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Introduction

Turbulence is a very common phenomenon, present both in nature and in technical
applications. The smoke plume generated by a cigarette, the swirling motion of
a river rather than the turbulent areas that generate vibrations of planes are all
examples of turbulent natural phenomena. At the industrial level turbulence plays
a key role. There are several examples that could be mentioned. In foundries,
for example, it is possible to observe a relationship between the turbulence of the
molten metal (normally generated during the transports) and the �nal mechani-
cal properties. This because, the more turbulent is the liquid metal, the more it
will enter in contact with the air, generating oxides and impurities. These latters,
in the �nished product, may be triggers of cracks and breakage at low mechanical
loads.
Although turbulence has a fundamental role in many sectors, there are no ap-
proaches which allow to fully describe a turbulent �ow. Turbulence still remains a
great �eld for theoretical and industrial research. The turbulent motions are un-
predictable and chaotic. Therefore, the spatial-temporal characterization and the
streams control are still particularly complex. The turbulence nature makes it such
a useful phenomenon, but at the same time, so di�cult to describe and predict. For
this reason, statistical treatments are often used for the study of turbulent �ows.
The modern computational techniques, such as the DNS-LES-RANS, do not stop
the continuous need of new methodologies for the turbulence study. New techniques
that take into account the phenomena from several points of view. This because
the turbulence is generated by the combined action of multiple causes. In order
to understand turbulent �ows dynamics and to get information about their spatial
characterization, the complex networks theory may be used. This theory, combining
elements of graph theory and statistical physics, allows the study of systems formed
by a large quantity of elements interacting each others. It is therefore suitable for
the study of turbulent �ows, which are composed of a large number of elements that
interact dynamically over time.
The aim of this thesis is studing the di�usion inside a turbulent boundary layer.
This particular case of turbulence has been analysed starting from time series mea-
sured within a boundary layer suitably created inside a wind tunnel.
What is analyzed here must be considered as a "case of study" respect to a large
quantity of natural, environmental and industrial phenomena. For example, the
possibility of predicting presence, concentration and evolution of a pollutant in-
side an atmospheric �ow is fundamental for the human health point of view. For
chronic risks, mean concentrations estimations are su�cient. Conversely, when
considering the accidental risk due to releases of pollutant, �ammable and explo-
sive substances, what matters is the instantaneous concentrations.
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For the turbulence study there are di�erent approaches that exploit complex net-
works theory. Most of theme are based on time series transformation in corre-
sponding complex networks. In this thesis, through the time series measured in the
wind tunnel, the complex networks analyzed here have been de�ned. This means
that the experimental signals have been appropriately geometrized. There are sev-
eral ways to perform time series geometrization in networks. This work aims to
be a cognitive thesis of the Recurrence Networks method applied to turbulent time
series. Networks generated using this method are based on the presence of "similar
parts" within the signals themselves. In fact, these are divided into sub-signals,
called embedded vectors, which contain m consecutive measurements coming from
the considered series. Each embedded vector will be a network node. Two nodes
will be connected together if the corresponding vectors present a recurrence, so if
the two vectors contain similar measures. Physically, this similarity is to be un-
derstood as nodes distance in the phase space. Therefore, to de�ne links between
the various nodes of a network, the similarities among all possible pairs of nodes
must be evaluated. To do this, given two embedded vectors, two di�erent ways can
be followed. The �rst uses the Euclidean norm of the di�erence, calculated element
by element, of the two vectors. If this norm is less than a certain threshold, the
connection between the two nodes analyzed can be activated. The second method
is based on the Pearson correlation coe�cients. Given two vectors, the absolute
value of this coe�cient can go from 0 to 1. The more it will be close to 1, the
more the two vectors will be alike. Also for this case will be necessary de�ning a
discriminating threshold for the connections de�nition.
Complex networks are a versatile tool, applicable in many �elds of science and
technology. Whatever the application, using the Recurrence Networks method, the
mathematical model that transforms time series into networks will always be the
same. What varies according to the speci�c problem analyzed are the optimal em-
bedding parameters. So, the constructive parameters that allow to obtain networks
that are signi�cant for the considered signals. Therefore, for the geometrization of
time series, the model calibration plays a fundamental role. In fact, as will be il-
lustrated, even small variations of the embedding parameters with which networks
are built may generate large di�erences on the networks structure and on their
topology, having therefore an high e�ect on the results signi�cance.
Once the optimal networks are de�ned, through the study of their metrics, so
through the study of indicators describing the structure and the topology of the
networks, it is possible to obtain information about the time series of interest.
Therefore, it is possible to identify the behaviour of the considered physical phe-
nomenon.
The thesis is organized as follows:
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� Chapter 1 is a general description of turbulent �ows. Their main proper-
ties are introduced using appropriate mathematical-statistical models. The
assumptions behind the K41 theory, the energy cascade concept and the mod-
ern computational techniques are illustrated.

� Chapter 2 describes the experimental apparatus used for the time series mea-
surement: the wind tunnel and the sensors settings are described in order
to illustrate the signals meaning. Then a �rst description of data is given
through some statistical analyses carried out for the velocity and the concen-
tration signals. For the latter it is also described the �ltering necessary to
clean up the signal.

� Chapter 3 gives ample space to complex networks theory. Starting from its
historical evolution, the networks broad application �elds and their main
properties are illustrated. The introductory part concludes with a description
of the metrics used in this work. At the chapter end there is a description of
the Recurrence Networks (RN). The RN mathematical model and the steps
to obtain a network starting from time series are illustrated.

� Chapter 4 describes the obtained networks, both from the point of view of the
adjacency matrices and from the graphic point of view. In this chapter the
e�ects of some embedding parameters on the networks are also analyzed.

� Chapter 5 describes the model calibration. Here, by comparing the metrics
obtained with di�erent parameters, the optimal ones are identi�ed. These
parameters allow to study the considered signals in the best way in terms
of results signi�cance. The metrics obtained with these optimal parameters
are analyzed in chapter 6. Here there is a fundamental passage: from the
networks properties the characteristics of the time series are inferred. So the
characteristics of the considered turbulent plume are identi�ed. Chapter 6
illustrates also a study related to the recurrences frequencies. As will be seen,
these frequencies are directly connected to the network metrics, and thus to
the system dynamics.

� Chapter 7 shows the main results identi�ed.
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Chapter 1

Turbulent �ows: characteristics and

main properties

In the �rst part of this chapter the turbolent �ows are de�ned. Their main char-
acteristics and their properties are analyzed both from the scienti�c and the ap-
plicative point of view. In fact, two non conventional examples of turbulence use
in industries are described. Then, the Reynolds average technique, which is, the
decomposition of turbulent phenomena into a transport average �ow and into a
�uctuating �ow, is described. Towards the end of the chapter, the concept of
turbulent scales is de�ned. The mechanisms of the energy exchanges between the
di�erent scales, so the energy cascade, are described according to the hypotheses
introduced by the so-called K41 theory. The chapter concludes with a description
of techniques used for turbulent �ows simulations: DNS, RANS and LES.

1.1 Turbulence: de�nition and main features

It is not easy to de�ne a turbulent �ow because of the turbulence nature. In fact,
this may be considered as a rapid and irregular movement that occurs in �uids
when they reach high Reynolds number or when they are �owing in contact with
solid walls. The main characteristic of a turbulent �ow is the irregularity of each
�uid particle property. For example, the velocity of a particle in a turbulent �ow
varies irregularly in time and space. Therefore, it is not determinable beforehand
with precision and continuity. The fast and irregular �uctuation of the velocity
overlaps the mean value, so that the instantaneous velocity results the sum of an
average speed and the corresponding �uctuation. Obviously, what is indicated
here for the velocity is valid for any quantity relative to a turbulent �ow.
In nature, most of the �ows are turbulent: from atmospheric and oceanic cur-
rents to the arteries bloodstream. Even in the industry the turbulence plays a
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1 � Turbulent �ows: characteristics and main properties

fundamental role. This because the turbulent �ows have characteristics of interest
for the technique and for the mechanics. For example, turbulence produces an
increase in the friction coe�cient, less wake resistance, higher values of the lift
coe�cient for high-incidence wings and higher values of the heat exchange coe�-
cient. Mentioning some examples of industrial use of turbulence, shell and tube
heat exchangers may be considered. They are constructed having inside some
plates that deviate and mix the �ow inside the shell. This in order to increase
the turbulence of the �ow and, with it, its thermal exchange capacity. Another
example of turbulence use allows the great mobility of modern times. An engine,
gasoline or diesel, has a combustion phase of about 60 crank angles. If the �ow
inside the combustion chamber were laminar, the combustion speed would be so
small to not allow combustion in the required time [2][1]. Using techniques such
as squish, swirl and tumble the �ow in the chamber is made turbulent, and so the
�ame front becomes corrugated, increasing its surface. This allows an increase in
the combustion velocity that guarantees the well-known thermal engines perfor-
mances.
By de�ning the turbulence, its stochastic nature is immediately perceved. Many
turbulent analyses are in fact based on the use of statistical techniques. This as-
pect is in contrast with the ability of the Navier Stokes equations to describe every
type of �uid and �ow. In fact, the nature of these equations is deterministic. It
is therefore interesting to ask whether it is possible to describe a stochastic phe-
nomenon with deterministic equations. The answer to this question lies in the
mathematical structure of NS equations. In fact, they are extremely sensitive to
the initial conditions and to the numerical approximations. Thus, describing a
turbulent �ow through these equations, the solutions variability does not come
from the equations themselves but from their high dependence on the minimal
variations of the boundary conditions, i.e. the minimal variations of the environ-
ment in which the �ow moves.
A turbulent �ow can therefore be de�ned as irregular, stochastic and subject to a
large amount of degrees of freedom. Hence, statistical methods are needed for the
study of such �ows. Note that, describing the turbulence, the term �ow is always
used instead of �uid. This because turbulence is a property of the �ow and not of
the �uid that composes it. In fact, using the same �uid, the Reynolds experiment
shows that are the di�erent e�ux conditions to de�ne the motion state. The latter
is usually identi�ed using the Reynolds number (Re). This acts as an index of the
turbulence that is present. For low Re values, there is a laminar �ow, which turns
into turbulent for high Reynolds numbers. Intermediate Re values identify the
transition zone.
A physical meaning can be attribute to the Reynolds number: it is the ratio be-
tween the inertial forces, from which the instability of the �ow derives, and the
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1 � Turbulent �ows: characteristics and main properties

viscous stresses, responsible of energy dissipation. These two physical quantities,
to which correspond as many terms in the NS equations, varying their relative
weight, change the �ow from laminar to turbulent and viceversa. Being the vis-
cous term e�ect an energy dissipation, the turbulence needs therefore a "power
supply". In fact, transforming the turbulent kinetic energy into internal energy,
so warming the �uid, in order to not cease the turbulent e�ect itself, the viscous
stresses always need new incoming energy.
Compared to the a laminar �ow, of course, a turbulent one is characterized by a
greater mass, momentum and heat mixing e�ectiveness. The e�ect of the turbo-
lence on thermal and mass di�usivity can be observed considering the Prandtl and
Schmidt numbers increase while the Re increases.

1.2 Decomposition of time signals

Considering a certain point in the space where measuring a �uid dynamic quan-
tity: the �g. 1.1 illustrates the di�erence between a measured laminar signal and
a turbulent one. Starting from the instantaneous values it is possible to obtain,

Figure 1.1: Di�erence between a laminar and a turbulent signal

through a temporal average, a mean value of the analysed quantity. Consider for
example a velocity signal. The average velocity characterizes the transport that
determines the overall displacement of the �uid mass. If this average speed is
time-independent, the �ow is stationary, otherwise it is non-stationary. Instant by
instant, subtracting the average value from the instantaneous values, the turbu-
lent �uctuation can be obtained. This shaking motion involves only an irregular
oscillation of the �uid-dynamic quantities around the average transport values.
Therefore, the turbulence vigour will be as much greater as these �uctuations are
intense. But, in practice, more than the instantaneous �uctuations, one is inter-
ested in a single value that indicates with what force the instantaneous values vary
from the mean. This parameter can be calculated as the �uctuations root mean
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1 � Turbulent �ows: characteristics and main properties

square. For the velocity, it is indicated as turbulence intensity.
This way of proceeding is called Reynolds decomposition [1] [2]. Therefore, con-
sidering a generic velocity component u, operating as above, the turbulent signal
is so decomposed: u(t) = u + u

′
, where u is the average velocity and u

′
is the

�uctuation.

1.3 Scales of turbulence

One of the main turbulence features is being strongly rotational. A turbulent �ow
has within it a large number of vortices which are maintained thanks to the fact
that there are three-dimensional �uctuations of the �uid dynamics quantities.
Being the turbulent �uctuations formed by a series of vortices, it is interesting
to characterize these latters. In fact, each eddy has its own size, its speed and
its rotation time. The metrics that characterize the eddies are called scale. For
each eddy, it is possible to de�ne three metrics, so three scales: a spatial scale to
evaluate the eddy size, a velocity scale to evaluate the rotation speed and a time
scale. Of course, for a given eddy, these three scales are not independent each
other.
Given the large amount of vortices that characterize a turbulent �ow, it is possible
to de�ne two extremes. That are, the larger space scale, so the larger eddy, and
the smaller. The larger is called integral scale and is de�ned using geometric con-
strains. Considering for example the �ow inside a engine piston, the integral scale
will not be larger than the piston itself. However, does not count only the size. It
must be considered the probability that a so big eddy will be actually present in
the analyzed motion �eld. In fact, the integral scale must be representative of the
kinetic energy actually present in the �ow. It is therefore de�ned using a function
called two-point correlation. This larger scale is indicated with Li.
The smaller scale, called the Kolmogorov scale and indicated with η, is de�ned
using kinetic energy and the viscosity. There aren't scales smaller than η because,
at this scale, the kinetic energy is completely dissipated by viscosity.
The intermediate scales, i.e. those between the integral scale and the Kolmogorov
scale, are part of the inertial subrange.

For each scale it is possible to de�ne a Reynolds number as Rex =
ux · lx
ν

.

The larger eddies are the �rst ones to be formed and derive their energy directly
from the average motion of the �ow. So, the turbulence energy "enters" at the
larger scales. As noted by Richardson in the twenties of the last century, the large
eddies are unstable, therefore, through a continuous process of destabilization and
fragmentation (stretching) the energy is trasferred at the smaller scales. Within
the inertial subrange, this energy is transferred without a viscose action, i.e. there
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1 � Turbulent �ows: characteristics and main properties

is an energy transfer without dissipation. All the scales, except for the Kolmogorov
one, have a Reynolds number bigger than one. So, for them, inertial forces are
predominant. Instead, considering the Reynolds number at the smaller scale, it
can be obtained Reη = 1. Therefore, once this scale is reached, due to the viscos-
ity e�ects, the kinetic energy is dissipated. The rate of turbulent kinetic energy
dissipated per volume unit, indicated with ε, may be de�ned. This also represents
the energy entering inside the system, since it is not subject to dissipation in the
inertial subrange. This process, known as the energy cascade, does not allow to
answer to some questions. For example, what is the size of the smallest eddies
that dissipate energy. Or, how the velocity and the time scales vary moving along
the inertial subrange towards smaller spatial scale. These and others questions
were answered by Kolmogorov's theory of turbulence in 1941. This theory is often
indicated with the pseudonym of "K41 theory". It is based on three important
hypotheses combined with dimensional arguments and experimental observations
[3].
The �rst Kolmogorov's hypothesis is related to the local isotropy. The directional
biases of the large scales are lost in the chaotic scale-reduction process as energy is
transferred to successively smaller eddies. Therefore, the Kolmogorov's hypothesis
of local isotropy states that at su�ciently high Reynolds numbers, the small-scale
turbulent motions are statistically isotropic.
Not only the directional information are lost in the energy cascade, but also the
information about the geometry of the eddies gets lost. So, the statistics of the
small-scale motions are universal: they are similar in every high Reynolds number
turbulent �ow, independent of the mean �ow �eld and the boundary conditions.
These statistics depend just on ν and ε. This is called �rst similarity hypothesis.
From this derive the de�nitions of η, uη and tη. They will only be a function of ν
and ε appropriately combined.
Once the smaller scale is de�ned, it is possible to represent the inertial subrange,
using the turbulent kinetic energy de�nition and the epsilon. As mentioned above,
all mathematical formulations are not reported. However, can be proved that, in
a bilogarithmic plane which has the spatial scales as abscissa axis and the velocity
scale on the ordinates axis, the inertial subrange is a line with slope equal to 1/3,
which, starting from the Kolmogorov scale, reaches the integral one.
The last hypothesis is relative to the intermediate scales. Their Reynolds number
is relatively large, therefore they will not be a�ected by the viscosity. Starting from
this, the Kolmogorov's second similarity hypothesis states that in every turbulent
�ow at su�ciently high Reynolds number, the statistics of the inertial subrange
scales have a universal form that is uniquely determined by ν and independent of
ε.

13



1 � Turbulent �ows: characteristics and main properties

1.4 Numerical simulations of turbulent �ows

As indicated, a turbulent �ow can be described through the Navier-Stokes equa-
tions. Therefore, the most immediate method for its numerical simulation is the
NS discretization. This technique is called "Direct Numerical Simulation", DNS.
Referring to the turbulence description shown in the previous section, it is easy
to understand that the computational domain will have dimensions comparable
to the integral scale. Instead, to describe in detail the e�ect of viscosity at the
Kolmogorov scale, i.e. the transformation of kinetic energy into internal energy,
the grid must have dimensions comparable to the scale η.
Obviously, a so �ne grid has a direct e�ect on the calculation time: it is propor-
tional to the third power of the Reynolds number. In modern engineering systems,
the Reynolds numbers that are reached are extremely high. For example, inside
a medium-small heat exchanger, the Reynold number is around 200000. So, even
using the modern computational techniques, it is a e�ort of time and costs that
is completely unsustainable. Therefore, at the industrial level, DNS is never used.
Instead, its is used in the scienti�c research. In fact, directly solving the equations
of motion without the use of any model, the results produced are comparable to
the experimental ones. Compared to the latter, the numerical results are also
easier to obtain. Think for example at the motion �eld within an engine. As
long and complex as it is, the DNS is still easier than direct measurement. Just
imagine the large amount of modi�cations to be made to the pistons in order to
insert a sensor. Than, the sensors presence can change the considered motion �eld.
Therefore, DNS is a fundamental technique for the research. The computational
cost, however, binds the use to moderate Reynolds numbers, making it unusable
for �ows of engineering interest.
There are two other techniques that are used at the industrial level to model the
turbulent �ows [4]. The most used is the RANS technique (Reynolds Averaged
Navier-Stokes). This is a model that consider an average in time of NS motion
equations. Therefore, only the average quantities are explicitly calculated while the
turbulent ones are modeled appropriately. This technique is widely used because
the �ows of interest present, normally, a stationary con�guration of the motion
�elds. That is, the quantities of interest are usually the average ones and not the
instantaneous.
The purpose of this method is decomposing, using the Reynolds average described
above, all the terms present in the NS equations. The problem is that the equa-
tions system obtained is not solvable. In fact, the Reynold tensor depends only on
the turbulent �uctuations values, and not on the average quantities. So, in face
of 4 equations, 10 unknowns are obtained. It is therefore necessary to model the
tensor components with respect to the average quantities. There are several tech-
niques that allow to do this. The technique choice depends on the results accuracy
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1 � Turbulent �ows: characteristics and main properties

that is needed. In fact, the Reynolds tensor has an important in�uence on the �ow
dynamics. There are the �rst order models, having di�erent number equations.
Probably, the most used method is the two-equation model K-Epsilon. Increasing
the computational cost, it is possible to use second order models or probabilistic
models. It is interesting to note that, these models often have calibration constants
that vary from case to case. This, together with the fact of modelling the term
that most of all in�uences the dynamics of the �ow, are the main criticalities of
this method.
When more detailed results are required, a technique called LES (Large Eddy Sim-
ulation) can be used. As indicated previously, the larger eddies depend on the �ow
geometry while the smaller ones have a universal character. So, in the LES the
large scales are calculated, while the e�ects of the smaller are modeled. The LES
technique is conceptually more advanced of the RANS. This beacuse is based on
the two hypotheses of similarity and universality that the K41 theory describes.
The LES technique requires less computational e�orts than the direct numerical
simulation, but more than the RANS methods. The main advantage is the greater
level of detail than the RANS techniques: the LES is able to predict instanta-
neous features of the �ow. This is particularly important in those simulations
that include chemical reactions, such as combustion in engines and transporting
phenomena.
To conclude, it is advisable to use RANS technique for stationary, two or three
dimensional problems, while LES is advisable for non-stationary �ow in which the
temporal evolution plays an important role.

