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Abstract 

The thesis applied a system identification method named nonlinear Hammerstein-Wiener to 

identify a servo-motor system based on the limited measurement of input current and the 

output displacement. The servo-motor is a servo motor embedded in the arc robot, by define 

the current, the arc robot moves the corresponding arc head with certain displacement. As long 

as the motor system is not a linear system, and the number of measurements is limited, the 

thesis tries to find an effective way to identify a reliable model based on the measurement 

combination and decreasing of the cost indicator RMSE. 

1 Introduction 

The thesis mainly applied the system identification mothed to identify the mathematic model of 

an unknown servo-motor model in the arc-welding robot. With the input signal and output 

signal data, the system identification method is able to find out the black box model. The system 

identification method was firstly tested in a simulated servo-motor model. Then, following the 

theoretical model, the system identification method was applied to the real servo-motor in an 

arc-welding robot from Comau Spa. Several non-linear models were built by using the method, 

the best models were finally selected by optimization. 

As long as the measurements are limited with the numbers, the combination of the 

measurements is applied to improve the identification process, therefore, the identified model. 

1.1 Introduction to the nonlinear system identification 

For the nonlinear system identification issue, one of the most popular method is the nonlinear 

Hammerstein-Wiener model. The Hammerstein model was discussed date back to 1966 by 

Narendra and Gallman [1].  As mentioned in the paper from Dr. Bai [2], the existing method for 

Hammerstein model identification could be roughly divided into four categories: the iterative 

method (Narendra & Gallman, 1966; Stoica, 1981), the over-parameterization method (Bai, 

1998; Boutayeb, Rafaralahy, & Darouach, 1996; Chang & Luus, 1971; Hsia, 1976), the stochastic 

method (Bilings & Fakhouri, 1978; Greblicki, 1992; Pawlak, 1991) and the separable least-

squares method [2].  

In this paper, the Hammerstein-Wiener Model is applied to identify a nonlinear behavior servo-

motor model. Since the NLHW model is applied to modeling of electro-mechanical systems 

successfully, according to Han [3]. 

 

The nonlinear Hammerstein-Wiener model (NLHW) could be considered as a combination of 

linear blocks and nonlinear blocks, as shown in the Fig1.1-1, Fig1.1-2 [3] and Fig1.1-3 [4] the 

Hammerstein model, the Wiener model, and the NLHW model. 

 



 

Fig1.1-1. Hammerstein Model. 

 

Fig1.1-2. Wiener Model. 

 

Fig1.1-3. Hammerstein-Wiener Model. 

The Hammerstein-Wiener system is consisting of three main blocks: an input static nonlinearity 

block, a linear dynamic system in the middle, and followed with an output static nonlinearity 

block [5]. In the paper [7], Bai gave a solution named as “optimal two stage identification 

algorithms” . Where from Han [3], the Hammerstein Wiener system is summarized as a very 

well-known way: 

𝑥1(𝑡) = 𝑓1(𝑢(𝑡)) 

     𝑥2(𝑡) = 𝐺(𝑞)𝑥1(𝑡) 

𝑦(𝑡) = 𝑓2(𝑥2(𝑡)) + 𝑣(𝑡) 



 

Fig1.1-4. Hammerstein Wiener system 

And in this paper, a Hammerstein wiener identification tool box from MATHLAB is used, which 

has the same structure way of the above system, and use three parameters to represent the 

gain of the linear block G(q):  

𝐺 =
𝑛𝑏

𝑛𝑞
 

And the factor nk is used to describe the delay [8]. This model will be used as a basic tool in the 

later identification works, and the detailed will be further explained. 

1.2 Introduction to the spot-welding gun system and the servo-motor 

In this thesis, the main task is aiming to identify a high-accuracy mathematic model for the spot-

welding gun system by using the input current and output displacement. The spot-welding gun 

system was provided by Comau S.p.a. And the spot-welding gun was driving by a linear stepper 

motor to close the “clamp”. The “linear” represent the movement of the motor is a line 

compare to the normal motor with rotation movement. And the general structure could be seen 

from the Fig1.2-1 in below: 

 

Fig1.2-1. A Welding Gun with the linear stepper motor 

The linear stepper motor with a current excitation will move the front end towards, along the 

positive direction of the x axle. As in the current paper, the entire welding gun along with the 

stepper motor are considered as a black box, ignoring the complexity of the entire system, the 

input current is the only changing factor which determined the displacement of the front end. 



The input current and output displacement are recorded correspondingly, and feed to the 

nonlinear Hammerstein Wiener algorithms to identify a nonlinear model. Further, the stepper 

motor model will be firstly simplified in the Chapter 2 with a simulation model and test with the 

nonlinear Hammerstein Wiener identification method for the first step theoretical verification. 

  



2 System Identification method applied to simulated servo-motor 

system 

2.1 Simulated servo-motor system build up 

For the very first step, a simplified spot-welding gun system will be set up, aiming to test the 

system identification method and detect the optimized model for the next steps.  

The principle for the simplified model, should be considered all the time, as the simplified model 

should be as lean as possible, meanwhile contains the necessary elements as well as the real 

spot-welding gun system contains.  

After the careful testing and research, the model consists of an electric circuit, an electronic-

motor, the wheel-axle system, and the spring mass system which represent the work piece 

under compression load, is chosen for the first step testing. 

In general, the spot-welding gun or servo-motor system shall contain the following parts, the 

base electric circuit, electric motor, wheel-axis junction, and a spring-mass subsystem, which are 

shown in the following Fig2.1-1:  

 

Fig2.1-1 

Where the system in green represent the electric circuit, including DC power (DC), Resister (R), 

Inductor (L), and a DC motor (E). The system in blue represent the mechanical part: the wheel-

axis junction (Shaft, Wheel) and the spring-mass subsystem. 

Further the model is built in MATLAB Simulink with a similar structure Fig2.1-2. The excitation 

current to the electrical motor and the displacement of the spring will be further used in the 

theory pre-validation section. 



 

Fig2.1-2 

The simplified model parameters could be checked in the following table T2.1-1. 

Short 

Name 

Long Name Value Units 

R Resister 100 Ohm 

V0 DC Voltage Source 220 V 

l Inductor 1 H 

EMF E-motor Back EMF 7.2x10^-5 V/rpm 

Re E-motor Resistance 3.9 Ohm 

le E-motor Inductance 1.2x10^-5 H 

Inertia Inertia of the connection shaft 0.3 kg*m^2 

Rdw Wheel Radius 1 m 

k Spring Rate 293.1 N/mm 

T2.1-1 

 

2.2 System identification of the simulated system 

Based on the simulation model, we could generate a set of measurements. Each set of the 

measurements consists of current input and the displacement output. We try to modify the 

input current by modifying the resister (R): 

𝑖 = 𝑉0/𝑅 

Of course, consider the inductor in the loop and the servo-motor inductance and resistance, the 

actual current will be smaller than the ideal situation. Still we are able to measure the actual 

current value in the loop, as well as the displacement of the spring. 



In the following chapters, the system identification of simulated system will follow the process 

with 4 steps as shown in the Fig2.2-1: 

 

Fig2.2-1 

Step1. Measurement of the input and output from the simulated target system. 

In this step, the input current will be feed-in to the Simulink model, and measure the output of 

the displacement of the spring. In the Fig2.2-1, the result of this step will be the output 

displacement. 

Step2. System identification based on the measurement sets. 

The measurement of input current and output displacement will be considered as one 

measurement set. We use the Non-linear Hammerstein Wiener identification model to identify 

a system. In the Fig2.2-1, the result of this step will be an identified system with dash line. 

Step3. Generate displacement based on the same current input and the identified system. 

The identified system from step 2 will be feed by the same input current as in the step 1. And a 

result of the displacement from the identified system will be measured. 



Step4. Compare the result of the original displacement measurement and the identified 

measurement. 

Here we use the root mean square error to evaluate the displacement from the simulated 

system and the identified system. Therefore, to evaluate the result of the identified system. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑‖𝐷𝑜𝑟𝑖𝑔 − 𝐷𝑖𝑑𝑒𝑛𝑡‖

2
𝑁

𝑖=1

 

2.3 Result of the simulated system 

As discussed in the last chapter 2.2, we designed a group of input current (T2.3-1): 

Data Set 
Number 

1 2 3 4 5 

Input Current [A] 1 2 3 4 5 

T2.3-1 

And in the following sub chapters, the 4 steps explained in the Fig2.2-1 will be applied with the 

simulated model, and the result of each step will be shown. 

2.3.1 Measurement of the input and output from the simulated target system. 

As we control the input current from the table T2.3-1 to the simulated target system Fig2.1-2. 

 

Fig2.3.1-1 

we generate the following measurement of the input current and output displacement: 

  



 

  

  

 

Fig2.3.1-2 

We could observed that the relation between the input current is not directly linear. Therefore, 

the simulated system is good to try with the Non-linear Hammerstein Wiener model. And the 

simulation result (displacement) and input current will be grouped as data set and used for the 

next step. 

2.3.2 System identification based on the measurement sets. 

Based on the data set from last step, the input current (isimu) and the output displacement (dsimu) 

of the simulated system, we try to identify a NLHW system. Hereby, the simulated data sets are 

firtly grouped and then feed into the NLHW with different parameters combination. Since we 

use the MATLAB NHLW system identification funtions, there are 2 parameters could be modified 

to generate the system: nb and nk, where the parameters was descripted in the chapter 1.1, as 

gain of the linear part of the NLHW block sets and the delay parameter. 

Hereby, we consider the parameter range of  [1,10] for and . Therefore, the combination could 

generate 10x10, a 100 systems based on one measurement sets T2.3.2-1. 



System Number nb nk 

1 1 1 

2 1 2 

3 1 3 

… 
  

56 5 6 

… 
  

100 10 10 

T2.3.2-1 

In the Appendix 7.1.1, the code for system identficiation will be shown there. 

By this step, we mark the identified model as SYSident(n), where n represent the system number. 

And for each measurement, we have identified 100 models.  

2.3.3 Generate displacement based on the same current input and the identified system. 

As we already have the identified models, hereby, we simulate the identified model SYSident(n) 

with the same current input (isimu), and try to obtain the identification model displacement 

(dident(n)) of each identified model. The illustration table T2.3.3-1 is shown as below, the full 

scale of the identification result will be shown in the attached files illustrated in Appnedix 7.1. 

1 45.43779 118.1152 149.2415 152.2934 … 256.3159 256.3159 256.3159 256.3159 

2 244.6509 245.0383 245.1333 245.4133 … 252.9694 252.9694 252.9694 252.9695 

… 
         

100 131.2844 72.71037 155.7699 142.9627 … 253.2419 253.2421 253.2422 253.242 

T2.3.3-1 

In the Appendix 7.1.2, the code for simulation of the identified model will be post. 

And in the table, each row represent the simulated displacement of the identified model with 

the corresponding number. E.g. the displacement result of identified model 1-3-1, Fig.2.3.3-1: 

 

Fig.2.3.3-1 



2.3.4 Compare the result of the original displacement measurement and the identified 

measurement. 

From the last step, we already obtained the displacement, hereby, we apply the RMSD 

calculation to the simulated displacement and the identified displacement. Further, the lower 

the RMSD, the better result it is. 

Remember that the RMSE is appied in the way: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑‖𝐷𝑠𝑖𝑚𝑢 − 𝐷𝑖𝑑𝑒𝑛𝑡‖2

𝑁

𝑖=1

 

We could obtain a 100x1 array of the RMSE result of each identified model data set.  And we 

select the least deviation (low error) models. The code for RMSE calculation is attached in the 

Appendix 7.1.3. 

For the 5 groups of data sets, we obtained 5 corresponding result and shown in the following 

figure Fig.2.3.4-1, where the blue line represent the original simulated displacement from the 

system, and the red dash line represent the displacement from the identified system with best 

RMSE result of each group. 

 

  



 

Fig.2.3.4-1 

In this step, the result already shows a good identified result. From the theoretical point of view, 

we could continue to use the NLHW model for the real measurement from the spot-welding gun 

system. 

