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Abstract

This final work presents a new tool for the rapid calculation of the Minimum Orbital
Intersection Distance (MOID) evolution between objects orbiting the Earth. It is primarily
intended as a filtering stage (the second filtering stage proposed by Hoots) for the assessment
of the collision risk between a selected object and a huge number of detected and potentially
dangerous space debris.

The tool combines:

• The speed of a new orbit propagator developed by the Space Dynamics Group of the
Technical University of Madrid (SDG-UPM) called DROMO (SDG-DROMO);

• The rapidity of MOID computation given by a new available routine developed by the
same group (SDG-MOID).

The result is a routine (SDG-DROMOID) which sequentially applies the former tools. This
modular design guarantees the possibility of an easy replacement of any of the tools whenever
an improved versions were available.

Briefly, the modus operandi is the following:

1. Download of the TLE list given by the NORAD for a huge number of space debris
(ideally all the public objects tracked by the NORAD).

2. Propagation of every object and the primary object for a given period of time. This
propagation passage is made considering only the Main Problem (the analysis of the
perturbed motion of an object under the influence of the J2 term of the Geopotential
expansion).

3. Calculation of the MOID at every step of time where the two objects osculating orbits
are available.

4. Record of the evolution of the MOID between the primary and the space debris given
by the NORAD in the studied period of time.

5. Analysis of the MOID variation in the selected period and possible conclusions that
could be drawn (MOID decrease or increase, global minimum of the MOID, ability to
discard objects without any possibility of impact in the considered period).

Between all spacecraft, the International Space Station (ISS) is an object of particular
interest for its relevance. For this reason, the method is developed and tested using the ISS
as main target.
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1 The Space Debris problem

After 60 years of space travel history a new threat for space missions has become of capital
importance. Since many years, Low Earth Orbit (LEO) spacecraft are facing a problem which
has arisen in the already challenging mission of orbiting the Earth. The ever growing population
of space debris (or space junk), especially in the LEO zone, is posing serious issues to the survival
of man made objects in space. Every mission planner has now to take into account the possibility
of the satellite to collide with relative small pieces of debris which, travelling at orbital speeds,
could jeopardise the survival of the mission.

The ability to predict possible collision risks is fundamental. A lot of effort is being made
among the scientific community in the development of effective and powerful tools to compute
and assess collision risks between spacecraft and space debris. These tools permit to choose the
correct avoidance manoeuvres in order to prevent space collisions which mean both the loss of
the mission and the formation and spreading of new dangerous space debris. For this reason, in
a more general view, fast tools are needed not only to estimate the direct risk of collision but
also to point the hazardous objects out of a catalogue of thousands of them.

The present work aims to create an effective analysis tool which can help in the more and
more difficult task of finding spacecraft’s potential threats in order to select them for further and
deeper analysis. The tool achieves this objective by the monitorization and subsequent analysis
of Minimum Orbital Intersection Distance (MOID) over time. Moreover it can be seen as a
first filtering stage of a more complex tool which could analyse thousands of space debris and
determine the risk of collision with a selected spacecraft in a rapid and reliable way.

1.1 The origin of space debris

Space debris are defined as rests of old satellites, spent rocket stages as well as the fragments
from their disintegrations and collisions. Amongst all the objects orbiting the Earth, space
debris constitute the vast majority of them and they are present in the near Earth space at all
altitudes, their distribution being denser in two principal zones: the Geosynchronous Equatorial
Orbit (GEO) ring and the LEO.

As of January 2019, the European Space Agency (ESA) states that there are about 5000 satel-
lites still in space, 1950 of them being still active. They are part of the about 22 300 debris objects
regularly tracked by space surveillance networks and maintained in their catalogue. Moreover,
the number of debris objects estimated by statistical models to be in orbit is: 34 000 objects
bigger than 10 cm, 900 000 objects ranging from 1 cm to 10 cm and 128 million objects ranging
from 1 mm to 1 cm [1]. The problem of space debris is already of capital importance for space
agencies. National Aeronautics and Space Administration (NASA) has an entire office addressed
to the issue of space debris, the Orbital Debris Program Office at the Johnson Space Center.

Over the years, the principal sources of space debris have been: collisions between spacecraft,
jettisoned rocket stages breaks up due to the decomposition of unvented unburned fuel and
missile tests to shoot down targeted satellites.

Four major powers have demonstrated in the years the capacity to shoot down satellites in
orbit with anti-satellite weapons: the US, the Soviet Union, China and India. One particular
case, the 2007 China’s anti-satellite missile test was heavily condemned also for its consequences
for the space environment. The 11th of January 2007 the Chinese anti-satellite system (ASAT)
test has represented the single worst contamination of low Earth orbit during the previous 50
years. The target of the test was an old Chinese 960 kg meteorological spacecraft, Fengyun-1C,
orbiting at an altitude of 845 km (apogee) by 865 km (perigee) with an inclination of 98.6˝. Two
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months after the test the amount of tracked space debris was around 1600 with an estimation of
35 000 debris bigger than 1 cm forming the debris cloud. The orbital planes of the debris, being
subjected to the perturbations, have been dispersing from the initial disc they were confined in,
scattering the debris in the entire LEO zone. Due to its altitude, the debris cloud will remain in
LEO for many years to come [2].

(a) Known orbit planes of Fengyun-1C debris one month
after its disintegration by a Chinese interceptor. The
white orbit represents the ISS [2].

(b) By 31 March 2007 more then 1600 debris from the
Chinese ASAT test had been identified and were being
tracked by the U.S. Space Surveillance Network (SSN)
[2].

Figure 1.1: Results of the Chinese ASAT test [2].

The space collisions are the second source of space debris. Although the probability of acci-
dental space encounters between two spacecraft is remote, the growing population of spacecraft,
especially in polar orbits, makes probabilities higher over time. On the 10th of February 2009 the
first accidental hypervelocity collision occurred between two intact spacecraft. The Iridium 33
US operational communications satellite and the Cosmos 2251 Russian decommissioned commu-
nications satellite collided over extreme northern Siberia at an altitude of 790 km. Their orbits
were nearly circular and inclined by 86.4˝ and 74.0˝ respectively. At the time of impact, the two
orbital planes intersected at nearly right angle, thus the collision velocity resulted higher than
11 km s´1. The collision generated many debris which spread at different altitudes (by the end
of March that year, 823 larger debris had been classified by the US Space Surveillance Network
(US SSN)) but even more debris would have been expected if the two satellites had hit body-to-
body. In this case as well, due to the differential orbital periods of the debris, in the subsequent
months they spread in LEO forming a shell of debris which poses future collisions hazards to
other satellites in the same zone [3].

An interesting graphics showing the debris population increase up to 2019 (Fig. 1.3) highlights
the dimensions of the problem. It displays a summary of all objects in Earth orbit officially
cataloged by the U.S. Space Surveillance Network. Fragmentation debris include satellite breakup
debris and anomalous event debris, while mission-related debris includes all objects dispensed,
separated, or released as part of the planned mission [4]. It is interesting to notice how the 2007
and 2009 debris events have constituted huge instantaneous contributions to the population of
Fragmentation Debris. Moreover, the graphics show how the population of Rocket Bodies and
Spacecraft is in constant growth, with the Spacecraft growing at an increased rate in the last 5
years. Space access is in fact becoming easier to ever more companies, and missions including
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huge constellations of satellites are already becoming reality1.

(a) The orbital planes of Iridium 33 and Cosmos 2251
were at nearly right angles at the time of collision [3].

(b) Altitude distribution of 731 cataloged debris on 20
March 2009 [3].

Figure 1.2: Results of the Iridium-Cosmos 2251 collision of 2009 [3].

Figure 1.3: Monthly Number of Cataloged Objects in Earth Orbit by Object Type [4].

1Space based satellite internet service able to connect all the world needs dense constellations of satellites.
Projects like OneWeb or Starlink plan to develop constellations of about 650 and 12000 satellites respectively, in
order to fulfill this requirement. OneWeb already launched its first six satellites in February 2019, while Starlink
has launched 60 satellites on the 24th of May 2019 for test purposes.
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1.2 Risks for active spacecraft

Most of the nowadays active satellites, the ISS included, orbit in LEO and space debris constitute
a very important hazard to their survival. Even for very tiny particles such as paint flakes, their
impact with an active satellite moving at orbital speed could signify the loss of the entire mission.

There are many examples of recorded space junk related damages to active spacecraft. The
Russian (former Soviet Union’s) space station MIR and the Hubble space telescope had their
solar arrays damaged by micro debris impacts which resulted in performance degradation. The
Space Shuttle had its radiators damaged during missions STS-115 (Sept 2006) and STS-118 (Aug
2007) due to impact events (the shuttle payload bay door radiator sandwich panel was completely
perforated) [5].

One of the best well documented cases of space debris impact occurred to the ESA’s Coperni-
cus mission Sentinel-1A satellite. It suffered a sudden and permanent power reduction in a solar
array on the 23rd August 2016. The anomaly was suspected to be caused by a hypervelocity im-
pact, thus the flight control team managed to take a photo of the affected solar array and found
out a very large damage area of about 40 cm in diameter (Fig. 1.4). Subsequent investigation
deduced that the impactor must have had a small size, inferior to 1 cm [6].

Figure 1.4: Sentinel-1A’s solar array before and after the impact of a millimetre-sized particle [6].

In the case of the ISS, the risk of collision with a piece of space junk poses serious problems
to the crew survival. For this reason, US SSN personnel perform conjunction assessments thrice
daily to identify any object which might come within a volume of 2 km (local vertical) by 25 km
by 25 km (local horizontal) centred around the space station during the next three days. If an
object satisfies that criterion, additional tracking of the object is tasked, and higher precision
conjunction assessments are undertaken. Should the subsequently calculated probability of col-
lision exceed a value of 0.0001 (1 in 10000), then a collision avoidance manoeuvre or Debris
Avoidance Manoeuvre (DAM) is normally executed. In the case of rapidly changing orbit ob-
jects, a delayed recognition of a threat could leave no time to prepare for a DAM. In such cases,
the ISS crew moves to their return vehicles and prepare to undock quickly in the unlikely event
that the object does impact the ISS [3].
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1.3 A current method for threatening space encounters assessment

The concern over the space debris problem is growing day by day as new missions put more
objects in space at an increased rate. There is a particular service which ensures reliable data
to the satellite operator community in order to inform on pending conjunctions on orbit in a
determined period of time.

The Center for Space Standards & Innovation (CSSI) offers the Satellite Orbital Conjunction
Reports Assessing Threatening Encounters in Space (SOCRATES) service [7], intended to help
satellite operators avoid undesired close approaches through advanced mission planning. CSSI
runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalogue
of all unclassified North American Aerospace Defense Command (NORAD) Two Line Element
(TLEs) data sets to look for satellite conjunctions for the coming week. The runs are made
using Satellite Tool Kit/Conjunction Analysis Tool (STK/CAT) software and the NORAD SGP4
propagator implemented in STK.

As said at the beginning of this chapter, more than 1950 active satellites are currently in
space, some collisions have already taken place and the risk of colliding with space debris is not
null. Moreover, the frequency of the near misses occurring every day is even higher: for example,
conjunctions within 1 km occur each week. This is a real threat to space missions and for this
reason, the SOCRATES service has been developed.

SOCRATES
In order to be reliable, SOCRATES uses the most comprehensive orbital database currently
available, the NORAD two-line element sets. These data are updated twice each day and made
available electronically via the Space Track web site. That database is not fully comprehensive,
however, because it intentionally omits those satellites deemed vital to US national security2.

SOCRATES, compares a high number of satellites’ payloads against the rest of catalogued
objects over an one-week period time. To speed up the computation and obtain a systematic way
of searching the conjunctions, an efficient search strategy is pursued. STK/CAT implements a
number of standard pre-filters (out-of-date TLE, apogee/perigee, orbit path and time) to reduce
the overall computational complexity of this task.

STK/CAT not only calculates the minimum distance and the time of closest approach (TCA)
for all conjunctions, it also provides calculations of the true probability and the maximum prob-
ability of collision.

Each day the SpaceTrak web site releases a new TLEs database. SOCRATES run begins by
dividing the data in two sets, payloads and all objects. Searches are currently limited to conjunc-
tions involving payloads to give satellite operators an opportunity to plan to move satellites out
of the hazardous zone, in the case of being manoeuvrable. STK/CAT looks for all conjunctions
which are within 1 km at the time of closest approach and reports minimum distance and the
maximum probability for each conjunction.

Each SOCRATES’ upload includes Top 10 lists sorted by maximum probability and minimum
distance at TCA, together with a set of predicted conjunctions matching the input criteria. Each
report shows basic information defining which satellites are involved in the conjunction along with
the specific time and circumstances of the event.

SOCRATES has thus the ability to rapidly build a complete conjunction scenario for enhanced
analysis at the push of a button. This enables the satellite users to analyse the situation and
have a rapid assessment over their spacecraft’s short time possible threats. In this way, they can

2NORAD maintains undisclosed about 184 payloads along with the associated rocket bodies and upper stages
which delivered them to orbit, as of the 28th of March 2005 [7].
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plan mitigation actions and avoidance manoeuvres in order to minimize their payloads collision
risk.