15



Chapter 2

Experimental activity: velocity and

concentration measurements

This chapter describes the experimental activities performed to obtain the time
series investigated in this work. The type of wind tunnel used and its setting are
described in the �rst part of the chapter. Then, ample space is dedicated to the
description of the measuring points choice, to the type of sensoristics and to their
operating conditions. The middle part of the chapter describes the choices made
in order to organize the experimental data optimally. The last part of the chapter
is instead dedicated to the statistical analyses carried out on the di�erent signals.
For the concentration, the only series to require a �ltering, is shown a study of
the intermittency resulting from the �ltering itself. To con�rm what has been
achieved, some parts of concentration time series are graphically represented. The
average concentration pro�les are then shown in order to identify the variation
of this parameter within the plume. The chapter concludes with the statistical
analysis of the velocity signals that allows to identify two important aspects: the
e�ect of the friction between plume and wall on the average velocity u pro�le and
the absence of convective phenomena inside the plume.

2.1 Purpose of the experimental activity

In recent years attention has been paid to environmental issues. Among these, air
quality plays a key role. There are several standards that allow to assess the level
of air pullution. Atmospheric pollution means the alteration of natural air condi-
tions, due to emissions of exhaust gases from motor vehicles, boilers, power plants,
factories, incineration plants. The possibility of predicting presence, concentration
and evolution of a pollutant in an atmospheric �ow is therefore fundamental. Dif-
ferent substances can, of course, have di�erent e�ects on the environment and on
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2 � Experimental activity: velocity and concentration measurements

human health.

As far as human health is concerned, the statistical characterization of concen-
tration is necessary. For chronic risks, estimates of mean concentrations are su�-
cient. Conversely, when considering the accidental risk due to releases of pollutant,
�ammable and explosive substances, what matters is the instantaneous concentra-
tions. For this reason, the need to de�ne the concentration probability density
function (PDF) arises [5].

As shown in the literature, there are many ways to characterize emissions in the
lower atmosphere. The dependence of concentration on the parameters controlling
the emissions is also shown in some papers. The dependence of the dispersion
process on the source con�guration, including source size, elevation and emis-
sion velocity was analyzed at the the Laboratoire de Mécanique des Fluides et d'
Acoustique at the Ecole Centrale de Lyon in France. A series of wind-tunnel ex-
periments on the dispersion of a passive scalar emitted by a source of varying size
and height, within a turbulent boundary layer, have been performed. The exper-
imental dataset is composed by velocity and concentration time series measured
at di�erent points in the wind tunnel. These time series are the basis of the study
carried out in this thesis. In fact, they have been transformed into networks, with
the aim of getting statistical information about speed and concentration �elds.

2.2 Wind-Tunnel set up

There are two ways to classify wind tunnels. Firstly, it is possible to evaluate
the presence or not of �uid recirculation. Open loop and closed loop tunnels can
be de�ned in this way. While open loop tunnels expel the �uid in the external
environment after the test, the closed ones have a recirculation and reconditioning
system of the �uid that is reintroduced into the test chamber. Wind tunnels are
also classi�ed by the amount of speed they can produce. There are four basic types
of wind tunnels which are: low subsonic, transonic, supersonic and hypersonic.

The time series were obtained in the in the atmospheric wind tunnel of the Lab-
oratoire de Mécanique des Fluides et d' Acoustique. This is a recirculating wind
tunnel with a working section measuring 14 m long and 3.7 m wide.

The wind tunnel set up is sketched in the �g. 2.1.
When working in wind tunnels, both for the analysis of plumes and for models
testing, it is very important to control the longitudinal pressure gradient. In case
of models testing, the pressure gradient produces an e�ect of buoyant force acting
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2 � Experimental activity: velocity and concentration measurements

Figure 2.1: Sketch of the wind tunnel set up [5]

on the model in the direction of decreasing pressure. As a result, the longitudinal
force acting on the model is determined with an error. While in the case of plumes
structure study, the velocity �eld may be a�ected by the gradient.

The air temperature in the wind tunnel was regulated so that its variations during
a 1-day experiment can be maintained in the range 0.5°C. The experiment can
therefore be considered performed in isothermal conditions.

The experiment consists in the atmospheric dispersion of a passive scalar, emitted
by a localized source, placed at a height hs from the ground, with a diameter σ0
and an ejection velocity us . Ethane (C2H6) was used as tracer in the experiments,
since it has a density similar to air. It was continuously discharged from a source
of varying diameter and elevation. The release takes place within a turbulent
boundary layer with free-stream velocity u∞. It is assumed to be fully characterized
by self-similar relations, obtained by rescaling pro�les of velocity statistics on
the friction velocity u∗ and the boundary-layer depth δ. A neutrally-strati�ed
boundary layer was generated by combining the e�ect of a grid turbulence and a
row of spires, placed at the beginning of the test section, and roughness elements
on the �oor. The presence of a turbulence grid is used here since it assists in
minimizing the inhomogeneities of the �ow. The spires were of the Irwin type1.
The entire working section �oor was overlaid with cubes of side h = 0.02 m acting
as roughness elements. The cubes were placed in a staggered array and covered
approximately 1.8% of the tunnel �oor surface. This experimental set-up allow to
reproduce a boundary layer of depth δ = 0.314 m. Imposing a free-stream velocity

1Spires used to simulate the planetary boundary layer are so called. There are expressions
for the height and base length of triangular spires which produce given values of the boundary
layer thickness.
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2 � Experimental activity: velocity and concentration measurements

u∞ = 4.94 m/s and ν = 1.5 · 105, the Reynolds number

Re =
δ · u∞
ν

= 2.6 · 105

was su�ciently high to ensure the adequate simulation of a fully turbulent �ow
[6]. In this calculation ν is the air kinematic viscosity.

The tracer was emitted by an L-shaped nozzle. This was positioned so that it
can be considered in the area where the boundary layer was fully developed. The
nozzle horizontal part was almost 30 times the internal diameter, so as to eliminate
the e�ect of the vertical stretch and of the elbow.

As indicated before, measures were carried out considering two values of the in-
ternal diameter σ0, 3 mm and 6 mm, while the emission height hs was �xed equal
to 75 mm.

In the wind tunnel, obviously, at di�erent points the air assumes di�erent speeds.
In the experiments, ethane was injected with the air velocity at the injection point.
This condition is know as Isokinetic Condition.

A reference system has been created to de�ne the spatial position of the measuring
points. Coordinates y and z denote the transversal and vertical direction, respec-
tively. The x coordinate has its origin at the source location.

2.3 Measurements

2.3.1 Contemporaneousness and output of measurements

As indicated, this thesis uses as starting point the velocity and the concentration
time series measured in the wind tunnel. The measurements were performed at
di�erent positions in the tunnel. When the measuring point is �xed, it is possible
to consider the measurements of velocity and the measurements of concentration
as contemporary. Considering the entire measure domain, however, all the values
obtained cannot be considered contemporaries. It is possible to imagine taking
measurements in a speci�c point and then moving to the next one. In doing so,
the �ow of time is inevitable. Therefore, all the measures cannot be considered
contemporary.

The result of the measurements performed in a point is a six columns �le. The two
speed components (m/s), the concentration (ppm) and the air and ethane mass
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�ow rate at the source (l/h) are indicated for each time instant (s). An example
is shown in the �gure below:

Figure 2.2: Part of a measures �le

Considering the two diameter values, 469 points were measured, and so, 469 �les
of this type were de�ned. Each �le has a number of lines relative to a 3-minute
measurement time with a 1000 Hz sampling. Therefore, for each point, about 180
000 time instants have been considered.

2.3.2 Concentration measurements

Concentration measurements were performed with a fast �ame ionization detector
(FID). This is an instrument used in gas chromatography. Using a hydrogen-based
�ame and electrons produced with an anode and a cathode, it derives the mass
of a substance present in an e�ux and thus derive its concentration. The concen-
tration is then transformed into an electrical signal as the instrument output is
an electrical output. For the FID used, the relation between ethane concentration
and tension response was linear.

Concentration statistics extracted from each time series include the mean, the
standard deviation, the third and the fourth moments.

It is important to note that, all measurements were made by keeping constant the
volume �ow rate through the nozzle. So, the outlet velocity u∗ was also kept con-
stant. This has been possible by monitoring and recording the ambient pressure
and temperature.

It is necessary to consider the e�ects of a recirculated tunnel. In this case, in fact,
the concentration will tend to grow with time. To take into account the contri-
bution of this drift, the background concentrations were recorded before and after
acquiring any of the concentration time series. The background concentration,
which was assumed to evolve linearly with time from its initial to its �nal value,
was then subtracted from the signals.

20



2 � Experimental activity: velocity and concentration measurements

2.3.3 Velocity measurements

Measurement techniques

To assess the dynamics of the �ows, speed measurements were carried out. Two
di�erent types of measures have been performed. Firstly the hot-wire anemometry,
providing information about the spectral characteristics of the velocity.

The hot-wire anemometry is based on a heater placed in a �uid current. When
an electrically heated wire is placed in a gas stream, heat is transferred from the
wire to the gas and hence the temperature of the wire reduces, and due to this,
the resistance of the wire also changes. The change of the wire resistance becomes
a measure of �ow rate. There are di�erent operating modes depending on what
parameters are kept constant or variable.

The hot-wire constant temperature anemometer was equipped with a X-wire probe
with a velocity-vector acceptance angle of 45, allowing for the simultaneous mea-
surements of two velocity components.

The calibration operations ware performed in the tunnel using a Pitot tube and
measuring a reference speed.

Measurements were made in points at di�erent coordinates and for each of them
a sampling frequency of 1000 Hz was used.

The experimental error, estimated by repeating the measurements in a �xed ref-
erence location, was approximately 2% for the mean and the standard deviation.

2.4 Operational organization of data

In order to manage in the most appropriate way the large amount of data obtained
from the experimental activity, it was necessary to organise them in a suitable way.
The data were provided in the form of text �les. It was therefore decided to operate
as follows:

1. The data were transformed from text �les to Matlab �les

2. The concept of section was created: a section represents a speci�c x-coordinate
along the wind tunnel axis. Each section has been numbered with progres-
sive numbers, from number 1 to number 6. The x-coordinates are all referred
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to the boundary layer depth, i.e. xd = x
δ
. Therefore, the sections obtained

with the relative coordinates are:

� Section 1: x=51mm, xd = 0.16;

� Section 2: x=102mm, xd = 0.32;

� Section 3: x=204mm, xd = 0.64;

� Section 4: x=409mm, xd = 1.30;

� Section 5: x=817mm, xd = 2.60;

� Section 6: x=1226mm, xd = 3.90;

The sections are the same for whatever the diameter of the source considered.
As can be seen, section 1 has not been considered because it is characterised
by a series of criticalities due to the measurement methods.

3. Considering the 3mm source diameter case (D3), starting from section 1
to section 6, a progressive number has been assigned to each measurement
point. For the D3 case, 239 measurement points have been identi�ed and
therefore as many �les.

4. The operation is repeated for the case of source diameter equal to 6mm (D6).
The progressive numbers were entered starting from the value 500. Here, 260
measurement points within the six sections have been considered.

2.5 Concentration time series statistical analysis

2.5.1 Concentration measurements �ltering

The data analyzed here have been elaborated, under di�erent points of view, in
several theses. In one of these, an appropriate �ltering technique was implemented.
As it is known, before operating on data deriving from experimental procedures,
appropriate �ltering operations should be carried out. For example to eliminate
any noise or to compensate a certain behavior of the instruments.
From the studies carried out, it was observed the necessity to �lter only the con-
centration signal, by applying a high pass �lter. That is, all concentration values
below a given threshold must be considered zero. This threshold, in the D3 case,
is equal to 3.320 ppm. In the D6 case, instead, it is equal to 2.754 ppm. Therefore,
before any analysis was performed, the data were �ltered.
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2.5.2 Intermittency of concentration signals

When a phenomenon that does not happen regularly is considered, it can be de-
scribed using the adjective "intermittent". The presence of null values within the
concentration time series can be de�ned as an intermittent phenomenon. Starting
from this idea, the intermittency of concentration signals can be calculated. It is
de�ned as:

Intermittency =
Time instants with a non-zero signal

Total time instants measured

Therefore, with the time series considered here, the denominator will always be
179985. This quantity has been calculated at each measuring point. Then, for
each section, the vertical and the horizontal pro�le were represented. The �rst
pro�le is formed by all measuring points with y=0 and di�erent z.
Vice versa for the horizontal pro�le. This was done considering both the diameters
of the sources. Therefore, there are four pro�les obtained in each section. Two for
the case D3 and as many for the case D6. Results obtained in case D3 are shown
in �g. 2.3, while those obtained in case D6 are shown in �g. 2.4.

Figure 2.3: Intermittency pro�les, source diameter 3 mm

For both diameters, pro�les exhibit common characteristics:

� Horizontal pro�le
These pro�les should have, theoretically, a bell shape. Close to the nozzle
axis, the intermittency should be close to one. While, moving towards the
periphery of the plume, it should tend asymptotically to zero. The horizontal
pro�les obtained are reminiscent of the theoretical bell shape. This means
that, at least for the shape, the �oor does not have an e�ect on these trends.
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Figure 2.4: Intermittency pro�les, source diameter 6 mm

However, in the theoretical case the central peak is around 100%. In the
cases analysed here, instead, this central value is less than 100%. It tends
to decrease from section 2 to section 4, while in the last two increase. This
behaviour, probably, might be also attributed to the interaction between
plume and wall.

� Vertical pro�le
The shape of vertical pro�les resembles the bell shape only in sections 2
and 3. From section 4 onwards, the vertical pro�le became not symmetrical.
High intermittency characterise the areas under the nozzle while, above it,
the intermittency tends to zero. This e�ect is certainly due to the interaction
between wall and jet. In fact, similar trends are also found in the average
concentration pro�les. The maximum intermittency, even in vertical pro�les,
tends to decrease from section 2 to section 4, increasing afterwards. Note
that, the maximum intermittency value is never at nozzle level, z/zs = 1.
It's always below it. Moving away from the source, the coordinate of the
maximum value decreases: in section 2 it is around z/zs = 0.95 while, in
section 6, z/zs = 0.45. Table 2.1 illustrate this concept. It shows, for both
diameters, the maximum intermittency and its vertical coordinate.

Using the point with coordinates z=75 mm and y=0 mm, is possible to verify the
correctness of the calculations shown here and the measurements repeatability. In
fact, in each section, this point is measured twice: as part of vertical and horizontal
pro�les. Considering therefore this point as belonging �rst to a pro�le, and then
to the other, similar results must be found. The table 2.2 illustrates the results
obtained for D6 case. As can be seen, the results are comparable. This means that
the same spatial point, measured at di�erent times, is characterized by comparable

24



2 � Experimental activity: velocity and concentration measurements

Table 2.1: Intermittency, vertical pro�les: maximum values coordinates

D3 D6

(zd)max max int. [%] (zd)max max int. [%]

sect.2 0,97 57,30 0,95 85,31

sect.3 0,93 47,08 0,93 65,64

sect.4 0,87 46,48 0,93 60,05

sect.5 0,67 67,54 0,47 77,99

sect.6 0,47 94,65 0,40 97,78

measurements.

Table 2.2: Intermittency: common measuring points

D6

VERTICAL PROFILE HORIZONTAL PROFILE

Central point z=75 Central point y=0

Intermit. [%] Intermit. [%]

sect.2 82,52 82,61

sect.3 61,32 62,20

sect.4 56,90 57,78

sect.5 68,57 70,26

sect.6 84,13 76,12

2.5.3 Graphic representation of concentration time series

What has been said so far on intermittency can also be evaluated graphically. In
fact, the time series can be represented using dots. When the value is zero, no dot
is reported. Instead, when the value is di�erent from zero, a dot is drawn. In the
analysis carried out here, the �rst 2500 values of the concentration time series have
been considered. For both diameters, section by section, vertical and horizontal
pro�les representation has been obtained. The results for the sections 2, 4 and 6
in the D3 case are shown in �g. 2.5, �g. 2.6 and �g. 2.7.

Looking at the horizontal pro�les, so z=75 and y variable, it can be notice that:
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Figure 2.5: D3, section 2, xd = 0.32, concentration time series representation
(0-2500 ms)

Figure 2.6: D3, section 4, xd = 1.30, concentration time series representation
(0-2500 ms)

� All sections have the same behaviour on horizontal direction. Around the
central point, y=0, there are measurement points that present a large quan-
tity of instants with non null concentration.

� Moving away from the centre, the quantity of points tends to decrease. This
means that, for the points at the plume border, the time series has a large
quantity of zeros. This occurs both on the right than on the left with respect
to the central point, con�rming the already observed symmetry present in
the horizontal intermittency pro�les.
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Figure 2.7: D3, section 6, xd = 3.90, concentration time series representation
(0-2500 ms)

Instead, vertical pro�les show a very di�erent behaviour:

� The maximum number of dots is not in the centre, z/zs = 1, but at lower
coordinates.

� In sections 2, 3 and 4 the pro�les are still quite symmetrical. The greater
quantity of dots is however located on the left side of the graph (z/zs < 1)

� In sections 5 and 6 the e�ect of the �oor is clearly present . A large amount
of dots is located on the left side of the graph. Therefore, a large quantities
of non-zero elements characterise the time series of points closest to the �oor.

2.5.4 Average concentration pro�les

In order to study the evolution of the plume, an important statistical parameter
is the average concentration. That is, �xed a certain spatial point, the average
temporal value that the concentration assumes. To facilitate the comparison of
the results, it can be referred to the �gures �g. 2.8 and �g. 2.9.
The average concentration trends are very reminiscent of intermittency:

� Horizontal pro�le
The horizontal pro�les tend to a fairly symmetrical bell distribution. So, the
maximum value is in centre (y=0), while the concentration tends to zero at
the maximum and the minimum y measured respectively.
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Figure 2.8: Source diameter D3, average concentration pro�les.

Figure 2.9: Source diameter D6, average concentration pro�les.

� Vertical pro�le
Two di�erent types of vertical pro�les can be identi�ed: before the interaction
between the jet and the wall and after it. In the �rst case, so in sections 2 and
3, the vertical pro�le is symmetrical. From section 4 onwards, instead, the
e�ect of the wall tends to accumulate ethane in the lower part of the jet. The
pro�les are therefore very asymmetrical: they tend to zero for coordinates
above the nozzle axis while they have a maximum for coordinates far below
the axis.

