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Abstract 
 

This study proposes a model to reconstitute heart rate during real running training sessions in elite 

runners when the optical pulse rate signal is corrupted, commonly due to motion artifacts, not 

optimal contact skin-sensor, ambient temperature, venous blood flushing and skin tone.  

The exploit of wrist-worn optical heart rate monitors in the sport industry market led to a low cost, 

portable and comfort technology, but the gain in convenience and comfort all in one device came 

at the expense of accuracy. While for recreational runners the compromise in heart rate accuracy 

could be acceptable, for elite and sub-elite runners, accuracy can not be compromised because of 

the relation between heart rate and exercise intensity. The determination of exercise intensity and 

exercise training load is of paramount importance for elite runners in order to avoid injuries and 

improve performance. 

For this reason, through an accelerometer and an optical sensor, will be tested the feasibility to 

accurately predict the heart rate through a Long Short-Term Memory (LSTM) network.  

LSTM is a type of recurrent neural network, able to solve time series task unsolvable by feed-

forward networks allowing to make speech recognition, language translation, image recognition 

and prediction.  

The heart rate prediction will be followed by the determination of training load. 

 

Questo studio propone un modello per la ricostruzione del battito cardiaco durante sessioni di 

allenamento di corsa, qualora il segnale ottenuto tramite sensori ottici sia corrotto, a causa di 

artefatti da movimento, dal contatto non ottimale pelle-sensore, per la temperatura dell’ambiente, 

per la presenza di sangue venoso e per il colore della pelle.  

Infatti negli ultimi anni, si e’ verificato un exploit nel mercato sportivo di sensori ottici indossabili al 

polso per il monitoraggio del battito cardiaco che ha portato allo sviluppo di una nuova tecnologia 

economica, portatile e comoda. 
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La convenienza nell’avere tutto in un unico dispotivo pero’ va a spese dell’accuratezza stessa del 

dispositivo che potrebbe portare eventualmentente ad una non corretta valutazione del battito 

cardiaco. Se per atleti dilettanti che corrono a scopo ricreativo cio’ potrebbe anche risultatre 

accettabile, per corridori professionali il monitoraggio del battito cardiaco non puo’ essere 

compromesso. Cio’ e’ dovuto all’esistenza del rapporto tra battito cardiaco e intensita’ 

dell’esercizio. 

Conoscere l’intensita’ dell’esercizio e del carico di lavoro svolto e’ di vitale importanza per corridori 

professionali, al fine di evitare gravi lesioni al corpo e migliorare la performance fisica. 

Per questo motivo, in questo studio verra’ testata la fattibilita’ di predire accuratamente il battito 

cardiaco con l’aiuto di un accelerometro e di un sensore ottico attraverso una tipologia di rete 

neurale chiamata Long Short-Term Memory (LSTM) network, cioe’ una rete neurale basata su una 

memoria  a lungo e breve termine. 

Tale rete e’ in grado di risolvere problemi legati alle serie temporali irrisolvibili con le tradizionali 

reti neurali, e permette di fare riconoscimenti vocali, traduzioni linguistiche, riconoscimenti in 

immagini e video, ed appunto predizioni di serie temporali. 

La predizione del battito cardiaco sara’ seguita dalla determinazione del carico di lavoro svolto. 
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1 INTRODUCTION 

 

Heart rate (HR) is a key physiological parameter affected by a number of physiological and 

behavioral stimuli [1]. Heart rate is linked to exercise intensity by its direct relation with cardiac 

output [1]. One of the most frequent applications of HR monitoring is to monitor exercise intensity 

in sports [1] [2] [3] [4].  

Monitoring training intensity and training load is of paramount importance for elite runners, on 

the one hand to improve performance and its determinates, such as, cardiorespiratory fitness, 

anaerobic threshold, running economy, and on the other hand, to minimize the risk of injury, 

illness and overtraining [5].  

For this reason, typically, training intensity can be displayed in five different HR intensity zones: 

50%-60% of maximal HR (HRmax) (zone 1 - very easy intensity), 60%-70% of HRmax (zone 2 - easy 

intensity), 70%-80% of HRmax (zone 3 - moderate intensity), 80%-90% of HRmax (zone 4 - vigorous 

intensity), 90%-100% of HRmax (zone 5 - maximal intensity) [6].  

 

Table 1: Training intensity zones based on maximum heart rate. 

According to Edward’s summated-heart-rate-zones (SHRZ) model [7][8] , the sum of duration 

spent in each zone multiplied by a zone factor (1, 2, 3, 4, 5 respectively for each zone) can 

determine the training load. Edward’s training load [7] [8]can be calculated as follows: 

 𝑇𝐿 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒1 × 1 +  𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒2 × 2 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒3 × 3 + 

+ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒4 × 4 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒5 × 5 

Equation 1 

 

 

Where each duration refers to the duration in minutes. 
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Endurance runners need to alternate long and low intensity trainings, so called volume trainings, 

which enhance general central capacity, to shorter and higher intensity trainings, also referred to 

intensity trainings or quality trainings, aiming at improving running economy, and racing speed [9]. 

This is why runners and coaches find rather useful using HR zones. When considering the 

distribution time spent in each zone 5 different training types can be derived: a. prolonged high-

volume training with low intensity (HVT); b. low volume high intensity interval training (HIIT); c. 

combined training, also called polarized training (POL); d. threshold training (THR); and finally e. 

equal distribution “uniform” training (UNI) [6]. The training type information is very valuable for 

training periodization. 

The sport industry started to exploit HR monitoring in the 1980’s with the development of wireless, 

wearable HR monitors consisting of an ECG-based chest strap sensor and a wristwatch radio 

receiver [1]. However this 30 years old technology, has now been disrupted by less obtrusive 

strapless HR monitors, based on photo-plethysmography (PPG) and implemented directly on the 

wristwatches[1][3][10][11]. 

In the last 5-6 years there has been an exponential increase of wrist-worn optical HR  monitors in 

the sport industry market due to the low cost, portable and comfort technology [1][3][10][11]. 

The gain in convenience and comfort all in one device came at the expense of accuracy[12]. Indeed 

ECG-based wireless chest straps still show the closest agreement to conventional lead ECG gold 

standard. As we directly experienced in the field, if for recreational runners the compromise in HR 

accuracy could be acceptable, for elite and some sub-elite runners, accuracy cannot be 

compromised.  

Photoplethysmography illuminates the skin via light-emitting diode measuring the intensity of the 

reflected light to the photo-detector. The intensity of the reflected light follows the blood volume 

changes in the arterial vessels caused by the pressure pulse of the cardiac cycle permitting to 

obtain heart rate [11][3]. 

The output of the PPG sensor is often affected by a low signal-to-noise ratio (SNR), due to several 

reasons: first of all because of motion artifacts especially in running where the number and the 

entity of subject-sensor movements is really high [13]. Furthermore, the sensor location is the 
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medial part of the dorsal wrist that, in runners, is often concave, squared and bony because they 

are really skinny and its anatomical shape not always fit well with the mechanical design of the 

device, causing a non optimal contact skin-sensor [1] . In addition, ambient temperature can affect 

PPG accuracy. When the environment is cold, blood vessels are more constricted, in order to 

reduce heat dissipation and preserve the optimal core temperature, resulting in a reduction in 

sub-cutaneous blood perfusion [11]. Venous blood flushing is a less known source of PPG artefact, 

but it is believed to play an important role too. This consists in the noise produced by venous 

blood, which per se is not pulsatile, that when the arm moves rapidly can flush creating an artefact 

[11]. Finally, skin tone could also influence PPG-based HR accuracy. Different skin tones absorb 

light differently, for example, darker skins absorb more green light reflecting a small amount of 

light to the detector [14]. Thus, “it is generally accepted that PPG-based HR monitoring suffers 

from inherent drawbacks” [12]. 

As anticipated above, due to the lower accuracy of PPG sensor during running trainings, sub-elite 

and elite athletes (e.g. runners) who need accurate training intensity and training load 

determination, are reluctant to adopt the wrist-worn HR monitors, preferring still traditional 

chest-strap HR monitors [1]. 

Clearly if the accuracy in determining training intensity and training load could be improved those 

runners may seriously consider adopting the more convenient wrist-based technology.  

Thus the purpose of this study was to test whether a wrist-worn accelerometry-derived feature, 

such as activity counts (ACN), feed into a Long Short-Term Memory (LSTM) networks,  could 

accurately reconstitute heart rate (HR) and consequently training intensity and training load, 

during real running training sessions of elite runners, when the optical pulse rate signal is 

corrupted because of a small signal to noise ratio, commonly due to motion artifacts and the list 

of artifacts mentioned above.  

