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Introduction

In order to protect against the risks inherent in an economic or professional ac-

tivity, or against the risks in which it is possible to incur in private life, businesses

and families have the possibility to sign an insurance policy. The latter is a con-

tract with which the insurer undertakes to compensate the contractor for damages

suffered as a result of an accident, during the period of coverage and according

to the procedures established by the contract. Obviously, the transfer of risk is

carried out only against payment of an appropriate compensation: the premium.

The determination of the premium to which insurance companies offer the

policies is one of the most important phases of the insurance process, because

the correct definition of premium allows the companies to meet the commitments

taken with its policyholders and to guarantee an adequate remuneration of capi-

tal.

The process of defining the premium for a non-life insurance policy, starts from

the probabilistic assessment of the total amount of damage expected, caused by

the claims during the insured period. This premium configuration is called fair

premium and is the starting point on which to build the rate. At fair premium,

in fact, the company must add a profit for the service offered during the period

of coverage, thus obtaining the pure premium. Finally, fixed charges and taxes

are added to get the final price of the insurance policy,that is the gross premium.

In this thesis, the objective is to illustrate the procedure for determining the

fair premium, using Generalized Linear Models, and the pure premium in a non-

life insurance, through the optimization of appropriate functions.

Now follows a short description of how it was decided to articulate this thesis

work.
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In Chapter 1 the notion of insurance was introduced and the issue of non-

life insurance discussed, focusing attention on characteristics of the Car Liability

insurance. The non-life pricing process was then presented, starting with the

notion of insurance premium. The three typical premium configurations have

been defined, namely the fair premium, the pure premium and the tariff premium.

At the end of chapter, some information was also provided on the tariff classes

and the personalization of premium.

Chapter 2 is dedicated to Generalized Linear Models, widely used in actuarial

practice for the construction of non-life premiums. After briefly presenting the

structure of these models, the models for the number of claims, with Poisson

distribution, and the models for damage per claim, with Gamma distribution,

were described.

In Chapter 3 an empirical application was made, starting from data provided

by RGI S.p.A. The chapter has been divided into three parts: in the first part,

useful Machine Learning techniques were analyzed, in the second part a presen-

tation of the data was made and finally, in the third part, the model for the

definition of fair premium was developed using GLMs.

In Chapter 4, the pricing strategies that can be adopted by insurance compa-

nies to find the optimal gain are described. In particular, two different strategies

have been considered: the first, which takes into account only the customers and

the demand linked to them, and the second, which also considers the competitors

and the reputation of the company. Finally, it has been described how the pricing

of insurance changed with the advent of the Internet.
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Chapter 1

Non-life Insurance: Products and

Pricing

1.1 Insurance products

A short description of the main features of insurance, in particular of non-life

insurance, is provided in this Section, mainly aiming at introducing the basic

items involved in premium calculation.

1.1.1 General Aspects

According to the Art. 1882 of Civil Code, «insurance is the contract with which

an insurer, in exchange of the payment of a certain premium, obliged himself to

pay an indemnity to the insured equivalent to the damage caused by an accident

and to pay an income or a capital if a life-related event occurs».

The article therefore introduces the distinction between non-life insurance

(also named general or property/casualty insurance) and life insurance. With

regard to non-life insurance, there is an obligation for the insurer to indemnify

the insured from the damages suffered, due to an unfavorable event; while in the

case of life insurance, the law states that the insurer must provide for the payment

of a capital or an annuity, if an event related to human life takes place. In this

thesis, only non-life insurance is considered.

The law provides that two or more parties agree through a contract, repre-

sented by a policy, to build and regulate a specific legal relationship patrimonial,
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1 – Non-life Insurance: Products and Pricing

that is the insurance. Function of the contract coincides with the elimination of

risk and this purpose can be achieved by trasferring the risk to insurer, i.e. a

specialized entity which carries out the insurance business in an entrepreneurial

manner. Insurer is the one able to neutralize the risk that has taken, with the

signing of single contract, through its inclusion in a group of risks (pool of risks).

Pool contains risks that have homogeneity, size and independence as their es-

sential characteristic and thanks to these peculiarities, the company is able to

transform what is uncertain for the individual insured, in certainty for the mass

of risks managed. Then the object of policy is the risk: contract is void if the risk

does not exist or has ceased before the conclusion of the contract (art. 1895 of

the Civil Code). To allow the insurance company to make a correct assessment of

the risk, it is of primary importance that the insured provides in a precise manner

all the necessary data.

On one side, in a contract there is therefore a subject who professionally

accepts to assume an economic risk upon payment of a prize, committing to

perform the service at the moment in which the feared event will occur. On the

other, there is the insured, who represents the person who is potentially subject

to an unfavorable event,but that, thanks to the stipulation of insurance contract,

protects himself from the risk in question, by paying a price.

At the signing of contract, the parties can not know if the insured risk will

occur during the warranty period. For this reason, the insurance contract falls

into the category of random contracts: on the one hand, the insured person is not

able to know whether he will receive indemnification or capital from the insurer,

against the premium paid in advance; on the other hand, the insurer ignores

whether he will have to pay the promised benefit or if the premiums collected

against the risks assumed will be adequate to meet the payments due.

Thanks to the progressive improvement of the statistical data, today the in-

surer is able to share, with ever greater precision, the risks among insured. How-

ever, even if the insurer’s estimates were entirely correct, the random nature of

the contract would persist. In fact, the insurance company would know the exact

number of claims that will affect the mass of insured risks and the exact cost of

the services it will have to pay, but in any case it would not be able to know for

which contracts it will be obliged subsequently to perform the service. Random
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1 – Non-life Insurance: Products and Pricing

character is therefore a peculiar element of the insurance contract (Miani, 2010)

and, due to uncertainty of performances, non-life contracts generally have a short

coverage period, typically one year, called policy year.

1.1.2 Main Categories of Non-life Insurance Products

Non-life insurance includes a wide range of products, offering protection in re-

spect of many risks. This thesis is not intended to provide a complete and detailed

presentation of the possible contents of non-life insurance coverage; some infor-

mations which are useful to understand the fundamentals of pricing will be given.

The non-life business may be segmented according to different perspectives.

Considering the possible contractor, it can be distinguished in personal insur-

ance, addressed to individuals or families (e.g. motor insurance, health insurance,

homeowners insurance, and so on), and commercial insurance, useful to business

entities (e.g. transportation insurance, workers compensation, and so on). In

relation to the possible beneficiary, insurance can be also classified into: property

insurance, liability (or casualty) insurance and health insurance.

Property insurance provides a protection against a possible loss or damage

to the property of the insured, including loss of profits or emergence of costs.

Insurances such as Fire, Theft, Transport, Hail, Judicial Protection and Boats

are part of property insurances. For these insurances, an amount called insured

capital is determined, aimed at dealing with damaging events. This sum coincides

with the maximum indemnity paid by the insurer in the event of a claim and is

usually commensurate with the value of asset.

Health insurance offers instead the payment of a compensation by insurer, in

the event of an accident or illness of the insured, or indemnity, in the event of

death. Accident policies can be divided, depending on the type of accident, into:

temporary disability, permanent disability and death. In the case of temporary

disability the insurer will pay a daily allowance whose amount is fixed; in the

case of permanent disability, the benefit payable by the insurer is calculated as a

percentage of the sum insured on the basis of percentage of disability caused by

the claim; in the case of death, will be paid a fixed sum that was set at the time the

contract was signed. The benefits provided for the Sickness insurance policies are
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1 – Non-life Insurance: Products and Pricing

instead reimbursements of medical expenses, paid by the insurer within a certain

ceiling. It is noteworthy that some forms of health insurance, typically those with

forfeiture benefits and a duration of more than one year, are classified within life

insurance.

Liability insurances offer financial protection against various damage caused

by the insured to third parties. The most important of these, in economic terms,

is Car Liability (R.C.A in Italian). For liability insurance a maximum amount

is defined, i.e. the limit within which the insurer intervenes to compensate the

damage caused by the insured party to third parties. The maximum amount

limit has the objective to contain, within a reasonable threshold, the possible risk

exposure of the insurer.

While the general principles for pricing and reserving are common to all the

business lines, the specific methods applied in practice may differ significantly,

consistent with the features of particular line of business dealt with.

Car Liability in Italy

As mentioned above, Car Liability insurance is the most important branch in

the non-life insurance sector. It is a compulsory liability insurance and given its

peculiarities and its economic importance, it forms a separate branch within the

non-life insurance.

Since 1969, anyone who puts a vehicle in Italy in circulation has the obligation

to take out an insurance policy. The Car Liability in fact is the contract that

has the purpose of guaranteeing the driver or, if different, the owner of vehicle,

against the risk of having to compensate third parties for damages caused by

the circulation of vehicle. This policy therefore covers the damage caused by the

insured vehicle to people, animals or property as a result of a claim, but does not

guarantee coverage for any physical damage suffered by the driver who caused

the accident.

The duration of contract is one year, starting from midnight on the day prize

has been paid. It is possible to issue policies with a duration of less than one

year (called temporary), in particular for vehicles with temporary license plates

and those calculating for testing or demonstration. The company is obliged to
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1 – Non-life Insurance: Products and Pricing

compensate claims incurred by the due date of the policy.

Another characteristic of a Car Liability was the presence of tacit renewal,

i.e. the automatic renewal of coverage for a further annuity in the absence of

withdrawal by the insured, but this clause has been abolished with the law decree

number 179. Moreover, a "tolerance" period of 15 days beyond the expiration

date has been introduced, during which the company continues to respond to

claims caused by the insured. Tolerance period allows the insured to evaluate the

different offers on the market and decide whether to keep the same company or

change it. This decree facilitated the review of the prices proposed on the market

thanks to the greater competition among the insurance companies.

One of elements that influence the premium of these policies is the Bonus

Malus mechanism, introduced with the Bersani law. It provides the adjustment

of premium on the basis of individual experience, depending on the number of

claims caused during the period of validation of the contract and on basis of a

parameter linked to a merit class, which measures the claims of previous years.

Each company may choose to adopt specific rules in the allocation of internal

merit class to its customers, without prejudice to the obligation to provide for the

correspondence rules between the internal merit classes and the universal merit

classes. The companies have the obligation to report not only the internal merit

class, but also the universal merit class in the risk certificate.

The universal merit classes are 18: the 18th is the highest, the one at which

the highest prize will be paid; 1st is the lowest class, where the prize is cheaper.

Therefore the lower the class, the cheaper the policy. The 14th class is generally

assigned to vehicles insured for the first time after matriculation or transfer of

ownership.

The merit class improves (bonus) if no accidents occur within the insured

year, instead it worsens (malus) in the presence of claims for which the driver is

responsible and that have been paid by the insurer during an observation period.

The bonus case provides for the improvement of a merit class, benefiting from the

reduction of premium for lowering the class, while in the case of malus two classes

are increased, with a consequent increase in premiums. The observation period

is the period of time in which insurer evaluates the driver’s driving behavior. It

starts from the day the policy begins, and then finish 60 days before the annual
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deadline1.

As mentioned before, the merit classes adopted by various companies are not

all the same, since they are left with a margin of autonomy in the management

and definition of internal classes. In order to ensure however comparability be-

tween the various systems adopted by the companies, IVASS, that is an insurance

supervision institute, introduced the universal conversion merit class (CU).

Figure 1.1 shows the possible class displacements compared to the departure

one, in the case of one or more claims reported during the policy observation

period.

Starting CU 0 claims 1 claim 2 claims 3 claims 4 claims or more

1 1 3 6 9 12
2 1 4 7 10 13
3 2 5 8 11 14
4 3 6 9 12 15
5 4 7 10 13 16
6 5 8 11 14 17
7 6 9 12 15 18
8 7 10 13 16 18
9 8 11 14 17 18
10 9 12 15 18 18
11 10 13 16 18 18
12 11 14 17 18 18
13 12 15 18 18 18
14 13 16 18 18 18
15 14 17 18 18 18
16 15 18 18 18 18
17 16 18 18 18 18
18 17 18 18 18 18

Figure 1.1: Table of Universal Classes based on the number of claims occuring in
a year

In the insurance sector, the Bersani Decree allows the owner of a new or used

vehicle to acquire the same class of merit of a circulating and insured vehicle

already in his possession or in possession of a member of the cohabiting family

unit. Thanks to this mechanism, even new drivers who make insurance for the

1For coverage after the first year, the observation period begins two months before the start
of the contract and ends two months before the deadline.
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1 – Non-life Insurance: Products and Pricing

first time can avoid starting from the fourteenth class of merit (or CU), inheriting

that of the parent.

The universal merit class affects the definition of premium to be paid, but

using the same category does not mean paying the same insurance premium. The

price of the RCA, in fact, also depends on other factors, including the personal

characteristics of the figures listed in the policy, the number of years from which

it is licensed, the power and fuel type of vehicle.

If the car has a regular insurance coverage, any damage caused by a claim

will be reimbursed by the company within the limits set by a maximum amount

(agreed upon when the policy contract was signed) that the insurance compen-

sates in the event of an accident.

Starting from 11 June 2017, following the adaptation of the minimum legal

limits established by European legislation 2009/103/CE and the Private Insur-

ance Code (art. 128), higher maximum amounts have been set to guarantee

insured drivers a greater coverage in the event of damage. The law provides for

7.290.000e as a single minimum maximum amount; if the contractor decides to

insert the two separate maximum amounts, the minimum statutory maximum

amount for damage to property is 1.220.000e, while that for personal injuries is

set at 6.070.000e. Beyond these thresholds the insured will respond with his own

assets. All companies can also offer higher limits by charging the person who

stipulates a higher insurance premium.

Finally, a further peculiar element, which concerns Car Liability, is the method

of claim compensation. There are two different compensation procedures: the

ordinary procedure and the direct compensation procedure.

The direct compensation procedure was introduced by the Private Insurance

Code in February 2007. This procedure requires that the driver not responsible,

or partially responsible for the claim, advances a claim for compensation to his

insurance company. The procedure of direct compensation, compared to the

ordinary one, allows to considerably reduce the settlement time of claims and this

has a positive effect on the relationship between the insured and the company. It

also allows a reduction in premiums over the medium/long term, as management

and administration costs are reduced for insurance companies.

The direct compensation procedure applies basically to all road accidents
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between two vehicles, except for those involving:

• more than two vehicles (think about the chain crashes);

• a vehicle not regularly insured or not registered in Italy (in this case the

claim for compensation must be presented to the Guarantee Fund for vic-

tims of the road and to the company designated according to the place of

occurrence of the accident);

• a vehicle that does not belong to the category of motor vehicles;

• a pedestrian, a cyclist or a real estate (think of the hypothesis of the driver

who, losing control, goes to smash the window of a shop);

• a special vehicle or an agricultural machine.

Furthermore, the direct compensation procedure can not be activated when:

• there was no impact between the two vehicles;

• there are serious injuries leading to a permanent invalidity of more than 9%

resulting from the accident.

In cases where the direct compensation procedure is not applicable, the ordi-

nary compensation procedure will be followed. In this case, the claim for com-

pensation must be made to the vehicle insurance company responsible for the

accident.

1.2 Pricing in non-life insurance

The insurance company carries out a particular productive activity, represented

by the systematic assumption of risks through insurance contracts. The contract

establishes that the insured obtains a promise of compensation subject to the

occurrence of an event, indicated in the policy. Obviously, the company will take

on the risks of insured persons on payment of a compensation, i.e. the insurance

premium.

From what has just been said, it can therefore be said that the premium is,

by its nature, the proceeds of the insurance business carried out by the company,
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while the reimbursements are instead the costs connected to the exercise of this

activity, to which must also be added management and organization costs, as well

as administrative burdens.

The sale of insurance product takes place before its production, so there is

an inversion of the production cycle, induced by the precedence of revenues com-

pared to the costs. In fact, premiums, which are collected in advance and rep-

resent revenues, accrue before compensation, which is instead the typical cost

item. Contrary to what happens for a normal company, which produces goods or

services in which the selling price of finished products is calculated on the basis of

costs already incurred, the insurer is not able to define precisely when it offers its

own market services and costs for performance, future and uncertain. Estimates

must therefore be made.