Observing the maximum values, for both diameters and pro�les, it can be seen how
these decrease from section 2 to section 5, while going to the last section it tends
to increase again. This trend, at �rst sight, is unexpected. However, it points out
what was obtained in the case of intermittency: maximum values decreasing from
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section 2 to 4 and increasing from section 5 to 6.
In order to evaluate the correctness of the data obtained, as was also done for
the intermittence, in each section the two values relating to the central point were
compared. This, as indicated, is measured twice. As expected, the two measure-
ments show totally negligible di�erences.
The x-coordinate e�ect is substantially connected to the wall e�ect. Instead, it is
interesting to evaluate the diameter e�ect. Logically, in the same spatial coordi-
nate, the average concentration is greater in the D6 case. This is even more true
in the initial sections. Just consider section 2 peak values: in the case D6 there is
an average concentrations that is more than double those of case D3. On the other
hand, in section 6 the di�erence is much smaller. The horizontal pro�le in section
6 seems almost to be about the same in the two cases. This means that, in D6
case, it is the section closest to the nozzle which has the highest average concen-
trations. Which does not happen in the D3 case. Here, the e�ect of the proximity
to the nozzle can not however counteract the accumulation e�ect of ethane due to
the wall. Therefore, the higher average concentration values are obtained in the
section furthest from the nozzle, the number 6.

2.5.5 Average normalized concentration pro�les

The concentration pro�les shown above represent what is actually measurable:
from them it is possible to infer what are the geometrical parameters that most
in�uence the di�usion phenomenon. However, from �uid dynamics, it is known
that to compare two di�erent physical phenomena, like for example the two plumes
obtainable with the two di�erent diameters, it is advisable to use dimensionless
parameters and not actual physical parameters. In fact, even if the latters are dif-
ferent, if the physical phenomena have the same dimensionless parameters they are
very similar from the �uid dynamics point of view. The di�erences in dimensional
variables my be due, for example, to the scale e�ect. This is exactly what happens
in the di�usion phenomenon considered here. In fact, concentration series, at each
time instant, can be normalized with respect to the ethane �ow emitted from the
source. Each instantaneous concentration can be normalized as concn = conc

Qe
u∞·δ2

,

where Qe is the ethane volume �ow at the source, which changes both with the
diameter and the spatial coordinates.
In each measuring point a normalized concentration time series is obtained. Their
average value may be represented exactly as done previously with the measured
concentration. What have been obtained in the D3 case is shown in �g. 2.10,
while �g. 2.11 shows the D6 case.
From the normalization it is possible to infer that, whatever is the diameter con-
sidered, the di�usion phenomena that are generated are completely comparable.
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Figure 2.10: Source diameter D3, average normalized conc. pro�les.

Figure 2.11: Source diameter D6, average normalized conc. pro�les.

In fact, the pro�les for D3 case and those relating to D6 case are very similar. It
is also interesting to note that, in this representation, the e�ect of the longitudinal
coordinate x, and thus the e�ect of the interaction between plume and the wall,
is lost. The pro�les are in fact arranged in order of section: higher values are
found in the areas close to the nozzle while moving away from this the average
normalized concentration tends to decrease.
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2.6 Velocity time series statistical analysis

2.6.1 Average velocity u pro�les

As for the concentration time series, also for the series of the velocity along the
wind tunnel axis, so the velocity u, the average pro�les can be built. The �gures
�g. 2.12 and �g. 2.13 illustrate what has been achieved.

Figure 2.12: Source diameter D3, average velocity u pro�les.

Figure 2.13: Source diameter D6, average velocity u pro�les.

As is evident, �xed a certain diameter, there is a big di�erence between the vertical
and the horizontal pro�le. The last one is characterized, in all the sections, by
a velocity that oscillates around the 3.5 m/s. That is, the velocity u can be
considered approximately constant at each point of the horizontal pro�le of each
section. Instead, there is a very di�erent situation for vertical pro�les. Here the
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braking e�ect of the wall is evident. In fact, the pro�les are parabola-like pro�les
and the speeds vary considerably according to the z-coordinate.
It is interesting to observe a great di�erence between the average concentration
and the average velocity u pro�les. The former have a strong dependence on the
diameter of the source. In the case of u instead, the vertical and the horizontal
pro�les, for both diameters, have very similar numerical values.

2.6.2 Average velocity w pro�les

Also for the velocity w is possible to represent, for both the diameters, the vertical
and the horizontal pro�les of the average values. The �g. 2.14 illustrates what has
been obtained in the D3 case while the �g. 2.15 refers to the D6 case.

Figure 2.14: Source diameter D3, average velocity w pro�les.

Figure 2.15: Source diameter D6, average velocity w pro�les.

32



2 � Experimental activity: velocity and concentration measurements

From these graphs a very important information may be derived. Observing the
two vertical pro�les, it is possible to see that in some spatial points the average
velocity is positive, while in others it is negative. This means that an integral
of these pro�les would get a value near zero. This null value indicates that the
considered phenomenon is non convective. That is, there is no a velocity w that
tends to drive the plume in the vertical direction.

2.7 Graphical representation of the plume

It is interesting to give a graphical representation of the considered plume. This
in order to identify the proportions between the di�erent geometrical parameters
and to identify, compared to the geometry, the concentration distribution. To this
end, �g. 2.16 can be consider. It refers to the D6 case and it is represented in
scale. Blue lines indicate the vertical coordinates in which, section by section, the
sensors have been inserted. Red lines, instead, try to represent, using some kind
of constraint, the plume. They identify the z-coordinates where the intermittency
of the concentration is greater or equal to 45%. As can be seen, compared to the
total number of measuring points, just few points, especially above the nozzle axis,
respect this constraint.
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Figure 2.16: Intermittency: scale drawings. The blue lines identify the areas in
which, section by section, the measuring sensors have been inserted. Instead, the
red ones identify the z-coordinates where the concentration intermittency is greater
or equal to 45%.
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Chapter 3

Complex network analysis of time

series

In the �rst part of this chapter ample space is given to the complex networks the-
ory. Starting from its historical evolution, the main properties of networks, their
topology and the metrics that identify their salient characteristics are described.
Some examples of main modern �elds in which complex networks are used de�nes
their versatility and their wide development given by the use of computer tech-
niques. Instead, the second part of this chapter is devoted to the techniques that
allow to study the time series through the use of the complex networks theory.
Among these, particular attention is paid to the Recurrence Networks (RN). It
is through this technique that the experimental time series introduced in the sec-
ond chapter are studied. The chapter concludes with a detailed description of the
mathematical operations and the parameters needed to obtain complex networks
starting from time series through the use of the recurrences, that is, through the
distances between series fragments in the phase space.

3.1 Network theory: historical notes

The birth of graph theory is usually �xed in 1736, when L. Euler1 tried to answer
the famous question known as the "problem of the seven bridges of Königsberg"
[7]. The city of Königsberg, located not far from St. Petersburg, had an islet
enclosed between the two branches of the river Pregel, connected to the mainland
by seven bridges as shown in �g. 3.1. The following question was then posed:
"Is it possible to take a walk along the seven bridges without ever crossing the

1Leonhard Euler, known in Italy as Eulero (Basel,1707 - St. Petersburg,1783), was a Swiss
mathematician and physicist.
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same twice?". Tradition wants the wealthy citizens of Königsberg on Sundays to
stroll around their city, trying in vain to solve the problem. Euler approached the
problem in a di�erent way: building a graph. Each of the four areas of land was
represented using a node, each bridge was represented by a link. The graph thus
generated, consisting of four nodes and seven links, allowed to give an answer to
the problem. In fact, Euler discovered that on a graph with more than two nodes
and with an odd number of links, such as the Königsberg graph, a path with the
required characteristics could not be drawn.

Figure 3.1: The seven bridges of Königsberg

The work on the Königsberg bridges is considered the birth of modern graph
theory. Theory that, in the years after Euler, had a great development. In fact,
it is extremely versatile to represent real problems in di�erent �elds. The basic
idea is very simple: use nodes to represent certain entities and links to identify
their connections. The graphs thus obtained are a very powerful tool in various
�elds [8]. Just think at the development that the theory had after Euler, with the
studies of Kirchhof and Cayley. The �rst tried to describe the electrical networks
using graphs. In doing so he identi�ed some of the main electrotechnics laws: the
junction rule and the mesh rule. Cayley faced the hydrocarbon isomers problem.
There are molecules that have the same number of atoms, but they are bound in
di�erent ways. These molecules are called isomers. Cayley sensed the potential
of the representation of these molecules using graphs and he de�ned two di�erent
chemical graphs typologies: the plerogram, containing all the atoms present in the
molecule, and the kenogram containing only the carbon atoms. For clarity, �g. 3.2
illustrates a three-dimensional graph of two propanol isomers.

Interesting applications of the graph theory are also in the discussion of the "Four

36



3 � Complex network analysis of time series

Figure 3.2: Three-dimensional graph of two propanol isomers

colour problem", formulated by Francis Guthrie2 in 1852.
Paul Erdos and Alfred Renyi in 1959 proposed the theory of random graphs. In
a random graph, the probability of connection between two nodes is the same for
any pair of nodes in the network and it is randomly distributed. In this model, the
network is almost completely interconnected. So, you can reach any other node
in the network in few steps. Starting from this model, Stanley Milgram3 de�ned
his theory of the "Little World". With an experiment based on parcel mailing,
he showed that two people are separated by a chain of six links. In this way the
average distance between two randomly selected people was de�ned. This social
experiment, as well as the theory of random networks, did not consider many fac-
tors. In fact, geographic distances, being part of a tied group of friends or working
for a given company are aspects that may create social networks characterized by
clusters presence. A cluster is a group of nodes very connected with each other
but with poor connections with other external nodes. Starting from this concept,
Mark Granovetter4 in 1973 realized that the weakest links, such as those between
nodes belonging to di�erent clusters, are the most important links in a social net-
work. Indeed, these connections prevent networks from fragmenting.
Starting from these preliminary studies the theory is still evolved at the end of the
last century. The de�nition of "small-world" networks and "scale-free" networks
has allowed more detailed analyses. These new theories, together with the large
amount of data relating to social networks, deriving from the World Wide Web
and mobile communication, and together with an ever-increasing computing ca-
pacity guaranteed by more and more performing computer tools have allowed the
analysis of networks, often dynamic, containing millions of nodes and links.

2Francis Guthrie (London,1831 - Cape Town,1899) was a South African mathematician and
botanist.

3Stanley Milgram (New York,1933 - New York,1984) was an American psychologist.
4Mark Granovetter (Jersey City,1943) is an American sociologist.
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Thanks to modern information technologies, the ever-increasing amount of data
and the "easy way" to describe the reality using complex networks theory, it can
be considered that in the future it will still be subject of studies and researches.
So, despite its application for about 280 years, it can be considered a young and
ever-growing theory.

3.2 Network theory: applications

The graph theory is a completely general tool: this is de�nitely his big advantage.
In fact, it is applicable in di�erent �elds, also very di�erent from each other.
Studying the historical evolution of the theory, it is possible to observe that one of
the �elds in which it has been widely applied is the study of social relations. Now,
due to large amount of traceable social relations, for example Internet and mobile
telephony, the analyses on social dynamics can be based on a greater amount of
data, often easily detectable, that are not a�ected by geographic and time barriers.
In addition to social relations �eld, there are countless other application. Given
the vastness, here are shown three examples of applications that want to make
clear the idea of general applicability of this theory.
In the �nancial �eld [9], the theory of complex networks, and in particular its inte-
gration with the study of time series, has allowed to correlate catastrophic events
that have characterized the market in the past. In fact, a correlation between the
changes in network structures and stock market critical issues has been de�ned.
The networks theory has been successfully applied also in the seismology [10]. With
it, studies to describe the seismic phenomena that occurred in the last decade in
Italy have been carried out.

3.3 Network theory: De�nitions and main proper-

ties

3.3.1 De�nitions

The term graph means a set of entities, in which some of these entities are "re-
lated". In fact, a graph is formed by nodes and links. The nodes represent the
entities to study, while the links identify the connections that exist. To analyse a
real problem with a graph, the �rst thing to do is to �nd out which entities will
form the nodes of the networks. In a social network, for example, the nodes will
represent people. Instead, if you want to study a district heating system, the nodes
will be the thermal utilities distributed in a city. Once you de�ne the "objects of
the study", so the nodes, you must identify the connections between them, that
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are the links of the graph. Referring to the two previous examples, in the �rst case
you will have links between people who know each other. While, for a hydraulic
network, the connections can represent the pipelines.
Note that, in this thesis, the terms graph and network will be used as synonyms.
As well as links and connections.
Mathematically, a graph is de�ned as G = (V,E). V denotes the set of nodes
and E the set of arcs, which is 2-element subsets of V [11]. The number of nodes
is usually indicated with N. Obviously, V should not be an empty set. Instated,
this condition is not required to E. If E = 0, the minimum number of links in
the graph is identi�ed. Two nodes connected by a link are called adjacent. Each
node can be identi�ed by an integer value i = 1,2, ..., N while each edge can be
identi�ed by a pair (i, j).
There are di�erent types of graphs:

1. Undirected graph
An undirected graph is a graph in which links have no orientation. The
connection (i, j) is identical to (j, i). The maximum number of edges in an
undirected graph without loops is N(N−1)

2
.

2. Directed graph
A directed graph is a graph in which edges have orientations. If G is oriented,
then the set E consists of ordered pairs of nodes: the connection (i, j) is called
oriented link and is characterised by a direction from i to j. The maximum
number of edges in an undirected graph without loops is N(N − 1).

3. Weighted graph
A weighted graph is a graph in which a number (the weight) is assigned to
each edge. Such weights might represent for example costs or lengths, de-
pending on the problem. For instance, consider a graph describing an urban
district heating system, the weight of each link can be equal to the pressure
drop that occurs in that pipe. In this way, working on mathematical quan-
tities of the graph, it is possible to de�ne the head of the pumps needed to
guarantee the circulation of the heat transfer �uid.
The weight of each link can be represented using a scalar value w(i, j). In ma-
trix notation, a weighted graph can be completely represented by its weight
matrix W , where wij = w(i, j).

4. Unweighted graph
The graphs in which all the links have weight w(i, j) = 1 are de�ne as
unweighted or binary graphs. In this case, a link that connects two nodes
can just be present or not. It can not have di�erent characteristics from the
other links.
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For understanding the �rst two types of graphs, �g. 3.3 can be considered. Two
graphs are represented in it. On the left, the links are characterised by arrows
that establish a direction. The graph is therefore a directed graph. Conversely, in
the graph on the right, there are no links with de�ned direction. It is therefore an
undirected graph.

Figure 3.3: Comparison between undirected and directed graph

The type of graph to be used depends on the relationships that exist between the
nodes to be connected. For example, if the vertices represent people at a party,
and there is an edge between two people if they shake hands, then this graph is
undirected because any person A can shake hands with a person B only if B also
shakes hands with A. In contrast, if any edge from a person A to a person B cor-
responds to A's admiring B, then this graph is directed, because admiration is not
necessarily reciprocated.
A graph G = (V,E) is said complete when all nodes have a link that connects them
to all the others nodes. A network is called completely disconnected if E = 0. Usu-
ally it is assumed that there are no self-connections (or loops), i.e. each vertex
has not a link with itself. That's why, given a network of N nodes, the maximum
number of connections is N(N − 1) and not N2. Obviously, this in the case of
directed networks. In fact, in this case, the connection from node i to node j may
be active or not regardless of the presence or not of node j and node i connection.
In the undirected networks, instead, these two connections coincide. Therefore, a
split two appears into the maximum number of links for the undirected graphs.

An important de�nition in graph theory is the path. Two nodes that are not
adjacent may be reachable through an sequence of nodes and edges that begins
and �nish with the two nodes. A path is a walk in which no node is visited more
than once. The shortest path is therefore the walk of minimal length between
two nodes. When graph theory is applied to real problems, graphs with a high
number of nodes are often obtained. Therefore, the graphical representation is not
recommended. As done in this thesis, once the graph is generated, its properties,
its metrics and its characteristics must be evaluated, in order to obtain information
about the real system under examination. It is clear that, if the graph is only in
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graphical form, these operations are impossible.
A more compact form to represent the network is the adjacency matrix. The
elements of the matrix indicate if two nodes are adjacent or not. The use of a
matrix allows to generate computer algorithms to calculate the main properties of
the graph under examination.
The adjacency matrix de�nition depends on the graph type. Given an unweighted
graph G, the adjacency matrix A consists of a square binary matrix NxN. The row
and column indexes are the names of graph nodes. The element aij of the matrix
will be 1 if there is a link that goes from node i to j. Otherwise aij = 0. It is
easy to see that, if the graph is undirected, the matrix A will be symmetric, i.e.
aij = aji. Instead, if the graph is directed, the matrix may not be symmetric. Fig.
3.4 shows an example related to an undirected graph. Node G is connected only
to node F. Accordingly, in row G of the matrix there is a 1 in correspondence of
column F. Instead, a 0 is in all the others columns. So, the matrix is symmetric,
and on the diagonal there are only 0 because no self-loops are present in the graph.

Figure 3.4: Example of graphical and matrix representation of a network

3.3.2 Metrics to describe the network structure

As indicated, the use of networks based models is a very powerful tool. In fact, it
is possible to identify characteristics of the system under consideration evaluating
the topology of the networks appropriately obtained. To do this, network metrics
are necessary.
The metrics are indicators describing the topology, and therefore the structure,
of the networks. In literature, a large amount of metrics and parameters are
described . This is due to the fact that each single metric highlights di�erent
aspects of the network. For example, for the study that is taking place, may
be appropriate determining the importance of each node, so the amount of links
that are connected to that node. Or, it may be important evaluating a metric
that describes the distances between nodes. That is, according to the dynamical
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system under study and according to the properties of the networks that should
be highlighted, the most appropriate metrics must be chosen. Therefore, there is
not a set of metrics to be applied in bulk in order to describe a certain system:
the choice varies from case to case. Below, a brief description of the metrics used
in this thesis is reported.

Degree centrality

The degree centrality of a node i, ki, is de�ned as the number of neighbours, i.e.
the number of nodes that are directly connected with i. Considering a directed
network, there are two di�erent degree: one relative to the links entering the node
i and the other relative to the links coming out from the node i:

kouti =
N∑
j=1

aij

kini =
N∑
j=1

aji

Obviously, the overall degree will be given by the sum of the two contributions:

ki = kouti + kini

For the undirected networks, i.e. the ones analyzed in this work, it is not necessary
to separate the degree into two contributions, since there are not two di�erent types
of links connected to each node.
The degree centrality estimates the ability of the nodes to have a direct relationship
with other nodes. From this point of view, the concept of node importance can be
de�ned as the amount of connections that this node presents within the network.
Starting from the concept of degree centrality, it is possible to de�ne two other
metrics connected to it:

� Average degree
The average degree is the average of the degrees of each node in the network.

k =
1

N

N∑
i=1

ki

From what has been indicated, it is easy to understand that the degree is a
metric that is de�nable for each node of the network. So, it can be considered
as a local metric. While the average degree is a metric that is de�ned globally
for the network. It is therefore considered as a global metric.
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� Local connectivity
To identify the importance of each node, in the sense de�ned above, the
degree may not be su�cient. In fact, it is interesting to evaluate the number
of e�ective connections with respect to the maximum number of possible
connections. The latter is de�ned as (N − 1). The presence of the minus
one indicates that each node is at most connectable with each other node of
the network but not with itself, thus avoiding the presence of self loops. It
is therefore possible to de�ne, for each node, the local connectivity as the
ratio between the degree of that node and the maximum number of possible
connections:

LCi =
1

(N − 1)

N∑
j

aij

Edge density

This metric describe the amount of links actually present. Given a network formed
by N nodes, the number of links present between these nodes can vary with respect
to many causes. The concept of the threshold that leads to the de�nition or not
of a link between two nodes will be extensively treated in the following . However,
de�ned the number of nodes N , the maximum number of possible links is easily
de�ned as N(N − 1). So, comparing the number of links actually present with the
maximum number of connections, the edge density is de�ned as:

ρ =
E

N(N−1)
2

This metric leads to two interesting aspects. Firstly, it can be shown that, for
an undirected network, the average local connectivity and the edge density are
proportional. Therefore, in the remainder, only the density will be considered.
Secondly, it is important to observe that this metric refers directly to the study
of the adjacency matrix. In fact, for a certain adjacency matrix, the density
represents the percentage of values equal to one with respect to the matrix elements
(always without considering diagonal values).