LSTM is a type of recurrent neural network, able to solve time series task unsolvable by feed-

forward networks allowing to make speech recognition, language translation, image recognition 

and prediction[15]. LSTM network have memory blocks connected through layers allowing the 

network to learn basing on the history of the time sequence data.  
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Interestingly, several earlier attempts have been made to try to correct HR measurements from 

motion artifacts through signal processing techniques. For example using adaptive noise 

cancellation[16][17], accelerometer used to estimate frequency and the noise produced by 

motion removed from HR through a noise canceler[3][18] and a combination of two algorithms 

for removing motion artifacts and a spectral peak tracking [19]. 

In the last years also machine learning approaches have been already used for HR correction.  

Jindal [20], used a wrist-worn watch with a PPG and a tri-axial accelerometer, built a deep learning 

classification model for determining heart rate, where motion data were used only to filter the 

signal before input the heart rate features in the model.  The difference with our study is that 

acceleration is not directly used to estimate the HR 

R. McConville et al.[21] built a regression model using acceleration data together with heart rate 

data for heart rate prediction in  patients with aortic and mitral valve disease. This was a different 

situation compared to our study, patients were not doing training activity and HR was not 

corrupted. The task of their study was to reconstruct heart rate during daily life with an 

accelerometer instead of using a PPG sensor, in order to gain energy from wearable devices, 

because PPG foe working uses more energy than accelerometer. 

Y. Ming and J. Jun [22] built a classification feedforward neural network using acceleration data 

and heart rate data for heart rate prediction in 90 minutes signal from a single healthy male. Heart 

rate was recorded during daily life through a portable HR monitor with electrodes and 

accelerometer data were recorded through a tri-axial accelerometer. In this case, HR prediction 

was not performed during running activity but daily activity and the model was subject-based.  

In this study we propose a novel method for heart rate prediction using accelerometer feature 

during running exercise training in a LSTM network.  
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1.1 NEURAL NETWORKS 

 

In 1956, a new field called Artificial intelligence spread [23], with the purpose to develop machines 

that could simulate aspects of human intelligence. 

In 1958, the first and the simplest neural network was implemented with the name Perceptron by 

Frank Rosenblatt [24].  

The Perceptron model is a binary classifier consisting of an input vector x ∈ ℝn  with an associated 

weight vector  w ∈ ℝn. Its binary output function φ(w, θ) ∶ ℝn + 1 → {−1, 1}  with a treshold 

θ, outputs 1 if 𝐰 •  𝐱 ≥ 0 and outputs −1 otherwise [24] [25] [26]. 

 

 

Figure 1: Single layer perceptron, first model of NN [27]: the neuron receives input through weighted connection, the 
weighted sum is compared to a threshold and transformed in output by an activation function in one of the two 

classis. 

 

Neural networks (called also Artificial Neural network ‘’ANN’’ or ‘’NN’’) are systems, taking 

inspiration from the human brain, where the main unit is the neuron. Connections between 

neurons, like synapses in a human brain, can transmit an information from a neuron to another 

allowing the network to learn through a learning algorithm [24]. Learning algorithm is the 

procedure used to perform the learning process, it can be supervised or unsupervised. It is 

supervised if the NN is provided with a dataset consisting of input vectors and target vectors [28], 

it is unsupervised if the NN is provided only of input vectors [29]. 

The limitation of Perceptron was the simplicity: a single neuron classifying linearly the input in one 

of two classis. To face the problem of data not linearly separable, in 1986 Multilayer Perceptron 
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was born, with a more complex architecture composed by several neurons connected among 

them and organized in layers, overcoming the limitations of perceptron. The name of this new 

type of architecture is feedforward neural network [30]. It is composed by an input layer, one or 

more hidden layer fully connected with the previous layer composed by different numbers of 

neurons able to learn the information coming from the input layer and finally an output layer with 

a number of neuron equal to the number of classes [31]. 

This learning algorithm is called backpropagation, is a gradient based optimization method useful 

for finding the optimal set of weights [31]. The name gradient based optimization comes from the 

need to find an optimum where the error between output and the target output is minimized [31]. 

When the optimum is reached, the learning algorithm converges [31]. To reach the optimum, is 

necessary a parameter called learning rate. Is a parameter with values from 0 to 1, an high learning 

rate will takes a faster convergence but with the problem of jumping over minima, a too low 

learning rate takes too long to converge with the problem of reaching non-optimal minimum [31]. 

The gradient is calculated over the cost function (or loss function) that is the error between output 

and the target output [31]. The cost function could be, for example, the mean-squared-error 

(MSE). 

The learning algorithm has two phases [31]:  

1. Propagation phase: the input information is propagated through layers until it reaches the 

output layer, error or cost function is calculated between the output and target output.   

2. Update phase: the gradient of the cost function is computed in order to minimize the error, 

multiplying this gradient by the learning rate, the weights in the net are updated. 

 

 𝑤𝑛+1 = 𝑤𝑛 − 𝛼 ∇𝐽(𝑤) Equation 2 

   

Where 𝑤𝑛+1 is the updated weight, 𝑤𝑛 is the weight to be updated, 𝛼 is the learning rate, ∇𝐽(𝑤) 

is the gradient of the cost function [31]. 
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Figure 2: Evolution of single layer perceptron: feedforward neural network with backpropagation optimization. 

In machine learning, a challenge to obtain a good model is avoiding overfitting. Overfitting occurs 

when the network is not able to generalize the data, memorizing the training pattern [32]. 

Overfitting may be caused by a too complex architecture, the training set size and the optimization 

method used.  

To avoid overfitting, some form of regularization are used: 

• Early stopping [33]: from training set a subset is obtained, the validation set. This set help 

the network to converge as long as until the optimum is reached for the validation error. 

In this way, the network stops training at the point in which the validation error is 

minimized and weight parameters are stored. 

 

Figure 3: Typical training and validation error during a network training. 

 Early stopping occurs when validation error optimum is reached. 
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• Dropout layer [34]: it removes randomly, with a certain probability, unit interconnections 

in the network for each training iteration. 

 

Figure 4: Influence of dropout layer: it removes randomly, with a certain probability, interconnections in the network. 

 

1.2 DEEP LEARNING 
 

In the last two decades, a subfield of machine learning based on neural networks, started to 

become popular, this new approach is deep learning. In the supervised learning field, a deep 

learning algorithm is able to learn more complex input-output relationship. In particular, through 

supervised learning is possible to solve both classification and regression problem. For a 

classification model, the task is to predict a discrete output (called also class, category or label) for 

a given input. For a regression model, the task is to predict a continuous output variable for a given 

input. 

 

Figure 5: Evolution from artificial intelligence to deep learning 
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Two types of layers distinguish deep learning from the standard fully connected layer of the old 

approach: convolutional and recurrent layer. The network based on convolutional layers (called 

Convolutional Neural Network or CNN) are mainly popular for image processing, that one based 

on recurrent layers (called Recurrent Neural Network or RNN) are used for modelling time series 

data and sequence data to make speech recognition, language translation and time series 

prediction. 

In particular, we will focus on the last one, the Recurrent Neural Network. Compared to the NN, 

RNN have the concept of memory: adding a loop in a feed-forward neural network, the network 

get this behavior of sequential of memory (Figure 6). The information passes from one step to the 

next one in a ordered way. The previous step is called hidden state that acts as a memory holding 

the information of the previous step. 

 

Figure 6: Recurrent neural network with the fold and unfolded structure. The fold structure is similar to a feed-
forward neural network adding a cycle allowing the network get this behavior of sequential of memory. The 

information passes in an ordered way through time how is possible to see in the unfolded structure. 

 

The issue affecting the RNN is the short-term-memory [35]. Learning long dependencies for RNN 

is difficult because of the vanishing gradient due to the backpropagation algorithm. The updating 

of weights depends on the gradient, the bigger the gradient the bigger the update and vice versa. 

In this way, if the adjustment to the layer before is small because of a small gradient, the following 

layer will be updated even smaller with any learning results. This is the problem of the vanishing 

gradient, in which it shrinks exponentially during the backpropagation and RNN is not able to learn 

long-term dependencies [35]. 
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To face this problem, Long Short-Term Memory (LSTM) neural network were introduced by 

Hochreiter and Schmidhuber [35] . 

 

 

1.3 LONG SHORT-TERM MEMORY NEURAL NETWORK  
 

LSTM is a type of RNN but able to learn long and short term dependencies [36]. A LSTM layer is 

formed by blocks (or cells) with internal mechanisms called gates able to learn time dependencies  

[35][36]. The gates can learn the information deciding if keep it or forget it during the network 

training. 

 

Figure 7: Structure of a LSTM layer formed by blocks called also cells memory with gates able to learn. 

