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Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that mainly a�ects
movement and compromises the quality of life. Motor �uctuations (alterna-
tion of ON and OFF states) usually appear after several years of levodopa
use. In particular, during the OFF state, one of the main problems are falls
and their possible consequences.

The aim of the study was to �nd a quantitative method for the patient's
motor assessment. In fact, the most used clinical scale, the MDS-UPDRS,
does not exhibit a great objectivity and reproducibility. Moreover, the neu-
rologist sees the patients only once or twice per year; this means that the
doctor cannot observe short-term variations of the pharmacological or surgi-
cal treatments typical in PD patients.

A routine patient monitoring could enable the neurologist to track the
evolution of the disease and adapt the drug posology. Di�culty in arising
from chair is an important sign associated with PD. 24 PD patients partic-
ipated in this thesis work. During the normal medical examination a 3-D
inertial sensor on their lower back was worn by the subjects.

This thesis work can be divided in two parts. In the �rst one, some
classi�ers have been employed in order to detect postural transitions (PT),
such as sit-to-stand (Si2S) and stand-to-sit (St2S). The aim of the second
part was to classify patients based on the UPDRS task �arise from chair�.
From the combination of three sub-optimal results, the classi�cation between
sit-to-stand and stand-to-sit reaches an accuracy of 96.3%. Then, a set of
features were extracted and a feature reduction was applied by means of PCA
in order to perform a multiclass classi�cation.
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Introduction

Parkinson's disease is a complex neurodegenerative disorder that presents
di�erent motor manifestations such as postural instability, tremor, bradyki-
nesia and freezing of gait. Those symptoms change with the course of the
disease, therefore the main goal of neurologists is to adapt medications ac-
cording to the needs of the patients. It is not an easy task because of some
issues. First of all, the clinical rating scales utilized in order to make a PD
evaluation rests, besides medical history, on observing and listening the pa-
tients. This means that the evaluation is based on a very short time frame
if we consider that a patient is visited only once or twice per year. Further-
more, physicians may rates di�erently similar manifestations depending on
their training and experience. It follows that the needs for objective evalu-
ation of patient symptoms is really important, especially beyond the short
meeting the physician and the patient. Recently, the quanti�cation of symp-
toms has been performed successfully by several research groups by utilizing
accelerometers and gyroscopes [1, 2, 3, 4].

This thesis is a component of a bigger project for developing an easier
and more objective tools for Parkinson's disease symptoms evaluation and
monitoring. The main goal of this thesis work is to �nd an appropriate model
for the identi�cation and quanti�cation of postural transition, in particular
stand-to-sit and sit-to-stand, in Parkinson's patients. Starting with very sim-
ple signals acquired form smartphone, after the data processing, the features
extracted were used to evaluate di�erent classi�cation algorithms comparing
their results to the task of arise from chair present in the Uni�ed Parkinson's
Disease Rating Scale (UPDRS).
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Thesis Organization

The structure of this thesis is outlined below:

Chapter 1 describes about Parkinson's disease, from its pathophysiology
to its medications and therapy.

Chapter 2 presents the working principles of the smartphone sensors used
in this work.

Chapter 3 summarizes the available data from Parkinson's disease, the
methods that were used during the acquisition sessions and the data analysis.

Chapter 4 illustrates the results obtained from the analysis and the clas-
si�cation processes.

Chapter 5 and 6 are devoted to discussion of the results, conclusions and
future works.
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Chapter 1

Parkinson's Disease

1.1 History and Epidemiology

Parkinson's disease is a progressive disorder of the nervous system that a�ects
both motor and non-motor systems. It is the second most common neurode-
generative disease in people aged over 60 years, second only to Alzheimer's
disease [5].

In 2015, the Global Burden of Disease Study estimated the PD a�ects
approximately 6.3 million people worldwide. In industrialized countries, the
prevalence of PD is about 0.3% , increasing to 1% over the age of 65 and
4% over 80. As the incidence of Parkinson's rises signi�cantly with age, and
people are living longer, the prevalence of Parkinson's is bound to increase
signi�cantly in the future. It is estimated that there may be nearly 13 million
people with Parkinson's by 2040 [6].

Parkinson's disease was described for the �rst time as a neurological syn-
drome by James Parkinson, an English doctor, in his famous treatise "An
Essay on the Shaking Palsy", published in 1817, as:

Involuntary tremulous motion, with lessened muscular power, in
parts not in action and even when supported; with a propensity to
bend the trunk forwards, and to pass from a walking to a running
pace: the senses and intellects being uninjured [7].

About 50 years later Jean-Martin Charcot illustrated more accurately the
PD clinical picture and named it Parkinson disease. Despite the illness was
widely described, until the middle of 1900's the pathophysiology and the
pharmacological therapy were almost unknown. In the late 1950s, the dis-
covery of the dopamine presence in the human brain, speci�cally in the corpus
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CHAPTER 1. PARKINSON'S DISEASE

striatum, lead to numerous studies for experimentation of drugs containing
levodopa, the precursor of dopamine [8].

1.2 Pathophysiology and Risk Factors

Dopamine plays a key role because, when its neuronal production starts to
decrease, the PD symptoms appears. Dopamine acts as a neurotransmitter,
a molecule released by neurons to send signals to other nerve cells.

Dopamine is secreted into the synapse, a cellular junction that allows the
communication among nerve cells. The synapse is made up of a presynaptic
membrane, containing the dopamine in the vesicles, a synaptic cleft, a gap
between the pre- and postsynaptic cells, and a postsynaptic membrane. The
presynaptic membrane releases the dopamine in the synaptic cleft; this latter
crosses the synapse and binds to the postsynaptic membrane, where it acti-
vates the dopamine receptors and the consequent triggering of postsynaptic
cell depolarization. A certain amount of dopamine may not be utilized and
it is absorbed back into the presynaptic cell for the next utilization.

The reduced level of dopamine is due to neuron degeneration in a speci�c
area called Substantia Nigra. The neurons in this region are responsible for
the coordination of the movements of human body. The death of those cells
causes a reduction of dopamine production jeopardizing the cells interaction;
as a consequence patients loss movement control, with slowed movement and
other abnormal movements [9].

Alpha-Synuclein is a protein that is linked genetically and neuropatho-
logically to PD. It may contribute to PD pathogenesis in di�erent ways,
but the factors that lead the aggregation of this protein and the death of
dopaminergic neurons in PD are not fully discovered [10].