Closeness centrality

The closeness centrality provides the measure of the distance of a node from all
the other nodes. The idea is that an important node is typically close to the other
nodes in the network. So, the closeness centrality is de�ned as the reciprocal of
the total distance from a node to all the other nodes:

ci =
N − 1∑N
i=1 lv,i
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If there is no path connecting two nodes, the maximum shortest path length in
the graph, (N − 1), is used in the sum by de�nition [12].

3.4 Recurrence network analysis

3.4.1 Complex network analysis of time series

Characterizing dynamical processes in a time-dependent complex system, from
observed time series of just one or more variables, is a fundamental problem of
signi�cant importance in many �elds. Thanks to modern measurement and data
processing techniques, in order to characterize a time-dependent complex system,
it is possible to use measurements "directly carried out in the �eld". These mea-
surements, characterized by an increasing accuracy, repetitiveness and sampling
frequency, lead to time series. A time series is a series of data listed in time order.
Most commonly, a time series is a sequence taken at successive equally spaced
points in time. Two di�erent types of time series may be de�ned:

� Univariate time series: consists of a single scalar observation, recorded
sequentially over equal time increments. For instance, the monthly CO2

concentration.

� Multivariate time series: in this case, more than one quantity is measured
simultaneously. An example is used to illustrate a bivariate time series.
Inside a gas furnace, air and methane are combined in order to obtain a
mixture of gases containing CO2. The input series xt is the methane gas
feedrate and the CO2 concentration is the output series yt. Successive pairs
of observations (xt, yt) can be collected obteining a bivariate time series.

Time series have great potential for characterizing important properties of com-
plex dynamical systems [13]. In order to extract meaningful statistics and other
characteristics, time series analysis may be implemented. These analysis has been
broadly adopted in engineering applications. In fact, many theoretical develop-
ments for time series analysis have signi�cantly contributed to the understanding
of complex systems. Di�erent methods have been developed: chaos analysis, trend
estimation, curve �tting, fractal analysis, complexity measure, multiscale entropy,
etcetera. As normally happens in the case of dynamic analyses, also time series
analysis can be done in two di�erent domains. Methods developed in time or in
frequency domain may be chosen, depending on the purposes.
However, when system complexity increases, it becomes di�cult to describe the
dynamical behaviour from time series. Traditional analysis methods have di�-
culty to deal with this increased complexity. So, recently, the complex network
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theory has been incorporated into the analysis of time series. As described before,
a complex network is shorthand for real entities characterised by a large number of
components, that interact with each other in complex way. Therefore, in addition
to this, complex networks can be used to analyse univariate or multivariate time
series.
The literature presents di�erent methods to implement complex network analysis
of time series. Among these, the most important are:

� Visibility graph networks, VG

� Cycle networks, CN

� Transition networks, TN

� Recurrence networks, RN

� Synchronization networks, SN

In this thesis, the approach used to analyzing time series is the recurrence networks
method.

3.4.2 Recurrence Networks

Many dynamical processes exhibit recurrences in phase space, as showed in the
pioneering work of Poincaré in the late 19th century. In time series analysis, the
quanti�cation of recurrence properties in phase space has attracted interest. In
fact, recurrences can be easily visualized by means of the so-called recurrence plots.
They are automatically manageable with computer codes and, thanks to appro-
priate operations, they can be represented by the use of binary matrices.
Consider a time series x(t), with t = 1,2, ..., N , where N represents the number
instants considered. A state, in the m-dimensional phase-space, may be de�ne has
[12]:

xm(ti) = [x(ti), x(ti + τ), ..., x(ti + (m− 1)τ)]

where ti is the point in time associated with the ith observation recorded in the
time series. In the previous formulation, m represents the vector size while τ the
interval between the temporal instants forming the vector. In order to simplify the
notation, xm(ti) will be indicated as xi in the following. Observing the de�nition
of a state in the phase space, it is possible to notice the concept of recurrence plots
does not require observations that are equally spaced in time. This is not true in
many other methods of time series analysis.
A state in the phase space, i.e. the vector de�ne before, is also called embedded
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vector. So, the words "state in the phase space" and "embedded vector", will be
considered synonyms.
In the context of time series analysis, there is a recurrence in phase-space when
two state, for example xi at time ti and xj at time tj, are similar, i.e. xi ≈ xj.
For the visualization of recurrences in phase space, one of the most powerful way
is the use recurrence plots (RPs). A RP represents all recurrences in form of
a binary matrix R. This is a square and symmetric matrix, with a number of
rows and columns equal to the number of embedded vectors obtained from the
time series in question. So, at each state in the phase space corresponds a row
and a column of the matrix R. Rij is 1 if the state xi is similar to xj, Rij

is 0 otherwise. Appropriate mathematical tools must be applied to identify the
closeness between two di�erent states in phase space. One of these tools can be
the Pearson's correlation coe�cient (PCC). Secondly, a norm of the two vectors
di�erence can be a way to quantify their closeness. Considering latter case, the
generic element Rij will be the norm described before. In doing so, R will not be
a binary matrix. To do that, a threshold ε must be applied:

Rij = 1 if Rij > ε

Rij = 0 if Rij < ε

The same concept can be expressed in a more compact way through the use of the
Heaviside function θ:

Rij = θ(ε− ||xi − xj||)

RPs of dynamical systems with di�erent types of dynamics exhibit distinct struc-
tural properties. In other words, experimental time series often yield a recurrence
plot displaying complex structures, forming diagonal or vertical "line" structures.
A variety of statistical characteristics of the length distributions of these lines can
be used for de�ning additional quantitative measures, that characterise di�erent
aspects of the dynamic complexity of the studied system. This is known as recur-
rence quanti�cation analysis (RQA). For example, a periodic regime is re�ected
by long and non-interrupted diagonal lines. The vertical distance between these
lines corresponds to the oscillation period. A chaotic dynamics also leads to diag-
onals, which are however clearly shorter. However, most of these RQA measures
are sensitive to the choice of embedding parameters, which are found to sometimes
induce spurious correlations in a recurrence plot.
As showed, the structure of R allows to identify information on the dynamics of
the system under study. But, this is not the only potential of RPs. It is possible to
reconsider the concept of recurrences in phase space for de�ning complex network
structures directly based on time series. For this purpose, it is straightforward
to interpret the recurrence matrix R as the adjacency matrix A of an unweighted

46



3 � Complex network analysis of time series

and undirected complex network, which is called the "Recurrence network" RN,
associated with a given time series. The adjacency matrix can be de�ned from R
easily:

A = R− δij
where δij is the Kronecker delta introduced to avoid arti�cial self-loops.
In comparison with similar network-based techniques, the RN has important con-
ceptual advantages, and can be considered as a unifying framework for transform-
ing time series into complex networks that also includes other existing methods
as special cases. Quantitative characteristics of the recurrence matrix, such as
average path length, clustering coe�cient, and the centrality are measures of the
RN. But, they are directly related to the dynamical complexity of a time series.
This allows to study the time series using the complex networks theory.
Therefore, the fundamental concepts of a RN are:

1. Starting from the concept of recurrences in phase space, the recurrence ma-
trix of a time series is interpreted as the adjacency matrix of an associated
complex network, which links di�erent points in time if the considered states
are closely neighboured in phase space.

2. The consideration of recurrence plots as graphical representations of complex
networks allows a reinterpretation of many network-theoretic measures in
terms of characteristic phase space properties of a dynamical system. So,
quantitative descriptors of the topological features of recurrence networks
can be considered as novel and complementary measures to describe systems.

3. This method, introduced through the use of a binary and symmetrical ma-
trix, i.e. introduced with undirected and unweighted graph, can be easily
used even in the case of weighted networks. A generalization to weighted net-
works is straightforward if the recurrence matrix is replace by the associated
distance matrix between pairs of states.

3.4.3 Network construction, states in phase space

The previous theoretical description clari�ed the method used in this thesis for
the study of time series. As indicated in the preceding chapter, by means of
experimental procedures, for each measuring point inside the wind tunnel, three
di�erent time series have been measured. Two represent the velocities, u and
w, while the third is the concentration. Each series is built from about 180 000
elements.
In order to create RNs, the �rst step is to generate the states in phase space. The
formula by which the embedded vectors (EV) are generated from the time series
has been illustrated above. It highlights that the embedding parameters are two:
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1. m: is the EVs size;

2. τ : is de�ned as delay and indicates the distance between the elements that
are selected in the time series.

Actually, another important parameter does not appear inside the EVs formula-
tion: the overlap. To understand in detail the meaning of these three parameters,
�g. 3.5 can be considered. It shows the creation of two EVs by imposing m=20,
τ=5, both in the case of 0% overlap than 50%. For easier comprehension, the time
series consists of progressive numbers. Starting from the �rst element of the time

Figure 3.5: Embedding parameters

series, through τ , the m elements that will form the 1st EV can be identify. In the
�gure, they are circled in red. The de�nition of the second EV depends on which
overlap is considered. In the 0% case, the �rst elements of the 2nd EV is the next
element of the last component of the 1st EV. From this element, again through
τ , other m elements are identi�ed in order to �ll the 2nd EV. The procedure con-
tinues in the same way in order to de�ne all the others EV. In the case 50% of
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overlap, the �rst m/2 elements of the 2nd EV are equal to the last m/2 elements
of the 1st EV. This is the meaning of overlap: the �rst half of an EV is equal to
the last half of the previous EV. Then, the last m/2 elements are again identi�ed
with the τ parameter. Continuing this operation, all the EVs of the case 50% of
overlap will be de�ned. Therefore, through this description two things are clear:

� Considering same values for m and τ , in case of 50% of overlap, the number
of EVs is greater than in the 0% case. For example, with the embedding
parameters considered, 3598 EVs are obtained in the case with overlap and
1874 in the case without overlap. Therefore, it can be said that the overlap
generates a number of EVs that is twice the one generated in the other case.

� It is clear that some elements in the terminal part of the time series, even if
corresponding to the identi�cation criteria outlined above, will not constitute
any EV. This is due to the fact that even the last EV must be composed of m
elements: it can not be smaller. The generated code automatically evaluates
which is the last EV that can contain m elements and this vector will be the
last state in the phase space considered for the time series analised.

To not weigh down the text, the case with 50% of overlap will be indicated as
"the overlap case", i.e. OC. On the other hand, when indicating the case without
overlap, i.e. WOC, of course, we will refer to the case with 0% of overlap.
Once calculated, the EVs are stored as columns of a matrix, indicated as matrix
B. This matrix, therefore, will have a number of columns equal to the number of
EVs and will be characterized by m rows. A matrix B will be obtained for each
considered variable (u, w, concentration), for each tau and for each overlap. For
example, assuming that the series taken into consideration in the previous example
were the velocity u time series, the two matrix B that are obtained are so named:

Bu,τ5,0

Bu,τ5,50

where the last digit in the name indicates the overlap.
Particular attention must be paid to the concentration EVs. As indicated in the
previous chapter, concentration measurements must be appropriately �ltered us-
ing a threshold. So, especially for measurement points that are located in the
peripheral areas of the jet, this involves the presence of a large amount of zeros
within the concentration time series. To avoid the presence of EVs containing a
large number of null elements, it is necessary to make a "correction" of the EVs
obtained. Therefore, each columns of the matrices Bconc are analysed and the
number of null elements contained is evaluated. If this number is greater than
m/2, then the column, and so the EV, is discarded. So, for the concentration, the
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matrices B are constructed and than they "must be corrected": columns contain-
ing more than m/2 null elements are deleted. New matrices, called Bcorrected, are
de�ned.

3.4.4 Network construction, steps

In the previous subparagraph, the procedure for identifying the EVs of the time
series has been described. Obviously, this operation is one of the most important
step to be performed to obtain a network starting from a time series. It is not the
only operation, though. The steps to follow in order to obtain a graph, starting
from a time series, are here showed in form of a numbered list. To this end, it is
necessary to emphasize an important aspect. The embedding parameters are three:
m, τ and overlap. It is clear that, every dynamic system, and therefore every time
series, will have di�erent dependencies on these parameters. So, di�erent values for
these parameters will highlight di�erent properties of the system. Consequently,
"optimal values" of these parameters may be de�ned according to the system and
the aim of the study. The purpose of the this �rst part, in addition to de�ning the
networks themselves, was understand what these "optimal values" were. Hence,
the networks were built considering more values of m and τ . The following are the
steps to generate the networks:

1. Measurement point and the time series de�nition
A speci�c measurement point, so a given point in space, shall be �xed. Then,
the variables to analyse must be chosen: time series of u, w and concentra-
tion have been directly measured. Vertical turbulent transport can also be
considered, deriving the w̃ · ˜conc time series directly from the previous ones.
Note that in this work, the tilde sign is used to indicate turbulent �uctuation
from the mean value.

2. Embedding parameters de�nition
Di�erent values of these parameters have been used in order to identify the
optimal setting. The EVs dimension, m, was set equal to 50, 100, ..., 450,
500. For each value of m, �ve di�erent values of τ were considered. From
τ = 1 to τ = 5. Each combination of m and tau was then apply both in the
WOC and in the OC.

3. EVs calculation: matrices B de�nition
For each variable, and for a considered m, ten di�erent matrices B are ob-
tained (5τ · 2overlaps = 10). When the VTT is considered, its matrices B
can be obtained directly from the w and concentration matrices. As indi-
cated previously, the concentration EVs must be corrected, thus avoiding the
excessive presence of null values. Therefore, for the VTT, the B matrices of
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the velocity w must be corrected in the same way as the concentration ones.
So, discarding the same EVs eliminated in the concentration cases.

4. Recurrences calculation: matrices R de�nition
Matrices R are the most important elements of the recurrence method. In
fact, each matrix R contains the measure of the proximity, in the phase space,
between the EVs contained in the corresponding matrix B. Therefore, one
matrix R corresponds to each matrix B.
These matrices are square, with dimension equal to the number of EVs stored
in the corresponding B matrices.
Consider a matrix B and its corresponding matrix R. At each EV of B
corresponds a row and a column of R. Therefore, the generic element R(i, j)
must contain the proximity, in the phases space, between the EV i and the
EV j of B. There are two ways in which this closeness can be assessed:

(a) Euclidean norm
The euclidean norm of di�erence between the two EVs is calculated.
The greater the norm, the more the EVs are dissimilar to each other.
So, they are not close in the phase space. Obviously, in this way, the
diagonal positions will be occupied entirely by null values.

(b) Pearson correlation coe�cient (PCC)
It is possible to measure the proximity using the linear correlation be-
tween the two EVs. The PCC can go from +1 to -1, where +1 is total
positive linear correlation, 0 is no linear correlation, and -1 is total neg-
ative linear correlation. By operating in this way, the diagonal positions
will be formed by unitary values.

Operationally, both methods for evaluating the distance were considered.
Therefore, two matrices R have been obtained from each matrix B. One
obtained in the case of euclidean norm and one in the case of PCC.

5. Adjacency matrices A de�nition
Once the matrices R are de�ned, two more steps are needed to generate the
adjacency matrices A, and so the networks.
Firstly, the matrices R must be transformed into binary matrices applying a
certain threshold. Using PCC, matrix A can be so de�ned:

R(i, j) ≥ threshold↔ A(i, j) = 1

R(i, j) < threshold↔ A(i, j) = 0

Instead, in the Euclidean case, it is necessary to reverse the inequalities. The
more small is the norm of the di�erence, the more similar are the vectors
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3 � Complex network analysis of time series

and therefore A(i, j) = 1. Note that, in the PCC case, it is convenient to
consider the absolute value of the correlations. In fact, a correlation close
to -1 is synonymous of two EVs formed by very similar time series elements,
even if opposites. Consider for example the �g. 3.6. It refers to two velocity
u EVs (source diameter 3 mm, section number 6, z = 75mm, y = 0mm).
Their m = 50 components and the average value are represented for both
the EVs. As it is possible to see, the two EVs have similar trends, albeit
"opposites". Their PCC is therefore very high and negative:-0.9753. To
con�rm these characteristics, �g. 3.7 can be considered. It represents, for
the EVs already shown in �g. 3.6, the absolute value of the di�erence between
each component and the average value of the EV. As can be seen, the trends
are quite similar.

Figure 3.6: Velocity u EVs components and average values

The second action to get the networks is avoiding the presence of self loops,
which is to set 0 any non-null diagonals. Therefore:

A(i, i) = 0

So far it has spoken in a generic way of the threshold so, now, it is necessary
to de�ne this parameter. There are two di�erent ways to identify the value
to be assigned to the threshold.
A �rst way is to impose arbitrarily a certain threshold value. This way of
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3 � Complex network analysis of time series

Figure 3.7: Velocity u EVs �uctuations absolute values

working is easier in the PCC case. In fact, the threshold value must be se-
lected between 0 and 1, considering the absolute values of the correlations.
This is whatever the variable analysed: velocity, concentration and VTT. In
the case of the euclidean norm, the order of magnitude of the threshold will
be di�erent according to the variable considered. For the concentration, the
norms are of the order of the hundreds of ppm, while for the velocity w, the
norms under the unit are the most present.
The second way consists in adapting the threshold based on the values actu-
ally present in the R matrices. In fact, for each matrix it is possible to build
the frequency distribution of its values . The obtained distributions have
forms quite traceable to Gaussian distributions, centred around the value 0
in the PCC case or around a certain average value in the case of euclidean
norm. An example of the velocity u in the PCC case (source diameter 3
mm, section number 2, z = 75mm, y = 0mm, m = 30) is shown in �g. 3.8.
Once these distributions have been de�ned, the value that de�nes a certain
quantile of the distributions can be used as a threshold. In the work pre-
sented here, the value of the quantile which identi�es 95% of the distribution
was used as the threshold value. This second method can be considered as
an adaptive method. That is, according to the speci�cations of each single
matrix, a certain threshold is identi�ed. As will be more detailed below,
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3 � Complex network analysis of time series

Figure 3.8: Velocity u correlation coe�cients distribution

this way of operating has advantages and disadvantages. An important ad-
vantage is that the networks are all built in the same way with respect to
the distribution, and this will give at the spatial distributions of the metrics
certain constant trends. However, the fact of using an adaptive method from
case to case does not allow a clear comparison of the networks structures.