 

Inside the LSTM cells there are mainly three gates: a forget gate, an input gate and an output gate. 

These gates use two types of activation functions, the sigmoid and the hyperbolic tangent, defined 

respectively as: 
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𝜎(𝑧) =

1

1 + 𝑒−𝑧
 

Equation 3 

 

 
𝑡𝑎𝑛ℎ(𝑧) =

𝑠𝑖𝑛ℎ (𝑧)

𝑐𝑜𝑠ℎ (𝑧)
=

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

Equation 4 

 

Figure 8: Sigmoid and hyperbolic tangent activation functions 

 

For each gate, three different learnable weigths are considered, 𝑊𝑗, 𝑅𝑗 , 𝑏𝑗, respectively the input 

weights, recurrent weights and bias. Where  𝑗 = 𝑓, 𝑖, 𝑜   index of the three gates. 

In the first step, current cell input 𝑥𝑡 and the information of the prevous hidden state ℎ𝑡−1 pass 

through the sigmoid function that, giving an output in [0,1], it decides if keep the information or 

forget. If the value is close to 0 the information will be forgot, instead, for a vaue close to 1 the 

information will be kept. This function is called forget gate 𝑓𝑡.  

 𝑓𝑡 =  𝜎 (𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) Equation 5 

 

In the next step, the hidden state ℎ𝑡−1 and the current cell input 𝑥𝑡 pass through another sigmoid 

function that, giving an output in [0,1], it decides which value will be used for the update. This 

function is called input gate 𝑖𝑡. 
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 𝑖𝑡 =  𝜎 (𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) Equation 6 

 

The same hidden state ℎ𝑡−1 and the current cell input 𝑥𝑡 pass also through the hyperbolic tangent 

function that, giving an output in [-1,1], it regularize the network. 

 �̃�𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝑐𝑥𝑡 + 𝑅𝑐ℎ𝑡−1 + 𝑏𝑐) Equation 7 

 

The output of the sigmoid function 𝑖𝑡  is multiplyed by the output of hyperbolic tangent (tanh) �̃�𝑡 

function and the cell state 𝐶𝑡−1  is multiplied by the forget vector 𝑓𝑡 . These two multiplication 

result are summed creating the new cell state 𝐶𝑡. 

 𝐶𝑡 =  𝑖𝑡 ∗ �̃�𝑡 + 𝐶𝑡−1 ∗ 𝑓𝑡 Equation 8 

 

The hidden state ℎ𝑡−1 and the current cell input 𝑥𝑡 pass through another sigmoid function . This 

function is called output gate 𝑜𝑡.  

 𝑜𝑡 =  𝜎 (𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜) Equation 9 

 

The new cell state 𝐶𝑡 passes through the tanh function and is multiplied by the output gate 𝑜𝑡 

giving the hidden state of the current cell  ℎ𝑡 that will be carried over the next cell. 

 ℎ𝑡 =  𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ( 𝐶𝑡 ) Equation 10 

 

Through this memory cells mechanism, LSTM is able to work well with long time sequence series 

both for classification and regression tasks. For classification predicting or a sequence (sequence-

to-sequence classification) or a label (sequence-to-label classification). For regression, instead, 

involves a prediction of a value (sequence-to-one regression) or a prediction of a sequence 

(sequence-to-sequence regression). 
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2 METHODS AND MATERIALS 

 

2.1 STUDY DESIGN AND SUBJECTS  
 

The study protocol was approved by the Internal committee biomedical experiments (ICBE) board 

of Philips Research Eindhoven and tests were conducted at the Philips Research Laboratories, in 

Eindhoven (NL).  

Five elite runners of white ethnicity, two female and three male, have been recruited voluntarily 

from the local sport running center ( 

Table 2). 

All subjects have signed the informed consent form before starting any type of research activity. 

Then, they filled an ACSM Health/Fitness Facility Pre-participation screening questionnaire and an 

overtraining questionnaire was filled in (DALDA). 

After no diseases and no suspected overtraining were identified by the questionnaire, each subject 

were asked to wear a wrist-worn PPG-based HR monitor, here referred to as the optical heart rate 

monitor (OHRM, Philips Research, The Netherlands). The subjects were also asked to wear a 

wearable metabolic system (K5, Cosmed, Italy), a device used for measuring metabolic parameters 

(such as VO2, VCO2, ventilation, HR, energy expenditure etc…) in order to measure the maximal 

oxygen uptake (VO2max) and the anaerobic threshold of each athlete. 

The OHRM contains a tri-axial accelerometer (sensitivity=256 lsb/g, range=±8g, sampling 

frequency of 128 Hz) and a PPG sensor (sampling frequency of 128 Hz, light-emitting diode at 

530nm wavelength) . 

Subjects were asked to fill two diaries and one questionnaire in order to get more information 

during these 15 days (see 5): a morning diary for having info about daily life’s athlete (filled every 

morning), a training diary to get info about training activity (filled every training session) and a 

recovery questionnaire to get info about their recovery status (filled at the end of each week). 
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Table 2: Mean (±SD) characteristics of the subjects 

 

 

2.2 EXPERIMENTAL PROTOCOL 
 

A VO2max test was conducted on a treadmill (Excite run 600, Technogym, Italy). VO2max test 

consists of an incremental intensity exercise test that leads the athlete to reach the maximum 

oxygen consumption. Speed, duration and treadmill inclination for warming up was chosen by the 

athlete until he/she felt ready to start the test. The warmup could not last more than 10 minutes.  

The incremental test consisted of a fixed incline at 3%, with a starting speed of  8 km/h for women 

and 10 km/h for men. Every minute the speed was increased of 1km/h until the subject decided 

to stop because of achieving exhaustion. This was checked off-line by assign the measure of heart 

rate maximum (HRmax), being greater than 90% of the aged estimated HRmax according to 

Tanaka et al. formula [37]: 

 𝐻𝑅𝑚𝑎𝑥 = 206 − 0.7 ∗ 𝑎𝑔𝑒 Equation 11 

 

and checking the respiratory exchange ratio (amount of carbon dioxide over the amount of 

oxygen) exceeding > 1.15 [38].  
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Speed range, during the VO2max test, was from 8km/m until 21km/h with a final mean speed 

reached of 18.8±2.18 km/h. The test was followed by a cooling down period with speed, duration 

and inclination chosen by the athlete.  

Participants were asked to wear the OHRM for 15 days (24/7), in order to get their free-living 

training data and also an ECG-based chest strap (only during trainings) in order to get heart rate 

reference.  

After these 15 days were passed, another VO2max test was conducted. 

 

2.3 DATA PROCESSING 
 

Data were transferred via USB into a personal computer and with a software developed by Philips, 

row data from PPG sensor and tri-axial accelerometer were processed in order to produce 

accelerometry and PPG derived features such as heart rate (HR) and activity counts (ACN). 

Activity counts is obtained from the sum of the integral of the absolute acceleration for each axis 

over 1s interval [39]. 

 

𝐴𝐶𝑁 = ∫ |𝑎𝑥|

𝑇+𝑡0

𝑡0

 𝑑𝑡 + ∫ |𝑎𝑦|

𝑇+𝑡0

𝑡0

 𝑑𝑡 + ∫ |𝑎𝑧|

𝑇+𝑡0

𝑡0

 𝑑𝑡 

Equation 12 

 

Where 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 are the acceleration on the three axis, [𝑡0, 𝑇 + 𝑡0] is 1s interval. 

These features were processed and analyzed using Matlab R2019a (Mathworks, Cambridge, MA, 

USA) using a GPU-based workstation. 

From 24h data for fifteen days of each of the five subjects, with the help of subject’s training diary 

and through an accelerometer feature (activity type) containing index of  the type of activity 
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recognized (possible activities were walking ,running, cycling and other) and also by visual 

inspection, 45 running sessions were collected with a total duration of 37 hours and 48 minutes 

(50± 30 minutes), containing 10 VO2max test (2 for each subject), 2 races, 16 interval trainings, 18 

long run. The other days were of resting or other sport activities (cycling, yoga, core and strength 

exercise, etc...). 

 

2.4 LINEAR REGRESSION 
 

At first, a linear regression was performed between activity counts (ACN) and heartrate reference 

(HR) during running training sessions, to model the relationship between these two variables.  

Given a dataset, composed by two variables (𝑥, 𝑦), a simple linear regression model assumes that, 

between these two, exists a linear relationship [40].  

The simple linear regression line formula is: 

 𝑦 = 𝑚𝑥 + 𝑞 Equation 13 

 

Where 𝑦 is the dependent variable, 𝑥 is the independent variable, 𝑚 and  𝑞 are called regression 

coefficients, respectively the slope and intercept of the regression line. 