However, it should be noticed that, in this chapter, the very simplified NLHW identification 

method is applied. Still, a further grouping of the data sets and cross check of the identified 

model is missing. In the next chapters, we will consider on more comprehensive way to 

generate a well grouped data set and cross verification experiment, so that the final identified 

system is neither under fitting nor over fitting.  

  



3 System identification method applied to the real measurement 

In this big chapter, the system identification method of NLHW is applied to the real 

measurement. And we firstly obtain the data measurement from the designed experiments, and 

calibrated. Then based on the measured three types of signals, the step signal, sinusoidal signal 

and random signal, the identification is separate into two big steps: firstly, the identification 

based on the single measurement and verified with the other measurements. Then based on the 

result of the single identification system, the identification based on the grouped measurements 

is conduct to find the best identified model, and cross check with the testing data sets.  

3.1 Experiment in real spot-welding gun system and data pre-calibration 

In this chapter, the experiment in the real spot-welding gun system will be illustrated, as well as 

the pre-calibration of the data sets. 

3.1.1 Experiment in real spot-welding gun system 

Similar like in the previous chapter, the real measurement is targeting to obtain the current 

input to the welding gun, and the displacement of the head (ending) of the welding gun. 

In the Comau workshop, the spot-welding gun was tested with 3 different types of current 

signals as input. The 3 types are step signal, sinusoidal signal and random signal. Each type of 

signal was segmented with different amplitude. And for sinusoidal signal, not only the 

amplitude, but also the frequency is segmented with 5 different values. 

In the table below, the 3 signal groups can be easily seen: 

For the Random signal, we conduct 5 tests with different amplitude: 

Amplitude 1 2 3 4 5 

Test No. #1 #2 #3 #4 #5 

T3.1.1-1 Random signal 

For the step signal, we conduct 15 tests, with 3 different delays and 5 different amplitudes: 

Delay\Ampl. 2 4 6 8 10 

0 #1 #2 #3 #4 #5 

100 #6 #7 #8 #9 #10 

300 #11 #12 #13 #14 #15 

T3.1.1-2 Step signal 

For the sinusoidal signal, we planned to conduct 25 tests, with 5 different frequency and 5 

different amplitudes, however, as in certain frequency area, the motor face a strong resonance 

and we shut down 2 tests, considering the safety reasons.  



 

W\A 1 2 3 4 5 

0.5 #1 #2 #3 #4 #5 

0.34 #6 #7 #8 #9 #10 

0.22 #11 #12 #13 #14 #15 

0.11 #16 #17 #18 R R 

0.005 #19 #20 #21 #22 #23 

T3.1.1-3 Sinusoidal signal 

Where in the table, w represents the frequency, and A represent the amplitude. And R 

represent the resonance area, and the tests was not performed and left blank. 

The sinusoidal signal is conducted following the function: 

i = A ∙ Sin(w ∗ t)        (1) 

 where: 

w = 0.005/Ts        (2) 

According to the upper input current signals, the displacement of each input is measured, and 

group as corresponding data sets. And the raw measurement data sets need the further 

calibration, which will be illustrated in the next chapter 3.1.2. 

3.1.2 Data pre-calibration 

As the raw data are collected from the Comau spot welding gun, the current data and 

displacement data are of different length, with noise, offset and even with small mistakes. 

Therefore, the first step is to calibrate the raw data, and choose the useful part for the 

identification in the next steps. 

As we have said in the previous section, the experiments are conducted with 3 groups. The step 

signal is conducted with the certain delay. Therefore, the offset and the total length should be 

calibrated. For the Random signal, only the total length should be calibrated. And the Sinusoidal 

signals should be calibrated with both the length and the offset. 

3.1.2.1 Calibration of Step signals 

The step signals are little bit different from the data of sinusoidal signals. It requires  

The calibration follows the steps as below: 

1.Cut the length of the current data, meanwhile cut the output displacement as same length.  

2. Calibrate the offset of the displacement data, as the starting displacement should set to 0. 

(The offset value is chosen by the average value in the first period, see Fig.3.1.2.1-1, -2) 



 

 

Fig.3.1.2.1-1 The displacement for sinusoidal signals 

 

Fig.3.1.2.1-2 The data after calibration. 

 

3.1.2.2 Calibration of Sinusoidal signals 

For sinusoidal current inputs:  

i = A ∙ Sin(w ∗ t)  (1) 

And all the current inputs are named after: Sin01, Sin02, Sin03, … Sin23. 

Correspondingly, the displacement is calibrated as well. 

The calibration follows the steps as below: 

1.Cut the length of the current data, meanwhile cut the output displacement as same length.  

2.Calibrate the offset of the input current, as well as the displacement data, as the starting 

displacement should set to 0. (The offset value is chosen by the average value in the first 

period T, see Fig.3.1.2.2-1, Fig.3.1.2.2-2, Fig.3.1.2.2-3, Fig.3.1.2.2-4)  

3.Cut the length of the current data again, and meanwhile cut the output displacement as 

same length 



And the calibration MATLAB program code can be seen in the Appendix Data Calibration. 

In the figure below, the data before calibration and after calibration are shown. 

          

Fig.3.1.2.2-1 Offset calibration of the sinusoidal signals 

 

             

Fig.3.1.2.2-2 Offset calibration of the sinusoidal signals. 

 

Fig.3.1.2.2-3 Offset calibration of the sinusoidal signals output displacement. 



 

Fig.3.1.2.2-4 Offset calibration of the sinusoidal signals output displacement. 

3.1.2.3 Calibration of Random signals 

The random signals just need the length cut to modify the data. See Fig 3.1.2.3-1 and -2. 

 

Fig 3.2.3 The displacement data before calibration and after calibration. 

 

Fig 3.2.3 The displacement data after calibration. 

  



3.2 Single measurement system identification 

In this step, the NLHW identification method is applied to single step measurement. Since there 

are no further model optimizing steps, the identified model will be only cross checked with the 

step measurement sets. 

3.2.1 Method of single measurement system identification 

Similar like in the chapter 2 of the simulated system, but more adapted to the application case, 

hereby the identification of single step measurements is also following the steps: 

1 Identification of the model: 

1.1 Using single data set to identify models based on the combination of parameter nb 

and nk. For example, the identified model is named as “NLHW-Step-n- nb- nk-1”, to 

represent the model identified by data set n, using the parameter nb and nk. Shown in 

Fig.3.2.1-1, step 1. 

1.2 Self-cross check of the identified model (NLHW-Step-n- nb- nk-1) with the same 

measurement data set (n), and choose the best one or several identified models. 

(NLHW-Step-n- nb- nk-1-Chosen, shown in Fig.3.2.1-1, step 2 and 3.) 

2 Verification of the model: 

Based on the identified model (NLHW-Step-n- nb- nk-1-Chosen), verified with all the step 

datasets. 

2.1 Applying the input current of each step datasets (m), and obtain the identified model 

displacement output (Displacement--Step-n-nb-nk-1-m, shown in Fig.3.2.1-1, step 4). 

2.2 Verification of the result with RMSD method based on measured displacement and 

the identified model displacement. (Shown in Fig.3.2.1-1, step 5) 

In the following chapter, the detailed result of each steps will be illustrated.  



 

Fig.3.2.1-1 

3.2.2 Result of single measurement system identification 

3.2.2.1 Result of single measurement with self-cross check 

Based on the process designed in the previous chapter, the result of each step can be checked in 

the following, and the code for step 1 to 3, is attached in Appendix 7.1.4.1. 

In the step 1, for 15 step data sets, considering the parameter nb and nk combination: 

nb ∈ [1,10], nk ∈ [1,10] 

we could identify models of 1500 (15x10x10), which we named as “NLHW-Step-n-nb-nk-1”. 

After the 1500 models are identified, according to step 2, the 1500 models are firstly stimulated 

with the same current input (imeas(n)), which are used also for the identification of the 



measurement n. And therefore, the Xmdl(m) (m∈ [1,1500] ) are generated in the step 2. 

Considering the size of each displacement from the identified model (1500 x time series of 7500 

steps) will generate a large memory size data result, we set the step 2 as an intermediate step. 

And the result will not be saved separately, but directly goes to the step 3 for the RMSD result 

calculation. 

And in the step 3, the RMSD result is firstly generated with a matrix of 100x15, where 100 is a 

result of the combination of parameter nb and nk, 15 is a result of the number of the 

measurement data set. 

Still, the calculation is based on the RMSD equation: 

RMSDn−nb−nk−1  =
‖𝑥𝑚𝑑𝑙−𝑛−𝑛𝑏−𝑛𝑘−1 − 𝑥𝑚𝑒𝑎𝑠−𝑛‖

√𝑙𝑒𝑛𝑔𝑡ℎ𝑥

 

 And then, for each data set, the top three model with lowest RMSD result (15x3) is selected 

(NLHW-Step-n-nb-nk-1-Chosen), which is shown as below (T3.2.2-1). 

 

Data Set RMSE 1 RMSE 2 RMSE 3 

1 0.000171 0.000193 0.000244 

2 0.000114 0.000131 0.000151 

3 0.000295 0.000371 0.00038 

4 0.000462 0.000502 0.000539 

5 0.000226 0.000231 0.000396 

6 0.000106 0.000242 0.00051 

7 0.000415 0.000571 0.000595 

8 8.82E-05 0.000176 0.000184 

9 0.000416 0.000501 0.000568 

10 0.000305 0.000335 0.000422 

11 0.000168 0.000224 0.000354 

12 0.000327 0.000371 0.000457 

13 0.000197 0.000245 0.000509 

14 0.000244 0.000607 0.000612 

15 0.000555 0.000746 0.001047 

T3.2.2-1 

In the following page, the compare of the displacement from the low RMSE value simulated 

system and the original measurement displacement of the best RMSD result will be shown 

(Fig.3.2.2-1). 

  



 

(1) (2) 

 

(3) (4) 

 

(5) (6) 



  

(7) (8) 

 

(9) (10) 

 

(11) (12) 



 

(13) (14) 

 

(15) 

Fig.3.2.2-1 

From the figure above, the Non-linear Hammerstein Wiener method shows a very perfect fitting 

in identification result. Both in the transition situation and the station situation.  

However, there could be a potential risk of overfitting. That in the case of overfitting, the 

identified model may fit perfectly to the data set which used for identification, but quite poor 

with the other data sets. For example, with the identified model based on data set (m=10), the 

best fitted model is identified with parameter of nb = 4, nk = 10. But when the model is applied 

to the other data set (m=8), the result shows a very bad fitting (Fig.3.2.2-2): 



 

Fig.3.2.2-2 

Therefore, the single best fit could come to the overfitting, and a general cross check with the 

other dataset is necessary. 

3.2.2.2 Result of single measurement with over all cross check 

In order to have a further full coverage check, and to generate the displacement of the 

identified model in the step 2 and to make it comparable to all the other data sets, it is needed 

to stimulate the identified system (1500) with the measured current input of each data sets (15), 

and it is resulting in a size of 1500x15 data sets. Where each data set is consisting of a time 

series signal (7500). Considering both from the memory consumption and calculation efficiency 

side, it is not necessary to create such an intermediate huge matrix (1500x15x7500). It is 

designed to directly calculate the RMSD value (1500x15) of each model stimulated displacement 

result and the measured displacement result. 

 

Fig.3.2.2.2-1 



And the simulated displacement of the identified model of 1500x15 data sets are calculated 

with the RMSD functions: 

RMSDn−nb−nk−m  =
‖𝑥𝑚𝑑𝑙−𝑛−𝑛𝑏−𝑛𝑘−𝑚 − 𝑥𝑚𝑒𝑎𝑠−𝑚‖

√𝑙𝑒𝑛𝑔𝑡ℎ𝑥

 

Where the n represents the step data set number, which are used to identify the model. The nb 

and nk as we have already mentioned, the parameter of the identified model. The combination 

of n- nb-nk-m is of 15x10x10x15.  Xmdl-n-nb-nk-m represent the displacement of the identified model 

based on data set n, with the same current input of data set m. The Xmeas-m represent the 

displacement of the measured value of data set m. Here, the m and n represent 15 data sets. 

The n represents the data set which used to identify the model, and m represent the 

test/stimulate data set. 