Two unavoidable factors risk for PD are age and sex. Symptoms generally
become noticeable at the age of 60 years, in only 10% of cases they appear
earlier. Men seems to have a 50% higher probability of developing PD than
women. However, when we talk about PD factors risk, we need to consider a
more complex situation in which genetic features and lifestyle exposure can
in�uence the outbreak of the disease. When a young person (below 40 years
old) that shows PD symptoms, most likely it is a familiar disease, caused by
genetic factors.
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CHAPTER 1. PARKINSON'S DISEASE

1.3 Symptoms

There are some main manifestations (motor signs) that characterize PD:
bradykinesia, tremor, rigidity, postural instability to whom secondary non-
motor symptoms are associated such as neuropsychology, perceptive and
sleep disorder. The four principal motor symptoms are:

• Bradykynesia and akinesia: it is a condition where a person exhibits
general slowed movements or cannot move their muscles as they wish.
This represents one of the most annoying symptoms for the patients.
They often report associated muscular weakness, di�cult to make daily
activities and inability to initiate the movement.

• Rest tremor: it is a movement disorder that consists in involuntary
and rhythmic oscillation, at a frequency of approximately 4-6 Hz, of one
or more parts of the body (hands, arms, legs, face and jaw). It is one of
the most evident symptoms, but actually, it is not the most meaningful:
about the 30% of the patients do not have it. It is important to make
a distinction between typical tremor of PD and essential tremor, a
common form of tremor that may be confused with Parkinson's tremor.
On the one hand, the essential tremor is triggered by the beginning of a
movement, on the other hand, the Parkinson's tremor is more evident
during the rest and improves with intentional movement [11].

• Rigidity: it is an involuntary increase of the muscular tone in a limb,
neck or torso. A reduced arm swing during walking is signal of rigidity;
other symptoms are di�cult turning during walking or in bed, stand up
from a chair and a reduced facial expression. At the beginning, rigidity
is often asymmetrical in just one side of the body.

• Postural instability: maintaining a balance might be di�cult be-
cause of alterations of postural re�ex and balance, therefore the patient
is no more able to spontaneously correct possible imbalance. The pos-
tural instability is evident especially while walking, change of direction
or when the patient is walking and he/she wants to do another task as
looking a shop window or grabbing something from a shelf. Probably,
it is the most perilous symptom because of the increased risk of falls.

Rest tremor, bradykynesia and rigidity are generally the �rst signs of the
disease. On the other hand, postural instability is a late sign and it emerges
typically after several years into the disease [12]. Moreover, the PD posture
is combined with lateral bending of the trunk with a tendency to lean to
one side, called "Pisa's syndrome" [13]. PD walking is characterized by slow,
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CHAPTER 1. PARKINSON'S DISEASE

short steps in both length and height. In individuals with several years of
disease, festination episodes might occur, a gait in which the patient drags the
feet and speed up the step. Another phenomenon is the so-called "freezing",
a sudden motor block of the gait.

In the last decade, a greater priority has been given to non-motor signs
because of they are not only detectable in the disease progression, but also
sometimes they precede the motor symptoms:

• Olfactory impairment: most of the patients(above 90%) report ol-
factory impairment that may appear several years before the �rst motor
manifestations[14]. Although this may be due to a damage of the pe-
ripheral olfactory system, actually, it is associated to a central harm
[15];

• Orthostatic hypotension: after a postural change, Orthostatic hy-
potension is due to incorrect attempts of the autonomic nervous system
to regulate blood pressure. Prevalence can reach the 60%, but only 30%
is symptomatic, with dizziness limiting daily activity and lead to falls
[16];

• Dysphagia: more than 80% of PD patients develop dysphagia during
the course of the disease. Swallowing di�culty reduces quality of life,
complicates medication intake and leads to malnutrition and aspiration
pneumonia, which is a major cause of death in PD[17];

• Sleep disorder: it is one of the most common non-motor sign of
PD, about 90% and increase in advanced stages of the disease. Some
sleep disorders like REM sleep behavior disorder (RBD) may lead sev-
eral injurious movements that can hurt people around the patients like
caregivers [18].

Depression, constipation, sexual dysfunction, hypersalivation, speech
problems, sweating, fatigue and hallucinations are other signi�cant non-
motors manifestation [19].

1.4 Diagnosis

No speci�c test exists to diagnose Parkinson's disease with absolute certainty.
The diagnosis is based on a neurological visit, where the neurologist evaluates
the medical history of the patient and performs a neurological test. Because
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CHAPTER 1. PARKINSON'S DISEASE

of the di�culty to diagnose the disease, especially in the early stage, a func-
tional neuroimaging technique is typically performed such as SPECT (Single
Photon Emission Computed Tomography) or PET (Positron Emission To-
mography). DaTscan is the brand name of a type of SPECT imaging using
123I-Io�upane, a tracer able to bind to the DAT(dopamine transporter); con-
sequently this bonds can be observed through the SPECT imaging. If there
is a loss of this type of cell, it can be visualized in the images through this
technique.

It has been proven that the DaTscan is the most sensitive technique for
PD diagnosis and allows di�erentiation of Parkinsonism with nigrostriatal
degeneration from Parkinsonism without loss of dopaminergic terminals[20].
DAT normally helps to reabsorb dopamine from the synaptic cleft in the
presynaptic membrane, but in patients with PD they are reduced 50%-
70%[21].

1.5 Pharmacological therapy

Although no available therapies can modify the neurodegenerative process,
symptomatic therapies can improve the patients quality of life for many
years[22]. Controlling manifestations and symptoms while minimizing side
e�ects is the aim of medical treatment of PD.

Levodopa is the mainly medication for Parkinson's disease. It is the
precursor of the neurotransmitter dopamine and it is able to cross the blood-
brain barrier and then it is quickly metabolized in dopamine in the brain,
restoring its correct level. Dopamine itself is not e�ective as a medication
because it cannot cross the blood-brain barrier. Since the dopamine at pe-
ripheral level has not therapeutic e�ects, but on the contrary it has several
side e�ects, the Levodopa bloodstream conversion is inhibited through the
contemporary administration of carbidopa in order that a greater amount of
the drug can reach the brain. Consequently, a smaller dose of levodopa can
be administered.

The most known combination of levodopa/carbidopa is called Sinemet R©,
but there are several preparations of this mix on the market: Rytary R©, a set
of beads that release the mix at di�erent speeds as they are dissolved in the
stomach; Parcopa R©, a formulation that dissolves in the mouth without water;
Stalevo R©, a mixture with also the COMT inhibitor entacapone; the latest
drug is Ongentys R©, a special mixed with the enzyme inhibitor opicapone.
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CHAPTER 1. PARKINSON'S DISEASE

A di�erent way to deliver levodopa is DuopaTM, a mixture of carbidopa
and levodopa in a suspension, delivered through a pump directly into the
small intestine bypassing the stomach. It is recommended for patients with
an advanced Parkinson's who still respond e�ectively to carbidopa-levodopa,
but have many �uctuations. It allows a continuous infusion over 16 hours,
so reducing motor �uctuations. DuopaTMcan be also a good option for PD
patients with dysphagia. The main drawbacks are due to the tube placement
that can cause infection at the insertion point, bleeding in the small intestine,
dislocation or some obstruction[23].

