
Politecnico di Torino
Corso di Laurea Magistrale in Ingegneria Energetica e Nucleare - Poly2Nuc

Tesi di Laurea Magistrale

Development of C++ tool
for Reduced Order Modelling

of the Molten Salt Fast Reactor multiphysics:
Sensitivity Analysis application

Relatori:
Sandra Dulla
Antonio Cammi

Studente
Daniele Maria Panico

240002

Anno Accademico 2018-2019



(This page is intentionally left blank)



Acknowledgements

This thesis actually sets the end point in my career at Politecnico di Torino, many
times the path seemed to be long, and now it ends like it started the day before
yesterday. Thus I wish to thank some people who were with me along that path,
with the awareness that I am not even able to write about engineering, so please be
understanding if I am not able to do this as well.
First, I would like to thank my supervisor Prof. Sandra Dulla, for all the effort and
patience she spent in her office trying to understand my confusing thoughts. Thank
you for being so clear and practical in explaining me how to accomplish the task.
I am very thankful to my co-advisor Prof. Antonio Cammi, his advice always guided
the path to get this work to an end, with the same enthusiasm he conveys during
his lectures that were really educational for me.
Thank you to Prof. Stefano Lorenzi, for having helped me in the first stage of the
work in understanding the "mysterious" OpenFOAM world.
A very huge "thank you" goes to Post-Doc Giovanni Stabile, developer of ITHACA.
I used to stress him so much on the programming and all theory behind POD and
reduced order modelling I can not understand why he still answers me so kindly
and interested in my work. Thank you sincerely, your help was fundamental for me.
Thank you to Sokratia, Kelbij and all the other guys who are working on ITHACA,
it was a pleasure for me to share ideas with you, our skype meeting were always
fruitful.
I would like to thank my mother who always pushed me to study, her pride for
what I do is always fuel for me. I would like to thank my father, He supported and
believed in me even when my trust in this journey was running out, I know I have
the best confident in you. I would like to thank my sister, thank you for being so
"dolono", you are the best part of me and I love you.
Thank you Grazia, I am so lucky to have met you in my life. This period was so
stressful but so full of happiness for having shared it with you. Some difficulties
appear on the horizon, but I know that you are stronger than me. Your smile is
always water to me. I love you.
Thank you Andrea, Mastroberti and Gerardo for simply being my best friends, I
know it is difficult but it is difficult for me as well. Thank you to all the friends I
met during the trip, my classmates, Gianluca and all the guys of San Liborio, you
were my family and I share all my best experiences in Turin and Milan with you.
In conclusion, thanks to Politecnico and Poly2Nuc project, that gave me the pos-
sibility to grow up, to learn, to experience and to meet so much incredible and
important people to me.

Daniele Maria Panico



(This page is intentionally left blank)



A zio Matteo,
grazie per tutta la serenità, la gioia e l’allegria

che hai sempre portato nella nostra famiglia.
Vorrei essere almeno un po’ come te da grande.



(This page is intentionally left blank)



Contents

Introduction 8

1 The GEN-IV Molten Salt Reactor 11
1.1 Description of Molten Salt Reactor Concept . . . . . . . . . . . . . . 12
1.2 Molten Salt Fast Reactor physics - Full Order Model . . . . . . . . . 14

2 Reduced Order Modelling and Sensitivity Analysis 19
2.1 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . 20
2.2 Galerkin Projection - Reduced Order Model . . . . . . . . . . . . . . 23
2.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Implementation of the problem in ITHACA-FV 30
3.1 Full Order Model implementation . . . . . . . . . . . . . . . . . . . . 32
3.2 Reduced Order Model implementation . . . . . . . . . . . . . . . . . 34
3.3 Sensitivity Analysis implementation . . . . . . . . . . . . . . . . . . . 36

4 Test cases and Results 39
4.1 Case A results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Case B results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Case C results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Sensitivity Analysis results . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Outside Training Range - Case A’ . . . . . . . . . . . . . . . . . . . . 62

5 Conclusions 66

6 Appendix: Fields for different test case 70
6.1 Case A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Case B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Case C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 91

7



Introduction

Solving partial differential equation numerically is nowadays a standard technique
to study real problem application, both in industrial or research activities, where
complex physics and/or geometry are involved.

A lot of validated numerical discretization methods (Finite Elements, Finite Vol-
umes, etc..) are available, along with dedicated softwares. Anyway, in most cases
the problems analysed are actually very expensive by a computational point of view,
that usually translates in very long time to get the solution. Moreover, in many ap-
plications, a large variety of system configurations have to be considered, this kind
of problems are usually called Many Query Analysis [1], meaning that the system is
asked to return some information for very large number of times (as in Sensitivity
Analysis, SA).

One perfect example of difficult resolution for strandard discretization methods
is represented by the multiphyscs of Molten Salt Fast Reactors [20]. Indeed, in
this kind of reactor mutual and non-linear interaction happens between thermal-
hydraulics and neutronics: since the fuel is liquid, the flow field influences the tem-
perature and neutronic distributions; the temperature, with feedback mechanisms,
influences the neutronic population and therefore the power generation that actu-
ally influences the temperature field as well; finally there is a feedback on velocity
field given by natural convenction that establishes because of density gradients. The
best way to deal with such problem is a multiphysics approach that, at some extent,
aims to solve all the system of equations at the same time. This approach deletes
approximation error that are commonly introduced when the different physics are
considered separately. At the same time, this is also the most expensive approach
as well.

One possible way to overcome these difficulties are Reduced Order Modelling
techniques [1] [2]. These techniques are based on the assumption that the evolution
in time of the dynamics of the system and its response into the parameters space
(physical or geometrical) is governed by a reduced number of dominant modes [5]. In
this work the Proper Orthogonal Decomposition with Galerkin projection is adopted
[3] [4], within Finite Volume framework. In this method the governing equations are
projected onto a low dimensional space called the reduced basis space that is opti-
mally constructed starting from high fidelity simulations [5], i.e. the solutions given
by the Full Order Model (FOM), also called true solutions or snapshots. In other
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Introduction

words, true solutions are adopted to train the Reduced Order Model (ROM) system
with a set of values inside the parameters space, this set can be called Training Set.
This stage is usually called Offline stage. Once the Offline stage is done, the ROM
can be used to explore other configurations inside the parameters space, this stage
is usually called Online stage [1].

The idea is to develop a complete C++ environment in order to fully carry on
reduced order modelling, and use it to perform SA on the characteristics constants
of Molten Salt fast Reactors. This is done adapting an existing C++ library, which
name is ITHACA-FV [16]. The library is based on Finite Volume approach, in par-
ticular the solver adopted is OpenFOAM [14], a well known open-source software,
both used in industrial and research application, which solutions will constitutes the
true solutions. The FOM is based on [9]. but in this case the problem is simpli-
fied since natural convection is neglected and only laminar flow is considered. The
former assumption is done because in most applications natural convection can be
considered negligible, while the latter introduces aspects that, at this early stage of
development, can be confusing in understanding the real possibilities of use reduced
order modelling to describe the complex physics of Molten Salt Fast Reactors. A
similar problem is developed in [8], but, at the best of my knowledge, this work
represents the first attempt to adopt parametric variation inside the parameters
domain for such complex system, varying more parameters at the same time. As
regards sensitivity analysis, a new section is added to the library so that all the task
is performed in unified fashion.

In conclusion, this work must be considered not as a complete reduced order
model analysis, it is actually the development of the tool that is needed to carry
that on. Some simple simulations are run to test the general behaviour of the
software developed and start studying what are the possibilities and limitations
of this approach. In other words, some very general outline are traced, but more
specific and parametric tests must be performed in order to fully assess the quality
of reduced order modelling for Molten Salt Fast Reactor, using the software here
developed.

9
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Chapter 1

The GEN-IV Molten Salt Reactor

In this chapter the details of the Molten Salt Reactor are given. The first section
contains a brief history and description of the concept adopted in this work. In
the second one, the governing equations are reported with a brief description of
them. The information about the concept, the composition of the fuel salt, and all
the other physical quantities are taken from [20], on which the OpenFOAM model
developed in [9] is based.

11



Chapter 1. The GEN-IV Molten Salt Reactor

1.1 Description of Molten Salt Reactor Concept

Molten Salt Reactor (MSR) is one of the six Generation-IV designs evaluated as the
more promising future reactors by Gen-IV International Forum (GIF) [13], its main
characteristic is that the fuel is dissolved in molten fluoride salt. Eight main goals
are established by the forum for these new concepts [13]:

• Sustainability-1:
Generation IV nuclear energy systems will provide sustainable energy gener-
ation that meets clean air objectives and provides long-term availability of
systems and effective fuel utilisation for worldwide energy production.

• Sustainability-2:
Generation IV nuclear energy systems will minimise and manage their nuclear
waste and notably reduce the long-term stewardship burden, thereby improv-
ing protection for the public health and the environment.

• Economics-1:
Generation IV nuclear energy systems will have a clear life-cycle cost advantage
over other energy sources.

• Economics-2:
Generation IV nuclear energy systems will have a level of financial risk com-
parable to other energy projects.

• Safety and Reliability-1:
Generation IV nuclear energy systems operations will excel in safety and reli-
ability.

• Safety and Reliability-2:
Generation IV nuclear energy systems will have a very low likelihood and
degree of reactor core damage.

• Safety and Reliability-3:
Generation IV nuclear energy systems will eliminate the need for offsite emer-
gency response.

• Proliferation Resistance and Physical Protection:
Generation IV nuclear energy systems will increase the assurance that they
are very unattractive and the least desirable route for diversion or theft of
weapons-usable materials, and provide increased physical protection against
acts of terrorism.

Starting from the Oak-Ridge National Laboratory Molten Salt Breeder Reactor
project, which was a thermal-neutron-spectrum graphite-moderated reactor, an in-
novative concept called Molten Salt Fast Reactor (MSFR) has been proposed. The
primary feature of the MSFR concept versus that of other older MSR designs is the
removal of the graphite moderator from the core (graphite-free core), resulting in a
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1.1. Description of Molten Salt Reactor Concept

breeder reactor with a fast neutron spectrum and operated in the Thorium fuel cycle.

