policies

2.2.2 Policy Systems: rule engines

A rule engine is a software system that executes business rules in a program en-

vironment at run-time. In this thesis we use Drools. It is an open source project

written in the Java programming language and it is an example of Business Rule

Management System (BRMS). It consists in a rule engine which produces output

after the processing of facts and rules. It is possible to quickly introduce inexpen-

sive changes thanks to its centralization of business logic. Drools also provides an

efficiency writing of the rules in an human-understandable way [13].

Another available software for the management of rules is Esper. It is used in

Complex Event Processing (CEP) and in event series analysis available for Java.

Esper provides a language called EPL, similar to SQL, that allows an easy config-

uration of patterns and rules that will be applied on the data stream.

Esper is suitabe for applications that process large amount of incoming data. Esper

17

2 – Background knowledge and related work

filters and analyses events in various ways and respond to conditions of interest in

real-time [14].

2.2.3 A Business Rules Management System: Drools

As introduced in Section 2.2.2, Drools is a Business Rules Management System

(BRMS). This term relates to a software able to manage all the complexity and

variety of decision logic, like its definition, deployment, execution and monitoring.

We can define this logic as business rules, conditional statements and requirements

that are exploited by an organization or an enterprise to define which actions have

to be performed in a system or an application in different circumstances [15].

Specifically, Drools is and open source project written in Java supported by

JBoss and Red Hat, Inc. The most important element in the Drools architecture is

the Business Rules Engine (BRE). It processes objects (called Facts) and produces

output as a result of rules applications. The Rule Engine is used to define ”WHAT”

to do and not ”HOW” to do it [16].

Several are the advantages of a Rule Engine: it allows to bring closer the tech-

nical and management teams in a company, thanks to the syntactical simplicity of

its rules that can be written in an human-understandable form.

It keeps separated the business logic (that resides in the rules) and the data (that

resides in the object). It guarantees speed and scalability and has tool integration

such as Eclipse [13],[16].

The central elements in Drools are the rules. A rule is a piece of code that define

what action has to be performed due to a precise condition: ”WHEN a condition is

true THEN take this action”. If the when part is fulfilled, the then part is executed.

The Figure 2.1 below shows an example:

18

2 – Background knowledge and related work

Figure 2.1: A Drools rule

This simple rule is fired when the field contents.data[0].value

of the TemperatureReading Java Object is greather than 50 and as result it prints

a message about which sensor detected this temperature.

To fire rules on given data, we need to instantiate the framework provided classes

with information about the location of rules file and the Facts. The latter are the

data on which the rules will act upon. From Java perspective, Facts are the POJO

(Plain Old Java Object).

We use the KIE API library to set up this framework [17].

First, we have to set the KieFileSystem that provides the container in which we

define the Drools resources like the rule files. Next, we set the KieContainer that is

a container for all the KieBases (the repositories of the rules) of a given KieModule

(a container of all the resources necessary to define a set of KieBases). We perfom

the buildAll() method invoked on KieBuilder that builds all the resources and

ties them to KieBase.

Lastly, the rules are fired by opening a KieSession and call the method fireAllRule().

The KieSession is the prevailing way to interact with the Drools engine. A KieSes-

sion allows the application to establish an iterative communication with the Drools

engine. The reasoning process may be triggered multiple times for the same set of

data. After the application finishes using the session, it must call the dispose()

method in order to free used memory and the resources [18].

The power of Drools consists in the fact that the rules are not hard-coded and

therefore we can change the policy files in the KieFileSystem at run-time, without

the need to recompile the project. In this way we can modify the files while the

application keeps running with the only carefulness of maintaining the consistency

of these changes throughout the system.

19

2 – Background knowledge and related work

2.3 VersaSense Micro Plug-and-Play (MicroPnP)

VersaSensese Micro Plug-and-Play is the IoT platform used to create the prototype

of this thesis. It addresses the complexity of creating, deploying and configuring

applications for the IoT. It provides a zero-configuration, that means no manual

operations or interventions are required to set up the communication, and it re-

duces the efforts of installation, integration and management of the IoT systems.

This platform realizes a secure, low-power and trustworthy networking, a solution

that easily integrates third-party sensing peripherals with already existing applica-

tions and on-line cloud services for the storage of the data collected [19].

This platform is used in the Industrial field of IoT, namely in harsh environments

in which these devices are supposed to operate and acquire processes data over long

periods.

Figure 2.2: The MicroPnP platform

The VersaSense MicroPnP consists in gateways connected to motes with plug-

gable sensors and actuators. Referring to the Figure 1.2 we could match two of

these gateway as GW1 and GW2 and the motes at the level of sensors that pro-

vides information to perform hazard monitoring and climate control.

We use this technology as an integral part of our prototype to test our protocol in

a real IoT system.

Every sensors provide to the associated gateway data about temperature, humidity,

20

2 – Background knowledge and related work

level of light, buzzer activation and motion detection every few seconds.

The gateway itself hosts our developed Java programming that fires policies in place

about the value received from the sensors and sends them back to the server.

This mechanism allows to prove the feasibility of using the Drools engine on a real

IoT system.

The Section 5.2.1 presents the functionality of the system in more details.

2.4 Related work

In this Section we discuss some significant technologies and techniques related to

the dynamic update of components, that already exist in more generic related work

beyond IoT.

2.4.1 Significant technologies and techniques

To implement the best procedure for handling the update of the policies in the IoT

context, we took inspiration from these works introduced in this Section.

We mention four papers that analyse and propose models in order to address

one of the major challenge in the distributed systems context: the presence of evolu-

tionary changes. They refer to those kind of changes that may require modification

of functions and applications already present in the system or require the adding

of new features. Specifically, they cannot be predicted at the time the system is

developed.

Additionally, the presented papers focus on the importance of consistency before,

during and after run-time changes.

The first one presents the notion of quiescence[20], the second tries to optimize

the solution proposed before with the introduction of the tranquillity criterion. [11]

The third paper presents an ad-hoc solution for the development, management and

reconfiguration of evolving functional requirements of Wireless Sensor Networks

[21].

The fourth one presents a distributed application composed by interchangeable

21

2 – Background knowledge and related work

components that can be integrated in a core and semi-complete system when a new

functionality is required [22].

2.4.2 Dynamic Change Management: quiescence

The paper in [20] presents a model for dynamic change management in a system,

based on separations of concerns: functional concerns and structural configuration

concerns (interconnections and components). They investigated the possibility of

developing a system that must be sufficiently flexible to allow dynamic changes,

without interrupting the unaffected parts. These changes need to be managed and

controlled.

To interface between the functional and structural view of the system they identify

a separate configuration management. It provides means for specifying and per-

forming changes.

Another architectural element, the change management, provides facilities to con-

trolling the consistency of changes through the application. The changes refer only

to the structure of the system.

Figure 2.3: System configuration and change management

In particular, the objective of the change management are: specify changes in

terms of system structure and not define them at too low-level, specify the changes

declaratively so that it is the configuration management that determines the order-

ing of the changes not the user, the algorithms protocols and states of application

must be independent and, finally, it must provide always a consistent state and

affect only the nodes involving in the change without compromise the executions

22

2 – Background knowledge and related work

of the others.

The term they present as fundamental for the correct management of changes

is quiescence. The change management waits for the node that needs a change to

reach a quiescent state, that means no communications with the nodes involved

nor with the environment.

In order to perform changes starting from a consistent state and ending to

another consistent state, the management system must be able to check the config-

uration state for each node (active or passive). This information is provided by an

interface with the application. Then, when a change occurs, being in a passive state

for a node is not sufficient for guaranteeing the consistency. It only defines that a

node cannot initiate any new transaction but it can accept and serve transactions

requested from other nodes.

Instead, the quiescent state is required for changes. In this state a node is passive

plus, it cannot accept and serve requests, so this property involves the other nodes

as well.

The definition of quiescence claims that a node is in this state if [20]:

1. It is not currently engaged in a transaction that it initiated.

2. It will not initiate new transactions.

3. It is not currently engaged in servicing a transaction.

4. No transactions have been or will be initiated by other nodes that require

service from this node.

This is a strong requirement that makes the configuration state of a node con-

sistent and frozen. It means that it does not contain partial result from transaction

neither its state can change after new transactions.

23

2 – Background knowledge and related work

2.4.3 A low disruptive alternative: tranquillity

In [11] the authors relax the condition of quiescence presented in the previous paper.

They states that this condition results in a serious interruption of the updating

application. To solve this problem, they introduce a weaker alternative state for

the nodes of a system that ensures consistency during the update of a running

system: tranquillity.

Even if is not proven that tranquillity can be reached in finite time, experiments

show that a short time frame is nearly always enough for reaching this state.

The tranquillity notion is based on two facts: first, a node can be safely replaced if

a transaction in which it is involved has already passed through it or it will pass in

the future. Second, all nodes have to be black boxes by design in order to improve

decoupling and re-usability of the system components. All the participants of a

transaction either are the starter or are adjacent nodes. Other nodes can be not

involved in the transaction since the starter does not know about their existence,

but can be involved in following sub-transactions.

Therefore the authors come up with the definition of tranquillity as a proper

status for updatability. They claim that a node N is in a tranquil state if [11]:

1. It is not currently engaged in a transaction that it initiated.

2. It will not initiate new transactions.

3. It is not actively processing a request.

4. None of its adjacent nodes are engaged in a transaction in which it has both

already participated and might still participate in the future.

Quiescence entails tranquillity but not the other way around.

Tranquillity does not require that nodes connected to a changing node N cannot

initiate a new transaction that includes it. Only node N must become passive, the

other nodes have just to conclude active requests to it, they do not have to be

completely passivated.

They prove that the tranquillity is sufficient for the updating of nodes’ status.

An important drawback of this criterion is that the tranquillity state has not the

24

2 – Background knowledge and related work

guarantee to be reached in a bounded time. This could happen when a node is used

in an infinite repetition of interposed transactions. This situation must require the

use of quiescence because also the other nodes involved must be passivated. There-

fore, any system that uses the tranquillity criterion for the updates must implement

a mechanism that implements quiescence in case tranquillity cannot be reached.

Another drawback is the fact that this is not a stable criterion. All interaction with

a tranquil node must be prevented to preserve the state.

Instead, in the case of quiescence, since it lead to the passivation of all nodes di-

rectly or indirectly linked to the changing node, the stability is always guaranteed.

The authors present DRACO, a general purpose middleware platform in which

they implement a prototype of the system. They observe components in the tran-

quil state and, when it is not possible, fallen back to quiescence state.

The components in DRACO are Java classes (that match the nodes of the previous

work) with connectors (edges) that provide interactions among them.

Similar to the previous paper, the architecture of the DRACO middleware platform

consists in module for the management of different activities: component manager,

schedule manager, message manager, module manager and connector manager.

2.4.4 CaPI: a component and policy-based approach

The policy-based systems have already been investigated in the context of Wireless

Sensor Networks (WSN) [21],[23] and in the context of Body Sensor Networks (BSN)

[24]. In particular, in [21], they propose the Component and Policy Infrastructure

(CaPI), a reconfigurable middleware platform aims at overcoming the limits of using

policies just for provide application functionality, extending the use of them also

for entirely manage the changing of functional and behavioural concerns.

The authors focus on the longevity, large-scale and resource constraints of the

contemporary wireless sensor networks. These characteristics demand possibly fre-

quent reconfigurations to satisfy changing requirements, high-level of abstraction

and efficient management of the networks.

25

2 – Background knowledge and related work

CaPI provides two different programming abstractions: policies and compo-

nents. The former are implemented to support personalization and management of

concerns at run-time. These policies are lightweight and built with an effective and

expressive language, independent from platform. They follow the Event-Condition-

Action (ECA) model, like Drools.