Hence, the efficiency of management depends on the quality of probabilistic

estimates and their applicability to the risk group or to the insured parties. The

correct estimate of probabilities, from which the revenue capacity derives to cover

costs, depends on the correct functioning and right application of the law of large

numbers: the wider the homogeneous and independent risk sample observed, the

more the estimated frequencies will tend to coincide with the probabilities of

events. The goal for company is to be able to apply a "today" premium able to

cover any "tomorrow" compensation. The collected revenues must also be able

to guarantee an adequate remuneration of the company’s capital, therefore it is

not sufficient to cover the costs alone.

The inversion of the production cycle, as well as influencing the income state-

ment, is also reflected in the company’s capital structure.

The sale of policy, which provides for a future payment obligation, raises a

contingent-state debt to insured. The onset of this debt requires appropriate

investments in assets to support the values of these liabilities. The premium that

company collects in advance must therefore be invested in order to guarantee the

economic-patrimonial balance of the company. The objective is the achievement

of a portfolio composition of assets that present an adequate combination of risk,

yield and liquidity, able to cope with characteristics of the liabilities and profit

objectives set by the company (Porzio, et al., 2011).

The level of "essentiality" of the investment varies according to the branch
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of activity for which the company has received the authorization. In fact, for

life insurance coverage, which has a multi-year duration, it is essential that the

premiums collected are invested. In this case, therefore, the investment is not a

simple economic opportunity, but a real necessity; the insurer who does not invest

the premiums would risk ending up very quickly in a situation of insolvency or

inability of the resources available to meet the third party’s credit reasons. In the

non-life classes, however, the brevity of coverage, which generally lasts one year or

less, does not make it necessary for the company to invest premiums collected in

order to achieve economic and financial equilibrium. However, the policy of mere

custody of premiums would soon prove to be detrimental due to the deviations

that can be ascertained between estimated frequencies and frequencies detected.

In this case, even if not necessary, the investment is in any case desirable to

guarantee the solvency of company.

1.2.1 General Aspects of Insurance Premium

The amount paid by the insured person, in relation to the random commitment

taken by insurer with the stipulation of insurance contract, is defined as a pre-

mium.

The premium can be paid in a single payment at the time policy is signed, or

it can be split into several installments. Most of non-life insurance contracts have

an annual coverage, so premiums are generally paid annually by insured. The

following pages will illustrate theoretical and practical aspects for calculation of

various premium configurations of an insurance contract.

In the actuarial technique, there are different prize configurations: fair, pure,

tariff or commercial and gross premium. The starting point is the fair premium,

which corresponds to the expected value of the total random compensation paid

by the insurance company during the insured period. Then there is pure premium,

that includes the so-called security loading, which is the expected gain from the

insurance contract for the company. This premium structure has the role of

limiting any losses if the management of contract portfolio is negative due to

estimation errors or an unexpected increase in claims. The next configuration

is tariff premium, also known as a commercial premium. It is equal to the sum
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between pure premium and fixed charges for expenses, intended to cover the costs

of management and administration. This is therefore the premium that insurer

asks for a coverage, but does not correspond to the price paid by insured. The

latter is gross premium, which also has the taxes required by current regulations.

Figure 1.2 shows the various premium configurations just presented.

FAIR PREMIUM + Security Loading︸ ︷︷ ︸
PURE PREMIUM

PURE PREMIUM + Fixed Loading︸ ︷︷ ︸
TARIFF PREMIUM

TARIFF PREMIUM + Tax︸ ︷︷ ︸
GROSS PREMIUM

Figure 1.2 Representations of premiums

In the next sections will be explained in detail the first three types of premiums

and how to calculate them. The gross premium will not be seen in detail because

it is obtained by simply applying the taxes to the tariff premium.

1.2.2 Fair Premium

Calculation of the fair premium by theoretical approach

With the aim of identifying the fair premium, i.e. the premium that guarantees

the correspondence between the amount paid by insured and the performance

assumed by insurer, it is necessary to take into account the overall compensation

payable by the insured in the year of coverage.

Let’s considered a generic insurance contract, which provides for the coverage

of the risk for a period of one year, let’s indicate with:

• N the random number of claims during the coverage period. It is a natural

and limited number. It may be difficult to determine the maximum number

of claims, so often are considered as possible determinations of N all natural
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numbers. In the choice of probability distribution, however, it must be

considered that N is limited, choosing distributions that assign very low

probabilities for high determinations of N ;

• Xj the random amount of damage caused by the j-th claim;

• S total random compensation that is the sum of recompense for claims that

affected the insured during the coverage period.

Since the insurer’s objective is to estimate the random performance at the time

the contract is signed, the random numbers N, Xj and S refer to the information

held by the insurer at that precise moment. Therefore, fixed j, it is possible that

the claim j -th is not realized and in this case Xj will be zero. If N<j implies

that Xj=0; if instead the j -th claim occurs, Xj is the amount of damage.

It is important to underline that only the claims that cause damage of a

positive amount and that are considered compensable under the contractual con-

ditions are relevant for the insurer. In fact it may happen that for some claims

reported, the amount of damage charged to the insurer is null. These are the

so-called claims without follow-up, which are not counted in the random number

N.

To define S, compensation for individual damages is required: this is a function

of the damage and will be indicated with Yj, which indicates the random amount

of compensation for the j -th claim and is defined by the function

Yj = φ(Xj)

where j=1,2,3... and φ indicates the compensation function, determined by the

contractual conditions of the policy.

Assuming that the same policy conditions are applied to any claim, the ran-

dom variables Y1,...,Yn are identically distributed and the total compensation for

the damage S can be written as

S =

0 if N = 0

Y1 + ...+ YN if N > 0
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The fair premium Pf is given by

Pf = E[S](1 + i′)−1/2

where the expected value is calculated according to realistic assumptions for the

claim amounts and the number of claim, while i’ is the annual interest rate which

expresses the time-value of money. In the following is assumed i’=0, since the

duration of Car Liability is short.

The calculation of E[S] is usually performed accepting the following assump-

tions:

a. whatever the outcome n of N, the random variables Y1, Y2, ..., Yn are

stochastically independent and identically distributed;

b. the random number of claims is stochastically independent of the compen-

sation Yj, j=1,2,...,N.

Point b) implies that the probability distributions of the determinations of Yj re-

mains unchanged regardless of the hypothesis about N, then E[Yj|N = n] = E[Yj]

∀j. However, a high determination of N should lead us to choose a distribution

that assigns a very low probability for high determinations, since however, the

number of claims that may occur during the insured year is limited. Therefore

to very high values of N it will be appropriate to attribute low probability.

Indicating with Y a random variable with the same probability distribution

as Yj, from hypothesis a) it follows that:

E[Yj] = E[Y ]; j = 1,2,3, ...

Imposing for n=1,2,...:

pn = Pr(N = n)

the result is:

E[S] =
∞∑
n=0

pnE[S|N = n] =
∞∑
n=1

pnE[S|N = n] =

∞∑
n=1

pnE[Y1 + ...+ YN |N = n] =

18
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∞∑
n=1

pn

∞∑
n=1

pnE[Yj|N = n].

Taking into account the two hypotheses set out above:

∞∑
n=1

pn

∞∑
n=1

pnE[Yj|N = n] =
∞∑
n=1

pnnE[Y ] =

E[Y ]
∞∑
n=1

pnn = E[Y ]E[N ].

In conclusion, the expected value of global compensation is:

E[S] = E[Y ]E[N ]. (1.1)

Based on the assumptions made, for the definition of the expected value of the

global reimbursement S, and therefore of the fair premium, all that the insurer

needs is the estimate of the expected value of the number of claims E[N ] and the

expected value of the reimbursements E[Y ] (Pitacco, 2000).

Calculation of the fair premium by statistical observation

To determine the fair premium it is possible to evaluate E[Y ] and E[N ] through

the observation of a collective of insurance contracts, considering the number of

claims that affected each contract, the relative damages and compensation.

The observation must be carried out on a group of contracts concerning risks

similar to the one in question. This means that the policies must be similar in

terms of type of assured risk, contractual conditions, possible amounts of com-

pensation and so on.

Now suppose that a portfolio, consisting of a number r of contracts guaran-

teeing similar risks, is observed for a period of one year. It is assumed that the

contracts were all stipulated at the same time and remained in the insurer’s port-

folio until expiry (each contract was therefore exposed one year to the possibility

of being hit by one or more claims). It should also be assumed that, through

the observation of this portfolio, the insurer has registered a total of m claims

over the period of coverage, with compensation for amounts y1, y2, ..., ym. It

should be noted that the information refers to the portfolio as a whole, it is not
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known which of the various contracts was affected by the claim. The ratio be-

tween the total compensation of the portfolio and the number of contracts, that

is the damage fee per policy, is:

Q =
y1 + ...+ ym

r
.

Q is the fair premium observed: in fact, if for each contract the payment of a

premium equal to Q was requested, the insurer would have obtained the exact

amount of compensation. Therefore entries and exits would be equal:

rQ = y1 + ...+ ym.

Then the damage fee can be considered an estimate of the expected value of the

compensation E[S]. It is interesting to rewrite the Q as:

Q =
m

r

y1 + ...+ ym
m

=
m

r
ȳ (1.2)

because the fair premium so decomposed allows to identify ȳ, which indicates the

average compensation per claim, and m
r
, that is the claim experience index, which

reports the average number of claims by contract. This index may exceed the

unit, as a contract may also be affected by more than one claim.

The (1.2) is the statistical image of the fair premium indicated in (1.1): the

expected value of the single compensation E[Y ] is estimated by ȳ, while the

expected value of the number of claims E[N ] is estimated through the use of the

claims index m
r
.

Regarding this index, if k is the maximum number of claims observed for a

single contract, such that k≤m, the number of contracts r of the portfolio can be

divided as follows:

r = r0 + r1 + r2 + ...+ rk

where rh, with h=0,1,2,...,k, is the number of contracts affected by a number h

of claims. The number of claims can be written as:

m = r1 + 2r2 + ...+ krk.

It is then possible to decompose the claim index, as follows:

m

r
=
r1 + 2r2 + ...+ krk
r1 + r2 + ...+ rk

r − r0

r

This decomposition makes it possible to identify two factors:
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1. The repeatability index, defined by the first ratio, indicates the average

number of claims relating to a damaged contract;

2. The second factor is the average number of claims for the single damaged

contract, then indicates the average frequency of at least one claim. The

quantity r0
r
, which is its complementary, indicates instead the frequency of

non-claim.

It is important to note that, with the same degree of casualty index, a higher

repeatability index indicates a higher concentration of claims on the same number

of contracts. If this happens, the hypotheses of independence between claims and

compensation, described in points a) and b) of the previous paragraph, must

be reviewed through further study. In fact, a high concentration of claims in a

small number of policies could be a sign of correlation between the various claims

reported on a policy (Olivieri, Pitacco, 2010).

Exposure to the risk of heterogeneous portfolios

So far it has been assumed that the portfolio contracts are homogeneous with

respect to the insured value, the stipulation date and the duration of coverage,

thus simplifying the reality in some way.

However, the insurer usually has to pay compensation that comes from even

very different exposures, based on the various insured values.

First of all, in order to compare the compensation for different insured val-

ues2, it is necessary to eliminate the monetary dimension, i.e. to report all the

quantities to an insured monetary unit. Indicating with w1, w2, ..., wr the in-

sured values or ceilings for each of the r observed contracts, it can be said that,

the higher the value insured wj in the policy, the higher the compensation the

insurer expects to have to pay in the event of a claim. The premium rate can be

measured as:

τ =
y1 + y2 + ...+ ym
w1 + w2 + ...+ wr

.

2The assumptions for which the policies ensure the same type of risk, were stipulated at the
same time and with the same annual duration, remain.
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For policies that ensure higher values, the insured person will be required to

pay a higher premium. In particular, the same premium rate, i.e. the same

premium per unit of insured value, can be applied to all policies; they are in fact

similar, apart from the insured value. The premium in this way will therefore be

proportional to the insured value.

If τ is the premium rate applied, then the amount of receipts (premiums) for

the insurer will coincide with the total exits (the compensation), with the same

logic applied previously:

τ(w1 + w2 + ...+ wr) = y1 + y2 + ...+ ym.

The average insured values is given by:

w̄ =
w1 + w2 + ...+ wr

r
.

representing the average exposure per contract. It is now possible to split τ as

follows:

τ =
m

r

ȳ

w̄
=
Q

w
.

The quantity indicated by ȳ
w̄
is defined as average claim degree. As in the previous

case where it was assumed that the portfolio was homogeneous, Q also expresses

the average amount of compensation per policy in this case; however, due to the

different insured values, such a piece of information is not appropriate neither for

pricing, nor for summarizing the cost of claims incurred.

1.2.3 Pure Premium

The random financial transaction contemplated by the insurance contract can

not be carried out solely in terms of equity; therefore a compensation for the

risk that the insurer assumes must necessarily be added to the fair premium.

This compensation is defined as safety loading and represents the expected gain

for the company. In fact, if the insurer applied a fair premium to his policies,

he would offer the contractor a disadvantageous contract, incurring the risk of

suffering losses in the management of the contract portfolio due to the absence

of any technical profit margin.

The pure premium, i.e. the sum between fair premium and security loading,

is the premium that allows the insurer to achieve the technical balance of its
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management, ensuring the solvency of the company and the ability to meet the

commitments made towards the insured.

The pure premium can be defined as

Π = H(S) (1.3)

The (1.3) is defined as premium principle and H indicates a functional that

associates a real number Π with each possible probability distribution of the

global compensation S.

Some mathematical properties should be satisfied by H, which are relevant

from a practical point of view. The main properties are:

A. Positivity of Safety Loading.

It is necessary that the safety loading has positive value, for any S. The pure

premium must be higher than the expected value of the compensation.

H(S) > E[S]

B. Additivity

If S1 and S2 are two independent risks, is required that:

H(S1 + S2) = H(S1) +H(S2)

C. Translation

Given a positive real number b, it is necessary that:

H(S + b) = H(S) + b

The constant b represents an increase in the amount of compensation, com-

mon to all possible claims. If the possible amount of compensation S in-

creases by a constant equal to b, then an equal amount increase will also be

expected in the premium.

D. Homogeneity of amount

According to this property:

H(aS) = aH(S)
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where a is a positive real number, which represents a proportional increase

in the premium for each possible reimbursement. The homogeneity of the

amount implies that the premium increases proportionally with the maxi-

mum amount that can be reimbursed.

However, this property is in contrast with the need to fix higher security

loads for risks with a very high maximum reimbursement amount. In prac-

tice, the insurance company generally adopts an interim rate of premium

at intervals, defined on the basis of the insured value. Within each interval

the value of a will be constant, but increases as you go to successive inter-

vals, then to higher assured values. The rate in this case will be constant

at times; the homogeneity property will only be valid locally, within the

individual intervals.

E. Premium lower than the ceiling (No ripoff)

If the compensation can not exceed a fixed amount M, called the ceiling,

then:

H(S) ≤M

No insured person will be willing to pay a pure premium greater than the

possible amount of compensation that he will realistically receive from the

insurer in the event of a claim.

Moreover, there are five main principles for calculating the premium and are

set out below.

I. Expected Value Principle

According to this principle, the pure premium is calculated as follows:

Π = (1 + α)E[S]

where α>0 is a given proportion and is dimensionless. The safeting loading,

indicated by αE[S], is proportional to the expected total payout of the

insurer.

This is a calculation principle often used in insurance practice for its simplic-

ity and because there is the advantage that the data required are the same

used in the calculation of fair premium. However it has the disadvantage

that the safety loading is not based on a risk measure.
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II. Variance Principle

A safety loading proportional to a risk measure is instead foreseen by the

principle of variance. In this case the pure premium is determined by the

formula:

Π = E[S] + λV ar(S)

where λ>0. It is noteworthy that λV ar(S) must be an amount; since

V ar(S) is an amount to the square, the dimension of λ must be that of
1

amount
. Otherwise said, λ is an intensity.

The safety loading λV ar(S) is proportional to riskiness of the contract,

measured by the variance. The ability of the safety loading to represent the

expected gain for the enterprise depends on the ability of the variance to

correctly quantify the risk deriving from S. To evaluate this, the probability

distribution of S should be analysed: if it is “regular enough”, i.e. it is

symmetric and short tailed, then the variance is a good risk measure. Unlike

the principle of expected value, the principle of variance therefore requires

the analysis of additional information and data compared to those used for

the calculation of the fair premium.