1.4 Aim of this work

The objective of this work is the development of a MOID analysis tool to support the search of
possible close orbital encounters. This allows optimal orbital collision risk assessment for efficient
mission planning.

The tool is based on the simple concept of the repeated MOID computation between two
objects at successive instants of time. The calculation results permit to have the MOID time
variation (allowing the analysis of its time derivative); the MOID monitorization in thus assured
in a very effective way.

The MOID analysis tool is based on the integration of two specific tools designed by the
Space Dynamics Group of the Technical University of Madrid (SDG-UPM). First of all, a space
propagator is needed: the SDG’s DROMO propagation method is used because of its robustness
and speed. It takes the selected spacecraft starting positions and propagates them for a defined
time interval. Secondly, SDG’s MOID calculation method is selected because of its speed given
by its innovative calculation concept. The MOID is computed at every instant in which the
spacecraft osculating orbits are known thanks to the previous propagation. The final result is
obtained through the optimal implementation of the two methods along with public available
software for celestial mechanics calculations.

In order to prove the tool’s effectiveness, it must be developed and tested using reliable
ephemerides for the space objects of interest. For this reason, “the most comprehensive orbital
database currently available, the NORAD two-line element set” [7] is considered. To test the tool
and to see an immediate application, the most valuable and vulnerable spacecraft is selected:
the International Space Station (ISS). The ISS is obviously present in the TLE database as well,
along with thousands of satellites (active or not) and space debris. It is selected as the main
target against which the other object’s orbits will be compared.

The time evolution of the MOID between two satellites (or, in particular, between a satellite
and a space debris) can be a very powerful and interesting tool for understanding how two objects
will behave one respect to another in the future. It can be used as a filtering stage to individuate
possible threatening objects3. Finally, this method can result in an useful discriminant in the
very important task of preventing future close approaches in LEO.

The present document follows the same order of the tool’s data processing. Chapter 2 presents
the data source: the Two Line Element set and all the necessary theory for TLEs interpretation
and processing. It is important to have reliable and consistent data for the successive propaga-
tion. Chapter 3 illustrates the main perturbation contributions to the orbital movement and the
propagation based on the DROMO theory. Chapter 4 is entirely dedicated to the SDG-UPM’s
MOID computation method, to highlight its advantages. Chapter 5 shows the results of both
the methods implementation, focusing on the short period and long period analysis. Moreover,
it presents an example of the tool application. Chapter 6 ends the dissertation gathering the
conclusions drawn from the analysis.

3It is in fact, an enhanced version of the second filtering stage of the three filtering stage concept proposed
by Hoots, Crawford and Roehrich [8]. The idea of Hoots addresses the problem of the determination of future
close approaches between satellites. From this point of view, the present work could improve the second stage
effectiveness and span.
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2 Source of the data

The source of the objects’ ephemerides which will be analysed and whose orbits will be predicted
in the present work must contain the principal satellites and space debris orbiting the Low Earth
Orbit and which are potentially hazardous for the survival of the active and in some cases manned
LEO spacecraft. The most common database utilised in the industry and in the astronomic field
for space objects ephemerides is the TLE data set held by the NORAD [9]. NORAD maintains
general perturbation element sets on all resident (LEO) space objects. The observations are made
several times a day by the Joint Operations Center (JSPOC) operated by the US Air Force Space
Command (AFSPC). Once the observations pass through an initial association and verification
stage, they are passed to the Orbit Determination operation [10]. Finally, these element sets are
provided to users through the AFSPC website (https://www.space-track.org) and additionally
the CelesTrak website (https://celestrak.com) in the form of text files. Actually the TLE data
constitutes the only public data source covering the majority of orbiting objects [11].

2.1 The Two Line Element Set

The Two Line Element set was initially intended for punch cards, hence the simple format of a
two lines of text for every object. Nowadays, the format was replaced by text files which contain
a large amount of objects, written one after another with the original TLE format, eventually
including a title line preceding the element data. This first line contains the name of the object in
a more readable format. Thus, a NORAD two-line element set consists of two 69-character lines
of data which can be used together with NORAD’s SGP4/SDP4 orbital model to determine the
position and velocity of the associated satellite. The only valid characters in a two-line element
set are the numbers 0-9, the capital letters A-Z, the period, the space, and the plus and minus
signs; no other characters are valid [12]. The NORAD element sets are mean values obtained
by removing periodic variations in a particular way. In order to obtain good predictions, these
periodic variations must be reconstructed (by the prediction model) in exactly the same way
they were removed by NORAD [9]. This topic will be addressed later on. The TLEs’ format
used for this work is constituted by three lines describing each satellite or space debris, presented
as follows:

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

Line 0 is a twenty-four character name, whereas lines 1 and 2 are the standard Two-Line
Orbital Element Set Format identical to that used by NORAD and NASA. Table 2 summarizes
the meaning of every character of the two lines [12].

The line number occupies the first column of it and it can be 1 or 2. Analysing the two
rows, the second number which appears in them is the NORAD’s Catalog Number which must
be the same for the two rows otherwise the TLE is not valid. The NORAD Satellite Catalog
(SATCAT) contains 44336 objects as of June, the 20th, 2019. The minimum size of objects that
are maintained in the catalogue is 10 cm. A diameter of 10 cm is in fact the typical minimum
size that current sensors from the JSPOC can track.

Continuing in the first row, the third field represents the security classification of the data,
for example all the TLEs which will be analysed in this work are unclassified objects, hence the
omnipresent “U” letter (the secret data have the “S” letter, thus not being publicly available).

The following three fields represent the International Designator of the object assigned by
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the World Data Center-A for Rockets and Satellites (WDC-A-R&S) which collaborates with
NORAD and NASA in maintaining the registry. These fields represent the last two digits of the
launch year, the number of the launch in that year and the piece of that launch for each object. It
is important to observe the cause of the difference between the International Designator and the
NORAD’s Catalog Number: while the first is a record of the launch itself, the latter is assigned
based on the NORAD’s first observation of the space object.

Fields 1.7 and 1.8 of the first line (according to the aforementioned Table 2) define the
reference time of the TLE, or the epoch of the TLE. The interpretation of these two fields is
of extreme importance for the correct use of the data and thus for the calculations. Field 1.7
represents the last two digits of the year, the numbers 57 to 99 corresponding to years 1957 to
1999 (no space activity existing prior to the year 1957) and digits 00 to 56 corresponding to
years 2000 to 2056. Field 8 represents the number of the day in that year, the days starting at
1 for the 1th of January. The decimal part of the day indicates the fraction of the day, being
midnight the starting point (.000) and remembering that the time is based on the Coordinated
Universal Time (UTC). In order to be more clear, an example is set: the number 19001.00000000
corresponds to midnight January the 1th, 2019, UTC.

Fields 1.9 and 1.10 represent the first derivative of the mean motion divided by two and the
second derivative of the mean motion divided by six respectively. Unfortunately these quantities
are not used by the SGP4/SDP4 propagators and therefore are not of utility for this application.

Field 1.11 is a SGP4-type drag coefficient (it means, adapted to the SGP4 atmospheric
model), it is called B˚ BSTAR and it is an adjusted value for the ballistic coefficient B. Field
1.12 represents the ephemeris type, it is, the orbital model used to generate the data. Since all
distributed element sets are created with the SGP4/SDP4 models, it is not considered in this
study. The last column of each line (1.14 and 2.10) is a modulo-10 checksum on the respective
line data.

Going forward with the second line, the orbital elements are presented. As said, they are
mean elements calculated through the application of the SGP4/SDP4 orbital models. They
are, in order, the inclination i, the Right Ascension of the Ascending Node (RAAN) Ω, the
eccentricity e, the argument of the perigee ω, the mean anomaly M which is used instead of the
true anomaly θ and the mean motion n which is used instead of the semi-major axis a. All the
angular quantities are expressed in degrees and they range between 0˝ and 360˝, apart from the
inclination which ranges between 0˝ and 180˝; the mean motion is expressed in revolutions per
day.

Finally, at the end of the second line, field 2.9 expresses the revolution number at epoch,
which is calculated by the NORAD starting from the ascending node pass. In this convention,
the 0th revolution occurs between the launch and the time the first ascending node is reached.

As an example, the ISS TLE is presented, all its fields being highlighted and described in
Fig. 2.1.
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Figure 2.1: ISS TLE structure.

Moreover, to make the structure more clear, an example of file containing the TLEs is shown
below. Fig. 2.2 shows a typical TLE text file including some of the most known spacecraft and
debris.
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Figure 2.2: Example of a text file containing TLEs.
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Table 2: TLE characters meaning.

Line 1
Field Column Description
1.1 01 Line Number of Element Data
1.2 03-07 Satellite Number
1.3 08 Classification (U=Unclassified)
1.4 10-11 International Designator (Last two digits of launch year)
1.5 12-14 International Designator (Launch number of the year)
1.6 15-17 International Designator (Piece of the launch)
1.7 19-20 Epoch Year (Last two digits of year)
1.8 21-32 Epoch (Day of the year and fractional portion of the day)
1.9 34-43 First Time Derivative of the Mean Motion [rev/day2]
1.10 45-52 Second Time Derivative of Mean Motion (decimal point assumed) [rev/day3]
1.11 54-61 BSTAR drag term (decimal point assumed)
1.12 63 Ephemeris type
1.13 65-68 Element number
1.14 69 Checksum (Modulo 10)

Line 2
Field Column Description
2.1 01 Line Number of Element Data
2.2 03-07 Satellite Number
2.3 09-16 Inclination [Degrees]
2.4 18-25 Right Ascension of the Ascending Node [Degrees]
2.5 27-33 Eccentricity (decimal point assumed)
2.6 35-42 Argument of Perigee [Degrees]
2.7 44-51 Mean Anomaly [Degrees]
2.8 53-63 Mean Motion [Revs per day]
2.9 64-68 Revolution number at epoch [Revs]
2.10 69 Checksum (Modulo 10)
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2.2 Data Processing

Once the elements are made available in the format of two lines of characters, the data must
be processed in the correct way. The goal is to obtain the position and velocity vectors of
the corresponding space objects, which is ultimately the information needed for their further
manipulation.

As anticipated before, the NORAD generates the data which are released to the public by
averaging the orbital elements and obtaining mean values by removing periodical variations
in a particular way. In order to obtain good predictions, these periodic variations must be
reconstructed (by the prediction model) in exactly the same way they are removed by the NORAD
[13].

2.2.1 Propagation Models

The space objects classified by NORAD are divided into two major categories: near-Earth or
deep-space objects, the first are those which period is less than 225 min whilst the second ones
have a period greater than or equal to 225 min. The NORAD has developed since the 60s five
different mathematical prediction models, the main differences residing on the theories utilised
to define the gravitational and the atmospheric models.

These five simplified general perturbations (SGP) models are: the SGP model, the first to
be introduced; the SGP4 model, used for near-Earth objects along with the SDP4 model, which
is an extension of the SGP4 model for deep-space satellites and the SGP8 and the SDP8 models
which are a modification of the SGP4/SDP4 ones, being based on the same theories and differing
in the way the equations are integrated [13].

The mathematical model currently in use by the NORAD is the SGP4 propagation model,
along with the SDP4 model in the aforementioned case of deep space objects (literature generally
refers to both models with the SGP4/SDP4 model). These models are described by Hoots and
Roehirich (1980) in the SPACETRACK REPORT NO. 3 [13], presenting the FORTRAN IV
subroutines for their correct implementation. At the time they wrote, NORAD intended to switch
to the SGP8/SDP8 models, although this passage never occurred, as stated by Vallado [16].

2.2.2 SGP4/SDP4 Model

The SGP4 model, originally developed by Ken Cranford in 1970 was obtained considering the
Brower solution for the gravitational model developed in 1959 and power density functions de-
veloped by Lane and Cranford in 1969 for the atmospheric model. On the other hand, the SDP4
was developed by Hujsak in 1979 extending the SGP4 theory by modelling the perturbations of
the moon and the sun and giving a better detail of the Earth gravitation model [13].

The SGP4 code has been adapted over the years and by many authors, thus many versions
of it are actually in use, each of them with slight differences. There are multiple versions of the
SGP4 code even within the US Department of Defense (DoD).

Considering this last fact, as Vallado assumes in [11], the equations which represent the
current mathematical theory are the ones presented by Hoots in 1980 [13] and reminded by
the same author’s publication of 2004 [14]. For this reason, the present study utilizes this
SPG4/SDP4 in order to manage the TLEs.

Apart from the use of the TLEs in order to obtain the actual classical elements, the SGP4/SDP4
models allow to propagate every TLE forward and backwards respect to the epoch it is defined.
An observation to be made is the fact that the epoch time for the TLEs is not necessarily the
epoch coming from the last observation processed by the Orbit Determination of the JSPOC.
The TLE is moved to the last ascending node before the release for distribution [10].
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For the purposes of this study, all the considered TLEs are propagated with the SGP4/SDP4
to an epoch in the future (subsequent or simultaneous respect to the epoch of the most recent
TLE) in order to have all the objects defined at the same instant of time, ready to be propagated
with a different propagation method from the same starting point.