1.6 Surgical treatment

The pharmacological treatment in the �rst phase of the disease is very e�ec-
tive, but because of the progressively worsening of the illness and the com-
plications due to the prolonged use such as motor �uctuation and involun-
tary movement (dyskinesia), levodopa progressively loses his e�ectiveness[24].
Motor �uctuations are alterations between periods of being "on," during
which the patient experiences a positive response to medication, and being
"o�," during which the patient have again the Parkinson symptoms sup-
pressed during the "on" state[24].

Deep brain stimulation (DBS) is a neurosurgical procedure that consists
in the implantation of two leads into the brain in a speci�c area for reducing
motor symptoms of PD. The brain spot where to put the de�nitive wire is
localized through neurophysiological and clinical tests. Moreover, the Im-
plantable Pulse Generator (IPG) is implanted under the skin in the abdom-
inal region or just below the collarbone. Its aim is to improve the operation
of the motor pathways and hence improving the PD clinical situation by di-
recting a burst of electrical energy into the electrodes placed in the brain.
Each lead contains four electrodes and the DBS can work in monopolar stim-
ulation if only one electrode is turned on, or in bipolar stimulation if more
than one electrodes are working.

Only 10% of PD population is suitable for this kind of implantation.
In fact, this treatment is recommended only for a small group of PD pa-
tients with certain characteristics. For example, there must be no surgical
contraindications, the pharmacological therapy must be no actually able to
control the symptoms, few comorbidities must be present, the patient must
be motivated and not exhibiting of psychiatric disorders[25]. Generally, great
results and clear improvements can be noticed just in a few days from the
implantation.
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CHAPTER 1. PARKINSON'S DISEASE

1.7 The Uni�ed Parkinson's Disease Rating

Scale (UPDRS)

The UPDRS (Uni�ed Parkinson's Disease Rating Scale), presented in 1987,
is a system for the evaluation of PD symptoms. In 2003 the Movement Disor-
der Society (MDS) produced new version, MDS-sponsored UPDRS revision
(MDS-UPDRS). It maintains the overall format but it solves some ambigui-
ties and weakness such as the lack of important clinical impairments related
to PD.

The MDS-UPDRS is made up of four section: Section I (Non-motor expe-
riences of daily living), Section II (Motor experiences of daily living), Section
III (Motor examination), Section IV (Motor complications).

Section I is subdivided in two parts: in section IA, the investigator eval-
uates some behavioral aspect from an interview with the patient or the care-
giver; the patients �ll in section IB, like section II, with or without the
caregiver's help, but independently of the investigator. However, these two
last sections can be reviewed by the investigator to make sure that they are
completed and easy to understand. The investigator also can explain any
possible ambiguities.

Section III contains instructions of speci�c task in order to complete the
PD assessment that the investigator provides to the patients.This section is
completed by the examiner.

In conclusion, for Section IV the investigator is required to conduct the
interview. There are 42 questions, with a score form 0 to 4:

• 0 - Normal: no problem for that speci�c task;

• 1 - Slight: symptomatology with low frequency or intensity that does
not cause any impact in daily living;

• 2 - Mild: symptomatology with su�cient frequency or intensity to
cause a modest impact in daily living;

• 3 - Moderate: symptomatology with su�cient frequency or intensity
to cause an important impact in daily living, but does not prevent the
function;

• 4 - Severe: symptomatology prevent the function.

The UPDRS allows to obtain a numerical evaluation enabling a compari-
son of the same patients during the years and tracking the illness developing.
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CHAPTER 1. PARKINSON'S DISEASE

A score equal to zero means that the patients can perform all the daily tasks
without di�culty, otherwise the larger the score, more severe is the disease
advancement.

1.8 Sit to stand evaluation: Arising From

Chair

Arising from a chair is a task in Section III to perform motor evaluation, in
particular evaluate the strength of lower limb. It is similar to the general task
Sit to Stand (Si2S), utilized not only for PD, but also for general medical
evaluation of legs. The patients sit down comfortably in a chair, with both
the feet in the ground, the spine leans to the back of the chair. Ask the
patient to cross his arms and then to stand up. According to the guidelines
of the Movement Disorder Society this task must be evaluated observing the
following parameters: speed of execution, attempts, moving forward in the
chair, pushing the arms of the chair.
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Chapter 2

Smartphone inertial sensors

Introduction

Nowadays, the technology improvements, in particular the miniaturization,
have allowed to make wearable many devices. In this way, technology can
reach the personal life of the people.

Smartphones are the wearable devices most utilized because practically
every person owns at least one. Among the uses, the most important are
certainly motion tracking and movement recognition applications. Motion
tracking can be performed at di�erent scales: from low precision tracking
in closed buildings or navigation, to high precision tracking of �ne measure-
ments of human body movement[26]. Smartphones are undoubtedly part
of our daily life. They are equipped with several sensors that allow to re-
trieve information about the world around them. The �rst sensors installed
and the most important are accelerometers and gyroscopes which measure
accelerations and angular velocity, respectively.

There are several examples in literature about smartphone utilization
for monitoring people. First of all, GPS data are passively collected with
smartphone, and this introduces new opportunities to monitor Schizophrenic
Patients and Alzheimer disease patients[27]. Another example can be smart-
phone use for gait monitoring and balance rehabilitation training in clinical
and home environments[28]. A major health hazard for both the elderly
and people with neurodegenerative diseases is surely falls. In order to con-
tain the serious consequences of falling, a great deal of research has been
conducted, and some of them are based on smartphone sensors[29]. Other
solutions available through smartphone are the FOG detection system in PD
patients[30].
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CHAPTER 2. SMARTPHONE INERTIAL SENSORS

Figure 2.1: MEMS accelerometer.

Microelectromechanical systems (MEMS) is the technology of microscopic
devices (range from 20 micrometres to one millimetres), particularly those
with moving parts. Only at the end of '60s MEMS became practical once mi-
crofabrication techniques such as molding, plating and etching, developed.
MEMS are making signi�cant progress towards high performance and low
power consumption. They are able to detect and consequently respond to
many variables such as pressure, �ow, position, motion and strain[31]. In
the bioengineering �eld, MEMS applications can be from Lab-On-Chip to
MicroTotalAnalysis (biosensor, chemosensor), or embedded in medical de-
vices. Wearability is facilitated by the small size of the MEMS, and com-
bined to a wireless communication, it allows the realization of a telemedicine
platform[32].

An overview of MEMS accelerometers and gyroscopes technology and
their operating principle are provided in this chapter.

2.1 MEMS Accelerometer

An accelerometer is a device that measures proper acceleration. It is not the
same as coordinate acceleration, being the acceleration in a �xed coordinate
system, but it is the acceleration of a body in its own instantaneous rest
frame. For example, an accelerometer at rest on the surface of the Earth will
measure an acceleration due to Earth's gravity, straight upwards of g = 9.81
m/s2. By contrast, accelerometers in free fall (falling toward the center of
the Earth at a rate of about 9.81 m/s2) will measure zero.