The correlation between two random variables is expressed by Pearson’s correlation coefficient, 

is a measure of linear correlation of two variables 𝑥, 𝑦 [41].  

 
𝜌𝑥,𝑦 =

𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

Equation 14 

 

Where 𝑐𝑜𝑣(𝑥, 𝑦) is the covariance between the two variable  𝑥 and 𝑦, and 𝜎𝑥, 𝜎𝑦 are the standard 

deviation of the two variables. Values of Pearson’s correlation coefficient vary from -1 to 1. 
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Positive values of 𝜌𝑥,𝑦  reflect two variables directly proportional, negative values refer to a relation 

indirectly proportional between the two variables 𝑥, 𝑦. Furthermore, values close to 1 and -1 

indicate a strong correlation, values close to 0 indicates the absence of correlation between the 

two. 

Pearson’s correlation coefficient reflects the strength of a linear relationship between two 

variables, but doesn’t give information about non-linearity relationship between the independent 

variable 𝑥 and the dependent variable 𝑦 [42]. 

Computing correlation coefficient between the two variables, it results to be:  𝜌𝑥,𝑦 = 0.72 . 

This results show that ACN and HR are strongly related. 

The scatterplot in Figure 9 shows HR data (along y-axis) and ACN data (along x-axis), of the 45 

running sessions of the five subjects and in red is showed the fitted regression line. 

The distance from the points of the dataset to the regression line is called error 𝜀. With the error, 

the equation become: 

 𝑦 = 𝑚𝑥 + 𝑞 +  𝜀 Equation 15 

 

If the error is zero, no distance separates dataset points to the regression line, as a result that all 

the points are well fitted into the regression line. If (𝑥, 𝑦) fits the linear regression line, the relation 

between them is perfectly linear. 

Looking into the scatterplot, ACN and HR do not show a mere linear relation: is possible to see two 

big clouds with many dispersed points not well fitted into the linear regression line, as a result that 

exists a non-linear relationship between ACN and HR.  
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Figure 9: Linear regression scatter plot between ACN and HR by subject-color with normalized values.                                        
Correlation coefficient (𝜌𝑥,𝑦 = 0.72), shows that ACN and HR are strongly related, the scatterplot doesn’t 

show a linear relation between them. Is possible to see two big clouds surrounded by many dispersed 
points. These dispersed points, not well fitted into the red linear regression line, are due to the non-linear 

relationship between ACN and HR. 

 

The relationship can be affected by different factors: subject-dependent factors (such as age, 

fitness level, hydration, internal temperature, etc…), different kind of running trainings that can 

change the linearity of the relation, the kinetics between acceleration and heart rate, especially 

talking about running, are different. If we consider the beginning of a run, the acceleration has an 

instant rise while the heart rate rises with a delay compared to the acceleration response (this can 

be explained by the cloud of points on the right side of Figure 9 under the regression line). The 

same happens at the end of a run, while the acceleration has an instant decrease, heart rate is still 

high decaying with a delay (explained by the cloud of points on the left side of Figure 9 above the 

regression line). 
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The linear relation can be also influenced by the cardiovascular drift, it is the time dependent 

change of the cardiovascular response [43] where heart rate rises even if the workload is not 

increasing (cloud of points on the upper part of Figure 9 above the regression line is explained by 

this behavior). It can be influenced by subject-dependent factors as well (internal temperature, 

hydration and the amount of muscle tissue involved during exercises) but also by ambient 

temperature [43].  

Figure 10  shows a cardiovascular drift event and the different kinetics between ACN and HR during 

a training session. In orange line the ACN and in blue line the HR. The beginning of the training is 

characterized by an instant rise in ACN and a delayed rise in HR (n.1). The opposite ad the end of 

the running while ACN decreases instantaneously and HR has a delayed decrease (n.2). 

Furthermore, in the central part of the session, while ACN is almost constant, HR rises without an 

increase in workload, this is a sign of cardiovascular drift (n.3). 

 
Figure 10: Cardiovascular drift event and the different kinetics between ACN and HR during a training session. In 

orange line the ACN and in blue line the HR. The beginning of the training is characterized by an instant rise in ACN 
and a delayed rise in HR (n.1). The opposite happens at the end of the running while ACN decrease instantaneously 
and HR has a delayed decrease (n.2). Furthermore, in the central part of the session, while ACN is almost constant, 

HR rises without an increase in workload, sign of cardiovascular drift (n.3). 
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Pearson correlation coefficient can be affected by some factors: amount of variability in the data, 

differences in the shape of the two distributions, lack of linearity, the presence of one or more 

outliers, characteristics of the samples and measurements errors [42]. For example two variables 

can have a weak value of correlation, but their relation can be statistically significant and vice 

versa. 

For this reason, to test the significance of the correlation coefficient, a null hypothesis test has 

been performed.  

Null hypothesis test consist of considering 𝜌𝑥,𝑦  equal to zero, this means considering no 

relationship between (𝑥, 𝑦) variables: 

 𝐻0 :  𝜌𝑥,𝑦 = 0 Equation 16 

 

In the context of null hypothesis  p − value  (probability value) is used to quantify the statistical 

significance between to variables [44], considering a significance level of 95% (𝛼 = 0.05), p −

value   results to be:  𝑝 <  0.05 . 

It is possible to conclude that the null hypothesis can be rejected, ACN and HR are statistically 

significantly moderately related. 

Another important parameter used to understand how the independent variable explains the 

variability of the dependent variable is the coefficient of determination. It can be calculated as the 

square of Pearson correlation coefficient [45]: 

 𝑅2 = (𝜌𝑥,𝑦)2 Equation 17 

 

Range of determination coefficient are from 0 to 1, in our case it is equal to: 𝑅2 = 0.52 

This means that the 52% of the variability of dependent variable is depends on the independent 

variable, the remaining 48% of the variability of 𝑦 depends on other unknown factors. 
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Computing the formula of the regression line with the given dataset [𝐻𝑅(𝑡), 𝐴𝐶𝑁(𝑡)], where heart 

rate reference is the dependent variable and activity counts is the independent variable, the 

parameters of the linear model are estimated:  𝐻𝑅(𝑡) = 0.43 𝐴𝐶𝑁(𝑡) + 0.33 . 

Linear regression can be used to fit a predictive model. After have developed a predictive linear 

model, this can be used to make the prediction of the independent variable. 

This equation will be used to predict linearly heart rate values having activity counts varying during 

time for comparing the improvements of an LSTM model. 

 

 

2.5 LSTM MODEL 
 

2.5.1 Data manipulation 

 

Only 30 over 45 running sessions were corrupted because of the low accuracy of the OHRM.   

Data augmentation was applied to our dataset, composed by 45 training sessions, to achieve a 

more generalized model avoiding overfitting problems due to the training set size already 

mentioned in section 1.1. 

Data augmentation is a technique becoming always more common with the spread of deep 

learning, to avoid the limited amount of data often causing overfitting [46] [47]. The approach 

consist in or generating data from scratch or perturbing existing data creating new ones [46]. For 

example Oksuz and Ruijsink [48], to build a convolutional neural network for image motion artefact 

detection, performed a data augmentation corrupting images with realistic motion artefact. The 

same was performed by Hoffmann [49] corrupting images with different percentage of random 

noise to develop a classification prediction model.  

In this study, data augmentation was performed simulating a certain part, of the 45 heart rate 

reference signals, corrupted in random samples. Corruption duration was chosen from 5 to 40 
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minutes, based on the real corruption of the OHRM signals (19.59 ± 19.82 minutes according to 

the OHRM HR estimation algorithm). 

A) 

 

B) 

 
 

Figure 11: Examples of sessions out of 45 training sessions of the dataset: in red line a real case of corrupted HR 
recorded with the OHRM, in blue line HR reference recorded with the ECG chest-strap. A) Long run where is clearly 

visible how HR coming from OHRM is not reliable, reaching a peak of 220 bpm, value extremely too high. The 
duration of corruption equal to 12 minutes over 38 minutes of total training duration. B) Interval training. In this 

case, starting from the second interval, HR starts to decrease in accuracy reaching values of 60 bpm, a too low value 
to reach during an interval training, almost close to the subject heart rate rest. Duration of corruption equal to 10 

minutes over 52 minutes of total training duration. 



23 
 

All the 45 training sessions have different duration, for this reason, corruption performed was 

dependent on the duration of each HR signal: 

• For signal duration> 42 minutes, corruption was performed five times, for 40, 30, 20, 10 ,5 

minutes, allowing to obtain 5 heart rate signals randomly corrupted from one. 