Implementation: Zeptomoby OrbitTools Libraries
In the present work, the TLE processing functions, as well as the NORAD SGP4/SDP4 propagat-
ors, have been programmed in C++ using the Zeptomoby OrbitTools Libraries already available
in the world wide web [15].

2.2.3 SGP4/SDP4 Reference Frame

The results of the SGP4/SDP4 model are presented in the form of state vectors in the same time
instant. Every state vector is composed by the position vector and the velocity vector defined in
a given reference frame. The reference frame utilised by the AFSPC for its analytical theories is
the True Equator Mean Equinox (TEME) frame. Its definition is based on the uniform equinox
concept, which resides along the true equator between the origin of the intermediate Pseudo
Earth Fixed (PEF) and True Of Date (TOD) frames [17]. Although it is not a common reference
frame, it must be considered in order to transform the data to a standard reference frame, the
Geocentric Celestial Reference Frame (GCRF), in order to allow the data’s further manipulation.

2.3 TEME to GCRF conversion

In order to have a solid reference for astrodynamic calculations, an inertial reference frame is
needed. The TEME reference frame developed by the AFSPC for the TLEs description is not a
standard frame because of its very nature. The TEME reference is time related, i.e. it depends
on the date on which the TLE is defined and this constitutes a limitation; every TLE in fact,
will have a different reference. To refer every object to a common frame all the data obtained
in the TEME frame must be transformed to a common and standard inertial reference frame
which, as stated in the latest convention, is the aforementioned GCRF.

2.3.1 Precession and Nutation

The Earth linked frames, (such as TEME) are not inertial because they follow Earth’s equator
and ecliptic movement in the inertial space, it is, relative to the stars. The motion of a coordinate
system fixed to the Earth is due to its precession and nutation.

The Earth’s precession is composed by two terms: the precession of the ecliptic caused by
the gravitational forces of the planets affecting Earth’s orbit and the luni-solar precession (much
more intense respect to the first component) caused by the Sun and Moon’s gravitational fields
acting on the Earth, which being not perfectly spherical, undergoes a small torque. The two
effects are collectively called general precession and its effect is a smooth wobbling or precessional
motion of the Earth. This motion causes the Earth’s axis of rotation to trace out a quasi-circular
shape forming a cone in the space whose half angle is equal to 23.5˝ (because of the obliquity of
the eliptic being equal to 23.5˝). The period needed to the axis of rotation to complete a circle
is about 26 000 years.

The nutation of the Earth is produced by the additional torque that the Moon exerts on the
Earth’s equatorial bulge, because of the 5˝ inclination of Moon’s orbital plane respect to Earth’s
equatorial plane. The Moon’s orbital plane itself has a precession period of about 18.6 years,
caused by the Sun perturbation. As a consequence, the Earth’s nutation has a main period
equal to 18.6 years, which is commonly called precession of the equator. The Earth’s nutation
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has more components which create secondary effects and which have many different frequencies.
The overall results of the nutation are small oscillations of the Earth’s rotation axis which are
superimposed to the main precessional movement of the axis. The maximum amplitude of these
oscillations is of about 0.0025˝.

It is important to note that precession and nutation are caused by disturbances of the same
nature acting upon the Earth. The nutation effect is the periodic component, while the precession
effect is the secular component of the disturbances as can be seen in Fig. 2.3.

Figure 2.3: Precession and Nutation of the Earth’s Equatorial Plane [17].

The general precession causes the equinox direction to move in the plane of the equator. To
fix its position on a particular date it is possible to associate its orientation to an ideal inertial
frame on that date: the ecliptic of date. The precession of the Earth’s rotation axis causes the
equator to wobble respect to the ecliptic. For this reason, the mean equator of date (MOD) is
measured accounting for the nearly secular motion of the axis. The intersection of the two planes
already defined in a particular date, defines the mean equinox of date. By including the nutation
on the equator, the true equator of date (TOD) is obtained.

With the aim to define the standards in astronomy, the International Astronomical Union
(IAU) has defined a series of conventions in order to have a common rule whenever is needed to
pass between reference frames. The latest version of the standards published by the IAU are the
IAU-2000 Resolutions. They, in particular, define the transformations between the body-fixed
International Terrestrial Reference Frame (ITRF), and the GCRF [17]. This latest version of the
convention is followed in this work.

2.3.2 Transformations

Considering all the terms affecting Earth’s motion, now, it is important to define the transform-
ations (which must be placed in the right order) to rotate the state vector obtained with the
SGP4/SDP4 theory from the TEME to the GCRF reference frames. This is achieved through
successive passages. First of all, the reference frame must be rotated from TEME to TOD us-
ing the equation of the equinoxes. Then, the TOD reference frame must be modified with the
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nutation correction in order to obtain the Mean Of Date (MOD) reference frame. Finally, the
precession correction permits to pass from the MOD reference to the GCRF frame. The detailed
passages will be further explained.

It is important to remember that a coordinate rotation changes only the basis of the vector,
i.e. the vector after the transformation will have the same length and direction, but the three
component will differ from one basis to another. Since coordinate rotations are a series of
single-axis rotations, the single-axis rotations must be easily represented with some intuitive
notation. In this study, the transformation matrices follow the convention utilized by Vallado in
his handbook [17].

Every right-handed vector rotation is thus expressed with the following transformation:

tx1u “ Rnpαq ¨ txu (2.1)

where x is the initial vector, Rnpαq the rotation matrix and x1 the rotated vector. The general
formulas adopted for the right-handed axes rotations are defined in eq. (2.2) where the R
subscript indicates the principal rotation axis (I ´ 1, J ´ 2, K ´ 3).

R1pαq “

»

–

1 0
0 cospαq sinpαq
0 ´ sinpαq cospαq

fi

fl

R2pαq “

»

–

cospαq 0 ´ sinpαq
0 1 0

sinpαq 0 cospαq

fi

fl

R3pαq “

»

–

cospαq sinpαq 0
´ sinpαq cospαq 0

0 0 1

fi

fl

(2.2)

2.3.3 TEME to TOD transformation, Equation of the Equinoxes

Because the planes of the Earth’s equator and the ecliptic are moving, the equinox which is
derived from their intersection is also moving. This leads to the distinction between the Mean
sidereal time which refers to a mean equinox that moves only with secular motion (precession)
and the apparent sidereal time from true vernal equinox that includes all the contributions to
the motion of the vernal equinox. The difference between the mean equinox (which defines the
Greenwich Mean Sidereal Time: GMST) and the apparent equinox (which defines the Greenwich
Apparent Sidereal Time: GAST) as mesured in the plane of the true equator, is the Equation of
the Equinoxes.

The TEME and TOD references both share the same z axis. Moreover, the TEME reference
x axis is linked to the Mean Equinox concept while the TOD reference x axis is linked to the
True Equinox concept. The difference between these references is represented by a rotation angle
around the Earth’s z axis: the Equation of the Equinoxes (Eqeq). All these concepts can be easily
represented in order to give a more clear picture of the concept (Fig. 2.4).
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Figure 2.4: Mean Equinox and True Equinox concepts.

The mathematical relation between these reference frames is defined by the IAU-2000 Resolutions
as follows:

θGAST2000 “ θGMST2000 ` Eqequinox2000 (2.3)

Focusing on the Equation of the Equinoxes (which is ultimately the one needed), the same
convention defines is as follows:

Eqeq “ ∆Ψ cos εA `
ÿ

k

pC 1k sinAk ` S
1
k cosAkq ` 0.000 000 872 TTT sin ΩK (2.4)

where ∆Ψ is the total nutation in longitude, εA is the mean obliquity of the ecliptic, ΩK is the
mean longitude of the ascending node of the Moon, and the coefficients C 1k and S1k and the angular
arguments Ak are used to describe the complementary terms arising from coupling between
precession and nutation. The coefficients are defined by the IAU-2000 Resolutions as well. The
dependence from the time is expressed through the TTT term, which is the Terrestrial Time
(TT) expressed in Julian Centuries4 from J2000.05. In the SGP4 theory, several approximations
are made in the calculation of the nutation and in the mean obliquity of the ecliptic terms, and
second-order terms are neglected. The final equation to consider is thus:

Eqeq “ ∆Ψ cos εA (2.5)

which at least maintains the Terrestrial Time (TT) dependence.
The Terrestrial Time needed in the equation of above, is by convention defined as the times-

cale of apparent geocentric ephemerides of bodies in the solar system [17], it was defined by an

4A Julian Century corresponds to 36 525 Julian Days. Moreover, the Julian date, JD, is the interval of time
measured in days from the epoch January 1, 4713 B.C., 12:00. Because the values are typically large, the IAU
recommends using the Modified Julian Date, MJD, calculated subtracting 2 400 000.5 days from the original Julian
Date. This leads to lower numbers and to the simplification of days beginning at midnight instead of noon.

5The epoch J2000.0 reference is a common reference in astronomy because Julian Centuries are often used as
time scale. The epoch J2000.0 corresponds to January the 1st, 2000, 12:00 TT (2 451 545.5 JD = 51 545.0 MJD).
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IAU resolution in 1991. It is referenced to the International Atomic Time TAI6 through the
following relation:

TT “ TAI ` 32.184s` 32.184 s (2.6)

the 32.184 seconds difference being the predefined constant offset between the two systems.
The TAI must be thus related to the UTC time which is ultimately the scale of time in which

the TLEs are defined. The relation between the two timescales is the following:

TAI “ UTC `∆AT (2.7)

where the ∆AT quantity is the accumulated difference between the two. It is an Earth Orient-
ation Parameter (EOP) that describes the motion of the Earth and can be found in ephemeris
tables.

Once the UTC time is defined in a TLE, the Equation of the Equinoxes consists in a straight-
forward substitution of terms and the relation between the two reference frames (TEME-TOD)
reduces to a sidereal rotation about the Z axis of rotation of the Earth.

rrTODs “ rR3p´Eqeqqs ¨ rrTEMEs (2.8)

The last correction that could be considered here is the polar motion correction. There
is, in fact, a movement of the Earth’s rotation axis respect to the crust of the Earth, which
introduces more perturbations on the selected reference frames. Because the polar motion has
been historically neglected for General Perturbation (GP) applications, the correction due to the
polar motion is not considered in this transformations [11]

2.3.4 TOD to MOD transformation: Nutation

The nutation, as said before, is the non-secular term of the more general movement of the rotation
axis of the Earth respect to a space-fixed coordinate frame. It must be considered when passing
from the TOD to the MOD reference frames.

The IAU-2000A Theory of Nutation resolves the nutation into three angular components:
the ∆Ψ in longitude, the ∆ε in obliquity and the mean obliquity of the ecliptic of date εA, as
can be seen in the following representation:

6The International Atomic Time, (Temps Atomique International, TAI ) is based on cesium-133 atomic clocks
and it is needed in order to have an highly accurate system independent of the average rotation of the Earth.
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Figure 2.5: Transformation Geometry Due to Nutation [17].

The expressions for the mean and true obliquity of the ecliptic of date are:

εA “ 23˝26121.406 002 ´ 46.836 7692T ´ 0.000 183 12T 2

`0.002 003 402T 3 ´ 5.762 ˆ 10´7 T 4 ´ 4.342 ˆ 10´8 T 5
(2.9)

ε “ εA `∆ε (2.10)

where the time T is, as usual, expressed in Julian Centuries since epoch J2000.0.
Addressing the nutation angles ∆Ψ and ∆ε, their definitions are the following:

∆Ψ “

n
ÿ

i“1

pS∆Ψi `
9S∆Ψi T q sinAi ` C∆Ψi cosAi (2.11)

∆ε “
n
ÿ

i“1

S∆εi sinAi ` pC∆εi `
9C∆εi T q cosAi (2.12)

where the time is expressed in Julian Centuries, the terms composing the Ai coefficients are given
in tables within the IAU-2000A theory and all the rest of coefficients are given in the IAU-2000A
Nutation Series.

Actually, since the 1st of January 2009 the IAU released a revised version of the precession
theory, the IAU-2006/2000A theory, which implies small changes in the amplitudes of the Nuta-
tion Series. Though, the use of the latest version or the theory (as has been done in this work)

31



requires a small correction to the nutation angles (∆Ψ and ∆ε) defined in the IAU-2000A theory
as follows:

∆Ψ´∆Ψ2000A “ p0.46972 ˆ 10´6 ´ 2.77742 ˆ 10´6T q∆Ψ2000A (2.13)

∆ε´∆ε2000A “ ´2.77742 ˆ 10´6T∆ε2000A (2.14)

The resulting rotation matrix N is a sequence of the following three rotations:

N “ R1p´εqR3p´∆ΨqR1p`εAq

“

»

–

cos ∆Ψ ´ sin ∆Ψ cos εA ´ sin ∆Ψ sin εA
sin ∆Ψ cos ε cos ∆Ψ cos ε cos εA ` sin ε sin εA cos ∆Ψ cos ε sin εA ´ sin ε cos εA
sin ∆Ψ sin ε cos ∆Ψ sin ε cos εA ´ cos ε sin εA cos ∆Ψ sin ε sin εA ` cos ε cos εA

fi

fl

(2.15)

Actually, for the current application there is no need for an accuracy better than one part in
108, thus, following the resolution, the nutation matrix can be simplified and it results:

N “

»

–

1 ´∆Ψ cos ε ´∆Ψ sin ε
`∆ψ cos ε 1 ´∆ε
`∆ψ sin ε `∆ε 1

fi

fl (2.16)

where ∆Ψ and ∆ε are expressed in radians.