III. Standard Deviation Principle

Quite similar to the variance principle, the standard deviation principle (or

average square deviation principle) assesses the pure premium as follows:

Π = E[S] + βσ(S)

where β>0 is dimensionless and is a given proportion, while σ(S) =
√
V ar(S).

The advantage compared to the variance principle consists in the fact that

the parameter β is unit-free. Apart from this, the rationale of the two rules

is similar; in particular, the same number for the pure premium could be

determined under the two rules, provided that β = λσ(S).

IV. Expected Utility Principle

According to this principle, the pure premium is calculated as a solution to

the equation:

E[u(Π− S)] = 0
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where u is the utility function. On the basis of this principle, the pure

premium is that premium which makes the situation before the contract

and the following one indifferent, in terms of expected utility: it is the

minimum premium which makes the contract not disadvantageous for the

insurer.

V. Percentile Principle

If Π − S < 0, i.e. S > Π, there is a situation of economic loss for the

insurer. According to the percentile principle, the pure premium Π must

be such that

Pr(S > Π) = ε

where ε(0 < ε < 1) is the probability of achieving a loss on the individual

contract and indicates a conveniently small percentile. The greater the

probability of suffering a loss, the greater will be the pure premium.

The technical implementation of the previous rule may be time-consuming

and clearly data for the estimate of the whole probability distribution of S

are required. In practice, simpler rules are preferred, unless extreme risks

are transferred to the insurer.

The principles of calculation of the pure premium do not satisfy all the listed

properties of H, but only some of them. Figure 1.2 summarizes which of the

properties are satisfied by the individual principles.

Figure 1.2: The property satisfied by the principles of premium calculation.

Property A is satisfied by all the principles, with the exception of the per-

centile. If the probability of occurrence of the claim is lower than ε, then the

premium will be 0. It is therefore necessary to verify that the safety loading is
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positive, in order to avoid that the defined premium is lower than the expected

value of compensation (Π < E[S]), hypothesis that would lead to the failure of

the company.

As for the property of additivity, it is respected by the principle of expected

value, because the expected value of a sum is equal to the sum of the individual

expected values, and the principle of variance, since the variance of a sum of

independent random variables corresponds to the sum of their variances. The

property is not valid for the principle of standard deviation, expected utility

and percentile. In the first case it is not valid because the standard deviation

of the sum of independent random variables, generally is not equal to the sum

of their respective standard deviations; it does not even apply to the percentile

principle given that the percentile of a distribution is not equal to the sum of

percentiles of the individual probability distributions. In the case of the expected

utility principle, the property is not valid if the utility is quadratic, but if it is

considered an exponential utility3, this property is satisfied.

Property C finds application in all principles, except in principle I because

H(S + b) = (1 + α)(E[S] + b) is not equal to H(S) + b = (1 + α)E[S] + b.

It is then observed that the property of the homogeneity of amount is not valid

for the principle of variance and expected utility, both in the case of quadratic

utility and in the case of exponential utility.

Finally, property E is only satisfied by the expected utility and percentile

principle. This property is not applicable to the variance principle because if two

risks are taken, S and T=zS (with z>0), will be obtained MT = zMS, where M

indicates the maximum possible compensation. If the principle is applied to iden-

tify the premium related to T risk, it will be obtained ΠT = zE[S] +Bz2V ar(S).

From the equation, the premium ΠT will be higher than the maximum possible

compensationMS if z > MS−E[S]
BV ar(S)

. Not even for the principle of the average square

deviation the property is satisfied, because if it puts

S =

0 with probability q

1 with probability p = 1− q

3The exponential utility formula is given by: u(s) = B(1− e S
B )
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then MS = 1, the application of the principle will lead to a premium of Π =

p+ β
√
pq > 1 if p > 1

1+β2 .

1.2.4 Tariff Premium

The tariff premium, or commercial premium, which will be indicated with PT , is

the premium requested from the contractor, which takes into account the expenses

charged to the company. The tariff premium is calculated by adding so-called

loading for expenses to the pure premium. The classes of expenses are essentially

of three types:

• costs for contract acquisition;

• costs for collection of premium;

• costs for administrative management.

Acquisition costs refer to the phase of stipulation of the contract or, in any case,

to expenses attributable to the first year of coverage. They include the pur-

chase commissions, the costs of issuing the policy and the costs for any medical

examinations or investigations.

The collection costs relate to collection commissions, receipt rights and ac-

counting for collections; they are incurred in correspondence with the payment

of the installment of the premium.

Management costs are expenses not directly attributable to the individual

contract, in fact each policy is assigned a quota calculated on the basis of a fixed

percentage of the insured capital.

Acquisition and collection costs are commensurate in terms of a α percentage

of the PT , while for management costs, the costs are recovered by applying a β

percentage, again on the tariff premium.

Indicating with Π the pure premium, the tariff premium will be:

PT = Π + (α + β)PT

and then

PT =
1

1− (α + β)
Π
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The loading coefficients α and β are different according to the risk branch and

depend on the volume of the portfolio and on the market conditions.

So far, it has been assumed that the tariff premium was paid by the contractor

in a single solution at the time the contract was signed. However, it is frequent

that it is expected to be divided into several installments, the number of which

is indicated with k : if k=2 means that the installment is semi-annual, if k=3 the

installment is quarterly and so on. The installment P k
T is necessarily higher than

the fraction 1
k
PT of the annual premium. This is because it is essential to take

into account the increase in management charges and the loss of interest.

A coverage of less than one year may also be requested; in this case a pro-

portional premium reduction will not be applied because the management and

acquisition costs are not reduced proportionally to the duration of the policy.

1.3 Tariff Process

The tariff process leads the insurer to determine the premium to be applied to

policyholders and, as seen in the previous paragraphs of this chapter, the premium

is defined on the basis of the probabilistic assessment of the insurer’s provision or

total compensation due in consequence of the claims, which affected the insured

risks in the period covered by the policy. Under the hypothesis of a composite

distribution of total compensation, the objective is to determine the technical

basis for each risk, that is to assign the distributions of the number of claims and

damage per claim through the use of data deriving from the observation of the

portfolio of the insurer, assuming that the claim occurs.

The insurance portfolios are made up of a heterogeneous set of risks and this

heterogeneity is due to endogenous factors, inherent in the particular nature of

the risk, but also to exogenous factors typically environmental or socio-economic.

Through the pricing techniques, the insurer divides the risk community into sub-

groups or classes, which have similar characteristics, so as to be able to attribute

the same technical basis to the risks belonging to the same class. Through this

process, the premiums are therefore differentiated for the insured, depending on

the different risk profile.

This differentiation of premiums takes place in two phases. In the first phase,
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called a priori personalization or pricing, the premiums are differentiated accord-

ing to the characteristics of the risks, observable at the moment of the conclusion

of the contract, before having any kind of information on the claims of the insured

deriving from the experience. The insurer identifies sub-groups of similar risks,

called tariff classes or risk classes, based on tariff variables, and then assesses the

premiums to be attributed to each class. Despite the use of a large number of

tariff variables, within the classes there remains, however, heterogeneity for the

behavior of the insured and the claims. In order to try to formulate forecasts of

the insured person’s claims, the observation of his "insurance history" may be

more effective, so much so that for some coverage it is expected an adjustment of

the premium in the aftermath. This is therefore the second phase of the charg-

ing process: a posteriori customization of premium. This takes into account the

experience on the claims of each insured acquired during the period covered by

the policy. In this way a change from a collective premium for each class to a

premium based on individual experience will be implemented (Gigante, Picech,

Sigalotti, 2010).

1.3.1 Risk Classes and Personalization a Priori.

To determine the characteristics of the risks on the basis of which to personalize

the a priori premiums, reference is made to statistical observations of company

data, portfolios of other companies or even market data. Thanks to the statistical

observation, the insurer can determine which factors influence the probabilistic

variations of the random elements that describe the claim experience of each

individual.

The claim experience can be described by considering the number of claims

incurred during the coverage period, the compensation for the claim or the total

compensation. Other elements may also be considered, for example, in the case

of civil liability it may be important to separate the damage caused by accidents

to property, injury to persons or damage to both.

The definition of the risk classes is therefore based on:

• the risk factors, i.e. the characteristics of the risk. Factors judged influential

on the claims experience. It is information that the insurer can obtain a
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priori, before having data on the history of claims, such as the sex of the

insured or the power of car;

• the modalities, qualitative or quantitative, that represent the determinations

assumed by the risk factors, such as "female" (qualitative) or "69 CV"

(quantitative).

The choice of risk factors and the definition of the modalities are based on the

use of statistical methods such as cluster analysis, with the aim of dividing the

modalities of the explanatory variables into classes, or univariate or multivariate

statistical analysis procedures, to define the ordering of the explanatory variables

on the basis of their significance. In the case of univariate analysis, it refers to the

chi-square test, while in the case of multivariate analysis are used the generalized

linear models and the random forest.

Once the insurer has identified the risk factors, it is necessary to group the

modalities to select the most significant factors. The risk must then be assigned

to an appropriate class, so as to be able to assign each insured person to the

class that most reflects his claim experience; the classes in which the portfolio

is divided are called tariff classes and the risk factors selected are called tariff

variables.

In order to evaluate the premiums, it is necessary to identify a function, the

so-called tariff model, which allows the corresponding premium to be associated

to each class, thanks to some parameters on which it depends, called relativity.

Once the tariff model has been chosen and relativity is estimated, it is possible

to obtain the tariff.

In the next chapter, generalized linear model will be examined, that will be

used to estimate the value of premium.
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Chapter 2

Generalized Linear Models

For the pricing processes, linear regression models may not be fully suitable, in

particular for what concerns the pricing of the non-life insurance. First, the num-

ber of claims follows a discrete probability distribution and the damage amounts

caused by the claims have as support the positive half-straight line, generally

with a positive asymmetric distribution. Moreover, in many cases the hypothe-

sis of a linear link between the expected value of the response variable and the

determinations of the explanatory variables is not acceptable. For this reason, as

mentioned in the previous chapter, an extension of the linear regression models

is used for the a priori definition of the tariff: Generalized Linear Model (GLM).

The GLMs allow to overcome some limits that characterize the linear models

since, instead of assuming a normal distribution, they assign to the variables

response distributions belonging to the linear exponential class, which includes

in addition to the normal, for example, also the Poisson distribution (typically

attributed to the number of claims), and the Gamma distribution (frequently

adopted for the distribution of the amount of damage).

2.1 Theory of Generalized Linear Models

Considering a number n of statistical units, the set of corresponding observations

will be {yi,xi, i = 1,2, ..., n}1. For each statistical unit i, yi indicates the value

1It is specified that the letters or symbols indicated in bold are matrices. While with the
symbol " ’ " during the chapter will be indicated the transposition.
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of a quantity of interest and the various yi form the vector y, which indicates

the observed value of the aleatory vector of the response variables Y. Instead,

xi is the vector of the determinations assumed by the explanatory variables (also

called covariates) considered. Through the use of GLM, the distribution of Y

and the vector of the determinations assumed by the covariates are related.

There are two types of hypotheses, probabilistic and structural, that define

GLMs:

• it is assumed that the response variables Y1, ..., Yn are stochastically inde-

pendent and that the respective distributions all belong to a specific linear

exponential family;

• it is hypothesized the presence of a link between the expected value of Yi,

indicated with µi, and the vector xi. The link is expressed by:

g(µi) = x′iβ

where β is a vector of parameters, g is the link function and is invertible and

x′iβ is the linear predictor. Then the expected value of Yi will be calculated

as:

E[Yi] = µi = g−1(x′iβ)

Therefore for the definition of a GLM several elements must be taken into con-

sideration: the distribution of the response variable vector, the explanatory vari-

ables, the linear predictor, the link function and the parameters.

2.1.1 The Distribution of Response Variables Vector

As previously said, for the response variables, indicated with Y1, ..., Yn, it is as-

sumed that there is stochastic independence and that they belong to the same

linear exponential family.

A linear exponential family is a parametric family of non-degenerate2 proba-

bility distribution, whose density function can be written as:

f(y; θ, φ) = exp{yθ − b(θ)
φ

}c(y, φ)

2A non-degenerate distribution is a probability distribution not concentrated in a single
value coinciding with the average.
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where θ and φ are two real parameters, while b and c are real functions. In partic-

ular, c is the normalization, while b is defined cumulant function and character-

izes, within the class of linear exponential distributions, a determined distribution

family; the parameter θ is called canonical parameter, while φ is the dispersion

parameter.

The distributions that are part of the class of linear exponential families and

the elements that characterize them are summarized in Figure 2.1.

θ φ b(θ) c(y,φ)
Gaussian N(µ,σ2) µ σ2 θ2

2
(2πφ)−1/2exp{− y2

2φ
}

Poisson P(µ) logµ 1 eθ 1
y!

Scaled Binomial B(n,π)/n log( π
1−π ) 1

n
log(1 + eθ)

(
1/φ
y/φ

)
Negative Binomial BN(µ,α) log( µ

α−µ) 1 -αlog(1− eθ) Γ(α+y)
Γ(α)y!

Gamma G(α, µ) - 1
µ

1
α

-log(-θ) 1
φ

1
φ (y

1
φ
−1

Γ( 1
φ

)
)

Inverse Gaussian GI(µ,β) −(2µ2)−1 β −(−2θ)
1
2 (2πφy3)−

1
2 exp{− 1

2φy
}

Figure 2.1: Families of the linear exponential class.

For what concerns the expected value and the variance of linear exponential

families, it can be said that:

E[Y ] = µ = b′(θ)

and

V ar(Y ) = φb′′(θ)

where b′ and b′′ indicate respectively the first derivative and the second derivative

of the cumulant function. The variance formula shows that random variables do

not have the property of homoskedasticity, i.e. they do not all have the same

variance, as in the case of a linear regression model, but they are heteroskedastic.

After having exposed the main characteristics of the linear exponential family,

the probability or density function of Yi can be defined as:

f(y; θi, φ, ωi) = exp{ωi
φ

[yθi − b(θi)]}c(y, φ, ωi)

in which θi and φ are the canonical and dispersion parameters respectively, ωi is

an assigned weight greater than 0 and b and c are the two real functions. It is to

be noted that the cumulant function b does not change with respect to i because
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the linear exponential family has been fixed; the one that changes according to i

is the canonical parameter.

In relation to the moments of the linear exponential class distribution:

E[Yi] = µi = b′(θi)

and

V ar(Yi) =
φ

ωi
b′′(θi)

There is an important observation to make: taking into account the weights, with

the same dispersion parameter, the variance of Yi will be greater the lower the ωi

weight.

2.1.2 The Explanatory Variables

The explanatory variables represent observable characteristics, which influence

the probabilistic evaluation of the response variables. There are two types of

explanatory variables:

1. numerical variables, which have numerical determinations, such as the vari-

able "age of the insured";

2. categorical variables, which have non-numerical determinations, such as the

variable "sex of the insured".

Variables that have a numerical determination can be entered directly into the

model, while non-numeric variables must be previously numerically encoded,

through a binary variable.

According to the general rule, a classification variable with l modes can be

coded with indicator variables, called dummy variables. Considering a categorical

variable C , whose modalities are indicated with c1, c2, ... , cl, the variable can

be expressed with the l indicator variables:

X =

1 if C = ci

0 otherwise

with i = 1, 2, ... , l.
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Considering that
∑l

i=1 Xi = 1, l - 1 indicator variables will be sufficient

to describe C and the remainder can be deduced by complement to 1. After

transforming all the categorical variables into numerical ones, the observed char-

acteristics can be represented by m numerical variables X1, X2, ... , Xm, whose

determinations for the i -th observation will be indicated with xi1, xi2, ... , xim.

X =


1 x11 . . . x1m

1 x21 . . . x2m

...
...

...
...

1 xn1 . . . xnm


The matrix X of type n x p, where p = m + 1, is defined regression matrix, in

which the first column consists of unitary elements and the (j + 1) column shows

the determinations of variable Xj for each observation i. X therefore includes all

the determinations of the explanatory variables observed.

In the continuation of the chapter let us assume that n > p and that X is

with full rank p; this means that the columns will be linearly independent.

2.1.3 The Linear Predictor

If xi1, ... , xim are the determinations of explanatory variables and β0, ... , βm

are parameters common to all statistical units, the linear combination ηi = β0 +

β1xi1 + ... + βmxim = x′iβ is called linear predictor. It can also be written in

matrix form as η = Xβ and represents the systematic component of the model,

according to the parameters βj, which are not known, but estimated.