The latter are sections of software functionality that allow access to features at

low-level of different hardware platform and operating systems. Their functions

are described by a type and an identifier and their connections are event-based.

CaPI also provides a flexible reconfiguration model that manages dynamic evo-

lution of both functional and non-functional concerns, adding, removing and re-

composing new components and policies at run-time with minimal overhead.

The authors highlight the necessity of WSN’s dynamic reconfiguration to op-

timize system behaviour in case of changes in environmental conditions and new

application requirements that are impossible to anticipate. Furthermore, another

reason for reconfiguration is the heterogeneity of software because of different plat-

forms, operating systems and languages.

As far as policies are concerned, CaPI implements a run-time adaptable policy

infrastructure that consists in:

1. Configurable enforcement points : Policies are enforced in distinct site. When

an event traverses one of these sites, it is sent to the policy engine with some

information that will be used for making the decision about what policies

need to be enforced.

2. Adaptable policy engine: The architecture offers dynamic installation and

dismissal of policies and extension with new functionality at run-time as well.

3. Policy repository : It computes and assigns the required memory for the poli-

cies and stores the corresponding metadata like status and enforcement points.

26

2 – Background knowledge and related work

2.4.5 Dynamic and selective combination of extensions in

component-based applications

In this paper [22] the authors present the concept of component framework. It

is a semi-complete software architecture composed by components that can be

selectively parametrized and interchanged within the core functionalities.

In such system we could replace a component with a more appropriate one for a

specific task or add a new one due to new requirements requested by the end users.

The issue raised, however, concerns the nature of the components and their

interactions that are not easily changeable due to consistency and interoperability

problems that can occur.

They propose a component-based system made by the dynamic combinations of

extensions implemented as mixin-like wrappers on a minimal core system. They

simultaneously and dynamically adjust components and interactions when changes

take place.

In order to look at the presented approach in our IoT context, we can match

their concept of component with our concept of policy.

The authors described three main challenges involved in the introduction of con-

sistent changes within the system:

1. Modular customization: adding a new extension should not influence other

components not involved in the change. Besides, each change should, in accor-

dance with the separation of concerns principle, be dynamically implemented

or removed as a disjointed module that does not require change in the core

platform and in the code.

2. System-wide refinement: if some changes concerns to a refinement of the core

system, they should be performed as an atomic and consistent operation.

This is because it involves a system-wide refining of various core modules

simultaneously, due to their interactions.

3. Context-sensitive extension: they point out the importance of contextual

properties, such as specific service operations requested by the clients that

require run-time changes to the core system.

27

2 – Background knowledge and related work

They implement extensions as one or more wrappers that support modular

customization of applications through the encapsulation of the code needed for

implementing that new functionality. It is possible to construct multiple wrapper

chains to support client-specific extensions. The wrapper-based system is inspired

by and supports Role Object [25] and Decorator [26] design patterns. The former

dynamically assigns to a core component new service interface that allows to widen

the component type, the latter permits to add or remove functionalities to an

existing object without impacting its structure.

This idea of multiple wrapper chains combined together for realizing the exten-

sion leads to consistency and scalability problems. The first problem refers to the

complexity of maintaining consistency in case of dynamic aggregation of extension.

The second problem concerns the issue for the objects to preserve the references

to the chains in order to invoke the methods they offer. The wrappers themselves

may need to refer to other wrapper chains as well.

They solve these problems developing Lasagne, an architecture independent from

the platform, to be implemented on top of any object-oriented programming lan-

guage based on classes, that supports the correct integration of extensions.

2.4.6 Comparison and comments

All the papers described in the previous Sections contribute, to different degrees,

to inspiring the middleware and protocol implemented for this thesis. They also

gave a comprehensive overview of existing models and technologies in the context

of distributed systems. In this Section we made a comparison among them and we

focus on the main characteristics that has been exploited.

The paper in Section 2.4.2 was written in the nineties and it is probably one

of the first researches in the area of the evolutionary changes in the distributed

systems. It contributes in giving a primary idea about the different kind of states

for the nodes and how to correctly manage them.

This work was continued and completed with a more recent one, almost 20 years

later, described in Section 2.4.3. The authors present an alternative state (tranquil

state) for the node that is changing. It is the most similar to the one implemented

28

2 – Background knowledge and related work

in the prototype of this thesis: when a new policy file is uploaded, the two gateways

end in a state in which they cannot manage new events and a queue stores them

until they will become active again.

In [21] the focus is on the Wireless Sensor Network. They develop a sophisticated

middleware based on components and policies. The requirements of supporting

efficient reconfigurations and management of long-lived platforms are the same of

ours in the IoT context, but what we are investigated in this thesis is the possibility

of using already existing technologies, without realizing an ad-hoc architecture.

The fourth illustrated paper describes an architecture similar to the one pre-

sented in this thesis: a core system at the basis that provides the main function-

alities and, separately, the possibility to add extension (components or policies for

us) to provide new services or changes in the behaviour of the system. The issue

of consistency is common in both context. They tackle this problem decentralizing

the wrapper composition logic in a composition policy external from the rest of the

system. It is sent, together with the stream of messages, and will be managed by

interceptors that guarantee system-wide consistency.

In our prototype the consistency is guaranteed by the implementation of the pro-

tocol itself.

However, even if the overall architectures are close to each other, this approach is

more oriented to adding functionality to the programming language and classes,

while we are more oriented to the use of Drools that is above the code.

29

Chapter 3

Problem statement, analysis and

requirements

In this Chapter we give an overview of the use cases used for putting into context

our problems and our challenges. We then introduce the context diagram of our

middleware and the goals that we want to achieve. In particular, in Section 3.1 we

discuss the use cases that allow to better focus on the problem we aim at solving.

In Section 3.2 we provide an high-level description of the principal components and

layers that constitute our context diagram, on which we base our problem analysis.

In Section 3.3 we describe the goals already introduced in the previous Section

1.5, in more details, taking into account the context diagram of the system just

described and the prior knowledge presented in the previous Chapter. Lastly, in

Section 3.4 we perform a requirements analysis.

3.1 Use cases

This Section presents different use cases that could be deployed in the context of

our proposed architecture for a smart building and could take advantage of the

policy approach. They allow to identify and clarify the major problems we want to

solve and to organize the system requirements. The use cases presented are a set of

possible functions and sequences of interactions between systems and users in our

30

3 – Problem statement, analysis and requirements

environment and related to our goals. In particular they highlight why our solution

allow to better manage different situations with the use of dynamic policies.

3.1.1 Access control

Access control is a security technique that regulates the usage of resources, it es-

tablishes who has access to which asset. In a smart building, the access control

application manages, for example, the entrance to secured locations. It achieves

this by controlling locks of doors that give access to protected area through a badge,

an access card or a keypad. It can also monitor the presence in these areas by using

devices such as motion detection sensors.

We define policies to establish the level of security of different locations and give

the possibility to change it in case of need. These policies must be always consistent

in every part of the building in order to avoid the situation of having private areas

unattended.

Others policies could require a fast update such as the one that detects attempt to

unauthorised access, attempt to incriminate others for theft, espionage or damage

through stealing someone’s access card.

3.1.2 Climate and light control

By the integration of Heating, Ventilation and Air Conditioning (HVAC), the cli-

mate control application monitors and controls the climate conditions in the areas

of the building through the activation of policies. By reading the sensors’ values,

they can heat up or cool down a room in order to maintain a comfortable temper-

ature. Windows actuators can be useful for this purpose as well.

The light control application monitors and controls the lighting conditions. For ex-

ample, the corresponding policies can turn lights on and off based on: preferences,

the time of day, human presence and external light. Hence, they can also reduce

wasted energy due to lights being on unnecessarily.

Possible policies could also be used for checking the manipulation of climate or

light conditions. An attacker could be interested in causing monetary loss or in

31

3 – Problem statement, analysis and requirements

creating inconvenience or panic by manipulating climate conditions or in espionage

on room occupancy. In this scenario is important that the policies are dynamic

and interchangeable in order to face new and unexpected threats. The consistency

property is also valuable in order to define equal suspected conditions that trigger

an alarm through all the different areas.

3.1.3 Air quality, fire detection and evacuation

This application monitors the environment for dangerous or inconvenient condi-

tions and can raise an alarm in case of a detected hazard. Air quality is monitored

by sensing concentration of specific compounds. In case of an emergency, this ap-

plication shows the most efficient escape routes at several locations throughout the

building. Routes can be shown on displays or use alternative signs such as lighting

up arrows. The application takes into account presence and topology information

to avoid congestion and ensure a swift evacuation of the building. It could be

triggered by other applications, such as the previously described climate control

application.

The policies that rule and tune this application should have fast and consistent

updates for all the areas of the building. A bad collaboration among the devices

caused by inconsistency in the policies can lead to some problems such as a fake

setting of the alarms, a wrong escape route calculations or theft, e.g. by causing a

fake alert that opens the windows to freshen the air.

3.1.4 Encryption and Decryption functionality

It is clear that the amount of data and signals exchanged in order to provide the

services described above is huge. Additionally, all these communications are wireless

and, therefore, this leads to serious threats of eavesdropping or, worse, tampering.

Since these data control the functionality of the assets in a living environment, a

misbehaviour can endanger the life of the inhabitants and workers.

We develop a protocol able to support a secure exchange of data through the

encryption and decryption of the messages. By means of policies, we also provide

32

3 – Problem statement, analysis and requirements

the possibility to modify the algorithm with which the messages are encrypted or

decrypted, preserving the consistency at both sides. We present it in detail in

Section 4.3.

3.2 Problem analysis and context diagram

As already highlighted, the main goal of this thesis is to accomplish a distributed

system governed by dynamic policies, in which the consistency’s property is guar-

anteed. The overall model of this proposed system consists in different components:

one back-end server connected to multiple gateways, connected, in turn, to some

sensors. The latter transmit to the connected gateways data about the environ-

mental state every few seconds.

The architecture of this proposed model will be described in the Chapter 4.

Going into detail about every components involved, the inner diagram can be

conceptually divided in two main layers:

1. An underlying collaborative architecture that provides the communication

functionalities: it establishes which are the overall data and information that

the devices make available to one another how the data exchange is executed.

This architecture is fixed and is independent from the management level

above. It is generic layer thanks to which the communication between server

and gateways are performed, for example the gateways send to the server all

data they collect from the sensors (temperature, data to encrypt/decrypt and

other measurements) and the server can send to the gateways the commands

for requesting particular measurements during an unexpected situation or it

can transmit a new policy file.

In that way, the policies, managed by the management layer above, will really

control the behaviour of the system deciding which data to take into account

from the total made available.

2. A management layer that controls the implementation and upload of the pol-

icy files.

33

3 – Problem statement, analysis and requirements

At the server side, this layer uses the communication channels of the col-

laborative architecture to trigger the transfer of a new policy file and it can

send other metadata that guarantee the correct and uniform implementation

of them. At gateway side, it is in charge of sending metadata for the same

purpose as well plus, it works as a protection level that reasons about the

messages arrived and manages inconsistent situations that can occur. In ad-

dition, it handle all the steps for uploading correctly the new policy file once

arrived.

Around these two main layers there are the level of rules application and the

level of the Policy System from which the set of rules are fired and selected.

The Figure in 3.1 shows a schema of the described model.

Figure 3.1: Context diagram

Through the communication protocols of the collaborative architecture the gate-

ways can send the data to the server and with the rule application layer they take

decision that depends on the policy file selected at that moment.

Similar actions performs the server, it collects and fires rules on the global data

received from all the gateways plus, it can trigger the upload of new policy files on

the overall system.