Modern accelerometers are MEMS. The basic principle is simple: dis-
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CHAPTER 2. SMARTPHONE INERTIAL SENSORS

placement measurement of a damped mass on a spring during acceleration.
When an acceleration is applied to the accelerometer, the mass is displaced
to the point that the spring is able to accelerate the mass at the same rate as
the outer shell. The displacement is then measured to yield the acceleration.
There are usually a set of �xed beams and a set beams attached to the proof
mass that measure the capacitance between them.

2.2 MEMS Gyroscope

MEMS gyroscopes measures angular rate through the Coriolis force. It is a
�ctitious force that appears when a mass (m) is moving in direction v and
angular rotation velocity (omega) is applied. As shown in Figure 2.2, the
mass will experience a force in the direction of the arrow as a result of the
Coriolis force. Viewed from the frame of the moving plane, the mass seems
to move in a curved path; on the contrary, if the mass is observed from the
inertial reference frame, it moves in rectilinear motion. For this reason this
kind of force is called a �ctitious or inertial force.

(a) (b)

Figure 2.2: Coriolis force (a) and de�ection due to Coriolis e�ect (b).

2.3 Sensor Log App

There are a lot of applications for retrieval data in order to perform post
process analysis.Sensor Log (Google Commerce, Ltd.) is the application
that we used to collect accelerometer and gyroscope data. This application
is developed to ease the process of collecting and labeling sensory data from
smartphones. This application is developed to ease the process of collecting
and labeling sensory data from smartphones.
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Figure 2.3: Smartphone rotation asses.
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Chapter 3

Materials and methods

3.1 Data collection

This study utilizes the data of 24 patients collected between October and
December 2018 in the Parkinson's disease and movement disorders Centre at
Molinette Hospital, Turin (Italy). Clinical diagnosis of Parkinson's Disease
with motor symptoms has been considered as inclusion criteria. Subjects
with record of cerebrovascular problems or prosthesis at lower limbs were
discarded because this can have an in�uence on the motor task. A general
overview about PD population used in this thesis work is shown in Table 3.1

Table 3.1: Characteristics of PD patients.

Number of
patients

Mean age
(years ± SD)

Years
from PD diagnosis

24 (54.2% male) 72.4 ± 9.2 6.1 ± 4

During the visit in the clinic, a smartphone (Samsung Galaxy S5 mini)
was placed through a belt in the lower back so that the device was near to
the person's center of gravity. This position should enable patients to wear
the sensor in a comfortable way allowing to detect di�erent motor symptoms.
According to the literature, waist is considered the best position in terms of
information to estimate human motion parameters based on a single sensor
[33].

The physician conducted the visit as he/she usual perform it, adding
only a couple of simple tasks such as taking a book from a shelf and washing

15
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their hands. This was performed in order to simulate activity of daily living
(ADL). Fig. 3.1 illustrate how the smartphone was worn by patients.

Figure 3.1: Smartphone position and axis orientation adopted during the exam-

ination.

The collected data were the three components of angular velocity and
acceleration acquired through the app Sensor Log. This exhibits a very user-
friendly interface, and you can add an "activity" button with all the sensors
are expected to be useful. The data were exported in csv format, then were
processed o�ine in MATLAB version R2018b.

Figure 3.2: Number of repetitions for St2S and Si2S according the UPDRS task

arise from chair.
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As can be seen in Fig. 3.2, there are a low number of repetitions for
UPDRS 3, especially for St2S. Consequently, class 3 will not be considered
in this thesis project.

3.2 Pre-processing

3.2.1 Calibration

The smartphone is not always placed exactly in the same way during the
acquisition of the signals in patients. There could be some di�erences in the
inclination of the device due to the patient's posture that can increase the
variability. At the basis of calibration, there is the idea that when a person
is naturally standing still, the gravitational acceleration (g) is completely in
the vertical axis. So, we look at 10 seconds of user standing, and perform
the redistribution of the acceleration on only the vertical axis by applying a
quaternion rotation transformation as described in [34].

Figure 3.3: Di�erences between signals before and after calibration.
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Figure 3.4: Example of angular velocity, pitch and roll.

3.2.2 Derived signals

Bias has been removed from angular velocity around traversal axis (AVy),
through imufilter System object R© , a Matlab tool that fuses accelerom-
eter and gyroscope sensor data to estimate angular velocity and device ori-
entation. Roll (tilt angle waist towards left or right), and pitch (tilt angle
waist forward or backward) were calculated following the formula presented
in [35], obtaining angles in degrees:

θroll = tan-1

(
−aml

av

)
(3.1)

θpitch = tan-1

 −av√
a2ap + a2ml

 (3.2)

where, aml, av and aap are the accelerations along the medio-lateral, ver-
tical and antero-posterior axes of the accelerometer, respectively.
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3.3 Wavelet transform

Before running the algorithm to detect Postural transition (PT), and the
di�erentiation between sit-to-stand (Si2S) and stand-to-sit (St2S), some pre-
processing was needed.

Hardly any biological or human signals is comparable to a stationary
process because the parameters change during the time, and therefore also
the spectrum. These changes are often the most interesting parts of the data
in terms of the information they provide [36].

The Fourier transform is a powerful tool for data analysis, but it does not
represent changes e�ciently. In fact, in Fourier transform analysis data are
represented as sum of sine waves, which are not localized in time or space.
Those sine waves oscillate forever. Therefore, to accurately analyze signals
that have abrupt changes, we need to use a new class of functions that are
well localized in time and frequency: the Wavelet transform.

Figure 3.5: Example of scalogram where �ve PT events are highlighted.

The Wavelet transform was introduced by Morlet and Grossmann as a
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method to obtain time frequency analysis of a signal [37]. It allows to analyze
the signal in both the time and frequency domains, thus, in term of time-
frequency localization, it permits to handle events that can be at opposite
extremes. Thanks to time localization, a drift in a signal can be isolated while
important high-frequency transients are preserved [38]. Fig. 3.5 shows an
example of scalogram, which represents the absolute value of the continuous
wavelet transform obtained with the MATLAB function cwt.

A wavelet is wave-like oscillation that has zero mean which is utilized
for the representation of a signal. Unlike sinusoids, which extend to in�nity,
a wavelet exists for a �nite duration. This makes this technique especially
suitable for the analysis of non-stationary signals such as human motion
signals [36].

Furthermore, Wavelet transform allows the use of a suitable basic func-
tion, which is more similar to the PT pattern. For this reason, a Morse
wavelet has been chosen.

PT are in the frequency band 0.04-0.68 Hz [39], therefore a passband
�lter was applied by using the continuous wavelet transform with the analytic
Morse wavelet; the range of passband is 0.03-1Hz;

3.4 Detection of Postural Transition

In this section the algorithm to detect PT is described, initially without
distinguishing between Si2S from St2S. The steps are as follows:

• the �ltered signal was normalized between -1 and 1 m/s2;

• peaks above a certain threshold (th = 0.395) are localized in the Aap

signal;

• peaks are reported in the AVy;

• the start and the end of each single event are looked for.