2.1.4 Link Function

The link function g is a real invertible function, which relates the elements of the

linear predictor ηi to the expected value of the response variable µi in this way

ηi = g(µi)

Considering the formula of linear predictor expressed in the previous paragraph,

it is obtained

µi = g−1(ηi) = g−1(x′iβ)

36



2 – Generalized Linear Models

The link function is considered a monotonic function in the strict sense that

admits the first and second continue derivatives.

In the pricing process, g indicates how to calculate the fair premium according

to the characteristics of the tariff variables, therefore through g the tariff model

is determined:

• if g is an identical link function, i.e. g(µ) = µ, it is obtained µi = x′iβ =∑m
j=0 xijβj and then an additive tariff model;

• if g is an logarithmic link function, i.e. g(µ) = log(µ), it is obtained µi =

ex
′
iβ =

∏m
j=0 e

xijβj , arriving at a multiplicative tariff model;

• if g is an power link function, i.e.

g(µ) =


µγ−1
γ

if γ /= 0

log(µ) if γ = 0

for γ = 1 it is obtained g(µ) = µ − 1 and therefore return to the identical

link function; while regarding γ → 0, g(µ)→ log(µ). So if γ varies between

0 and 1, there is a change from an additive model to a multiplicative model;

• if g is a canonical link function,

g(µi) = b′−1(µ)

and in this case

ηi = g(µi) = θi

with i = 1, 2, ..., n. This function varies according to the distribution con-

sidered within the linear exponential family, as indicated by Figure 2.2.

2.1.5 Parameters

Finally, as regards the parameters, it has already been mentioned that two types

of parameters are involved in GLM: the canonical parameters θ1, θ2, ..., θn and

the dispersion parameter φ. These parameters are not normally known, but can

be estimated using data.
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Distribution family b(θ) b’(θ) g(µ) = b′−1(µ)

Gaussian θ2

2
θ µ

Poisson eθ eθ log(µ)

Scaled Binomial log(1 + eθ) eθ

eθ+1
log( µ

1−µ)

Negative Binomial -αlog(1− eθ) α eθ

1−eθ log( µ
α+µ

)

Gamma -log(-θ) -1
θ

- 1
µ

Inverse Gaussian −(−2θ)
1
2 −(−2θ)−

1
2 − 1

2µ2

Figure 2.2: Canonical link functions.

For what concerns the estimation of canonical parameters, it is carried out by

estimating the parameter vector β (which will be estimated in turn): in fact, once

estimated β, will be get the determination of θ1, θ2, ..., θn through the formula

θi = b′−1(g−1(x′iβ))

In the particular case where the canonical link function was chosen, the canonical

parameters will be given by

θi = ηi = x′iβ

with i = 1, 2, ..., n.

As mentioned above, to estimate the canonical parameters it is sufficient to

estimate the vector of the regression parameters β and for the estimation of this

vector the most used method is that of maximum likelihood, in particular the

log-likelihood.

Remembering that y = (y1, y2, ..., yn)’ is the observed value of the vector of

the response variables Y = (Y1, Y2, ..., Yn)’, the log-likelihood l of y is:

l(θ, φ; y) = logL(θ, φ; y) =
n∑
i=1

{ωi
φ

[yiθi − b(θi)] + logc(yi, φ, ωi)}

=
n∑
i=1

li(θi, φ; yi)

Each canonical parameter can be expressed as a function of β, so the log-likelihood

can be indicated as l(β) =
∑n

i=1 li(β). The maximum likelihood estimates are

obtained by identifying the relative maximum points of l from the system of

likelihood equations given by{
∂l(β)
∂βj

=
∑n

i=1
∂li(β)
∂βj

= 0 j = 0, ..., m
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The resolution of this system is not the focus of this thesis, so will not be seen

how to get to the solution β̂.

Also the dispersion parameter φ, when not known, must be estimated and

also in this case the method used is that of maximum likelihood, but this time

the equation to be solved is {
∂l(θ̂,φ;y)

∂φ
= 0

where θ̂ indicates the estimate of the vector of canonical parameters, obtained

from β̂.

For the purpose of determining the fair premium to be applied to the various

tariff classes, the insurance companies generally estimate the distribution of the

number of claims and damage per claim separately.

2.2 Models for the Number of Claims

Regarding the distribution of the number of claims, the GLMs aim to estimate

the probability distribution of the number of claims affecting the insured or the

tariff class within a year.

For the construction of the models, in this paragraph it is assumed that the

explanatory variables, the number of claims occurring during the observation

period and the exposure, i.e. the duration measured in years of the contractual

coverage period, are available.

The number of tariff classes into which the portfolio is divided will be indicated

with K and with reference to the tariff class k, with k = 1, ..., K, will be indicated

with xk the vector of determinations of the explanatory variables common to the

risks of the class and with nk the number of insured persons within that tariff

class. Moreover, for the i -th insured in class k, mki will indicate the number of

claims occurring during the observation period to the insured and will represent

the observed value of the random number of claims Mki, with i = 1, ..., nk, which

affect the risk insured during the observed period and which are supposed to

be stochastically independent. Finally, tki will indicate the exposure, ηk = x′kβ

the linear predictor and λk > 0 the expected annual number of claims for each
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policyholder of class k.

Therefore:

g(λk) = ηk

λk = g−1(ηk)

with k = 1, ..., K.

The model most commonly used to describe the number of claims is the Pois-

son3 distribution, indicated as:

Mki ∼ P (tkiλk)

The parameter of the distribution is the product between the exposure and the

expected number of claims for the insured of class k.

Based on the Poisson distribution indicated above, the probability density

function will be:

Pr(Mki = y) = e−tkiλk
(tkiλk)

y

y!
= e−tkie

θkeyθk
(tki)

y

y!
=

= eyθk−tkie
θk (tki)

y

y!

with y = 0, 1, ... and θk = log(λk).

On the basis of this distribution, it is possible to construct a GLM for the

estimation of the frequencies of claims for the classes or for single insured.

2.2.1 GLM for Individual Claims Frequencies

For this model, it is necessary to consider for each policy of the portfolio the

frequency of the claims of the insured, calculated as:

Yki =
Mki

tki

with k = 1, ..., K and i = 1, ..., nk. Based on the probability density function:

Pr(Yki = y) = Pr(Mki = tkiy) =

= etkiyθk−tkie
θk (tki)

tkiy

(tkiy)!
= etki(yθk−e

θk )c(y, tki)

3Alternatively, the negative binomial distribution Mki ∼ BN(α, tkiλk) can be used.
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with y = 0, t−1
ki , 2t

−1
ki , ...

The probability distribution of Yki then follows the distribution of the linear

exponential family with cumulative function b(θ) = eθ, canonical parameter θk,

dispersion parameter φ = 1 and weight ωki = tki. The expected value and the

variance of Yki will instead be given by:

E[Yki] = eθk = λk

V ar(Yki) =
1

tki
λk

The expected value, since λk = g−1(ηk), can be rewritten as E[Yki] = g−1(ηk). At

this point, a GLM can be built for the frequencies of individual claims Yki, with

k = 1, ..., K and i = 1, ..., nk. In the GLM:

• the response variables Yki are stochastically independent and follow a Pois-

son distribution with weight tki, E[Yki] = λk and V ar(Yki) = 1
tki
λk;

• the linear predictors are indicated by ηk = x′kβ;

• the link function is g. If the canonical function for the Poisson distribution,

which is the logarithm, was chosen as g, this would lead to the definition of

a multiplicative model, which is the one most used in insurance practice.

2.2.2 GLM for Claims Frequencies in Classes

In this model the frequency of the claims in the tariff class Yk is considered, which

can be calculated as a weighted average of the individual frequencies, in which

the weights are the exposures. Therefore will have:

Yk =

nk∑
i=1

tki
tk
Yki =

Mk

tk

where tk =
∑nk

i=1 tki is the total exposure of the class k and Mk =
∑nk

i=1Mki is

the total number of claims in the same class k.

In the same way as in the previous case, the distribution of Yk is found and is

Pr(Yk = y) = etk(yθk−eθk )c(y, tki)

with y = 0, t−1
ki , 2t

−1
ki , ...
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The frequency of claims therefore has a Poisson distribution with weight tk

and

E[Yk] = eθk = λk

V ar(Yk) =
1

tk
λk

Choosing, like the model for the individual claims frequencies, the logarithm

function as a link function, a model with data grouped with a structure equivalent

to the previous model is obtained.

The GLM built has the following structure:

• the response variables Yk are stochastically independent and follow a Pois-

son distribution with weight tk, E[Yk] = λk and V ar(Yk) = 1
tk
λk;

• the linear predictors are indicated by ηk = x′kβ;

• the link function is g.

As can be seen, this case is very similar to the previous one.

2.2.3 GLM for Numbers of Individual Claims

It is possible to define a GLM also for the number of claims. Setting µki = tkiλk

and log(µki) = θki, the probability density function for the number of individual

claims will be:

Pr(Mki = y) = e−µki
(µki)

y

y!
= eyθki−e

θki (tki)
y

y!

with y = 0, 1, ..., k = 1, ..., K and i = 1, ..., nk.

As required in the definition of GLM, Mki follows a distribution belonging to

linear exponential family, but the expected value poses some problems: in fact,

since g(λk) = ηk, the expected value will be:

µki = E[Mki] = tkiλk = tkig
−1(ηk)

The link between the expected value and the linear predictor is not the one

required in the definition of the GLMs, unless the exposures of the policies are

all unitary. Choosing the logarithm as link function g, then the expected value

can be rewritten as:

µki = tkie
ηk = elntki+ηk = g−1(lntki + ηk)
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In this way the term lntki, called offset, was introduced, thanks to which a GLM

for the number of claims can be built. The term offset therefore introduces an

explanatory variable with a known effect in the linear predictor and can be used

to place a constraint on some regression parameters, requiring that they assume

fixed values; in this case the constraint is imposed on the exposures.

The GLM will have the following structure:

• the response variables Mki are stochastically independent with Poisson dis-

tribution, E[Mki] = V ar(Mki) = µki = tkiλk;

• the linear predictors are indicated by ηk = lntki + x′kβ, where lntki is the

offset term;

• the link function g is the logarithm.

2.2.4 GLM for the Number of Claims in the Classes

In this last model, the total number of claims is considered for each tariff class

instead of for a single insured person.

The total number of claims is indicated with Mk, while tk represents the

total exposure, with k = 1, ..., K. Considering that Mk =
∑nk

i=1Mki, starting

from the initial hypothesis according to which Mki ∼ P (tkiλk) and the stochastic

independence hypothesis ofMki, it derives that alsoMk is a Poisson, in particular

Mk ∼ P (tkλk). Setting µk = tkλk and ln(µk) = θk, the probability function for

Mk will be:

Pr(Mk = y) = e−µk
(µk)

y

y!
= eyθk−e

θk 1

y!

with y = 0, 1, ... and k = 1, ..., K.

Similarly to before, since g(λk) = ηk, the link between expected value and

linear predictor is not the one required in the GLMs because

µk = E[Mk] = tkλk = tkg
−1(ηk)

Also in this case, if g is the logarithm, the insertion of offset term lntk occurs and

a GLM with the following structure is obtained:

• the response variables Mk are stochastically independent with Poisson dis-

tribution, E[Mk] = V ar(Mk) = µk = tkλk;
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• the linear predictors are indicated by ηk = lntk + x′kβ, where lntk is the

offset term;

• the link function g is the logarithm.

2.3 Models for Damage per Claim

The objective of the damage claim model is to estimate the probability distribu-

tion of the damage per claim in a specific tariff class. To do this, it is essential

to assume that the explanatory variables have been set and to have the data

regarding the determinations of the explanatory variables, the number of claims

and the amounts of damage.

It is important to note that some problems are typically found on the damage

amounts. In fact, first of all, the presence of limits to compensation, such as max-

imum amount, insurance deductibles or overdraft, mean that the data recorded

by the insurance companies are those of the compensation amount and not the

effective amount of damage. Another problem is related to the claims whose

amount of damage has only been estimated, so the amount is not yet a certain

value; the estimate is generally obtained by examining any partial payments al-

ready made or the values entered in the reserve. The problem is that the number

of claimed policies is very small, so there are few data available; it is even more

difficult to estimate the high damage amounts because most of these are small

amounts.

These problems often make the estimates deriving from the models for dam-

ages less reliable than the estimates relating to the number of claims.

As regards the definition of the models, the number of tariff classes into which

the portfolio is divided will be indicated with K, while the specific tariff class with

k = 1, ..., K. x′k will indicate the vector of determinations of the explanatory

variables and ηk = x′kβ the linear predictor. Finally, mk indicates the total

number of claims that hit a given tariff class and nsk the number of policies in

the class, which suffered at least one claim.

The most used distribution for the determination of the damage per claim is
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the Gamma distribution. The cumulative function of the Gamma family, consid-

ering that b(θ) = −ln(−θ), is:

f(y; θk, φ) = e
1
φ

[yθk+ln(−θ)]c(y, φ)

Moreover, the expected value µk is linked to the linear predictor through the link

function g and it will be:

g(µk) = ηk

µk = g−1(ηk)

with k = 1, ..., K.

Based on this distribution, it is possible to build several GLMs.

2.3.1 GLM for Damages per Claim

The random damage caused by the i -th claim for the risks of the tariff class k is

Yki and it is assumed that these random numbers are stochastically independent,

with k = 1, ..., K and i = 1, ...,mk.

The probability distribution, under these hypotheses, will be:

Yki ∼ e
1
φ

[yθk+ln(−θ)]c(y, φ)

with

E[Yki] = µk = g−1(ηk)

V ar(Yki) = φµk
2

It is therefore obtained a GLM with:

• the response variables Yki represent damage per claim, are stochastically in-

dependent and follow a Gamma distribution with E[Yki] = µk and V ar(Yki) =

φµk
2;

• the linear predictors are indicated by ηk = x′kβ;

• the link function is g = −ln(−θ).
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2.3.2 GLM for Average Damage per Claim in the Classes

In a model like this, the response variable of each tariff class corresponds to the

arithmetic average of the damage per claim in the class, i.e.

Yk =
1

mk

mk∑
i=1

Yki

with k = 1, ..., K.

The Gamma probability density function will then be:

Yk ∼ e
mk
φ

[yθk+ln(−θ)]c(y, φ,mk)

Compared to the previous case, here there is the addition of the weight mk. The

expected value and variance of Yk will be

E[Yk] = µk = g−1(ηk)

V ar(Yk) =
φ

mk

µk
2

The structure of this GLM is defined by:

• the response variables Yk are stochastically independent and follow a Gamma

distribution with weight mk, expected value E[Yki] = µk and variance

V ar(Yki) = φ
mk
µk

2;

• the linear predictors are indicated by ηk = x′kβ;

• the link function is g = −ln(−θ).

2.3.3 GLM for Average Damage per Claim for Accident

Policies

Supposing to have only the data relating to the total damages for the accident

policies, the models described above cannot be used.

For the j -th accident insurance belonging to the tariff class k, Ckj will indicate

the total random damage and mkj the number of claims in this class k, with

k = 1, ..., K and j = 1, ..., nsk. The general observation relates to an insured who

has suffered at least one claim, therefore mkj ≥ 1.
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The average damage per claim for the j -th accident insurance of class k can

be calculated as:

Ȳkj =
Ckj
mkj

The distribution of Ȳkj will be

Ȳkj ∼ e
mkj
φ

[yθk+ln(−θ)]c(y, φ,mkj)

This is always a Gamma distribution, but in this case the weight used is the total

number of claims for accident policies mkj. Then

E[Ȳkj] = µk = g−1(ηk)

V ar(Ȳkj) =
φ

mkj

µk
2

This GLM is built on the basis of:

• response variables Ȳkj stochastically independent, which follow a Gamma

distribution with weight mkj, expected value E[Ȳkj] = µk and variance

V ar(Ȳkj) = φ
mkj

µk
2;

• linear predictors indicated with ηk = x′kβ;

• link function g = −ln(−θ).