The transformation between the TOD and the MOD reference frames is thus represented by
the following matrix product:

rrMODs “ rNs ¨ rrTODs (2.17)

2.3.5 MOD to GCRF transformation: Precession

The precession, being the secular term in the movement of the Earth’s rotation, has less strong
effect respect to the nutation, nevertheless it must be considered when passing from the MOD
reference frame to the GCRF reference frame.

As said before, in 2009 revision, the IAU adopted the IAU-2006/2000A precession theory
which implements the P03 precession theory by Capitaine, Wallace and Chapront (2003). Their
theory separates the precession of the equator, ΨA and ωA (the precession in obliquity) from the
precession of the ecliptic, PA and QA.
The angles ΨA and ωA are defined in the theory:

ΨA “ 5038.481 5072T ´ 1.079 006 92T 2 ´ 0.001 214 0452T 3

`0.000 132 8512T 4 ´ 9.512 ˆ 10´8T 5
(2.18)

ωA “ 84 381.406 000´0.027 7542T ` 0.051 262 32T 2 ´ 0.007 725 032T 3

´4.672 ˆ 10´7T 4 ` 3.3372 ˆ 10´8T 5
(2.19)

Whereas the quantities PA and QA represents two polynomials which together give the expres-
sions for the angles πA, the angle between the ecliptic at a fixed epoch and the ecliptic of date,
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and ΠA, the angular distance from the mean equinox, γ0, at the fixed epoch along the fixed
ecliptic of epoch to the ascending node of the ecliptic of date (Fig. 2.6).

PA “ sinπA sin ΠA “ 4.199 0942T ` 0.193 987 32T 2 ´ 0.000 224 662T 3

´9.122 ˆ 10´7T 4 ` 1.202 ˆ 10´8T5
(2.20)

QA “ sinπA cos ΠA “ ´46.811 0152T ` 0.051 028 32T 2 ´ 0.000 524 132T 3

´6.462 ˆ 10´7T 4 ´ 1.722 ˆ 10´8T 5
(2.21)

Figure 2.6: The general precession connects the mean equinox of epoch, γ0, to the mean equinox of date
γM [18].

The transformation matrix needed to consider the precession is thus:

P “ R3pχAqR1p´ωAqR3p´ΨAqR1pε0q (2.22)

where ε0 is the obliquity at epoch J2000.0 (ε0 “ 23˝26121.406002) and χA is the spherical angle
from the ecliptic pole of epoch to the ecliptic pole of date with its apex at the mean equatorial
pole of date. A representation of this last angle along with the rest of the angles considered in
this theory can be seen in Fig. 2.7. The angle χA is derived from the already known parameters
of precession using the following relations:

cos εA “ cosπA cosωA ´ sinπA sinωA cospΠA `ΨAq

sinχA “
sinπA
sin εA

sinpΠA `ΨAq
(2.23)
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where:

εA “ 84 381.406 000´46.836 7692T ´ 0.000 183 12T 2 ` 0.002 003 402T 3

´5.762 ˆ 10´7T 4 ´ 4.342 ˆ 10´8T 5
(2.24)

In all of the above expressions involving the time T , it must be expressed in Julian Centuries
since J2000.0 epoch as well.

Figure 2.7: The precession angles connect the mean pole of epoch, P0, to the mean pole of date, P,
ecliptic pole of epoch, C0, and the ecliptic pole of date, C [18].

The transformation between the MOD and the GCRF reference frames is thus represented by
the following matrix product:

rrGCRF s “ rPs ¨ rrMODs (2.25)

2.3.6 TEME to GCRF complete transformation

Once all the contributions are defined, it is easy to concatenate all the matrices in order to
convert every TLE’s state vector from one reference frame to another:

rrGCRF s “ rPsrNsrR3p´EqeqqsrrTEMEs (2.26)

9rrGCRF s “ rPsrNsrR3p´Eqeqqs 9rrTEMEs (2.27)

The IAU standards are available in order to be implemented in C++ routines (as well as
FORTRAN 77 ones). In the present work, the time functions, the conversions functions, the
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Equation of the Equinoxes and the Precession and Nutation matrices have been implemented
in the program through the Standards Of Fundamental Astronomy (SOFA) C++ routines by
the IAU, available in the world wide web [19]. Actually, the Precession and Nutation matrices
have been obtained through a single function which provides the Precession-Nutation Matrix
according to the IAU-2006/2000A Resolution.
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3 Propagation based on DROMO

After the data have been collected and propagated with the SGP4/SPD4 propagator up to a
common instant of time and after the transformation of the state vectors has been carried out,
the propagation of the objects is needed in order to make possible the analysis of their behaviour
during the selected interval of time.

Because of the ever increasing quantity of space debris in LEO, a large amount of elements
must be considered when assessing the risk of collision between the ISS and them. Their or-
bits, along with the orbit of the ISS, must be necessarily propagated ensuring the least possible
computational time. For this reason, a routine which gets the initial condition of all the ob-
jects and propagates them in a rapid and precise way is needed. The DROMO propagator,
developed by the Space Dynamics Group of the UPM has been selected. Actually, to accelerate
the propagation, only the J2 gravitational perturbation will be considered.

In this section, an analysis of the possible orbit perturbations will be carried out, along with
the exposition of the reasons why only one term of the geopotential expansion is considered for
the orbit propagation. After this first introduction, the DROMO propagator will be analysed,
explaining its fundamentals and applying the J2 simplification in order to fit the tool to the
problem of the rapid propagation of thousands of objects.

3.1 Space perturbations

When considering the problem of orbit propagation there are many perturbations which should
be considered. The orbit of a spacecraft is primarily defined by its Keplerian motion about a
primary body. Perturbations intervene to modify this simple motion and all of them should
accurately be modelled in order to have a very reliable propagator. In this section, some of the
most important perturbations are described. Once understood, a justification can be given for
including only those that contribute the most in a rapid propagator like the selected one.

The principal perturbation components for a LEO spacecraft are presented:

• Earth’s oblateness which will be deeply analysed in the following section, causes the grav-
itational field not to be like the one generated by a point mass.

• Atmospheric drag most strongly influences the motion of a satellite near Earth; in fact,
during the last few revolutions of the satellite’s life, drag effects can be more dominant
than those from the Earth’s oblateness.

• Third Body perturbations account for Moon’s and Sun’s gravitational fields contributions
acting upon the satellite. Third bodies have a greater effect on satellites in higher altitude
orbits. Their effects become noticeable when the effects of drag begin to diminish.

• Solar radiation pressure which is the effect of the solar wind impacting upon the surface of
the spacecraft or whatever object in the Sun’s line of sight. It gives a pressure component
pulling away the object from the Sun.

Ideally, to have a fine propagation all the perturbation terms shall be considered. For the
aim of this work, only the Earth’s oblateness will be considered, being in this case the most
important perturbation term compared with all the other possible terms.
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3.2 The Earth Gravitational Field

Since this work applies to Earth orbits and in particular to LEO, the motion of the considered
objects will be mainly governed by the Earth. This leads to neglect the third body perturbations
generated by the Moon and the Sun. The principal force acting upon a spacecraft is due to the
gravitational field of the Earth. In a very rough approach, the Earth gravitational field can be
considered as the field generated by a point mass at the centre of the mass distribution. In this
case, the study reduces to the analysis of the two body problem for which the solution is analytical
and already known; it corresponds to the Keplerian motion of the spacecraft around its central
body. Unfortunately, to study the forces acting upon an object in LEO, a more accurate model
of the gravitational field must be considered. The Earth gravitational field is not that of a point
mass. Because of its rotation the Earth bulges at the equator. Also, the continental blocks,
ocean basins, mountain ranges, etc., produce local deviations from a spherical Newtonian point
mass field. All these effects must be considered through a gravitational field mathematical.

Gravity is a conservative force, it can thus be described in terms of a potential. For any
distribution of mass, the acceleration of a test particle can be expressed as:

a “ ´∇V px, y, zq (3.1)

Where V represents the specific potential and must be modelled in order to obtain the correct
components of the force acting upon every position in space. The manipulation of the Earth
gravitational potential to take into account the perturbation forces caused by its real shape leads
to the mathematical modelling of the Earth’s shape using spherical harmonics. The resulting
potential function here expressed in spherical coordinates (radius r, colatitude θ and longitude
φ) is thus:

V pr, θ, φq “ ´
µC

r

8
ÿ

n“0

n
ÿ

m“0

ˆ

RC

r

˙n

Pmn pcos θq ¨ pCnm cosmφ` Snm sinmφq (3.2)

Where µC is Earth’s gravitational constant, Pmn pcos θq are the associated Legendre polynomials,
n and m indices are respectively the degree and the order of the geopotential expansion, while
the constants Cnm and Snm are defined so that the potential fits to the Earth real gravity field.
The Newtonian point mass potential appears as the first term (n “ 0, m “ 0) in the geopotential
expansion. Since m “ 0, cosmφ “ 1, sinmφ “ 0, and since the first Legendre polynomial
P 0

0 “ 1, the first term does not depend on either the longitude nor the colatitude.

The Spherical Harmonics
The terms for order m “ 0 are called zonal harmonics, where the dependence of the potential
on longitude vanishes and the field is simmetrical about the polar axis. Some authors use a “J”
to identify these terms; in this case they are defined as the opposite of the “C” zonal harmonics.

´Cn0 “ Jn (3.3)

The first zonal harmonic, for n “ 1 and m “ 0 shifts the center of mass of the entire Earth north
of south along the z axis. Chosing as origin the centre of mass of the Earth thus makes J1 “ 0
and the first zonal harmonic vanishes. The first non-vanishing zonal harmonic is thus the n “ 2
term.

V20 “
µCR

2
CJ2

2r3
p3 cos2 θ ´ 1q (3.4)

For the Earth, the coefficient J2 “ ´C20 “ 0.001082, which is about 10´3 of the contribution
of the Newtonian point mass term. Physically, this coefficient represents the Earth’s oblateness.
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This is the dominant term in the Earth’s potential expansion after the Newtonian term, and for
all other planets as well. J2 is almost 1000 times larger than the next largest coefficient (J3).

Sectoral harmonics occur when n “ m and they are functions of longitude only, so they
represent bands of longitude. They divide the sphere into 2n “orange-slice” sectors. The n “
m “ 1 sectoral harmonic moves the Earth’s center of mass off the origin of the coordinate
system to some other point within the equatorial plane. Again, the most suitable choice is to set
C11 “ S11 “ 0, leading to the first not null sectoral harmonic being the n “ m “ 2 term which
is in fact the largest sectoral term. It is noticeable that the C22 and S22 coefficients are about
10´6, it is, three orders of magnitude smaller than J2.

The general case when m ‰ 0 and n ‰ m, is called a tesseral harmonic. It combines the
latitude dependent banding of the zonal harmonics with the longitude related sectoral harmonics
to produce a chequerboard of low and high potential regions of the sphere. These tiles can finally
describe all the different facets of the Earth’s shape.

To better understand the geometric distribution of the different harmonics, they are graph-
ically represented in Fig. 3.1.

Figure 3.1: The kinds of spherical harmonics: (a) zonal, (b) sectoral, (c) tesseral.

Table 3: Selected EGM-96 coefficients.

Zonal harmonics Sectoral and Tesseral harmonics
n Jn n,m Cnm Snm
2 1.082 626 683 55 ˆ10´3 2 1 ´2.414 000 000 00 ˆ10´10 1.543 100 000 00 ˆ10´9

3 ´2.532 656 485 33 ˆ10´6 2 2 1.574 460 374 56 ˆ10´6 ´9.038 038 066 39 ˆ10´7

4 ´1.619 621 591 37 ˆ10´6 3 1 2.192 638 529 17 ˆ10´6 2.684 248 902 97 ˆ10´7

5 ´2.272 960 828 69 ˆ10´7 3 2 3.089 892 068 81 ˆ10´7 ´2.114 376 124 37 ˆ10´7

6 5.406 812 391 07 ˆ10´7 3 3 1.005 487 780 64 ˆ10´7 1.972 225 590 06 ˆ10´7

7 ´3.523 599 084 18 ˆ10´7 4 1 ´5.087 993 604 04 ˆ10´7 ´4.491 448 728 39 ˆ10´7

8 ´2.047 994 669 85 ˆ10´7 4 2 7.841 758 598 44 ˆ10´8 1.481 778 682 96 ˆ10´7

9 ´1.206 169 673 65 ˆ10´7 4 3 5.920 994 026 29 ˆ10´8 ´1.200 776 676 34 ˆ10´8

The EGM-96 Gravity model
A table of the Cnm ad Snm coefficients is called a gravity model and several are available. For
the purpose of this work, the Earth Gravity Model EGM-96 was selected and in Table 3 the
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first and most important terms are presented. As can be seen from the table the higher order
terms fall off as r´n´1 in the potential, which means that the force terms they generate fall off as
r´n´2. High order terms are thus only significant in the immediate vicinity of the planet. The
geopotential expansion in fact, reverts to its first terms as the distance from the planet increases.
At long distances from the Earth, the field is that generated by a Newtonian point mass.