Indeed, the main role of the back-end server is to control over the policy’s execu-

tions on the gateways and to receive data and results from them. Moreover, the

34

3 – Problem statement, analysis and requirements

back-end server can trigger an update or a change of the policy files to the gate-

ways. This is a critical step because it involves changing policies at different places

and at run-time, during the continuous acquisition of new data.

Every component of the overall architecture has their own policy files, the back-

end server controls all of them in order to guarantee distributivity and consistency

of the execution.

The policies implemented are divided into stateless and stateful. The former are

the simpler type, they only trigger an action based on the current data without

additional analysis. A possible update only requires a correct management of the

queue of events.

The latter demand more attention. They maintain and update a state during their

execution with the consequence that a potential change of them will require the

correct management of this state. It must be correctly and efficiently preserved. In

Section 4.4 we propose a solution for handling this eventuality.

The policies are modelled as Drools files. As introduced in the paragraph 2.2.2,

these files are composed by rules as well as some resource declarations like imports,

globals, functions and attributes that are assigned and used by the rules.

Therefore, all components include a Drools file (with .dlr extension) that contains

the rules in the form:

rule < rulename >

<attribute> <value>

when <conditions>

then <actions>

end

These files are the changeable part of the system that stay on a well-known and

declared run-time.

35

3 – Problem statement, analysis and requirements

3.3 Goals and metrics

As our model is divided in two main levels, the goals and objectives of the thesis

involve the investigation of two aspects of the system:

• At the management layer we want to investigate the achievement of a policy-

based system with determinate characteristics.

This is the main focus of the thesis. We want to show that this layer allows to

deploy and upload policy files in multiple places in a way that is consistent,

coherent, fast, robust, versatile and automatic.

We use the notion of quiescence and tranquillity shown in Section 2.4 to come

up with a protocol that enforces all these requirements.

The principal questions that we want to answer to are: if we are able to effec-

tively get dynamic updates of policies, if these updates are well-performing,

if they are distributed overall the system, if they are update consistently in a

current processing system and if these policies can carry a state that will be

correctly managed.

We demonstrate that the protocol works as intended, that changes are possible

at run-time without restarting the application, that no messages are lost

during the updating phase, that after a reasonable amount of time all the

components come back operational and that inconsistent situations that can

occur are correctly managed.

• At the underlying communication layer we want to examine the criticality

of the implementation of Drools infrastructure on a real IoT gateway, in

particular on the VersaSense gateway introduced in Section 2.3.

We want to demonstrate that even if Drools was not designed to these kind

of devices it is a feasible option in the construction of IoT system governed

by policies. We want to prove that the time and memory overheads do not

prevent the success of the application developed.

Furthermore, we want to show that even if the VersaSense’s gateway has less

power capacity, less speed and less memory than a ordinary laptop, all the

steps involved in the realization of the protocol are carried out in a reasonable

36

3 – Problem statement, analysis and requirements

amount of time.

Together with the Drools infrastructure, we analyse and prove the function-

ality of Java RMI as communication mechanism chosen.

The metrics used to measure these requirements are the milliseconds needed

to realize all the operations at the real gateway side compared to the same

functions realized by an ordinary laptop. We want also to measure the extra

memory intended for the supportive structures used for storing and managing

the helpful metadata.

3.4 Requirements analysis

In this Section we perform a requirements analysis in which are summarized our

goals, seen as functional and non-functional requirements of our middleware.

3.4.1 Functional requirements

The first functional requirement concerns the policies themselves. The development

of a policy-based system is one of the main focuses of this thesis, therefore we want

to achieve a platform able to work with policies and based on policies.

A correct communication between the different components must be guaranteed

in order to have a consistent state assured every time. It is required to correctly

handle the queue of events that need to be evaluated during the updating phase, to

avoid losing events or management messages and to prevent the misunderstanding

of commands.

In particular requirements of consistency, coherency and speed are the most im-

portant ones. For example if we upload a new policy file at the gateway side that

raises an alarm if it is reached a temperature of 60 degrees, the similar policy must

change consistently at the back-end server side.

Another example is that a message in the queue of events that has been encrypted

with a specific algorithm, it must be decrypted with the same algorithm even in

case of intermediate changes of policies.

37

3 – Problem statement, analysis and requirements

In case of more complex policies that carry a state, our middleware must be

able to preserve it during the update phase.

A further requirement concerns the underlying collaborative architecture: it is

declared and well-known and it must be as general as possible in order to accom-

modate every requests and commands demanded by in the policy files.

The overall middleware composed by the architecture and the Policy System

must provide a degree of flexibility adequate for being compatible with heteroge-

neous devices. In addition, scalability is also required to handle a variety of multiple

devices.

3.4.2 Non-functional requirements

In our platform, the non-functional requirements are basically the performances

and acceptable time, memory and network overheads.

The impact of the Policy System running on the platform must be reasonable.

Equally, the impact of the additional structures needed for memorizing all the

metadata must be sustainable.

Furthermore, we aim at providing a middleware that must offer the fulfilment of

the policy updating phase in a short amount of time, in order to decrease the

possibilities of inconsistency as much as possible.

38

Chapter 4

Dynamic and consistent policy

updates

This Chapter presents the architecture of the system designed and developed for

accomplishing the dynamic and consistent updates of policies in a distributed IoT

scenario. Section 4.1 introduces the description of the architecture, Section 4.2

gives an overview of the components and mechanisms of Java RMI, the technology

chosen as communication channel. The following Sections describe the solution’s

key points. In 4.3 is explained the use case we focus on and we describe the steps

of our protocol that achieves a consistent and dynamic policy update. In 4.4 we

discuss the possibility of having to deal with stateful policies.

4.1 Architecture and design overview

The inner model of the components shown in Section 3.2 underlines the presence

of two main layers on which we base the inner architecture of the system:

• The collaborative architecture is the operating level thanks to which any kind

of communications between the different devices are made possible. This is

achieved by the usage of Java RMI technology, explained in detail in Section

4.2. It provides channels for file transfer and channels for sending management

messages.

39

4 – Dynamic and consistent policy updates

• The management level is the protocol implemented for achieving the correct

execution of the rules. It is able to satisfy all the requirement described in

Section 3.4.

In order to present our solution, we refer to a global architecture that consists

in one back-end server connected to some gateways. It represents an example of

an IoT platform. The gateways are connected to some sensors that continuously

provide some environmental information, such as temperature readings, movement

detection, level of light and activation of the buzzer, to the gateway they are con-

nected to. All these data are modelled as events.

Furthermore, the gateways and the server host their own policy files, thanks to

which they can fire rules on data in place.

The architecture described is shown in the Figure 4.1.

Figure 4.1: Global architecture: deployment diagram

Next Sections describe in details the choices for the realization of the architec-

ture and the design of the solution proposed.

40

4 – Dynamic and consistent policy updates

4.2 Java RMI communication protocol

The communication is established through Java RMI technology. Since our focus

is on building a distributed middleware, through Java RMI we achieve remote

communication between the components involved.

The general RMI scenario consists in [27]:

1. A remote object that is created by the server and a reference of that object

that is made accessible for the client through a registry.

2. The client makes a request for this remote object of the server, in order to be

able to invoke its methods.

We instantiate different remote objects, in the server and in the gateways

(clients), in order to made methods available for each side [28].

The server creates a remote object and makes it available for the clients. In our

architecture we run the RMI registry on the server. With the methods offered by

Java RMI API, a stub for the RMI registry is obtained by the server. Subsequently,

the server registers its object with the RMI registry calling the bind() or rebind()

methods. On the client side, to invoke this remote object, it is necessary to fetch

it from the registry using the lookup() method [27].

Figure 4.2: Java RMI components

41

4 – Dynamic and consistent policy updates

After this procedure, the clients (in our prototype the gateways) can start the

interaction with the server. Since we are interested in peer-to-peer communications,

in which the server can also invoke methods on the client side, the clients, in turn,

create their own remote objects and export them to the server side.

In this paragraph, we present some specific RMI classes and objects we created

in our middleware architecture. In particular, we describe the procedure followed

by the climate control system, in which the corresponding policy requires analysis

and exchange of the temperature values. We include all the steps for realizing the

communications through Java RMI within our implementation.

First of all, as described previously, the server calls the bind() method for sharing

its remote object, hence the gateways can call the lookup() method for retrieving

it. After that, both gateways share their own remote objects with the server in

order to put in place a bilateral communication, as you can see in Figure 4.3, with

the server’s method registerClient().

At this point the server can call the client method createThread(), that triggers

the creation of a thread at the client side. This thread will manage the data re-

ceived from the sensors.

After, both the clients handle the collected data and send them to the server with

sendEvent() method. It will use them to compute aggregate values, to perform

operations and to calculate statistics. If the server detects some unexpected val-

ues, it can request an immediate transmission with the c.sendAllTemperature()

method.

The sequence diagram of the protocol described is shown in the Figure 4.3.

42

4 – Dynamic and consistent policy updates

Figure 4.3: Example of a Java RMI communication

In our developed Proof of Concept, described in Section 5.2.3 of Chapter 5, we

introduce specific RMI classes and objects fundamental to achieve the distributed

communications in our chosen use case.

4.3 Distributed encryption/decryption protocol:

a challenging consistency example

This Section presents our solution that addresses the possibility of implementing

dynamic policy at run-time and solves the consistency problem among the nodes,

during these policy updates. In order to emphasize the importance of consistency

among the distributed policies, we focus our research on a particular use case: the

encryption and decryption of messages. We present which steps our developed

protocol must follow when we upload a policy that requests encryption of data at

one side and the consecutive decryption at another side. This, more than any other

use case, clearly shows if the consistent properties are achieved.

43

4 – Dynamic and consistent policy updates

In the IoT context we have already accentuated the importance of security and

privacy of the information stored and exchanged between different nodes of an IoT

system.

A possible use case related to the confidentiality of data through a system is an

encryption and decryption process: it consists of the encryption of messages at one

node of the system and the corresponding decryption at another node.

This schema requires some careful and precise steps of the protocol that guarantee

consistency between the two nodes involved, in order to correctly transfer and

retrieve the information.

Moreover, in an IoT system it is useful to provide the possibility to change the

algorithm used for encrypting at any time it is necessary and, accordingly, the

same algorithm must be immediately used at the other side. A message encrypted

with a specific version must be necessarily decrypted with the same version.

4.3.1 Design of the standard protocol

The standard protocol for a single sender and receiver, that represents how the

middleware handles the message flow, is shown in the blue diagram below, in the

Figure 4.4. The yellow boxes, even though they are actions always performed by

the decryption gateway, do not refer to the standard part of the protocol, but to

the updating part, described in next Section.

We present a diagram that can be generalized for multiple senders and multiple

receivers as well. It will be explained in more details in Section 4.3.3.

As already mentioned, it is worth noting that these operations can be similarly

performed for other use cases, where a sender and a receiver of events are involved.

For this reason, we call the two gateways generically sender and receiver gateway.

Basically, the protocol is straightforward: at the beginning both sender and

receiver gateways create and store a new KIESession (see Section 2.2.3) together

with the number of the corresponding version of the policy file the KIESession is

associated with. After this, the sender gateway checks if the state of the system is

not frozen, that means no ongoing updating phase. If it is not the case, it retrieves

new data, it keeps track of the number of data that it is sending, it fires the rule

44

4 – Dynamic and consistent policy updates

Figure 4.4: Standard protocol sequence diagram

to encrypt them (or more generally, to handle them) and lastly, sends them to the

server.

The latter, after a request, sends the data to the receiver gateway, that, in turn,

checks if there is data available and if the upload phase is not in progress. Then, it

fires rules to decrypt (or handle) this data if it owns the correct version indicated

on the data themselves. Furthermore, it maintains a counter that indicates how

many messages it has decrypted so far and with which version. This information

is crucial for the success of the protocol.