And the full result is grouped in an exampled way in Matrix T3.2.2.2-1 (1500x15): 

identify 

data 

set (n) 

  
test data set (m) 

nb nk 1 2 3 4 … 13 14 15 

1 1 1 0.001434 30.5893 61.26105 91.92479 … 38.99844 59.76257 80.79977 

1 1 2 0.000479 2.03936 4.0759 6.108788 … 8.278666 7.072215 6.832956 

1 1 3 0.001124 0.008017 0.01543 0.019241 … 0.04593 0.06264 0.050647 

… … … … … … … … … … … 

4 5 4 0.595397 0.553589 0.18921 0.001079 … 0.458872 0.392213 0.319247 

… … … … … … … … … … … 

15 10 9 0.018531 0.021615 0.021223 0.047953 … 0.044332 0.042272 0.016405 

15 10 10 0.030358 0.055255 0.09093 0.136843 … 0.037791 0.03502 0.029765 

T3.2.2.2-1 

Hence, based on the RMSD result in the table, we could further select the identified model 

which satisfied the RMSD threshold and could cover most of the data sets. This would mean that 

we need a criterial to evaluate that, up to which level the RMSD result is good enough. 

After considering the compare the result, a threshold of RMSD is selected as 0.01. See the plot 

(Fig.3.2.2.2-2) in below:  



 

Fig.3.2.2.2-2 

Where the blue line represents the original measurement displacement of the data set (m = 5). 

The red line represents the displacement from an identified model of RMSD value equals to 

0.004. The green line represents the displacement from an identified model of RMSD value 

equals to 0.01. And the black line represents the displacement from an identified model of 

RMSD value equals to 0.04. 

It could be clearly seen that the RMSD threshold of 0.004 may lead to an overfit situation, and 

0.04 is far too away from the accurate level. Therefore, a threshold of 0.001 is selected for the 

RMSD. And the following table T3.2.2.2-2 is generated: 

Identification  

Data Set n 
nb nf 

Num of 

Data set 

RMSD 

value 

under 

0.01 

6 3 7 7 

7 7 1 7 

9 6 3 7 

9 4 2 7 

13 8 2 7 

14 10 9 7 

14 6 9 7 

14 5 1 7 

14 7 7 7 

14 7 6 7 

14 3 9 7 

14 1 3 7 

14 5 4 7 

14 10 6 7 

14 10 5 7 



7 10 1 6 

8 1 2 6 

8 6 4 6 

12 8 2 6 

13 10 8 6 

13 7 1 6 

13 6 10 6 

13 8 6 6 

13 9 6 6 

13 9 3 6 

13 6 7 6 

13 9 4 6 

13 6 1 6 

13 3 6 6 

13 9 5 6 

13 10 3 6 

13 9 1 6 

13 7 8 6 

13 8 8 6 

13 7 6 6 

13 10 7 6 

13 5 8 6 

13 1 1 6 

13 8 3 6 

13 8 4 6 

13 6 4 6 

13 5 3 6 

14 1 1 6 

14 2 9 6 

14 8 10 6 

14 9 9 6 

14 3 7 6 

14 5 3 6 

14 2 10 6 

14 7 8 6 

14 6 2 6 

14 10 4 6 

14 2 8 6 

14 4 10 6 

14 6 10 6 

14 8 3 6 

14 7 3 6 



14 7 5 6 

14 6 7 6 

14 5 6 6 

14 3 1 6 

14 1 5 6 

14 1 2 6 

14 9 6 6 

14 6 6 6 

14 1 9 6 

14 2 7 6 

14 1 7 6 

14 9 4 6 

 

T3.2.2.2-2 

Where we could find out that, based on the data set: Step-6, Step-7, Step-8, Step-9, Step-12, 

Step-13, Step-14, the identified model could cover a large number of data sets. Therefore, we 

select the above 7 data sets as the basis for the next grouping identification base. 

Additionally, if we use the Table (T3.2.2.2-3) to show the coverage situation or grouping 

situation, we could find out that, although the data sets are listed based on the ramping time 

and the target current amplitude, the grouping of the data sets are not ramping time-current 

amplitude based. 

  



 

Identification 

data set \ 

Validation 

data set 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number 

under 

Threshold 

1 
4E-

04 
0.026 0.052 0.081 0.134 0.016 0.009 0.006 0.019 0.06 0.022 0.015 0.011 0.009 0.045 4 

2 0.013 0.006 0.034 0.069 0.129 0.016 0.033 0.016 0.011 0.052 0.02 0.03 0.028 0.022 0.038 1 

3 0.02 0.012 
7E-

04 
0.002 0.022 0.007 0.02 0.04 0.055 0.052 0.011 0.015 0.034 0.05 0.043 3 

4 0.039 0.032 0.01 
7E-

04 
0.025 0.022 0.011 0.033 0.054 0.052 0.016 0.015 0.028 0.047 0.048 2 

5 0.01 0.031 0.019 0.006 0.001 0.02 0.014 0.025 0.057 0.072 0.036 0.024 0.028 0.048 0.053 3 

6 0.017 0.034 0.051 0.07 0.113 
1E-

04 
0.004 0.007 0.01 0.043 0.007 0.003 0.004 0.005 0.038 7 

7 0.019 0.042 0.049 0.064 0.102 0.005 0.007 0.005 0.008 0.03 0.005 0.007 0.008 0.012 0.032 7 

8 0.023 0.039 0.055 0.115 0.206 0.005 0.004 0.004 0.048 0.118 0.003 0.004 0.006 0.02 0.08 6 

9 0.01 0.032 0.046 0.066 0.139 0.009 0.006 0.005 0.003 0.065 0.011 0.01 0.01 0.012 0.044 7 

10 0.009 0.044 0.018 0.038 0.076 0.01 0.066 0.046 0.033 0.001 0.009 0.049 0.051 0.048 0.02 4 

11 0.025 0.046 0.067 0.09 0.137 0.005 0.009 0.018 0.027 0.065 0.001 0.006 0.008 0.011 0.054 5 

12 0.018 0.041 0.044 0.05 0.08 0.003 0.007 0.006 0.014 0.025 0.005 0.004 0.008 0.017 0.031 6 

13 0.008 0.029 0.05 0.085 0.144 0.009 0.008 0.008 0.023 0.068 0.01 0.006 0.006 0.004 0.051 7 

14 0.026 0.04 0.052 0.077 0.126 0.009 0.008 0.009 0.016 0.049 0.006 0.006 0.006 0.005 0.04 7 

15 0.027 0.01 0.016 0.035 0.078 0.038 0.04 0.033 0.029 0.008 0.031 0.04 0.041 0.041 
7E-

04 
3 

T3.2.2.2-3 

In the table, where the “Identification data set” column represents the model which identified 

by the corresponding data group. And in the “Validation data set” row represent the verification 

data set. In the table, the RMSD value validated based on the validation data set, and the model 

is identified based on the identification data set. And, where the last column “Num under 

Threshold” shows the number of the verification data sets the corresponding model covers (the 

RMSD value over 0.01).  

Based on the above observation, we could come to the following conclusion: 

1. Considering the data sets covered by the identified models, it could be observed that 

the data set 15 is quite a unique measurement, which may due to either wrong measurement or 

extreme working area of the arc-robot. And this could be verified later on in the grouping 

identification and verification and may be excluded from the later on verification. 

2. Further, it could be observed that data set 6, 7, 8, 9, 12, 13 and 14 are either mostly 

covered by the other models, or the models identified base on these data sets could cover a 

most of the other data sets. 

3. It could be easily seen that it is not possible to have one model based on single data set 

to cover all the situation. This might due to the reason of the measured data sets could only 



cover small range of the motor/arc-robot. And in different motor operation area, the 

performance of the motor/arc-robot differs a lot. 

Based on the above conclusion, it is necessary to group the measurements and identify the 

model based on the grouped data sets.   

  



3.3 Grouped measurement system identification 

3.3.1 Pre-definition of the grouping identification 

As it is already explained in the previous chapter, the target of this chapter is to group the 

measured data sets and identify a few models which could cover the most of the situation.  

In below, the grouping considerations will be listed as the guidance for the later on grouping and 

identification works, it is necessary to group the data sets from single data set and add up one 

by one. 

However, this could lead to a huge number of grouping possibilities: 

Number of grouping = 1515 ≈ 4.37 ∗ 1017 

Consider if each time the data sets for grouping shall not be reused: 

Number of grouping = 15! ≈ 1.31 ∗ 1012  

And each time if we do a verification, this could lead to a very inefficient and endless work load. 

To optimize the identify process and quickly find out the possible model, the following 

identification path is defined: 

1. To working in a scientific way, the grouping of the data sets shall be started from the very 
single data set and add up one by one. 

2. Each time after a group, the identified model shall be verified with all the step data sets to 
check if the grouped model could cover more data sets (to have more data sets satisfied the 
RMSD threshold) 

3. Based on the step2, select the groups which covers more data sets, and again add the new 
data set to the group. 

4. Repeat the above path until the verification result won’t increase any more. 
For a better understanding, the identification path is explained as a flow chart (Fig.3.3.1-1) as 

below: 



 

Fig.3.3.1-1 

Consider a more mathematical way and more system way to explain the process, hereby we 

define the process as following: 

Each measurement dataset is represented by 𝑀𝑒𝑎𝑠(𝑛),   

where n(∈[1,15]) is the measurement dataset number, for here we have the dataset of 

Step signals measurement 1 to 15.  

Each measurement dataset consists of two sub-datasets:  

the Input current: 𝑖𝑚𝑒𝑎𝑠(𝑛)  

the output displacement: 𝑥𝑚𝑒𝑎𝑠(𝑛)  

For grouping of the measurement datasets, the following symbol is used:  𝐺𝑘(𝑀)  

where k(∈[1,15]) is the number/level of measurement dataset in combination group 

number. In the later on phase, this could also represent the level of iteration number. 

M is the measurement dataset. 

For example:  

𝐺3(𝑀𝑒𝑎𝑠(1), 𝑀𝑒𝑎𝑠(5), 𝑀𝑒𝑎𝑠(2)) is representing the Grouping on 3rd level/iteration, with 

the ordered measurement dataset 1, 5 and 2. 

𝐺3(𝑀𝑒𝑎𝑠(1), 𝑀𝑒𝑎𝑠(2), 𝑀𝑒𝑎𝑠(5)) is representing the Grouping on 3rd level/iteration with 

the ordered measurement dataset 1, 2 and 5. 



The following figure (Fig.3.3.1-2) could be a good explanation of the sub-dataset, dataset and 

grouping relation: 

 

Fig.3.3.1-2 

3.3.2 Grouping identification loops 

As it is already defined in the last step, from this chapter the detailed computational process will 

be explained. 

In general, the identification uses an iteration calculation:  

each time increase the grouping level (number of measurements 𝑀𝑒𝑎𝑠(𝑛)), validate the RMSD 

value, find the smallest RMSD combination and use the combination for the next round of 

calculation: 

3.3.2.1 Pre-definition and starting point: 

As we have measurement data sets in total of kn. (kn∈ R): 

Measurement_Total = {Meas(1), Meas(2), … Meas(kn)}. 

  



 

For the 1st iteration, the grouping is no different than the single measurement identification: 

Group_1 = {Meas(k1)},  

where k1 represent the measurement, which identified a system System(k1) and via validation 

with the rest of the measurements, generates the most RMSD threshold passed situation. 

3.3.2.2 jth iteration calculation: 

3.3.2.2.1 Grouping: 
For jth iteration, the grouping of the measurements is: 

Group_j(kjr) = {Meas(k1), …, Meas(ki), …, Meas(kjr)} 

Where, Meas(kjr) represent the jth element of the grouped data. And the Meas(kjr) could be the 

rth measurement dataset in the rest of the un-selected measurements. 