2.3.4 GLM for Average Damage per Claim of Accident

Policies in the Classes

In this case the response variable indicates the average damage per claim in the

tariff class k, considering only damaged policies, and is:

Yk =

nsk∑
j=1

mkj

mk

Ȳkj =

nsk∑
j=1

mkj

mk

Ckj
mkj

=
1

mk

nsk∑
j=1

Ckj

The distribution of Yk is

Yk ∼ e
mk
φ

[yθk+ln(−θ)]c(y, φ,mk)

with

E[Yk] = µk = g−1(ηk)

V ar(Yk) =
φ

mk

µk
2

The structure of GLM for average claims damages in the various tariff classes

consists of:

47



2 – Generalized Linear Models

• response variables Yk stochastically independent, with Gamma distribution

and weight mk, expected value E[Yk] = µk and variance V ar(Yk) = φ
mk
µk

2;

• linear predictors indicated with ηk = x′kβ;

• link function g = −ln(−θ).

The model can be considered adequate when the empirical coefficients of varia-

tion4 are more or less constant to vary of tariff classes. If the damage amounts per

claim are known, the empirical coefficients of variation for the individual tariff

classes are:

cvk =

√
1

mk−1

∑mk
i=1 (yki − ȳk)2

ȳk

where ȳk = 1
mk

∑mk
i=1 yki.

As regards the non-empirical variation coefficients, for the class k the expected

value is µk and the variance φµk2, therefore the coefficient of variation will be:√
φµk2

µk
=
√
φ

One possibility of improving the model, in case of unsatisfactory adaptation, is

the introduction of a weight ωk, which represents the weight for the distribution

of damage per claim in class k. The coefficient of variation will therefore be

rewritten as: √
φ
ωk
µ2
k

µk
=

√
φ

ωk

In the next chapter the models described will be applied to a practical case.

4The coefficient of variation is by definition the ratio between standard deviation and average.
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Chapter 3

Empirical Application

In the previous chapters, an attempt was made to provide a general overview

of the non-life insurance products and the methods for defining the premium,

through the use of generalized linear models, while in this chapter a practical

case will be discussed.

In the first part of this chapter some useful Machine Learning techniques will

be explained for the construction of model, in the second part the work dataset

will be presented and finally the third part will be dedicated to the process for

the definition of premium. In particular, generalized linear models will be applied

to determine a premium a priori, with the approach generally used by insurance

companies, which provides for the separate estimate of the frequency of claims

and amounts of damage.

The sample of policies on which the analysis will be based was kindly provided

by the RGI company, an Independent Software Vendor specialized in the Insur-

ance Industry. The company has 800 professionals and 12 offices spread across

the EMEA1 region (Italy, Ireland, France, Germany, Luxembourg and Tunisia).

Its main product is PASS, a modular Policy Administration System that enables

the end-to-end management of Policies, Claims and Insurance Products configu-

ration across all the insurance channels and business lines. RGI is a leader of its

sector in the European market with 103 installations for the insurance companies

and other 300 for the brokers.

1EMEA is the acronym of Europe, Middle East and Africa and is a geographical designation
used mainly in the economic-industrial field.
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3.1 Useful Machine Learning Techniques

3.1.1 Decision Tree

The first technique considered is the Decision Tree, which will not be used directly

in the model, but it is the basis of Random Forest which will be used.

Decision Tree is a supervised2 learning algorithm, used to visually and explic-

ity represent decisions. As the names goes, it uses a tree-like model of decisions:

it is composed by nodes, which represent a certain value, and in each node data

are splitted in two o more child nodes, with the purpose to separate labels in

the best way possible. The initial node, from which everything starts, is called

the root, while a leaf is a child node that no longer needs to be split, because

all elements, or at least the great majority, have the same label. The variable

that best separates the elements is selected from a certain number of candidates,

settable with the ’mtry ’ command in R.

To check if the data has been split well, it is necessary to define an index,

called Gini Index, that can be calculated for each node with the formula:

Gini = 1−
c∑
i=1

(pi)
2

where c is the number of different classes and pi is the proportion of elements of

class i in the examined node. Defining ni the number of elements of class i, pi

can be obtained as:

pi =
ni∑c
j=1 nj

The variable that best splits the generic node k is the one that maximizes the

GiniIndexDecreaseDk, calculated as the difference between the Gini Index of

the node k and the weighted sum of the Gini Index of its child nodes, i.e.:

Dk = Ginik − (
N1

N1 +N2

Ginik1 +
N2

N1 +N2

Ginik2)

where N1 and N2 are respectively the number of elements in the first and second

child node.

2The goal of supervised algorithm is to find specific relationships or structure in the input
data that allow to effectively produce correct output data, using explicitly-provided labels
(training set).
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Another parameter of trees is the maximum depth, settable in R with the

command ’maxdepth’, that imposes a maximum number of consequent splittings

for the tree. Practically, it refers to the length of the longest path from a root to

a leaf. It is advisable to set this parameter to have no huge trees, which involve

high complexity and possible overfitting.

A very simple example of decision tree is present below.

Figure 3.1: Example of decision tree in the insurance field.

3.1.2 Random Forest

The second technique dealt with is the Random Forest, that will be useful to see

which are the most significant risk factors for the model: in fact, a quality of the

Random Forest algorithm is that it is very easy to measure the importance of

each feature on the prediction. Observing the variables importance, it is possible

to decide which features to keep and which to delete, since they don’t contribute

enough or nothing to the prediction process, in order to reduce the computational

cost.

Random Forest is, like the Decision Tree, a supervised learning algorithm

and it is used both for classification and regression3. As the name suggests,

this algorithm builds and merges multiple decision trees together to get a more

3Problems with a quantitative response are regression problems, while those involving a
qualitative response are classification problems.
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accurate and stable prediction and it adds additional randomness to the model,

while growing the trees. In fact, instead of looking for the most important variable

while a node is split, it searches for the best feature among a random subset of

variables. Creating random subsets of features and building smaller trees using

these subsets, Random Forest prevents overfitting most of the time.

The subtrees are then combined and this can make the computation slower,

based on how many trees the Random Forest builds. This is why hyperparameters

are used: to increase the predictive power of the model and to make the model

faster.

In R the main hyperparameters are:

• ntree: is the number of trees. A more accurate prediction requires more

trees, but a large number of trees can make the algorithm slow and ineffec-

tive for real-time predictions. It is therefore necessary to choose a number

that is not too large, so that the prediction is good;

• maxnodes : represents the maximum number of leaves in the forest. If not

given, trees grow as much as possible and a warning is issued if it is set

larger than the maximum possible;

• mtry : similarly to the hyperparameter of the Decision Tree, it represents

the number of variables randomly sampled as candidates at each split. It

should be noted that in R the default values are different for classification

(√p, where p is the number of variables in dataset) and regression (p
3
).

Random Forest is considered an algorithm simple and handy since its default

parameters often produce a good prediction. In this thesis however, it will not

be used for this property, but because it is easy to view the relative importance

to the input features.

3.1.3 Balancing Techniques

Downsampling and Oversampling are approaches used when the dataset is unbal-

anced: in particular, they are used when the variable response to predict has very

disproportionate classes inside. For example, in this thesis, a response variable

to predict is the frequency of a claim and the available data are 97,26% related
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to non-claims and only 2,8% to claims. It is therefore necessary to balance the

two classes.

Downsampling produces a subset of the initial dataset, which contains all the

elements of the minority class and a randomly selected subset of the majority

class, so that the two classes are balanced. Instead, oversampling duplicates

elements of the minority class, up to having a number equal to the majority

class.

Data balancing techniques are very powerful tools, but they must be used

carefully, in order to get a correct evaluation of model’s performances. If they are

not applied correctly, the model’s ability of class recognition can be estimated

incorrectly. First of all, downsampling and oversampling must be applied only on

the training set, while model obtained must be tested on a dataset where classes

have the original unbalanced ratio. The same approach must be maintained in the

application of cross-validation4: data must be divided in training and validation

set before balacing (in R this division is made automatically with the command

’train’ of the package ’caret’ ).

As an example, in Figure 3.2 is shown a wrong application of oversampling, i.e.

when duplicates of the minority class are generated before the execution of cross-

validation. The problem is that the same elements appears in both validation

and training set, causing overfitting.

Instead, in Figure 3.3 is shown the correct application of the algorithm, i.e.

when data duplication is made after the creation of validation set, in order to

avoid any kind of overfitting.

In this thesis, to balance the dataset, downsampling technique will be used.

The disadvantage is that, as the majority class is reduced, some data is lost.

However, there is the advantage of reducing the computational cost: in fact, if

oversampling was used, having lots of data available, creating duplicates would

lead to very large dataset sizes and therefore a very high computational cost.

4Cross-validation is a validation technique for assessing how the results of a model will
generalize to an independent dataset.
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Figure 3.2: Wrong application of oversampling during cross-validation.

Figure 3.3: Correct application of oversampling during cross-validation.
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3.2 Description of Model Data

3.2.1 Presentation of Datasets

The data available concern the non-life insurance, in particular policies relating

to Italian RCA in 2018, and are divided into two datasets:

1. Dataset relating to claims : it consists of 25466 observations and for each of

these there are 11 variables:

• Id : it is an integer that indicates what position a policy has within

the given dataset;

• Chiave univoca polizza: it represents uniquely the policy (even outside

the reference dataset);

• Numero pratica: it is the number of the insurance practice in which

the policy is present;

• Rischio colpito: it indicates what kind of accident happened. For the

analysis present in this thesis only claims related to the RCA will be

selected;

• Data denuncia and Data evento: respectively, date and time when the

claim was reported and when it occurred;

• Flag chiuso: it is 1 if the practice has been closed, 0 otherwise;

• Data chiusura: date and time when the insurance practice ended. It

is present only in correspondence with Flag chiuso = 1 ;

• Sinistri costo totale: it represents the total cost of the claim to be

paid;

• Sinistri liquidazioni pagato: sum of money that has been liquidated by

insurance. When the practice is closed, this value is certainly different

from zero;

• Sinistri riserve passive: it is a prudent global assessment of debts to

third parties for claims that have already occurred (due to the insurer’s

liability), but not yet paid. Unlike before, if the practice is closed this

value is equal to zero.
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2. Dataset relating to portfolio: it contains 1048575 rows and 27 columns:

• Id and Chiave univoca polizza: equal to the previous dataset;

• ID Polizza: it is another number that uniquely represents the policy;

• Operazione: it can be "Sostituenti", if it is an insurance contract that

replaces a previous policy, "Nuovi" otherwise;

• Frazionamento: it is the partition of commission and it can be "An-

nuale" or "Semestrale" ;

• Data emissione, Data effetto and Data scadenza: respectively repre-

sent the date on which the policy is issued, on which it begins to be

valid and on which it has no more effect;

• ID Contraente: integer that uniquely distinguishes the various policy-

holders;

• Data nascita, CAP Contraente and Sesso Contraente: date of birth,

ZIP code and sex of insured;

• Marca, Modello, Settore veicolo, Classe veicolo and Uso veicolo: var-

ious information relating to the insured car. The most important in-

formation is the type of car (sport, luxury, utility car, etc.);

• Valore Assicurato: value of the insured object;

• CU di origine and CU Assicurata: respectively previous and current

class of merit;

• Rischio assicurato: it is the type of risk insured. Only the RCA will

be considered in this thesis;

• Massimale RCA Cose, Massimale RCA Persone and Massimale RCA

Sinistro: respectively they are the maximum for damage to property,

to people and to the claim in general. As mentioned in Chapter 1, the

contractor may decide to have a single maximum amount per claim

(therefore Massimale RCA Persone and Massimale RCA Cose are

equal to Massimale RCA Sinistro) or two separate maximum amounts

(Massimale RCA Sinistro is equal to the sum of the other two);
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• Indice Credit Scoring (rischio): credit risk index relating to the poli-

cyholder. Possible values are from 0 to 5: 0 indicates that the risk is

low, while 5 indicates that the risk is high.;

• Premio Netto: net premium of the insurance in question;

• Agenzia: place where the insurance agency is located.

3.2.2 Data Preparation

Both datasets require a data cleaning and preparation process before applying

the Generalized Linear Models and this can be divided into the following steps.

Variables and Rows Reduction

First of all, it is advisable to eliminate all the variables and the rows that are not

necessary for the models, in order to reduce computational time and costs.

Regarding the first dataset (DatasetSinistri), the unnecessary variables are

"Id" and "Numero.pratica", because "Chiave.univoca.polizza" is enough to uniquely

identify the policies.

For the second dataset (DatasetCosti), it is necessary to eliminate more vari-

ables: "Id", "ID.Polizza", "Data.emissione", "ID.Contraente", "Settore.veicolo",

"Classe.veicolo", "Uso.veicolo" and "CU.origine".

Instead with regards to the rows, for both datasets only those corresponding

to the RCA risk must be selected.

New Variable Creation

The variables of the datasets do not always represent at best a characteristic that

is needed for the analysis and therefore it is necessary to create new ones through

those that are available.

For example, it is necessary to know the exposure of the policy that is not

present in the data. However, it can be calculated dividing by 365 the period

between the start of the effect and the expiry of the policy.

Another necessary variable is the age of the insured, obtainable by making

the difference between a vector containing the date 31/12/2018 and the vector

containing the dates of birth of the various contractors.
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The variables used to create the features are no longer necessary, so they can

be deleted from the datasets.

Elimination of Outliers

A very important step for data cleaning is the elimination of outliers, i.e. the

anomalous values present in the datasets. These data must be removed because

they are very different from other data and they can be errors that compromise

the analysis, leading to an unrealistic result.

Since these are datasets relating to the RCA, it must be checked that all the

insured people are over 18 years old. In fact, all minors cannot take out car

insurance and therefore they are outliers.

Furthermore, all ZIP codes must be exactly 5 digits, so all ZIP codes with

different length from this one must not be taken into account for analysis.

It is also necessary to check the value assumed by "CU.Assicurata", because

the universal merit classes must be different from 0 and from numbers greater

than 18.

Finally, net premiums with a negative value or less than 16e are eliminated.

Elimination of NaN

The last step in data cleaning consists in eliminating Not A Number (NaN), which

do not allow the correct operation of some machine learning algorithms that will

be applied later. In general, the NaN indicate missing values and they can be

replaced by the average of the available values, for example. However in this case,

they are simply not taken into account since, even if those data are eliminated, a

lot of information is available.

Once these data preparation steps have been carried out, the two datasets

can be merged using the primary key "Chiave.univoca.polizza", present in both,

through the left-join command of R. This function returns all rows from the

left table DatasetCosti and any rows with matching keys from the right table

DatasetSinistri. The resultant data frame DatasetNew is composed by 128039

observations and it is the dataset on which the analysis will be made.
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3.3 Exploratory Analysis

Before applying the model, it is necessary to make an exploratory analysis of

the data to see their behaviour and to obtain useful information. This analysis is

made on the variables that are considered to be the most significant for the future

model. For each of these, it is necessary to understand what is the frequency and

the average cost of claims.

Age of Insured

To find the frequency of claims based on the age of insured, only the contractors

who have made a claim must be considered and they must be divided into eight

groups based on age. The number of claims corresponding to each age group is

then calculated.

For example, the NClaimsAge1 variable contains the total number of claims

made by insured persons aged between 18 and 21 years.

However, these numbers must be normalized with respect to the total exposure

corresponding to the respective age group.

ExpAge1 is the sum of exposures corresponding to all the policies (with and

without claims) relating to insured persons who are between 18 and 21 years old.

To normalize, NClaimsAge1 must be divided by ExpAge1 and the same must be

done for the other age groups.

Regarding the average cost, instead, the first thing to do is to find the total

costs of the claims relating to each age group.
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Once the total cost has been found, it is sufficient to divide this by the number

of claims (previously found).

The final graphs, obtained with the R barplot command, are:

Figure 3.4: Histograms of frequency and average cost of claims based on age.

From Figure 3.4 it is clear that, as regards the frequency of claims, at the

18-21 range, in which the majority of new drivers are included, there is a peak

and then there is a decreasing trend. With regard to the average cost, however,

the trend is increasing (except for a peak in the 26-35 range), because probably

at the beginning that one has less experience, cars with lower value are used.

Sex of Insured

Even for the sex of insured, the basic idea is the same as before. The insured are

divided into two classes, male and female, and the frequency and average cost

of the claims are calculated for each of the two categories, using the previous

method.
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Figure 3.5: Histograms of frequency and average cost of claims based on sex.