• For 32 minutes < signal duration ≤ 42 minutes, corruption was performed four times, for 

30, 20, 10, 5 minutes, allowing to obtain 4 heart rate signals randomly corrupted from one. 

• For 22 minutes < signal duration ≤ 32 minutes, corruption was performed three times, for 

20, 10, 5 minutes, allowing to obtain 3 heart rate signals randomly corrupted from one. 

• For 12 minutes < signal duration ≤ 22 minutes, corruption was performed two times, for 

10, 5 minutes, allowing to obtain 2 heart rate signals randomly corrupted from one. 

• For signal duration ≤ 12 minutes, corruption was performed only once for 5 minutes, 

obtaining one signal. 

Form 45 training session, the dataset was augmented obtaining finally 176 running sessions. 

 

Figure 12: Example of random samples corruption in HR data reference. From one training session, five training 
sessions corrupted differently are obtained. 
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2.5.2 Methods used for data corruption simulation 

 

In the previous step was analyzed the way to obtain more training sessions from a smaller dataset, 

and to be more precise, where the corruption was (randomly samples selected) and for how long.  

The corruption was performed testing three methods in the same corrupted samples. 

Let’s consider ACN and HR of a training session and random corrupted samples from 2000 to 3000 

(see Figure 13). 

 

Figure 13: ACN (black signal) and HR (blue signal) are considered from the same training session whose random 
samples considered are from 2000 to 3000. 

 

First of all, pre-processing was performed over ACN, that will be the same for all the three 

methods. In order to have ACN signal only in the zone of interest (i.e. where the HR is simulated 

corrupted) zero padding was performed in non-corrupted samples, to emphasize the period of 

corrupted parts in heart rate signal. 

Considering the previous example, ACN values will be different to zero only in corrupted samples 

(from 2000 to 3000) and zero in the remaining samples (from 1 to 1999 and from 3001 to 5000).  
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Figure 14: Pre-processing was performed over ACN, that will be the same for all the three methods. In order to have 
ACN signal only in the zone of interest (i.e. where the HR is simulated corrupted) zero padding was performed in non-

corrupted samples, to emphasize the period of corrupted parts in heart rate signal. Considering the previous 
example, ACN values will be different to zero only in corrupted samples (from 2000 to 3000) and zero in the 

remaining samples (from 1 to 1999 and from 3001 to 5000). 

 

 

1) HR ZERO method 

The first method consist of performing the corruption on HR with a zero padding in 

corrupted samples: 

 

Figure 15: HR ZERO method: On the top figure a zero padding (orange line) was performed over HR (blue signal) in 
corrupted samples. On the bottom figure, ACN is always the same as was previously explained. 
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2) HR LAST method 

Corruption was performed in heart rate data inserting last values before the corruption starts.  

Having a frequency sampling of 1Hz, the last value will be 1s before the corruption starts. 

For example, considering the same range of corrupted samples (from 2000 to 3000), HR in this 

interval will have the value at sample 1999, 1s before the starting interval. 

 

Figure 16: HR LAST method: in the top figure last one value of HR before the corruption starts was substituted  over 
corrupted samples. On the bottom figure, ACN is always the same as was previously explained. 

 

Looking the last one figure, it seems that nothing has changed, HR is close to the HR reference. 

This happens only because we are considering a long run, where steady state has been reached 

(both acceleration and heart rate approximately constant)  to have a better idea of this 

method, it’s necessary to have a look also in interval trainings. 

In Figure 17, is showed an interval training. On the top is visible HR in blue line, where the 

interval for corruption considered starts from 3000 to 5000. In this interval, the substitution 

of last one value was performed (green line) and is visible how the information about interval 
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training is lost looking into the dotted blue line. ACN on the bottom figure is the same, zero 

padding was performed in non-corrupted samples. 

 

Figure 17: HR LAST method performed on an interval training. On the top is visible HR in blue line, where the interval 
for corruption considered starts from 3000 to 5000. In this interval, the substitution of last one value was performed 
(green line) and is visible how the information about interval training is lost looking into the dotted blue line. ACN on 

the bottom figure is the same, zero padding was performed in non-corrupted samples. 

 

 

 

3) HR REST method 

Last tested method consists of corrupting the heart rate in the interval selected, with values 

of HR rest. HR rest is obviously considered for each subject, in this case was considered the 

value of HR min reached during the night for each subject. 
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Figure 18: HR REST method: values of HR rest was substituted  over corrupted samples, ACN is always the same as 
was previously explained. HR rest is obviously considered for each subject, in this case was considered the value of HR 

min reached during the night for each subject. 

 

 

2.5.3 Test set, training set and cross validation 
 

For training the network, the augmented dataset composed by 176 training sessions, was divided 

into training set and test set through the leave-one-out method, where one subject was the test 

set and the other four subjects were the training set. Early stopping was performed considering 

30% of training set to be the validation set and the resting 70% was used to train the network. 

 

Figure 19: Dataset division into subset 
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Each set was normalized with the min-max method, obtaining values from 0 to 1, according to: 

 𝑥𝑛 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Equation 18 

 

Where 𝑥𝑛  is the normalized value, 𝑥  is the value to be normalized, 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥 are the 

minimum and maximum value of the variable. 

Zero padded samples performed during data manipulation, were not included in the 

normalization. 

 

 

2.5.4 Architecture and learning parameters 
 

Layer architecture is composed by an input layer with ACN and HR corrupted as input features, an 

LSTM layer with 32 hidden units, a dropout layer with 45% of probability (in order to avoid 

overfitting) a fully connected layer and a regression output layer. 

 

 

Figure 20: Network architecture 

 

Loss function adopted is the half-mean-squared-error loss:  

 
𝑙𝑜𝑠𝑠 =

1

2𝑁
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 
 

Equation 19 

 

Where N is the time series length, ti is the target output, yi is the network prediction. 
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Method used for the stochastic optimization is Adam [50], computationally efficient, requires little 

memory and works well with long time sequence data. 

Training epochs chosen equal to 1000. Learning rate was set constant and equal to 0.01. Validation 

parameters such us validation frequency equal to 5 epochs and validation patience equal to 15. 

L2 regularization parameter set to 0.005. 

After training the network, the prediction was performed. 

 

 

 

2.6 METRICS FOR EVALUATING MODEL PERFORMANCE 
 

The performance of a prediction 𝑦𝑖  of a time series, is measured quantifying how well the 

prediction matches with the test data 𝑡𝑖. 

The root mean square error (RMSE) and the mean absolute error (MAE), are commonly used for 

evaluating the performance of a prediction model.  

 

• The RMSE is calculated as: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖=1

𝑁
 

 

Equation 20 

• The MAE is calculated as: 

 

 
𝑀𝐴𝐸 =

∑ |(𝑡𝑖 − 𝑦𝑖)|𝑁
𝑖=1

𝑁
 

Equation 21 

 

Where 𝑦𝑖 is the predicted value,  𝑡𝑖 is the test value, N is the total length of the signal considered. 
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These two metrics give a different information in terms of response to outliers. RMSE has the 

benefit of penalizing large errors more than MAE, but on the other hand RMSE does not describe 

average error like MAE does. MAE will be always smaller than RMSE. 

The metrics above mentioned are the most commonly used. 

Another metric useful for comparing performance of predictions methods on time series is the 

mean percentage error (MPE). 

While MAE describes the average magnitude of residuals taking into account only the absolute 

value, MPE shows how the model predictions are far from the desired output, taking into account 

both positive and negative errors, allowing to understand if the model is underestimating 

(negative errors) or overestimating (positive errors). 

 Is statistic, MPE is the average of percentage errors by a predicted value of a model differs from 

the real value of the quantity being predicted. 

• The MPE is calculated as: 

 

 
𝑀𝑃𝐸 =

100%

𝑁
 ∑

𝑡𝑖 − 𝑦𝑖

𝑡𝑖

𝑁

𝑖=1
 

Equation 22 
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3 RESULTS AND DISCUSSION 
 

3.1 BETTER METHOD FOR DATA MANIPULATION 
 

Looking into the RMSE, between three methods tested, HR LAST is the one with a smaller RMSE 

distribution and a lower median. 

For this reason, HR LAST was the adopted method for HR prediction through LSTM network. 

 

 

Figure 21: RMSE between three methods tested: HR LAST has smaller RMSE distribution and a lower median. 
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3.2 PERFORMANCE TRAINING SET AND TEST SET 
 

Evaluating a machine learning model means also to evaluate it through the training set. 

As already said, the dataset, without considering cross validation, is split into two subset: a test 

set and a training set. Performance between them is different. We expect a higher performance 

for the training set because the net is trained through this, and a larger error for the test set. If the 

opposite is happening, an overfitting of the network is probably occurring. 