In the MSFR concept, the nuclear fission reactions take place within the flowing
fuel salt in the cavity where a critical mass is attained. The salt’s thermal-hydraulic
behavior is closely coupled to its neutronic behavior, because the salt’s circulating
time (4s) and the lifetime of the precursors of delayed neutrons (around 10s) are of
the same order of.

The choice of the fuel salt composition relies on several parametric reactor
studies (chemical and neutronic considerations, burning capabilities, safety coef-
ficients, and deployment capabilities). The nominal design fuel salt composition is
LiF − ThF4 − 233UF4, with percentage molar fraction 77.5 − 20 − 2.5 mol%. This
salt composition leads to a fast neutron spectrum in the core. With a fusion tem-
perature of 838 K.

Figure 1.1: Molten Salt Fast Reactor concept, from [20].

The core active region is defined as the salt volume where most of nuclear fissions
take place. It includes the flowing salt in the central cavity, the injection zone (in
the bottom part of the core) and the extraction zone (top of the core). The reference
concept is designed for a nominal power of 3 GWth, with a salt temperature rise
preliminary fixed at ∆T = 100 K. The operating temperatures chosen in the
initial simulations were 923 K (inlet temperature) and 1023 K (outlet temperature).
The fertile blanket serves as radial reflector and as a neutron shield to protect the
external components of the fuel loops (pipes, heat exchangers). In addition to this
protection function, the fertile blanket is used to improve the breeding capabilities
of the reactor.
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Chapter 1. The GEN-IV Molten Salt Reactor

1.2 Molten Salt Fast Reactor physics - Full Order
Model

Because of its fuel peculiarity, thermal-hydraulics and neutronics are strongly cou-
pled in the MSFR, therefore a multiphysics approach seems to be the most appro-
priate to obtain the fields distribution inside the reactor. Of course this is the most
demanding one as well. From these consideration actually comes the idea to develop
a reduced order model indeed.

In this section the governing equations of the MSFR are described. The model is
almost the same developed in [9] for which an OpenFOAM solver has been already
developed and tested. In this work the model is simplified since buoyancy forces are
neglected and only laminar flow is considered.
The next system thus define the Full Order Model (FOM) and its solution will be
the true solution:

∂u

∂t
= −(u · ∇)u+ ν∇2u−∇p

∇2p = −∇ · (u · ∇)u

1

v

∂φ

∂t
= ∇ · (D∇φ) +

[ 1

keff
(1− βtot)(νΣ)f − Σa

]
φ+

8∑
i=1

λiCi

∂Ci
∂t

= −(u · ∇)Ci +
ν

Sc
∇2Ci +

βi
keff

(νΣ)fφ− λiCi ∀i = 1, . . . , 8

∂T

∂t
= −(u · ∇)T +

ν

Pr
∇2T + (1− βh,tot)

ΣP

keffρcp
φ+

3∑
j=1

λh,j
ρcp

Hj

∂Hj

∂t
= −(u · ∇)Hj +

ν

Sc
∇2Hj +

βh,jΣP

keff
φ− λh,jHj ∀j = 1, . . . , 3

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

(1.1f)

It is a non-linear system of 15 partial differential equations. The first two equations
are the momentum equation and the so called Poisson Pressure Equation (PPE).
It is obtained taking the divergence of the momentum equation and exploiting the
conitnuity equation, that for this case of incompressible flow is simply: ∇ · u = 0.
In this way velocity and pressure are explicitly coupled, OpenFOAM deals with the
pressure field in the same way as well.

The equation for the neutron flux φ just follows: in this case monokinetic dif-
fusion equation, with 8 groups of precursors Ci, is used to describe the evolution
in time of neutrons’ population. The peculiarity of the liquid fuel is modelled in
the precursors equation: they change in position not only because of diffusion, but
also because they actually move, as described by the second and the first term in
the equation respectively. Notice that precursors are ordered with increasing decay
constant (or decreasing half-time).

The last four equations of system (1.2) deal with the conservation of energy.
Temperature locally changes because of (as listed in the equation): streaming of the
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1.2. Molten Salt Fast Reactor physics - Full Order Model

fuel, diffusion caused by temperature gradients, energy produced by fission (ΣP is
the energy released per fission event), energy released later by radioactive decay of
nuclei in the fuel. As regards the decay heat, it is modelled with three groups ap-
proximation, ordered with increasing time scale (1/λh,j). It is evident the similarity
with the precursors and flux equations: the fraction (1− βh,tot) of energy produced
by fission, “instantaneously” raises the temperature locally, the remaining part is
“stored”, according to βh,j, by the decay heat groups that later release it causing a
delayed raise in temperature.
As developed in [9], some physical constants are temperature dependent, and there-
fore they are changing fields in time as well:

ρ(x, t) = ρ0

[
1− βTE(T − T0)

]
(νΣ)f (x, t) =

[
(νΣ)f,0 + α(νΣ)f log

(
T

T0,XS

)]
ρ

ρ0

D(x, t) =

[
D0 + αD log

(
T

T0,XS

)]
ρ0

ρ

Σa(x, t) =

[
Σa,0 + αΣa log

(
T

T0,XS

)]
ρ

ρ0

ΣP (x, t) =

[
ΣP,0 + αΣP log

(
T

T0,XS

)]
ρ

ρ0

(1.2a)

(1.2b)

(1.2c)

(1.2d)

(1.2e)

This dependence is introduced in order to account for thermal feedback inside the
reactor.

At this point, the complex interactions among the fields can be summarized as
follows: once the flow field is determined, it influences the precursors distribution
and thus the flux one, which is, at the same time, a source for precursors; temper-
ature and decay heat are determined by both flux and velocity fields, temperature
field finally gives a feedback to neutronics through change in density and cross sec-
tions, thus establishing a mutual interaction. In the case in which also buoyancy
forces are considered, the change in temperature changes the velocity field as well,
then causing a complete interaction among the three physics of the reactor, i.e.:
fluid-dynamics, neutronics and energy.

The value of the multiplication factor keff is updated as the code runs in the
following way:

keff (tn) =

∫
Ω

φ(x, tn)d3x∫
Ω

φ(x, tn−1)d3x

(1.3)

Where tn is the n-th time instant of the simulation.
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Chapter 1. The GEN-IV Molten Salt Reactor

Finally, the power density inside the reactor is defined as:

W = (1− βh,tot)
ΣP

keff
φ+

3∑
j=1

λh,jHj (1.4)

and thus the total power P is simply:

P(t) =

∫
Ω

W(x, t)d3x (1.5)

In the remaining part of this section all constants values of systems (1.1) and (1.2)
used in this work are listed, they are taken from [20]:

Constant Symbol Value Units

Kinematic viscosity ν 2.46 · 10−6 [m2/s]
Thermal expansion coefficient βTE 2.14 · 10−4 [1/K]
Density ρ0 4125 [kg/m3]
Specific heat cp 1594 [kg/m2s]
Prandtl number Pr 16 [−]
Schmidt number Sc 20 [−]
Reference Temperature T0 973 [K]

Table 1.1: Transport Properties.

Constant Symbol Value Units

Inverse velocity 1/v 6.55767 · 10−7 [s/m]
Diffusion coefficient D0 1.17204 · 10−2 [m]
Diffusion expansion coefficient αD −5.9788 · 10−5 [m]
Absorption cross section Σa 6.89269 · 10−1 [1/m]
Absorption XS expansion coefficient αΣa 7.8420·−3 [1/m]
Fission cross section (νΣ)f,0 7.53492 · 10−1 [1/m]
Fission XS expansion coefficient α(νΣ)f −1.7001 · 10−1 [1/m]
Power cross section ΣP,0 9.5731 · 10−12 [kg m/s2]
Power XS expansion coefficient αP −2.0595 · 10−13 [kg m/s2]
XS Reference Temperature T0,XS 900 [K]

Table 1.2: Nuclear Properties.
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1.2. Molten Salt Fast Reactor physics - Full Order Model

Group Decay constant λi [1/s] βi [−]

1 1.24667 · 10−2 21.8 · 10−5

2 2.82917 · 10−2 47.6 · 10−5

3 4.25244 · 10−2 39.3 · 10−5

4 1.33042 · 10−1 63.5 · 10−5

5 2.92467 · 10−1 103.5 · 10−5

6 6.66488 · 10−1 18.1 · 10−5

7 1.63478 22.8 · 10−5

8 3.55460 5.2 · 10−5

Table 1.3: Precursors Properties.

Group Decay constant λh,i [1/s] βh,i [−]

1 0.1973 1.17 · 10−2

2 1.68 · 10−2 1.29 · 10−2

3 3.58 · 10−4 1.86 · 10−2

Table 1.4: Decay Heat Groups Properties.
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Chapter 2

Reduced Order Modelling and
Sensitivity Analysis

This chapter deals with the procedure adopted to obtain the Reduced Order Model
(ROM) and how the sensitivity analysis is carried on. In the first subsection the
concepts of offline stage, Proper Orthogonal Decomposition (POD) modes and lift-
function are explained. Instead, in the second one the way to actually obtain the
ROM is presented. Finally, Sensitivity Analysis (SA) is dealt in the last one.
For sake of synthesis, the description of POD-Galerkin projection with Finite Volume
(FV) approach, together with the FV integrals approximation, are omitted, they are
widely explained in [10]. POD modes calculation, projection procedure, results and
notation is instead based on [5], [6] and [12]. The interpolation technique with Radial
Basis Functions is taken from [7]. Finally, SA is based on the book by Saltelli [24].
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Chapter 2. Reduced Order Modelling and Sensitivity Analysis

2.1 Proper Orthogonal Decomposition

All fields in system (1.1) are approximated using the Proper Orthogonal Decompo-
sition that consists into the decomposition of the fields into temporal coefficients
and orthonormal spatial bases:

u(x, t) ≈ ur(x, t) =
Nu∑
i=1

ai(t)χu,i(x)

p(x, t) ≈ pr(x, t) =

Np∑
i=1

bi(t)χp,i(x)

φ(x, t) ≈ φr(x, t) =

Nφ∑
i=1

ci(t)χφ,i(x)

Cj(x, t) ≈ Cj,r(x, t) =

NCj∑
i=1

dj,i(t)χCj ,i(x) ∀j = 1 . . . 8

T (x, t) ≈ Tr(x, t) =

NT∑
i=1

ei(t)χT,i(x)