Observing Figure 3.5, it should be noted that the frequency of claims and the

average cost do not differ much from male or female.

ZIP Code of Insured

For this exploratory analysis, Italy is divided into four zones (North, Central,

South and Islands), based on the first two digits of the ZIP code. For the subdi-

vision, Figure 3.6 was taken as a reference.

The northern area includes ZIP codes ranging from 10 to 46, the central zone

those from 00 to 06 and from 47 to 67, the south from 68 to 89 and finally the

islands include codes from 07 to 09 and from 90 to 98.

The graphs obtained based on the above subdivision are shown in Figure 3.7.

The most claimed areas are those of central Italy and the islands, but there

is not much difference compared to the other two areas. However, in the islands

there is a lower average cost of claims than in the rest of Italy.

Universal Merit Class

It was decided to group the merit classes. In total there are six groups: the first

group (containing classes from 1 to 3) contains the insurances relating to insured

who make fewer claims, while the sixth group (which has the classes from 16 to
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Figure 3.6: Subdivision of Italy based on the first two digits of the ZIP codes.

Figure 3.7: Histograms of frequency and average cost of claims based on ZIP
code.

18) concerns policies of the contractors who have made more claims.

As for the previous variables, to obtain histograms, the number of claims
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normalized for the total exposure and the total cost divided by the number of

claims are used. The result is Figure 3.8.

Figure 3.8: Histograms of frequency and average cost of claims based on merit
classes.

For the reason explained above, trend in the frequency of claims is increasing

with a peak in the sixth group. Average cost, instead, seems to be greater for the

first two groups, which contain within them the six highest classes of merit.

Car brand

The last variable taken into consideration in this exploratory analysis is the car

brand. According to the brand, three groups were created: luxury, medium and

normal category.

The first includes all insurance related to luxury cars, so the average cost

for this is expected to be higher than the other two. On the contrary, normal

category should be the one with the lowest average cost.

The decreasing trend of the second histogram of Figure 3.9 confirms the one

described above, while from the first histogram it can be seen that most of the

claims are made with cars of the middle category.

From the exploratory analysis made, it can be concluded that the variables
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Figure 3.9: Histograms of frequency and average cost of claims based on car
brand.

that seem to be most significant for the number of claims are age and class

of merit. For the average cost, instead, the car category also appears to be

significant.

However, this exploratory analysis based on graphs is not sufficient to exclude

the less significant variables. It is better to use a more "objective" method to

understand the importance of variables: the Random Forest.

3.4 Selection of the Most Important Variables

To reduce the computational cost, it is advisable that GLMs have as variables

only those that influence more the probabilistic evaluation of the response vari-

ables. Two cases are distinguished, based on whether the response variable is the

frequency of the claims or the average cost. In both cases, however, the random

forest algorithm must be applied to find the most significant variables.

3.4.1 Significant Variables for the Claims Frequency Model

First of all, it is necessary to insert a new binary variable in the dataset, called

LabelFreq, which is 0 if the policy is without claims and 1 otherwise. After that
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variable relating to the frequency of claims is created, it is better to create new

variables given by the aggregation of the values of those already existing. This

is because the number of tariff classes that will be subsequently created depends

on the number of different values of each feature (or risk factor). Grouping

the values, the number of tariff classes, on which GLM will be applied, will be

reduced and therefore the computational cost of the model will also be reduced.

For example, if classes were created based on Sesso.Contraente, which has two

possible different values, and CAP.Contraente, which has 3811 possible different

values, we would have 2 · 3811 tariff classes. Instead, if the values of variable

CAP.Contraente were grouped in such a way as to create the variable Zona with

values "Nord", "Centro", "Sud" and "Isole", then the number of tariff classes

would be 2 · 4.

The new variables grouped are:

1. Zona which assumes the four values mentioned above;

2. Instead of having Valore.Assicurato with 4101 different values, there is Fas-

ciaValore with five values:

• 1 → when Valore.Assicurato is between 100 and 1000;

• 2 → when Valore.Assicurato is between 1001 and 2000;

• 3 → when Valore.Assicurato is between 2001 and 3000;

• 4 → when Valore.Assicurato is between 3001 and 4000;

• 5 → when Valore.Assicurato is between 4001 and 5000.

3. Instead of having CU.Assicurata with eighteen different values, there is

FasciaCU with six values:

• 1 → it includes merit classes 1, 2 and 3;

• 2 → it includes merit classes 4, 5 and 6;

• 3 → it includes merit classes 7, 8 and 9;

• 4 → it includes merit classes 10, 11 and 12;

• 5 → it includes merit classes 13, 14 and 15;

• 6 → it includes merit classes 16, 17 and 18.
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4. Instead of having Massimale.RCA.Sinistro with eight different values, there

is MassimaleSin with three values:

• 1 → when the value of the claim maximum amount is less than

7290000e (included);

• 2 → when the value of the maximum amount is between 7290000e (ex-

cluded) and 15000000e (included);

• 3 → when the value of the claim maximum amount is greater than

15000000e (excluded).

The grouping in these last three values is also done forMassimale.RCA.Cose

and Massimale.RCA.Persone.

5. Instead of having Age with 73 different values, there is FasciaAge with eight

values:

• 1 → when the insured is between 18 and 21 years old;

• 2 → when the insured is between 22 and 25 years old;

• 3 → when the insured is between 26 and 35 years old;

• 4 → when the insured is between 36 and 45 years old;

• 5 → when the insured is between 46 and 55 years old;

• 6 → when the insured is between 56 and 65 years old;

• 7 → when the insured is between 66 and 75 years old;

• 8 → when the insured is over 75 years old.

6. Instead of having Marca with 83 different values, there is Categoria with

three values:

• 1 → it includes all insurance policies associated with low class cars;

• 2 → it includes all insurance policies associated with medium class

cars;

• 3 → it includes all insurance policies associated with luxury cars.
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Obviously grouping values has a considerable negative side: there is a loss of

information. But if this is not done, there will be a really large number of tariff

classes and applying the GLMs to all of these will lead to problems.

The new variables will be used for Random Forest, but before applying it,

a further step must be taken. Categorical variables without a "natural" order5

are transformed into contingency tables using the "dummy-cols" command in R.

For example, column Sesso.Contraente is transformed into two columns (because

there are two values that this variable can take): Sesso.Contraente-Femmina and

Sesso.Contraente-Maschio. The values that these two new variables can have are

only 0 and 1, and no longer male and female as before: if in the i-th row the

value of Sesso.Contraente is "Female" then Sesso.Contraente-Femmina in that

row will have value 1, while the other variable will be 0.

At this point the dataset can be divided into two parts:

1. Training Set : is a set of data that is used to train a supervised system (such

as random forest). It often consists of an input matrix with an associated

response or classification. Once executed, the algorithm learns, based on

the response or classification, which features discriminate the elements be-

longing to the different categories. Generally it includes about 70-80% of

the initial dataset;

2. Testing Set : is another set of data, used to verify the correctness of algo-

rithm after it has been trained on a initial training set. It is composed of

observations that are not present in the training set.

To make this division, the function of R "sample.split" was used, which splits

data from response vector Y into two sets in predefined ratio while preservig

ratios of different labels in Y .

The next step is to apply the simple Random Forest as first approach. In

Figure 3.10 is shown how to train a Random Forest, with the purpose of predicting

the binary value of LabelFreq using all the other variables of TrainingSetClaims,

and how to test the model on TestingSetClaims.

5An example is the qualitative variable Indice.Credit.Scoring.rischio. which has an intrinsic
increasing order: 0 indicates the lowest risk, while 5 indicates the highest one.
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Figure 3.10: R code: Train and test of Random Forest base with 100 trees.

A tool widely used to evaluate the quality of the classifier is the confusion

matrix, which compares model’s prediction to real solution. The structure of a

confusion matrix is visible in Figure 3.11.

Figure 3.11: Structure of a confusion matrix.

In the case of binary response variable, assuming LabelFreq=0 as the positive

class and LabelFreq=1 as the negative one, the confusion matrix is composed of

four boxes, which represent different results of classification:

• True Positives (TP): if the instance is positive and it is classified as positive;

• False Negatives (FN): if the instance is positive and it is classified as nega-

tive;

• False Positives (FP): if the instance is negative and it is classified as posi-

tive;

• True Negatives (TN): if the instance is negative and it is classified as neg-

ative.

Many evaluation indexes can be calculated using these values and the most

useful in this context are:

• True Positive Rate (TPR): it is also called sensitivity and it measures the

proportion of actual positives correctly identified as such, i.e. the percentage

of LabelFreq=0 identified in the right way. It is calculated as TP
TP+FP

;
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• False Positive Rate (FPR): it measures the proportion of negative classes

wrongly identified as positive, i.e. the percentage of LabelFreq=1 which,

however, have been classified as LabelFreq=0. It is calculated as FP
FP+TN

.

These two indices are useful because they are used to draw the ROC (Receiver

Operating Characteristic) curve, with which it is possible check the quality of the

model. The model’s ability to classify well is evaluated by calculating the area

under the curve (Area Under Curve, AUC), whose value is between 0 and 1: 0

if the model classifies badly, 1 if the model classifies perfectly. In the case of,

instead, the area is equal to 0.5, there is a random classification and the curve is

a straight line called "no benefit line".

In Figure 3.12 is shown the ROC curve obtained applying standard random

forest algorithm on the test dataset.

Figure 3.12: ROC curve obtained applying simple random forest on test dataset
(AUC=0.515).

The classifier has a very bad performance. This is confirmed by the confusion

matrix in Figure 3.13, in which it is visible that the true negatives are zero: this

means that everything has been classified as non-claim. Even if the accuracy is
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very high (97,19%), it is not a good classifier, because it fails to recognize when

there will be a claim, which is essential for insurance. It is therefore advisable to

improve the model, before seeing which are the most significant variables for it.

Figure 3.13: Confusion matrix obtained applying base random forest on test
dataset.

One of the possible causes of this bad classification could be the strong un-

balance of data: in fact, the dataset contains only 2,8% of LabelFreq=1 rows, as

shown in Figure 3.14.

Figure 3.14: Pie chart for the frequency of claims.

It is therefore necessary to balance the dataset through downsampling tech-

nique, explained in the first part of the chapter, and reapply the random forest

to the balanced dataset.

70



3 – Empirical Application

In order to get better performance, in addition to balancing the data, it is

necessary to study the interactions between variables and do parameters tuning.

To consider interactions, just replace LabelFreq ∼ . with a second degree equation

LabelFreq ∼ .ˆ2 ; however, studying each interaction leads to a large increase in

computational time. To improve the prediction, it would be necessary to perform

tuning on all the parameters of Random Forest, but since the purpose of this

model is only to select the most important variables, it is a good compromise be-

tween the computational time spent and the performance obtained by the model,

doing tuning only on the mtry and ntree parameters, because they are the ones

that impact the most.

In Figure 3.15 is shown how to train a Random Forest using the downsampling

option provided by caret package in R, interactions and parameters tuning.

Figure 3.15: R code: training a Random Forest with downsampling, interactions
and parameter tuning.

From the confusion matrix in Figure 3.16, it is visible that the model has

improved compared to the previous one.

Figure 3.16: Confusion matrix of Random Forest with downsampling, interactions
and parameters tuning.

In fact, even if the accuracy is decreased (64,62%), now the model no longer

has the true negatives equal to zero. It is also observed that the number of false

positives has increased a lot, while that of false negatives has decreased slightly.

This may seem like a bad thing, but it is not so: in fact, it is worse to predict a
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claim as a non-claim than the opposite, because there is the risk of not having

enough reserves to cover the damages. Nevertheless, care must be taken that the

number of false positives is not too high.

Finally, the ROC curve and the area underlying it, observable in Figure 3.17,

are better than the previous ones.

Figure 3.17: ROC curve obtained applying random forest with downsampling,
interactions and tuning on test dataset (AUC=0.5726).

At this point, the most significant variables of the model are visible through

the command R varImpPlot, in Figure 3.18.

In the plot there are not all the variables of model (considering as variables

also the interactions), but only the thirty most important ones. Looking at

the graph, it appears that the variables to be used for the GLM concerning

the frequency of claims are: the class of merit (FasciaCU ), the risk index (In-

dice.Credit.Scoring..rischio.), the age (FasciaAge) and the insured value (Fasci-

aValore).
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Figure 3.18: Variable importance plot of frequencies.

3.4.2 Significant Variables for the Claims Cost Model

For this model, it is necessary to take into consideration only the observations

relating to policies with claims.

The basic idea is the same as before: using new variables, transforming cat-

egorical variables into contingency tables, dividing into training and testing sets

and applying random forest to understand which are the most significant vari-

ables. But there are two fundamental differences:

1. this is not a problem of classification like the previous one, but of regression

because the variable to predict Sinistri.Costo.Totale is quantitative. To

evaluate the model, therefore, the confusion matrix and the ROC curve can

no longer be used;

2. in this case there is no unbalancing of the data to be predicted, therefore
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the downsampling technique is not used.

First, a random forest base is applied, as shown in Figure 3.19.

Figure 3.19: R code: Train and test of Random Forest base with 100 trees.

In the case of continuous variables, three new parameters are used to measure

estimator’s accuracy: the Root Mean Square Error (RMSE), the R-squared (R2)

and the Mean Absolute Error (MAE).

The first is the average of squared differences between the i-th predicted value

ŷi and the i-th observed value yi, i.e.

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

It tells how concentrated the data is around the line of best fit: the lower the

value, the more the data follows the trend of regression line.

The R-squared, also called coefficient of determination, is instead an indicator

that, starting from the regression line, summarizes in a single value how much

the analysed magnitude deviates from this line on average. The formula is:

R2 =

∑n
i=1(ŷi − yi)2∑n
i=1(ȳ − yi)2

where ȳ is the average of observed data. This index varies between 0 and 1:

when it is 0 the model used does not explain the data at all, while when it is 1

the model perfectly explains the data.

Finally, MAE is the average over test sample of all absolute errors, which are

the absolute values of the differences between predictions and actual observations.

The formula is:

MAE =
1

n

n∑
i=1

|ŷi − yi|

Like RMSE, it is a negatively-oriented score, which means that lower values are

better.

The three indices relating to the random forest base model are:
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Figure 3.20: R code: Root Mean Square Error, R-squared and Mean Absolute
Error for Random Forest base model.

These values suggest that the quality of the model is not very high and that

it is necessary to improve it for better results. To do this, the same method used

for the claims frequency model is used: tuning on the mtry parameter is done

and interactions are considered. The result is the following:

Figure 3.21: R code: Root Mean Square Error, R-squared and Mean Absolute
Error for Random Forest with tuning and interactions.

Looking at the new index values, it is stated that the results are slightly better

than before, but the fact remains that the overall result of the model is not the

best. It should be remembered, however, that the purpose of the model is not to

predict, but to understand which are the characteristics that have the greatest

impact on the cost of the claim. For this reason, no attempt is made to further

improve the model and the varplot is observed directly.

From Figure 3.22 it can be concluded that the most significant variables for

the cost model are the insured value (FasciaValore), the car brand (Categoria),

the class of merit (FasciaCU ) and the risk index (Indice.Credit.Scoring..rischio.).

Note that they are not the same as those found for the frequency model.
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Figure 3.22: Variable importance plot of costs.

3.5 Application of GLMs

3.5.1 Creation of Tariff Classes

As mentioned in the first chapter, the insurer divides the community of risks into

subgroups or tariff classes, which have similar characteristics, so as to be able to

attribute the same technique to the risks belonging to the same class. Through

this process the premiums are therefore differentiated for the insured, depending

on the different risk profile.

In this thesis it was decided to divide the portfolio according to five risk factors

(selected on the basis of the results of the two previous Random Forest): age,

brand, class of merit, insured value and risk index. As said previously, these
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risk factors are all classification variables divided into levels; in fact, FasciaAge

has eight levels, Categoria has three, FasciaCU has six, FasciaValore has five

and Indice.Credit.Scoring..rischio. has six. The portfolio is therefore made up

of 4320 tariff classes (8 · 3 · 6 · 5 · 6), identified by the determinations of the five

tariff classification variables. It should be noted that 4320 is the number of tariff

classes that should be there, but it is not necessarily the actual number. In fact,

it could be that there are no policies with the characteristics of a certain tariff

class and so, instead of leaving the line corresponding to that class empty, it was

decided to not insert it into the new dataset. In this case, instead of having 4320

rows, the dataset used for the GLMs has 2735.