 

 
Figure 22: Training set and Test set error distribution to observe network performance and overfitting 

 

An example of prediction between training set and test set is showed in  Figure 23. 

Training set prediction is more accurate compared to that one of test set, the RMSE results to be 

equal to 6.26 bpm and 8.1 bpm respectively and MAE results to be 4.28 bpm and 5.33 bpm 

respectively. 
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Figure 23: Training set and test set predictions. Training set shows a better prediction with a smaller error because 
the net has been trained and had learned with this set. If the opposite is happening, an overfitting of the network is 

probably occurring 

 

Looking into the graph of loss function, no overfitting is occurring. Validation set loss is always 

lower than training set loss.                           

 

Figure 24: Loss function between validation set and training set to observe that no overfitting is occurring 
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3.3 LINEAR REGRESSION PREDICTION AND LSTM PREDICTION 
 

With coefficients calculated before by the linear regression, heart rate prediction was made using 

activity counts. 

Performance comparison between predictions made by the LSTM model and by linear regression 

shows that both MAE and RMSE distribution results with a lower range compared to the linear 

regression. 

 
Figure 25: MAE distribution of two methods predictions: the LSTM model and the linear regression model. LSTM error 

distribution has a lower range of error compared to the linear regression model. 

 



36 
 

 
Figure 26:  RMSE distribution of two methods predictions: the LSTM model and the linear regression model. LSTM 

error distribution has a lower range and median value error compared to the linear regression model. 

 

 

 

3.3.1 Error in training load intensity zones 
 

As was already mentioned in section 1 training load intensity zones, calculated according to HR, 

are five.  

For athletes in general, in particular for endurance runners, it is important to have a good HR 

measurement, in order to estimate training load. For this reason, error is also calculated per 

training zone.  In this case, is important to define an acceptable error for accurate heart rate. 

The American National Standard of Cardiac monitors heart rate meters defines, for ECG devices 

monitors, a maximum deviation in amplitude for a time-varying output signal of ±10% from the 

input [51]. 
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We are not dealing with comparisons between input and output signals from an ECG device, we 

are considering a prediction on HR signals, but we can consider it as margin of error for this case. 

Any margin of error has been already defined for this particular case. 

Considering heart rate reference for each of five zone, mean percentage error (MPE) has been 

calculated both for LSTM model and linear regression model. 

 
Figure 27: mean percentage error (MPE) calculated in the five HR intensity zones for the LSTM model and 

linear regression model. MPE in all five zones is inside the range defined (±10%) except zone 5. For the LSTM 

model until 89th percentile of the error is under the threshold but its maximum value reaches +16.5%, an 

overestimation from 10% to 16.5% is equal to 22 ± 7 bpm (mean ± standard deviation). For the linear 

regression model instead, 76th percentile of this distribution is exactly at the limit of the threshold, contrary 

to LSTM model, reaching its maximum value at 20.85% of MPE equal to 23 ± 16 bpm. 

 

From the distribution of mean percentage error for each zone, MPE in all five zones is inside the 

range defined (±10%) except zone 5. For the LSTM model until 89th percentile of the error is under 

the threshold but its maximum value reaches +16.5%, an overestimation from 10% to 16.5% is 

equal to 22 ± 7 bpm (mean ± standard deviation). For the linear regression model instead, 76th 

percentile of this distribution is exactly at the limit of the threshold, contrary to LSTM model, 

reaching its maximum value at 20.85% of MPE equal to 22 ± 17 bpm. 
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LSTM model was significantly different to the linear regression model: with analysis of variance 

(ANOVA) performed,  p − value < 0.05   considering a significance level of 95% (𝛼 = 0.05).  

Overestimating training intensity zones, in general, means for an athlete to have done more than 

was actually done in terms of training activity.  

In zones below the anaerobic threshold (anaerobic threshold is reached at almost 85% of HRmax 

[52] [53] , inside zone 4), overestimating heart rate is more critical because the athletes may think 

to have reached higher intensity. Whereas, this is the result of a not reliable HR. This accuracy may 

lead to train less or run at sub-optimal speed having lower performance improvements. 

Overestimating zone 5, as in this case, could be less of a problem because zone 5 is the maximum 

intensity zone, which is less frequently used by runners during their trainings.  

Zone 5 is a very vigorous intensity training zone, mostly reached during interval trainings and sprint 

trainings, zone 1 and 2 are the most easy intensity zones, reached mostly at the beginning of every 

training session or during recovery trainings.  

For these reasons, an overestimation or also an underestimation in zone 3 and 4 may be more 

crucial. This is because are the most frequent zones reached during running. 

Figure 28 shows the distribution in training zone duration during running trainings. Blue bars are 

intensity zone durations according to the HR reference, in orange according to the HR predicted 

by the LSTM model, in yellow according to the linear regression model. 

The duration displayed is cumulative of all the dataset composed by 176 running sessions. 

Zone 3 and 4 are the most frequent reached zones during training, overestimating or 

underestimating HR above the threshold (±10%) in these zones would be more crucial than in zone 

1, 2 and 5. Of course, overestimating or underestimating HR, even if HR predicted is inside the 

threshold range defined (±10%), has repercussions on the duration of each training zone.  For 

example, if HR predicted in zone 1 has been overestimated compared to the HR reference, is 

probably that these values are now part of zone 2, causing a longer duration of this zone.  
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Comparing, indeed, HR reference with HR predicted by the LSTM model and by linear regression 

model, the HR of LSTM model shows quite the same duration as HR reference for zone 1, 2, 4, 

while HR of linear regression model shows quite the same duration as HR reference only for zone 

4.  Finally, the two models show almost the same duration for zone 3 and 4. 

 
Figure 28: Distribution in training zone duration. In blue bars intensity zone durations according to the HR 
reference, in orange according to the HR predicted by the LSTM model, in yellow according to the linear 

regression model. The duration displayed is cumulative of all the dataset composed by 176 running 
sessions. The two models show almost the same duration for zone 3 and 4. 

 

A variation in training intensity zone duration itself has repercussions on the calculation of training 

load (see Equation 1). 

This causes a propagation of errors visible in Figure 29, showing a comparison between training 

loads calculated for each of the 176 running sessions. Training load is displayed in normalized 

values and has been calculated considering duration in zones of HR reference (green line), 

duration in zones of HR predicted by the LSTM model (blue star line) and the duration in zones of 

HR predicted by the linear regression model (red circle line). 
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The MPE calculated in non-normalized values, between the training load of HR reference and the 

training load of HR predicted by the two model is equal to 1.12% for the LSTM model and 1.62% 

for the linear regression model. 

 
 

Figure 29: Comparison between training load calculated for each of the 176 running sessions considering duration in 
zones of HR reference (green line), duration in zones of HR predicted by the LSTM model (blue star line) and the 

duration in zones of HR predicted by the linear regression model (red circle line). The mean percentage error between 
the training load of HR reference and the training load of HR predicted by the two model is equal to 1.12% for the 

LSTM model and 1.62% for the linear regression model. 

 

Some examples of predictions made by LSTM model and linear regression model. The blue line 

the reference heart rate, in orange line the predicted heart rate by each model with RMSE and 

MAE above each figure. 

In Figure 30 is clear how in linear regression the different kinetics between ACN and HR were not 

took into account. At the beginning of the prediction, for the linear regression model, the HR 

predicted is already at 158 bpm, while for LSTM model is rising from 138 bpm. The linear 

regression prediction reflects too much the kinetic of ACN (see Figure 10).  LSTM model, instead, 

follows more the trend of HR reference. This behaviour is also more clear looking into the periods 

in which HR decrease and increase again. 
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Also errors result to be lower for the LSTM model compared to the linear regression. RMSE results 

to be equal to 5.3 bpm and 8.93 bpm respectively and MAE results to be 4.37 bpm and 7.45 bpm 

respectively. 

 

Figure 30: LSTM prediction and linear regression prediction: in linear regression the different kinetics between ACN 
and HR were not took into account. At the beginning of the prediction, for the linear regression model, the HR 
predicted is already at 158 bpm, while for LSTM model is rising from 138 bpm. The linear regression prediction 

reflects too much the kinetic of ACN. LSTM model, instead, follows more the trend of HR reference. This behaviour is 
also more clear looking into the periods in which HR decrease and increase again.  

 

In Figure 31 is showed a prediction on an interval training. Is visible also in this case, the two 

different kinetics are not took into account for the linear regression model, while the LSTM 

prediction follows HR reference timing. Furthermore, at the end of the four intervals, HR decreases 

in a perfectly linear way for the linear regression model, instead, for the LSTM prediction has an 

exponential decrease that reflects more the trend of HR reference. 
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Figure 31: Prediction on an interval training. Is visible also in this case, the two different kinetics are not took into 
account for the linear regression model, while the LSTM prediction follows HR reference timing. Furthermore, at the 
end of the four intervals, HR decreases in a perfectly linear way for the linear regression model, instead, for the LSTM 

prediction has an exponential decrease that reflects more the trend of HR reference. 