An higher value of Th increases the false positive (an event that is not a PT
is marked as PT), on the other hand a lower value raises the false negative
(an event that is a PT is not marked as PT). The th = 0.395 is chosen in
order to minimize both false positive and false negative.

Si2S and St2S can be both divided in two phases: the preparation of the
movement, and the real execution.
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Figure 3.6: Example of Si2S and St2S detection. The red points are the start and

the end of the S2S, the blue point is the maximum of the acceleration,

and the black point is the MD point

The starting point is detected when there is a change in AVy caused by
leaning forward as the individual prepares to perform the movement. The
�rst phase terminate just before the moment when the AVy takes on an
opposite direction, and the inversion of direction is the mid point (MD) that
divide into two part the PT.

When the subject comes back to the upright position, the postural tran-
sition is characterized by a negative angular velocity. The AVy reaches the
minimum, and then increases back to zero. The time when it becomes posi-
tive is considered the end of the lift up phase and the end of the PT[40]. In
�gure 3.6 there is an example of a consecutive Si2S and St2S event and their
related marked points.

3.5 Distinction between Si2S and St2S

Once the general detection has been performed, the postural transition must
be analyzed. Three di�erent classi�ers have been utilized with a good, yet
sub-optimal accuracy, whose combined output will give the �nal classi�cation
with a better accuracy.
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3.5.1 Decision Tree classi�cation

The �rst classi�er implemented is a decision tree. The three accelerations are
lowpass �ltered with cut o� frequency at 40 Hz because it is the frequency
recommended to study human motion[41]. Then the derivative of the vertical
acceleration is calculated (a'v).

The features to be input to the classi�er are aap and M =√
a2ap + a2ml + a2v, which is the resultant magnitude of three acceleration axes.

Not the whole signals are given as input, but a threshold sets the period that
will be examined. The period to be analyzed includes tr,...,ts and is given
by:

∀ti ∈ tr, ..., ts|a′v| > DT (3.3)

where DT is the threshold and it is set as [41]

DT = 0.3|a′v| (3.4)

M and aap are low-pass �ltered with cut o� frequency at 0.8 Hz by using
yulewalk for design recursive IIR digital �lters and then �ltering through
the function filtfilt.

3.5.2 Magnitude vector classi�cation

By observing the magnitude signal, the following di�erence was noticed:

M(imax) ≥M(iend) (3.5)

M(imax) < M(iend) (3.6)

E1q. 3.5 refers to St2S, whereas the formula 3.6 is related to Si2S. Fig. 3.7
shows the relationship just described.

3.5.3 Post walk classi�cation

Each PT event is compared with the nearest walk event and PT position.
For example, if before a PT event there is a walk detection, and after there
is another PT event, then that speci�c one will mark as St2S. Otherwise, if
a PT episode is preceded by another one, and followed by a walk event, it
will assigned a Si2S label.
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Figure 3.7: Signals marked as sit down (Si2S) or stand up (St2S) according to

magnitude vector classi�cation

3.5.4 Final classi�cation

The output of the classi�ers developed has been put together by hard voting,
the simplest case of majority voting. In hard voting, the �nal class label will
be the class label that has been predicted most frequently by the classi�cation
models. Assuming that we combine three classi�ers that classify a training
sample as follows:

• classi�er 1 -> 1

• classi�er 2 -> 2

• classi�er 3 -> 1

Via majority vote, we would classify the sample as "class 1."

3.6 De�ned features

In this section are described the features utilized for discriminate the patients
according to their UPDRS score in the task "arise from chair". Both tem-
poral and frequency features are analyzed. Three frequency ranges has been
investigated: 0.04-0.68Hz, 0.68-4Hz, 4-12Hz, that are respectively the pos-
tural transition band, the voluntary movements band, and the tremor band
[42]. Each parameter is obtained for the three acceleration components.
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3.6.1 Duration

The duration is the time in seconds where a signal is actually present. It is
simply the time between the start and the end of the single task. Obviously
it is determined just once and for all:

∆t = aap(end)− aap(start) (3.7)

3.6.2 Range

The amplitude range during the S2S time interval is given by:

r = max(x[n])−min(x[n]) (3.8)

where n = 1,2,...,N is the sample index and x is the acceleration.

3.6.3 Jerk

Jerk is the acceleration derivative; it has been considered because it should
be a good descriptor for the amount of movement. Its expression is given by:

J =
N∑

n=1

an+1 − an
∆t

(3.9)

Taking a cue from [4], jerk and range features were calculated also for the

two phases of S2S described above. The features related to the �rst part are
rangeA and jerkA, those related to the second one are rangeB and jerkB.

3.6.4 Number of hesitations

The number of hesitations, de�ned as peaks in the signal, can describe how
many attempts or blocks can occur during the S2S. This might be an im-
portant parameter for evaluating the di�culty that a patient can have. The
ready-made function findpeaks of MATLAB was utilized to �nd the peaks,
then through the length function, the number of hesitations was calculated.

3.6.5 Power percentage

A frequency analysis is required to extract features from the frequency do-
main by estimating the power spectral density (PSD) of signals.
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There are several ways to make an estimation of PSD, we have chosen
the Welch's periodogram. A discrete window function is applied to divide
the signal into segments in order to reduce spectral leakage. A rectangular
window is chosen because, even if is not the best choice for spectral leakage, it
leads a better resolution because of its narrower main lobe. In fact, working
in frequency range of mHz, the main problem is resolution. Lastly, an overlap
of 50% between segments is allowed. The Matlab function pwelch has been
used.

The three frequency ranges are deeper investigated by dividing them in
four or �ve sub-band. The aim is to determine what is the weight for each
sub-band related to its reference band. Table 3.2 shows the number and the
division of the the frequencies range analyzed.

Table 3.2: List of sub-band used for power percentage features.

Reference Band 0.04-0.68 0.68-4 4-12

sub-band n.1 0.04-0.2 0.68-1 4-5.5
sub-band n.2 0.2-0.35 1-2 5.5-7
sub-band n.3 0.35-0.5 2-3 7-8.5
sub-band n.4 0.5-0.68 3-4 8.5-10
sub-band n.5 / / 10-12

3.6.6 Dominant Frequency

The dominant frequency and its derived parameters have been used in several
studies like in Patel et al. [2] and Bonato et al. [1] for accelerometer mea-
surements in PD application. The dominant frequency fdom is the frequency
for which the PSD P (f) is the largest, and it was found through the Matlab
function max. The features derived from the dominant frequency utilized in
this thesis are:

• Ratio of dominant frequency power to total

• Dominant Width calculated with the function findpeaks of MATLAB
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3.6.7 Spectrogram standard deviation

For a random variable vector as PSD made up of N scalar observations, the
standard deviation is de�ned as

S =

√√√√ 1

N − 1

N∑
i=1

|PSDi − µ|2, (3.10)

where µ is the mean value of PSD:

µ =
1

N

N∑
i=1

PSDi (3.11)

The standard deviation is helpful to quantify the amount of dispersion
of the power spectrum. A low standard deviation denotes that the data
points tend to be close to the mean, so a narrow spectrum, vice versa a high
standard deviation indicates that the data points are spread out a wider
range of values, then a wide spectrum.