The Main Problem
The selection of the geopotential model precision depends on the precision needed for a particu-
lar application and thus, a higher or lower number of spherical harmonics could be used. It can
be seen that the largest coefficient is J2, which is of the order of 10´3 of the point mass term.
The next coefficient is itself of the order of 10´3 respect to J2; which leads to an order of 10´6

respect to the unity. In most of the applications, an expansion to the J2 term is sufficient for the
purposes of the analysis, especially when high rapidity combined with acceptable accuracy are
needed. The J2 term is in fact so important that the problem of solving for the J2 perturbation
effects has gained the name of “the main problem of artificial satellite theory” [21]. In the present
work, the main problem will be considered and the propagation of all the objects in LEO will be
held using a tool optimized for the main problem.

3.3 DROMO propagator

The DROMO propagator developed by the UPM Space Dynamics Group is, as described by
the authors “a regular, robust and efficient propagator” [22]. It means that DROMO combines
numerical stability, accurate results at low computational cost and absence of singularities for
Keplerian orbits. For these reasons, it was selected as a starting point for the propagation of
LEO objects. DROMO propagator is a special perturbation method7 of variation of parameters
(VOP) based in a set of redundant variables including quaternions.

The peculiarity of this new method is that the description of motion is broken into three
steps [22]: (1) movement of a reference frame attached to the orbital plane; (2) osculating
trajectory in the orbital plane; (3) pin-point the position in the osculating trajectory as a function
of time. This vision permits to separate the movement in the orbital plane and the movement
of the orbital plane itself. The introduced modularity of the movements leads to computational
speeding.

The core of the propagator is a set of eight Ordinary Differential Equations (ODE) and the
independent variable is a fictitious time which reduces to the true anomaly when the motion is
purely Keplerian. The DROMO set of dependent variables is redundant and seven dependent
variables are generalized elements, that is, they take constant values in the Keplerian motion.

3.3.1 Geometric and kinematic aspects of DROMO

Propagating an orbit consists in the numerical integration of the set ODEs of the motion with
the initial conditions. In the simpler case of a particle M of mass m moving in a fixed inertial
frame Ox1y1z1 (rigid body 1, in this case the Earth, whose center of mass O is the origin of the
frame), the forces acting upon it are: the Earth gravitational field as seen in section 3.2, and
all the forces included in the perturbing force Fp. Under these conditions, the motion equation

7A special perturbation method is a method which numerically integrates the equations of motion including
all necessary perturbing accelerations.
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which represents the movement of M is the following:

m
d2x

dt2
“ ´

mµ

|x|3
x` Fp (3.5)

which should be integrated from the appropriate initial conditions:

for t “ t0 : x “ x0, v “ v0 (3.6)

In DROMO, this problem is addressed through a transformation which implies a preliminary
geometric definition of the problem.

The orbital frame Mxyz is defined considering the relative position of the particle M respect
to the mass center of the central body (i.e. the Earth). As can be seen in Fig. 3.2a, it is defined
with Mx axis along the radius vector x of M , the plane Mxy generated by the vectors x and
v, so that v ¨ j ě 0, and the axis Mz completing a right-handed orthogonal frame. The plane
Mxy is the orbital plane. In the pure Keplerian motion (Fp “ 0), it is fixed to the inertial frame
Ox1y1z1 and it contains the trajectory of M. In the perturbed motion (Fp ‰ 0) the orbital plane
is moving in the inertial space and contains the osculating orbit.

(a) Orbital frame (b) Perifocal frame

Figure 3.2: Reference frames definition [22].

Once the orbital plane is defined, it is oriented in the inertial space. In the pure Keplerian
motion the orbital plane is located by three Euler angles that take constant values: the longitude
of the ascending node Ω, the inclination i and the argument of the pericenter ω. In the perturbed
motion, these angles vary and the orbital plane needs to be referenced to an initial reference frame
which is chosen between the departure frame Ox0y0z0 or the perifocal frame Oxpypzp at the initial
instant (Fig. 3.2b).

In order to finally locate the unit vectors of the perifocal frame Oxpypzp respect to the unit
vectors of the inertial frame, a rotation matrix P0 is needed, thus the rotation is:

ru1,u2,k0s “ ri1, j1,k1sP0 (3.7)

where the matrix P0 is expressed in terms of the Euler angles:
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P0 “

»

–

` cos Ω cosω ´ cos i sin Ω sinω ´ cos Ω sinω ´ cos i sin Ω cosω ` sin i sin Ω
` sin Ω cosω ` cos i cos Ω sinω ´ sin Ω sinω ` cos i cos Ω cosω ´ sin i cos Ω

` sin i sinω ` sin i cosω cos i

fi

fl (3.8)

Within the idea of the orbital plane a complication arises. In the perturbed motion of M the
orbital plane is no longer fixed to the inertial frame. From a geometric point of view, there
is an infinite number of planes that satisfy the geometric conditions exposed in the previous
description. Every one of them has in fact its own rotation velocity relative to the inertial frame
with different component along the inertial axis Oz. Between all the possible planes, DROMO
theory selects the plane whose angular velocity component along the Oz axis is null and calls
it the ideal frame. Thus, for consequence, the angular velocity of the orbital plane, in the new
optics of the ideal frame, lies strictly in the plane Oxy. Many different frames which satisfy these
conditions can be associated to the orbital plane, in particular the departure frame Ox0y0z0 and
the departure perifocal frame Oxpypzp are two possible candidates. The DROMO development
finally selects the departure perifocal frame demonstrating that its angular velocity lies strictly
in the Ox axis and it depends solely on the perturbation force Fp, calling the so obtained orbital
plane rigid body 0. Fig. 3.3 presents the relation between the orbital frame and the two possible
ideal frames.

Figure 3.3: Orbital Frame, Departure Frame and Deperture Perifocal Frame [22].

3.3.2 DROMO variables definition

DROMO variables are non-dimensionalized. The characteristic values selected for the longitude,
time and mass nondimesionalization are:

Lc “ |x0|, ωc “

c

µ

L3
c

, mc “ m (3.9)

which lead to the definition of all the consequent characteristic values:
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Table 4: DROMO non-dimensionalization characteristic values.

DROMO non-dimensionalization characteristic values

Length Lc Acceleration ω2
cLc Angular Momentum ωcL

2
c

Velocity ωc Force mcω
2
cLc Time ω´1

c

In particular, the expression for the non-dimensional time is:

τ “ ωcpt´ t0q (3.10)

As said in the introduction to this section, because the DROMO theory splits the motion
in two components (the motion in the orbital plane and the motion of the orbital plane), the
most suitable independent variable utilized in the propagation is a fictitious time which will have
the characteristics of an angle, the ideal anomaly. The ideal anomaly σ is defined as the angle
between the Ox axis of the orbital frame and the Oxp axis of the departure perifocal frame and
it can be observed in Fig. 3.3 along with the true anomaly θ. At the initial time t0 both angles
are coincident but during the propagation they differ because of the perturbation Fp.

for t “ t0 : σ0 “ θ0 (3.11)

To introduce the derivatives of motion variables, it is important to fully understand the
inertial motion of the orbital plane. Its motion is a pure rotation about an axis which lies
totally in the inertial plane xy and passes from the origin O, which keeps a fixed position. Thus,
following the DROMO notation, first of all it is important to define the attitude of the departure
perifocal frame Oxpypzp. It is more effectively represented in terms of an unit quaternion n
whose components are defined in terms of the Euler angles of the perifocal frame:

n “ η4 ` pη1, η2, η3q (3.12)

η1 “ sin

ˆ

i

2

˙

cos

ˆ

Ω´ ω

2

˙

, η2 “ sin

ˆ

i

2

˙

sin

ˆ

Ω´ ω

2

˙

η3 “ cos

ˆ

i

2

˙

sin

ˆ

Ω` ω

2

˙

, η4 “ cos

ˆ

i

2

˙

cos

ˆ

Ω` ω

2

˙ (3.13)

And the aforementioned rotation matrix P0 in terms of the unit quaternion n remains:

P0 “

»

–

1´ 2pη2
2 ` η

2
3q 2η1η2 ´ 2η3η4 2η1η3 ` 2η2η4

2η1η2 ` 2η3η4 1´ 2pη2
1 ` η

2
3q 2η2η3 ´ 2η1η1

2η1η3 ´ 2η2η4 2η2η3 ` 2η1η4 1´ 2pη2
1 ` η

2
2q

fi

fl (3.14)

The n quaternion or, what is equivalent, the P0 rotation matrix are both constant in the Keplerian
motion and evolve in the perturbed motion. DROMO theory evaluates the derivatives of the
unit quaternion in function of the non-dimensional time:
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dη1

dτ
“

1

2

r

h
apztη4 cosσ ´ η3 sinσu (3.15)

dη2

dτ
“

1

2

r

h
apztη3 cosσ ` η4 sinσu (3.16)

dη3

dτ
“

1

2

r

h
apzt´η2 cosσ ` η1 sinσu (3.17)

dη1

dτ
“

1

2

r

h
apzt´η1 cosσ ´ η2 sinσu (3.18)

It is easy to observe that the variation of the quaternion n only depends on the orbital plane
perpendicular acceleration apz. This component of the perturbation acceleration depends on the
position of the perturbed object in the inertial space, thus, its value has to be determined at
every time. To do so, the position of the orbital frame Oxyz is required. Its attitude in the
inertial space is given by another unit quaternion, q:

q “ ε4 ` pε1, ε2, ε3q (3.19)

Since the orbital frame only rotates respect to the departure perifocal frame around Oz axis, the
relation between the two frames is depicted by the following rotation:

ri, j,ks “ ru1,u1,ksR3pσq (3.20)

Which finally leads to the definition of the q quaternion in function of the n quaternion and the
ideal anomaly σ.

ε1 “ η1 cos
σ

2
` η2 sin

σ

2
, ε2 “ η2 cos

σ

2
´ η1 sin

σ

2

ε3 “ η3 cos
σ

2
` η4 sin

σ

2
, ε4 “ η4 cos

σ

2
´ η3 sin

σ

2

(3.21)

Finally, to describe the motion relative to the orbital plane, DROMO theory introduces three
variables to describe the dynamic state of the particle, ζ1, ζ2 and ζ3. They are defined in function
of the non-dimensional angular momentum modulus h of the particle and the eccentricity vector
e in the ideal frame:

e “ ζ1u1 ` ζ2u2 (3.22)

ζ3 “
1

h
(3.23)

As said before, the independent variable in DROMO theory is the ideal anomaly σ; as a
consequence, the time derivative for all the different magnitudes needs to be calculated in the
ideal frame, it is, the time derivatives are expressed as ideal anomaly derivatives. As a result,
the equations which govern the motion in the orbital plane and of the orbital plane (included
the very derivative of the non-dimensional time) are hereby presented:
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dτ

dσ
“

1

ζ3
3s

2
(3.24)

dζ1
dσ

“ `s sinσpãpxq ` pζ1 ` p1` sq cosσqpãpyq (3.25)

dζ2
dσ

“ ´s cosσpãpxq ` pζ2 ` p1` sq sinσqpãpyq (3.26)

dζ3
dσ

“ ´ζ3pãpyq (3.27)

dη1

dσ
“

1

2
ãpztη4 cosσ ´ η3 sinσu (3.28)

dη2

dσ
“

1

2
ãpztη3 cosσ ` η4 sinσu (3.29)

dη3

dσ
“

1

2
ãpzt´η2 cosσ ` η1 sinσu (3.30)

dη4

dσ
“

1

2
ãpzt´η1 cosσ ´ η2 sinσu (3.31)

These are the motion equation as presented by DROMO theory and they must be integrated
considering the following additional relations:

s “ 1` ζ1 cosσ ` ζ2 sinσ (3.32)

1

r
“ ζ2

3s (3.33)

dr

dτ
“ ζ3pζ1 sinσ ´ ζ2 cosσq (3.34)

ε1 “ η1 cos
σ

2
` η2 sin

σ

2
(3.35)

ε2 “ η2 cos
σ

2
´ η1 sin

σ

2
(3.36)

ε3 “ η3 cos
σ

2
` η4 sin

σ

2
(3.37)

ε4 “ η4 cos
σ

2
´ η3 sin

σ

2
(3.38)

3.3.3 Initial conditions

Obviously, the equations shown above must be integrated from the appropriate initial conditions,
which should necessarily be derived from the initial state vector of M in non-dimensional form
px0, v0q at the initial time t0. It is easy to obtain the unit vectors of the departure perifocal
frame Oxpypzp (and, for consequence, the component of the initial quaternion n0):

kp0q “
h0

|h0|
, u1p0q “

e0

|e0|
, u2p0q “ kp0q ˆ u1p0q (3.39)

and the unit vectors of the orbital frame Oxyz:

ip0q “
x0

|x0|
, jp0q “ kp0q ˆ ip0q (3.40)

Finally, the DROMO initial vector at σp0q “ σ0 is:
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τp0q “ 0, ζ1p0q “ e0, ζ2p0q “ 0, ζ3p0q “
1

h0

η1p0q “ η10, η2p0q “ η20, η3p0q “ η30, η4p0q “ η40

(3.41)

3.3.4 From DROMO variables to the state vector

Once the propagation in DROMO variables has taken place, the resulting vector must be conver-
ted in a classical state vector in the inertial space which is easily interpreted and manipulated.
Thus, the state vector px1, v1q of the particle M in dimensional values and in the inertial frame
Ox1y1z1 is obtained:

x1 “
Lc
ζ2
3s
ri1, j1,k1sP0

»

–

cosσ
sinσ

0

fi

fl (3.42)

v1 “ pωcLcqri1, j1,k1sP0

»

–

V1

V2

0

fi

fl (3.43)

where the values of V1 and V2 are defined as follows:

V1 “ ´ζ3psinσ ` ζ2q, V2 “ ζ3pcosσ ` ζ1q (3.44)

3.4 DROMO propagator implementation

After the presentation of the DROMO propagator, the main problem approach is choosen in
order to speed up the calculations.