Hj(x, t) ≈ Hj,r(x, t) =

NHj∑
i=1

fj,i(t)χHj ,i(x) ∀j = 1 . . . 3

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

(2.1f)

The same is done with the coefficients of the equations that depend on the temper-
ature (system (1.2)), for a handy implementation some are defined on purpose as
follows: 

V (x, t) ≡ 1

ρ
≈ Vr(x, t) =

Nconst∑
i=1

αi(t)χV,i(x)

Γ(x, t) ≡ (νΣ)f
keff

≈ Γr(x, t) =
Nconst∑
i=1

γi(t)χΓ,i(x

E(x, t) ≡ ΣP

keff
≈ Er(x, t) =

Nconst∑
i=1

εi(t)χE,i(x)

Σa(x, t) ≈ Σa,r(x, t) =
Nconst∑
i=1

ζi(t)χΣa,i(x)

D(x, t) ≈ Dr(x, t) =
Nconst∑
i=1

ηi(t)χD,i(x)

Θ(x, t) ≡ ΣP

ρkeff
≈ Θr(x, t) =

Nconst∑
i=1

θi(t)χΘ,i(x)

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)
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2.1. Proper Orthogonal Decomposition

Even if, as reported in system (1.2), their dependence on the temperature is
different, their all expanded up to Nconst in order to reduce the degree of freedom of
the problem (that are already large, as will be discussed in the last chapter) and to
facilitate their decomposition and reconstruction implementation (see next chapter).
The power density is consequently reconstructed as:

Wr(x, t) = (1− βh,tot)Erφr +
3∑
j=1

λh,jHj,r (2.3)

Before explaining how the spatial bases are computed, some concepts must be
clarified: as introduced in Chapter , Reduced Order Modelling consists of offline and
online stage.
In the offline stage the FOM is solved a certain Noff number of times varying the
values of some n characteristic parameters of the system. These parameters can be
collected in a vector µ so that

µ = {µ1, . . . , µn} (2.4)

Therefore, it possible to define the parameters matrix, or Training Set, M̂ as:

M̂ =


µ1
...
µi
...

µNoff

 =


µ1,1 . . . µ1,n
...

...
µi,1 . . . µi,n
...

...
µNoff ,1 . . . µNoff ,n

 (2.5)

Each row of M̂ is passed to the FOM and the solution is saved at some specified
time instants of the simulation tk, ∀k = 1, . . . , K. These saved solutions are called
snapshots, it follows that the total number of snapshots is NS = Noff ×K.
For each field F (x, t) ≈

∑NF
i=1 ωi(t)χF,i(x) of systems (2.1) and (2.2) (for the velocity

field the spatial modes are vector fields as well, as reported in system (2.1)) the
snapshots are collected in the so called snapshots matrix :

F̂ = (F1, . . . , FNS) (2.6)

F̂ ∈ RNh×NS where Nh is the number of points in the domain where the solution is
computed.

The POD bases are the orthonormal spatial bases that minimize the average er-
ror between the snapshots and their orthogonal projection onto the bases, in other
words the POD space VPOD = span{χ1, χ2, . . . , χNS} is constructed solving the
minimization problem:

VPOD = arg min
1

NS

NS∑
n=1

∥∥∥∥∥Fn −
Nr∑
l=0

(Fl, χi)L2(Ω)χi

∥∥∥∥∥
2

L2(Ω)

∀Nr = 1, . . . , NS (2.7)
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Chapter 2. Reduced Order Modelling and Sensitivity Analysis

Where ‖ ‖L2(Ω) and ( , )L2(Ω) are the standard L2-norm and L2-inner product over
the physical domain Ω respectively. To solve this problem, two different approaches
can be used:

• EigenValue Decomposition (EVD)

• Singular Value Decomposition (SVD)

Only the former is explained here, the latter can be found in [5], anyway both of
them are implemented in ITHACA-FV. The snapshots matrix is used to find the
spatial bases in the following way:

• The correlation matrix ĈF ∈ RNS×NS is computed, each of its ij-th element is
given by:

CF
ij = (Fi, Fj)L2(Ω) (2.8)

• An eigenvalue problem is solved:

ĈF Q̂F = Q̂F λ̂F (2.9)

Q̂F ∈ RNS×NS is a square matrix whose columns are the eigenvectors and
λ̂F ∈ RNS×NS is a diagonal matrix containing the eigenvalues λFii .

• The POD modes can be finally obtained as:

χi =
1√
λFii
F̂QF

i (2.10)

where QF
i is the i-th column of Q̂F .

• a number ÑF < NS of POD modes is saved, but actually an even lower number
NF < ÑF is used at projection stage (see section 2.2). Therefore the number
of modes in the expansions in systems (2.1) and (2.2) is the number of modes
used in the projection stage and thus the one adopted to reconstruct the
reduced solution. This is possible because POD modes are ordered so that the
lower is their index, the higher is the content of energy (or information) about
the system [22]. This information is given by the value of the correspondent
eigenvalue or by the comulative of the eigenvalues up to that index, given that:

NS∑
i=1

λFii = 1 (2.11)
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2.2. Galerkin Projection - Reduced Order Model

2.2 Galerkin Projection - Reduced Order Model

First of all the boundary condition for the pressure field is introduced since it is
going to be used in this section:

∂p

∂n
= −νn · (∇×∇× u) ∀x ∈ ∂Ω (2.12)

That is a Neumann boundary condition (as introduced in [6]) for entire boundary
∂Ω of the domain Ω. Each equation of system (1.1) is multiplied times a generic
i-th correspondent mode of the field and the L2-inner product is performed, this
procedure is known as Galerkin Projection:

0 = (χu,i,−u̇− (u · ∇)u+ ν∇2u−∇p)L2(Ω)

0 = (∇χp,i,∇p)L2(Ω) + (χp,i,∇ · (u⊗ u))L2(Ω)+

− ν(n×∇χp,i,∇× u)∂Ω

0 = (χφ,i,−
1

v
φ̇+∇ · (D∇φ) + (1− βtot)Γφ− Σaφ+

8∑
j=1

λjCj)L2(Ω)

0 = (χCj ,i,−Ċj − (u · ∇)Ci +
ν

Sc
∇2Cj + βjΓφ− λjCj)L2(Ω)

0 = (χT,i,−Ṫ − (u · ∇)T +
ν

Pr
∇2T +

1− βh,tot
cp

Θφ+
3∑
j=1

V
λh,j
cp

Hj)L2(Ω

0 = (χHj ,i,−Ḣj − (u · ∇)Hj +
ν

Sc
∇2Hj + βh,jEφ− λh,jHj)L2(Ω)

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

(2.13f)

Where the equation (2.13b) has been obtained with integration by part of the lapla-
cian term and exploiting the pressure boundary equation.
The result of the projection is finally:

0 = −M̂ ȧ− aᵀĈa+ νB̂a− K̂b
0 = D̂b+ aᵀĜa− νN̂a

0 = −1

v
M̂φċ+ ηᵀL̂φc+ (1− βtot)γᵀP̂φc− ζᵀÂφc+

8∑
i=1

λiŜφ,Cidi

0 = −M̂Ciḋi − aᵀĈCidi +
ν

Sc
L̂Cidi + βiγ

ᵀŜCi,φc− λiM̂Cidi

0 = −M̂T ė− aᵀĈTe+
ν

Pr
L̂Te+

1− βh,tot
cp

θᵀŜT,φe+
3∑
j=1

λh,j
cp
αᵀŜT,HJe

0 = −M̂Hj ḟj − aᵀĈHjfj +
ν

Sc
L̂Hjfj + βh,jε

ᵀŜHj ,φfj − λHjM̂Hjfj

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)

(2.14f)

Where the ” ˙ ” indicates the time derivative of the term (partial or total, respectively
for the fields or their coefficients), for instance:

ċ =

{
dc1

dt
,
dc2

dt
, . . . ,

dcNφ
dt

}
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Chapter 2. Reduced Order Modelling and Sensitivity Analysis

It must be highlighted that system (2.14) actually constitutes the Reduced Order
Model (ROM) and its solution allow to reconstruct the fields of the MSFR. The
various term inside system (2.14) read as:

Mij = (χu,i,χu,j)L2(Ω)

Cijk = (χu,i,∇ · (χu,j ⊗ χu,k))L2(Ω)

Bij = (χu,i,∇2χu,j)L2(Ω)

Kij = (χu,i,∇χp,j)L2(Ω)

Dij = (∇χp,i,∇χp,j)L2(Ω)

Gijk = (∇χp,i,∇ · (χu,j ⊗ χu,k))L2(Ω)

Nij = (n×∇χp,i,∇× χu,j)∂Ω

(2.15)
(2.16)
(2.17)
(2.18)
(2.19)
(2.20)
(2.21)

For every scalar X in the system the convective term reads as:

CX,ijk = (χX,i,∇ · (χu,jχX,k))L2(Ω) (2.22)

The various M̂X and L̂X terms are the mass and laplacian terms respectively and
they read as:

MX,ij = (χX,i, χX,j)L2(Ω) (2.23)

LX,ij = (χX,i,∇2χX,j)L2(Ω) (2.24)

The only different term is the laplacian of the flux L̂φ since D is a field as well, also
the definition of P̂φ and Âφ is given:

Lφ,ijk = (χφ,i,∇ · (χD,j∇χφ,k))L2(Ω)

Pφ,ijk = (χφ,i, χΓ,jχφ,k)L2(Ω)

Aφ,ijk = (χφ,i, χΣa,jχφ,k)L2(Ω)

(2.25)
(2.26)
(2.27)

The various ŜX,Y are sources of X field by Y one, in case the source is multiplied
times one of the field Z in system (1.2), it becomes a tensor:

Sφ,Ci,ij = (χφ,i, χj)L2(Ω)

SX,Y,ijk = (χX,i, χZ,jχY,k)L2(Ω)

(2.28)
(2.29)

System (2.14) has Ntot = (Nu+Np+Nφ+
∑8

i=1NCi +NT +
∑3

j=1NHj) equations for
Ntot + 6Nconst unknowns, in practice, the equations to find the temporal coefficients
of the fields of system (2.2) miss. In order to find them an interpolation procedure
using Radial Basis Function g is adopted [23] :
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2.2. Galerkin Projection - Reduced Order Model

• A new parameters matrix is defined as:

M̂∗ =



t1 µ1
...

tK µ1
...

t1 ti
...

tK µi
...

t1 µNoff
...

tK µNoff



=

 µ∗1
...
µ∗NS

 (2.30)

That is, the same µi is concatenated with all the saved time step tk, so that
M̂∗ ∈ RNS×n+1

• Let’s consider any of the field of system (2.2), Z(x, t) ≈
∑Nconst

i=1 zi(t)χZ,i(x),
the task is to construct:

zi(µ
∗) =

NS∑
j=1

wi,jgi,j(
∥∥µ∗ − µ∗j∥∥2

) ∀j = 1, . . . , Nconst (2.31)

• the quantity zi,k is found as:

zi,k = (Zk, χZ,i)L2(Ω) ∀k = 1, . . . , NS (2.32)

• it is used to solve the following linear system to find the weightswi = {wi,1, . . . , wi,NS}:

Ns∑
j=1

wi,jgi,j(
∥∥µ∗k − µ∗j∥∥2

) = zi,k ∀k = 1, . . . , NS (2.33)

Therefore Nconst system must be solved in order to find all the z(µ∗) =
{z1(µ∗), . . . , zNconst(µ

∗)}, all the weights are then stored.