Therefore, following these steps, the networks of interest can be obtained for each
variable analyzed. Now analyzing the structure of these networks, their metrics
and their properties observable in di�erent cases, so with di�erent combinations
of parameters, it will be possible obtain information about the plume and the
movement of the pollutant, in relation to the motion �eld and boundary conditions
present.
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Chapter 4

Characterization of obtained

recurrence networks

In this chapter the main properties of the obtained networks are discusses. In the
�rst part a detailed description of the adjacency matrices structures is given. The
main di�erences between the matrices obtained using the Euclidean norm and
the PCC are illustrated depending on the the considered measuring points and
the setted embedding parameters. The analysis of the PCC optimisation is then
executed through the study of their variability and de�ning the parameters that
most in�uence the correlation coe�cients. Obviously, the 0/1 threshold used for
the adjacency matrices de�nition is directly connected to the obtained the phases
space distances distributions. For this reason, a comparison between the main
results deriving from the PCC and the values of the quantiles used as threshold is
performed towards the end of this chapter. This chapter concludes with the de-
scription of the main results related to the graphical representation of the networks
using the Gephi software and the OpenOrd algorithm.

4.1 Structure of the adjacency matrices

As indicated in the previous chapter, starting from time series, it is possible to
generate networks that allow to model the series themselves. Through the study
of these networks, the behaviour and the characteristics of the series may be ob-
tained. For the signals discussed here, the study of the networks through their
graphical representation is very di�cult because the number of nodes and links is
too high. So, the networks must be analysed using their adjacency matrices and
their metrics. The purpose of this section is to analyse the structure of the adja-
cency matrices for the networks of interest. In fact, as indicated in the literature,
some properties of the considered dynamic system may be identi�ed by observing
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4 � Characterization of obtained recurrence networks

the structure of the matrices (i.e. RQA, recurrence quanti�cation analysis).
For this purpose, the graphical representation of matrices A, so the RPs, is needed.
To do that, the following convention was adopted:

� in positions that have a connection, that is, where A(i, j) = 1, a blu point is
reported;

� in positions with a null value, that is, where A(i, j) = 0, nothing is reported
(it is just a white space).

In the following the structure of the matrices calculated both using the Euclidean
norm and the PCC will be illustrated. All the matrices analysed here have been
identi�ed using a threshold 0/1 de�ned with the quantile relative to the 95% of
obtained recurrences distributions. Note that, in each measuring point, consider-
ing the three signals and having to identify the optimum embedding parameters
for the study of the signals themselves, 300 di�erent networks have been generated.

4.1.1 Structure of the matrices obtained in the Euclidean

case

The �g. 4.1 represents four di�erent concentration adjacency matrices, obtained in
the measuring point on the nozzle axis in section 2, i.e. zd = 1 and xd = 0.32, for
the case of 3 mm source diameter. The �gure has a twofold purpose: illustrating
the matrices structures and evaluate graphically what is the e�ect of the embedding
parameters used for the networks construction. In fact, it is to possible see what
is the e�ects of delay tau and the overlap e�ect on the number of nodes and on
the number of connections. So, the e�ect on the EVs in which the time series are
split and on their recurrences. Fixed m, in �g. 4.1 m=450, it is noted that:

� The number of nodes is directly proportional to the considered delay tau.
The number of nodes in the τ = 4 case is about a quarter of the nodes
present in the same case but with τ = 1. In the case τ = 2 is half of those
in τ = 1 and so on.

� Fixing speci�c parameters (m/τ), the number of nodes present in the OC
(overlap case) is about twice of those in the WOC (without overlap case).

Observing �g. 4.1 in terms of matrices structure in the Euclidean case, it can be
observed that:
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4 � Characterization of obtained recurrence networks

Figure 4.1: Concentration, D3, section 2, zd = 1, m = 450: adjacency matrices in
the Euclidean case

1. The structure could be de�ned as non-diagonal. In fact, there are no diagonal
marked lines, but rather vertical marked lines. So, lines formed by many dots,
indicating the presence of some extremely central nodes within the network.
Being symmetric matrices, at these vertical lines correspond horizontal lines.
Among these more dense vertical and horizontal lines, there are other more
sporadic dots. However, even these more sparse points tend to be organized
on rows and columns.
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4 � Characterization of obtained recurrence networks

2. Considering the same embedding parameters (m, tau) but with overlap at
50% (right column in the �gure), the vertical lines visible already in the 0%
case are still present but:

� They are even more dense of points. This is because, with an overlap
at 50%, each node represents a time series fragment that is equal, for
an half, to that represented by the adjacent node.

� They are in a double position. For example, if the WOC has a fairly
dense line at the node number 30, the same line will be found in the
OC, but at node number 60.

3. Consider the same m and the same overlap, but with di�erent tau, it is
possible to see that the densest lines:

� Tend, as tau increases, to "fade". So, to become less dense.

� Keep their position in the graphical representation. But note that are
the "axis" that change. Therefore, the denser lines, increasing tau, refer
to di�erent nodes, despite their position remains about unchanged in
the graphical representation.

4. As mentioned above, for each measuring point, several values of m were
considered: 50, 150, 250, 350 and 450. What is observed for corresponding
networks but with di�erent m, is basically the same structure but with the
links density smaller as much as m increases.
It can therefore be said that the EVs dimension m is one of the most impor-
tant parameters from the network point of view. A greater amount of links,
�xing the others parameters, indicates a greater ability to detect recurrences
in the time series. That is, a greater ability to study the series. This is the
reason why part of this chapter will be devoted to the study of this parameter
and its e�ects on the adjacency matrices.

4.1.2 Structure of the matrices obtained in the PCC case

Considering now the adjacency matrices obtained by evaluating the distances in
the phase space through the use of PCC, some similarities and some di�erences,
with respect to the Euclidean case, may be identify. The �rst big di�erence is in
the matrices structure. The �g. 4.2 illustrates, for the signal and the measuring
point already considered in �g. 4.1, the adjacency matrices obtained using the
PCC. Also here the threshold 0/1 was identi�ed by the use of the 95% quantile.
The structure of these matrices is less rigid. In fact, the connections within the
matrices are distributed more evenly: there are no more a small number of nodes
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Figure 4.2: Concentration, D3, section 2, zd = 1, m = 450: adjacency matrices in
the PCC case

with a high centrality in the network. Thus, the generated networks will not
present excessively interconnected nodes or isolated clusters.
The structure of these matrices can therefore be de�ned as "random", compared
to the rigid structure of Euclidean matrices.
Regarding the variation of these matrices, according to the embedding parameters
of the method (m, tau and overlap), all the considerations already exposed for the
Euclidean case are still valid. From this point of view, there is a full similarity
between the two di�erent ways of working. For example, �g. 4.2 illustrates the
increase in the links density due to the overlap. This behaviour is completely
similar to the Euclidean case.
Consider now the case of adjacency matrices obtained by imposing an arbitrary
threshold value. That is, through a method that is not adaptive respect to the
distribution of the phase space distances. Imposing an ever higher threshold value,
the density of the network will tend to decrease more and more. Therfore, when
the threshold value imposed will be greater than the maximum PCC, no more
unitary values will be present in the adjacency matrices. So, the network will be
completely free of links.
In order to identify how a matrix completely devoid of connection can be obtained,
so to have a magnitude on the thresholds that can be inposed, three measuring
points along the section 3 (xd = 0.64) in the D3 case have been considered. The
points were the number 78 (zd = 0.87), the number 80 (zd = 0.93) and the number
82 (zd = 1). For each measuring point, three values of m were considered : 50,
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250 and 450. It was therefore studied the threshold value for which is obtained,
with respect to the z and the m considered, an adjacency matrix of only zeros. So,
network with nodes that do not have links between them. Two important results
have been obtained from this analysis:

� Fixed a certain value of m, the threshold that bring to the null density is
about the same for the three z considered. In fact, �xed a certain m, the
density does not vary much with the z-coordinate.

� Instead, the thresholds that identify the �rst null densities have a variability
with the parameter m. Fixing a speci�c z and considering di�erent values of
m, it is observed that these thresholds are greater in the case of small m (50)
while decreasing with the increase of m (450). The table below shows the
thresholds that identify matrices with zero density, for the point 78, varying
m, for the three signals of interest.

Table 4.1: D3, section 3, measuring point at zd = 0.87: thresholds that identify
completely disconnected networks

m=50 m=250 m=450

Velocity u 0,9 Velocity u 0,7 Velocity u 0,5

Velocity w 0,8 Velocity w 0,4 Velocity w 0,3

Concentration 0,85 Concentration 0,25 Concentration 0,15

4.2 E�ect of the EVs dimension on the correlation

coe�cients

4.2.1 Purpose of the analysis

The parameter m represents the embedded vectors size, so the number of elements
contained within the vectors generated starting from the time series. The purpose
of the following is to analyze the e�ects of this embedding parameter with respect
to the correlation coe�cients obtained in order to generate the network adjacency
matrices. Having interest in the study of the PCC, all the analyses listed herein
refer to their use and not at the Euclidean norms case.
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4.2.2 Measuring points and considered cases

Any calculation has been done considering only two delay tau: τ = 1 and τ = 2.
This choice is due to the fact that, in this �rst phase, the signals behaviour is
unknown. Using small tau values, multiple elements of time series are analysed,
achieving more meaningful results.
The analyses were carried out at the measuring points shown in �g. 4.3

Figure 4.3: Measuring points considered

The points on the nozzle axis have been considered for each section and for both
the source diameters. In addition, from section 3 onwards, a point below the
nozzle axis has been analysed, with vertical coordinate descending from section to
section. This choice is due to the desire to follow "in Lagrangian way" a particle of
mixture air-ethane. In fact, once out of the injector, statistically, a singol particle
will tend to move towards increasing x but also to gradually decreasing z.
Therefore, in these section, for di�erent values of m, the PCC obtained for the two
velocity signals and for the concentration have been analysed. Both in the WOC
than in the OC.

4.2.3 Analysis in a single measuring point

Generated graphs and description of the obtained curves

Considering now a single measuring point, for example the point number 692, at
the base (zd = 0.4) of section 6 (xd = 3.90), in the D6 case. Then, consider a
certain signal, for example the velocity u. For the point and for the signal chosen,
the graph shown in �g. 4.4 has been generated. The graph has di�erent values of
the m parameter, from m = 20 to m = 500, on the abscissa axis. The ordinates
represent the percentage of PCC greater or equal than a certain threshold, de�ned
in the following as the curve-threshold, with respect to the total number of corre-
lations.
If the EVs number obtained from a time series is N, an NXN matrix will de�ne to
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Figure 4.4: Velocity u, D6, section 6, zd = 0.40, τ = 1, WOC/OC: percentage of
PCC greater or equal of a certain threshold, depending on the m parameter.

contain the correlation coe�cients. The matrix will be symmetrical and will have
unitary values on the diagonal. The total number of correlations represents the
number of elements contained in the upper triangular part or, equivalently, in the
lower triangular part, excluding diagonal elements.
In this analysis �ve di�erent curve-threshold values were considered: from 0.5 to
0.9.
The obtained curves have trends similar to negative exponential. In fact, each
curve has a maximum for m = 20 and, as the abscissa increases, it has an asymp-
tote represented by the null percentage. The percentages are all the lower the
more the curve-threshold increases. In fact, by imposing the value 0.9, the curves
tend to degenerate into a line with percentages all close to 0%.
From the �g. 4.4 it is possible to derive an important information: curves rela-
tive to the same curve-threshold have similar trends and similar numerical values,
regardless of overlap. This can be observed whatever the considered signal (u,
w and concentration) and for both the analysed tau. What is observed here is
not inconsistent with the links increase shown in the �g. 4.2 due to the overlap
which refers to the case of thresholds de�ned in an adaptive way. Here, instead,
the threshold is arbitrarily imposed. Therefore, the overlap plays a di�erent role
depending on the method considered.
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The graphs obtained using τ = 2 are not reported because they do not add in-
formation. In fact, they have the same trends already observed using τ = 1, just
with lower percentages.
The results shown here refer to a speci�c measuring point and a speci�c signal.
Obviously, these analyses were carried out for each of the three considered signals
and in each of the above mentioned measuring points.

Comparison between velocity u, velocity w and concentration at the
same measuring point

The aim now is to make a comparison between the three considered signals always
in the measuring point indicated as 692. The graphs obtained for the velocity w
and for the concentration are shown in �g. 4.5 and in �g. 4.6

Figure 4.5: Velocity w, D6, section 6, zd = 0.40, τ = 1, WOC/OC: percentage of
PCC greater or equal of a certain threshold, depending on the m parameter.

Comparing the �gures, it is possible to observe that:

� Considering small m values, like m = 20, the concentration has the highest
percentages. The velocity u has intermediate values, while the w has the
lower. This means that, for a given m and for a certain curve-threshold, the
signal that has the greater quantity of recurrence, is the concentration.
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Figure 4.6: Concentration, D6, section 6, zd = 0.40, τ = 1, WOC/OC: percentage
of PCC greater or equal of a certain threshold, depending on the m parameter.

� Comparing the velocity u and the concentration, it is true that the percent-
ages for m = 20 are greater for the velocity, but it is also true that the u
curves have a lighter fall. Therefore, the percentages that are obtained for
m = 20 are greater for the velocity u.
So, each signal has a di�erent rate of decay for the curves in exam. This
must be taken into account when analyses that require the use of di�erent
values of m are performed considering all the measured signals. The velocity
w is the signal characterized by the most pronounced fall of the curves. For
m greater than 150, the curves are practically all around 0%, meaning that,
in these cases, the correlation coe�cients calculated are all lower 0.5. This
feature of the w signal do not particularly amaze. In fact, the phenomenon in
question is not convective. Therefore, the velocity w basically has a random
behaviour, keeping an average near zero. It is clear that, a parameter that
measures the "similarity" between the embedded vectors can not achieve
particularly high values.
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4.2.4 Analysis varying the measuring point

E�ect of x coordinate on the curves (source diameter and z coordinate
�xed)

The purpose of this part is to analyse the joint e�ect of the EVs dimension m and
the x coordinate on the PCC. To do this, the 6 mm source diameter was �xed
and, in each section, the measuring point on the nozzle axis was considered. Fixed
then a certain curve-threshold value, chosen equal to 0.60, on the same plot the
curves for the points on the nozzle axis present in the �ve di�erent sections were
represented. The curves obtained for the signal u are shown in �g. 4.7. All the

Figure 4.7: Velocity u, D6, zd = 1, τ = 1, WOC: e�ect of the x coordinate on the
curves

curves refer to τ = 1, which is the tau that allows the larger percentages. For ease
of reading, only the curves related to the WOC were represented, given the little
dependence from the overlap discovered before.
The x e�ect of x turns out to be a curves vertical displacement. In fact, increasing
the x-coordinate, slightly greater percentages are obtained and so curves shifted
higher than the red curve relative to section 2, the closest to the nozzle. Therefore,
the considered time series have a longitudinal coordinate dependence: as this
increases, the time series elements give rise to more correlated EVs. That is, the
elements of time series tend to be more uniform and with a lower variability.

65



4 � Characterization of obtained recurrence networks

Even the velocity w and the concentration have the same dependence on the x
coordinate.

E�ect of the x coordinate and of the source diameter on curves (z co-
ordinate �xed)

The previous analysis refers to the points on the nozzle axis, in the D6 case.
Similar graphs were also obtained for the D3 case. The structure of these graphs
is completely similar to the one illustrated in �g. 4.7.
In order to compare, in a compact way, the results obtained with the two di�erent
diameters, table 4.2 can be considered. It shows the percentages obtained for the
two diameters, for the curve-threshold equal to 0.60, in the case of m = 30 and
m = 100, for all points on the axis in the �ve di�erent sections.

Table 4.2: zd = 1, τ = 1, WOC: the table shows the joint e�ect of the x coordinate
and diameters on the percentage calculated using 0.60 as curve-threshold

zd = 1

VELOCITY u VELOCITY w CONCENTRATION

D6 D3 D6 D3 D6 D3

m=30 m=100 m=30 m=100 m=30 m=100 m=30 m=100 m=30 m=100 m=30 m=100

sect.2 10,20 4,08 11,92 6,21 3,19 0,06 4,30 0,17 8,24 0,25 6,91 0,38

sect.3 13,48 6,21 14,16 7,55 5,67 0,27 6,35 0,35 8,27 0,39 7,53 0,55

sect.4 14,72 7,38 14,78 7,99 6,95 0,38 6,68 0,42 10,02 0,98 9,38 0,98

sect.5 15,31 7,01 15,28 7,71 7,36 0,49 7,16 0,46 13,26 1,60 12,85 1,62

sect.6 15,23 6,93 15,30 7,75 7,22 0,47 7,58 0,50 15,61 2,31 15,70 2,61

The most important result that can be obtained from the table is the independence
of the percentage from the source diameter. The numerical variations that are
present varying the diameter, are very small. These variations are a little bit
greater in the �rst three sections.

Lagrangian study of an ethane particle

In addition to the points on the nozzle axis, other measuring points were also
considered. These, shown in �g. 4.3, may be considered as positions subsequently
occupied by a particle which, once ejected from the injector, will tend to move
both in the verse of the increasing x and in the verse of the decreasing z. They
are therefore positions that would be considered by studying the motion of the
particles in Lagrangian way.
In each of these points, the PCC were analysed with respect to di�erent m, im-
posing a curve-threshold of 0.6. The results obtained for the concentration are
reported in �g. 4.8 This �gure re�ects the behavior already illustrated for the
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Figure 4.8: Concentration, D6,τ = 1, WOC: analysis of Lagrangian plume posi-
tions

points on the nozzle axis. So, percentages that increase considering points gradu-
ally farther away from the source and at smaller vertical coordinates.
The same graphs were also constructed for the points identi�ed in the D3 case.
The percentages that are found, for corresponding points but with di�erent diam-
eters of the source, are in fact completely comparable. They are slightly larger in
the D6 case but just of few percentage points.

4.3 Trends of the threshold to generate the adja-

cency matrices

So far, the PCC obtained from the EVs generated by the time series of interest
have been analyzed. Once these correlation coe�cients are computed, they are
used to generate the networks adjacency matrices. For this purpose, an adaptive
method can be used: the threshold can be variable according to the PCC distri-
bution, using for example the quantile at 95%.
Fig. 4.9 illustrates, for the points on the nozzle axis, section by section, the value
of the threshold corresponding to the quantile at 95%, both in D3 than in D6
case. Each line of the image refers to a certain value of m: m = 30, m = 50 and
m = 100. Each column refers to a certain signal: u, w and concentration. Even if

67



4 � Characterization of obtained recurrence networks

Figure 4.9: Distribution of the adjacency matrices thresholds

the analysis carried out in the previous section is more akin to an arbitrary de�ned
threshold, of course, it must be consistent with the quantile values. If the PCC
increase or decrease as a function of a certain embedding or geometric parameters,
their distribution su�ers, and, with it, the value of the quantile.
The behaviour of this threshold is therefore similar to the behaviour of the per-
centages analysed above. In fact, looking the �g. 4.9, it si possible to see that:
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� The overlap e�ect is minimal. In �g. 4.9, the two continuous curves (D3)
are practically overlapping, as are the two dashed curves (D6).

� Increasing m, the threshold decreases. In fact, observing corresponding
graphs with di�erent m the values on the ordinates axis tend to decrease.

� The e�ect of the source diameter on the threshold value, as well as on the
percentages, is minimal. The curves relating to the D3 case and those relating
to the D6 case are substantially the same. A "greater" di�erence between
these two curves is presented in sections 2 and 3.

� The percentages and the threshold, �xed all the parameters except the x
coordinate (i.e. varying only the section), tend to increase moving away
from the source. It is interesting to note that, considering the threshold, for
the two speeds, the trend is monotonously increasing. For the concentration,
instead, in some cases, presents a minimum.