Every time it checks if it has received all data belonging to a specific version for every

45

4 – Dynamic and consistent policy updates

stored KIESession. If this is the case, it disposes the corresponding KIESession.

These two last steps actually belong to the updating steps described in the next

Section. We want to highlight that all these operations are performed when the

updating procedure is not running.

4.3.2 Design of the updating protocol

The instant at which the server triggers a version update of the encryption algo-

rithm imposes the need for a carefully designed updating protocol. In our case it

consists of the upload of a new policy file with a defined version. For a correct

result, it is fundamental that data encrypted using a certain version must be de-

crypted using the same version.

Due to a possible overload of the network, in a real scenario, even if the server

communicates the change to both sides at the same time, it may happen that the

two gateways are not perfectly synchronized with the same version currently in use.

This may lead to some inconsistency problems that we will analyse in the following

Chapters.

The Figure 4.5 shows the diagram of this updating phase that, again, can be gen-

eralized for other use cases. First of all, the server sends the new policy file with

the associated version number to both sides. The sender, after waiting that the

already processed messages have been sent, freezes the system. The receiver freezes

the operations as well. It means that the communications are blocked and no mes-

sage can be sent, received or processed. Then, the two gateways instantiate a new

KIESession with the corresponding file and version number.

At the sender side we can safely dispose the previous KIESession because we are

sure that no message will be generated with that version any more. It subsequently

sends to the server, and this latter will then forward to the receiver, a piece of

information very important for a successful outcome of the consistent protocol: the

total number of messages that has been elaborated with the just disposed version.

Lastly, it restarts the standard process.

At the receiver side, in order to avoid inconsistency problem, we cannot imme-

diately dispose the old KIESession because some data in transit can still require

46

4 – Dynamic and consistent policy updates

the old policy file.

Therefore, back in the standard flow, the receiver checks every time if it has received

all the messages processed with a certain version that it still stores. It compares

its own counter with the total number received from the sender. If they are equal,

it can dispose the KIESession without any risk. It has to perform this check ev-

ery time because it cannot predict when the information from the sender will be

available.

Figure 4.5: Updating protocol sequence diagram

The Section 5.2.3 will describe the implementation of this protocol in details.

47

4 – Dynamic and consistent policy updates

4.3.3 Multiple senders and multiple receivers

We have just described a scenario that consists in one single sender and one single

receiver. Actually, in a distributed context, multiple senders and receivers can

perform respectively the encryption and decryption phases. In addition to the

previous steps, every sender gateways must store how many data they have sent

to which receiver for each version. In the same way, the receivers must store how

many data they have received by which sender and with which version so far.

During the updating phase, the senders send to the different receivers their own

code, the version of the old policy file that they are replacing and the total number

of data that they have sent, processed with this old version of the algorithm.

The receivers will store and use all these data in order to correctly handle the

messages. In the standard flow they can perform the dispose of an old KIESession

only if they are sure that from no senders they will receive some messages that

belong to the old version any more.

The technicality of this protocol is also presented in the Section 5.2.3.

4.4 Management protocol for stateful policies

In the presented IoT scenario controlled by policies, it is useful to define a spe-

cific kind of policy that requires not only the current data but also some previous

knowledges in order to perform decisions. This kind of policy are so called stateful

policies.

The stateful policies can offer a more accurate support for the decisions, based

on the current state and on some previous ones about a certain condition. For

example, this is the case of the motion detection policy. It detects the presence

of people in a room and it must know if it has detected a new movement or the

continuation of a prior one. The same goes for a policy that maintains a counter

about how many times some actions have been triggered. For example how many

people have required access to a specific area.

The procedure is different for the stateless policies. Any data passed through

48

4 – Dynamic and consistent policy updates

them are transitory and they will not be required any more in the future. For this

reason the former kind of policy is more complex to manage.

Keeping states becomes problematic when an update of a policy is required.

We analyse two different solutions for maintaining the correct state in case of the

update of a new policy file.

The first one consists in storing the value of the states inside the policy files

themselves. It is a more complicated solution because it involves some changes in

the KieSession. However, on the other hand, it turns out to be handier for the

developer, since there is less constraints to follow.

Indeed, the second solution exploits a Java class to store all the states’ values, hence

a developer must refer always to this class for managing a state.

The detail of the implementation will be explained in the Subsection 5.2.4 of

Chapter 5.

49

Chapter 5

Proof of Concept (PoC) and

implementation

This Chapter describes the key points of our Proof of Concept and its implementa-

tion. The Section 5.1 gives an overview of the structure. The Section 5.2 goes into

details of the PoC development. The Subsection 5.2.1 presents the VersaSense’s Mi-

croPnP, the platform used for the PoC realization. The Subsection 5.2.2 explains

how we realize the exchange of policy files between the nodes. The Subsection 5.2.3

describes the implementation’s technicality of the protocol developed as a solution

of our principal use case, already introduced in Section 4.3. Finally, the Subsection

5.2.4 describes in detail how we correctly manage the stateful policies.

5.1 PoC structure overview

Based on the architecture and design illustrated in the Chapter 4, a prototype

implementation has been developed. This prototype includes all the mechanisms

and steps of the protocol described before, crated to support this thesis and to

compute the measurements.

It is composed by the following components:

• Back-end server: it is the core of the architecture. It accepts the connections

to the gateways, it allows the communication among the different nodes in

50

5 – Proof of Concept (PoC) and implementation

the system, it collects all information sent by the gateways and fire policies

on the data received. With an appropriate User Interface the server triggers

the upload of a new policy file that will be sent to the gateways.

• Gateway1: it is connected to two sensors and receives data about the environ-

mental conditions. It requests the connection to the server, it collects data

from the sensors, fires rules on them and forwards to the server.

Furthermore, it plays the role of the sender that transmits the encrypted data

to the receiver.

• Gateway2: it is connected to two sensors and it performs the same actions

of the Gateway1. Additionally, it is the receiver that executes the decryption

phase of the protocol.

5.2 PoC development

Our Proof of Concept has been developed using Java programming language to-

gether with RedHat Drools version 7.15 as Policy System.

It is composed by three different parts, one for each component mentioned in the

previous Section: the server and the two gateways.

This Section describes the development’s details, in particular how the most im-

portant technologies adopted, Java RMI and the Policy System Drools, are used in

these three parts of our prototype.

As far as the communication channel are concerned, we use the java.rmi library

of Java RMI technology.

As Java RMI requires, we define the remote interfaces of the server and of the two

gateways that contain the methods that they provide. They are called

ServerInterface.java, ClientInterface.java and Client1Interface.java.

These interfaces extend the predefined interface Remote which belongs to the

java.rmi.Remote package.

Then, for each part, we develop the class that implements the methods defined in

the corresponding interface: ServerImplementation.java,

ClientImplementation.java and Client1Implementation.java.

51

5 – Proof of Concept (PoC) and implementation

Figure 5.1: Prototype component diagram

In addition, the two gateways need to create a separate thread

(ThreadDataSender.java), in order to split the two main tasks that must be per-

formed simultaneously. The main flow receives and stores the environmental data

from the sensors and made them available for the thread in a shared list. The

thread, in turn, takes these data, processes them, fires rules on them and forwards

to the server. Furthermore, these threads are also in charge of blocking any elab-

orations of the data and performing the operations for the upload of a new policy

file when it is requested.

The Figure 5.1 shown the overall prototype’s implementation.

At the server side, the prototype provides a basic Graphical User Interface (GUI)

(shown in Figure 5.2) that runs on a different thread. Through this, the user can

trigger the upload of a new policy file at the gateway side.

52

5 – Proof of Concept (PoC) and implementation

Figure 5.2: Prototype Graphical User Interface

At the same time, another thread creates an instance of the remote object’s

implementation class (ServerImplementation), exports it and binds that instance

to a name (Server) in the Java RMI registry. These are the fundamental steps of

Java RMI protocol as explained in Section 4.2. At this point the server is ready to

accept the gateways’ connections.

ServerInterface stub =

(ServerInterface)UnicastRemoteObject.exportObject(new ServerImplementation(),

0);

Registry registry = LocateRegistry.getRegistry(1099);

registry.bind("Server", stub);

As soon as a remote object is registered, the gateways can search for the object

by name, in order to obtain a reference to the remote object and call its methods.

Registry registry = LocateRegistry.getRegistry("172.16.0.3", 1099);

h = (ServerInterface) registry.lookup("Server");

The gateway obtains the stub for the registry by calling the static LocateRegistry.getRegistry().

This method returns a reference to the remote object Registry on the host specified

by its IP address and on the port number 1099.

53

5 – Proof of Concept (PoC) and implementation

Then, the gateway calls the method lookup on the registry to retrieve the stub

for the remote object [29]. After these steps the gateways can call the methods

provided by the server.

Similar procedures are required at the other side for establish a bidirectional com-

munication.

As far as the Drools technology are concerned, in Section 2.2.2 we have already

described the main features of the KIE API library used for implementing Drools

on the prototype. We dedicate the Subsection 5.2.3 for describing in detail how we

exploit the power of this technology in the encryption/decryption use case.

5.2.1 Versasense’s Micro Plug-and Play for the gateway im-

plementation

While the server part of the prototype runs on the laptop, the gateway part runs on

a real gateway: the Versasense’s Micro Plug-and Play (MicroPnP) gateway. Once

this part is tested and validated on the laptop, we proceed with uploading it on the

gateway. It provides its own Wi-Fi network to which we connect the laptop. We

establish an SSH connection using PuTTY, that is a software terminal emulator

that can control the running of the prototype and allows the file transfer.

As already mentioned, the use of Versasense’s Micro Plug-and Play platform allows

to test our protocol in a real IoT setting and to check if the consistency feature

is preserved. Furthermore, with its devices we analyse the functionality of the

technologies used and we perform all the tests and measurements for the validation

and evaluation part.

About the hardware specification, this device presents: 1 Gb of RAM and

around 10 GB of flash memory.

54

5 – Proof of Concept (PoC) and implementation

5.2.2 The procedure for a dynamic update of policies

All the devices involved in the prototype start with a default policy file already

present in memory. It is uploaded in the KieSession when this latter is built, as

one of the very first operations performed for setting up the environment.

As already mentioned, every time it is needed, we give the possibility to trigger

the update of a new policy that can change the behaviour of the system’s compo-

nents. Since a policy consists in a set of rules collected in a file, we achieve this by

transferring a chosen file from the server to the gateways. The set of available files

that a user, operating on the server, can send to the gateways is already present in

the server disk.

For achieving the transfer of files we use the java.io package that allows to

accomplish input and output [30] of data in Java. It works with the concept of

stream, a flow of data with a defined source and destination. The server uses

the classes FileInputStream, provided by the package, that accepts as parameter

of the constructor the name of the file we want to transmit. With the method

read(byte[] r), the bytes of the specified file are read into an array. The server

will then use it as parameter to call the remote method of the gateway receiveFile.

This method accepts as parameter also the name of the file, the number of the bytes

to transmit and the number of the policy version. At the gateway side, this method

creates a new file and instantiates an object of the FileOutputStream class that

allows the writing of the received bytes. It uses the write(byte[] r) method to

write the stream of received bytes on the just created file. In this way, the policy

file is transmitted properly.

Together with the file itself, another important piece of information that they

exchange is the number of policy version of this file. Once the file has been re-

ceived by the gateway, it can call the update procedure that will instantiate a new

KieSession. The gateway adds a new element in a map that will contain this new

file as value and the specified number version as key.

In the next Section we describe the details about the encryption and decryption

protocol that uses these procedures to exchange the policy files between the nodes.

This is a fundamental step to achieve an effective dynamic update of policies.