• In the online stage a new parameter, still containing the time, µ∗new is used to
evaluate the new value of the temporal coefficient as:

zi(µ
∗
new) =

NS∑
j=1

wi,jgi,j(
∥∥µ∗new − µ∗j∥∥2

) ∀i = 1, . . . , Nconst (2.34)

• In conclusion this procedure is thus adopted to evaluate η,γ, ζ,θ,α, ε needed
to solve the system, then the fields D,Γ,Σa,Θ, V, E are reconstructed being
their modes computed like for all the other fields as explained in section 2.1
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Chapter 2. Reduced Order Modelling and Sensitivity Analysis

The remaining part of this section is used to explain how to enforce non-homogeneous
Dirichlet boundary conditions at ROM level, this is done only for u and T . The
task is accomplished computing a lift function for each Dirichlet boundary, then an
homogenized field is computed as:

u′ = u−
Nu,Dir∑
i=1

ui,Dirψu,i

T ′ = T −
NT,Dir∑
i=1

Ti,DirψT,i

(2.35a)

(2.35b)

Where ui,Dir and Ti,Dir are the values of the velocity and the temperature at the
considered i-th Dirichlet boundary, while ψu,i and ψT,i are their lift functions re-
spectively and both of them assume unitary value at the i-th boundary, zero value
for the other Dirichlet ones and inside the domain, the same BC condition of u and
T for the remaining ones. We ask for this functions to be similar to the respective
fields, therefore ψu,i must be divergence free, and ψT,i to be governed by a source
type energy equation. Thus, they are found solving the following problems:

∇ ·ψu,i = 0 with ∇2p = 0

(u · ∇)ψT,i =
ν

Pr
∇2ψT,i +

ΣP,0(1− βh,tot)
ρ0cp

S1

(2.36a)

(2.36b)

Where S1 is a unitary source, with the dimension of the neutron flux. Since bound-
ary conditions are constant in time at FOM level, in fact ui,Dir and Ti,Dir do not
depend on time, the equations are steady. This technique not only stabilizes the
solution at ROM level, but can be used to perform parametric variation of boundary
conditions as well (not tested in this work).
The POD modes for these two fields are then found using the homogeneous snap-
shots matrices Û ′ = (u′1, . . . ,u

′
NS

) and T̂ ′ = (T ′1, . . . , T
′
NS

). The total number of
modes to reconstruct the fields is modified in:

N ′u = Nu +Nu,Dir

N ′T = NT +NT,Dir

(2.37a)
(2.37b)

And the lift functions ψu,i and ψT,i will constitute the first Nu,Dir and NT,Dir modes
respectively. Consequently, in order to solve system (2.14) additional values of a(t)
and e(t) are required, thus they are set to:

ai(t) = ui,Dir ∀i = 1, . . . , Nu,Dir

ei(t) = Ti,Dir ∀i = 1, . . . , NT,Dir

(2.38a)
(2.38b)
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2.3. Sensitivity Analysis

2.3 Sensitivity Analysis

In a very synthetic and non exhaustive sentence, sensitivity analysis aims at ranking
the parameters of a certain model according to their influence on the output of such
model.

In this work, this is accomplished in the determination of the so called Standard-
ized Regression Coefficients (SRCs)[24]. The main idea is to linear regress a generic
output y of the model:

y = m(µ) = m(µ1, . . . , µn) (2.39)

To do that, a matrix Ŝ, called Sampling Set, is built:

Ŝ=


µ1,1 . . . µ1,n
... . . .

...
µi,1 . . . µi,n
... . . .

...
µm,1 . . . µm,n

 (2.40)

Each j-th column of Ŝ is Monte Carlo sampled from the marginal distribution of
each parameter µj ∀j = 1, . . . , n. The model output is computed for each row of
Ŝ, thus obtaining a vector y = {y1, . . . , ym}. Before to proceed with the linear
regression, Ŝ and y must be standardized in the following way:

• Compute the mean and the standard deviation of y and all the parameter µj:

ȳ =
1

m

m∑
i=1

yi sy =

√√√√ 1

m− 1

m∑
i=1

(yi − ȳ)2

µ̄j =
1

m

m∑
i=1

µi,j sµj =

√√√√ 1

m− 1

m∑
i=1

(µi,j − µ̄j)2

(2.41a)

(2.41b)

• Compute the standardized Ŝs and ys, whose elements are defined as:

ys,i =
yi − ȳ
sy

Ss,ij =
µi,j − µ̄j
sµj

= µ̃i,j

(2.42a)

(2.42b)

• Seek a regression model for:

ỹi − ȳ
sy

=
n∑
j=1

αjµ̃i,j (2.43)
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Chapter 2. Reduced Order Modelling and Sensitivity Analysis

• αj are the coefficients that minimize the errors εi = ỹi − yi, and are found
solving ordinary least square minimization, i.e.:

(Ŝᵀ
s Ŝs)α = Ŝᵀ

sys (2.44)

Therefore, the output of the linear approximation are computed as:

ỹi = ȳ + sy

n∑
j=1

αjµ̃i,j (2.45)

While αjs are the SRCs. One advantage of this method is that in principle it ex-
plores the entire interval of definition of each factor. Another is that each "effect" for
a factor is in fact an average over the possible values of the other factors. Moreover,
SRCs also give the sign of the effect of an input factor on the output, providing a
simplified model of the input–output mapping.

Of course this is true if the linear approximation is capable to correctly describe
the model, an important factor to quantify that is the so called Quality of the linear
regression, defined as:

R2
y =

∑m
i=1(ỹi − ŷ)2∑m
i=1(yi − ŷ)2

R2
y ∈ [0, 1] (2.46)

As stated in [24]: "if the fit of the regression is good, e.g. R2
y is larger than, say,0.7,

this means that the regression model is able to represent a large part of the variation
of y. This also means that the model is relatively linear. In such cases, the regression
model is effective and we can base the sensitivity analysis on it".
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Chapter 3

Implementation of the problem in
ITHACA-FV

All the procedures explained until this point, are realized by the extension of an
already existing library of OpenFOAM, ITHACA-FV [16] developed at SISSA uni-
versity in Trieste. It is a C++ library which implements all the classes needed to
compute the POD modes (both EVD and SVD), OpenFOAM objects manipulation,
including I/O methods, different FOM problems and correspondent ROMs. More-
over, it also uses third party libraries, Eigen [17], Spectra [18] and Splinter [19],
already provided in the source file and extensively used throughout the library.

The basic reason why the library was developed is to provide the user the pos-
sibility to perform reduced order modelling simply writing a C++ program, thus
overcoming all the difficulties such a task would meet using "raw" OpenFOAM util-
ities, one example for all: the parametric variation of the characteristic constants
of the problem. Focusing on FOM problems, a very general base class reduction-
Problem, containing all the basic methods and members to set the offline stage, is
defined; then each specific problem is derived from that, with public inheritance,
adding specific members and, above all, the methods to solve the offline stage and
perform the Galerkin projection. In a specular way ROM problems are dealt, whose
base class is reducedProblem. Moreover, this two parts are strictly connected since
the reduced object is initialized with the full order one.

Following the implementation of the Navier-Stokes problem of the library, the
classes shown in figure 3.1 are implemented.

The msrProblem class corresponds to the steady state problem of the MSFR.
It must be highlighted that it is only used as a base class for the real problem
considered in this work, in other words it contains the constants, fields, projection
matrices and projection methods to fully manage the physics and Galerkin projec-
tions of MSFR, but the offline solver is not tested. Therefore, the usmsrProblem,
the unsteady problem class, inherits all those quantities, adds all the time settings,
modifies the governing equations and, above all, fully implements the offline solver
(section 3.1). This is done to guarantee the symmetry in the implementation of the
problems in ITHACA-FV, looking ahead to a future development of the steady state
problem. Analogous speech for reducedMSR and reudecusMSR respectively (section
3.2).
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Figure 3.1: FOM and ROM classes implemented in ITHACA-FV.

Sensitivity analysis is still added to the library in order to carry on all the pro-
cedure in its environment. This is completely new in ITHACA-FV and it is added
in the section that contains the basic classes to compute the POD modes, fields ma-
nipulation, etc...which name is ITHACA_CORE. See section 3.3 for more details.

The full code can be found on my personal fork of the library on github at
https://github.com/dakho/ITHACA-FV
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Chapter 3. Implementation of the problem in ITHACA-FV

3.1 Full Order Model implementation

As written in the previous section, the problem is implemented in a C++ library,
therefore an object-oriented implementation seems the more natural and effective.
The object usmsrProblem contains all the methods to solve a parametric problem
varying some specified constants of the MSFR, which are read and initialized from
dictionaries [15], as a typical OpenFOAM solver. The same is true for the conver-
gence schemes, the algorithms and the turbulence model (that in this case must
be kept to laminar). Also the dictionary that controls the advance of the solution,
controlDict, is necessary to start and run the simulation as usual, even if the time
settings are actually overriden by FOM objects members. Another dictionary is
defined, named ITHACAdict, which contains the settings for the POD modes cal-
culation and projection.

tn(u, p, φ, Ci, T,Hj)@tn−1

Solve u, T

Solve p Conv.?