This means: Meas(kjr) should be selected from the Measurement other than the existing 

measurements in the grouping: 

Meas(kjr) ∈! {Meas(k1), …, Meas(ki), …, Meas(k(j-1)r)} 

(∈! Represent not belonging) 

3.3.2.2.2 Identification: 
System identification of the Group_j(kjr), with full range combination of zeros and poles. 

Consider for each grouping, the system identified will be a number of 100 (10x10, as the number 

of nb (zeros), nk (poles)): 

𝑆𝑦𝑠𝑡𝑒𝑚𝑘𝑗𝑟
𝑛𝑏,𝑛𝑓

(𝑖), where nb∈[1,10], nk∈[1,10] 

3.3.2.2.3 RMSD calculation and filter of each identified system: 
3.3.2.2.3.1 RMSD calculation 

For each identified system 𝑆𝑦𝑠𝑡𝑒𝑚𝑘𝑗𝑟
𝑛𝑏,𝑛𝑓

(𝑖), a RMSD is firstly calculated with the measurement 

(Meas(kjr)), which used for identification: 

   𝑅𝑀𝑆𝐷𝑘𝑗𝑟
𝑛𝑏,𝑛𝑓

(𝑥𝑘𝑗𝑖𝑑𝑛𝑡
𝑟 , 𝑥𝑘𝑗𝑟) =  

‖𝑥𝑘𝑗𝑖𝑑𝑛𝑡
𝑟 −𝑥𝑘𝑗𝑟‖

√𝑙𝑒𝑛𝑔𝑡ℎ𝑥
 

Where the 𝑥𝑘𝑗𝑖𝑑𝑛𝑡
𝑟  is calculated by: 

𝑥𝑘𝑗𝑖𝑑𝑛𝑡
𝑟 = 𝑆𝑦𝑠𝑡𝑒𝑚𝑘𝑗𝑟

𝑛𝑏,𝑛𝑓
(𝑖𝑘𝑗), where nb∈[1,10], nk∈[1,10] 

And the 𝑙𝑒𝑛𝑔𝑡ℎ𝑥, is the total number of the 𝑥𝑘𝑗𝑖𝑑𝑛𝑡
𝑟  or 𝑥𝑘𝑗𝑟. 

Remembering that the RMSD number is calculated based on the identified system of the 

grouped measurement data set with Meas(kjr), therefore it shall obtain again a 100 of RMSD 

numbers corresponding to the System identified numbers. 



3.3.2.2.4 RMSD filter 
3.3.2.2.4.1 Self-RMSD Filtering 

As mentioned in the last chapter, for each identified system, we obtained a RMSD matrix of 

10x10. Therefore, for the current iteration, there are total kj x 10 x 10 number of System/RMSD. 

Considering such a large number of systems shall not be applied directly to cross check with the 

other measurement set, we shall firstly apply a RMSD filter to limit the unpassed system. 

To filter the unpassed system, we should focus on the target to obtain a threshold of RMSD 

(ThresholdRMSD), which will be applied to filter out the inaccurate systems.  

The first step, we would like to filter out the systems which will not even pass the measurement 

for the identification inputs. And since the number of the systems will be largely decreased with 

small calculation time, this step improves to save the whole system calculation time. 

And a matrix with the passed RMSD is obtained with the recorded qualified identified system 

numbers: Idx_RMSD = [kjr, nbq, nkq].  

And the corresponding qualified system is called:  

 𝑆𝑦𝑠𝑡𝑒𝑚
𝑘𝑗𝑟

𝑛𝑏𝑞,𝑛𝑓𝑞(𝑖), where nbq, nkq are the qualified system zeros and poles. 

The qualified system shall satisfy the following criteria: 

𝑅𝑀𝑆𝐷
𝑘𝑗𝑟

𝑛𝑏𝑞,𝑛𝑓𝑞 (𝑥𝑘𝑗𝑖𝑑𝑛𝑡
𝑟 , 𝑥𝑘𝑗𝑟) < 𝑇ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑𝑅𝑀𝑆𝐷 

Only the system whose RMSD value could first pass the threshold can be selected for further 

filtering. 

Please note that after this first step filtering, the huge amount of the identified systems will be 

largely decreased, and further facilitate the next step. 

3.3.2.2.4.2 Cross RMSD verification Filtering 

In this section, the identified system with the first filtering shall be further filtered with the rest 

of the verification data sets. For a better understanding, the difference between the step 1 filter 

and step 2 verification filter, are mainly regarding the verified data sets are different. The step 1 

filter is more like a self-checking step to filter out the poor identified system. The step 2 

verification is targeting to verified the identified system with more coverage other than self-

overfitting system. 

Hereby, the system 𝑆𝑦𝑠𝑡𝑒𝑚
𝑘𝑗𝑟

𝑛𝑏𝑞,𝑛𝑓𝑞(𝑖) from last step is verified with all the selected verification 

data sets: MeasValid(km), where km≤kn (Total data set numbers). 

The verification filtering step is similar as the previous steps: 

  



i. Calculation of the RMSD based on the identified system with the verification data sets: 

𝑅𝑀𝑆𝐷𝑘𝑚
𝑛𝑏𝑣,𝑛𝑓𝑣

(𝑥
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡 , 𝑥𝑘𝑚𝑉𝑎𝑙𝑖𝑑
) =  

‖𝑥
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡 − 𝑥𝑘𝑚𝑉𝑎𝑙𝑖𝑑
‖

√𝑙𝑒𝑛𝑔𝑡ℎ𝑥

 

Where the 𝑥
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡 is calculated by: 

𝑥
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡 = 𝑆𝑦𝑠𝑡𝑒𝑚
𝑘𝑗𝑟

𝑛𝑏𝑞,𝑛𝑓𝑞(𝑖
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡), where nb∈[1,10], nk∈[1,10] 

 As, 𝑖
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡  is the input current of the validation data set. 

 𝑆𝑦𝑠𝑡𝑒𝑚
𝑘𝑗𝑟

𝑛𝑏𝑞,𝑛𝑓𝑞(𝑖)  is the system which passed the step 1 filter. 

ii. Compare the RSMD value with the threshold value. The system could pass the 
following criteria would be selected for the next step: 

 𝑅𝑀𝑆𝐷𝑘𝑚
𝑛𝑏𝑣,𝑛𝑓𝑣

(𝑥
𝑘𝑚𝑉𝑎𝑙𝑖𝑑

𝐼𝑑𝑒𝑛𝑡 , 𝑥𝑘𝑚𝑉𝑎𝑙𝑖𝑑
) < 𝑇ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑𝑅𝑀𝑆𝐷 

After the steps above, the filtered system will be named as 𝑆𝑦𝑠𝑡𝑒𝑚𝑘𝑗𝑟
𝑛𝑏𝑣,𝑛𝑓𝑣(𝑖). 

3.3.2.2.5 Selection of the data set based on validation filter result. 

Hereby, in order to guarantee the independency of the test data set respect to the identification 

data set and validation data set, the selection of the system for the next iteration grouping and 

identification is also using the validation data set. 

For selection of the data set for the next iteration grouping, a simple method is applied to score 

the after-validation systems. 

During the validation process, for each system, there will be a number of validation data sets 

(number = km) to be validated and calculating the RMSD number. By counting the number of the 

data sets, which passed the RMSD threshold, we could easily rank the system from covering the 

most data set to the system covering the least data set. Therefore, the highest rank system 

could cover up to a number of km data sets, and lowest rank system could cover at least 1 data 

set, since the system which could not cover any validation data set has been filtered out in the 

step 3.2.3. 

In order to guarantee a potential possibility of the system which could be further improved in 

the next iteration, hereby, the top 3 system with highest rank will be selected. 

After this step, the top 3 systems are selected. Remembering that the 3 systems are identified 

with a certain grouping of the data sets, and those combination of the data sets will be used as 

the bases for the next iteration. 

For the next iteration, it starts again at the step 3.3.2.2, with the grouping identification loops. 

  



 

3.3.2.2.6 Testing of the identified system with the testing data sets  

After the identification iterations, the identified system come to a situation that could not 

further increase the covered data set. Then the identification process is finished, and the 

identified system shall be checked with the testing data sets to fine out the final performance of 

the identified system. 

It shall be noticed that, the testing data sets shall be different from the identified data sets and 

the validation data sets, in order to guarantee an objective result. 

3.3.3 Group identification Result 

Remember that from the last chapter, the identification result based on the single data set is 

illustrated in the table T3.2.2.2-3, the data set Step-6, Step-7, Step-8, Step-9, Step-12, Step-13, 

Step-14 have the most covered RMSD value above the threshold. The Grouping identification 

start with the above 7 data sets, and combined with another data sets. Hereby, we use 

“iteration” to represent the grouping steps. And as we have discussed, the step measurement 

data sets are split into three big groups: identification data sets, cross validation data sets and 

the test data sets. The data sets are listed in the table T3.3.3-1. 

Identification Data Sets & Cross 

check Data Sets 

Test Data Sets 

Step-1 Step-5 

Step-2 Step-10 

Step-3 Step-11 

Step-4 
 

Step-6 
 

Step-7 
 

Step-8 
 

Step-9 
 

Step-12 
 

Step-13 
 

Step-14 
 

Step-15 
 

T3.3.3-1 

The identification data sets and cross check data sets are used to group and identify the model, 

and cross validate for the next iteration calculation. The test data sets are only used by the end 

of the group identification for the final result check. 

3.3.3.1 The 1st iteration result of group identification 

As explained in the previous chapter, the 1st iteration of grouping is based on the following table 

T3.3.3.1-1: 



Grouping Add-

on Data Set \ 

Grouping Base 

Data Set 

6 7 8 9 12 13 14 

1 M-6-1 M-7-1 M-8-1 M-9-1 M-12-1 M-13-1 M-14-1 

2 M-6-2 M-7-2 M-8-2 M-9-2 M-12-2 M-13-2 M-14-2 

3 M-6-3 M-7-3 M-8-3 M-9-3 M-12-3 M-13-3 M-14-3 

4 M-6-4 M-7-4 M-8-4 M-9-4 M-12-4 M-13-4 M-14-4 

6 - M-7-6 M-8-6 M-9-6 M-12-6 M-13-6 M-14-6 

7 M-6-7 - M-8-7 M-9-7 M-12-7 M-13-7 M-14-7 

8 M-6-8 M-7-8 - M-9-8 M-12-8 M-13-8 M-14-8 

9 M-6-9 M-7-9 M-8-9 - M-12-9 M-13-9 M-14-9 

12 M-6-12 M-7-12 M-8-12 M-9-12 - M-13-12 M-14-12 

13 M-6-13 M-7-13 M-8-13 M-9-13 M-12-13 - M-14-13 

14 M-6-14 M-7-14 M-8-14 M-9-14 M-12-14 M-13-14 - 

15 M-6-15 M-7-15 M-8-15 M-9-15 M-12-15 M-13-15 M-14-15 

T3.3.3.1-1 

And as explained in the previous chapter, the calculation process is similar: 

(1) Identify the model based on the grouped data sets. 

(2) Cross validate the model with the data sets input and generate displacement output 

Xident(n1-n2-nb-nk-m) 

(3) Calculate the RMSD value between the measurement displacement of the validation 

data set (m) and the identified displacement. 

(4) Count the numbers of data sets whose RMSD value is below the threshold line 

(0.01). 

(5) Select the most covered data set groups for the next iteration 

After the above steps, the following table (T3.3.3.1-2) which counting the numbers of cross 

check data sets (Step1 to 15, without Step5, 10 and 11) over the RMSD threshold value of 0.01 is 

listed. 

  



Grouping 

Add-on 

Data Set 

\ 

Grouping 

Base 

Data Set 

6 7 8 9 12 13 14 

1 6 7 5 6 6 5 6 

2 4 3 4 4 3 5 5 

3 4 5 4 5 5 3 5 

4 5 6 7 3 4 6 5 

6 x 7 7 7 7 7 6 

7 6 x 7 7 7 7 7 

8 7 7 x 7 7 7 7 

9 7 8 7 x 7 7 7 

12 7 7 7 7 x 7 6 

13 6 6 7 7 6 x 6 

14 6 6 7 7 6 7 x 

15 3 2 5 2 4 4 5 

T3.3.3.1-2 

From the table above, we could see that the combination of data set 7 with 9 shows a very 

outstanding coverage of the cross-check data sets. And some other combination such as data 

set 6-8, 6-9, 6-12, 7-1, 7-6, 7-8, 7-12, 8-4, 8-6, 8-7, etc., are also cover the cross-check data set 7 

out of 12 with RMSD value under 0.01.  