 

Figure 32 reflect perfectly the linear relation between ACN and HR considered with the linear 

regression model against a better timing prediction with LSTM model. While linear regression 

model has often moments in which the prediction is completely flat due to the subject stop 

(acceleration constant), the LSTM model follows more heart rate trends that hardly shows a 

constant behavior. In this case, also half value for both RMSE and MAE of LSTM model is reached 

compared to the linear regression model. 
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Figure 32: While linear regression model has often moments in which the prediction is completely flat due to the 
subject stop (acceleration is constant), the LSTM model follows more heart rate trends that hardly have a constant 
behavior. In this case, RMSE and MAE of the linear regression model is the double compared to the LSTM model. 

 

The choice of an LSTM model for this study was led mainly by these issues reported by linear 

regression. 

Training a network with time sequence data, the network can learn the history information for 

predicting heart rate during running training sessions, and thanks to the ‘long-short-term memory’ 

the information over time is not lost. 

 

3.4 COMPARISON BETWEEN HR MONITORED BY OHRM AND HR PREDICTED BY LSTM 
 

The LSTM network trained with the augmented data was tested on the data recorded by the 

OHRM with the real corruption. In this way, we can evaluate our solution in a real case scenario. 
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The starting dataset of 45 running session was composed by 30 HR signals corrupted monitored 

by the OHRM.  The prediction was indeed performed over 30 heart rate signals. 

 

3.4.1 Error in training load intensity zones 

 

In Figure 33, to evaluate the overestimation or underestimation in training intensity zones, MPE is 

considered. Yellow boxplots refer to the predicted HR by the LSTM model, blue boxplots refer to 

the HR corrupted monitored by OHRM. HR predicted by the LSTM is inside the threshold (±10%) 

except for zone 2,3,5 whose 98th, 99th, 86th percentiles are inside the threshold but they reach 

respectively maximum at -11.99%, -10.86%, 11.57%, values very close to the threshold. HR 

corrupted monitored by the OHRM, instead, is overcoming of a big MPE the threshold in zones 

2,3,4,5 respectively of 21.82%, 27.85%, 41.04% 43.79% and how was mentioned in section 3.3.1, 

is more crucial overestimate or underestimate zone 3 and 4 because are the most frequent zones 

during running. This low-accuracy behaviour of OHRM during increasing workload is already 

known in literature [18] [3]. 

 

Figure 33: MPE is considered to evaluate the overestimation or underestimation in training intensity zones in 
particular for HR calculated monitored  by the OHRM on PPG signals corrupted. Yellow boxplots refer to the predicted 
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HR by the LSTM model, blue boxplots refer to the HR corrupted. HR predicted by the LSTM is inside the threshold 
(±10%) except for zone 2,3,5 whose 98th, 99th, 86th percentiles are inside the threshold but they reach respectively 
maximum at -11.99%, -10.86%, 11.57%, values very close to the threshold. HR corrupted monitored by the OHRM, 
instead, is overcoming of a big MPE the threshold in zones 2,3,4,5 respectively of  21.82%, 27.85%, 41.04% 43.79% 

and how was mentioned in section 3.3.1, is more crucial overestimate or underestimate zone 3 and 4 because are the 
most frequent zones during running 

 

 

Also in this case, overestimating or underestimating has repercussions in training intensity zones 

duration and, as a consequence, also in the calculation on training load. 

In Figure 34 is displayed the duration per intensity zones between HR reference in blue bars, HR 

predicted by LSTM model in orange bars and in yellow bars the HR corrupted monitored by the 

OHRM. 

 

Figure 34: This figure shows the difference in duration per intensity zones. HR reference in blue bars, HR predicted by 
LSTM model in orange bars and in yellow bars the HR corrupted monitored by the OHRM. Each duration has an 

impact on the calculation of training load 
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Each duration has an impact on the calculation of training load (TL) displayed in Figure 35 . In green 

line the TL calculated by the HR reference, in blue line TL calculate by the HR predicted by the 

LSTM model and in red TL calculated by the HR calculated by the OHRM on PPG signals corrupted. 

The MPE for training load calculated through the HR predicted by LSTM and the HR corrupted by 

the OHRM is equal to -0.81% and 19.77% respectively. The difference between these two MPE is 

big and while for the LSTM model the error is little and may be negligible, the error made by the 

OHRM is not. A big error in estimating training load for an elite runner could led to risks linked to 

same athlete’s health. Risks can include injuries, overtraining and any performance improvements. 

 

Figure 35: In green line the TL calculated by the HR reference, in blue line TL calculated by the HR predicted by the 
LSTM model and in red TL calculated by the HR calculated by the OHRM on PPG signals corrupted. The MPE for 

training load calculated through the HR predicted by LSTM and the HR corrupted by the OHRM is equal to -0.81% and 
19.77% respectively. The difference between these two MPE is large and while for the LSTM model the error is little 

and may be negligible, the error made by the OHRM is big and may be not negligible. 

 

 The International Olympic Committee defined that there is a scientific evidence in the relationship 

between training load and health [54]. Training with a high intensity maximise the performance 

but if is repeated for a long time it can be dangerous for the athlete’s health. The same is in case 

of poor load that, for elite athletes, may increase factors for injuries [54] [55].  
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For this reason, the estimation of the training load is very important and making a big error could 

be dangerous. If TL is overestimated, the athlete may train less in order to recover, leading the 

runner to have any improvements in terms of physical performance as well as being injured. If, 

instead, the training load is underestimated, the athlete may led to train with a higher load with 

injury and overtraining consequences.   

 

 Figure 36, Figure 37, Figure 38 show predictions made by LSTM over HR corrupted by the OHRM. 

In blue line the reference HR, in orange the predicted HR by the LSTM and in black line the 

corrupted HR. 

Above each figure, the RMSE evaluated both for HR predicted and HR corrupted. 

 

 
 

Figure 36: HR during VO2max test. In blue line the reference HR, in orange the predicted HR by the LSTM and in black 
line the corrupted HR. RMSE is improved from 40.31 bpm to 2.92 bpm 
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Figure 37. HR during a long distance run: in blue line the reference HR, in orange the predicted HR by the LSTM and in 

black line the corrupted HR. RMSE is improved from 63.23 bpm to 5.01 bpm 

 

 

 
Figure 38: HR during am interval training. In blue line the reference HR, in orange the predicted HR by the LSTM and 

in black line the corrupted HR. RMSE is improved from 65.68 bpm to 8.34 bpm 



49 
 

3.5 LITERATURE COMPARISON 
 

Jindal et al [20], using a wrist-worn watch with a PPG and a tri-axial accelerometer, built a deep 

learning classification model for determining heart rate during low and high intensity exercise in 

15 males, using heart rate features, where motion data were used only to filter the signal before 

input the heart rate features in the model. We cannot compare our LSTM regression model with 

this classification model in term of accuracy, the only error reported by Jindal et al. [20] is an 

average error in 140s window length of prediction equal to 5.72% calculated during a high intensity 

exercise. 

Considering a window length of 140s in random samples for each prediction made by this study 

with LSTM model, the average value of mean percentage error is 0.95%.  

 
MPE study [20]  MPE this study 

140s HR prediction 5.72% 0.95% 

Table 3: Comparison between this study and study [20] using a deep learning model for HR prediction using HR 
features 

 

Ming and Jun [22] built a classification feedforward neural network using acceleration data and 

heart rate data for heart rate prediction in 90 minutes signal from a healthy male. Heart rate was 

recorded during daily life through a portable HR monitor with electrodes and accelerometer data 

were recorded through a tri-axial accelerometer. The author reported a value of mean absolute 

error for 30s prediction on training set and on test set respectively equal to 3.12 bpm and 3.31 

bpm. 

As was done for Jindal et al. study [20], considering a window length of 30s in random samples for 

each prediction made by training set and test set of this study with LSTM model, median MAE 

results to be equal to 6.81 bpm and 7.56 bpm, minimum MAE instead results to be 0.21 bpm and 

0.43 bpm respectively for training set and test set. The Median MAE was higher compared to the 
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study [22] but is not clear if the value reported by the author of [22] was a minimum, an average, 

a median or value of MAE. 

 

30s HR prediction MAE study [22] Median MAE 

this study 

Minimum MAE 

this study 

Training set 3.12 bpm 6.81 bpm 0.21 bpm 

Test set 3.31 bpm 7.56 bpm 0.43 bpm 

Table 4: Comparison between this study and study [22] using a feedforward NN. 