No

Update V&XSs

Yes

Solve φ,Ci, T,Hj Conv.?

No

Update keff

Yes

tn+1

Figure 3.2: FOM solution scheme.

Focusing on the offline solver (truthSolve method), it is the same developed in
[9], that is the combination of two PIMPLE loops [15], called pimple and npimple.
The former is used to obtain the velocity and the pressure field, together with a
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3.1. Full Order Model implementation

first guess of the temperature one; this is used to update the constants of system
(1.2), after that convergence has been reached. The latter loop then returns all the
remaining fields along with the temperature. After having updated the keff value,
the solver moves to the next time step. This can be easily visualized in figure 3.1.
The solution of p field is represented in a different block to be consistent with the
way it is solved in PIMPLE algorithm, that briefly consists in: solve the discretized
momentum equation to compute the intermediate velocity field; compute the mass
fluxes at the cells faces; solve the pressure equation and apply under-relaxation;
correct the mass fluxes at the cell faces; correct the velocity on the basis of the new
pressure field; repeat until convergence.

The fields are then stored in a List of fields, one per each of them, and exported
for every tk and every i-th row of M̂ of eq. (2.2). Therefore, such a List contains
NS solutions and constitutes the snapshots matrix of that field.

Figure 3.3 shows instead the steps that are needed before to proceed on to the
online stage. Computation of lift-functions and the consequent homogenization of
u and T can be avoided if there are no Dirichlet boundaries in the case run. Lift-
function for u is found using PISO algorithm [15], while SIMPLE [15] one for T .
POD modes can be computed with both EVD and SVD techniques, using Eigen or
Spectra solvers. This steps are still solved by object usmsrProblem methods and
their solution stored in its members.

Offline stage

Compute lift-functions for u and T

Homogenize u and T

Compute all the POD modes

Compute projection matrices Compute RBFs’ weights

Online stage

Figure 3.3: Intermediate steps between Offline and Online stage.
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3.2 Reduced Order Model implementation

The object reducedusMSR contains the methods to solve system (2.14) and recon-
struct all the fields. Having a look at system (2.14), the physics of the problem can
be split into three parts: fluid-dynamics (F-D) (eq. (2.14a) and (2.14b)), neutronics
(N) (eq. (2.14c) and (2.14d)) and energy (E) (eq. (2.14e) and (2.14f)) sub-systems.
In fact, considering the order in which the equations are written, there is a vertical
coupling among the three sub-systems, i.e. the solution of F-D permits to solve N,
once this is done E can be finally solved. In particular, the velocity coefficients and
the velocity plus flux ones, become known and can be passed to N and E respec-
tively. This is schematized in figure 3.4. Differently from FOM model, no iteration
between neutronics and energy is required to converge, since the information about
their interaction is stored in the projection matrices relative to the fields in system
(1.2).

tn(a, b, c,di, e,fj)@tn−1

Evaluate all z(µ∗j,on) ≡ z(tn,µi,on)Solve F-D sub-system

a(tn), b(tn)

get

Solve N sub-system
a(tn)

c(tn),di(tn)

get

Solve E sub-system

a(tn)

c(tn)

e(tn),fj(tn)

get

tn+1

Figure 3.4: ROM solution scheme.

In the online stage solver a new set of parameters is passed to the reduced object,
this, concatenated with the current time value, constitutes µ∗j,on. This is used to
evaluate the time coefficients of system (2.2) using RBF interpolation methodology
explained in section 2.1.

At each time step the solution is found using the Newton-Raphson method, while
the time discretization scheme adopted is the backward-Euler. Considering a generic
field F (x, t) ≈

∑NF
i=1 ωi(t)χF,i(x) of system (2.1), the initial condition for its time
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3.2. Reduced Order Model implementation

coefficients ωi, are found solving the linear system:

M̂Fω = b0 (3.1)

Where ω = {ω1, . . . , ωNF }, M̂F is the mass matrix of F computed as (2.23), b0 is a
known vector and each i-th element reads as:

b0,i = (Fj(x, t0), χF,i)L2(Ω) (3.2)

Where Fj(x, t0) is the initial condition of the field F correspondent to a chosen j-th
row of the training set M̂ (eq. (2.5))
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3.3 Sensitivity Analysis implementation

SA implementation in ITHACA-FV is accomplished defining three new classes:

• ITHACAsampling : it implements the Monte Carlo Inverse Transform Sam-
pling method (as static method) to sample from the parameters distributions.
Only four distributions are enabled: Normal, Uniform, Poisson and Exponen-
tial.

• FofM (and its derived classes): abstract class that permits to compute a de-
sired figure of merit of both FOM or ROM fields, not only for MSFR. In this
work, the average temperature and the total power are implemented (as de-
rived classes of FofM ). The definition of the field, on which the figure of merit
is based, is the same of OpenFOAM.

• LRSensitivity : it defines an object to calculate the linear regression model
and the SRCs. It has a FofM member and uses ITHACAsampling methods
to construct the sampling set.

Figure 3.5: Procedure to carry on SA with ITHACA-FV.

Let us suppose that at some point in the code we want to perform SA, first of all
LRSensitivity object must be initialized: it requires only the number of parameters
considered in the analysis and the number of points to sample. Using ITHACAsam-
pling methods it creates the sampling set (eq. (2.40)) rejecting the values that are
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3.3. Sensitivity Analysis implementation

outside the training range (it must be explicitly defined by the user). This values
can be passed both to FOM or ROM that return the fields of system (1.1) or (2.14)
respectively. Then they are used by a FofM object that computes the figure of
merit. Its values are assigned to LRSensitivity that finally computes the indexes.
This procedure can be visualized in figure 3.5. In this section of the library an
extensinve usage of Eigen and OpenFOAM objects is done, while distributions and
the sampling technique come from C++ standard library.
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Chapter 4

Test cases and Results

In this section the results of the simulations performed are shown. In order to vali-
date the code, all the simulations are run for a lid-driven cavity [21], widely used as
a benchmark in numerical simulations. Three different simulations are performed,
they differ because of the temperature and decay heat groups boundary conditions.
This is done to check the influence of temperature lift-function(s) on the reduced
solution. At the end of the chapter, one simulation outside training boundaries is
presented as well.

In this case, the cavity consists of 0.1x0.1 m in x-z plane and the mesh is built
with 50 square cells in both directions. With the same orientation as shown in
4.1 the boundaries are named: Moving Wall (M.W.), i.e. the top wall, Right Wall
(R.W.), Bottom Wall (B.W.), Left Wall (L.W.).

Figure 4.1: Mesh adopted for the simulations.

The Reynolds number, considering the reference viscosity of table 1.1, is set to 100,
which translates in a velocity of 2.46 · 10−3 [m/s] in x-direction. As regards the of-
fline stage, the final time is 150 s with time step of 0.1 s. This leads to a maximum
expected Courant number of: 0.123. These information are summarized in table
4.1.
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Quantity Symbol Value Units

Reynolds number Re 100 [−]
Characteristic length L 0.1 [m]
Moving wall velocity uMW 2.46 · 10−3 [m/s]
Time step ∆t 0.1 [s]
Mesh size ∆x ≡ ∆z 2 · 10−3 [m]
Courant number Co 0.123 [−]
Final time tf 150 [s]

Table 4.1: Offline stage simulations numerical settings.

As regards the parametric variation during Offline, the idea is to explore the influ-
ence of characteristics parameter of the three-physics of the problem, therefore one
per each of them is chosen:

µ = {ν, βtot, λh,3} (4.1)

ν for the fluid-dynamics, βtot for the neutronics and λh,3 for the energy equations
respectively. It is further assumed that the ratios βi/βtot are kept constant to the
reference values.

Consequently, these will be the quantities involved in the sensitivity analysis as
well. It is supposed that all the three quantities have normal distribution, with
standard deviation equal to 0.1/3 the reference value x0, so that the 99.7% of their
possible values are found in the interval (x0 − 0.1x0 ; x0 + 0.1x0). Therefore, in the
offline stage we train the system varying µ from 0.9µ0 to 1.1µ0, where µ0 contains
the values of ν0, βtot,0 and λh,3,0 reported in section 1.2. During Offline stage, their
values are randomly sampled, with uniform distribution, inside this range. This
choice may be argued, since in the sensitivity analysis the distribution is normal
indeed. This is done because with a normal distribution the values are often picked
very close the central value and a lot of samples may be needed to pick one value
close the the extreme of the interval; by this way, with a limited number of samples,
it is possible to explore more widely the training range with less points and train the
ROM for points that would be unlikely but still possible in the sensitivity analysis.

Using the notation adopted throughout the text, the number of "training points",
is called Noff , and it is chosen: Noff = 31. This choice is completely arbitrary but
can effectively influence the solution, it is based on some qualitative simple tests
performed at developing stage. In addition the central value of the training set, the
16-th one (or the 16-th row of matrix M̂ of eq. (2.5)), is replaced with µ0, to be
sure that this value is actually included in the offline stage. The time instants at
which the solution is saved is chosen to be every 5 s, or every 500 time steps (plus
the initial condition). Therefore K=150/5+1 and then the number of snapshots
NS = K ∗N0ff = 961. Also the choice of K is arbitrary: in this case the dynamics
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induced by the flow field can be considered slow, i.e. the time to establish a fully
developed flow is long; the choice of K is based on this consideration as well as on
some memory considerations since the simulations are run on a standard commercial
laptop. Its characteristics are shown in figure 4.2. Of course the finer are the snap-
shots (or the higher is K), the best the ROM is expected to be capable to reproduce
the true solution.
The number of saved modes for all the fields (ÑF of section 2.1) is fixed fol all
the three cases and set equal to 50. The POD modes are found using EVD tech-
nique and eigenvalue solver by Eigen. Finally, the online stage time step equals the
FOM one, while the final time is 100 s, to be conservative in the capability of the
ROM to reproduce the physics of the problem. Table 4.2 summarizes what just said.

Before to proceed on with SA, the ROM is tested adopting the values of µ on
which it is trained, and comparisons 5-by-5 s are shown in the following sections. The
number of modes adopted for each field and test case are given in the correspondent
section as well. Then the SA is performed with the distributions detailed above.
Both FOM and ROM SA is performed in order to compare the outputs distributions
and SRCs values.