4.4 Graphic representation of the obtained net-

works

This paragraph shows what has been achieved with regard to the networks graphic
representation. In fact, the velocities and the concentration networks obtained in
four di�erent measuring points, in the D6 case, de�ned using both the Euclidean
norm and the PCC have been represented. In this analysis, di�erent values of the
embedding parameters have been setted: two di�erent values of m, m = 100 and
m = 350, two di�erent values of tau, τ = 1 and τ = 5, both in the OC than in the
WOC.
Once the networks are obtained, the two-dimensions representations can be per-
formed using the Gephi software.
Regarding the settings of this software, it is useful to report two aspects:

� OpenOrd was chosen as mathematical algorithm for the two-dimensional net-
works representation [14]. This choice was motivated by the fact that it is
usable for undirected networks with a large number of nodes. The algorithm
behaviour is based on a similarity between the networks and a dynamic sys-
tem: each node represents a mass while each links a spring. The springs
sti�ness is de�ned by the weight of each links while the masses are de�ned
by the properties set for each node. The algorithm, iterating, de�ne the
equilibrium position of the system and returns its graphical representation.
The iterations are composed of �ve phases: liquid, expansion, cooldown,
crunch and simmer. The �rst two act on the representation "enlarging the
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network", or "pulling the springs" and evaluating possible relative balances,
while the last two tend to "reassemble" the network. In order to avoid a con-
trast between these phases it is useful to indicate di�erent time percentages.
Therefore, for the �rst two a percentage of 30% was set, instead for the last
two a percentage of 0%.

� Two distinct graphical representations have been done for each network in
order to highlight di�erent aspects. The �rst shows a speci�c networks met-
ric, the degree. The nodes are in fact coloured according to the degree value,
from light white in case of small degree up to intense red for elevated degree.
The nodes size is also variable depending on the degree. In the second rep-
resentation the parameter used to classify the nodes is the time. Each time
series has been subdivided into �ve sub-intervals representing �ve di�erent
macro-times. At each macro-time a colour was attributed. In this way it is
possible to observe whether the nodes related to di�erent temporal moments
of the signal tended to distribute themselves evenly or not, generating for
example clusters of nodes related to contiguous times, within the network.

It was observed that, varying the measuring point, the networks generated with
the same embedding parameters have similar representations. Therefore, there
isn't a connection between the geometry, that is the coordinates of the measuring
points considered, and the graphical representation. Just as, for di�erent m and
tau, the networks tend to vary, in their graphical representation, only their density
rather than their structure. In the sequel what was achieved for the measuring
point 697 (D6, zd = 1, xd = 3.90) using m=100 is reported.

Representation as a function of time

Whatever the signals and the embedding parameters, performing the representa-
tion as a function of time, the same results are always obtained. That are, networks
in which the nodes related to di�erent times are uniformly distributed. Therefore,
there are not clusters related to particular temporal moments. An example is
reported in �g. 4.10.
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4 � Characterization of obtained recurrence networks

Figure 4.10: Velocity w, D6, zd = 1, xd = 3.90, τ = 1, OC: representation as a
function of time

Representation of the velocity u networks as a function of the degree
centrality

Also in the graphical representation there are, of course, the same di�erences
between the Euclidean case and the PCC case already observed through the study
of the adjacency matrices structure. In fact, in the Euclidean case, it is possible
to observe nodes with low degrees all connected to a central node, with a bigger
degree. Instead, using PCC, nodes with small degree are more connected to each
other forming a much thicker network. Going to consider di�erent embedding
parameters, τ and the overlap in this case, a networks thinning can be observed.
Therefore, these have no e�ect on the characteristics and the structure of the
networks but solely on its size. This aspect will also be highlighted by the study of
the metrics in the next chapter. The variation of some parameters will only have
an e�ect on the metrics numerical values and not on their trends.

Representation of the velocity w networks as a function of the degree
centrality

From the point of view of the graphic representation, there are no particular dif-
ferences between the two speeds. As can been seen, the structure of the velocity
w networks is quite similar to that of the u.
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4 � Characterization of obtained recurrence networks

Figure 4.11: Velocity u, τ = 1, OC: Euclidean case (left) and PCC case (right)

Figure 4.12: Velocity v, τ = 5, WOC: Euclidean case (left) and PCC case (right)

Representation of the concentration networks as a function of the degree
centrality

The concentration signals presents, in the PCC case, a di�erence compared to
the speeds. Both in the measuring point here considered than in all the others
analysed, the concentration representation has nodes with an intermediate degree,
that are, light coloured nodes, distributed in a much more uniform way than the
velocities. For example, it is possible to compare the right column of the �g. 4.11
with the right column of �g. 4.15. The structure of the latter is less "roundish"
than the one of the velocity u and has a more uniform distribution of nodes with
medium degree.

72



4 � Characterization of obtained recurrence networks

Figure 4.13: Velocity w, τ = 1, OC: Euclidean case (left) and PCC case (right)

Figure 4.14: Velocity w, τ = 5, WOC: Euclidean case (left) and PCC case (right)
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4 � Characterization of obtained recurrence networks

Figure 4.15: Concentration, τ = 1, OC: Euclidean case (left) and PCC case (right)

Figure 4.16: Concentration, τ = 5, WOC: Euclidean case (left) and PCC case
(right)
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Chapter 5

Calibration of the networks

embedding parameters

This chapter shows the main results deriving from the study of the network met-
rics. The �rst part describes the analyses carried out, using both the Euclidean
norms and the PCC, to evaluate the metrics dependencies with respect to the
geometric and the embedding parameters. Once the metrics are de�ned, a series
of similarities between them and the statistical analyses carried out in the second
chapter is presented for the concentration signals. Combining the main results de-
riving from the PCC obtimisation illustrated in the fourth chapter with the metrics
obtained in the cases analyzed in this chapter, the optimal embedding parameters
are identi�ed.

5.1 Purpose and measurement points considered

Starting from a time series, using the techniques illustrated in the third chapter,
the corresponding network can be created . This network contains numerous infor-
mation about the signal used to generate it. So, by analysing its tolopology and its
characteristics, information about the time series of departure may be obtained.
To this end, it is therefore necessary the study of the network metrics, that are the
parameters that identify the main properties and characteristics of the network,
and so of the time series.
The purpose of this part is to identify, for the metrics, the main dependencies with
respect to the plume parameters and the embedding parameters. So, evaluate the
dependence with respect to:

� Source diameter;

� Geometric spatial parameters: the e�ect of the distance from the source,
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5 � Calibration of the networks embedding parameters

identi�ed by the parameter xd (section), and the vertical position, identi�ed
by the zd coordinate;

� Embedding parameters. In these analyzes m = 50 and m = 100 were the
values considered. Regarding τ and the overlap, two cases were considered:
the case τ = 1 OC and the case τ = 5 WOC. These two cases are indeed as
"extreme" cases. Considering time series with the same number of elements,
they generate respectively the network with the greatest number of nodes
and the one with the least number of nodes;

� Recurrences de�nition: using the Euclidean norm or the PCC. In the latter
case, it is possible to distinguish between the threshold set arbitrarily or as
a quantile.

As indicated, there are many dependencies that must be analyzed. Among these,
one of the most signi�cant is the dependence on coordinate z. Therefore, in each
analysis carried out, graphs have always been generated whit the z coordinate on
the abscissas axis. This z-coordinate is always compared to the vertical coordinate
of the nozzle. That is, a dimensionless coordinate will always be shown in the
graphs.
Being the vertical coordinate of considerable interest, particular attention has been
paid to the choice of the considered points within the vertical pro�les in each
section. In fact, having to make a correction for the concentration in the PCC
case, the minimum number of non-zero elements in each embedded vector was
set equal to m/2. However, not all the measuring points are able to satisfy this
constrain. In fact, the most extreme points do not present vectors able to comply
this rule. This means that not all measuring points in a given section took part
to this analysis. Only the points that present a quantity of corrected EVs bigger
than 20%, compared to the maximum number of generable embedded vectors, have
been considered.

5.2 Metrics trends using Euclidean norm

The trends and the dependencies of the network metrics obtained through the use
of the Euclidean norm are now described. All the cases reported in this section
have been obtained by generating the thresholds, necessary to create the adjacency
matrices, using of the quantile that identi�es the 95% of the obtained phase space
distances distributions.
In order to analyse the metrics in each measuring point, varying the embedding
parameters appropriately, many analyses have been carried out. Two of the graphs
obtained are reported as examples. Fig. 5.1 represents the trend of the average
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5 � Calibration of the networks embedding parameters

closeness for the velocity u, while �g. 5.2 shows the links trend for the concen-
tration. Both refer to section number 2,xd = 0.32, in the case of 3 mm source
diameter.

Figure 5.1: Euclidean case, velocity u, section 2, D3: trend of the average closeness

Figure 5.2: Euclidean case, concentration, section 2, D3: trend of the links number

The two main properties of the metrics in the Euclidean case are:

� All the considered metrics remain almost constant when the vertical co-
ordinate changes. Of course, from point to point, a minimal variability,
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5 � Calibration of the networks embedding parameters

considered as noise deriving from the experimental activity, is present.

� The behaviour of the metrics is completely general: both speeds, as well
as the concentration, have similar and comparable trends. Therefore, it is
possible to analyse just one of these three signals to obtain information and
trends.

As indicated, the metrics oscillate around an "average" value. For ease of rea-
soning, it is possible to table these mean values in order to study their variability
according to the embedding parameters and the spatial geometry. Table 5.1 and
table 5.2, can be considered. They refer to the velocity and report the metrics
changing the most important settings.

Table 5.1: Euclidean case, velocity u, m = 50: metrics average values

m=50
NODES LINKS AVERAGE CLOSE-

NESS

τ = 1, 50% τ = 5, 0% τ = 1, 50% τ = 5, 0% τ = 1, 50% τ = 5, 0%

SECT.2
D3 7198 731 1,29·106 1,32·104 6,5·10−5 5,5·10−4

D6 7198 731 1,29·106 1,32·104 6,4·10−5 5,5·10−4

SECT.4
D3 7198 731 1,29·106 1,32·104 6,5·10−5 6·10−4

D6 7198 731 1,29·106 1,32·104 6,3·10−5 6·10−4

SECT.6
D3 7198 731 1,29·106 1,32·104 6,5·10−5 5,75·10−4

D6 7198 731 1,29·106 1,32·104 6,5·10−5 5,25·10−4

Table 5.2: Euclidean case, velocity u, m = 100: metrics average values

m=100
NODES LINKS AVERAGE CLOSE-

NESS

τ = 1, 50% τ = 5, 0% τ = 1, 50% τ = 5, 0% τ = 1, 50% τ = 5, 0%

SECT.2
D3 3598 362 3.23·105 3.23·103 1.28·10−4 1.05·10−3

D6 3598 362 3.23·105 3.23·103 1.25·10−4 1·10−3

SECT.4
D3 3598 362 3.23·105 3.26·103 1.30·10−4 1.05·10−3

D6 3598 362 3.23·105 3.23·103 1.28·10−4 1.15·10−3

SECT.6
D3 3598 362 3.23·105 3.26·103 1.25·10−4 9·10−4

D6 3598 362 3.23·105 3.23·103 1.26·10−4 1·10−3

Each table refers to a speci�c value of m: m = 50 and m = 100. In each table,
for every metric, two di�erent values of tau and overlap are reported. That are
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5 � Calibration of the networks embedding parameters

τ = 1 OC and τ = 5 WOC. In order to analyse the e�ect of the distance from the
nozzle, the metrics obtained in three di�erent sections, number 2-4-6, have been
reported, while the presence of the data relative to both the diameters allows to
quantify the e�ect of the nozzle geometry.
Analyzing the dependence on the geometrical parameters, it is possible to observe:

� E�ect of the vertical coordinate z: as indicated above, the metrics tend to be
constant when the z varies. This parameter is therefore irrelevant compared
to the study of metrics in the Euclidean case.

� E�ect of the longitudinal coordinate x: as can be seen from both tables, con-
sidering di�erent sections there are minimal variations.

� E�ect of the nozzle geometry: also in this case the variations are minimal:
when the diameter varies, the percentage variation of the metrics is practi-
cally negligible.

As regards the dependence on the constructive parameters of the networks, it is
possible to observe:

� E�ect of the dimension m: doubling the size of the EVs, the number of nodes
is reduced by about an half. The number of links also varies with m: doubling
m the number of links increases by an order of magnitude. It goes from 105

to 106. The same consideration can be done for the average closeness, in
which a decrease is observed: from 10−4 to 10−5.

� E�ect of delay τ and the overlap: Fixing a certain value of m, a certain sec-
tion and a certain diameter of the nozzle, it is possible to see that, varying
the value of the delay and the overlap from 1 OC to 5 WOC, nodes and close-
ness vary by a factor of 10 while the number of links by a factor of 100. As
indicated previously, the cases τ = 1 OC and τ = 5 WOC are considered as
"extremes". That is, with the highest and lowest number of generable EVs.
Considering intermediate cases to the previous ones, the order of magnitude
of the metrics variations will obviously be smaller.
The only metric that never changes is the density: it remains constant what-
ever parameter is changed.

5.3 Metrics trends using PCC

Now, a similar analysis is proposed, but here the recurrences between the EVs were
de�ned using the PCC. As in the previous case, the thresholds for the adjacency
matrices de�nition were obtained by imposing the quantile relative to 95% of each
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correlation coe�cient distribution.
In this section, the metrics trends of the speeds and of the concentration will be
discussed separately. This because, as will be shown, they have di�erent behaviour.

5.3.1 Speed metrics trends

As regards the velocity, both longitudinal and transverse, the trends and the nu-
merical values are quite similar to those of the Euclidean case. In fact, for a �xed
diameter and a given section, imposing a certain value of m, delay and overlap,
the metrics turn out to be constant with the z-coordinate. Representing the �ve
sections, it is noted that the variability of these metrics with the x-coordinate,
that is, changing section, is minimal also in this case.

5.3.2 Concentration metrics trends

Very di�erent trends are obtained considering the concentration metrics in the
PCC case. Fig. 5.3 illustrates the trends obtained in the section 2 (xd = 0.32),
calculated with m = 50 and relative to the D6 case.

Figure 5.3: PCC case, concentration, section 2, m=50: metrics trends

The �rst important di�erence from Euclidean cases is the variability of the number
of nodes. In fact, this metric has a parabolic shape. It is necessary to underline
that not all the networks analysed in this chapter have the same number of nodes.
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5 � Calibration of the networks embedding parameters

This fact is due to two di�erent reasons. As regards the velocities and the con-
centration analysed with Euclidean norms, as well as for the velocities in the PCC
case, the number of nodes depends only on the chosen embedding parameters (m,
tau and overlap). When these parameters are �xed, the number of nodes will be
the same in every measuring point. For the concentration in the PCC case, in
addition to the dependence, the number of nodes also depends on the considered
measuring point and the correction chosen to take into account the large number
of null measures. A minimum number of non-zero elements, m/2, that each vector
must contain is imposed (EVs correction). So, setting the constructive parameters,
the number of nodes will be variable considering di�erent measuring points.
Having networks with di�erent number of nodes is the reason why it is necessary
to identify dimensionless metrics, like for example the density. Otherwise, a direct
comparison of non-dimensionless metrics would not be possible, for example for
the average degree.
The trend of the links number is quite similar to the nodes one.
The average local connectivity (or density), as in the Euclidean cases, is constant
and equal to 5%.
The average closeness shows a pot shape. This trend is justi�able by referring to
its de�nition. In fact, it is de�ned as the reciprocal of an average path. Where
the nodes and links are in smaller numbers, so at the sections edges, the average
path will be statistically lower and therefore its reciprocal will be a high number.
Conversely, in the case of a high number of nodes and links, the path will be
greater and its reciprocal a smaller number. This is how, taking advantage of the
de�nition, the average closeness trend can be described starting from the nodes
and links trends.
The concentration metrics have a direct �uid-dynamic interpretation. The num-
ber of nodes and links is greater where the average concentration is also greater.
That is, just below the nozzle axis or in the accumulation areas. This indicates
the presence of a greater number of recurrences within the time series measured
in those points.
What was shown here allows to describe the metrics obtained with certain embed-
ding parameters and in a speci�c x coordinate along the axis of the wind tunnel.
The following shows the dependencies of the metrics compared to the geometry
and the networks embedding parameters.

5.3.3 E�ect of the x coordinate on the concentration metrics

As indicated above, neither the velocities in the Euclidean and in the PCC cases,
nor the concentration in the Euclidean case, have a marked dependence by the
x-coordinate. This is due to the fact that the boundary layer is �xed. That
is, the motion �eld is similar at di�erent sections. Instead, the concentration
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metrics obtained using the PCC have an important dependence on the section in
which they are calculated. In order to represent the trends of the metrics in the
di�erent sections, the following 3 �gures, formed by four sub-�gures each, have
been generated. Each �gure refers to a speci�c metric: nodes, links and average
closeness. Each sub-�gure refers to a certain source diameter (D6 and D3) and to
a certain m (m = 50 and m = 100). For simplicity, the curves refer all to the case
τ = 1 OC.

Figure 5.4: PCC case, concentration, nodes: pro�le trend as x-coordinate varies

As regards the number of nodes and links, observing �g. 5.4 and �g. 5.5, it is
evident that:

� The vertex of the parabolic move to lower vertical coordinates increasing the
x. In section 2, the parabolic pro�le vertex is located at zd ≈ 1. Considering
section 5, it is located at zd ≈ 0.7.

� The pro�le, as the x-coordinate increases, is no more a symmetrical parabola.
It becomes asymmetric. It retains its parabolic shape only for zd > 1, i.e. for
points above the nozzle axis. The more the x-coordinate increases, the more
the part of the parabola present for zd < 1 tends to have a less pronounced
fall. Until, in section 6 (xd = 3.90), the trend has no more a vertex and the
previous parabolic shape is completely lost.
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Figure 5.5: PCC case, concentration, links: pro�le trend as x-coordinate varies

Figure 5.6: PCC case, concentration, aver. closen.: pro�le trend as x-coordinate
varies
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� Fixing a certain m, the green curve (section 6) is essentially the same, both
in case D3 and in the D6 case. The purple curve (section 2) changes consid-
erably as the diameter varies. For the intermediate sections the variations
are much less pronounced the more the x-coordinate is elevated.

The average closeness varies its shape in a opposite way compared to the nodes
and links.
The density is always about 5%, regardless of the considered section. This is why
the �gure with the plots of this metric has not been reported .

5.3.4 E�ect of the nozzle geometry and of the embedding

parameters on the concentration metrics

The aim now is to evaluate the e�ect of the nozzle diameter, of the EVs dimension
m, of the delay tau and of the overlap on the concentration metric trends in the
PCC case. To do this, �g. 5.7 and �g. 5.8 can be considered.
They represent the number of nodes and links, both in the D3 case (left column)
and in the D6 case (right column), for three di�erent sections (2-4-6). Each graph
shows the metrics obtained with tau = 1 and tau = 3, in the OC and in the WOC,
by imposing two di�erent values of m, m = 50 and m = 100. The choice of using
an intermediate delay (τ = 3) gives the possibility to analyze what is the variation
with respect to the extreme case, i.e. τ = 5. Therefore, there are eight di�erent
curves in each chart.
They are represented using only one ordinates axis. This is due to the fact that
the trends are already known, what is investigate here is the parameters e�ect on
the order of magnitude of the metrics.
Referring to �g. 5.7 and �g. 5.8, it can be inferred that:

� Fixing a certain m and a certain τ , by changing the overlap from 0% to 50%
the number of nodes doubles. The variation of the links, instead, is non
linear with the overlap. That is, if superimposing the vectors between them
is obtained an increase of nodes equal to the double, the increase of the links
is about the quadruple of those present in the WOC.