Is not exactly clear what MAE the author reported, median MAE in our study result to be higher and minimum MAE 
results to be lower. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

3.6 LIMITATIONS 
 

 

1) Cardiovascular Drift 

In section 2.4 Figure 10, cardiovascular drift has been mentioned.  

In Figure 39  our LSTM model does not consider a cardiovascular drift lasting for 16 minutes, 

predicting a flat line. A reason because the algorithm is not able to correctly predict the HR, is 

because is the only training session with a long cardiovascular drift duration in the dataset. 

Even with the data augmentation, the availability of training of this type is not enough to 

predict it correctly.  More trainings with a big cardiovascular drift in the dataset can allow to 

the network to learn the trend predicting it in a better way.  

Although the prediction of HR is mostly flat, the error (RMSE=9 bpm, MAE=7.08 bpm) it is not 

extremely high, and especially the MPE (MPE=1.17%) is inside the range previously defined 

(±10%). 

 
Figure 39: the LSTM model does not consider a cardiovascular drift lasting for 16 minutes, predicting a flat line. 

A reason because the algorithm is not able to correctly predict the HR, is because is the only training session with 
a long cardiovascular drift duration in the dataset. Even with the data augmentation, the availability of training 
of this type is not enough to predict it correctly.  More trainings with a big cardiovascular drift in the dataset can 
allow to the network to learn the trend predicting it in a better way. Although the prediction of HR is mostly flat, 
the error (RMSE=9 bpm, MAE=7.08 bpm) it is not extremely high, and especially the MPE (MPE=1.17%) is inside 

the range previously defined (±10%). 
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2) PARTS in which the subject is not running. 

It is possible that HR is also corrupted in periods in which the subject is not running but is still in 

movement. These parts involved are usually two, between warming up and training and also 

between training and cooling down. During these periods, LSTM model could predict heart rate in 

a wrongly way.  

For example, considering a running session in Figure 40, where the blue line is the reference HR, 

the orange line is the predicted HR, is possible to distinguish four parts, a warming up (1), a window 

between the warming up and the training (2), an interval training (3) and a cooling down (4) and 

the prediction is made in the second part. 

 

 
Figure 40: the blue line is the reference HR, the orange line is the predicted HR, is possible to distinguish four parts, a 
warming up (1), a window between the warming up and the training (2), an interval training (3) and a cooling down 

(4) and the prediction is made in the second part. 

 

 

In Figure 41 prediction is showed closer. From the beginning until sample 1650 the prediction is 

really close to the reference heart rate, but after this period, the prediction is wrong. During 
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periods between warming up and training and also between training and cooling down, runners 

usually do some stretching exercise, exercises with arms or legs, and so on.  

Over all, the prediction is 50% good and 50% wrong, this allow to have a big error in term of RMSE, 

MAE and MPE (RMSE=27.52 bpm, MAE=21.91 bpm, MPE=19%).  The reason is because the subject 

was running during the correct prediction (we can see that from 80 bpm HR rises reaching 130 

bpm) and was not running during the wrong prediction (beats are still quite high because the 

subject just stopped running but they tend to decrease). 

 

Figure 41: From the beginning until sample 1650 the prediction is really close to the reference heart rate, but after 

this period, the prediction is weak. During periods between warming up and training and also between training and 

cooling down, runners usually do some stretching exercise, exercises with arms or legs, etc… Over all, the prediction is 

50% good but 50% wrong, this allow to have a big error in term of RMSE, MAE and MPE.  The most probable reason 

is because the subject was running during the correct prediction and was not running during the wrong prediction. 

 

In Figure 42 HR reference in blue, HR predicted in orange and ACN in green line. It’s clearly visible 

that the prediction is following ACN trends. Calculating correlation coefficients between HR 

reference and ACN in the two prediction parts we can say if the subject was running or not because 

Pearson correlation coefficient is high during running periods due to the high correlation between 

ACN and HR. The two parts prediction have been considered separately by the red point in the 

figure. 
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Pearson correlation coefficient for the first part of the prediction and the second part results to 

be equal to 0.78 and 0.43 respectively. From these coefficients, it’s highly probable that the 

subject was running in the first part where ACN and HR are strongly related (r=0.78) and in the 

second part the probability that the subject is running is less due to the low moderate correlation 

coefficient (0.43). 

 

 
Figure 42: It’s clearly visible that the prediction is following ACN trends. Pearson correlation coefficient have been 
calculated for the two prediction parts considered separately by the red point. It’s highly probable that the subject 
was running in the first part where ACN and HR are strongly related (r=0.78) and in the second part the probability 

that the subject is running is less due to the low moderate correlation coefficient (0.43). 

 

Not running has a strong impact in the LSTM model, because this algorithm focus on running 

periods. An activity classifier (based for instance on accelerometer data [56]) can help to separate 

the type of activity and future research could work on have different LSTM for different activity. 
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4 CONCLUSIONS 

This study presents a novel approach using deep learning technique such us LSTM to predict heart 

rate during running trainings, using accelerometer features, where heart rate was affected by a 

low SNR due to the low accuracy of an OHRM. 

In general, metrics error of this study model such us MAE, RMSE and MPE were lower than the 

linear regression model. Both MAE and RMSE have a shorter range of error compared to linear 

regression prediction.  

From the distribution of mean percentage error for each training intensity zone, MPE in all five 

zones is inside the range defined (±10%) except zone 5 for both models. For the LSTM model until 

89th percentile of the error is under the threshold but its maximum value reaches +16.5%  (equal 

to 22 ± 7 bpm). For the linear regression model instead, 76th percentile of this distribution is exactly 

at the limit of the threshold, contrary to LSTM model, reaching its maximum value at 20.85% (equal 

to 22 ± 17 bpm). 

Overestimating zone 5, is less of a problem because zone 5 is the maximum intensity zone, which 

is less frequently used by runners during their trainings. Zone 5 is a very vigorous intensity training 

zone, mostly reached during interval trainings and sprint trainings, zone 1 and 2 are the most easy 

intensity zones, reached mostly at the beginning of every training session or during recovery 

trainings. For these reasons, an overestimation or also an underestimation in zone 3 and 4 may be 

more crucial. This is because are the most frequent zones reached during running. 

This little overestimation and underestimation led to a propagation of error for the Edward’s 

training load calculation, where it results to be estimated with a MPE of 1.12% for this study model 

against 1.62% of the linear regression. In literature, no threshold of error over training load has 

been defined, but considering an error of 1.12% over this estimation, training load calculated 

through the HR predicted may be acceptable. 

Furthermore, comparing the predicted HR and the HR monitored by the OHRM, the 

overestimation or underestimation in training intensity zones for the LSTM model results to be 

inside the threshold (±10%) except for zone 2,3,5 whose 98th, 99th, 86th percentiles are inside the 
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threshold reaching respectively maximum value at -11.99%, -10.86%, 11.57%, values very close to 

the threshold. HR corrupted by the OHRM, instead, is overcoming of a big MPE the threshold in 

zones 2,3,4,5 respectively of  21.82%, 27.85%, 41.04% 43.79% and is more crucial involving zone 

3 and 4 because are the most frequent reached zones during running. 

Comparing training load estimation calculated through the HR predicted by LSTM and the HR 

monitored by the OHRM the MPE is equal to -0.81% and 19.77% respectively. The difference 

between these two MPE is large and while for the LSTM model the error is little and may be 

negligible, the error made by the OHRM is not. A big error in estimating training load for an elite 

runner could led to risks linked to same athlete’s health. Risks can include injuries, overtraining 

and any performance improvements. 

Future work for improving model performance can be involved. Adding new features like subject-

dependent performance features (such us amount of oxygen uptake during each training session, 

fit index, etc..) may be helpful, because the model of this study only uses motion data (activity 

counts) and corrupted heart rate as a features. Also a bigger dataset could be really useful for such 

study comprising more subjects and more running trainings per subject with also an internal 

variability of the different type of trainings (i.e interval trainings, long distance run, etc..) allowing 

the network to learn better trends and to predict in a better way cardiovascular drift, overcoming 

a limitation of this study. Another aspect that can be improved is to understand better the 

relationship between activity counts and heart rate to overcome a bad prediction in non-running 

periods also through the help of an activity classifier. 
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5 APPENDIX 

Figure 43: Morning diary, for having info about daily life’s athlete (filled by subjects every morning) 

 

 

Figure 44: Training diary, to get info about training activity (filled by subjects every training session) 

 

 

Figure 45: Recovery questionnaire, to get info about their recovery status (filled at the end of each week) 
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