DROMO theory generates an Initial Value Problem (IVP) whose derivative must be numer-
ically integrated in function of the chosen independent variable. For a big number of objects,
this operation needs a considerable amount of time. Looking for a faster propagation based on
DROMO theory, it is reasonable to select only the main perturbation components acting on
LEO objects and propagate them considering their perturbed motion. The inclusion of the sole
Earth’s oblateness in the perturbation term Fp permits to create a fast and reasonably reliable
first approximation solution of the problem. Nevertheless, this solution allows to draw important
and clarifying conclusions about the objects future behaviour.

3.4.1 DROMO formulation of the main problem

As presented before in equation (3.4), the expression of the perturbation potential for the main
problem is:

Vp “
mµCR

2
CJ2

2r3
p3 sin2 ϕ´ 1q (3.45)

where instead of the colatitude θ, the latitude ϕ of the satellite has been chosen. Thus the
expression for the perturbation force is:

Fp “ ´∇Vp “ ´
BVp
Br

ur ´
1

r

BVp
Bϕ

uϕ “ ´
3mµCJ2R

2
C

2r4
rp1´ 3 sin2 ϕqur ` sinp2ϕquϕs (3.46)

Where r “ |x|, ur is the unit vector in radial direction and uφ is the unit vector in the along-
track direction. It is noticeable that this expression presents a non-central component of the
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gravitational force, reducing to a central force when the latitude ϕ of the object is null. In that
case, the orbit would lie in the Earth’s equatorial plane, being the Earth oblateness symmetrical,
not generating a non-central component. Also note that if J2 “ 0 the perturbation component
of the force would be null, reducing the problem to a two body problem.

The perturbation force must be represented in the orbital frame Oxyz by the means of three
scalar products:

Fpx “ Fp ¨ i, Fpy “ Fp ¨ j, Fpz “ Fp ¨ k (3.47)

In the following part, every term will be developed. The first term is obtained directly from the
previous expression:

Fpx “ Fp ¨ i “ ´
3

2

mµC

r2
J2

ˆ

RC

r

˙2

p1´ 3pi ¨ k1q
2q (3.48)

where it was substituted sinϕ with the equal quantity z1
r “ pi ¨ k1q. For the rest of the scalar

products it is needed to project the perturbation force on the inertial frame Ox1y1z1 obtaining:

Fp “ ´
3

2

mµC

r2
J2

ˆ

RC

r

˙2 "ˆ

1´ 5
z2

1

r2

˙

´x1

r
i1 `

y1

r
j1

¯

`

ˆ

3´ 5
z2

1

r2

˙

z1

r
k1

*

(3.49)

And, expressing the unit vector of the orbital frame in terms of the inertial frame:

i “
x1

r
i1 `

y1

r
j1 `

z1

r
k1 (3.50)

the following relation can be obtained:

Fp “ ´
3

2

mµC

r2
J2

ˆ

RC

r

˙2 "ˆ

1´ 5
z2

1

r2

˙

i`
2z1

r
k1

*

(3.51)

The expression for the three terms of perturbation is thus:

Fpx “ ´
3

2

mµC

r2
J2

ˆ

RC

r

˙2 „
1

2
´

3

2
pi ¨ k1q

2



Fpy “ ´
3

2

mµC

r2
J2

ˆ

RC

r

˙2

pi ¨ k1qpj ¨ k1q

Fpz “ ´
3

2

mµC

r2
J2

ˆ

RC

r

˙2

pi ¨ k1qpk ¨ k1q

(3.52)

which must be modified following the DROMO non-dimesionalization:

Fp “ mLcω
2
0ap, ω0 “

µC

L3
c

(3.53)

Hence leading to the non-dimensional expressions for the acceleration (the force per unit mass):

apx “ ap ¨ i “ ´3εχ4

„

1

2
´

3

2
pi ¨ k1q

2



(3.54)

apy “ ap ¨ j “ ´3εχ4pi ¨ k1qpj ¨ k1q (3.55)

apz “ ap ¨ k “ ´3εχ4pi ¨ k1qpk ¨ k1q (3.56)
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where:

ε “ J2

ˆ

RC

Lc

˙2

and χ “
1

r
“ ζ2

3 ¨ s “ ζ2
3 ¨ p1` ζ1 cosσ ` ζ2 sinσq

Thus, for the study of the J2 perturbation in DROMO formulation, the equations of motion are
expressed as follows:

dτ

dσ
“

1

ζ3
3s

2
(3.57)

dζ1
dσ

“ ´3εsζ4
3

"

s

„

1

2
´

3

2
pi ¨ k1q

2



sinσ ` rζ2 ` p1` sq cosσpi ¨ k1qpj ¨ k1qs

*

(3.58)

dζ2
dσ

“ ´3εsζ4
3

"

´s

„

1

2
´

3

2
pi ¨ k1q

2



cosσ ` rζ2 ` p1` sq cosσpi ¨ k1qpj ¨ k1qs

*

(3.59)

dζ3
dσ

“ 3εsζ5
3 pi ¨ k1qpj ¨ k1q (3.60)

dη1

dσ
“ ´3εsζ4

3tη4 cosσ ´ η3 sinσupi ¨ k1qpk ¨ k1q (3.61)

dη2

dσ
“ ´3εsζ4

3tη3 cosσ ` η4 sinσupi ¨ k1qpk ¨ k1q (3.62)

dη3

dσ
“ ´3εsζ4

3t´η2 cosσ ` η1 sinσupi ¨ k1qpk ¨ k1q (3.63)

dη4

dσ
“ ´3εsζ4

3t´η1 cosσ ´ η2 sinσupi ¨ k1qpk ¨ k1q (3.64)

and they must be integrated starting from the same initial conditions defined in section 3.3.3 for
σp0q “ σ0:

τp0q “ 0, ζ1p0q “ ζ10, ζ2p0q “ ζ20, ζ3p0q “ ζ30

η1p0q “ C1, η2p0q “ C2, η3p0q “ C3, η4p0q “ C4

(3.65)

where C1, C2, C3, C4 are the components that define the position of the perifocal frame in the
initial instant.

3.4.2 Propagation

All the processed objects are given in the form of an inertial state vector in the GCRF reference
frame at a common instant of time. They must be firstly converted in suitable DROMO state
vectors following the passages in section 3.3.3.

Once an object is expressed through its DROMO state vector, the routine propagates it
through a classical Runge-Kutta 4th order numeric integrator (RK4). This method is here sum-
marized to clarify its implementation and to better explain a following interpolation concept.

The general IVP solved by the Runge-Kutta method is the following:

9y “ fpt, yq, ypt0q “ y0 (3.66)

Applying the method to the current problem, t is the DROMO independent variable σ, y the
object’s DROMO state vector, 9y the DROMO derivative with respect to σ and y0 the initial
DROMO vector. Moreover, in the case of the main problem, there is the simplification of a
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derivative which is independent of the ideal anomaly σ, resulting in an autonomous ODEs system.
The problem reduces to:

9y “ fpyq, ypσ0q “ y0 (3.67)

And once the increment8 of σ has been defined, (∆σ “ h), the (n+1)th DROMO vector is given
by:

yn`1 “ yn ` kn,

kn “
1

6
pk1 ` 2k2 ` 2k3 ` k4q,

σn`1 “ σn ` h

(3.68)

where:

k1 “ h fpynq,

k2 “ h f

ˆ

yn `
k1

2

˙

,

k3 “ h f

ˆ

yn `
k2

2

˙

,

k4 “ h fpyn ` k3q

(3.69)

The propagation is set up and the propagator continues to calculate state vectors till the proper
stop conditions. In the case of the present work, the control variable is the time. It can be easily
obtained given a state vector using equation (3.10).

Actually, the state vector of the propagated object is needed at precise intervals of time
in order to create a database of the objects classical elements at given times. To do so, an
interpolation process is needed because of the very foundations of the DROMO propagation: the
propagation is made in the σ independent variable (a geometric variable), whilst the time is only
a control variable. Hence, to seek the solution at a given instant of time (the sampling time)
there is the necessity to interpolate.

Considering Fig. 3.4, at every propagation step two quantities are available: yn`1 and kn.
By consequence, from eq. (3.68) yn is easily obtained too. The objective is to compute the value
of the solution at the σST corresponding to the defined sampling time tST . This is realized by a
linear interpolation between the two known values of the solution at σn and σn`1.

Figure 3.4: Linear interpolation scheme.

8In this case, the integration step h uses the same notation as the non-dimesional angular momentum h as
defined in section 3.3.2. h symbol is traditionally used for both quantities.
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Defined:

φ “
tST ´ tn
tn`1 ´ tn

“
τST ´ τn
τn`1 ´ τn

(3.70)

the interpolated value is obtained with the following relation:

yST “ p1´ φq yn ` φ yn`1 “ yn`1 ´ p1´ φqkn (3.71)

The linear interpolation obtains the value yST which is slightly different from the real value yreal
of the function at the corresponding value of σST . In the optics of this work, this approximation
is accepted and a further development of the tool could reduce this error considering a parabolic
interpolation.

3.5 Propagation results

Once the object has been propagated, a database with all the sampling time steps and the
corresponding DROMO state vectors is obtained. Every DROMO state vector is then processed
and transformed to an inertial state vector which is finally transformed to a vector containing the
six classic elements of the orbit: the semi-major axis a, the eccentricity e, the inclination i, the
argument of the perigee ω, the right ascension of the ascending node Ω and the true anomaly θ.

In order to make the output of the data easily readable by any other interfacing program, it
has been decided to store the results of the propagation in a text file. It can be further analysed
in an easy way. Because the final objective of the work is to analyse the threats constituted by
the space debris to the ISS, every space object orbit which is processed and propagated is directly
compared with the ISS orbit. To do so, every line of the output file contains a timestamp, the
name of the first object (the ISS), five orbital elements of it along with the name of the compared
object (the space debris)9 and its five orbital elements. The 5 selected classical elements are: the
semi-major axis a, the eccentricity e, the right ascension of the ascending node Ω, the inclination
i and the argument of the perigee ω, presented in this order. It is important to underline that
5 elements are sufficient to define an unique orbit because the position in the orbit is finally
uniquely defined by the true anomaly θ. Since the objective is the computation of the distance
between orbits and not the distance between the very orbiting bodies (which varies much faster
and it is not representative), finally it has been decided to output these elements per each object
at exactly the same instant of time (the timestamp).

Every line of the output file is thus composed by thirteen fields separated by spaces containing
the useful information for the next analysis (Fig. 3.5).

Figure 3.5: Propagation output line format.

Once the ISS and the space object propagations lines have ended, the file presents a new
couple of objects beginning from the starting time (the first of them being once again the ISS)
and the pattern continues till the last object present in the TLEs input file is analysed and his
propagation is printed.

9Actually, the name of the debris is followed by its NORAD’s Catalog Number in order to differentiate between
debris pertaining to the same initial object (e.g. FENGYUN-1C-DEB-35088).
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4 MOID calculation

After the propagation of all the objects of interest has been carried out, it is time for the Minimum
Orbital Intersection Distance (MOID) to be computed. Two orbits are defined at equispaced
instants of time in the interval of propagation. It is now very useful to calculate the MOID at
each one of the timestamps in order to have the overall MOID variation in the period of interest.
To reach the objective of an effective and rapid MOID computation, the method developed by
the Space Dynamics Group (SDG - UPM) (Hedo, Rúız and Peláez) [23] has been used. It is
a newly developed iterative method proposed by the SDG in 2018 which ensures a “fast and
precise [...] MOID computation”.

4.1 Basis of the method

The Minimum Orbital Intersection Distance is, by definition, the distance between the closest
points of the osculating orbits of two bodies. The principal field of application of the MOID is
obviously related to the avoidance of space collisions between objects orbiting a common primary.
They could be possible collisions between the Earth and any hazardous object from the solar
system or could be collisions between different objects orbiting the Earth (spacecraft and space
debris for instance).