� Fixing a certain m and an overlap, the tau e�ect is a vertical translation
of the curves. Obviously depending on the overlap, the translation will be
di�erent. By setting the OC and passing from τ = 1 to τ = 3 the number
of nodes decreases much more than in the WOC. The same applies for the
links trends.

� Fixing a certain tau and a certain overlap, the m e�ect is also a curves
vertical translation. From m=50 to m=100, the number of nodes is halved
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Figure 5.7: PCC case, concentration, nodes: magnitude and dependence on pa-
rameters

while the links are pariah to a quarter of the previous.
It is easy to understand that doubling the overlap, from 0% to 50%, and
also doubling m, from m = 50 to m = 100, have opposite e�ects that delete
each other out. In fact, for example, the curves for the case τ = 1,m = 50,
0% (continuous black) and τ = 1,m = 100, 50% (green with dashes) are
practically overlapping.

� The e�ect of the nozzle diameter is located more in the initial sections. In
section 2 there is a greater di�erence between the D3 and the D6 case. Con-
versely, in section 6, the metrics are practically the same irrespective of the
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Figure 5.8: PCC case, concentration, links: magnitude and dependence on param-
eters

considered diameter. By imposing for example m = 50, τ = 1 and null
overlap, in the second section the maximum number of nodes is about 5000
for the D3 case while it turns out to be about 7000 in the D6 case. With
the same embedding parameters, a greater number of nodes, and therefore
of EVs, is indicative of less intermittent time series. From this is possible to
conclude that the time series relative to the two diameters will have more
similar behaviour in the sections farthest from the source. In the �rst sec-
tions, instead, their behaviour is more dissimilar.

The density is independent of the parameters considered and is always about 5%.
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The average closeness presents trends opposite to those of the number of nodes
and links, coherently to its de�nition.

5.3.5 Similarities between the average concentration and

the concentration networks metrics using the PCC

The metrics of the networks obtained for the concentration signals using the PCC
have important properties in common with the average concentration pro�les.
These pro�les, shown in �g. 2.8 and in �g. 2.9, have trends similar to those of
the nodes and links illustrated in �g. 5.4 and �g. 5.5. In fact, as the x-coordinate
increases, the z coordinate where the maximum of the average concentration oc-
curs tends to decrease. Than, thanks to the wall e�ect, the average concentration
tends to increase in the area around the wall in the last two sections. Therefore,
the average concentration presents similar trend that is observed for the nodes and
for the links when the x-coordinate varies.
To underline how close is the relationship between these quantities it is possible
to consider that in the D3 case, neither in the average concentration pro�le nor in
the metrics, the curve relative to section 2 exceeds that of section 6. Conversely,
in the D6 case, in both trends the curve of section 2 exceeds that of section 6.
Another important similarity between the metrics and the statistical study of the
concentration signals executed in the second chapter may be identify. Considering
a certain curve in the graphs of �g. 5.4, for example the black dashes curve corre-
sponding to the case τ = 1 OC, with m = 50, the numerical values corresponding
to this curve moving from section 2 to section 4 decrease. Then, moving from
section 4 to section 6, increase. A similar behavior has already been identi�ed in
a previously analyzed quantity: the intermittence. Calculating the intermittency
in each measuring point of every section and considering then, in each section,
the maximum value of the intermittence, a decrease up to the �fth section was
observed then it increased again in the sixth.

5.4 Best method and optimal embedding parame-

ters de�nition

The paragraph 3.4 illustrates the model that, from time series, generates the corre-
sponding networks. It is necessary to underline two important aspects when time
series are modelled through the use of networks:

1. There is a mathematical procedure that allows to generate networks. This
procedure is characterised by some embedding parameters: the dimension
m, the delay tau and the overlap. It is not possible to know beforehand
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what are the optimal values for these parameters in order to obtain the
"best networks". Best networks in terms of signi�cance compared to the
time series under exam. This is why, in this thesis, several cases have been
analysed so far. All the analyses showed, both in the Euclidean case and in
the PCC case, were performed using di�erent m and tau values, both in the
OC and in the WOC.

2. Once the networks are obtained, it is possible to calculate the corresponding
metrics and evaluate any trends and dependencies. However, these infor-
mation must be transformed into physical characteristics of the considered
system. This step is the pivotal step that is needed every time that complex
networks are used to study any phenomenon. In fact, networks can be gen-
erated in order to represent di�erent systems: the time series of a turbulent
�ow, the social relationships between people, rather than the highway system
of a nation. For each of these networks, it is possible to calculate the same
metrics, but they will have a di�erent physical meaning. For example, in the
case of a network generated by a time series, the links will represent a "sim-
ilarity" between groups of measures, then a "periodicity" in the measured
values. While in the case of social networks, they will indicate the presence
of a relationship between two people.

Here is the need to identify what is the best method and the what are the optimal
embedding parameters in order to build networks, which, once analysed, allow to
identify signi�cant information on the �uid dynamics of the turbulent plume in
exam.
To this end, it is possible to refer to two studies: the PCC optimization, illustrated
in chapter 4, and the metrics trends shown earlier in this chapter.
From the �rst of these two analyses important information, applicable to obtain a
large number of high PCC, can be inferred:

� An exponential degrowth in the number of elevated PCC is connected to
parameter m. Therefore, it is advisable to use small m values, for example
m = 50.

� The more the tau used is low, the more the correlation coe�cients are ele-
vated. Therefore, it is advisable to use τ = 1.

� The overlap, using the PCC, is in�uential. Fixed a certain m and a certain
tau, the percentage of PCC greater than a certain value is practically identi-
cal whatever is the overlap considered. In order to optimize the calculation
time, it is advisable to choose the case without overlap.

With regard to the metrics trends study, it can be observed that:
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� The type of method used to de�ne recurrences, the Euclidean norm rather
than the PCC, leads to metrics trends that have di�erent shapes. The advan-
tage of the PCC is that the trends obtained have forms directly connectible
to the �uid dynamics statistical analysis of the plume.

� If the shape of the metrics depends on the chosen method, the orders of
magnitude depend only on the embedding parameters. Fixing a certain m, a
certain tau and an overlap, the metrics will have di�erent shape, depending
on the method, but will have comparable orders of magnitude.

Therefore, starting from the results of these two analyses, it is possible to identify
the best methodology for the construction of the networks related to the plume
under consideration.
The PCC use is preferable compared to the Euclidean norm. It allows to obtain
metrics that better re�ect the �uidynamics of the considered phenomena, thus
providing a better description of the time series behaviour.
Regarding the de�nition of optimal embedding parameters, compared to the three
results obtained in the study of the PCC optimisation, they can be �xed equal to:

� m = 50;

� τ = 1;

� overlap = 0%(WOC).

In addition to the method and the optimal parameters, the methodology used to
de�ne the 0/1 threshold for the adjacency matrices construction must be de�ned.
In the metrics trends mentioned previously, this was always de�ned with the quan-
tile representing 95% of the norms or of the PCC obtained. In the Euclidean case,
this way can be intuitive. In fact, the norms variability is much higher than the
PCC case. The use of the quantile can be considered an "adaptive method". So,
a way that, from point to point, using a threshold always di�erent, leads to obtain
networks with a density that is maintained about constant. This is evident from
the metrics seen above. Whatever the method and the parameters used, the den-
sity was always about 5%.
Having now identi�ed, as best calculation method, the use of correlation coe�-
cients, a �xed 0/1 threshold may be used. This way, not being more adaptive
with the measuring point considered, allow a greater comparability between the
networks obtained in di�erent spatial points. By analysing the graphs shown in
chapter 4, with respect to the optimal parameters identi�ed, it was decided to set
this threshold equal to 0.70.
Once the method and the optimal parameters have been identi�ed, it is possible
to evaluate the metrics trends obtained by using them. In the next section the
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main metrics and their characteristics will be presented. These metrics will then
be used to describe the behaviour of the considered time series.
Note that, as the purpose of the analyses carried out so far was the determination
of the best calculation methods, the vertical turbulent transport (VTT) has not
been taken into account. This signal, extremely important for the study of the
plume, will be analysed in the next sections.
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Chapter 6

Optimized networks metrics analysis

The optimal embedding parameters allow to build the networks that provide the
greatest amount of information about the signals of interest. Therfore, this chap-
ter is the heart of the thesis because, from the topology of the networks, the
characteristics related to the considered di�usion phenomenon are de�ned. Since
the networks were calculated using the recurrence, in order to con�rm what was
achieved by the networks themselves, a study of the recurrences is presented at the
end of the chapter. The recurrences average distances, both in terms of spatial po-
sitions within the adjacency matrices than in temporal terms, and the recurrences
frequencies have been calculated. This study leads to results con�rming what has
been achieved through the networks.

6.1 Study of the time series behaviour using the

networks metrics

6.1.1 Analysis of the velocity time series behaviour

In order to represent in a compact way the dependence of the velocities metrics,
with respect to the main geometric parameters, for each section a single image has
been generated. Each image consists of 4 sub-graphs in which the four considered
metrics are shown: nodes, links, density and average closeness. What was obtained
in section 2 (xd = 0.32) and section 6 (xd = 3.90) is illustrated in �g. 6.1 and in
�g. 6.2.
In each sub-graph there are four curves that represent the metrics for the two
speeds, both in the D3 case and in the D6 case.
Despite the di�erent diameter and the di�erent orientation of the velocity, the four
curves are comparable, indicating that they have all the same order of magnitude.
The number of nodes, whatever the diameter and the section considered, is �xed.
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Figure 6.1: Velocities, sect.2, xd = 0.32, metrics for the study of time series

Figure 6.2: Velocities, sect.6, xd = 3.90, metrics for the study of time series

It depends directly from the embedding parameters used. Physically, the number
of nodes in a network has a very precise meaning: it represents the number of EVs,
so, groups of time series elements. It is interesting to note that using τ = 1 and
without overlap, the EVs that are generate contain all the elements of the time
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series. By imposing τ = 1, no elements are skipped, while, having no overlap, the
elements of two successive EVs are identi�ed in the same order in which they occur
in the time series. Therefore, these parameters allow a greater ease and a greater
detail in the analysis of the series.
Fixing the x coordinate and moving in the direction of increasing z, the links
numbers tends to increase. It tends be a line with positive slope. From the �uid
dynamic point of view, this behaviour is very interesting. If the number of nodes
remains constant, the size of each adjacency matrix will also remain unchanged.
When the z-coordinate increases, the links increase, meaning that, as z increases,
the elements equal to 1 present in the matrices increase. Knowing that, in matrices
A, a 1 is generated when the correlation between two EVs is greater than 0.7,
it can be inferred that, as the z-coordinate increases, the EVs tend to be more
correlated. That is, they tend to be more similar. It can therefore be said that, in
a given section, as the z-coordinate increases, the velocities time series have less
variability.
Consider for example, in the D6 case, the velocity u in section 6. The metrics
analysis identi�es information about the variability of time series. In order to verify
the obtained result, it is possible to calculate a quantity that allows to quantify
the variability: the standard deviation. Fig. 6.3 illustrates the average velocity u
pro�le and the standard deviation pro�le, calculated in section 6 measuring points.

Figure 6.3: Vel. u, sect.6, xd = 3.90, analysis of time series elements variability
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This graph reinforces what has been inferred from the metrics. So, the decrease
of time series variability for the velocity, in a given section, as the z coordinate
increases.
The density trend, remaining constant the matrices A size and increasing the
number of links, can only increase. This trend, considering the velocities, re�ects
the links behaviour.
The average closeness has a growing trend. This metric represents the centrality
of the nodes. Considering a single node, i.e. a certain EV of the time series,
increasing the z-coordinate, the number of links connected to it will increase. In
this way, its centrality will increase, or equivalently, the average path that the
separate it from the all the other nodes will decrease. If the considered networks
were social networks, characterised by nodes representing people, it could be said
that increasing z, and so increasing the average closeness, direct communications
would be easier. This because each person would be directly connected to other
members, i.e. nodes, of the network.
The links increase, with the same number of nodes, also leads to a decrease in
the unconnected nodes number. So, the nodes with degree = 0. This metric,
calculated in section 6, is illustrated in �g. 6.4

Figure 6.4: Velocities, sect.6, xd = 3.90, unconnected nodes

To summarize the geometry e�ect on the metrics examined here, it can be said
that:
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� The e�ect of the vertical coordinate z is predominantly localizable in time
series variability. As z increases, this variability tends to decrease.

� The longitudinal coordinate x e�ect is not related to the shape of the metrics
pro�les, but to the numerical value of the metrics. Just observe that, the
maximum number of links shown in �g. 6.1 (section 2) is equal to the
minimum number of links shown in �g. 6.2 (section 6).

� The e�ect of the source diameter, even here, is much greater near the nozzle.
In section 2, whichever metric is considered, the curves of the D3 case and
the D6 case are well separated. Numerically, the D3 case has higher values.
In section 6, on the other hand, the curves relative to the two diameters tend
to overlap, indicating a decay of the diameter e�ect moving away from the
source.

It is interesting to observe a di�erence between the velocity u and the velocity w.
The latter tends to have, with the same nodes number, metrics that are always
lower than the ones of the u, except for the unconnected nodes. This behaviour
derives from the �uid dynamics of the problem. What has been noted above on the
variability and on the behaviour of the velocity u time series, it is obviously valid
also for the w time series. But these will always have an intrinsic variability due to
the fact that the phenomenon is non convective. Just think at the average velocity
pro�les. For the velocity u , these pro�les have well-de�ned shapes, which enclose
the e�ect of friction between the �uid and the wall. Considering, in a given section,
the w pro�le, a "messy" pro�le is observed, with positive and negative mean values,
indicating an integral of the pro�le near zero, typical of a non-convective problem.
That's why, by setting an high threshold like 0.7, there is a lower number of links
for the w than the u velocity. Contextually, an higher percentages of the velocity w
unconnected nodes indicate that some nodes, so some time series EVs, don't have
"any other similar EVs". This means that they don't tend to repeat themselves
inside the series.

6.1.2 Comparison of concentration network metrics

Also for the concentration, in each section, a �gure containing the graphs of the
four considered metrics has been created. In each graph there are two curves, one
relative to the concentration in the D3 case and the other relative to the D6.
The concentration metrics have a double behaviour. They have di�erent trends,
depending on whether or not there is an interaction between the plume and the
wall in the section considered.
The �rst three sections (2-3-4) have a similar behaviour. Fig. 6.5 illustrates the
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graphs obtained in section 2. Di�erent trends are in the last two sections, �g. 6.6
illustrates what has been calculated in section 6.

Figure 6.5: Concentration, sect.2, xd = 0.32, metrics for the study of time series

Figure 6.6: Concentration, sect.6, xd = 3.90, metrics for the study of time series

The number of nodes, unlike the velocity case, is no more constant along the ver-
tical coordinate. This is because a "correction" of the EVs with the purpose of
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eliminate the insigni�cant ones, so those that contain too many null elements, is
operated. The greater amount of EVs eliminated has been in the measuring points
located near the edge areas of the plume. Therefore, in the �rst three sections, so
where the e�ect of the wall is not yet perceived, the largest number of deleted EVs
was in the measuring points most far from the nozzle axis. Instead, in the last two
sections, where the e�ect of the wall generates a concentration accumulation, the
largest number of EVs eliminated was in the measuring points farther away from
the wall, so at the higher vertical coordinates. In the points where so many more
EVs are eliminated, there are fewer nodes and vice versa.
So, this metric has an immediate physical meaning. Where the number of nodes is
greater, there the concentration is stronger. That is, the concentration time series
will be characterized by a higher average value, will present a lower variability and
will be subjected to a less signal �ltering. In this way, by evaluating the variation
of the nodes, relative to the geometry, it is possible to identify the accumulation
e�ect due to the wall.
In �g. 6.5 a parabolic shape is observed, with the maximum just below the nozzle
axis. In the edge areas, i.e. above and below the axis, the number of nodes de-
creases. Index that, in those measuring points, the �ltering of the time series has
been more heavy, and that many generated EVs had lots of zeros.
Instead, observing �g. 6.5, the accumulation e�ect, due to the �oor, is imme-
diately visible. The maximum nodes number, that is, the less �ltration of the
concentration, is close to the wall. The more one moves away from the wall in
the increasing z direction, the more the time series will be characterized by lower
average concentration values and by a large amounts of zeros resulting from the
experimental measurements �ltering.
The number of links follow exactly the the number of nodes. Where this is greater,
the time series are more stable, i.e. they will have elements slightly oscillating
around the mean value. This means that the EVs tend to contain similar elements
and, therefore, an higher correlations between them is observed. These correla-
tions, exceeding the imposed threshold of 0.70, allow the formation of more links.
These considerations, which derive from the metrics, can be validated in terms of
standard deviation, as done for the velocity u. Fig. 6.7 illustrates the trend of the
mean concentration and the standard deviation for the measuring points on section
6, in the D6 case. Being the concentration a transported quantity, it is clear that
its measurements will be characterised by a greater variability compared to other
quantities, like for example the velocity. However, the �gure shows that in the
areas where the number of nodes and links is higher, this variability is comparable
with respect to the average value. In the border zones, instead, the variability is
greater than the average value.
For the density, there is an important di�erence between the concentration and
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Figure 6.7: Concentration, sect.6, xd = 3.90, analysis of time series elements
variability

the velocity. For the latter, being the number of nodes constant, the increase of
the links will also increase the density. For the concentration instead, since the
number of links and the numbers of nodes vary with the same law, the density is
kept about constant. In fact, observing both �g. 6.5 and �g. 6.6, it is noted that
the variation in the density is less than 1%.
Wishing to summarize the e�ect of the geometrical parameters on the metrics
examined here, it can be said that:

� The e�ect of the vertical coordinate z is predominantly localizable in the
time series structure. The dependence on z allows to highlight the areas
where the concentration has higher average values, less variability and less
corrections of the measurements during the data �ltering phase.

� The e�ect of the longitudinal coordinate x is clear. As the x coordinate
increases, the shape of the trends changes: it passes from simmetric parabolic
shapes to "half parabolas". This dependence is not present in the velocity
metrics. One can therefore a�rm that the dependence on the longitudinal
coordinate is linked to the interaction between the plume and the wall.

� The e�ect of the diameter is greater close to the nozzle, as already noted.

It is interesting to note that the metrics shown here refer to the concentration
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and not to the turbulent �uctuation of the concentration. So, the �uctuation with
respect to its average value. Given the use of the PCC, the same metrics can
be obtained for both the signals, measured signal and �uctuation signal. In fact,
given two EVs, subtracting the average concentration to both and then calculating
their PCC, the result is exactly equal to the one obtained without subtracting the
mean value. For this reason, it is not necessary to consider the concentration and
its turbulent �uctuation separately.

6.1.3 Analysis of the vertical turbulent transport time series

The vertical turbulent transport (VTT) metrics are now illustrated. These met-
rics have a peculiar characteristic, compared to the geometry of the wind tunnel.
Fig. 6.8 and �g. 6.9 represent the metrics obtained in the �rst and last section
examined.