3.6.8 Number of harmonics

The number of harmonics is a parameter that count the peaks in the spec-
trum. Findpeaks was used to detect the peaks by setting the parameters
MinPeakHeight at 0.2 times the spectrum maximum, and MinPeakDistance
at 0.8 times the width of the principal harmonic. They respectively allows
to �nd harmonics with a certain intensity and well spaced out.

3.6.9 Total Area of Harmonics

The total Area of Harmonics is an approximate calculation of the area of all
harmonics detected as described in the previous subsection. The formula is
the following

N∑
i=1

hi ∗ wi, (3.12)

where N is the number of harmonics detected, h and w are respectively the
intensity and the width of the harmonic.
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3.7 Machine learning algorithms

Machine learning (ML) is a �eld of arti�cial intelligence (AI) that gives to
computer the ability to learn from experience and then produces a model
able to make previsions. Learning is the process to extract knowledge from
experience. In particular, pattern recognition is the capability to recognize
patterns inside the data. A pattern is a regular sequence of data subset
whose elements are somehow predictable. ML is the study of algorithms
that improve their performance through experience with respect to a speci�c
goal[43].

The main types of machine learning are unsupervised learning and su-
pervised learning. The �rst one deals with unlabeled data or with unknown
structure. The algorithm explores the data structure without the guidance
of a labeled training in order to �nd patterns. Otherwise the supervised
learning is based on labeled input necessary to build the classi�er. In this
thesis the latter one has been used.

Supervised learning is divided in two main phases:

• training phase needed to teach the algorithm how to understand the
data for a speci�c goal;

• test phase to understand how much the model is accurate and robust.

There are di�erent approaches used for evaluating the performance of a
trained model. One of the most common is dividing the data set in a training
set and a test set. A large data set is necessary to reach statistical signi�-
cance, but often, in clinical world, there are not many data. The data set
available in this project is quite limited, so another validation method has
been chosen: the cross validation method.

The k-fold cross-validation divides the data set in k number of folds with
the same size. The procedure consists in k iterations in which, at each iter-
ations, k-1 folds are used as training sets, and the last one as the test set.
At each iteration, the fold for the test set is di�erent. The advantage of this
model is a virtual enlargement of our training set because of the repeated
random sub-sampling.

The machine learning techniques used in this thesis work are brie�y de-
scribed in the following paragraphs.
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3.7.1 Decision Tree

The classi�cation system has a tree structure. The root is the input classi-
�er, internal nodes are tests and leaf nodes are the terminal pointss which
represent class labels.

The prediction process begins from the root, where the value of the root
feature is compared with the vector feature. Based on the outcome of the
node, a branch follows in order to jump to the next node. A decision role
is implemented in the nodes based on one or more attributes of the feature
vector. The tests are performed until the process reaches the leaf node, and
so the class value is predicted [44].

The MATLAB function fitctree was used to get a decision tree learner
template and build the model.

3.7.2 Support Vector Machine (SVM)

Support Vector Machine is a supervised learning model that can be used both
for classi�cation and regression problem. Initially, it has been designed to
solve binary classi�cation, but its use has been extended also for multiclass
problems.

SVM is based on the idea to �nd an hyperplane that divides the data
set in two classes at the maximum distance [45]. The support vectors, the
points nearest to the hyperplane, are the data most important dot because
the position of the hyperplane depends only on this point. The aim of the
algorithm is to leave from the hyperplane the support vector at maximum
distance [46].

A multiclass problem is approached generally by combining several binary
SVM classi�ers, each of them solving a sub-problem of the original multi-class
classi�cation problem.

The functions templateSVM and ficecoc implement a SVM classi�er in
MATLAB software.

3.7.3 K-nearest neighbor classi�er (KNN)

The K-nearest neighbor classi�er is a non-parametric method used for both
classi�cation and regression predictive problems. The algorithm assumes
that the data are placed in the so-called feature space, consequently the data
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points have the concept of distance. Since it does not make any assumptions
on the data distribution, it is a non parametric algorithm [47].

The distance is computed between the new data point and all the samples
of the training set. The algorithm assigns the class of the nearest point, that
represents the neighbourhood, to the new sample. It can be extended by
considering more samples as neighbourhood and computing the majority
voting among the nearest neighbors [47].

It is very easy to implement because it requires only the number of neigh-
bors k, the distance metric and the training data set. Its limitations is the
choice of k parameter because of the classi�er is very sensitive to this pa-
rameter. As general rule, a large value of k extends the neighborhood to the
domain of other categories, while a small value may introduce noise. The
built-in function fitcknn has been used for training the classi�er.

3.7.4 Linear Discriminant Analysis (LDA)

Linear discriminant analysis is a classi�cation dimensionality reduction
method useful in determining whether a data set is e�ective in predicting
class label [48].

Since it works by searching for a linear combinations of features which
best represent the data, it is strictly related to Principal Component Analysis.

The Matlab function fitcdiscr is used to make a classi�er besed on
LDA, setting the parameters DiscrimType as Linear.

3.8 Feature reduction

Often a classi�cation problem is characterized by a huge number of features
that can lead to a slower process and may introduce noise. The feature
reduction speeds up the processing and reduces noise. There are two main
approaches:

• Feature selection, consisting in a selection of a subset of the original
features;

• Dimensionality reduction, based on mathematical recombination of
the original features
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3.8.1 Principal component analysis (PCA)

Principal component analysis (PCA) is the main linear technique for di-
mensionality reduction. It performs a data mapping to a lower-dimensional
space in order to maximize the variance of the data. The algorithm considers
the covariance matrix of the original variables and calculates its eigenvectors.
The eigenvectors that correspond to the largest eigenvalues are used to recon-
struct high percentage of the variance of the original data. Those eigenvectors
are also called the principal components.

In order to perform the dimensionality reduction, the concept of variance
explained is quite important. The total variance is the sum of variances of
all individual principal components. The fraction of variance explained by
a principal component is the ratio between the variance of that principal
component and the total variance. For several principal components, add up
their variances and divide by the total variance. So, when PCA keeps enough
components to explain 95% variance, the total of the �rst component that
reach the 95% of total variance are kept.

The MATLAB function pca is used. It calculates the principal component
coe�cients, also known as loadings, and the principal components scores.