The problem can be formulated as the search of the minimum distance between two sets of
points embedded in the Euclidean 3-space (IR3). In most MOID calculations, the two orbits
can be considered as confined, thus the problem is the computation of the minimum distance
between two confocal Keplerian osculating ellipses. One of the orbits is considered as the target
or the reference (the primary) while any other orbit which is coupled to the primary and studied
is called secondary, but the roles can be exchanged as well (Fig. 4.1).

Figure 4.1: Relative geometry of two confocal elliptical orbits [23].

This problem has been studied since the mid-20th century because of its great importance.
A considerable number of methods has been developed since then and they can be divided in
three main categories: algebraic methods, which mainly deal with the geometry of the problem
and rely on algebraic calculations; numerical methods which seek the minimum by numerical
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iterations; hybrid methods which try to unify the best of the two previous approaches. The
method here presented is a numerical iterative method that is based on two algorithms:

• Algorithm 1: For a given point P0 its distance to the primary ellipse e1 is computed (Fig.
4.2).

• Algorithm 2: As the point P0 moves along the secondary ellipse, the implementation of
Algorithm 1 at every passage leads to a set S of minimum distances to e1. The absolute
minimum of the set is then selected being it the MOID (Fig. 4.1).

These two algorithms are successfully embedded in a tool which permits the MOID obtention
in a very fast way.

Figure 4.2: Distance from a point to an ellipse in IR3 [23].

4.2 Algorithm 1

Considering the two ellipses e1, e2 defined in Fig. 4.1 with common focus in F , the MOID is
the minimum Euclidean distance between them:

MOID “ dpe1, e2q “ min
E1Pe1,E2Pe2

dpE1, E2q (4.1)

This distance is easily obtainable if it is expressed in function of the eccentric anomalies:

dpe1, e2q “ min
u1,u2P2π

drE1pu1q, E2pu2qs (4.2)

For the distance between two generic points in the ellipses (Fig. 4.1), the general expression is:

E1E2 “ dpu1, u2q “ |OE1pu1q ´OE2pu2q| “

g

f

f

e

3
ÿ

i“1

´

xE1
i pu1q ´ x

E2
i pu2q

¯

(4.3)

where:
x
Ej
i pujq, i “ 1, 2, 3 (4.4)

are the parametric equations of Ellipse j expressed in cartesian coordinates as function of the
eccentric anomaly uj (j “ 1, 2).
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It can be observed that the MOID calculation is an unconstrained minimization of a two
variables function. Moreover, the function dpu1, u2q is 2π-periodic in both eccentric anomalies.
The final domain of the equation 4.3 is thus defined by pu1, u2q P r0, 2πs ˆ r0, 2πs which is a
topological torus in the Euclidean space IR3.

4.2.1 Distance computation

The basis of Algorithm 1 is constituted by dividing the distance from a point to an ellipse into
two main components: the distance normal to the plane of the ellipse and the distance in the
plane of the ellipse.

Considering Fig. 4.2, P0 P IR3 is a generic point and e1 P IR3 an ellipse whose eccentric
anomaly is u P r0, 2πs. The distance between them is defined as:

dpP0, e1q “ min
uPr0,2πs

dpP0, Epuqq “ min
uPr0,2πs

dpuq (4.5)

Therefore, if P is the orthogonal projection of P0 on the plane of e1 its distance to the ellipse
can be expressed as follows:

dpP0, e1q
2 “ d2

K ` d
2
‖ “ |P0P|2 ` |PE˚|

2 (4.6)

where E˚ is the point of the ellipse which gives minimum distance.
As far as P0 is kept fixed, the out-of-plane distance dK is constant. Hence, only the in-plane

distance needs to be minimized. Since Ox1y1z1 are symmetry axes of the ellipse, distance to
point P0 is invariant to symmetries respect to coordinate planes. The study is therefore reduced
to the first octant of Ox1y1z1, and considering the in-plane projection P the study can be re-
duced to the first quadrant of Ox1y1.

Once the in-plane minimum distance is evaluated, equation 4.6 allows to obtain the minimum
spatial distance between point P0 and ellipse e1.

4.2.2 In-plane distance between a point and an ellipse

Figure 4.3: In-plane distances between an ellipse and a coplanar point [23].
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Considering Fig. 4.3 which represents the ellipse e whose axes of symmetry are Ox1y1 and whose
semi-axes are a and b, the minimum distance between P and E is:

dpP, eq “ min
EPe

dpP,Eq (4.7)

and it can be expressed in function of the Cartesian coordinates of the point P in Ox1y1, thus
leading to the expression of the minimization problem to solve:

d2pP, eq “ min
px,yqPe

rpx´ αq2 ` py ´ βq2s (4.8)

where x and y obviously must solve the ellipse equation:

x2

a2
`
y2

b2
“ 1. (4.9)

After some operations, the following equation must be satisfied together with eq. (4.9):

xypa2 ´ b2q ´ αa2y ` βb2x “ 0 (4.10)

which is the implicit expression of an equilateral hyperbola h of asymptotes parallel to the axes,
passing through P and O (Fig. 4.4a). Every intersection point between the two conics e and h is
a solution of equations 4.9 and 4.10 and in that points the distance to P has a stationary value.
Eliminating y between equations 4.9 and 4.10 in fact produces:

x4e4 ´ 2αe2x3 ´ pa2e4 ` β2e2 ´ rα2 ` β2sqx2 ` 2αe2a2x´ a2α2 “ 0 (4.11)

which is a quartic with real coefficients, thus the possible intersections between two conics consist
of 0, 2 or 4 points counted with their multiplicities, and because the hyperbola h by construction
passes by the centre O of the ellipse e, the two curves have at least two points of intersection: it
is deduced that the problem of extreme distances always has a solution.

(a) Intersections between the ellipse e and the hyperbola h. (b) Extreme distances versus those to vertices W` and W´.

Figure 4.4: Reference frames definition [23].

With some geometrical reasoning, it can be deduced from Fig. 4.4a and Fig. 4.4b that the
distances between the point P and the extremes of the ellipse and the point P and the intersection
points of the hyperbola and the ellipse are subjected to the following relation:
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dpP,E˚q ă minpdpP, V `q, dpP,W´qq ă dpP,E´q ď dpP,E`q ă dpP,E˚˚q (4.12)

Thus, it can be inferred that not only the problem has at least two extreme points, but also that
one of them is the global minimum of the distance PE and the other is the global maximum of it.

Moreover, and other interesting result can be drawn introducing the concept of the plane
evolute10. It is known in fact, that for critical distances, PE is normal to the ellipse e and
tangent to its plane evolute p (Fig. 4.5). Since all normals are tangent to the plane evolute,
there are as many real roots of equation 4.11 as tangents from P to p. The number depends on
the position of P relative to p. It is important to underline that there may be two different real
roots that give minimum distance because of the symmetries.

Figure 4.5: Tangent lines to the plane evolute of an ellipse from an interior point [23].

4.2.3 Parametric solution approach

Once a geometric analysis of the problem has been carried out, the values of the critical points
must be found, it is, the roots of equation 4.11 must be computed. The SDG method is based
on the parametric representation of this equation because of the possibility to solve it with a
numerical iterative approach.

Thus, considering the parametric equations of the ellipse e 4.6 in function of the eccentric
anomaly u P r0, 2πs:

xpuq “ a cospuq; ypuq “ b sinpuq (4.13)

10The plane evolute of a curve is the locus of all its centres of curvature. It means that if the centre of curvature
of each point on the curve is drawn, the evolute would be the resulting figure.
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The distance dpP,Eq is:

dpu; a, b, α, βq “
a

pα´ a cosuq2 ` pβ ´ b sinuq2 (4.14)

where u is the independent variable and a, b, α, β are the four parameters of the problem. Using
the squared distance, leads to a simplification in the computation of the stationary points u˚

and they are searched by annulling the first derivative:

fpu; a, b, α, βq “
drd2pu; a, b, α, βqs

du
“ αa sinu´ βb cosu´ c2 sinu cosu (4.15)

whose real roots are the eccentric anomalies of the points of ellipse e with stationary distance to
P pα, βq.

Figure 4.6: Geometry of the in-plane distance problem in parametric equations. [23]

In order to solve equation 4.15, the SDG group [23] considers a generic case and assumes
that P is in the first quadrant of Ox1y1 (α ą 0, β ą 0) and solves it with the application of a
numerical method, preferring it to the classic quartic polynomial solution because of its higher
rapidity and accuracy respect to the analytic solution.

Numeric iterative method
In the generic conditions above mentioned, the problem of finding the in-plane minimum distance
between P pα ą 0, β ą 0q and e reduces to the search of the root of the univariate function fpuq
(Equation 4.15) in the open interval p0, π2 q, because other cases (when P is upon one of the axes,
α “ 0 and/or β “ 0) give trivial solutions.

In order to solve equation 4.15, which is transcendental, an iterative root-finding method is
needed; moreover, being the function non-linear and of class C8, high-order iterative methods
can be used. To ensure convergence, the SDG method applies the fixed-point theorem in order
to demonstrate the existence and uniqueness of a solution:

Φpuq “ arctan

ˆ

β
?

1´ e2 ` ae2 sinu

α

˙

“ u. (4.16)

55



Finally, Halley’s iterative method is preferred because of its higher speed respect to a more
conventional Newton-Raphson method.

4.3 Algorithm 2

As anticipated in section 4.1, Algorithm 2 is a routine loop which executes Algorithm 1 at every
passage. In particular, the following steps are executed:

1. Discretization of the secondary orbit e2, Algorithm 1 call for each anomaly value of e2 in
order to compute the minimum distance to e1 and isolation of each minimum in an anomaly
interval.

2. Refinement of the search by a golden section search algorithm.

3. Selection of the global minimum between the former values.

4.3.1 Discretization and minimum distance computation

Orbit e2 is divided in an uniform grid of N ` 1 values tu0
2, u

1
2, ..., u

N
2 u in the interval u2 P

r0, 2πs where u2 is the eccentric anomaly of e2. A corresponding grid of N image points
tE0

2 , E
1
2 , ..., E

N´1
2 u is defined in e2 (E0

2 “ EN2 ). Because there can be more than one min-
imum of the distance between the points of two confocal ellipses (actually there can be up to
four minima), the choice of the value of N is subordinated to the detection of all of them in every
case for an accuracy reason. Moreover, the value for N must be the smallest number possible
for speed reasons. The SDG method makes an analysis of all possible cases and finally selects
N “ 50 as a value which satisfies both the criteria.

The application of Algorithm 1 for each u2 respect to the ellipse e1 allows to have a reticular
approximation of the function:

Φpu2q “ min
u1Pr0,2πs

dpu1, u2q (4.17)

which is used to insulate the abscissa of each relative minimum of Φpu2q within an interval.

4.3.2 Global minimum search

Once the analysis of Φpu2q finds the intervals isolating a minimum, each interval is narrowed un-
til the requested precision is reached. A Golden section search is applied in the defined interval
because of its superiority relatively to other interval search algorithms as bisection and ternary
search.

The smallest local minimum among the ones found during this last search is by definition the
global minimum of the distance between two confocal elliptical orbits, and that is the MOID.

4.4 Implementation

The routine has been used in order to calculate the MOIDs between the ISS and every space
object or space debris analysed through the TLEs’ database.

As said in the previous chapter, the output of the DROMO propagator is a text file which
contains at every line a timestamp and the elements defining the two osculating orbits in that
instant of time. The MOID computation routine reads this file as an input and computes the

56



MOID between the ISS and the corresponding space debris at every specified instant of time. As
underlined in the previous chapter, the selected orbital elements are: the semi-major axis a, the
eccentricity e, the right ascension of the ascending node Ω, the inclination i and the argument
of the perigee ω. These classical elements are sufficient for the osculating orbit definition and
thus, the SDG routine utilises them to calculate timestep by timestep the MOID between the
two objects.

The results are presented in an output file. In this case, every line of it presents: the
timestamp, the name of the first object (actually it is always the ISS), the name of the object
whose orbit is being compared to the first and the corresponding MOID (Fig. 4.7)

Figure 4.7: MOID calculation output line format.
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5 Results analysis

The two theories developed by the SDG have been implemented and adapted to form an operative
tool for MOID monitorization (DROMOID). Now, after the exposition of the theoretical basis of
the methods, some experimentation is needed in order to characterize the solution and validate
the tool.

It is important to remember that the main interest of this work is the analysis of the time
evolution of the MOID of two objects orbiting the Earth. This leads to the comprehension of
MOID’s behaviours over time and ultimately its reasonable and logical monitorization.

By the study of some representative cases, some general behaviours and trends can be de-
duced, allowing to discriminate between hazardous and not-hazardous cases.

5.1 DROMO theory and MOID computation implementation

In the previous chapters, the data processing has been detailed at every stage in order to have
an idea of its direct implementation; nevertheless, the whole process will be now recapitulated
to create a clear vision of the data flow.