Therefore, for the next step of grouping, the above combination is considered as base data sets. 

3.3.3.2 The 2nd iteration result of group identification 

Based on the 1st iteration, the 2nd iteration is grouping based on the following table T3.3.3.2-1: 

  



Grouping 

Add-on 

Data Set 

\ 

Grouping 

Base 

Data Set 

1 2 3 4 6 7 8 9 12 13 14 15 

6 8 6-8-1 6-8-2 6-8-3 6-8-4 6-8-6 6-8-7 6-8-8 6-8-9 6-8-12 6-8-13 6-8-14 6-8-15 

6 9 6-9-1 6-9-2 6-9-3 6-9-4 6-9-6 6-9-7 6-9-8 6-9-9 6-9-12 6-9-13 6-9-14 6-9-15 

6 12 
6-12-

1 

6-12-

2 

6-12-

3 

6-12-

4 

6-12-

6 

6-12-

7 

6-12-

8 

6-12-

9 

6-12-

12 

6-12-

13 

6-12-

14 

6-12-

15 

7 1 7-1-1 7-1-2 7-1-3 7-1-4 7-1-6 7-1-7 7-1-8 7-1-9 7-1-12 7-1-13 7-1-14 7-1-15 

7 6 7-6-1 7-6-2 7-6-3 7-6-4 7-6-6 7-6-7 7-6-8 7-6-9 7-6-12 7-6-13 7-6-14 7-6-15 

7 8 7-8-1 7-8-2 7-8-3 7-8-4 7-8-6 7-8-7 7-8-8 7-8-9 7-8-12 7-8-13 7-8-14 7-8-15 

7 9 7-9-1 7-9-2 7-9-3 7-9-4 7-9-6 7-9-7 7-9-8 7-9-9 7-9-12 7-9-13 7-9-14 7-9-15 

7 12 
7-12-

1 

7-12-

2 

7-12-

3 

7-12-

4 

7-12-

6 

7-12-

7 

7-12-

8 

7-12-

9 

7-12-

12 

7-12-

13 

7-12-

14 

7-12-

15 

8 4 8-4-1 8-4-2 8-4-3 8-4-4 8-4-6 8-4-7 8-4-8 8-4-9 8-4-12 8-4-13 8-4-14 8-4-15 

8 6 8-6-1 8-6-2 8-6-3 8-6-4 8-6-6 8-6-7 8-6-8 8-6-9 8-6-12 8-6-13 8-6-14 8-6-15 

8 7 8-7-1 8-7-2 8-7-3 8-7-4 8-7-6 8-7-7 8-7-8 8-7-9 8-7-12 8-7-13 8-7-14 8-7-15 

8 9 8-9-1 8-9-2 8-9-3 8-9-4 8-9-6 8-9-7 8-9-8 8-9-9 8-9-12 8-9-13 8-9-14 8-9-15 

8 12 
8-12-

1 

8-12-

2 

8-12-

3 

8-12-

4 

8-12-

6 

8-12-

7 

8-12-

8 

8-12-

9 

8-12-

12 

8-12-

13 

8-12-

14 

8-12-

15 

8 13 
8-13-

1 

8-13-

2 

8-13-

3 

8-13-

4 

8-13-

6 

8-13-

7 

8-13-

8 

8-13-

9 

8-13-

12 

8-13-

13 

8-13-

14 

8-13-

15 

8 14 
8-14-

1 

8-14-

2 

8-14-

3 

8-14-

4 

8-14-

6 

8-14-

7 

8-14-

8 

8-14-

9 

8-14-

12 

8-14-

13 

8-14-

14 

8-14-

15 

9 6 9-6-1 9-6-2 9-6-3 9-6-4 9-6-6 9-6-7 9-6-8 9-6-9 9-6-12 9-6-13 9-6-14 9-6-15 

9 7 9-7-1 9-7-2 9-7-3 9-7-4 9-7-6 9-7-7 9-7-8 9-7-9 9-7-12 9-7-13 9-7-14 9-7-15 

9 8 9-8-1 9-8-2 9-8-3 9-8-4 9-8-6 9-8-7 9-8-8 9-8-9 9-8-12 9-8-13 9-8-14 9-8-15 

9 12 
9-12-

1 

9-12-

2 

9-12-

3 

9-12-

4 

9-12-

6 

9-12-

7 

9-12-

8 

9-12-

9 

9-12-

12 

9-12-

13 

9-12-

14 

9-12-

15 

9 13 
9-13-

1 

9-13-

2 

9-13-

3 

9-13-

4 

9-13-

6 

9-13-

7 

9-13-

8 

9-13-

9 

9-13-

12 

9-13-

13 

9-13-

14 

9-13-

15 

9 14 
9-14-

1 

9-14-

2 

9-14-

3 

9-14-

4 

9-14-

6 

9-14-

7 

9-14-

8 

9-14-

9 

9-14-

12 

9-14-

13 

9-14-

14 

9-14-

15 

12 6 
12-6-

1 

12-6-

2 

12-6-

3 

12-6-

4 

12-6-

6 

12-6-

7 

12-6-

8 

12-6-

9 

12-6-

12 

12-6-

13 

12-6-

14 

12-6-

15 

12 7 
12-7-

1 

12-7-

2 

12-7-

3 

12-7-

4 

12-7-

6 

12-7-

7 

12-7-

8 

12-7-

9 

12-7-

12 

12-7-

13 

12-7-

14 

12-7-

15 

12 8 
12-8-

1 

12-8-

2 

12-8-

3 

12-8-

4 

12-8-

6 

12-8-

7 

12-8-

8 

12-8-

9 

12-8-

12 

12-8-

13 

12-8-

14 

12-8-

15 

12 9 
12-9-

1 

12-9-

2 

12-9-

3 

12-9-

4 

12-9-

6 

12-9-

7 

12-9-

8 

12-9-

9 

12-9-

12 

12-9-

13 

12-9-

14 

12-9-

15 

13 6 
13-6-

1 

13-6-

2 

13-6-

3 

13-6-

4 

13-6-

6 

13-6-

7 

13-6-

8 

13-6-

9 

13-6-

12 

13-6-

13 

13-6-

14 

13-6-

15 

13 7 
13-7-

1 

13-7-

2 

13-7-

3 

13-7-

4 

13-7-

6 

13-7-

7 

13-7-

8 

13-7-

9 

13-7-

12 

13-7-

13 

13-7-

14 

13-7-

15 

13 8 
13-8-

1 

13-8-

2 

13-8-

3 

13-8-

4 

13-8-

6 

13-8-

7 

13-8-

8 

13-8-

9 

13-8-

12 

13-8-

13 

13-8-

14 

13-8-

15 

13 9 
13-9-

1 

13-9-

2 

13-9-

3 

13-9-

4 

13-9-

6 

13-9-

7 

13-9-

8 

13-9-

9 

13-9-

12 

13-9-

13 

13-9-

14 

13-9-

15 

13 12 
13-

12-1 

13-

12-2 

13-

12-3 

13-

12-4 

13-

12-6 

13-

12-7 

13-

12-8 

13-

12-9 

13-12-

12 

13-12-

13 

13-12-

14 

13-12-

15 

13 14 
13-

14-1 

13-

14-2 

13-

14-3 

13-

14-4 

13-

14-6 

13-

14-7 

13-

14-8 

13-

14-9 

13-14-

12 

13-14-

13 

13-14-

14 

13-14-

15 

14 7 
14-7-

1 

14-7-

2 

14-7-

3 

14-7-

4 

14-7-

6 

14-7-

7 

14-7-

8 

14-7-

9 

14-7-

12 

14-7-

13 

14-7-

14 

14-7-

15 

14 8 
14-8-

1 

14-8-

2 

14-8-

3 

14-8-

4 

14-8-

6 

14-8-

7 

14-8-

8 

14-8-

9 

14-8-

12 

14-8-

13 

14-8-

14 

14-8-

15 

14 9 
14-9-

1 

14-9-

2 

14-9-

3 

14-9-

4 

14-9-

6 

14-9-

7 

14-9-

8 

14-9-

9 

14-9-

12 

14-9-

13 

14-9-

14 

14-9-

15 

T3.3.3.2-1 



The same calculation procedure is applied as shown in the 1st iteration. And we obtained a 

RMSD coverage table T3.3.3.2-2: 

Grouping Add-on Data 

Set \ Grouping Base 

Data Set 

1 2 3 4 6 7 8 9 12 13 14 15 

6 8 8 4 4 6 - 7 - 7 7 7 6 5 

6 9 8 6 3 3 - 7 7 - 7 7 7 6 

6 12 6 3 4 4 - 7 7 7 - 6 6 6 

7 1 - 2 6 4 8 - 7 8 7 5 6 3 

7 6 8 3 5 5 - - 7 7 7 6 6 4 

7 8 7 5 4 6 7 - - 8 7 8 7 4 

7 9 8 6 4 5 7 - 8 - 7 7 8 4 

7 12 7 5 4 5 7 - 7 7 - 6 6 5 

8 4 5 5 3 - 6 7 - 5 7 7 6 3 

8 6 8 5 3 6 - 7 - 7 7 7 7 5 

8 7 7 6 4 7 7 - - 7 7 7 7 5 

8 9 8 5 3 4 7 7 - - 7 8 8 3 

8 12 7 8 5 7 7 7 - 7 - 7 6 5 

8 13 7 7 4 7 7 7 - 8 7 - 7 6 

8 14 7 6 4 6 6 7 - 8 7 7 - 6 

9 6 7 4 5 5 - 7 7 - 7 7 7 4 

9 7 6 6 5 6 7 - 7 - 7 7 8 6 

9 8 7 4 4 6 7 7 - - 7 7 7 3 

9 12 7 4 5 5 7 7 7 - - 7 7 6 

9 13 8 5 5 5 7 7 7 - 7 - 7 6 

9 14 7 6 7 6 7 7 8 - 7 7 - 6 

12 6 7 2 4 4 - 7 7 7 - 7 7 4 

12 7 7 6 5 5 6 - 7 7 - 7 7 4 

12 8 8 5 4 6 7 7 - 8 - 7 6 6 

12 9 8 6 4 5 7 7 7 - - 7 7 7 

13 6 7 4 3 6 - 7 7 7 6 - 6 6 

13 7 5 5 4 6 7 - 7 7 6 - 7 5 

13 8 8 7 5 7 7 7 - 8 7 - 7 5 

13 9 7 5 7 6 7 8 7 - 7 - 8 6 

13 12 6 5 4 6 5 6 7 7 - - 6 4 

13 14 7 5 4 5 6 6 7 7 7 - - 6 

14 7 6 6 6 5 6 - 7 7 6 6 - 6 

14 8 6 6 5 6 6 7 - 8 7 7 - 6 

14 9 8 7 6 5 7 8 8 - 7 7 - 6 

T3.3.3.2-2 



Based on the result table, we could observe that although the maximum number of cross-check 

data set whose RMSD number below the threshold keep the same as 8. However, the identified 

model which cover the cross-check data set below RMSD with the number of 8, has largely 

increased. Therefore, to further check the result, the combination which covers 8 data sets has 

been chosen for the next 3rd iteration identification. 

3.3.3.3 The 3rd iteration result of group identification 

In the 3rd iteration identification, the following combination table (T3.3.3.3-1) is chosen, based 

on the 2nd iteration. 