3.9 Statistical and performance descriptors

3.9.1 Box plot

A box plot is a graphical representation utilized for describing the distribution
of data set. In a box plot, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th percentile (or 1st quartile)
and 75th percentile (or 3rd quartile), respectively. It means that 50% of the
population is in the box, also known as the interquartile range (IQR). The
larger is the IQR, the spreader are the values of the population [49].

The T-bars out of the boxes are called whiskers; they are the most extreme
data points not considered outliers (more than three times the height of the
boxes). The outliers are plotted individually using symbols like the '+' or 'o'
symbols.

3.9.2 Confusion matrix

A confusion matrix is a table for the representation of performance in a
classi�cation problem, typically supervised learning. It is a square matrix
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where each column represents the predict class and the rows the real one.

In the speci�c case of binary classi�cation, the confusion matrix is a
simple square matrix with two rows and two columns that reports the true
negatives, true positives, false positives, false negatives. If the data set is
unbalanced, accuracy can get misleading results, so just accuracy is not a
reliable metric for the real performance of a classi�er. In addition to accuracy,
other parameters are calculate for a binary classi�cation:

Figure 3.8: A confusion matrix for a binary classi�er and its terminology.

• Accuracy = TP+TN

TP+TN+FP+FN

• Sensitivity or True Positive Rate = TP

TP+FN

• Speci�city or True Negative Rate = TN

TN+FP

• Precision or Positive Predictive Value = TP

TP+FP

• Negative Predictive Value = TN

TN+FN

3.10 Balance of number of events

One of the main issue of this thesis is that data has imbalanced classes.
Excluding the class 3, the 50% of patients belong to class 0. Generally,
greater the UPDRS score, the more severe is the disease and consequently
the patient cannot perform the task as he/she desires, completing a minor
number of repetitions. So, looking the percentage of repetitions, the issue
get worse, the class 3 reaches 62% of repetitions.

Imbalanced data set occurs when there is an unequal representation of
classes. Since the probability of instances belonging to the majority class is
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signi�cantly high in imbalanced data set, the new data are much more likely
to be classi�ed to the majority class.

In order to mitigate this issue, the data for class 1 and 2 has been dupli-
cated, narrowing the gap among classes as shown in Fig. 3.9

Figure 3.9: Number of repetitions after balance.

3.11 Leave-one-out Validation

Since the data has been duplicated, the k-fold cross-validation is no more
recommended because a sample that contribute to the validation, may be
used also for the test; consequently this sample is surely identi�ed, so the
result becomes biased.

As validation for the last data set, the leave-one-out has been chosen.
Suppose that the data set is composed of N elements. A sample is removed
from the data set, the classi�er is build with the N-1 elements and then the
data set is performed with the removed sample. This one is reinserted in the
data set and the following sample will be removed. This process is repeated
until all the N elements are utilized as test set.
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Results

In this chapter, the results obtained in this thesis work are presented. In
sections 4.1 and 4.2 the signals on which the subsequent classi�cation is
based, are presented: angular velocity and acceleration signals. In Sect.
4.3 the results of PT detection are presented, whereas in Sect. 4.4 and
4.5 namely: the results of the discrimination between Si2S and St2S are
reported in terms of box plots and confusion matrices. Finally in Sect. 4.6
a classi�cation by duplicating patients and events in order to reduce the
imbalance among classes is performed.

4.1 Examples of angular velocity signals

In Fig. 4.2 are plotted the angular velocity and the PT label. Angular
velocity has been used mostly for the detection of PT.
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(a) UPDRS 0 (b) UPDRS 1

(c) UPDRS 2

Figure 4.1: Angular velocity of y-axis from UPDRS 0 to 2. The PT are marked

with diamonds (blue for Si2S, red for St2S), whereas the starting and

the end point are marked with stars.

4.2 Examples of accelerometer signals

Accelerometer signals have been utilized to distinguish St2S from Si2S and
to extract features in order to perform the classi�cation among patients with
di�erent UPDRS score in the task �arise from chair�.

Some interesting features changes can be noticed by observing the signals.
The irregularity of signals increases from UPDRS 0 to UPDRS 2. In the
UPDRS 0 class, most of the time there is only one peak, whereas in UPDRS
1 and UPDRS 2 frequently more peaks can be detected because of attempts
or hesitations in standing up or sitting down.
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(a) UPDRS 0 (b) UPDRS 1

(c) UPDRS 2

Figure 4.2: Anterior-posterior acceleration from UPDRS 0 to 2. The PT are

marked with diamonds (blue for Si2S, red for St2S), whereas the

starting and the end points are marked with stars.

4.3 Postural transition detection: confusion

matrices

In this subsection the confusion matrices are illustrated for the Postural
Transition detection. Class 0 represents St2S, whereas class 1 is Si2S. The
dark gray in the right bottom shows the overall correct classi�cation percent-
age and incorrect classi�cation percentage. The correctly classi�ed cases are
placed in diagonal (green), whereas the misclassi�es are in the red cells.

As can be seen from Fig.4.3, the results are good, yet sub-optimal per-
formance. The most of the error in post walk classi�cation are due to not a
perfect classi�cation of walk event. In fact, false positives and false negative
in walk detection can confuse this kind of classi�cation. Decision tree classi-
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(a) Decision Tree classi�cation (b) Post walk classi�cation

(c) Magnitude Vector classi�cation

Figure 4.3: Confusion matrices of the three independent classi�er which underlies

the postural transition classi�cation
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�cation and vector magnitude reaches the best results in term of accuracy:
88.5% and 85.8%, respectively. Both of them have sensitivity and speci�city
very similar, that means they do not classify a class better the other one, but
the classi�cation is balanced. For example, the di�erence between sensitivity
and speci�city in Vector Magnitude classi�cation is only 0.3%.

Figure 4.4: Confusion Matrix of the Final Postural Transition classi�cation.

Then a �nal classi�cation has been performed. The output of this three
classi�ers are put together by majority vote. The �nal classi�cation becomes
far better then the three taken separately, getting a 96.5% of accuracy. This
classi�er is very strong in predicting correctly St2S with a speci�city of 98.2%.
The classi�cation of Si2S is slightly lower (94.7%). Another positive impor-
tant point is when the classi�er gives in output Si2S (1), 98.2% of the time
the classi�cation is correct, a very good percentage.
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4.4 Box plots

In this subsection the most relevant features are illustrated through box plots.
In Fig. 4.5 two acceleration-based features in the time domain are reported,
namely: duration and jerk, calculated for the vertical acceleration. The box
plot of the duration shows an increasing trend from the UPDRS 0 to UPDRS
2. It can be easily explained because, as the disease progresses, the patients
make more e�ort to stand up spending more time.

On the contrary, the jerk plot is only slightly decreasing. Since it rep-
resents the amount of activity, along with the severity of the symptom, PD
patients make less movements because of other PD manifestations such as
rigidity or bradikynesia.