55

5 – Proof of Concept (PoC) and implementation

5.2.3 Distributed and consistent protocol implementation

In this Subsection we give some implementation details of the protocol presented

in Section 4.3. We highlight the key points that allow to achieve the consistency

among the data and the operations during every phases of the protocol.

In our prototype we use two gateways for the encryption and decryption phases

respectively and the server in between, that allows the communication within the

two. Since the transfer of the data is very fast within our prototype, in order

to introduce a more accurate reflection of the reality, the server stores the data

received from the encryption gateway for few seconds, before sending them to the

decryption gateway.

First of all, we define the kind of data our protocol aim at exchanging. They are

defined by five elements: the message we want to encrypt (or in general to process),

the version, the details about the source and the destination (sender and receiver)

and a counter:

EncryptString(String message, int version, String sender,

String receiver, int counter).

Standard phase

As already described in Section 4.3, the standard phase of the protocol consists in

the encryption of a message by one gateway, the consequent transmission and the

decryption by another gateway. In order to work properly, both gateways store the

currently version number of the algorithm in use for encrypting and decrypting the

messages in a variable flagVersion.

As already said, different versions of the algorithm correspond to different policy

files. To keep track of all these files and in order to use the right one, the gateways

build one KieSession for each version. Both gateways use a map that stores the

version number as key and the corresponding KieSession, that includes a policy

file, as value: Map<Integer, KieSession> ksessionVer.

Another important operation performed by both sides is keeping track of how

many messages the gateways effectively exchanged. For this purpose, both gateways

56

5 – Proof of Concept (PoC) and implementation

instantiate another map that store as key the version number and as value a counter

that progressively increases based on how many messages they has respectively sent

or received of that particular version. They are respectively:

Map<String, Integer> dataSent and Map<String, Integer> dataReceived.

They will be referred with these names in this Section.

At the start of the protocol, before any other operations, the sender (or en-

cryption) gateway checks the state of the process (active or frozen) looking at the

value of the flagUpdate variable. If it is equal to 0, it means that the process is

active and it can generate the data to send filling the version field with the con-

tent of the flagVersion variable. After, the sender processes the message firing a

rule that simply prints a line indicating if the version of the Drools file used cor-

responds to the version field of the message. It then increments the value in the

dataSent map corresponding to the current version used. Sequentially, it trans-

mits the message to the server, using the remote method provided by the server:

h.sendString(message).

At the other side, the gateway that performs the decryption calls the remote

method of the server h.sendStringForDecryption() that allows to receive the

data and inserts them on a list. To send the data, the server calls the remote

method of the receiver c1.sendToDecrypt(message). As for the sender, before

starting the processing of any message, the receiver must check if the process state

is active, looking at the flagUpdate variable. If so, the receiver retrieves the

version field of the message and uses it to get the correct KieSession from the

map and fires the rules (i.e. performs the decryption):

ksessionVer.get(data.getVersion()).fireAllRules().

Again, it simply consists in detecting the conformity between the version field of

the message and the version of the Drools file used. Thereafter, it increments the

corresponding value in the dataReceived map.

During the decryption phase, since we have to consider the chance of inconsis-

tency between the two gateways, it is necessary to check, for every data in the list,

if the map of the receiver already contains the KieSession with version needed by

the new data received, before performing any actions:

57

5 – Proof of Concept (PoC) and implementation

if(ksessionVer.containsKey(data.getVersion())) {...}

If the requested version of the KieSession is available, the decryption gateway can

fire the rules. Then, it deletes the already processed message from the list in order

to avoid multiple rule evaluations on the same data.

If the map does not contain the requested version, the gateway just loops in the

while, during which the list stores all data that are arriving. Indeed, the list works

as a buffer when the gateway waits for the uploading of the new version.

When the requested version becomes available all the events in the list will be

processed and, successively, deleted.

Updating phase

The delicate updating phase starts when the server sends a new policy file to the

gateways. They perform the procedure described in Subsection 5.2.2.

Next, the sender gateway processes all the messages already present in the queue

and interrupts the creating and the sending of new data. It assigns the value 1 at

the flagUpdate variable, that means that all the processes are frozen.

After that, it instantiates a new KieSession with the new policy file just received

from the server and stores it in the map with the associated version. Next, it

sends to the server, that will in turn forward to the receiver, the total number of

data encrypted with the previous version just replaced, using the remote method

of the server h.numberEvent(). At this moment, it can safely dispose the old

KieSession, because it is sure that it will never use it any more.

Then, the gateway assigns the value 0 at the flagUpdate and starts again the

procedures of encryption and sending of data with the new version.

At the other side, the upload of the file and the instantiation of a new KieSession

works the same way. Right after that, the receiver restarts the standard process.

Clearly, the only difference is that for the receiver gateway the disposal of the pre-

vious KieSession is a bit more tricky than for the sender gateway.

It cannot be sure than every data of the prior version have already been received.

This circumstance can occur when the network is delayed for overloading or any

58

5 – Proof of Concept (PoC) and implementation

other problems. As already mentioned, to tackle this eventuality, during the stan-

dard phase, the receiver gateway progressively counts the number of messages re-

ceived and it stores the value in the dataReceived map. Besides, it instantiates

another map to store the number of total messages sent by the sender during the

update phase. These two map have the same key (the version number). Instead,

as value, the first map as the increasing number of messages received so far from

the sender. The second one as a value that stays null until the sender will send the

total number of messages processed with that version.

In the standard phase, the receiver compares these two values in the maps for every

stored key.

If these numbers are equal for a certain key, the receiver is confident that no data

have been left behind and we can safely dispose that particular KieSession.

Multiple senders and multiple receivers case

In the previous Subsection we have explained a simpler case that considers one

single sender and receiver. We introduces in this Subsection the implementation of

our PoC in case of multiple senders and receivers.

The overall protocol is basically the same with some additions in order to man-

age the multiplicity of senders/receivers.

A sender gateway must store not only how many data has sent with which version,

but also to which receiver. Therefore, we instantiate a map:

Map<String, Integer> dataSent that contains code of the receiver + the version

as key and total number of data sent as value.

For example: dataSent.put("R01,"+1, 5);.

This map is similar to the one instantiated in the previous scenario, with the addi-

tion of the code of the receiver in the key.

During the upload of a new version, the sender gateway sends to the receivers

its own code, the version that it is replacing and the total number of data that it

has sent with this version of the algorithm.

A receiver will use all these data in order to keep track of the messages received.

It instantiates two different maps: one for counting progressively and storing the

59

5 – Proof of Concept (PoC) and implementation

number of elements received from a sender of a particular version and the second one

for maintaining the number received by the sender regarding the total number of

messages sent. The key are the same for both maps (code of the sender + version),

while, for the first map, the value increases any time a new data is received from a

specific sender and for the second it stays null until the sender will send the value.

Again, these two maps are similar to the previous case, with the extra information

about the code of the sender in the key.

Furthermore, the receiver must know how many senders there are in total that

can use a specific version. The receiver can dispose a KieSession only when for all

the senders that have used a specific version the values of the two maps are equal.

5.2.4 Implementation of stateful policy

As introduced in Subsection 4.4, we research how to handle the stateful policies in

a consistent way. We analyse two procedures with their advantages and drawbacks.

The first one consists in the instantiation of a class, called Fact, inside the

Drools file itself (.drl). It simply has a name and fields in which it stores the

different states. Inside a rule, we can define a new object of this class or modify

an existing one with the required values. The example below shows a Fact in a

policy that stores the states about the previous movement and the activation of

the camera:

declare States

movementState : int

cameraState: int

end

In this way we do not need the support of a specific Java class but when the

replacing of the file is required, we need to correctly retrieve this object with all its

fields and store it in the new updated policy file. As we can see, the update phase

is more delicate than before and require more attention.

60

5 – Proof of Concept (PoC) and implementation

In the second procedure analysed, every component of the PoC presents a class

called StatePolicy. It includes as a field a map with a string for both key and

value. It is used to store the name of the state that we want to preserve and the

corresponding value. Inside the Drools file, every time a rule, that is involved in a

stateful policy, is fired the Drools engine can access this map and retrieve the value

of the requested state. Then, it can use it or modify it. Since this class is defined

and stored at the Java level and not at the Drools level, it is independent from the

replacing of the Drools policy files. We are sure that the data cannot be lost during

their updates.

Even if this property makes easier all the update procedures, the main drawback

is that it puts constraints on the development of the Drools files. We must always

refer to this class if we want to implement a stateful policy.

In our PoC, we choose to implement the second solution because consists in a

better trade-off between simplicity and efficiency.

61

Chapter 6

Validation

In this Chapter we demonstrate the achievements of the goals that we set in Section

3.3. In Section 6.1 we prove that we have effectively achieved dynamic updates of

policies throughout the system at run-time. In Section 6.2 we illustrate that the

consistency property and the preserving of the state are always guaranteed during

the operations. Finally, in Section 6.3 we perform some tests on the standard and

on some problematic scenarios. We demonstrate the correct management of some

temporary inconsistent conditions that can happen in different situations.

6.1 Effective dynamic update of policies

This first Section answers at the RQ1 defined in the Section 1.6. In the Subsection

5.2.2 of Chapter 5 we described the procedure chosen for the transfer of a policy file

and, therefore, for the update of the policy in use. It is worth noting that we can

easily achieve an effective dynamic update of policies thanks to the capabilities of

Drools to operate with simple files. It would not be possible in a system that man-

ages policies using another approach, for example that defines hard-coded policies

in the system or uses some specific formats.

Drools, instead, allows to handle the policies using the file streams, a straightfor-

ward and well-known procedure that we can therefore leverage.

Furthermore, the Kie API allows to instantiate and dispose KieSession in a

dynamic way at run-time, without the need of restarting the application.

62

6 – Validation

The combination of these two functionalities allows us to accomplish efficiently

our first goal and requirement for our middleware.

6.2 Achievement of consistent updates

This Section finds an answer for the RQ2. As presented in the previous Chapter,

all the mechanisms involved in the correct execution of the application, occur si-

multaneously during the continuous management of the messages. Clearly, these

actions take time and resources. Therefore, another objective has been to find a

way to correctly handle all the operations that running at the same time and, most

important, to preserve the consistency among them. This is another important

step and another goal achieved.

We achieve an accurate and consistent update of the policies file through the

actuation of a straightforward protocol. It takes care of all the steps and combine

them in a coherent way. The most important concept is that all the devices in-

volved need to keep track of the number and type of data exchanged. These are

easy-reachable but also fundamental pieces of information that lie at the heart of

the consistency achievement. Unquestionably, this consistency property that we

guarantee comes at cost of reserving memory for the additional data, managing

them and send them through the network. We consider it as a good trade-off

between the functionalities offered and the effort made to obtained them.

In the more frequent context of a large scale system, it can often happen that a

gateway is not reachable any more due to network congestion or any infrastructure

problems. This issue leads to an interruption in the flow of messages from the

problematic node to the others and to a temporary arrest of its functionalities.

For how our protocol is designed, even if the main functions are interrupted, the

gateway keeps on working in a consistent way, until the situation will recover and

it will restart to work properly.

During the update phase, thanks to the additional piece of information that the

messages carry with them, even if the problematic gateway has not received the

policy file from the server yet, it is impossible that it uses the incorrect policy

63

6 – Validation

to process a message. Before performing any operations, the gateway checks if

the version of the requested policy file is available in its memory. If it does not

have received the requested policy file from the server yet, it simply stores the

messages as they are and waits for the recovering of the network connection that

will guarantee the receiving of the new policy file.

Besides the consistency among the operations, we also research and achieve the

consistency among the single policy itself. In particular, to those kind of policies

called stateful policies that need a careful and specific processing. Their decisions

are not based only on the current value of some variable, but also on some previous

ones that need to be stored and maintained: the state. Our protocol allows to

preserve this state consistently even in case of update of the policy file.