Quantity Symbol Value Units

# of offline simulations Noff 31 [−]
Offline stage upper bound 1.1 · µ0 [{m2/s,−, 1/s}]
Offline stage lower bound 0.9 · µ0 [{m2/s,−, 1/s}]
# of saved time steps per simulation K 31 [−]
Total # of snapshots NS 961 [−]

# of saved snapshots per field ÑF 50 [−]
Online stage final time tf,o 100 [s]
Online stage time step ∆to 0.1 [−]

Table 4.2: Training settings during Offline stage and Online stage settings.

Figure 4.2: Technical characteristics of the laptop used to run the simulations.
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Chapter 4. Test cases and Results

4.1 Case A results

The initial and boundary conditions for case A are listed in the following table (us-
ing OpenFOAM nomenclature):

Field I.C. M. W. R. W. B. W. L. W.

u [m/s] (0, 0, 0) (2.46 · 10−3, 0, 0) NoSlip NoSlip NoSlip
p; [Pa] 0 ZeroGrad. ZeroGrad. ZeroGrad. ZeroGrad.

φ [1/(m2s)] 1018 0 0 0 0
Ci [1/m3] 1019 0 0 0 0
T [K] 1050 850 950 950 950

Hj [J/m3] 0 ZeroGrad. ZeroGrad. ZeroGrad. ZeroGrad.

Table 4.3: Initial and boundary conditions - case A.

Where NoSlip condition constraints the velocity to keep the same velocity of the
boundary (therefore it is simply homogenous Dirichlet boundary condition in this
case), ZeroGrad. stands for ZeroGradient and it is an homogeneous Neumann
boundary condition. It must be highlighted that these initial conditions are com-
pletely arbitrary and must be considered as 0− ones, in fact the FOM solver performs
a preliminary iteration and finds the actual 0 condition starting from the values re-
ported in table 4.3. The same speech is true for case B and case C.

The graphical representation of some fields can be found in the appendix. In this
section other comparisons are shown. The first to be presented is the percentage L2

error between FOM and correspondent ROM field, defined as:

eF (t) =

[ ∫
Ω

d2x
(
F (x, t)− Fr(x, t)

)2
]1/2

[ ∫
Ω

d2x
(
F (x, t)

)2
]1/2

· 100 (4.2)

The computation of eF (t) is done every tk, that is every 5 seconds. The results are
shown in graphs 4.3 and 4.4 for the reference value of the parameters µ0 that repre-
sents the 16-th µ with which the system is trained, i.e. µ16. Even if the temperature
field presents some very hot and cold spots, lower than M.W. boundary condition
(see picture 6.12), the integral of those differences can return very good results
(eT (100s) ≈ 1.6%). The results are even better if the difference is computed after
an integration operation as demonstrated by figure 4.5 that shows the percentage
difference between FOM and ROM average temperature Tm (integral average).
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4.1. Case A results
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Figure 4.3: Percentage L2 errors case A - 1.
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Figure 4.4: Percentage L2 errors case A - 2.
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Figure 4.5: Percentage difference between FOM and ROM average temperature, computed
as (Tm − Tm,r)/Tm · 100 - case A.
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Figure 4.6: Percentage difference between FOM and ROM total power, computed as (P −
Pr)/P · 100 - case A.
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4.1. Case A results

The same is done for the total power inside the reactor along the transient (figure
4.6). Both graphs shows that the capability of the ROM to return integral quantities
is very good. For the power density this is true also for local values, while this speech
is very limited for T. Then as introduced in section 4, the last two comparisons are
done for all the 31 values of µ. Figures 4.7 and 4.8 show the result of the central
value µ16 together with the values of µ that leads to the upper and lower percentage
difference observed.
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Figure 4.7: Average temperature percentage difference for different values of µ - case A.

Even if it could be possible to select as initial condition for the time coefficients the
correspondent FOM initial condition, it is chosen to take always the one the 16-th
value of µ returns, i.e. Fj ≡ F16 in eq. (3.2) ∀j = 1, . . . , 31. This is done for testing
purpose to see what is the response of the system to this constraint. The results
can be considered acceptable looking at figures 4.7 and 4.8. It must be recalled that
here the ROM is run with the same value of M̂ on purpose, but in SA the values of
µ will be different. This test can say that the choice of the initial value can have an
impact, but still very limited. Another choice could be to use the value of µ that
has the closer L2-norm to the online value µon, but the parameters inside µ have
orders of magnitude of difference among them, and the norm would be dominated
by the value of βtot, but this dominance in the norm can not being assumed to be
dominant in the result as well, this is the reason why SA is actually performed, to
some extent. Then the choice of µ16 seems the best, considering also that in SA
stage the sampled values will be more closely located around its value.
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Figure 4.8: Total power percentage difference for different values of µ - case A.

The values of µ appearing in the plots are listed in table 4.4. The sampled
maximum and minimum values of the three parameters are reported in table 4.5
instead, these constitute the Training Range adopted in sensitivity analysis.

µ ν [m2/s] βtot[−] λh,3 [1/s]

µ1 2.293 · 10−6 299.97 · 10−5 3.292 · 10−4

µ16 2.460 · 10−6 321.80 · 10−5 3.580 · 10−4

µ21 2.698 · 10−6 348.44 · 10−5 3.622 · 10−4

µ29 2.214 · 10−6 349.92 · 10−5 3.253 · 10−4

Table 4.4: Values of µ represented in figure 4.7 and 4.8.

Quantity Min Max

ν [m2/s] 2.214 · 10−6 2.698 · 10−6

βtot [−] 291.37 · 10−5 352.69 · 10−5

λh,3 [1/s] 3.253 · 10−4 3.910 · 10−4

Table 4.5: Minimum and Maximum values of µ sampled at Offline stage, i.e Training
Range - case A, B, C, A’.
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4.1. Case A results

Finally, he number of modes adopted for projection/reconstruction are listed in
table 4.6. As regards the velocity and temperature fields, the first number refers
to Nu and NT respectively, while the second one is the number of lift-function(s)
adopted, that means Nu,Dir and NT,Dir respectively (see section 2.2)

Field # of modes adopted for projection/reconstruction

u 10+1
p 5
φ 8
C1 18
C2 15
C3 15
C4 25
C5 25
C6 13
C7 20
C8 35
T 25+4
H1 10
H2 10
H3 13

System (2.2) fields 5

Table 4.6: Number of modes adopted both for projection and reconstruction stage, u and
T add the number of lift-function(s) - case A, A’.
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Chapter 4. Test cases and Results

4.2 Case B results

In this case the temperature initial and boundary conditions are changed, in par-
ticular there is only one Dirichlet boundary (the Moving Wall), while all the others
are adiabatic. To be consistent with that, decay heat groups BCs are changed to
ZeroGradient and uniform Dirichlet respectively for Moving Wall and the remaining
ones, as summurized in the following table:

Field I.C. M. W. R. W. B. W. L. W.

T [K] 1023 850 ZeroGrad. ZeroGrad. ZeroGrad.
Hj [J/m3] 0 ZeroGrad. 0 0 0

Table 4.7: Initial and boundary conditions for T and Hj - case B.

The values of µ adopted in this case are the same of case A, since the seed of the
pseudo-random generator is fixed (the same is true for case C). This gives the pos-
sibility to compare the system evolution with the same values of the parameters.
In case B, eT (100s) increases to ≈ 4.8%, this could be explained looking at figure
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Figure 4.9: Percentage L2 errors case B - 1.

6.22: hot and cold spots are more widely located and higher in magnitude, leading
to more cells where the difference between FOM and ROM is higher, thus increas-
ing the numerator of eT . Interestingly, no practical difference sets for H1 and H3

(eH3(100s) = 6.50% for case A, 6.42% for case B) even if boundary conditions are
different, the same for Θ.
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4.2. Case B results
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Figure 4.10: Percentage L2 errors case A - 2.

Instead, as expected, other quantities are reproduced with the same accuracy.
Some very low discrepancies are due to the different values of fields of system (1.2)
because of temperature different distribution and value.

eF (t) [%] A B

eu(100s) 6.93 6.70
eφ(100s) 0.77 0.76
eW (100s) 0.93 0.92
eT (100s) 1.65 4.78
eH1(100s) 1.02 1.00
eH3(100s) 6.50 6.42

Table 4.8: Comparison between case A and B e(100s) results for different fields.

In this case, an initial heating of the fuel happens, differently from case A, basically
because the initial high power level heats it up and the three adiabatic walls help
to contain the heat generated, then the mean temperature drops almost linearly
because of cooling action imposed at the Moving Wall. Instead, the power dynamics
is practically the same of case A, together with the percentage difference. Even if
the temperature L2 relative error is much higher, the ROM is still capable to return
very good approximation of the average temperature, the percentage difference is in
fact of the same order of (figures 4.11 and 4.12).
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Figure 4.11: Percentage difference between FOM and ROM average temperature, computed
as (Tm − Tm,r)/Tm · 100 - case B.
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Figure 4.12: Percentage difference between FOM and ROM total power, computed as
(P − Pr)/P · 100 - case B.
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4.2. Case B results
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Figure 4.13: Average temperature percentage difference for different values of µ - case B.
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Figure 4.14: Total power percentage difference for different values of µ - case B.
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Chapter 4. Test cases and Results

The same comparison of figures 4.7 and 4.8 are shown in figures 4.13 and 4.14
respectively for case B: the lower and upper bound are found for the same values
of µ but in case B the band is much more narrow; in particular the temperature
results show the same final value for the three values of µ. Finally the number of
modes adopted are listed:

Field # of modes adopted for projection/reconstruction

u 10+1
p 5
φ 8
C1 18
C2 15
C3 15
C4 25
C5 25
C6 13
C7 20
C8 35
T 27+1
H1 10
H2 10
H3 13

System (2.2) fields 5

Table 4.9: Number of modes adopted both for projection and reconstruction stage, u and
T adds the number of lift-function(s) - case B.
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4.3. Case C results

4.3 Case C results

In this section a complete adiabatic cavity is simulated, the initial and boundary
conditions are summarized in table 4.10. Then the L2 percentage error is presented
as usual (figures 4.15 and 4.16).

Field I.C. M. W. R. W. B. W. L. W.