(a)

(b)

Figure 4.5: Box plots showing the trend for Si2S of both duration (a) and jerk for

vertical acceleration signal (b) along with the severity of the symptom

(increasing the UPDRS score �arise from chair�).
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4.5 Feature selection

In this section the results of classi�cation after feature selection are reported.

A research of possible optimal results has been conducted by exploring
the space solution. First of all, a classi�cation with all features has been
tried; then SVM, KNN, LDA and the decision tree algorithm have been
investigated by using PCA as feature selection, changing the parameter of
explained variance. Tab. 4.2 and Tab. 4.1 show the best results obtained for
each explained variance level.

Table 4.1: Summary of best results for Si2S after feature selection.

Explained variance Classi�er n components accuracy

No PCA SVM all features 64.9%
99% SVM 10 75.4%
98% KNN 7 73.7%
97% SVM 5 73.7%
96% KNN 4 66.7%
95% SVM 3 64.9%

Table 4.2: Summary of best results for St2S after feature selection.

Explained variance Classi�er n components accuracy

No PCA LDA all features 66.7%
99% SVM 15 68.5%
98% LDA 11 70.4%
97% SVM 9 66.7%
96% LDA 7 66.7%
95% LDA 6 68.5%

By examining Tables 4.1 and 4.2, it can be noticed that a better accuracy
is reached using PCA than using all the features (Explained variance = 100).
It can happen that during the calculation of the principal components, the
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Figure 4.6: Confusion matrix showing the two best results after the use of PCA

for St2S(a) and Si2S(b)

features that introduce noise or irrelevant information for the purpose of
classi�cation are excluded.

By examining Fig. 4.6 some important considerations can be made that
apply to both Si2S and St2S. First, the classi�ers mainly misclassify by one
step one the UPDRS scale, especially �true UPDRS 1� was incorrectly pre-
dicted as �UPDRS 0�. Second, although the events for patients in UPDRS 2
are fewer, a good classi�cation (above 70%) is achieved. For St2S, when the
classi�er predicts UPDRS 2, no mis-classi�cation is actually evidenced. In
the Si2S classi�er, the UPDRS 0 shows a very good correct classi�cation of
97.1%.
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4.6 Classi�cation with duplicated events

Since the imbalanced classes is one of the main problem, observing the be-
havior of the classi�ers after duplicate the classes �UPDRS 1� and �UPDRS
2� may be interesting. First, a classi�cation of the events is reported, second,
a classi�cation of patients based on majority voting among the output of the
classi�cation of the events for the same patient is reported.

4.6.1 Classi�cation of events

In this section the results with the duplicated events will be discussed.

Figure 4.7: Confusion matrices showing the classi�cation of events for St2S(a)

and Si2S(b) after duplicating the class �UPDRS 1� and `�UPDRS 2�

It can be noticed in Fig. 4.7 that the accuracy for both Si2S and St2S
remains quite stable; this means that the system is fairly robust. The most
di�cult class to classify is �UPDRS 1� that may be mostly confused with
�UPDRS 0�. Most of the time, the models classify incorrectly only by one
step on the UPDRS scale.

4.6.2 Classi�cation of PD patients

Finally, in Fig. 4.8 the results of classi�cation of patients are reported
Similar considerations may apply to the classi�cations of patients: classs

�UPDRS 0� and �UPDRS 2� are the best ones in terms of accuracy, whereas
class �UPDRS 1� may be confused with class �UPDRS 0�. However the overall
accuracy is improved, in fact the accuracy reaches 77.3% for St2s and 81.8%
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Figure 4.8: Confusion matrices showing the classi�cation of patients for St2S(a)

and Si2S(b)

for Si2S. Since there are few patients, just only mis-classi�cation lead a 4.5%
di�erence in the accuracy.

42



Chapter 5

Discussion

This work has been conducted in order to develop an algorithm able to
monitoring PD patients, especially for �uctuations and fall prediction. In
particular, this work has been focused on detection and estimation of postural
transitions.

First of all, the PT has been detected and labeled as sit-to-stand or
stand-to-sit. The development of three sub-optimal classi�ers leads at a �nal
optimal classi�cation reaching accuracy of 96.5%. It should be emphasised
that when an input is classi�ed as Si2S, 98.2% of the time the classi�cation
is correct.

The acquired signals acquired have di�erent trends depending on the
UPDRS score. For example, looking at the signals belonging to UPDRS 1
and UPDRS 2, a higher number of peaks can be detected more frequently,
representing the attempts or hesitations during the movement. From the
box-plots presented in Chapter 4, other di�erences can be noticed, as the
fact that the duration for Si2S is proportional to the severity of the motor
symptoms.

In Chapter 4 the results of classi�cation of PT are shown according the
score UPDRS �arise from chair�, using machine learning techniques such as
SVM, KNN, LDA and decision tree. It is important to note that feature
selection through PCA leads a better classi�cation than considering all fea-
tures, especially for Si2S. This means that PCA excludes some irrelevant
features, essentially that bring noise. It could be interesting to investigate
which features are excluded; the PCA does not allow to appreciate this selec-
tion because, performing dimensionality reduction, the algorithm computes
new features that does not have a real physical meaning.
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CHAPTER 5. DISCUSSION

In order to face the problem of imbalanced classes, the results with dupli-
cated events for class UPDRS 1 and UPDRS 2 are analyzed in the last part
of Chapter 4. Changing the validation method, the accuracy of classi�cation
remains constant. Most of the time, the models classify incorrectly only by
one step on the UPDRS scale, especially between UPDRS 0 and UPDRS 1.

The same considerations can be made for PD classi�cation, except for
the accuracy that reaches a value as high as 81.8% thanks to majority voting
among the events for the same patient.
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Chapter 6

Conclusion

The goal of this thesis is to contribute in developing algorithms for postural
transition detection and UPDRS score �arise from chair� estimation of PD
patients in their daily life.

In this thesis, a tri axial accelerometer was located at the lower back. The
position is comfortable and suitable to measure the main motor symptoms
of PD. In particular, the signals were acquired by a common smartphone
during the visit conducted by the physician, adding a couple of tasks to
simulate ADL. The system allows the patients and physician to not have
much interaction with the technology.

Three di�erent classi�ers have been implemented in order to detect PT
and distinguish between Si2S and St2S by using machine learning technique.
Then, several parameters have been evaluated both in the time and frequency
domain in order to investigate the connection between the UPDRS scores
assigned to patients by physicians and the measured kinematic variables.

The �rst part of the work has yielded very good results in terms of ac-
curacy in PT detection. The second phase has demonstrate a promising
capability to diagnose symptoms in PD patients. These results are limited
by the small number of patients, in particular from UPDRS 2 and UPDRS
3 classes.

This thesis is part of a bigger project for developing an objective tool to
monitor PD symptoms. Other motor task are being investigated to obtain
a more complete general overall picture. This a simple system that allows
physicians to get a clearer view of symptom �uctuations during patient's daily
life. It means a better quality of life for both patients and their caregivers.
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