We have experimented two different approaches. The first one is based on the

functionalities offered by the Kie API, while the second one leverage the use of an

extra Java class to store the values of the state. We analyse the trade-off of these

two approaches. The former preserves the state inside the Drools file but leads to a

more complex management during the uploading phase of the protocol. The latter

does not need any additional procedures during the update process but establishes

some constraints to the developer of the policies. Indeed, the class in charge of

storing the state, even if is as general as possible, is determined upfront and cannot

be changed.

64

6 – Validation

6.3 Validation tests

In this Section we show the validation tests that we have performed to demonstrate

the effective achievement of our main goal: the consistent management of dynamic

policies throughout the nodes and the system’s operations. We still refer to the

encryption and decryption use case. We first describe the standard scenario in which

no problematic situations occur. Then, we introduce three problematic scenarios

that could generate issues. They refer to those situations in which the receiving of

a new policy file happens during an intermediate phase, when the processing of a

message has already started but not finished yet.

During the execution of our application, we log the timestamps in which the

principal steps occur. They are indicated in capital letter in the sequence diagrams

below, used for describing the scenarios. The meanings are listed in Table 6.1.

A Standard phase: Creation of a new message by the sender
B Standard phase: Encryption performed and sending to the server
C Standard phase: Message arrived at the server
D Standard phase: Message sent to the receiver
E Standard phase: Message received by the receiver from the server
F Standard phase: Decryption of message
G Update phase: The server starts sending a new policy file
H Update phase: Transmission completed to both sides
IS Update phase: The sender completes the update
IR Update phase: The receiver completes the update

Table 6.1: Table of the principal steps

65

6 – Validation

6.3.1 Standard scenario

First of all, as a first experiment, we log the points in time when the different

events happen in a scenario that do not present any hazardous situations, prob-

lems or delays. In the Figure 6.1 we plot the sequence diagram performed by the

node involved: the sender, the receiver and the server in between. We collect the

timestamps in Table 6.2. As can be seen from the sequence diagram, the start of

update phase occurs when both the sender and the receiver have already termi-

nated the elaboration of a message. In this case, we notice that also in the Table

the point in time G, when the update phase starts, follows the points in time B and

F, that indicate the time in which the nodes end the management of the message.

That means that the queues of events at both sides are empty and the inconsistent

situations are avoided. A message that leaves the sender elaborated with a partic-

ular version of a policy will be processed at the receiver side with exactly the same

version.

66

6 – Validation

Figure 6.1: Sequence diagram of the

standard scenario

A1 14:46:48.257

B1 14:46:48.319

C1 14:46:48.319

D1 14:46:48.321

E1 14:46:48.321

F1 14:46:48.372

G 14:47:02.411

H 14:47:02.761

IS 14:47:02.548

IR 14:47:02.761

A2 14:47:08.319

B2 14:47:08.324

C2 14:47:08.323

D2 14:47:08.324

E2 14:47:08.324

F2 14:47:08.327

Table 6.2: Table of the

timestamp of

the standard scenario

67

6 – Validation

6.3.2 First problematic scenario: delay on the sender

In a real system, a possible scenario that can occur is the update of a policy file

during the elaboration of a message at the sender side. In particular an update

can happen between the creation of a message (point A) and its encryption and

sending (point B). This is a critical situation because the sender has already created

a message and it presumes that it will be encrypted with the current policy file not

the new one that is arriving.

In order to validate our protocol in this problematic scenario, we induce a delay of

20 seconds between the points in time A and B. In this time frame we trigger the

update of a new policy file and we analyse the actions performed.

The Figure 6.2 shows the sequence diagram of the described scenario. We first

insert an ordinary exchange of a message and the beginning of a new one (A2).

Then, at point G, an update of a policy is triggered. As it is possible to read in

the Table 6.3, it happens after the time A2, in which the sender creates a message,

but before the time B2, in which the same message will be encrypted and sent.

During the execution we observed that at point B2, that occurs after the point in

time IS, the message is encrypted with the correct and new version, even though it

was created before the update. The same happens at the receiver side, resulting in

accurate retrieving of the data.

This correct management of the messages is preserved thanks to the extra informa-

tion available for the nodes. The consistency is guaranteed by the fact that every

message brings with it the number of version which it has to be processed with.

68

6 – Validation

Figure 6.2: Sequence diagram of the first

problematic scenario

A1 17:08:01.512

B1 17:08:21.819

C1 17:08:21.819

D1 17:08:21.826

E1 17:08:21.826

F1 17:08:21.974

A2 17:08:31.821

G 17:08:39.451

H 17:08:41.090

IS 17:08:41.018

IR 17:08:41.090

B2 17:08:51.827

C2 17:08:51.827

D2 17:08:51.829

E2 17:08:51.829

F2 17:08:51.831

Table 6.3: Table of the

timestamp of the

first problematic scenario

69

6 – Validation

6.3.3 Second problematic scenario: delay of an update at

receiver side

We analyse another problematic scenario that consists in a delay in the receiving of

a new policy file at the receiver side. In particular, the sender receives immediately

the new file from the server, while the receiver has to wait some time.

This experiment simulates the case in which a node in the system is temporarily

not reachable, due to some connectivity problems or to an overload of the network.

Similar to the previous scenario, for validating our protocol in this situation, we

induce a delay of 20 seconds at the server side in the sending of the file to the

receiver.

The sequence diagram in Figure 6.3 shows the events that occur. We split the trans-

fer of the new policy file in two different moments. At H1 the server immediately

sends the file to the sender, but it sends it to the receiver at H2, 20 seconds later.

Meanwhile, the sender starts again the standard procedure of crating, encrypting

and sending a message, but this time with the new policy file that the receiver does

not own yet. Therefore, the points E and F cannot be performed consecutively and

immediately one after the other, like in the standard scenario. When the receiver

accepts the messages (point E2), it detects that the version required is not available

yet. For this reason, it stores them in a queue until the point in time H2 occurs.

At this moment, the receiver updates the policy and elaborates all the messages

present in the queue. Like the previous scenario, we avoid inconsistency thanks to

the extra piece of information, indicating which version the messages required.

70

6 – Validation

Figure 6.3: Sequence diagram of the

second problematic scenario

A1 15:38:10.446

B1 15:38:10.521

C1 15:38:10.521

D1 15:38:10.524

E1 15:38:10.524

F1 15:38:10.578

G 15:38:19.117

H1 15:38:19.308

IS 15:38:19.308

A2 15:38:20.522

B2 15:38:20.529

C2 15:38:20.529

D2 15:38:20.530

E2 15:38:10.530

H2 15:38:39.938

IR 15:38:39.938

F2 15:38:39.949

Table 6.4: Table of the

timestamps of the

second problematic scenario

71

6 – Validation

6.3.4 Third problematic scenario: delay on message

transmission

The third problematic scenario that we analyse presents a delay during the trans-

mission of a message from the sender to the receiver. This test takes into account

the case in which the communication get slower due to a network congestion. Specif-

ically, a new message is created, encrypted and sent by the sender but it will be

received by the receiver after some time, not immediately. Moreover, we want to

observe if the consistency is guaranteed. We trigger the update of a new policy

file during this delay and we analyse if the message in transit will still be correctly

managed.

The sequence diagram in Figure 6.4 illustrates the events happening in this sce-

nario and the corresponding Table 6.5 shows the timestamps collected during the

experiment.

In order to mimic a delay in the transmission of a message, we divide the point in

time B in two: B’ refers to the encryption phase only, while B” to the sending of

the message. The message that leaves the sender at time B2” has been encrypted

with the old policy at time B1” because the update happens only after, at time

IS. Therefore, the message reaches the receiver at time E2 when the update has

already happened at time IR”. Since the receiver does not dispose the old version

until every corresponding messages has been received, it detects the version needed

by the message and retrieves the right file to process it.

72

6 – Validation

Figure 6.4: Sequence diagram of the

third problematic scenario

A1 13:27:51.209

B1 13:28:11.343

C1 13:28:11.343

D1 13:28:11.349

E1 13:28:11.349

F1 13:28:11.547

A2 13:28:21.345

B’2 13:28:21.347

G 13:28:29.113

H 13:28:30.599

IS 13:28:30.598

IR 13:28:30.877

B”2 13:28:41.350

C2 13:28:41.350

D2 13:28:41.352

E2 13:28:41.352

F2 13:28:41.355

Table 6.5: Table of the

timestamps of the

third problematic scenario

73

Chapter 7

Evaluation and discussion

In this Chapter we perform the evaluation of the designed protocol in the developed

prototype. In Section 7.1 we discuss which failures our solution supports. In

Section 7.2 and in Section 7.3, we provide some measurements and comparison

about the overhead in time, in memory and on the network of the sender and

receiver protocols, presented in Section 4.3, running on the laptop and on the

MicroPnP VersaSense gateway. Lastly, in Section 7.4 we discuss some limitations

arisen during our research and we give some suggestions for future work.

7.1 Failure model

Especially in distributed systems, in which multiple devices participate, there are

several possible points of failure. In this Section we specify the failure model of the

communication channel which our protocol can handle.

We insert in the Table 7.1 the general failures likely in a distributed scenario

and we highlight which ones our communication channel support and which ones

not.

74

7 – Evaluation and discussion

Out of order delivery 3

Delayed delivery 3

Message loss 7

Loss of power supply 7

Table 7.1: Types of failures in a distributed system

The first three failures presented in the table are included in the more general

network failure. In this case, the devices are still running but the communication

channel is interrupted or does not work properly.

Our protocol supports the delivery of the messages in a wrong order because what

is important for the success of our solution is the total number of messages received

at the other side, not the specific order. For that reason, we assume that in our

solution every message arrives and, moreover, exactly once. In case of message loss,

the sender will not send again the same message and, consequently, the receiver

cannot dispose the corresponding KIESession, keeping it in memory. As far as the

delayed delivery failure is concerned, we discuss extensively about it in the Chapter

6. This is the failure in which we more focus on and we demonstrate that it is

supported by our solution.

A possible failure not supported in our protocol is the loss of power supply. We do

not investigate the problem of the power consumption, even though we are aware

that in some systems the gateways could be battery-powered, therefore limited in

energy. In our research we assume that this problem does not exist and that the

communication channels established are always operating.

7.2 Time overhead

This Section presents the answer for the RQ3 defined in the Section 1.6. In order

to evaluate the time overhead in our solution, we perform some measurements

regarding the crucial phases carried out by the Policy System Drools, in particular

the use and the management of the policy files.

We use Box Plot diagrams to show our results. It is a method for graphically

delineating a dataset based on five numbers: minimum, first quartile (Q1), median,

75

7 – Evaluation and discussion

third quartile (Q3) and maximum. In the diagram we plot a rectangle that tra-

verses the first quartile to the third quartile. The line inside the rectangle shows the

median and the lines above and below the box show the locations of the smallest

and the highest values, outliers excluded.

In particular, the first quartile (Q1/25th Percentile) is the middle number between

the smallest and the median numbers of the dataset, the second number is the

median (Q2/50th Percentile),the middle value, the third third quartile (Q3/75th

Percentile) is the middle value between the median and the highest value of the

dataset.

The Box Plot can also have lines (whiskers) that indicate the degree of dispersion

and dots that represent the outliers.

To obtain their representation we need to calculate the interquartile range (IQR)

that is the difference between the first and third quartiles. Thereafter, we compute

the maximum as Q3+1,5*IQR and the minimum as Q1-1,5*IQR. These numbers

are important in order to detect the outliers: they are the values either above the

maximum or below the minimum and instead of being shown using the whiskers,

outliers are shown as separately plotted points [31],[32].