For each tariff class, the exposure, the number of claims observed, the total

damage, the number of policies and the claims frequency must then be indicated.

Figure 3.23 shows an extract of the new database (DatasetGLM ) composed of

tariff classes and related information.

Figure 3.23: Extract from the new dataset DatasetGLM.

For each line, thanks to the application of GLM, the expected number of

claims and the expected value of compensation for individual claims are esti-

mated. Through the first estimated value the frequency of claims is found and

this is multiplied with the second estimated value to determine the fair premium

within each class.

Let us remember that in GLMs the response variables Yi are supposed to be

stochastically independent, with distributions belonging to the same exponential

family. The expected value of Yi is linked to the determinations of the explanatory

variables x′i by a invertible link function g.

Therefore:

g(µi) = x′iβ = ηi

E[Yi] = µi = g−1(ηi)

i = 1, ..., n
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where ηi = β0 + xi1β1 + ... + ximβm is the linear predictor, β = (β0, β1, ..., βm)′

is the vector of parameters that will be estimated with the regression and x′i =

(1, xi1, ..., xim) is the vector of determinations of the explanatory variables. Let

us also remember that the link function that allows to reach the construction

of a multiplicative model, which is the one used in the insurance world, is the

logarithm. Moreover, the logarithm allows to obtain always a positive expected

value.

Now, based on what has just been described, it is possible to proceed with

the construction of the two GLMs.

3.5.2 GLM for the Number of Claims

The GLM used to estimate the number of claims in each tariff class k coincides

with the model described in the Paragraph 2.2.4. Therefore, the number of ex-

pected claims for each tariff class will be estimated using a model in which the

response variables Mk, i.e. the random number of claims that will affect the

insured risk, are considered stochastically independent and with Poisson distri-

bution.

The expected value of response variables is µk = E[Mk] = tkλk, that is to

say that the expected value of the number of claims in class k corresponds to

the product between the total exposure of the class tk and the expected annual

number of claims λk for each insured in one year.

Linear predictors of tariff classes are indicated by ηk =ln tk + x′kβ, in which

lntk is the offset term, introduced in order to take into account the exposure since

in the data there are not only unit exposures, but also exposures lower or higher

than a year (as seen in Figure 3.24).

As link function, the canonical one for the Poisson distribution is chosen, i.e.

g = ln.

After dividing the dataset into training and testing set, the model in R is

estimated through glm command and the code is visible in the Figure 3.25.

In the command, model.freq is the name assigned to the regression output,

NumSin is the response variable, i.e. the number of claims, estimated as a func-

tion of tariff variables. The logarithm of exposure (offset term), is also added to
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Figure 3.24: Histogram of the number of policies based on exposure.

Figure 3.25: R Code: Generalized Linear Model for the frequency of claims.

the explanatory variables.

Finally, the distribution assigned to the response variables is specified with

family = poisson. It is not necessary to specify the logarithmic link function,

since the program automatically recognizes the logarithm as a canonical link.

Once the model has been trained on TrainSetGLM, it is tested on TestSet-

GLM. The results obtained from the prediction, using the predict function, are

however the linear predictors; to get the number of claims, just consider the

exponential of these.

To evaluate the quality of the model, RMSE and MAE are considered, as

done previously. In this case, they are respectively 0.1332534 and 0.6322603 and,

being low values, it can be said that the model predicts well.
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As a last step, it is necessary to calculate the frequency of claims, dividing the

number of claims estimated by the total exposure. Once the frequency is found,

proceed by calculating the average cost per claim.

3.5.3 GLM for the Average Cost per Claim

For the estimation of the average damage per claim in the tariff classes, instead,

the GLM will have the structure envisaged by the model explained in the Para-

graph 2.3.4. Also in this case, the response variables Yk, which indicate the

average damage per claim for the different tariff classes, are supposedly stochas-

tically independent. But now they will have a Gamma distribution and the weight

introduced for their estimate will be mk, that is the total number of claims that

hit class k.

In this model the expected value of the average damage per claim will be given

by E[Yk] = µk = g−1(ηk), with g = ln. Actually the canonical link function for

the Gamma distribution is g = − 1
µ
, but the latter requires placing constraints on

the regression parameters to make the linear predictor negative and the expected

value positive. It is therefore preferable to set a logarithmic link function that

allows to obtain positive values for the expected value, without having to place

constraints on the parameters. Furthermore, as stated above, the choice of the

logarithmic link function depends on the fact that, in insurance practice, tariff

models of a multiplicative type are often adopted and the logarithm allows the

construction of this type of model.

In R the model is estimated using the command shown in the Figure 3.26.

Figure 3.26: R Code: Generalized Linear Model for the average cost.

Similarly to what was seen for the model for the number of claims, model.cost

indicates the name assigned to the regression output and CostOsservato is the

estimated response variable depending on the tariff variables. With TrainSet-

GLMC the dataset from which to obtain the data to perform the procedure is

indicated; for the estimation of the model, tariff classes in which compensation

has been paid by the insurance company will be considered, since the constraint
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of positive compensation has been imposed (TrainSetGLM$CostOsservato > 0 ).

Finally, the distribution assigned to the response variables is specified with

the command family = Gamma(link = "log") and it is also specified that the

logarithmic link function should be applied to the model, and not the canonical

connection for the Gamma distribution.

Also in this case the GLM is subsequently applied on the testing set and

the quality is evaluated through the RMSE and MAE, which are respectively

5747.048 and 2475.822. The quality of prediction is not bad, but it is not as

good as the previous one. This is because it is very difficult to predict the exact

amount of the damage. In fact from the results of the model, it emerges that

the damage depends more than anything from the category of the vehicle: from

this it obviously follows that the damage amounts will be greater if luxury cars

are damaged. For example, if there is an accident in which a mirror of a Grande

Punto Fiat is broken, it is known that it will be paid less than to make an accident

in which the mirror of a Ferrari is broken. The problem, however, is that the cost

varies greatly depending on the type of accident done. In fact, it can not be

known if the driver of the Ferrari will make an accident in which he will only

break the mirror or one in which he will destroy the car, but according to this the

cost obviously changes a lot. For this reason, therefore, it is difficult to accurately

predict the cost of a claim. To improve the forecast it should have information

about the type of accident that will happen, but these are impossible to have.

3.6 Combination of the Two Models for the Fair

Premium

To calculate the fair premium for each tariff class are necessary the estimated

claim frequencies and the average damage amount per claim. An extract of these

values, together with those observed, are visible in Figure 3.27. It should be

noted that the values that have been chosen to show are the results of the models

applied on the testing set, even if they are not the best. In fact, the results of the

training set model are better than those on the testing set, because the model is

evaluated on the same data on which it was trained. But in a real case, the model
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is evaluated on "new" data, with which it has never interacted, as happens for

the testing set.

Figure 3.27: Comparison between observed and predicted frequency and cost of
testing set.

The last step to calculate the fair premium for each tariff calss is to multiply

the predicted claim frequencies by the average cost per claim. In Figure 3.27 the

result of multiplication is visible.

Figure 3.28: Calculation of the fair premium on the testing set and comparison
between observed and predicted premium.

The predicted premium is quite similar to that observed, so the model is

quite good; this is confirmed by the RMSE and the MAE, which are respectively

2907.752 and 410.5310. To improve the final result, the prediction of the average

cost should be improved.

Lastly, remember that the result obtained is not the final premium of an

insurance policy, but the fair premium. To this must then be added earnings,

fixed management costs and taxes to obtain the final premium.

In the next chapter it will be explained in a theoretical way how to find the

earnings of an insurance company and therefore how to optimize the premium in

such a way that the earnings of the insurance company are as high as possible.
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Chapter 4

Pricing Strategies for Insurance

As mentioned in the other chapters, once the reserves that insurance company

has to set aside to cover accident costs have been estimated, i.e. the fair premium,

insurers add a load at this price to make profits and cover their expenses. The

insurance company must define a pricing strategy in order to choose a loading

that optimizes its wealth, taking into account different factors.

In general, the pricing strategy is a way to find a competitive price for a

product or service, in this case an insurance, which results in the increase of

company’s profit margins and volume of business and also in the maximization

of customer’s lifetime value and loyalty.

There can be various types of pricing strategies:

• The simplest case is one in which neither consumers nor competitors are

taken into account, but only costs. The production cost of an item is

evaluated and to this is added a mark up, that is a margin, to determine

the selling price.

• An evolution of the previous strategy is that which also takes into account

consumers. In this case the price of the product derives from the equilibrium

of supply and demand, which occurs when the quantity demanded of an item

equals the quantity offered of the same item.

In microeconomics, demand is the amount of consumption required by the

market and by consumers of a product or service, given a certain price.

This is influenced by several factors, first of all the price of the purchased
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item. Other influencing factors are the price of complementary products,

the consumer’s income and his needs.

The offer, on the other hand, is the quantity of a product or service that is

put up for sale at a given time and at a certain price. This is influenced by

prices, production costs, technology and government policies.

It should be noted that in the event of a monopoly, that is when there is

only one seller, this case leads back to the simplest case.

• The most complete strategy is one that also takes into account the role

of competition. In the classical microeconomics literature game theory1 is

used to model the interaction between two competitors.

In this chapter the last two types of strategies will apply to the field of insur-

ance. The first pricing strategy is not considered because it is too simplistic.

However, before explaining the models, it is well defined what the demand

elasticity is, on which practically all pricing strategies are based.

The price-demand elasticity ε measures the variation in the quantity de-

manded of a economic item in reaction to a change in its price. This value is

always indicated in absolute value and it can take values between zero and infin-

ity. Based on the value, various types of demand can be distinguished:

• if ε = 1, there is a demand for unitary elasticity and the demand is exactly

proportional to the price changes;

• if ε < 1, there is an inelastic demand and the quantity demanded is little

influenced by price changes;

• if ε > 1, there is an elastic demand and the quantity demanded is influenced

by price changes in a more than proportional ratio;

• if ε = 0, there is a rigid demand and the quantity demanded does not

vary with the price, i.e. whatever the price, the consumer always buys

the same quantity of the item. A demand of this kind can be had in the

1Game theory is a discipline of applied mathematics that studies and analyzes the individual
decisions of a subject in situations of conflict or strategic interaction with other rivals aimed at
the maximum gain of each subject.
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case of mandatory insurance, like the Car Liability, and monopoly. This

case, however, is not realistic, because in reality there is competition and

therefore the quantity demanded changes a lot based on the price, even if

it is a mandatory insurance;

• if ε = ∞, there is a perfectly elastic demand and the demand is hyper-

sensitive to price changes, i.e. a small price change affects the consumer’s

purchase decision.

4.1 Pricing Strategy for Non-Life Products Based

only on Customers

The sensitivity of insurance customers to the price and the way in which this

affects its variation has been subject of an extensive analysis in the research

literature of the insurance market. Several methods have been developed to

understand which customers are most valuable and in this thesis it was decided

to describe the method that uses statistical tools to estimate the potential value

of insurance customers and their price demand elasticity.

4.1.1 Estimation of the Potential Value of the Customer

The first step of this method is to segment the available customer portfolio based

on the potential value of the customer. In this way the insurance company un-

derstands which customers are potentially valuable, and therefore on which it

is better to invest, and which are the non-valuable customers on which it must

minimize investments.

The potential value is a measure defined as the sum of the current and the

future value of the customer. The current value is given by the difference between

two elements: the sum of the premiums paid during the entire relationship with

the insurance company for all insurance products and the sum between the claims

that occurred in the same period and the acquisition and issue costs of these

policies. The future value of the customer, on the other hand, is the expected

value of the margin that the customer will leave in the future relationship with the

85



4 – Pricing Strategies for Insurance

company, i.e. the premiums minus expected losses, expenses and commissions.

The formula to find the future value for k insurance products, considering that

cross-selling2 is possible, is

Future V alue =
k∑
j=1

(pjmarginj)
T∑
t=1

(
1

1 + r

)t(
lt
l0

)

where pj is the probability that the customer will continue to buy the j product

with the current insurance company and marginj is the margin for that product.

In the second summation, instead, the first term represents the discount interest

rate for a certain year t, while the second term is the expected loss ratio of

purchased insurance products.

The information needed to calculate a customer’s potential value is all in the

possession of the insurance company, except the likelihood that the customer will

continue to buy the product in the future. But to see what this probability is,

it is just a different way to see what is the market elasticity. So to calculate it,

it is necessary the demand function, which corresponds to a GAM-Logit model.

It is a logistic regression that uses the Generalized Additive Models to predict

the probabilities (according to relevant explanatory variables), but it will not be

explained in detail since this is not the main objective of this thesis.

4.1.2 Segmentation of Customer Portfolio

Once the potential value of each customer has been calculated, the portfolio is

segmented. There is no single correct way for the division of the insured, but in

this thesis it was decided to segment into four groups according Figure 4.1.

The strategies to be adopted based on segmentation are briefly discussed.

• Segment I : it can be considered unattractive considering that it has low

potential value and low current value. Future profitability is expected to

be low and in order to improve it, strategies should focus on cost reduction

and possibly on less promotions, instead of trying to increase the purchases;

2It is a sales strategy consisting in proposing to the customer who has already purchased a
particular product or service also the purchase of other complementary items.
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Figure 4.1: Segmentation with current value and customer potential value.

• Segment II : it has high potential value, but low current value. Companies

should aim to get a larger part of the customer’s potential in this segment,

for example by doing up-selling3. In this way the company will increase the

customer’s profitability by increasing its share of purchases;

• Segment III : it has low potential value and high current value. In this case,

the company deals with relatively loyal customers and the likelihood of

successfully applying up-sell is low. Since customer loyalty is very important

to companies, they must try to keep these customers;

• Segment IV : it contains the most valuable customers, who are loyal and

have a high potential value. Not having this group of customers anymore

would bring a serious loss to the insurance company, for this reason the

management must strive to maintain these customers (perhaps giving them

some benefits that customers of other segmentations do not have).

4.1.3 Tariff Optimization Model

After splitting the insured into the four segments, it is possible to apply an

algorithm that optimizes the premium for each customer group. The premium is

defined as optimal if it maximizes the margin, subject to two constraints:

3It is a technique which consists in proposing to the customer superior qualitative versions
of the product or service initially requested
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1. The Customer Retention Rate (CRR) should be maintained above a pre-

defined value. It expresses the percentage of customers that continues to

buy in a given time interval. More in detail, taking a given time frame as

a reference, the CRR is determined by the percentage ratio between the

number of customers in the portfolio at the end of the period examined and

the number of the customers present in the portfolio at the beginning of

the same period;

2. The optimal increment for each group of customers must be kept within

a predefined range; the extremes of the range vary according to the group

considered and are decided by the management.

The optimization problem can therefore be written as follows:

max πi = f(ri, di)

s.a. ri ≥ r̄

dmin ≤ di ≤ dmax

where πi is the objective function equal to premiumt,i(1 + di) − E[losses] −

E[expenses and commissions] and it represents the margin. It should be noted

that premiumt,i is the actual net premium and that E[losses] is the fair premium

estimated in the previous chapter. Furthermore r is the CRR, d represents the

optimal percentage increase of the premium, while r̄, dmin and dmax are the values

pre-established by management.

The optimization algorithm starts by generating random numbers, which rep-

resent the premium increase, for each customer segment. These numbers are

generated by a distribution chosen by the user, which is a uniform U[dmin, dmax]

by default. For each di, the renewal probability pi is considered: if this is lower

than the one estimated at the end of Section 4.1.1 then the i-th increase rate is

excluded from the model, otherwise, if the probability renewal is equal or higher,

the increase rate is taken into account. For each of the values not discarded, it

is then necessary to verify the CRR: if, when the optimal increase is applied,

the retention rate is less than the predefined value r̄, this increment is rejected.

Finally, among the increase rates that were not discarded in the last step, the

one that makes the margin higher is chosen.
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This procedure is repeated n times (each time different random numbers are

generated). The optimal renewal premium is obtained by the multiplication be-

tween the current premium and the optimal increase rate found, such that it

generates the highest margin value of all the iterations of the algorithm.

This model, however, does not take into account a very important factor for

pricing strategies: the competition. Generally, if a company X increases its rate

level, the quantity of policies sold decreases, but if the current rate of X is lower

than that of competitor Y , an increase in rate level (provided that, even with

the increase, it remains lower than the competitor) may not lead to a decrease of

sales.