  



 

Grouping Add-

on Data Set \ 

Grouping Base 

Data Set 

1 2 3 4 6 7 8 9 12 13 14 15 

6 8 1 - 6-8-1-2 6-8-1-3 6-8-1-4 - 6-8-1-7 - 6-8-1-9 6-8-1-12 6-8-1-13 6-8-1-14 6-8-1-15 

6 9 1 - 6-9-1-2 6-9-1-3 6-9-1-4 - 6-9-1-7 6-9-1-8 - 6-9-1-12 6-9-1-13 6-9-1-14 6-9-1-15 

7 1 6 - 7-1-6-2 7-1-6-3 7-1-6-4 - - 7-1-6-8 7-1-6-9 7-1-6-12 7-1-6-13 7-1-6-14 7-1-6-15 

7 1 9 - 7-1-9-2 7-1-9-3 7-1-9-4 7-1-9-6 - 7-1-9-8 - 7-1-9-12 7-1-9-13 7-1-9-14 7-1-9-15 

7 6 1 - 7-6-1-2 7-6-1-3 7-6-1-4 - - 7-6-1-8 7-6-1-9 7-6-1-12 7-6-1-13 7-6-1-14 7-6-1-15 

7 8 9 7-8-9-1 7-8-9-2 7-8-9-3 7-8-9-4 7-8-9-6 - - - 7-8-9-12 7-8-9-13 7-8-9-14 7-8-9-15 

7 8 13 7-8-13-1 7-8-13-2 7-8-13-3 7-8-13-4 7-8-13-6 - - 7-8-13-9 7-8-13-12 - 7-8-13-14 7-8-13-15 

7 9 1 - 7-9-1-2 7-9-1-3 7-9-1-4 7-9-1-6 - 7-9-1-8 - 7-9-1-12 7-9-1-13 7-9-1-14 7-9-1-15 

7 9 8 7-9-8-1 7-9-8-2 7-9-8-3 7-9-8-4 7-9-8-6 - - - 7-9-8-12 7-9-8-13 7-9-8-14 7-9-8-15 

7 9 14 7-9-14-1 7-9-14-2 7-9-14-3 7-9-14-4 7-9-14-6 - 7-9-14-8 - 7-9-14-12 7-9-14-13 - 7-9-14-15 

8 6 1 - 8-6-1-2 8-6-1-3 8-6-1-4   8-6-1-7 - 8-6-1-9 8-6-1-12 8-6-1-13 8-6-1-14 8-6-1-15 

8 9 1 - 8-9-1-2 8-9-1-3 8-9-1-4 8-9-1-6 8-9-1-7 - - 8-9-1-12 8-9-1-13 8-9-1-14 8-9-1-15 

8 9 13 8-9-13-1 8-9-13-2 8-9-13-3 8-9-13-4 8-9-13-6 8-9-13-7 - - 8-9-13-12 - 8-9-13-14 8-9-13-15 

8 9 14 8-9-14-1 8-9-14-2 8-9-14-3 8-9-14-4 8-9-14-6 8-9-14-7 - - 8-9-14-12 8-9-14-13 - 8-9-14-15 

8 12 2 8-12-2-1 - 8-12-2-3 8-12-2-4 8-12-2-6 8-12-2-7 - 8-12-2-9 - 8-12-2-13 8-12-2-14 8-12-2-15 

8 13 9 8-13-9-1 8-13-9-2 8-13-9-3 8-13-9-4 8-13-9-6 8-13-9-7 - - 8-13-9-12 - 8-13-9-14 8-13-9-15 

8 14 9 8-14-9-1 8-14-9-2 8-14-9-3 8-14-9-4 8-14-9-6 8-14-9-7 - - 8-14-9-12 8-14-9-13 8-14-9-14 8-14-9-15 

9 7 14 9-7-14-1 9-7-14-2 9-7-14-3 9-7-14-4 9-7-14-6 - 9-7-14-8 - 9-7-14-12 9-7-14-13 - 9-7-14-15 

9 13 1 - 9-13-1-2 9-13-1-3 9-13-1-4 9-13-1-6 9-13-1-7 9-13-1-8 - 9-13-1-12 - 9-13-1-14 9-13-1-15 

9 14 8 9-14-8-1 9-14-8-2 9-14-8-3 9-14-8-4 9-14-8-6 9-14-8-7 - - 9-14-8-12 9-14-8-13 9-14-8-14 9-14-8-15 

12 8 1 - 12-8-1-2 12-8-1-3 12-8-1-4 12-8-1-6 12-8-1-7 - 12-8-1-9 - 12-8-1-13 12-8-1-14 12-8-1-15 

12 8 9 12-8-9-1 12-8-9-2 12-8-9-3 12-8-9-4 12-8-9-6 12-8-9-7 - - - 12-8-9-13 12-8-9-14 12-8-9-15 

12 9 1 - 12-9-1-2 12-9-1-3 12-9-1-4 12-9-1-6 12-9-1-7 12-9-1-8 - - 12-9-1-13 12-9-1-14 12-9-1-15 

13 8 1 - 13-8-1-2 13-8-1-3 13-8-1-4 13-8-1-6 13-8-1-7 - 13-8-1-9 13-8-1-12 - 13-8-1-14 13-8-1-15 

13 8 9 13-8-9-1 13-8-9-2 13-8-9-3 13-8-9-4 13-8-9-6 13-8-9-7 - - 13-8-9-12 - 13-8-9-14 13-8-9-15 

13 9 7 13-9-7-1 13-9-7-2 13-9-7-3 13-9-7-4 13-9-7-6 - 13-9-7-8 - 13-9-7-12 - 13-9-7-14 13-9-7-15 

13 9 14 13-9-14-1 13-9-14-2 13-9-14-3 13-9-14-4 13-9-14-6 13-9-14-7 13-9-14-8 - 13-9-14-12 - - 13-9-14-15 

14 8 9 14-8-9-1 14-8-9-2 14-8-9-3 14-8-9-4 14-8-9-6 14-8-9-7 - - 14-8-9-12 14-8-9-13 - 14-8-9-15 

14 9 1 - 14-9-1-2 14-9-1-3 14-9-1-4 14-9-1-6 14-9-1-7 14-9-1-8 - 14-9-1-12 14-9-1-13 - 14-9-1-15 

14 9 7 14-9-7-1 14-9-7-2 14-9-7-3 14-9-7-4 14-9-7-6 - 14-9-7-8 - 14-9-7-12 14-9-7-13 - 14-9-7-15 

14 9 8 14-9-8-1 14-9-8-2 14-9-8-3 14-9-8-4 14-9-8-6 14-9-8-7 - - 14-9-8-12 14-9-8-13 - 14-9-8-15 

T3.3.3.3-1 

The same calculation procedure is applied as shown in the previous iteration. And we obtained a 

RMSD coverage table T3.3.3.3-2: 



Grouping 

Add-on Data 

Set \ Grouping 

Base Data Set 

1 2 3 4 6 7 8 9 12 13 14 15 

6 8 1 - 4 4 7 - 8 - 8 8 7 7 6 

6 9 1 - 6 4 4 - 8 8 - 8 8 8 6 

7 1 6 - 4 5 6 - - 8 8 7 7 7 4 

7 1 9 - 5 4 6 8 - 6 - 8 8 7 5 

7 6 1 - 4 5 7 - - 8 8 8 7 7 4 

7 8 9 6 7 7 5 7 - - - 7 8 8 6 

7 8 13 7 5 5 7 7 - - 7 7 - 6 6 

7 9 1 - 5 5 6 8 - 7 - 8 8 7 4 

7 9 8 7 6 7 6 8 - - - 7 7 8 7 

7 9 14 7 6 5 6 7 - 8 - 7 7 - 7 

8 6 1 - 5 4 7 - 8 - 7 8 8 7 5 

8 9 1 - 4 3 5 7 6 - - 7 7 7 4 

8 9 13 8 7 5 6 7 8 - - 8 - 8 6 

8 9 14 7 7 5 6 7 8 - - 7 8 - 6 

8 12 2 5 - 2 5 5 6 - 7 - 6 6 3 

8 13 9 8 6 6 6 7 8 - - 8 - 8 6 

8 14 9 8 7 5 6 7 8 - - 7 7 - 6 

9 7 14 7 6 6 6 7 - 8 - 7 7 - 7 

9 13 1 - 5 4 6 8 7 7 - 8 - 8 6 

9 14 8 7 5 6 6 7 8 - - 7 8 - 5 

12 8 1 - 5 4 7 8 7 - 7 - 7 7 6 

12 8 9 7 6 6 5 7 7 - - - 8 7 7 

12 9 1 - 7 4 5 8 7 7 - - 8 8 6 

13 8 1 - 6 6 6 8 7 - 8 8 - 7 5 

13 8 9 8 6 7 6 7 7 - - 7 - 8 6 

13 9 7 8 6 5 6 7 - 8 - 7 - 7 7 

13 9 14 7 6 4 6 7 8 8 - 7 - - 8 

14 8 9 7 6 6 7 7 7 - - 8 7 - 6 

14 9 1 - 6 5 6 8 8 7 - 7 8 - 5 

14 9 7 7 7 6 7 7 - 8 - 8 7 - 7 

14 9 8 7 6 6 6 7 8 - - 7 8 - 7 

T3.3.3.3-2 

It could be observed that, the maximum number of models which have RMSD below threshold 

still keep the same as 8. This indicate that the identification may approximate the best solution 

situation. And it is worthy to further deeply trace the model with the test data sets. 



3.3.3.4 The test result of group identification 

In this sub-chapter, the target is to verify the identification model with the pre-selected data 

sets. The identification model is chosen with the following table T3.3.3.4-1: 

Identification Model\Test Data Set nb nk 
Test 

5 

Test 

10 

Test 

11 

6 3 7 0.168 0.0904 0.0054 

6-8 4 3 0.094 0.0383 0.0253 

6-8-1 1 6 0.114 0.0431 0.0077 

6-8-1-12 1 5 0.067 0.0276 0.0068 

T3.3.3.4-1 

In the table T3.3.3.4-1, the first column represents the data set used for model identification. 

And the column nb and nk represent the identification parameter. The Test represents the data 

set used for testing. And in the table, we could see the RMSD result calculated. 

Hereby, it is necessary to emphasis that the test data set is only tested after the model is 

identified. The process of grouping from single data sets (e.g. data set 6) to the combination of 

four data sets with order (e.g. data set group 6-8-1-12) has no influence from the test data sets. 

This is very important for the independency of the result.  

We could see from the result RMSD value that: with the grouping of the data sets, the identified 

model shows a decreasing trend of RMSD, which represents an increasing trend of accuracy 

(Fig.3.3.3.4-1). 

 

Fig.3.3.3.4-1 

And for a more directly over view of the result, in the Fig.3.3.3.4-2, the displacement of the 

identified model against the displacement from real measurement for the test data set 5, 10 and 

11 is shown. 
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Fig.3.3.3.4-2(1)-(2) 

 

Fig.3.3.3.4-2(3)-(4) 

In the plot we could see that the accuracy of the model is largely increased, as the identified 

model result (red dash line) is approaching the measurement result (blue line). And the also the 

deviation of the final stable value is also narrowing from the sub-plot (1) to (4), which represent 

the model 6 to 6-9-1-12. 

Up to here, we could conclude that the combination of the data sets for identification could 

largely help to improve the coverage of the identified model. 

Further, we would like to check how is the model result test against all the data sets, in order to 

understand if the model could cover all the situation. And in the next 2 chapter (Chapter 3.4.1 

and 3.4.2), we will identify two combination models based the step data sets (Combination 

Model 1), and sinusoidal and step data sets (Combination Model 2). 

  



3.4 Grouped measurement system identification 

In the last chapter, the grouped identification method is proved to largely improve the coverage 

of the model to the data sets. In this chapter, we would like to stepwise check the group 

identified model against all the data sets, in order to further understand the improvement 

process, and the detailed coverage. 

3.4.1 Step based grouped identified system 

Same in the chapter 3.3, we applied the grouping method to identified a model, which we 

named as Combination Model 1. And the model is actually identified stepwise based on the 

combination of datasets: 6, 9, 1, 8. 

  Step Data Coverage 

6 6 

6-9 7 

6-9-1 8 

6-9-1-8 8 

T3.4.1-1 

From the table T3.4.1-1, we could see that with the increasing of the data set combination, the 

coverage of the step data sets is increasing (Fig.3.4.1-1). However, after the iteration 3, the 

coverage is saturated. This means, the maximum coverage of the identified model is up to its 

limitation, considering the minimum requirement of the RMSE value (accuracy). 