The Figure 7.1 shows the Box Plots about the milliseconds (on the y axis)

required by the server and gateway part of the prototype to set up the KIESession

on the laptop and on the real gateway. As described in Section 2.2.3, this is a

fundamental step in order to start the interaction with the Drools rule engine.

We performed approximately thirty evaluations. It is possible to see outliers in all

of the Box Plots.

76

7 – Evaluation and discussion

Figure 7.1: Box Plots that represent the time overhead for instantiating the
KIESession on laptop for the server part and for the gateway part and on the
real gateway for the gateway part of the PoC

Server (ms) Gateway (ms) VersaSense Gateway (ms)
Smallest 2314 1976 16003
Q1 8384,25 6572 16261,8
Median 10059 7784,5 16449
Q3 12267,25 8118,5 16645,8
Highest 16034 9021 20635
Mean 9929,55 7283,82 16686,4
Range 13720 7045 4632
IQR 3883,5 1546,5 384
Minimum 2559 4252,25 15685,8
Maximum 18093 10438,3 17221,8

Table 7.2: Box Plots values of the server and gateway parts running on laptop and
on real gateway that refer to the instantiation of a new KIESession

The Table 7.2 contains the values in milliseconds of our measurements that

allows to draw the Box Plots diagram for the building of the KIESession. We

77

7 – Evaluation and discussion

added the mean among all the values and the range that is the difference between

the highest and smallest values.

The most interesting Box Plots to compare in the Figure 7.1 are the orange and

the green one, corresponding to the same piece of software running, respectively,

on the laptop and on the real gateway. The VersaSense gateway is characterized

by different cpu power, capacity and memory than the laptop. We notice that the

amount of time needed is about 10 seconds more and the presence of outliers is

more clear, with a marked distance from the median, probably due to a stronger

variability in time of the internal processes.

We can also observe that the server part of the prototype (blue Box Plot) takes few

seconds more than the gateway part running on the laptop, even if the lines of code

used to build the KIESession are the same in both parts. A possible explanation

could be that the server have to constantly managed the communications among

the devices as well and that can overload the system.

Together with the setting up of the KIESession, another decisive step of the

protocol is the update of a new policy file. As better explained in Section 2.2.3,

this procedure consists in building a new KIESession, uploading the new file on it

and, for the sender protocol, disposing the old one.

The Box Plots below, in Figure 7.2, draw the statistical values of the milliseconds

required by the same procedure running on the laptop and on the real VersaSense

gateway. We notice that this time the difference is about 2/3 seconds but in the

real gateway we register more significant outliers, probably again due to a stronger

variability.

78

7 – Evaluation and discussion

Figure 7.2: Box Plots about the time overhead for update a policy file on laptop
and on the VersaSense gateway

Laptop (ms) VersaSense Gateway (ms)
Smallest 140 214
Q1 174,25 264
Median 202 309,5
Q3 227,5 407,5
Highest 401 1027
Mean 211,7 381,33
Range 261 813
IQR 53,25 143,75
Minimum 94,37 48,75
Maximum 307,37 622,75

Table 7.3: Box Plots values about the update of a policy file on the gateway part
on laptop and on the VersaSense gateway

The Table 7.3 presents the data collected for plotting the corresponding Box

Plots.

Another important step is the firing of the rules. We evaluate the time needed

79

7 – Evaluation and discussion

to fire the rules on the data received according to the protocol. As described in

Section 4.3, they are simple rules that check if the right version of the policy has

been used to encrypt or decrypt the messages.

During the executions of our experiments we noticed that in both the gateway

part of the prototype running on the laptop and on the real gateway, the millisec-

onds requested vary considerably based on the phase in which a rule is fired.

A rule takes around 0.2 and 0.4 seconds, respectively on laptop and on the real

gateway, to be evaluated the very first time the application is running, 1 and 2

milliseconds the following evaluations of the same rule and around 10 millisecond

and 40 milliseconds, the first time after a new policy file has been updated.

The Box Plots and table of statistical measurements are shown in Figure 7.3

and on the Table 7.4.

Figure 7.3: Box Plots about the time overhead for firing a rule on laptop and on
real VersaSense gateway

80

7 – Evaluation and discussion

Laptop (ms) VersaSense Gateway (ms)
Smallest 1 1
Q1 1 2
Median 2 4
Q3 26 48,5
Highest 247 468
Mean 45 93,93
Range 246 467
IQR 25 46,5
Minimum 61,5 68,75
Maximum 309,5 118,25

Table 7.4: Box plot values about firing of rules on the gateway part on laptop and
on VersaSense gateway

The diagram on Figure 7.4 shows better the temporal evolution in time. The

highest peaks (378 and 247 milliseconds) concern the very first running of the

program, they are followed by the lower ones that regard the time required in the

standard running, when the same rule is evaluated on another message. The middle

peaks are referred to the first evaluation of a rule when a new policy file has just

been updated.

81

7 – Evaluation and discussion

Figure 7.4: Temporal evolution of firing rules on laptop and on real VersaSense
gateway. The y axis refers to the millisecond and the x axis to the number of the
evaluation of a rule

Lastly, we present the overhead in time introduced by the operations of our

sender and receiver protocols. We compute the difference between the amount of

time required to exclusively fire the rules and the amount of extra time needed for

performing all the other necessary operations. In particular, to set up the counter,

the maps and to evaluate the if clauses as well, as described in Section 4.3.

Different operations are required at the two sides. They will be explained in the next

paragraphs. We instantiate an inner and an outer timer respectively for performing

the comparisons. We perform these measurements at the sender and receiver sides.

As far as the sender side is concerned, we calculate the overhead in time of

the procedure to be followed in case of an update, compared to time requested to

perform the standard loop, that consists in simply retrieving a new value and fire

the rule on it.

82

7 – Evaluation and discussion

The updating procedure requires, besides the update in the KieSession of the new

file itself, the fetching from the map of the total number of messages that have to

be send to a specific receiver, sending it to the server and change the flagVersion

value.

Since these procedures are really fast, in order to make the difference discernible,

we execute these measurements in nanoseconds on both the laptop and on Ver-

saSense gateway.

Comparing the means, we can see that the difference is about 1 order of magnitude.

The Figure 7.5 shows the relative Box Plots and the Table 7.5 presents the

corresponding measurements.

Figure 7.5: Box Plots about the time overhead of the sender protocol on laptop
and VersaSense gateway

83

7 – Evaluation and discussion

Laptop (ns) VersaSense Gateway (ns)
Smallest 2500924 9113071
Q1 3213824 15694732
Median 4017387 22901132
Q3 7125580 26676603
Highest 26857988 73839808
Mean 6397358,1 22897070,34
Range 24357064 64726737
IQR 3911756 10981871
Minimum 2653810 778074,5
Maximum 12993214 43149409,5

Table 7.5: Box Plots values about the overhead of sender protocol on the gateway
part on laptop and on VersaSense gateway

Different is the case of the receiver side. As explained previously, its standard

loop consists in checking the presence of available data in the queue and the if

the flagUpdating is set to zero, it has to increment the counter in the map of

the corresponding data received, fire the rule and check if there is the possibility

to dispose some KieSession that will not be used any more in the future. We

compare the time for this procedure with the evaluation of the rules only.

Again, we execute this measurements in nanoseconds on both the laptop and

on VersaSense gateway. The results are shown and compared in the Box Plots on

Figure 7.6 and the data are presented on the Table 7.6.

Even if the VersaSense gateway has less capacity than the laptop, we noticed

a relative small difference in the time overhead. Due to a stronger variability the

values of the real gateway are more sparse and leads to a mean of 1 order of

magnitude larger.

84

7 – Evaluation and discussion

Figure 7.6: Box Plots about the time overhead of the receiver protocol on laptop
and VersaSense gateway

Laptop (ns) VersaSense Gateway (ns)
Smallest 274982 783494
Q1 1780326 4075260
Median 3861720 8113232
Q3 11176324 1549832
Highest 1061682752 407378666
Mean 153258664,6 2366149,41
Range 1061407770 406595172
IQR 9395998 11419572
Minimum 12313671 13054098
Maximum 25270321 32624190

Table 7.6: Box Plots values about the overhead of the receiver protocol on the
gateway part on laptop and on VersaSense gateway

Looking at the Box Plots and at the data in the Tables we do not detected a

glaring difference between the two phases of the protocol. It could be explained

due to the fact that even if the decryption phase requires more checks, they only

consist in few CPU instructions that do not determine a substantial overhead.

85

7 – Evaluation and discussion

7.3 Memory and network overhead

The memory overhead of the protocol consists in the additional structures needed

for storing the messages exchanged and for preserving the information required for

a correct management of them.

We give an estimation of these values using the big O notation that represents how

a process’ running space requirements grow as the input size grows.

All the components of the system store two queues of events modelled as arrays:

one during the ordinary evaluation of the rules and another one that store the events

arriving during the updating phase. They grow as O(number of message sent or

received). Furthermore, all the gateways instantiate a map that stores the version

number and the KIESession associated. It grows depends on the number of the

versions used, so it is O(number of current versions). Therefore, it is linear to the

number of version used at that moment.

In the more complex scenario of multiple senders and receivers, a sender (or

encryption) gateway has also to maintain how many data it has sent to which

receiver and with which version. For that reason, another map is instantiated that

grows like O(number of the combinations of number of version + ID of receiver).

At the other side, the receiver (or decryption) gateway has to manage two maps

for the counting of messages received that grow as O(number of the combinations

of versions + ID of senders).

Is it also interesting to discuss the network overhead due to the number of extra

messages required by the protocol. At the beginning, the server and the gateways

exchange data in order to set up the Java RMI communications. These procedures

are performed only once at the very start of the application and do not lead to a

substantial overhead.

During the standard execution of the protocol, the sender and the receiver exchange

data that do not consist only in the message itself, but they also include the version

for the right processing, a counter and the IDs of the sender and of the receiver.

Therefore, the size of the messages grows, but only in the order of some bytes.

In the course of the updating phase, the server sends to the gateways the new file,

together with the version number. After that, the sender sends the total amount of

86

7 – Evaluation and discussion

messages processed with the just disposed version. Again, these extra information

are in the order of some bytes and thus, we do not detect a relevant network

overhead.

7.4 Limitations and future work

In this Section, we want to make a critical reflection about our work and suggest

interesting future researches.

First of all, we have developed a system in which all the communications must

strictly pass through the back-end server. We have not implemented a direct com-

munication between the gateways. Therefore, the server is a single point of failure

for the system. It would be interesting to research this possibility in order to avoid

congestion in the server communications and to make the system more intercon-

nected. However, for how we designed our system architecture, a direct peer-to-peer

communication between the gateways would be possible.

But, certainly, since the network would become more complex, also the procedure

for guaranteeing consistency, that we achieved in our simpler scenario, must be

adjusted and implemented accordingly. At the moment, for the update phase we

rely on the back-end server to guarantee the consistency of the procedures.

Another suggestion for future work might be to integrate the sender and receiver

parts of the protocol in a single one. With this implementation, it would be possible

to make the gateways capable of performing both the roles on demand.

In Section 7.1, we discussed about the failures not supported in our solution.

The problem of the message loss limits the reliability of our protocol. We have not

implemented a procedure able to trigger the sending of a message again in case of

a network failure.

Furthermore, we have not taken into account the battery limitation that some IoT

devices can present. Even if we have evaluated the time, memory and network

overheads, we have not examined the power consumption. Our protocol could be

demanding to support for some unsophisticated devices. A possible solution would

be implementing a mechanism to log all the activities of the devices every some

87

7 – Evaluation and discussion

minutes. In this case, even if one node loses the battery supply, the system would

be able to restore the state, once the device will come back operational. Since the

data structures to store are relatively simple, it would not consist in a big overhead.