So the prices of competitors play an important role and for this reason the

model just seen is considered incomplete in reality and a model that also takes

into account the competition of the insurance company has been developed.

4.2 Pricing Strategy for Non-Life Products in Com-

petitive Markets

In recent years the competition between insurance companies has increased more

and more and if a company wants to survive, it must be able to define the prizes

in order to effectively respond to the premiums offered by competitors. For this

reason, it is necessary not only calculate the optimal premium strategy for an

insurance company (as was done before), but also ask how this strategy is related

to the competitive insurance market.

Before describing the various models that have been developed for a pricing

strategy in a competitive market, a glossary of the symbols that will be used is

drawn up.

Glossary

{Vk}k∈N: is the sequence of the volume of business underwritten by the insurer

in year [k, k+1). It can be measured in any significant unit.

{πk}k∈N: is the sequence of the break-even premium in year [k, k+1), i.e. risk
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premium (or fair premium) plus expenses per unit exposure.

{pk}k∈N: is the sequence of the premium charged by the insurer in year [k,

k+1). It is the decision-making parameter.

{p̄k}k∈N: is the sequence of the "average" premium charged by the market in

year [k, k+1). It is assumed that this process is stochastic.

{wk}k∈N: is the sequence of the company’s wealth in year [k, k+1).

{γk}k∈N: is the sequence of the reputation’s impact on the volume of business

in year [k, k+1) and sign(γk) is the sign of this parameter which represents the

kind of impact that reputation has on the volume of business.

{θk}k∈N: is the sequences of the set of all other stochastic variables (as infla-

tion, interest rate, marketing etc), that are assumed Gaussian and independently

distributed in time, and that are considered relevant to the demand function in

year [k, k+1).

{ak}k∈N: is the sequence of the excess return of capital in year [k, k+1).

r: is the rate of return on equity required by shareholders of the insurer whose

strategy is under consideration. It is assumed that this rate is deterministic.

v: is the corresponding discount factor and it is equal to v = (1 + r)−1.

4.2.1 Taylor’s Model

In the literature, various models concerning the competition in the insurance

market have been discussed. The first was that of Taylor G. C. in 1986, which

explored the relationship between the behavior of the Australian market and

the optimal response of an individual insurer, whose purpose is to maximize

the wealth of the company. He has assumed that this relationship depends on

different factors, including:

1. The predicted time which will elapse before having profits;

2. The price elasticity of demand for the insurance product under considera-

tion. Moreover, he has assumed that the policies display a positive price-

elasticity of demand. This means that, if the market mainly begins under-

writing at a loss, any attempt to maintain profitability of the company will

result in a reduction of his volume of business;
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3. The rate of return r required on the capital supporting the insurance oper-

ation. In general, r is the net gain or loss on an investment over a specified

time period and it is expressed as a percentage of the investment’s initial

cost.

Consequently, for a given sequence of average market prices, the demand

function fk(.) is given by a relation of the following type

Vk = fk(pk, p̄k, Vk−1, θ)

It is visible that the demand is affected by the price pk of policies, from the

average price offered by the competitors p̄k and other factors θ such as the law

for certain coverages (liability insurance on cars is legally required in all states)

or the customer’s willingness and ability to pay.

Moreover, the objective function to be maximized is the expected present

value of the wealth of company in a pre-defined finite time horizon.

K∑
k=1

vk−
1
2Vk(pk − πk)

where the various variable are those described in the glossary. The previous

demand function, however, is too general to get useful results, so Taylor restricted

it to

Vk = fk(pk, p̄k, Vk−1, θ) = Vk−1f(pk, p̄k)

In this restriction there are implicit assumptions:

• the demand function is stationary over time, for this reason the subscript

in fk has been dropped;

• Vk is assumed to be proportional to Vk−1;

• the discarding of the unspecified set of variables is equivalent to treating p̄k

exogenous to the strategy of the insurer under consideration.

After these restrictions the objective function becomes:

K∑
k=1

vk(pk − πk)
[ k∏
j=1

f(pj, p̄j)

]
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so the optimal pricing strategy prescribes a sequence of premiums pk such as

to maximize the expected profit discounted at rate of return per annum.

The results he found are very interesting. Firstly, he showed that as v in-

creases, the project future premium involved in the optimal underwriting strat-

egy also increases. Moreover, if this v is sufficiently large, the optimal strategy

will never involve any loss cases (when the premium is lower than the break-even

premium).

According to the results of his studies, he concluded that the optimal strate-

gies do not follow what someone might expect. In fact, contrary to what can be

expected, during a period of depression of the premium rates it is not said that

there is no profitability for an insurer. For example, if it is considered the case

in which the average market rate is below the break-even point (and therefore

competitors sell a policy at a price lower than its cost), it may be thought that

the best choice of an individual insurer is to sell off the policy too, but in reality

it is not certain that this is so. So his idea is based on the fact that to earn more

profits an insurance company must study the behavior of the market, but it does

not always have to follow it.

Taylor’s idea was later extended in 2015 by Pantelous and Passalidou, who

developed a model that takes into account both the competitive market and the

company’s reputation.

4.2.2 Model of Pantelous and Passalidou

With this approach the volume of business has a discrete-time stochastic demand

function (because θk and p̄k can be considered as random variables), like in the

previous model, but the formulation of the business volume uses also the repu-

tation of the company. This is a factor that should not be excluded, because it

makes the model more realistic: in fact, the reputation of the insurance company

has a strong influence on the customer’s purchase decisions or, in other words,

on the company’s product demand.

Firstly, according to Taylor’s model, the following three assumptions are made:
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1. There is positive price-elasticity of demand, i.e. if the market begins un-

derwriting at a loss, any attempt by a particular insurer to maintain prof-

itability will result in a reduction of his volume of business;

2. There is a finite time horizon T ;

3. The demand of the year k+1 is proportional to the demand of the previous

year k.

Secondly, the purpose of the model is to determine the strategy that maximizes

the expected total utility of the wealth at time k over a finite time horizon T , i.e.

max
pk

E[
T∑
k=0

U(wk, k)]

where U(wk, k) = vkwk is the actual value of the wealth.

Very important is the wealth process that is

wk+1 = −akwk + (pk − πk)Vk (4.1)

where ak represents the excess return on capital, i.e. the return on capital

required by the shareholders of the insurer. So the wealth of the company is given

by the profit on the policies less the interests that the company has to pay to the

shareholders. Moreover, the volume of business Vk is given by

Vk = Vk−1

(
p̄k
pk

)α
+ sign(γk)|γk|βeθk (4.2)

The first part of the sum in (4.2) concerns the competitive market and it

is the same as that of the previous model, with the exception of the parameter

α. This sensitivity parameter models the elasticity of the company’s volume of

business to a change in premium in the preceding year k. The second part of

the sum, instead, incorporates the parameter γk and the sensitivity parameter

β that models the effects of reputation on the volume of business: sign of γk is

equal to +1 when the company has a good fame or it is equal to -1 when the

reputation is bad. However, the volume of business is exponentially affected by

the stochastic parameter θk, which comprises all variables that are relevant to the

demand function in year [k, k+1) and represents the white noise.

Having said that, one can derive the optimal premium through the following

Theorem (of Pantelous and Passalidou), whose demonstration is omitted.
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Theorem. For the wealth process given by

wk+1 = −akwk + (pk − πk)
(
Vk−1

( p̄k
pk

)α
+ sign(γk)|γk|β

)
(4.3)

and for the maximization problem defined by

max
pk

E[
T−1∑
i=k

viwi] (4.4)

with initial conditions w0, V0, V−1, a0 and γ0, the optimal premium p∗max,k is

given as a solution to the polynomial when

(a) α > 1,

pα+1
k+b1pk+b2 = 0 and 0 < pk <

(
1+

2

α− 1

)
πk, for k = 0, 1, ..., T−1 (4.5)

It is interesting to note that the optimal premium has an upper bound that

is related to the break-even premium πk and the elasticity parameter α.

(b) 0 < α ≤ 1,

pα+1
k + b1pk + b2 = 0 for k = 0, 1, ..., T − 1 (4.6)

In this case there is always an optimal premium.

The parameters b1 and b2 are
(1−α)Vk−1E[p̄αk ]

sign(γk)|γk|βE[eθk ]
and απkVk−1E[p̄αk ]

sign(γk)|γk|βE[eθk ]
, respectively,

while γk is given by w0d0 + e0. Moreover, it is defined dk as vk − akdk+1 > 0 with

dT = 0 and ek as (p ∗max,k −πk)
[
Vk−1

E[p̄αk ]

(p∗max,k)α
+ sign(γk)|γk|βE[eθk ]

]
dk+1 + ek+1

with eT = 0.

The root of the polynomial given by (4.5) and (4.6) is the optimal premium

and it must be a real and positive number. For this reason, it is necessary to

consider only the cases in which the result is positive and real.

The first case to consider is where sign(γk) = 1. This has two possible sub-

case based on the value of the polynomial’s coefficients:

• For α > 1, b1 < 0 and b2 > 0, the polynomial has zero or two positive roots;

• For 0 < α ≤ 1, b1 > 0 and b2 > 0, the polynomial has no positive root. So

this case must not be taken into consideration.

The second case to consider, instead, is where sign(γk) = −1. Also in this

case there are two possible sub-cases:
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• For α > 1, b1 > 0 and b2 < 0, the polynomial has exactly one positive root;

• For 0 < α ≤ 1, b1 < 0 and b2 < 0, the polynomial has exactly one positive

root.

Combining the Theorem with the request to have a positive root, the following

corollary is obtained.

Corollary. For the parameters of the Theorem, there is an optimal solution

p∗max,k:

I For sign(γk) = 1, with α > 1 and 0 < pk <

(
1 + 2

α−1

)
πk, when the

polynomial (4.5) has two positive roots;

II For sign(γk) = −1, with α > 1 and 0 < pk <

(
1 + 2

α−1

)
πk, when the

polynomial (4.5) has exactly one positive root;

III For sign(γk) = −1 with 0 < α ≤ 1, when the polynomial (4.6) has

exactly one positive root.

So the algorithm for finding the optimal premium can be summarized in the

following steps.

Step 1: Collecting the necessary historical data from the insurance market.

Firstly it is necessary to collect data useful for calculations as the number of

companies which are in the market, the volume of business Vk−1, the break-even

premium πk, the impact of the reputation γk and the other stochastic parameters

θk.

Step 2: Estimation of parameter α.

The parameter α is important because it indicates the elasticity of the market’s

average premium over the company’s premium and it is estimated through the

formula α = 2γ
σ2 − 2µ, where γ is the coefficient of the non-linear damping, µ

is the expected value of the white noise and σ is his standard deviation. These

parameters are estimated with an appropriate data fitting.

Step 3: Estimation of p̄k.

The market’s average premium is equal to p̄k−1 + γp̄2µ−1
k−1 + σp̄µk−1εk, where

{εk} is a sequence of uncorrelated normally distributed random variables with

zero expectation and unit variance.

Step 4: Calculation of b1 and b2 of the polynomial (4.5) and (4.6).
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Using the previous parameter α and the data collected in Step 1, coefficients

b1 and b2 are estimated.

Step 5: Calculation of the roots of the polynomial (4.5) and (4.6).

The main possible directions for this step are related to the negative or positive

effect of γk and this effect can be "measured" with the sentiment analysis, opinion

polls etc. Consequently, when the impact of the reputation can be determined,

the roots of the polynomials are calculated based on the previous Corollary.

Step 6: Design and agreement on the optimal premium for the insurance

company.

In the last step, after taking into consideration the competition in the in-

surance market, the reputation of the company, the break-even premium, the

different macroeconomic parameters (based on θk) and the elasticity parameters,

the optimal premium can be calculated. This calculation must be repeated for

different values of β: the β that represents the best scenario must then be cho-

sen. Finally, this premium must be approved by the senior management of the

companies.

If insurers want to maintain a competitive advantage in the insurance sector,

however, they must not only take into account consumers and competitors, but

they must adapt effectively to new technological complexities.

4.3 Pricing Strategy with the Arrival of New Tech-

nologies

In recent years, big data, the Internet of Thing and the predictive data analysis

are heavily impacting on the pricing model: in fact, they allow to the insurance

companies to estimate more accurately the risk or the consumer willingness to

pay or buy, besides the fact that they help in identifying, during the underwriting

phase, the insured who could commit fraud.

But the technology that has most altered the insurance landscape for both

companies and consumers is Internet: in a relatively short time, it has become
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the dominant channel of choice for people searching for insurance. There has

been an increase in websites that allow consumers to compare insurance products

by price, value and advantages and to match a product choice with their needs

and willingness to pay, as if they were insurance brokers. All this has led the

customers to be much more informed, sophisticated and open to new proposals,

based on different variables (as security, mobility and different types of coverage),

which require new and dynamic pricing structures. These new structures must

consider several new factors.

Firstly, the increase in the use of Internet by consumers has led to a change

in marketing by companies. In fact, it forces the companies to reappraise the

traditional marketing channels, such as print and television, and to focus on

online marketing.

Secondly, companies in the pricing strategy must take into account the fact

that they can no longer rely on customer loyalty. The websites where there is a

premium comparison attract the most "capricious" and price-sensitive customers,

which are more inclined to revisit the price comparison site at renewal step. In

contrast, the best way to capture a loyal customer was through personal recom-

mendation o traditional media. For this reason, price comparison websites are

themselves trying to create customer relationships and to build loyalty with the

insurer. For example, many sites have strategies of cross-selling and communica-

tion that promote the benefits of going back to the website at renewal.

Thirdly, with the advent of the Internet the insurer brand and its service

benefits are more "denigrate" : the companies are placed into a pot where premium

is fundamental and the opportunity to compete based on non-price attributes is

reduced. In other words, the choice of client becomes more dependent on price

than benefits and added value services, typical of most traditional insurance,

so the pricing strategy of company must be based primarily on the premium.

Moreover, the increased premium sensitivity requires insurers to reduce profit

margins: in fact, while previously the companies used to convince a customer

giving him more benefits, now they are forced to be more competitive on the

price and therefore to decrease the profit margin. In addition, the opportunity

for insurer to increase premiums in the following years, with the aim to recover

lost margins is reduced, because if the price is raised enough to increase profits,
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the insurer risks to lose the customer.

Fourth thing, part of the company’s strategy is based on understanding what

are the right questions to ask the customer via the website. In fact, a wrong choice

of questions can lead to incorrect premiums, that must then be corrected, leading

to customer dissatisfaction, since the correction usually consists in increasing the

premium.

The central questions are thus how to integrate websites with the overall mar-

keting strategy of the company and how to obtain it without significantly eroding

profitability. It is clear that, in order to have a good result, the company must

take into consideration several factors, such as pricing anomalies, customer dis-

loyalty, brand commoditisation and erosion of profitability. Further, the insurers

who continue to rely only on a traditional actuarial model, with a perspective

based on costs and a limited set of risk differentiators, will eventually end up

with a larger pool of relatively riskier and less profitable customers: this will

negatively impact on the profitability and the market share.
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Conclusions

With this thesis writing a general overview on the theory and the main techniques

related to the pricing in non-life sector, focusing on Car Liability insurance, is

given.

Attention has been focused also on generalized linear models and in particular

on the two models most frequently used by insurance companies in the pricing

process, i.e. the models that assign Poisson distribution and gamma distribution

to the response variables. The flexibility and peculiarity that characterize these

models, make them widely used in the actuarial practice, not only for the con-

struction of the fair premium a priori, but also for the evaluation of the premium

reserves and, in some cases, for the determination of premiums a posteriori.

It can be concluded that for an insurance company it is fundamental to be

able to estimate precisely what the expected costs will be for the customer and to

understand, based on these, how much the maximum gain can be. Furthermore,

the company must take into account various factors in order to be able to make

the best profit. In primis, it must be considered that even if the Car Liability is a

compulsory insurance, it cannot set too high prices due to the great competitive-

ness. Moreover, it must take into account the fact that the figure of the client has

evolved: with the advent of the Internet, in fact, the customer has become more

informed and sophisticated, making the competitiveness further increase among

insurance companies.

To conclude, in order to continue to maximize profits, the company must

continue to modify its pricing strategy, adapting it to the various new factors

that will arise over the years.
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