 

Fig.3.4.1-1 

To detailly understand the trend, the RMSE values of the 4 models against each data sets are 

listed in the following table T3.4.1-2,3: 
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8

9

1 2 3 4

Coverage Number

Step Data



  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

6 0.017041463 0.033887637 0.050753572 0.070468079 0.113190061 0.000106189 0.003778575 0.006694683 0.010341803 0.042854148 0.007286747 0.002637115 0.004300515 0.005409193 0.037543559 

6-9 0.016688242 0.026020847 0.043220432 0.063691854 0.108298822 0.002420408 0.007225938 0.003842788 0.005964418 0.0384747 0.001919067 0.007522354 0.009173517 0.009706264 0.033750345 

6-9-1 0.007463 0.025534 0.042588 0.060849 0.10304 0.00775 0.007622 0.003875 0.004861 0.034787 0.009165 0.008193 0.009678 0.011065 0.030792 

6-9-1-8 0.007295512 0.024772831 0.042670237 0.063569911 0.108151586 0.008123489 0.008499559 0.004105536 0.005488927 0.039521207 0.009209917 0.00890172 0.009935087 0.009749277 0.033236488 

T3.4.1-2 

And for Sinusoidal data sets: 

  

  1 2 3 4 5 6 7 8 9 10 11 12 

6 0.026011653 0.020540931 0.031365056 0.041262816 0.056660472 0.026122504 0.021813263 0.039765336 0.053880109 0.072408547 0.010967865 0.017432715 

6-9 0.019764191 0.011279217 0.013617633 0.017981558 0.022075052 0.019854854 0.010593411 0.008957487 0.013288128 0.016778805 0.011450924 0.018013519 

6-9-1 0.019146214 0.005394033 0.004794244 0.007684831 0.010931175 0.019420342 0.006669698 0.007096035 0.012307929 0.016380135 0.007719219 0.010556885 

6-9-1-8 0.017028956 0.003693736 0.004015428 0.005651887 0.007700901 0.017246544 0.005529444 0.008062551 0.011704686 0.014353761 0.008450916 0.01316499 

 

  13 14 15 16 17 18 19 20 21 22 23 

6 0.068382329 0.088391862 0.103975208 0.018735767 0.01747712 0.045309965 0.030287721 0.023571335 0.022725503 0.041262816 0.022746709 

6-9 0.032959805 0.050775458 0.065686674 0.016403894 0.016499237 0.031503153 0.025094159 0.020324969 0.022011123 0.017981558 0.02334468 

6-9-1 0.056578444 0.067908015 0.016161805 0.014146467 0.03207536 0.024791549 0.02016834 0.020991435 0.007684831 0.025194769 0.056578444 

6-9-1-8 0.033936222 0.044618256 0.051911729 0.013985778 0.011519017 0.035899631 0.02319617 0.019677712 0.020140539 0.005651887 0.02368942 

T3.4.1-3 

It would be clearly seen that the data sets which has the lower RMSE (higher accuracy) in the beginning of the grouping model, are increasing its 

RMSE value (decreasing in accuracy) (e.g. the step data set Nr.6, 14) compared to the end of the grouping model, to compromise with more 

coverage of the data sets (e.g. the step data sets Nr.1, 9, sin data sets Nr. 16, 22, etc.). And even though, some data sets are still not covered 

with the threshold value (e.g. the step data sets Nr.3, 4, 5, sin data sets 1, 6, 10, etc.). Based on this, it could be more interesting to check the 

figure directly. 

 



 

Fig.3.4.1-2(1) 



 

 

Fig.3.4.1-2(2) 



 

 

Fig.3.4.1-2(3) 



 

 

Fig.3.4.1-2(4) 

 

From the figures above, we could observe the following trend: 

1. As designed, the coverage of the cross-check data sets is increasing with more identify data 

sets combination. 

2. Although the coverage is increasing and finally saturated with the number of coverages, it is 

still not enough to cover all the cross-check data sets. 

3. With the increasing of the identify data sets combination, some cross-check data sets show 

a slightly decrease in accuracy (increasing in RMSE value), which could be considered as a 

compromise for coverage. 

In the next sub-chapter, an identified combination model (Combination Model 2) based on both 

step and sinusoidal data sets will be shown. 



3.4.2 Step and sinusoidal based grouped identified system 

In this chapter, the result of identified combination model (Combination Model 2) based on step 

and sinusoidal data sets will be shown and discussed. 

Same as last chapter, the model 2 is also identified based the same procedure, with the 

combination of data sets: 20, 16, 9, 35, 7. The data sets 20, 16, 35 are sinusoidal data sets, and 

the 7 and 9 are step data sets. 

The coverage of the model stepwise result is shown in table T3.4.2-1: 

  
Step & Sin Data 

Coverage 

20 14 

20-16 18 

20-16-9 19 

20-16-9-5 21 

20-16-9-5-35 23 

20-16-9-5-35-7 23 

T3.4.2-1 

And the increasing trend of number of data sets coverage could be shown as Fig.3.4.2-1: 

 

Fig.3.4.2-1 

And in the following table T3.4.2-1, the RMSE value decreasing trend could be observed: 

0
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10

15
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25

Step & Sinusoidal Model Coverage



 Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

20 0.009 0.02 0.037 0.053 0.059 0.008 0.014 0.01 0.009 0.025 0.008 0.013 0.016 0.018 0.025 

20-16 0.045 0.008 0.044 0.047 0.078 0.026 0.035 0.016 0.016 0.018 0.017 0.026 0.023 0.026 0.031 

20-16-9 0.01 0.007 0.045 0.062 0.096 0.008 0.032 0.01 0.007 0.027 0.01 0.022 0.019 0.017 0.027 

20-16-9-5 0.008 0.004 0.047 0.07 0.045 0.021 0.031 0.009 0.011 0.036 0.02 0.023 0.021 0.017 0.033 

20-16-9-5-35 0.006 0.002 0.046 0.059 0.005 0.01 0.031 0.009 0.005 0.069 0.009 0.027 0.022 0.02 0.047 

20-16-9-5-35-7 0.01 0.003 0.046 0.06 0.006 0.007 0.028 0.009 0.004 0.068 0.006 0.024 0.02 0.02 0.045 

 

 Sin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

20 0.011 0.003 0.002 0.002 5E-04 0.012 0.006 0.004 0.003 0.003 0.017 0.024 0.015 0.03 0.052 

20-16 7E-04 0.007 0.003 0.002 9E-04 0.002 0.009 0.006 0.005 0.004 0.014 0.019 0.021 0.041 0.061 

20-16-9 0.002 0.003 0.002 0.003 0.002 0.004 0.005 0.004 0.003 0.003 0.012 0.014 0.028 0.046 0.065 

20-16-9-5 0.001 0.003 0.004 0.006 0.003 0.002 0.004 0.004 0.01 0.009 0.015 0.005 0.043 0.06 0.071 

20-16-9-5-35 0.004 0.006 0.003 0.007 0.002 0.005 0.005 0.004 0.009 0.005 0.011 0.006 0.045 0.06 0.075 

20-16-9-5-35-7 0.004 0.006 0.005 0.006 0.002 0.005 0.006 0.004 0.009 0.008 0.01 0.006 0.041 0.058 0.071 

 

  16 17 18 19 20 21 22 23 

20 0.017 0.021 0.029 0.019 0.019 0.021 0.002 0.037 

20-16 0.008 0.018 0.021 0.005 0.021 0.036 0.002 0.038 

20-16-9 0.006 0.016 0.029 0.007 0.017 0.021 0.003 0.032 

20-16-9-5 0.009 0.013 0.039 0.007 0.016 0.019 0.006 0.031 

20-16-9-5-35 0.005 0.017 0.04 0.007 0.01 0.017 0.007 0.046 

20-16-9-5-35-7 0.005 0.016 0.033 0.008 0.01 0.023 0.006 0.038 

T3.4.2-1 

And in the following figure Fig.3.4.2-1, we could see the progress with the cross-check data sets step and sinusoidal. 



 

 

Fig.3.4.2-1(1) 



 

Fig.3.2.2-1(2) 



 

 

Fig.3.4.2-1(3) 



 

Fig.3.2.2-1(4) 



 

 

Fig.3.2.2-1(5) 

Same as the previous subchapter, the trend is also clear: 

1. The coverage of the Combination Model 2 is increasing as designed. 

2. The coverage number of the Combination Model come to saturation, even though more 

identification data sets are added. 

3. With coverage number increasing, some data sets are shown a decreasing in accuracy, at 

the same time more data sets are shown as increasing in accuracy. Therefore, a compromise 

situation is generated. 

In the next subchapter, the discussion of the combination will be given. 



3.4.3 Discussion in grouped identified system 

Based on the previous chapters, the following points could be observed and summarized as: 

1. The data set combination method is working well to identify a model to cover more data 

sets. 

2. With the combination of identified data sets increasing, the cross-check data sets show a 

different trend: the uncovered data sets are increasing in accuracy (Fig.3.4.3-1(1) (2)), the 

covered data sets are decreasing in accuracy (Fig.3.4.3-2(1) (2)). And it comes to saturation, 

as no more coverage could be reached, even though not all the data sets are covered. 

3. Some of the data sets show a great different than the other data sets, where they could not 

be covered by any of the model, which means, not a unique model could cover all the data 

sets, even the compromising of limited accuracy is applied. 

The support evidence for point 2 could be seen in the following figures. 

 

 

Fig.3.4.3-1(1) Increasing of accuracy for data set 5, against increasing of combination models 

 



Fig.3.4.3-1(2) Increasing of accuracy for data set 9, against increasing of combination models 

 

Fig.3.4.3-2(1) Decreasing of accuracy for data set 22, against increasing of combination models 



 

Fig.3.4.3-2(2) Decreasing of accuracy for data set 32, against increasing of combination models 

From those data sets, the compromise between the high accuracy and low accuracy data sets 

comes to a general point, that the high accuracy data sets sacrifice its accuracy in order to cover 

more data sets, which in the result plot Fig.3.2.2-1(5) and Fig.3.4.1-2(4). 

However, this compromise could only work with the data sets that have higher similarity. This 

means, the compromise could not cover the data sets which have lower similarity. The base of 

this hypothesis, are based on the phenomenon that different models cover different data sets 

(T.3.4.3-1, Fig.3.4.3-3). 
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Coverag

e Nr. 

1   0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7 

2 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0   1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

4 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 1 0 0 1   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

6 0 0 0 0 0   1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

7 1 0 0 0 0 0   0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

8 1 0 0 0 0 0 0   0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 

9 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

10 0 0 0 0 0 1 0 0 0   1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5 

11 0 0 0 0 0 1 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

12 0 0 0 0 0 1 1 1 0 0 1   1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

13 0 0 0 0 0 0 0 0 0 0 0 1   0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 7 

14 0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 1 0 0 0 0   1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 7 

17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 7 

18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1   1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 10 

19 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1   1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 13 

20 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1   0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 13 

21 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0   1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 13 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1   1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 14 

24 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1   1 0 0 1 0 0 0 0 0 0 0 0 1 0 14 

25 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 7 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1   1 0 0 0 0 0 0 0 0 0 1 0 9 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1   0 0 0 1 0 0 0 0 0 1 0 7 

28 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 3 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 7 

31 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0   0 0 0 1 0 0 0 13 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1   0 1 0 0 1 0 11 

33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 1 

34 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0   0 0 1 0 12 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1   0 1 0 14 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0   0 0 7 

37 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0   0 13 

38 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   2 
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T.3.4.3-1(1) Identified Model vs Data sets (1: below RMSE threshold, 0: over RMSE threshold)



  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

6 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6-9 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6-9-1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

6-9-1-

8 
1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

T.3.4.3-1(2) Data sets covered by model 1 (1: below RMSE threshold, 0: over RMSE threshold) 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

20 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

20-

16 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 

20-

16-9 
1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 

20-

16-9-

5 

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 

20-

16-9-

5-35 

1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 

20-

16-9-

5-35-

7 

1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 

 

T.3.4.3-1(3) Data sets covered by model 2 (1: below RMSE threshold, 0: over RMSE threshold)



From the table T.3.4.3-1(1), it could be easily seen that, the step data sets: 2, 3, 4, 5, 9, 10, and 

the sinusoidal data sets: 13, 14, 15, 17, 18, 19, 20, 21 and 23 are not easy to be covered with the 

model identified from the other single data sets. And the model identified based on single step 

data sets: 2, 3, 4, 5, 6, 9, 10, 11, 14, sinusoidal data sets: 7, 13, 14, 18, 23 could cover even less 

data sets. From the both ways, we could find out the data sets: 2, 3, 4, 5, 9, 10 of step, 13, 14, 

18, 23 of sinusoidal data sets are quite independent data sets from the others. And this trend is 

even proved in the combination results table T3.4.3-1(2) and (3).  