Advanced researches could investigate this problem and this proposed solution.

88

Chapter 8

Conclusion

This thesis presented a distributed and flexible middleware for supporting dynamic

policies in a consistent way, in the context of the Internet of Things.

Our main focus was to achieve a mechanism that guarantees dynamic adaptation

of policies in every nodes of a distributed system. After an introduction of the IoT

paradigm, we described the context of our work, the problem we aimed at solving

and our goals. Basically, we researched how to control the behaviour of a distributed

system using policies and how to handle them consistently during all the operations.

In particular, we worked in the context of a smart building which is composed of

different devices, located at different floors, that must collaborate in order to offer

their services and functionalities. It is important that all the nodes’ behaviours

are consistent with one another, in order to avoid hazardous events. Our system is

distributed in the sense that the evaluation of a rules, included in a policy, is based

on data coming from multiple nodes and, furthermore, the decision made by a node

can have an effect on another one, at the other side of the system. Therefore, we

spread the decisional capacity on more than one point. Nowadays, the behaviours

of the IoT devices are mainly defined upfront and the possibility to change them

dynamically and, moreover, in a consistent way has not been well investigated so

far. Our challenge has therefore consisted in solving this problem.

We presented different use cases common in the context of a smart building.

We decided to focus on the encryption and decryption functionalities because they

allow to demonstrate if the consistency among the nodes is guaranteed, better than

89

8 – Conclusion

any other use case. Indeed, a message is correctly retrieved only if both the nodes,

in charge of the encryption and decryption phases respectively, have accomplished

all the operations properly.

Our solution is based on the Drools Policy System and on the KIE API that

allow to enforce and manage policy files in an accessible way. A policy consists

in a simple file that can be transmitted among the nodes and substituted at run-

time. In this way we can modify the nodes behaviour by updating the policy files.

Furthermore, we achieved a protocol that leverages these technologies and it is able

to guarantee the consistent fulfilment of all the operations involved.

We developed our middleware as a Proof of Concept in order to validate and

evaluate our protocol. We performed some validation tests for analysing if the

consistency is effectively assured also in the problematic scenarios. In particular,

when the request of the update of a policy file comes close to a processing of a

message at any sides. The evaluation test, instead, involved the measurements

about the time, memory and network overhead. We showed that the performances

are acceptable for this context.

Finally, some limitations and possible extensions are presented. It could be

interesting to make our protocol even more distributed, in which also the gateway

themselves are directly connected with one another. Furthermore, a research about

the energy consumption would help to make this protocol sustainable for any kind

of IoT devices.

In conclusion, this thesis has contributed to research a mechanism to manage

IoT platforms with the usage of policies. We demonstrated the feasibility of im-

plementing dynamic policies and the possibility to distribute and replace them in

a consistent way through all the devices involved.

90

Bibliography

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:

Vision, applications and research challenges”, Ad hoc networks, vol. 10, no. 7,

2012, pp. 1497–1516

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey”,

Computer networks, vol. 54, no. 15, 2010, pp. 2787–2805

[3] D. Popescul and M. Georgescu, “Security, privacy and trust in internet of

things: A straight road?”, 05 2015

[4] H. F. Atlam, R. J. Walters, and G. B. Wills, “Internet of things: State-of-the-

art, challenges, applications, and open issues”, Int. J. Intell. Comput. Res.,

vol. 9, no. 3, 2018, pp. 928–938

[5] P. Suresh, J. V. Daniel, V. Parthasarathy, and R. Aswathy, “A state of the art

review on the internet of things (iot) history, technology and fields of deploy-

ment”, 2014 International Conference on Science Engineering and Management

Research (ICSEMR), 2014, pp. 1–8

[6] J. M. Sinopoli, “Smart buildings systems for architects, owners and builders”,

Butterworth-Heinemann, 2009

[7] D. Jonckers, B. Lagaisse, and W. Joosen, “Expect the unexpected: Towards

a middleware for policy adaptation in iot platforms”, Proceedings of the 5th

Workshop on Middleware and Applications for the Internet of Things, 2018,

pp. 7–10

[8] R. Boutaba and S. Znaty, “Towards integrated network management: A do-

main/policy approach and its application to a high speed multi-network.”,

NOMS, 1994, pp. 777–789

[9] R. Boutaba and I. Aib, “Policy-based management: A historical perspective”,

91

Bibliography

Journal of Network and Systems Management, vol. 15, no. 4, 2007, pp. 447–480

[10] M. Sloman, “Policy driven management for distributed systems”, Journal of

network and Systems Management, vol. 2, no. 4, 1994, pp. 333–360

[11] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tranquility: A low

disruptive alternative to quiescence for ensuring safe dynamic updates”, IEEE

Transactions on Software Engineering, vol. 33, no. 12, 2007, pp. 856–868

[12] S. SECTOR and O. ITU, “Series y: Global information infrastructure, inter-

net protocol aspects and next-generation networks next generation networks–

frameworks and functional architecture models”, International Telecommuni-

cation Union: Geneva, Switzerland, 2012

[13] “Introduction to drools.” https://www.baeldung.com/drools/, 2018-11-2

[14] “Using drools vs. esper rules.” https://www.zymr.com/

using-drools-vs-esper-rules/, 2016-06-26

[15] HSG, “Business rule management system.” https://www.hartmannsoftware.

com/Blog/Enterprise-Rule-Applications/brms/

[16] “Drools tutorial.” https://www.tutorialspoint.com/drools/index.htm/

[17] T. D. team, “Drools documentation.” https://docs.jboss.org/drools/

release/7.15.0.Final/drools-docs/html_single/index.html/

[18] T. D. team, “Interface kiesession.” https://docs.jboss.org/drools/

release/latestFinal/kie-api-javadoc/org/kie/api/runtime/

KieSession.html/

[19] J. R. Nelson Matthys, “Micropnp the zero-configuration platform for wireless

sensing & actuation.”

[20] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic

change management”, IEEE Transactions on software engineering, vol. 16,

no. 11, 1990, pp. 1293–1306

[21] N. Matthys, C. Huygens, D. Hughes, S. Michiels, and W. Joosen, “A compo-

nent and policy-based approach for efficient sensor network reconfiguration”,

Policies for Distributed Systems and Networks (POLICY), 2012 IEEE Inter-

national Symposium on, 2012, pp. 53–60

92

https://www.baeldung.com/drools/
https://www.zymr.com/using-drools-vs-esper-rules/
https://www.zymr.com/using-drools-vs-esper-rules/
https://www.hartmannsoftware.com/Blog/Enterprise-Rule-Applications/brms/
https://www.hartmannsoftware.com/Blog/Enterprise-Rule-Applications/brms/
https://www.tutorialspoint.com/drools/index.htm/
https://docs.jboss.org/drools/release/7.15.0.Final/drools-docs/html_single/index.html/
https://docs.jboss.org/drools/release/7.15.0.Final/drools-docs/html_single/index.html/
https://docs.jboss.org/drools/release/latestFinal/kie-api-javadoc/org/kie/api/runtime/KieSession.html/
https://docs.jboss.org/drools/release/latestFinal/kie-api-javadoc/org/kie/api/runtime/KieSession.html/
https://docs.jboss.org/drools/release/latestFinal/kie-api-javadoc/org/kie/api/runtime/KieSession.html/

Bibliography

[22] E. Truyen, B. Vanhaute, B. N. Jørgensen, W. Joosen, and P. Verbaeton, “Dy-

namic and selective combination of extensions in component-based applica-

tions”, Proceedings of the 23rd International Conference on Software Engi-

neering, 2001, pp. 233–242

[23] G. Russello, L. Mostarda, and N. Dulay, “A policy-based publish/subscribe

middleware for sense-and-react applications”, Journal of Systems and Soft-

ware, vol. 84, no. 4, 2011, pp. 638–654

[24] Y. Zhu, S. L. Keoh, M. Sloman, and E. C. Lupu, “A lightweight policy sys-

tem for body sensor networks”, IEEE Transactions on Network and Service

Management, vol. 6, no. 3, 2009, pp. 137–148

[25] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role object pattern”,

Washington University Dept. of Computer Science, 1998

[26] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, “Elements of

reusable object-oriented software”, Design Patterns. massachusetts: Addison-

Wesley Publishing Company, 1995

[27] C. a Web Page with no author, “Java rmi tutorial.” https://www.

tutorialspoint.com/java_rmi/java_rmi_introduction.html/

[28] C. a Web Page with no author, “Java platform standard ed. 7.” https://

docs.oracle.com/javase/7/docs/api/java/rmi/package-summary.html/

[29] C. a Web Page with no author, “Getting started using java rmi.”

https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/

hello/hello-world.html/

[30] C. a Web Page with no author, “Java-files and i/o.” https://www.

tutorialspoint.com/java/java_files_io.html/

[31] Michael Galarnyk, http:/towardsdatascience.com/

understanding-boxplots-5e2df7bcbd51/

[32] Roald Hoffmann, http://www.physics.csbsju.edu/stats/box2.html/

93

https://www.tutorialspoint.com/java_rmi/java_rmi_introduction.html/
https://www.tutorialspoint.com/java_rmi/java_rmi_introduction.html/
https://docs.oracle.com/javase/7/docs/api/java/rmi/package-summary.html/
https://docs.oracle.com/javase/7/docs/api/java/rmi/package-summary.html/
https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/hello/hello-world.html/
https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/hello/hello-world.html/
https://www.tutorialspoint.com/java/java_files_io.html/
https://www.tutorialspoint.com/java/java_files_io.html/
http:/towardsdatascience.com/understanding-boxplots-5e2df7bcbd51/
http:/towardsdatascience.com/understanding-boxplots-5e2df7bcbd51/
http://www.physics.csbsju.edu/stats/box2.html/

	Introduction
	The Internet of Things paradigm
	Challenges and examples
	Applications domains
	Smart building platforms
	Our architecture for the smart building management

	Policy based management
	The challenges of distributed policy management
	Goal
	Contribution
	Approach and results
	Structure of this thesis

	Background knowledge and related work
	Enabling Technologies
	Policy enforcement approach
	Characterization of the policies
	Policy Systems: rule engines
	A Business Rules Management System: Drools

	VersaSense Micro Plug-and-Play (MicroPnP)
	Related work
	Significant technologies and techniques
	Dynamic Change Management: quiescence
	A low disruptive alternative: tranquillity
	CaPI: a component and policy-based approach
	Dynamic and selective combination of extensions in component-based applications
	Comparison and comments

	Problem statement, analysis and requirements
	Use cases
	Access control
	Climate and light control
	Air quality, fire detection and evacuation
	Encryption and Decryption functionality

	Problem analysis and context diagram
	Goals and metrics
	Requirements analysis
	Functional requirements
	Non-functional requirements

	Dynamic and consistent policy updates
	Architecture and design overview
	Java RMI communication protocol
	Distributed encryption/decryption protocol: a challenging consistency example
	Design of the standard protocol
	Design of the updating protocol
	Multiple senders and multiple receivers

	Management protocol for stateful policies

	Proof of Concept (PoC) and implementation
	PoC structure overview
	PoC development
	Versasense's Micro Plug-and Play for the gateway implementation
	The procedure for a dynamic update of policies
	Distributed and consistent protocol implementation
	Implementation of stateful policy

	Validation
	Effective dynamic update of policies
	Achievement of consistent updates
	Validation tests
	Standard scenario
	First problematic scenario: delay on the sender
	Second problematic scenario: delay of an update at receiver side
	Third problematic scenario: delay on message transmission

	Evaluation and discussion
	Failure model
	Time overhead
	Memory and network overhead
	Limitations and future work

	Conclusion
	Bibliography