T [K] 973 ZeroGrad. ZeroGrad. ZeroGrad. ZeroGrad.
Hj [J/m3] 0 0 0 0 0

Table 4.10: Initial and boundary conditions for T and Hj - Case C.
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Figure 4.15: Percentage L2 errors case C - 1.

In this case the temperature field lacks of any spatial reconstruction (see figure
6.28), a part for the initial condition. Given that, the L2 percentage error is the
best among the three different cases (eT (100s) ≈ 0.8%). In addition the quantities
involved as sources in the temperature equation shows a slightly improved behaviour,
see table 4.11. The same goodness of integral results is shown in figure 4.17 (the
total power one is shown as well figure 4.18). Again, case C returns the best result.
A possible explanation might be: the POD bases minimize the average error between
the snapshots and their orthogonal projection onto the bases (briefly summarizing
what stated in eq. (2.7)), the lift functions do not belong to this space, therefore
their presence shifts the approximated solution from this minimum, still they have
a healing effect on the stability of the reduced system. Some more details are given
in the conclusions of the work.
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Figure 4.16: Percentage L2 errors case C - 2.

0 10 20 30 40 50 60 70 80 90 100

time [s]

0

2

4

6

8

10

12

14

16

18

20

P
e
rc

e
n
ta

g
e
 d

if
fe

re
n
c
e
 [
%

]

10 -3

973

973.5

974

974.5

975

975.5

976

976.5

T
 [
K

]

Figure 4.17: Percentage difference between FOM and ROM average temperature, computed
as (Tm − Tm,r)/Tm · 100 - case C.

As regards the dynamics of the case, the temperature shows a stiff increase at
the beginning of the transient because of the initial high power level, then the profile
becomes more flat as the power drops, at the same time an homogenization of the
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4.3. Case C results
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Figure 4.18: Percentage difference between FOM and ROM total power, computed as
(P − Pr)/P · 100 - case C.

field happens because of diffusion phenomena, leading to an approximately constant
value throughout the cavity (figures 4.17 and 6.28). Instead, the power dynamics is
more or less the same of cases A and B (figure 4.18).

The behaviour of Tm and P for different values of µ is also shown (figures 4.19 and
4.20): in this case the values of µ for which the minimum and maximum difference
are found are different in respect to cases A and B (table 4.12); the band is even more
narrow than case B, being practically zero in the case of the average temperature.
In table 4.13 the number of modes adopted are listed.

eF (t) [%] A B C

eu(100s) 6.93 6.70 6.00
eφ(100s) 0.77 0.76 0.70
eW (100s) 0.93 0.92 0.80
eT (100s) 1.65 4.78 0.79
eH1(100s) 1.02 1.00 0.87
eH3(100s) 6.50 6.42 5.71

Table 4.11: Comparison between case A, B and C e(100s) results for different fields.
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Figure 4.19: Average temperature percentage difference for different values of µ - case A.
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Figure 4.20: Total power percentage difference for different values of µ - case C.
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4.3. Case C results

µ ν [m2/s] βtot[−] λh,3 [1/s]

µ10 2.243 · 10−6 320.07 · 10−5 3.910 · 10−4

µ12 2.396 · 10−6 328.22 · 10−5 3.271 · 10−4

µ16 2.460 · 10−6 321.80 · 10−5 3.580 · 10−4

µ21 2.698 · 10−6 348.44 · 10−5 3.622 · 10−4

µ22 2.586 · 10−6 341.60.92 · 10−5 3.308 · 10−4

Table 4.12: Values of µ represented in figure 4.19 and 4.20.

Field # of modes adopted for projection/reconstruction

u 10+1
p 5
φ 8
C1 18
C2 15
C3 15
C4 25
C5 25
C6 13
C7 20
C8 35
T 27+0
H1 10
H2 10
H3 13

System (2.2) fields 5

Table 4.13: Number of modes adopted both for projection and reconstruction stage, u and
T adds the number of lift-function(s) - case C.
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Chapter 4. Test cases and Results

4.4 Sensitivity Analysis results

In this section the SA results are presented and commented. First of all, the marginal
distribution of the parameters are recalled (all of them are Normal distributions):

Parameter Central Value x0 Standard Deviation σ

ν [m2/s] 2.46 · 10−6 0.08 · 10−6

βtot [−] 321.8 · 10−5 10.7 · 10−5

λh,3 [1/s] 3.58 · 10−4 0.12 · 10−4

Table 4.14: Parameters marginal distributions settings.

The number of sampling points is set to 1000, and they are sampled using Monte
Carlo Inverse Transform sampling method. It must be recalled that values sampled
outside the Traning Range, i.e table 4.5, are rejected. The figures of merit consid-
ered are the average temperature Tm and the total power P at t = 100s. First table
shows their mean value and variance both for ROM and FOM, (inside the brackets):

Case Tm0 [K] σTm [K] P0 [W ] σP [W ]

A 1029.80 (1029.33) 0.39 (0.40) 8.186 (8.165) 0.013 (0.011)
B 1016.21 (1014.67) 0.21 (0.22) 8.231 (8.209) 0.014 (0.013)
C 976.23 (976.39) 5 · 10−4 (2 · 10−7) 8.366 (8.345) 0.043 (0.0001)

Table 4.15: Expected value and standard deviation for Tm(t = 100s) and P (t = 100s),
FOM results inside the brackets.

The difference in the mean value actually accounts for error committed in the ap-
proximations of the fields at ROM level, in fact the percentage difference is of the
same order of the ones presented in the previous three subsection (see figures 4.5,
4.11, 4.17 for the temperature field, and 4.6, 4.12, 4.18 for the power). Then, both
for ROM and FOM the R2 values are computed, as next table shows:

Case R2
Tm

[%] R2
P [%]

A 99.991 (99.983) 99.992 (99.997)
B 99.980 (99.983) 99.992 (99.996)
C 99.974 (99.985) 99.995 (99.997)

Table 4.16: Quality indexes R2 for Tm(t = 100s) and P (t = 100s), FOM results inside the
brackets.

The extremely high proximity to unity asses that for both the figures of merit anal-
ysed, the model is very well described by a linear approximation. Thus, the com-
putation of the SRCs values is allowed as indexes of the importance of each of the
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4.4. Sensitivity Analysis results

three parameters on the output. Next tables summarizes the results for Tm and P :

Case ROM FOM

A (−0.99996, 0.00017, 0.00012) (−0.99989, 0.00097,−0.00020)
B (−0.99992, 0.00049,−0.00012) (−0.99992,−0.00006, 0.00043)
C (−0.99837,−0.00159, 0.04506) (−0.97794,−0.00206, 0.12577)

Table 4.17: ROM and FOM average temperature Tm SRCs values, ordered as
(αν , αβtot, αλh,3).

Case ROM FOM

A (−0.99292, 0.00371, 0.14667) (−0.97764, 0.00229, 0.18927)
B (−0.98786, 0.00431, 0.14768) (−0.98663, 0.00175, 0.17376)
C (−0.98561, 0.00136, 0.15841) (−0.96963, 0.00162, 0.16169)

Table 4.18: ROM and FOM total power P SRCs values, ordered as (αν , αβtot, αλh,3).

Let us focus first on the result of P ’s SA: in absolute value, the most important
parameter is the kinematic viscosity, always followed by the decay constant λh,3 and
then the βtot. The kinematic viscosity influences the velocity field that determines all
the fields of system eq. (1.1), both directly and indirectly, this could determine the
dominance of this parameter in the output results. The negative sign states that a
value larger than ν0 reduces the power. The decay constant may follow because it is
directly involved in the expression of the power density, thus of the total power, dif-
ferently for the total fraction of delayed neutrons. No substantial difference emerges
among the three different case and, most of all, the ROM is capable to catch this
influence of the parameters on the output, even if the values are not exactly the same.

Concerning the average temperature Tm, also at SA stage some considerable dis-
crepancies emerges between FOM and ROM results in cases A and B. If in case A,
still persists an order from the lower to the higher SRC (but with different signs
between FOM and ROM), case B is completely wrong both in signs and values of
parameters βtot and λh,3. Case C instead catches correctly the influence of the pa-
rameters on the average temperature, even if the value are quite different, especially
for the decay constant of third decay heat group.

It must be said that 1000 runs might be still low as a number to correctly describe
the statistics of the result, i.e. asymptotic condition of the Central Limit Theorem
might not be reached yet. In other words, the sample average and its standard
deviation, both for the parameters and the figure of merits, can still oscillate widely.
Considering all the six cases analyzed, it is possible to compute the average and the
standard deviation of the standard deviations computed in each case, or in formulae,
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Chapter 4. Test cases and Results

E
[
σ[µ]

]
and σ

[
σ[µ]

]
. Their ratio in percentage terms is then:

σ
[
σ[µ]

]
E
[
σ[µ]

] · 100 = (3.3, 1.3, 2.6)% (4.3)

Where µ is ordered as usual, {ν, βtot, λh,3}, and thus their corresponding percentage
ratios. Such values could justify the differences between FOM and ROM SRCs re-
sults for the temperature, since the values of αβtot and αλh,3 are very close to zero,
and accordingly to the sample average and standard deviation, they could jump from
negative to positive values. Of course, an higher number of runs must be performed
in order to verify what just said.

Finally the result that justify all the effort in developing a ROM for MSFR is
presented, i.e. the time needed to perform the SA with ROM and FOM:

Case tOffline [s] tSA,ROM [s] tSA,FOM [s]

A 0.049 · 106 0.020 · 106 1.310 · 106

B 0.054 · 106 0.026 · 106 1.300 · 106

C 0.061 · 106 0.037 · 106 1.302 · 106

Table 4.19: Elapsed time for Offline stage, SA with ROM, SA with FOM,respectively for
case A, B, and C.

The result assesses the huge speed up obtained using the ROM, the time needed to
perform 1000 runs of 100s each with ROM is smaller than the time needed to train
it, that is 31 runs of 150s. Even considering the time needed to train the reduced
object, the ratios between SA for the full and reduced model account for (projection
stage and RBF interpolation times are neglected because their order of magnitude
is about of hundreds seconds):[

tOffline + tSA,ROM
tSA,FOM

]
A

= 5.3%[
tOffline + tSA,ROM

tSA,FOM

]
B

= 6.2%[
tOffline + tSA,ROM

tSA,FOM

]
C

= 7.5%

In practice, the elapsed time reduces from about two weeks to one day, more or less
for all the cases. Another interesting quantity to show is time needed to perform
one time step:
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4.4. Sensitivity Analysis results

Case Elapsed time per time step-ROM [s] Elapsed time per time step-FOM [s]

A 0.020 1.310
B 0.026 1.300
C 0.037 1.302

Table 4.20: Time needed to solve one time step of the simulation during SA.