Figure 6.8: VTT, sect.2, xd = 0.32, metrics for the study of time series

As shown in �g. 6.9, where the e�ect of the wall is perceptible, the metrics present
the same trends described for the concentration. Therefore, also for the VTT time
series, in section 5 and 6, it is possible to infer what has been described previously
for the concentration series.
In the �rst three sections, so for the horizontal coordinates in which the plume has
not yet interacted with the wall, the metrics present some di�erences with respect
to the concentration. The number of nodes is obviously the same, because the
EVs used for calculating the VTT networks are exactly those considered for the
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Figure 6.9: VTT, sect.6, xd = 3.90, metrics for the study of time series

concentration. Instead, the number of links has an opposite trend: for the vertical
coordinates close to the nozzle axis, the number of links is less than one present
in the plume edge. Below the nozzle axis, having a number of nodes growing and
a number of links decreasing, the density can only decrease. Opposite condition
occurs above the axis.
As described, the phenomenon is not convective. Therfore, the speed w has an high
variability compared to the average value, equal to zero. When the w �uctuations
are multiplied by the concentration �uctuations, even where these are reduced
(around the nozzle axis), the time series that is generated is extremely variable.
It does not exhibit many recurrences and so, imposing a correlation threshold
equal to 0.70, it is not possible to obtain a large number of connections within the
network.
The dependence of these metrics from the longitudinal coordinate x is therefore
double: it has an e�ect on the metrics shape and on their numerical values. It
should be noted that, unlike the previous signals (velocity and concentration), for
the VTT, the variations of the numerical values are larger. The number of links,
from section 2 to section 6, increases by an order of magnitude. To represent
these dependencies more clearly, �g. 6.10 and �g. 6.11 can be considered. They
represent the metrics obtained in the �ve di�erent sections. The left column refers
to the D3 case, while the right one to the D6.

The previous images show that, also for the VTT, the diameter e�ect decrease
moving away from the source.
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Figure 6.10: VTT, nodes and links, joint e�ect of the longitudinal and the vertical
coordinates

To con�rm the extreme variability of the VTT time series, it is possible to consider
the unconnected nodes trends. As already indicated above, the more this metric
is high, the more the EVs are dissimilar from each other. That is, the elements of
the time series tend to be very di�erent, thus lacking recurrences in the considered
signal. As shown in �g. 6.12, of all the signals analysed, the VTT is the one
that has the maximum number of unconnected nodes. Also for this metric the
behaviour is very dependent on the x coordinate. In the �rst three sections, even
near the nozzle axis where there is an high average concentration and where the
plume is stable, the variability of the velocity w prevails, and so the percentages
of unconnected nodes are very high. The 70% is exceeded in the second section.
These percentages are partly reduced in the last two sections, where the e�ect
of the wall occurs. The concentration accumulation due to the wall generates
particularly stable concentration time series and with reduced variability. These
characteristics of the concentration partially attenuate the VTT variability. This
is visible both through the number of nodes and links, that increase in the lower
part of the section, than through the percentage of unconnected nodes that is
clearly reduced compared to previous sections. This indicates a greater presence
of "recurrences" in the time series, or equivalently , EVs more similar to each other
and then connected through a link.
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Figure 6.11: VTT, density and average closen., joint e�ect of the longitudinal and
the vertical coordinates

Figure 6.12: VTT, unconnected nodes, joint e�ect of the longitudinal and the
vertical coordinates

6.2 Frequency of recurrences

As already described, the heart of the method used here consists in the study
of time series through the recurrences that are within them. Until now, through
two di�erent analyses, the PCC optimisation and the network metrics, important

102



6 � Optimized networks metrics analysis

information about the time series of interest has been obtained. The main fea-
tures illustrated are the series stability, to be understood as a limited variability
of the instantaneous values with respect to the average value, the in�uence of the
geometric parameters on the measured values, the interaction between the plume
and the wall and the transport of the passive scalar inside the plume.
Being the recurrences inside the series the pivotal point of the method, it is inter-
esting to evaluate how these are distributed. That is, considering these recurrence
as similar parts inside the time series, it is interesting to evaluate when they repeat
within the signals.
In order to evaluate the recurrences the following steps are considered:

1. Given a certain signal and �xing the embedding parameters equal to the opti-
mum ones previously identi�ed, the corresponding network and its adjacency
matrix are generated.

2. As illustrated in �g. 6.13, for each row, the relative intervals δij between
each recurrences in that row is identi�ed. Than, the average value of these
distances is de�ned. This value, for notation consistency, is indicated with
δij.

Figure 6.13: Distances between recurrences

Therefore, for each generated network, a vector containing the average dis-
tances δij evaluated in each row is obtained. This vector will therefore have
a number of elements equal to the network nodes.

3. To show the various distances obtained, so the vectors elements, their fre-
quency distributions can be represented. The range between the maximum
distance and the minimum (which is one, without considering the null ele-
ments) has been divided into small intervals. Then, the number of distances
in each intervals, compared to the total number of calculated distances in the
node, was assessed. In this way the percentage frequency has been de�ned.
Thus, graphs that show the frequency on the ordinate axis and the values of
the average distances δij on the abscissa have been created.
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The following sections show what has been achieved for the four analysed signals.

6.2.1 Concentration recurrences

Fig. 6.14 illustrates what has been obtained in section number 2, in the D3 case.
For each measuring point, that is, for each vertical coordinate, the corresponding
frequency pro�le has been shown. As it is possible to see, in the �rst part of
the graph, the curves tend to grow reaching a maximum, after which the curves
tend to decrease having the abscissa axis as an asymptote. The peak corresponds
to a distance of about 150-200 and is characterized by frequencies of about 15-
18%. This small variability depends on the vertical coordinate considered. Moving

Figure 6.14: Concentration, section 2, D3: recurrences frequency analysis

towards larger x-coordinates, similar trends to that on �g. 6.14 are found up to
section 4 included. But there are two important di�erences changing the section:

� the peak moves towards the left, so at smaller distances;

� the peak frequencies became bigger.

Instead, in sections 5 and 6 the curves have slightly di�erent trends. The �g.
6.15 illustrates what has been obtained in section 6. The growing initial part
disappears and the curves immediately have a peak followed by the decreasing
part. The peaks frequency distances are of about 50 and percentages over 50%.
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Figure 6.15: Concentration, section 6, D3: recurrences frequency analysis

The physical meaning of this analysis is completely in tune with was identi�ed
by the networks metrics studies. In fact, in the �rst sections, for vertical coordi-
nates close to the nozzle axis, there are concentration time series stable compared
to their average value. They are characterized by signal fragments that tend to
repeat at medium distances between each other. Moving away from the nozzle,
the intervals between these repetitions decrease. It can be said that, in sections 3
and 4, the e�ect of mixing ethane with air leads to a more homogeneous measured
signals. So, signals characterized to more recurrences gradually closer together,
that is, separated by a lower time interval.
In the last two sections, instead, the stabilizing e�ect is due to the wall: the concen-
tration accumulation around it. In these sections most of the signals recurrences
(peak values over 50%) are very close to each other. In fact, moving from section
2 to section 6, the peak distance is decreased by about 4 times.
The concentration metrics study had identi�ed, in the accumulation zones, time
series with high stability, with poor signals �ltering and characterized by a small
variability compared to the average value, this latter always increases moving to-
wards the wall. All these characteristics are perfectly in agree with the information
that is inferred from the recurrences study: series formed by very similar elements,
which tend to repeat themselves at short distances. Distances that do not depend
much on the vertical coordinate considered in a given section but, rather, from the
x-coordinate considered. That is, from the distances from the source.
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What has been reported here is the D3 case. By analyzing the 6 mm case, the
same results are found. The only di�erence is slightly larger peak percentages in
the �rst sections. Also here, as mentioned above, the e�ect of the diameter is
perceptible only in the initial sections. In the last two sections this parameter is
practically irrelevant.

6.2.2 Velocity u recurrences

In this section, the purpose is to analyze the velocity u signals with respect to
the recurrences. To do this, �g. 6.16 can be considered. It shows what has been
obtained in section 2, considering the 3 mm nozzle diameter. As it is possible to
see, the curves have an initial peak followed by a decreasing part.

Figure 6.16: Velocity u, section 2, D3: recurrences frequency analysis

Considering di�erent sections, very similar �gures and numerical values are ob-
tained. The e�ect of the diameter is also practically null. It can be inferred
that the velocity u time series, whatever the diameter or the measuring point
considered, will be characterized by a great quantity of recurences very close to
each others. A high stability of these signals was also detected studying networks
metrics.
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6.2.3 Velocity w recurrences

As far as velocity w, the obtained trends are much more similar to the concentration
ones than those of velocity u. Fig. 6.17 illustrates the curves obtained in section
2, for the D3 case. Even here it is possible to observe a �rst growing trend that
leads to a peak, followed by a decreasing part going asymptotically to zero. The
curves relative to di�erent vertical coordinates z have all the same trends but are
considerably less similar than in the case of velocity u. In fact, for this latter, the
di�erent curves were practically overlapping.

Figure 6.17: Velocity w, section 2, D3: recurrences frequency analysis

Moving from section 2 to section 4, the same trends are observed. The only
di�erence is in the peaks that have bigger percentages.
Slightly di�erent trends are observed in the last two sections: here, for measuring
points with zd > 1, the curves no longer have a maximum but have trends similar
to those of the velocity u and higher percentages respect to the measuring points
under the nozzle.
Even for this signal the diameter e�ect is a slight variation of the frequencies
observable mainly in the initial sections.

6.2.4 VTT recurrences

As mentioned above, the VTT time series are calculated from the concentration
and the velocity w signals in each measuring point. These series, therefore, re�ect
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in part the behaviour of the signals from which they derive. This is also observed
in the case of the recurrences frequency: there are very similar trends to those
obtained for the concentration and the velocity w. Fig. 6.18 illustrates the curves
obtained in section 2, for the D3 case. Obviously, since this signal derives from

Figure 6.18: VTT, section 2, D3: recurrences frequency analysis

the combination of turbulent �uctuations, it will have an intrinsic randomness.
This randomness can be observed in the peak that each curve present. In fact, the
maximum percentages do not exceed 5% in the �rst two sections, while is below
the 10% in the remaining sections. The peak distance is quite high, around 300 in
section 2. As the x-coordinate increases, this distance tends to decrease, but much
less than the signals from which the VTT derives, i.e. in section 6 it is around
100-120.
Therefore, there are similarities in the signal, but there are few (low percentages)
and very far (high peak distances). What is deduced from this analysis is entirely
appropriate with the randomness of this signal and in accordance with the features
illustrated by the networks metrics.

6.2.5 Recurrences in the time domain

As shown in the previous sections, the δij distance represents the distance between
two recurrences, and so, between two similar EVs. Using the frequency with which
the measurements have been made, 1000 Hz, it is possible to evaluate the distances
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in temporal terms. In fact, dividing the distances obtained by the measurement
frequency the temporal distances are obtained. Thus, in the preceding graphs, the
values on the abscissa axis can also be interpreted as a time distance expressed in
milli seconds.
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Chapter 7

Conclusions

This thesis illustrates the application of complex network theory to the study of
turbulent �ows. In particular, through the analysis of experimental time series,
the di�usion of a passive scalar within a completely developed turbulent boundary
layer has been investigated. The time series, and so the signals that characterize
the turbulent plume, have been �rstly analysed from a statistical point of view.
Then, these series have been transformed into complex networks using the Recur-
rence Networks approch, i.e. going to evaluate any similarities within the signals.
So, in the obtained networks, the nodes represent signal contiguous measurements.
Instead, the links represent the recurrences between nodes. The de�nition of the
embedded vectors distances in phase space, i.e. the similarities between the signal
parts, have been de�ned using two di�erent calculation methods: the Euclidean
norm and the Pearson correlation coe�cients. This aspect is interesting in order
to report the ways in which this thesis have been developed. The �nal elaborate
does not report chronologically all the calculations and all the tests executed. This
because, being a research thesis, to reach the results reported here, several ways
of proceeding have been followed before choosing which one to take de�nitively.
One example is the double calculation of the distance in the phases space, or the
various experimentations carried out to identify the embedding parameters to use,
rather than the tests to identify the most appropriate metrics. Once networks
have been obatained, their dependence from the embedding parameters has been
assessed in order to identify the optimum setting. The metrics of the "optimized"
networks have been studied in order to identify the signals characteristics, so in
order to characterize the di�usion within the analysed boundary layer.
The main results, divided in three macro-categories, are listed below:

1. SIGNALS STATISTICAL ANALYSIS
This section shows the main results related to the system geometry e�ects
on time series. So, their dependence on the nozzle size, on the distance from
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the source, on the vertical z -coordinate and on the measuring points relative
position respect to the wall. In fact, the geometry of the system has an
important e�ect on the signals structure and on their properties. The e�ect
of the wall on the concentration and on the longitudinal velocity u is em-
blematic. From section 4 (xd = 1.30) onwards, the interaction between the
plume and the wall creates a concentration accumulation adjacent to the wall
itself. It is interesting to observe that the average concentrations found in
this accumulation area are scarcely dependent on the source diameter value.
Opposite behavior compared to the average concentrations found in the �rst
sections. Here, doubling the diameter, the average concentrations are also
doubled. The diameter e�ect on the average concentration must not be mis-
lead: increasing the diameter does not increase the ethane di�usivity within
the �ow. The increase in the concentration signals that occurs doubling the
diameter is due to the simultaneous increase of the ethane �ow at the source.
In fact, normalizing concentration signals with respect to the ethane �ow at
the source, it is possible to observe that, whatever is the diameter considered,
the obtained plumes are characterised by comparable di�usive phenomena,
even in the initial sections.
The velocity u does not present any particular dependencies on the consid-
ered diameter and on the longitudinal x -coordinate. Instead, it depends on
the z -coordinate, so on the distance from the wall. Its e�ect is a friction
e�ect that generates vertical pro�les with parabolic shapes.
The statistical analysis carried out on the transverse velocity w signals con-
�rms that the phenomenon is non convective. This because, integrating an
average pro�le of this signal, a value close to zero can be obtained.

2. MODEL CALIBRATION ANDOPTIMUMPARAMETERS DEF-
INITION
This section shows the main results related to the model setting and on its
calibration, so the optimum embedding parameters de�nition. These latter,
i.e. the parameters that allow to build signi�cant networks compared to
the considered signals, are not known a priori. Therefore, to de�ne them,
networks structures and their metrics must be evaluated varying both the
constitutive parameters than the geometrical ones.
Using the same embedding parameters, the networks obtained with the Eu-
clidean norms and those obtained with the Pearson correlation coe�cients
have a di�erent structure. The former have adjacency matrices characterized
by extremely connected nodes. So few nodes with very high degree central-
ity. Instead, through the use of the correlation coe�cients, the unitary values
inside the matrices are distributed in a much more uniform way.
Obviously, networks with di�erent structures will also present metrics with
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di�erent trends. The networks obtained using the Euclidean norm have
metrics that oscillate around an average value. In fact, section by section,
considering the metrics vertical pro�les, constant graphs have been obtained.
Instead, the metrics pro�les obtained using correlation coe�cients tend to
trace more the physics of the problem, so highlighting for example the e�ect
of the nozzle size and of the wall for the concentration networks. From the
analyzed metrics it is also possible to observe that the shape of the pro�les
depends on the calculation method used (Euclidean norm or correlation co-
e�cients), while the numerical values depend on the embedding parameters
used. Therefore, for the study of the di�usion phenomenon analysed here, it
is advisable to use the Pearson correlation coe�cients and not the Euclidean
norm. Considering networks obtained using them, the embedded vectors size
m has a direct e�ect on the correlation coe�cients values. The more m is
small, the more high coe�cients values will be. Other parameters, such as
the delay τ , have a smaller e�ect on the correlations, while the e�ect of the
overlap is completely null. Then the embedding parameters can be set with
m = 50 and τ = 1, in order to optimize the Pearson correlation coe�cients
distributions. With regard to the overlap, it is preferable a null value of it.
This in order to improve the calculation time. To increase networks com-
parability, it is advisable to use a �xed threshold for the determination of
the adjacency matrix A and not an adaptive method such as the quantile at
95%.

3. NETWORKS METRICS AND TIME SERIES BEHAVIOUR
Once the optimum networks have been identi�ed, through the study of their
topology, information about the starting time series can be obtained. From
the velocity networks it is possible to observe that, �xed a given section, as
the z -coordinate increases, the number of nodes remains constant, while the
number of links increases. This means that, as the z -coordinate increases,
the velocities time series are more stable, so they will be characterized by less
variability with respect to the average value. That is, as the z -coordinate
increases, the standard deviation of the signals will decrease. Instead, the
distance from the source does not have an e�ect on the time series behaviour,
but on the numerical values of the metrics. This is due to the fact that the
motion �eld is "frozen", so it is �xed by the wind tunnel settings.
Observing concentration networks it is possible to see that the nodes tends to
follow the plume movement: in the �rst sections, the maximum of the nodes
is obtained for vertical coordinates close to the nozzle coordinate, whereas,
after the interaction between the plume and the wall, the maximum num-
ber of nodes is located near the wall. The same behaviour characterizes the
links trends. These metrics have an immediate physical meaning. Where the
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number of nodes and links are greater, there the concentration is stronger.
So the concentration time series will be characterized by a higher average
value, will present a lower variability (higher stability) and will be subjected
to a less signal �ltering. Metrics allow also to understand that the e�ects of
the geometrical parameters on the concentration time series is particularly
marked. The z -coordinate de�nes the stability of time series, to be under-
stood as a reduced variability with respect to the mean value. The vertical
coordinates at which the series are more stable depend on the longitudinal
x -coordinate considered. Moving away from the nozzle, these coordinates
tend to decrease. As already indicated for the average concentration, also
for the metrics, and therefore also for the characteristics of the time series,
the e�ect of the diameter is localized more in the �rst sections. Here the
nodes and links are greater in the D6 case. Moving away from the nozzle,
instead, the two diameters tend to have similar metrics. This means that,
in the �rst sections, the D6 concentration time series is less intermittent and
more stable.
For the study of the vertical turbulent transport it is necessary to observe
that these time series derive directly from those of the concentration and of
the w velocity, and so, from these series inherit its behaviour. As a result of
the interaction between the plume and the wall, the concentration behaviour
prevails over that of the velocity w and, in the accumulation zones, the ver-
tical turbulent transport signal is similar to that of the concentration. In
the �rst sections, instead, is the velocity w variability to characterize more
the time series of the vertical turbulent transport. In fact, when the w �uc-
tuations are multiplied by the concentration �uctuations, even where these
are reduced (around the nozzle axis), the time series that are generated are
extremely variable. They do not exhibit many recurrences and so, impos-
ing a correlation threshold equal to 0.70, it is not possible to obtain a large
number of connections within the network. Through the analysis of the dis-
tances between the recurrences, it is possible to obtain information about
the considered signals. In particular, by plotting the distances frequencies,
it is possible to perform a comparison between the turbulent vertical trans-
port and the other signals. The frequence curves have a peak that represents
the distance that is repeated more frequently within the signals. Obviously,
since this signal derives from the combination of turbulent �uctuations, it
will have an intrinsic randomness. This randomness can be observed in the
peak that each curve present. In fact, the maximum percentages do not
exceed 5% in the �rst two sections, while is below the 10% in the remaining
sections. The peak distance is quite high, around 300 in section 2. As the
x -coordinate increases, this distance tends to decrease, but much less than
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the signals from which the vertical turbulent transport derives, i.e. in section
6 it is around 100-120.
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List of acronyms

EV Embedded vector

OC Overlap case

PCC Pearson correlation coe�cient

RN Recurrence network

RP Recurrence plot

RQA Recurrence quantication analysis

TV T Turbolent vertical transport

WOC without overlap case
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