Based on the observation above, the hypothesis Point 3 could be supported and proved that, 

based on the data sets, it is not possible to find out a unique model which could cover all the 

data sets. Instead, several model with high accuracy to cover parts of the data sets could be 

found: 

 

Fig.3.4.3-3(1) Combination Model 1 (6-9) 

 



Fig.3.4.3-3(2) Combination Model 2 

 

Fig.3.4.3-3(3) Combination Model 2 (20) 

Further to have a well-covered data sets, the following table T3.4.3-2 of data sets to models are 

applied, and the figure could be check in Fig.3.4.3-4. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

20-16-9-5-

35-7 
  x     x                     

6-9-1-8 x           x x x   x x x x x 

6-9-1                   x           

6-9       x   x                   

20     x                         

T3.4.3-2(1) Model to Step data sets 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

20-16-9-5-

35-7 
x         x         x         x     x         

20-16-9-5   x         x                                 

6-9-1                                         x   x 

20     x x x     x x x   x x x x   x x   x   x   

T3.4.3-2(2) Model to Sinusoidal data sets 



 

Fig.3.4.3-4(1) Sinusoidal and Step data sets with model (Marked) 



 

Fig.3.4.3-4(1) Sinusoidal and Step data sets with model 

Finally, the reason of lower similarity could due to the following reason: 

1. The welding gun system has some unknown parameters change for those data sets, which 

lead to a change in the system behavior. 

2. The current is not the only determination factor for the displacement. There should be some 

missing additional inputs. 

  

  



 

4 Conclusion 

In this thesis, a method of the method of Non-linear Hammerstein-Weiner Model is applied to 

an servo-motor driven arc-robot, in order to identify a model for the further simulation works. 

By considering the input current and displacement as output, with limited number of 

measurements, the identification process used a measurement-combination mothed to improve 

the accuracy of the identified model, and use the RMSD and coverage number of test 

measurements to select the model. Finally, several accurate models with enough accuracy are 

identified to cover the different data sets, and the identified process could be considered as an 

applicable process for the limited measurement identification situation.  

It could be concluded with the following points: 

⚫ The Non-linear Hammerstein-Weiner method could be used for identification of the servo-

motor system 

⚫ The identification process with a well-covered data sets is necessary for improving the 

performance of the identified model 

⚫ With the number of data sets increasing, the accuracy of the identified model is increasing. 

⚫ With the limited number of data sets for identification, but careful designed process, could 

lead to an accurate enough model for the fast industry using. 

⚫ Several models are identified instead of a single model, due to the possible missing of the 

parameters or the system unknown changes. 
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6 Appendix 

6.1 MATLAB Code for Simulated servo-motor system 

In the following part, the MATLAB code is attached. The result is packed and save as sperate 5 

folders of 1A to 5A, and the identified model is named as [nb,nk,1] where nb and nk are of range 

1 to 10, e.g. SYS_identi-1-3-1.mat. And file “Displacement_Identi.mat” represent the simulate 

result of the identified system. 

6.1.1 Code for system identification 

1 %% Data Set Generation 

2 Input_Current_Simu = Input_current.data; 

3 Output_Displacement_Simu = output_displacement.data; 

4 Identi_DataSet = 

iddata(Output_Displacement_Simu,Input_Current_Simu); 

5   

6 %% System Identification with NLHW 

7 for nb = 1:10       %combination of parameter nb and nk, 

identification of the NLHW model 

8     for nk = 1:10 

9  %% System identification 

10     SYS_identi = nlhw(Identi_DataSet,[nb,nk,1]); % NLHW 
identification and model generation 

11  %% Saving of the model    
12     str1 = strcat('SYS_identi-',num2str(nb),'-',num2str(nk),'-

1','.mat'); 

13     savefile = str1; 
14     save(savefile,'SYS_identi'); 
15     end 
16 end 

 

6.1.2 Simulate identified system 

6.1.2.1 Code for simulate identified system 

1 %% Load current input 

2 Input_Current_Simu = Input_current.data; 

3 Output_Displacement_Simu = output_displacement.data; 

4 %% Load the identification model and simulate with current input 

5 for nb = 1:10       %combination of parameter nb and nk of the NLHW 

model 

6     for nk = 1:10 

7         n = (nb-1)*10+nk; % number of identified model 

8     str1 = strcat('SYS_identi-',num2str(nb),'-',num2str(nk),'-

1','.mat'); 

9     loadfile = str1; 

10     load(loadfile); % load the identified model with parameter of 
[nb, nk, 1] 



11                     % the identified model is named as "SYS_identi" 
12     %% Simulate the identified system with the current input 
13     Output_Displacement_Identi = 

sim(SYS_identi,Input_Current_Simu);    %simulate the displacement of 

the identified model [nb,nk,1] 

14     Displacement_Identi(n,1:length(Output_Displacement_Identi)) = 
Output_Displacement_Identi';                %save the result to a 

matrix 

15     end 
16 end 
17  %% Saving of the result    
18     str1 = strcat('Displacement_Identi.mat'); 
19     savefile = str1; 
20     save(savefile,'Displacement_Identi'); 
 

6.1.3 Code for RMSE calculation 

1 %% Load simulated displacement  

2 Output_Displacement_Simu = output_displacement.data; 

3 %% Load identified displacement and calculation of RMSE result 

4 for nb = 1:10       %combination of parameter nb and nk of the NLHW 

model 

5     for nk = 1:10 

6         n = (nb-1)*10+nk; % number of identified model 

7         Output_Displacement_Ident = Displacement_Identi(n,:); 

8         RMSE = norm (Output_Displacement_Ident(:)-

Output_Displacement_Simu(:)) / sqrt (length 

(Output_Displacement_Ident)); % RMSE Calculation 

9         RMSE_Result(n,1) = RMSE'; 

10     end 
11 end 
12  %% Saving of the result    
13     str1 = strcat('RMSE_Result.mat'); 
14     savefile = str1; 
15     save(savefile,'RMSE_Result'); 
 

Code for real measurement system 

6.1.3.1 Code for identification of single measurement for step 1 to 3 

1 for n = 1:1:15 

2 %% Create the data set for identification {x, i}n 

3 DspK_Output_Identi = x_Step_Aft_0_All(1:200,n); 

4 i_Input_Identi = i_Step_Aft_0_All(1:200,n); 

5 Id_nlhw_Input=iddata(DspK_Output_Identi,i_Input_Identi); 

6 %% System Identification based on data set {x, i}n, with parameter 

nb and nk, [1,10] 

7 for nb=1:10 

8     for nk=1:10 

9 %% Identification of the NLHW Model 

10          NLHW_Step_model=nlhw(Id_nlhw_Input,[nb,nk,1]); 



11 %% Simulate displacement of the NLHW Model with current input  
12          

x_Step_identi=sim(NLHW_Step_model,i_Step_Aft_0_All(1:200,n)); 

13 %% RMSE calculation    
14         nn = (nb-1)*10+nk 
15          RMSE_Step_nlhw_Cross(nn,n)=norm (x_Step_Aft_0_All(1:200,n)-

x_Step_identi) / sqrt (length (x_Step_Aft_0_All(1:200,n))); 

16  end 
17 end 
18 end 
 

6.1.3.2 Code for identification of single measurement for step 1 to 5 

1 for n = 1:1:15 

2      

3 DspK_Output_Identi = x_Step_Aft_0_All(1:200,n); 

4 i_Input_Identi = i_Step_Aft_0_All(1:200,n); 

5 Id_nlhw_Input=iddata(DspK_Output_Identi,i_Input_Identi); 

6   

7 for nb=1:10 

8     for nk=1:10 

9          NLHW_Step1=nlhw(Id_nlhw_Input,[nb,nk,1]); 

10          x_Step0=sim(NLHW_Step1,Id_nlhw_Input); 
11          x_Step_Tx=x_Step0.y; 
12          x_Step1=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,1)); 
13          x_Step2=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,2)); 
14          x_Step3=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,3)); 
15          x_Step4=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,4)); 
16          x_Step5=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,5)); 
17          x_Step6=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,6)); 
18          x_Step7=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,7)); 
19          x_Step8=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,8)); 
20          x_Step9=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,9)); 
21          x_Step10=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,10)); 
22          x_Step11=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,11)); 
23          x_Step12=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,12)); 
24          x_Step13=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,13)); 
25          x_Step14=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,14)); 
26          x_Step15=sim(NLHW_Step1,i_Step_Aft_0_All(1:200,15)); 
27           
28          nn =(n-1)*100+(nb-1)*10+nk 
29           
30   
31          RMSE_Step_nlhw(nn,1)=norm (x_Step_Aft_0_All(1:200,1)-

x_Step1) / sqrt (length (x_Step_Aft_0_All(1:200,1))); 

32          RMSE_Step_nlhw(nn,2)=norm (x_Step_Aft_0_All(1:200,2)-
x_Step2) / sqrt (length (x_Step_Aft_0_All(1:200,2))); 

33          RMSE_Step_nlhw(nn,3)=norm (x_Step_Aft_0_All(1:200,3)-
x_Step3) / sqrt (length (x_Step_Aft_0_All(1:200,3))); 

34          RMSE_Step_nlhw(nn,4)=norm (x_Step_Aft_0_All(1:200,4)-



x_Step4) / sqrt (length (x_Step_Aft_0_All(1:200,4))); 

35          RMSE_Step_nlhw(nn,5)=norm (x_Step_Aft_0_All(1:200,5)-
x_Step5) / sqrt (length (x_Step_Aft_0_All(1:200,5))); 

36          RMSE_Step_nlhw(nn,6)=norm (x_Step_Aft_0_All(1:200,6)-
x_Step6) / sqrt (length (x_Step_Aft_0_All(1:200,6))); 

37          RMSE_Step_nlhw(nn,7)=norm (x_Step_Aft_0_All(1:200,7)-
x_Step7) / sqrt (length (x_Step_Aft_0_All(1:200,7))); 

38          RMSE_Step_nlhw(nn,8)=norm (x_Step_Aft_0_All(1:200,8)-
x_Step8) / sqrt (length (x_Step_Aft_0_All(1:200,8))); 

39          RMSE_Step_nlhw(nn,9)=norm (x_Step_Aft_0_All(1:200,9)-
x_Step9) / sqrt (length (x_Step_Aft_0_All(1:200,9))); 

40          RMSE_Step_nlhw(nn,10)=norm (x_Step_Aft_0_All(1:200,10)-
x_Step10) / sqrt (length (x_Step_Aft_0_All(1:200,10))); 

41          RMSE_Step_nlhw(nn,11)=norm (x_Step_Aft_0_All(1:200,11)-
x_Step11) / sqrt (length (x_Step_Aft_0_All(1:200,11))); 

42          RMSE_Step_nlhw(nn,12)=norm (x_Step_Aft_0_All(1:200,12)-
x_Step12) / sqrt (length (x_Step_Aft_0_All(1:200,12))); 

43          RMSE_Step_nlhw(nn,13)=norm (x_Step_Aft_0_All(1:200,13)-
x_Step13) / sqrt (length (x_Step_Aft_0_All(1:200,13))); 

44          RMSE_Step_nlhw(nn,14)=norm (x_Step_Aft_0_All(1:200,14)-
x_Step14) / sqrt (length (x_Step_Aft_0_All(1:200,14))); 

45          RMSE_Step_nlhw(nn,15)=norm (x_Step_Aft_0_All(1:200,15)-
x_Step15) / sqrt (length (x_Step_Aft_0_All(1:200,15))); 

46           
47   
48          RMSE_Step_nlhw(nn,16) = mean(RMSE_Step_nlhw(nn,1:15)); 
49          RMSE_Step_nlhw(nn,17) = min(RMSE_Step_nlhw(nn,1:15)); 
50          RMSE_Step_nlhw(nn,18) = max(RMSE_Step_nlhw(nn,1:15)); 
51   
52  end 
53 end 
54 end 
 