In practice the ROM is capable to compute one time step, 0.1 s, from 20 to 37%
of its value in real elapsed time, while the FOM needs approximately 1300%.
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Chapter 4. Test cases and Results

4.5 Outside Training Range - Case A’

In this section, case A model is tested with µ = 1.2µ0, that is outside the domain
of the parameters adopted to train the ROM. In addition during offline stage, the
parameters are not ordered so that for the maximum value of one parameter cor-
responds the maximum of the others, like in this case. Moreover, the final time
at online stage is set equal to the offline final time. Therefore, really challenging
settings the ROM is required to reproduce. The initial and boundary conditions
are the same of case A, see table 4.3. The same comparisons of other sections are
shown. The initial condition is also found in this case adopting µ0 correspondent
offline solution. The velocity L2 percentage error shows a very high initial value,
that then decreases and reaches values comparable to cases A, B and C.
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Figure 4.21: Percentage L2 errors case A’ - 1.

eF (t) [%] A B C A’ eF (t) [%] A’

eu(100s) 6.93 6.70 6.00 6.52 eu(150s) 7.04
eφ(100s) 0.77 0.76 0.70 0.66 eφ(150s) 1.10
eW (100s) 0.93 0.92 0.80 0.80 eW (150s) 1.30
eT (100s) 1.65 4.78 0.79 1.40 eT (150s) 1.52
eH1(100s) 1.02 1.00 0.87 0.90 eH1(150s) 1.19
eH3(100s) 6.50 6.42 5.71 6.31 eH3(150s) 7.80

Table 4.21: Comparison between case A, B, C and A’ e(100s) results,e(150s) A’ results.
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4.5. Outside Training Range - Case A’
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Figure 4.22: Percentage L2 errors case A’ - 2.

What is really interesting is that, in contrast to what expected, the ROM approx-
imation is better in case A’ than in case A at 100 s. Moreover, the errors obtained
at 150 s do not show extremely high values, instead they are of the same order of
magnitude, for some field even lower than e(100) in case A (see table 4.21). This
could suggest that the condition on the online final time may be to restrictive and
it can be relaxed in this case.

Some very good results are obtained considering the average temperature Tm
and the total power P as well, see figures 4.23 and 4.24 respectively. The consid-
eration on the spatial distribution of temperature field are the same of case A, but
the hot and cold spot do not enlarge during time and a stable condition is reached
concerning this aspect.

It must be underlined that this case might only represent a lucky case, other
values of µ outside the training range could produce worse results. This test
should be also done in the case µ is not a multiple of µ0, but constructed as
µ = {aν0, bβtot,0, cλh3,0} with a, b, c assuming any positive real value outside [0.9, 1.1].
Given that, the results shown in this section is quite encouraging and promising in
order to use the ROM also outside training range domain.
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Figure 4.23: Percentage difference between FOM and ROM average temperature, computed
as (Tm − Tm,r)/Tm · 100 - case A’.
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Figure 4.24: Percentage difference between FOM and ROM total power, computed as
(P − Pr)/P · 100 - case A’.
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Chapter 5

Conclusions

The work consisted in developing a reduced order model C++ software for the mul-
tiphysics of the MSFR within FV framework. Some very basic tests were performed
to check the goodness of the obtained tool and start understanding the basic feature
of this kind of modelling for MSFR.

What emerges is that, in the cases considered, very good local (see Appendix)
and integral reconstruction of MSFR fields is returned, for every field but the tem-
perature. This error in the approximation is then propagated to SA, which in turn
shows very good result for P . The reasons appear not so clear, thus some hypotheses
are outlined.

As highlighted in the introduction, this work analyzes a very low variety of pos-
sible configurations of offline and online stage. Indeed, the degree of freedom of this
settings is really large, in fact one can vary (using the notation adopted through-
out the work): Noff , K, NF s (i.e. the number of modes adopted per each field),
SVD/EVD POD modes calculation, OpenFOAM solvers for the Offline stage. The
combination of those leads an extremely high value of possibilities. Of course not
all of them have to be considered, but a more specific parametric study, especially
for Noff and K should be performed. This study must be performed in order to
identify the minimum error region for the majority of the fields, considering that the
temperature equation includes the highest number of terms of different fields, thus
embeds all the errors they are reconstructed with. For example, in this work the
error on the velocity looks too high and it can be reduced as shown in many works
[5][6][12]. NF s parametric study is also important because it is true that increasing
it, the amount of original information retained increases (or λNF −→ 0 as NF −→∞),
but it changes the number of equations of system (2.14) and thus the convergence
of Newton-Raphson method.

As said above, temperature equations contains sources from very different fields,
including fields of system 1.2. This leads to an high number of tensors inside the
temperature equation at ROM level. Therefore, another strategy to reduce the errors
on T could be to define on purpose sources for T and then use RBF interpolation
to reconstruct them at online stage (which showed a very good behaviour in all the
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three cases), for instance:

Sφ =
ΣP

keffρ
φ (5.1)

So that at projection stage only matrices are left instead of tensors. This could also
speed up the online computation.

Another concern is related with the lift-functions. When Dirichlet boundaries are
involved, POD modes do not correspond to the minimum of (2.7) for VT

POD but for
VT ′
POD, i.e. for the homogeneous field T ′. Therefore another kind of approximation is

introduced. This is demonstrated by the fact that the L2 error without lift-functions
is the smallest. But in that case the spatial reconstruction is very bad, confirming
the hypothesis that lift-functions stabilize ROM system solution. Therefore their
presence seems necessary, the possibility to use other kind of governing equations
to find them could be a possible path to reduce L2 errors. Considering the case of
all Neumann boundaries instead, lift-functions also for this case could be computed,
similarly to what is done in [8].

As said above, a part from temperature field, all the other fields are reproduced
with a good degree of accuracy also to perform some kind of spatial query on the
system, like control oriented applications presented in [11].

Concerning SA, linear regression technique is fully applicable since values of R2

are practically 1, both for Tm and P . SA shows that in the cases considered the
most important parameter is the kinematic viscosity, which has a negative effect as
its value increases in respect to the nominal one (both on Tm and P ). As reported
in the dedicated section, the number of simulations performed may not be sufficient
yet to assess a value very close to the real one, but, given such consideration, the
dominance of the viscosity is evident. Because of the error that temperature field
shows, together with the last consideration, no further comments are given on SA
results for the average temperature. Concerning instead the total power,FOM and
ROM show very similar results, at least as order of magnitude and correct sign of
SRCs. The increase in λh,3 has a positive effect on the total power. This can be
explained simply looking at the definition of the power density in eq. (1.4). The
positive effect of βtot was not so evident, but it assess that an increased level of
delayed neutrons increases the flux level for the time considered in the analysis,
finally increasing the power. This contribution is actually much lower than λh,3’s
one, accounting for some percents of it. It must be underlined that this results are
obtained only in these simple cavity cases and it is too risky to generalize them on
the basis of this poor analyses.

Very interesting and promising results are obtained when the ROM is tested
outside Training Range region, this suggests that the model could be used to actu-
ally test unknown system configurations, which is indeed the real task in developing
reduced order model.

Concerning instead the time reduction obtained using ROM, it effectively justi-
fies the effort in reduced order modelling and it confirms once again the interest in
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Chapter 5. Conclusions

the development of this technique for MSFR as research branch.

Last but not least, some considerations are given about the future extension of
MSFR reduced order modelling within ITHACA-FV. In order to relax both sim-
plifications about natural convection and turbulent flows, the best idea would be
to take advantage of multiple inheritance naturally adopted in object oriented pro-
gramming, in particular, at FOM level: it is possible to use already provided classes
UnsteadyBB and UnsteadyNSTurb that deal with buoyancy forces and turbulence
respectively and compose the hypothetical following classes:

usmsrProblemUnsteadyBB UnsteadyNSTurb

usMSRBB

usMSRBBTurb

T,Ci, Hj turb. proj. methods

Figure 5.1: Possible new FOM MSFR classes within ITHACA-FV.

Class UnsteadyBB implements the projection methods for the modified pressure
equation in natural convection, while UnsteadyNSTurb implements the projection
methods associated to the turbulent viscosity [7]. Therefore the laminar natural con-
vection MSFR class comes practically for free, while the turbulent natural convection
MSFR class needs only to add the projection methods associated to the turbulent
viscosity terms in T,Ci and Hj equations (see the appendix of [9]). A graphical
representation is shown in figure 5.1. One needs only to modify the equations of
the class [16]. Moreover, msrProblem class already implements precursors boundary
conditions adopted in [9], that permits to simulate more realistic geometry. Finally
FofM abstract class permits to develop whatever figure of merit associated to any
FOM problem implemented ITHACA-FV and use it to perform SA adopting linear
regression technique presented in section 2.3.

In conclusion, some very good results are already achieved at this stage, along
with non negligible errors concerning the temperature field. The fundamental aspect
is that the flexibility of the library, with this new tool implemented, enables to study
very different system configurations, to deepen the considerations given here with
very low programming effort and thus to perform a systematic study about the use
of the POD-Galerkin reduced order modelling technique for the MSFR.
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Chapter 6

Appendix: Fields for different test
case

In these sections, the graphical comparison between FOM and ROM result for dif-
ferent fields at some specified time is shown. Because of not so relevant differences
among the cases, some are shown only for case A. The solutions are computed for
the central value of µ, that is:

• ν = 2.46 · 10−6 [m2/s]

• βtot = 321.8 · 10−5 [−]

• λh,3 = 3.58 · 10−4 [1/s]
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6.1. Case A

6.1 Case A

The fields represented are: u, φ, C1, T,H3,Γ,W .
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Chapter 6. Appendix: Fields for different test case

6.2 Case B
The fields represented are: T,H3,W .
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Chapter 6. Appendix: Fields for different test case

6.3 Case C
The fields represented are: T,H3,W .
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