The main stages of the process are summarized as follows:

1. The data are downloaded from the CelesTrak website (https://celestrak.com) in the form
of text files containing the TLEs which are going to be analysed. The first TLE of the file
corresponds to the object with respect to all the other objects will be compared. In the
case of this work, the first object shall be the ISS (Zarya module, as declared in the TLE).

2. The TLE data file is given to the first module which receives it as input.

3. The first module processes the data: every TLE is propagated with the SGP4/SDP4 to a
common instant of time, the resultant state vector is transformed to the GCRF reference
frame and propagated for a specified interval of time; its value is finally saved at equispaced
intervals of time.

4. The module saves the data in an output file: every line of it contains (Fig. 3.5) the
information of the ISS and a space debris at every timestamp.

5. The file is given as an input to the second module.

6. The second module computes for every line of the input file the MOID between the two
objects at the specified instant of time and saves the result in a new line of a new output
file.

7. The output file contains the information of the MOID evolution between two space objects
over time. It can be now easily visualized.

As a little example of many objects propagation, different space debris are considered along
with the ISS and the MOID is evaluated over 1 day period time with 1 s sampling interval. The
initial time is midnight, 11th of October 2018, which corresponds to 58 402.000 MJD. The general
results are displayed in Fig. 5.1, while a more detailed graphics shows the lower MOIDs (Fig.
5.2).
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Figure 5.1: ISS MOID evolution of some representative debris during 1 day.
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Figure 5.2: ISS MOID evolution of some representative debris during 1 day, MOIDs under 250 km.
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The above graphics represent a typical result of the tool. Many MOID evolutions are plotted
at the same time in order to distinguish the most critical cases in the considered period. The
most dangerous cases are selected for a detailed analysis, while the others can be discarded at
least till a following new analysis.

As can be observed in the graphics, the MOID evolution over time is a complex phenomenon.
By a rapid analysis of the MOID time variation curve, different timescales can be appreciated.
Almost every curve presents a very curly behaviour as the MOID variation has a periodic (in
the sense of non secular) component which makes the MOID vary quite rapidly. Moreover, a
secular component can be clearly observed in some particular cases such as the Ariane 5 SYLDA
adapter in Fig. 5.2; in this case of one day evolution the MOID appears to secularly increase.
The MOID varies because the very objects osculating orbits are subjected to perturbations which
make them vary over time. Thus, the different timescales which govern the MOID evolution are
strongly related to the different timescales in which the orbits vary.

Several associated periods can be found in the MOID time evolution. It is important to
investigate the different periodic variations at all timescales in order to correctly discriminate
the causes which originate the orbits variability and, by consequence, the MOID variability. In
order to approach the MOID time evolution study, it is thus convenient to split it in two parts.
The first and most immediate analysis is the short term analysis (1-2 days in the future) which
can explain the periodic variations and thus the intervening frequencies observed in the examples.
The second is the long term analysis (months, years in the future) and it is needed to investigate
the causes of MOID evolution in a larger period allowing to draw conclusions over its far future
behaviour.

5.2 Short term analysis

Considering the short term analysis, some examples can be studied to investigate what frequencies
determine the MOID instantaneous evolution. As in the example of Fig. 5.1, the starting point
of the propagation is 58 402.000 MJD. The considered TLEs are hereby presented:

Figure 5.3: Considered TLEs for the short term analysis.
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Cosmos 2251 debris
The first example presents a debris from the Iridium-Cosmos collision of 2009 (NORAD Catalog
Number: 34909). It belonged to the Cosmos 2251 satellite that moved in a polar orbit at an
altitude of nearly 800 km (778 km perigee, 803 km apogee). The ISS and the fragment from the
Cosmos 2251 satellite have been propagated for one day at 1 s sampling interval.

As shown in Fig. 5.4, the MOID daily evolution appears as a collection of maximum and
minimum values following one another in a rapid succession. The visualization of all the critical
points is assured by the very narrow sampling time of 1 second.

The MOID variability appears to have a possible harmonic behaviour. It seems to be the su-
perposition of different sinusoidal and cosinusoidal functions with different frequencies. It spans
a range of dozens of kilometres and no immediate conclusions can be drawn by a simple sight.
For this reason, a Discrete Fourier Transform (DFT) is applied on the MOID evolution function
in order to study its frequency spectrum. The resultant DFT will present the characteristic fre-
quencies contributing to its generation and some explication can be formulated to explain their
presence. Appendix A summarizes the DFT fundamental theoretical basis and how it is applied
to the present analysis.

The DFT theory is based on the analysis of periodic functions. It is important to observe
that the MOID daily evolution is not necessarily a periodic function by itself. For this reason,
an assumption is necessary: the MOID function will be considered to be periodic, with a period
of one day. In this case, the set of 86 400 MOID samples representing one day evolution (1
sample per second) will be the sampling period for the DFT (f0 “ 1 d´1 is the base frequency
of this DFT analysis). The MOID DFT will be studied in order to understand the Fundamental
frequencies of the considered objects motion and their multiples, the harmonics.

From the analysis of Fig. 5.5, interesting results can be observed. There are two peaks on the
right which correspond to multiples 15 and 16 of the base frequency11 f0. These two frequencies
correspond to the first not null contributions of the DFT. They are not multiple of a previously
found frequency, thus it can be derived that they correspond to two fundamental frequencies.
The height of the peaks represent the influence of the corresponding frequencies to the overall
MOID evolution. The next peaks in the graphic are the 30 and 32 multiples. Looking for possible
divisors, it is found out that they are exactly twice the fundamental frequencies, they are the
second harmonics. The further visible peaks are the 45 and 48 multiples and correspond to three
times the fundamental frequencies. After them, no other appreciable peak can be deduced in
the graphic. The MOID evolution for the two object is thus reduced to the contributions of its
two fundamental frequencies and their second and third harmonics. Furthermore, after the first
six peaks, the DFT analysis shows very screened data and no more peaks can be reasonably
deduced.

Now, the two fundamental frequencies must be somehow related to the two satellites orbital
movements. The more obvious figures to which the frequencies can be related are the satellites
orbital periods. Looking at the ISS and Cosmos TLEs in Fig. 5.3, it is observed that they take
the 15.54 and 14.65 values respectively. They match very close the two fundamental frequencies
obtained by the DFT analysis. It is logical to associate these frequencies to revolution per day
of the two objects, as they are the most immediate periodic behaviour of the satellites. The
deduction applies also to the corresponding harmonics.

Another result to observe is that the peaks are not perfectly resolved, i.e, they are hard to
distinguish from other spurious peaks. It is the logical consequence of the discretization made for

11Appendix A explains how to correctly interpret this fact.
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the analysis. The two satellites daily revolutions are not integer values, their frequencies cannot
be expressed as integer multiples of the base frequency. Nevertheless, the frequency contributions
in Fig. 5.5 are an approximation of the real values and they can be easily associated with the
two satellites.

This last explanation allows not to misinterpret the apparently congruence of the two orbits.
The 15 and 16 fundamental frequencies have a least common multiple (15ˆ16 “ 240), leading to
a possible orbital resonance between the two objects. It could be deduced that the two objects
will never collide thanks to this fact. Considering that the DFT analysis is an approximate result
and that the real daily revolutions of the two objects do not have a least common multiple (they
are real numbers) the orbital resonance concept is discarded.

Aurora 1 satellite
The ISS and the Cosmos 2251 debris have too similar orbital periods. If the orbital periods are
the principal contribution to the MOID evolution frequency spectrum, it is possible to better
differentiate between the frequency contributions by the optimal selection of the two studied
objects. Another satellite has been considered, with the aim to obtain DFT contributions easy
to identify. The inactive Aurora 1 satellite (NORAD Catalog Number: 2876) was a scientific
satellite for auroras study, launched by the United States in 1967. It has a high inclination
orbit, needed for the purposes of its field of study. It has a period of 172.1 min thus making 8.37
revolutions per day. As for the first example, the MOID has been computed over one day at 1
second sampling interval.

It is important to understand the illustrative purpose of the example. The satellite was
selected for its orbit characteristics: its orbital period is different from the ISS orbital period
making it a good candidate for frequency analysis. Nevertheless, it has a very low eccentricity
thus making the orbit nearly circular (like the ISS). The obvious deduction is that the two orbits
are at very different heights because of the inverse proportionality between the height and the
orbital period. As shown in Fig. 5.6 the MOID is above 3000 km during all the considered period,
confirming the reasoning. The satellite is a non-dangerous case12.

The analysis of the MOID evolution DFT (Fig. 5.7) shows again interesting results. The first
peak to be observed is the multiple 9 of the base frequency; it is a fundamental frequency. The
following peak to be observed is the multiple 16 and again, it is a fundamental frequency. From
now on, the visible peaks are: the 18 peak, which can be associated to the first fundamental
frequency second harmonic and the 26 peak which can be associated to the third harmonic. The
32 and 48 peaks are very similar to the ones observed in the Cosmos 2251 debris case. Following
the previous analysis, these frequencies can be associated with the Aurora 1 and ISS revolutions
per day. The 8.37 orbits per day of Aurora 1 can be in fact the main cause of the 9, 18 and
26 contributions of the DFT analysis. The ISS contributions have already been discussed in the
previous case.

12Actually, a filter like the first geometrical filtering stage proposed by Hoots (the perigee-apogee filter [8]),
would have discarded the Aurora 1 satellite in the first place.
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Figure 5.4: Cosmos 2251 debris MOID to ISS evolution during 1 day.

Figure 5.5: Cosmos 2251 debris MOID to ISS evolution DFT.
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Figure 5.6: Aurora 1 MOID to ISS evolution during 1 day.

Figure 5.7: Aurora 1 MOID to ISS evolution DFT.
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Breeze M debris
The Breeze M debris (NORAD Catalog Number: 35546) belonged to the Briz-M Russian liquid-
propellant rocket orbit insertion upper stage (Briz-M is the Russian name). It has almost the
same inclination as the ISS but its orbit is more elliptical (e “ 0.2624037). It makes 9.27 revolu-
tions per day. The ISS and the Briz-M debris have been propagated for one day at 1 s sampling
interval.

In this case, the analysis of the MOID evolution over only one day suggests that, again, the
debris does not constitute a threat in the studied period. The MOID is above 1000 km and
it evolves in an overall rapid increase during the day; a following MOID diminution is highly
probable (Fig. 5.8).

The frequency analysis (Fig. 5.9) shows the three peaks which have been previously associated
to the ISS orbital motion. They are the 16, 32 and 48 peaks, corresponding to the first, second
and third harmonics. For the Briz-M debris, some peaks can be deduced amongst the graphic
noise. The not very visible peak corresponding to 10 can be associated with the fundamental
frequency. In this case, more peaks can be observed: the 19 peak corresponding to the second
harmonic, the 29 and 38 peaks corresponding to the third and fourth harmonics and perhaps a
fifth harmonic evidence in the 47 peak, although this last case is most likely associated to the
ISS third harmonic. After that, the noise does not allow further observations.
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Figure 5.8: Breeze M debris MOID to ISS evolution during 1 day.

Figure 5.9: Breeze M debris MOID to ISS evolution DFT.
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Fengyun 1C debris
A debris from the 2007 Chinese ASAT test against the Fengyun 1C satellite has been selected
mainly because of its orbital period (NORAD Catalog Number: 33733). Being the inclination
higher than 90˝ the debris has a retrograde motion. It has a low eccentricity and makes 14.05
revolutions per day. The example has been selected because of its similarity to the Cosmos 2251
debris in terms of eccentricity and orbital period. The ISS and the Fengyun 1C debris have been
propagated for one day at 1 s sampling interval.

As can be observed in Fig. 5.10, the MOID evolution has a more ordered pattern and the
variation spans a range of almost 50 km. In the considered period, the MOID does not appear
to go below 400 km. This case presents a very curious behaviour: the MOID variation in some
cases does not appear as smooth as the other examples. There are many cusp points, especially
visible in the correspondence of some local maxima.

The DFT shows interesting results (Fig. 5.11). The ISS frequencies are not easy to identify.
From the previous examples experience it can be deduced that the 32 and 48 peaks correspond
to the second and third harmonics. There is not a clear evidence of the fundamental frequency.

In the case of the Fengyun 1C debris instead, there are at least five peaks which can be
associated to multiples of the fundamental frequency. The first peak at 15 is interpreted as
the fundamental frequency; the second peak at 29 represents the second harmonic and it seems
to be very relevant in its contribution to the frequency spectrum; the 43, 57 and 71 peaks are
interpreted as the third, fourth and fifth harmonics.

Globalstar M046
The Globalstar M046 satellite (NORAD Catalog Number: 25651) from the satellite phone ser-
vice Globalstar constellation has also been selected because of its orbital period. It has a very
circular orbit at an altitude of almost 1650 km. It orbits the Earth at 12 revolutions per day in a
52˝ inclined orbit. It has been propagated along with the ISS for one day at 1 s sampling interval.

The MOID evolution shows an expected result (Fig. 5.12). It maintains its value above
1200 km in the considered period, hence, the satellite does not constitute a hazard for the ISS.
Its variation spans almost a 50 km range.

From the DFT analysis (Fig. 5.13), in the case of Globalstar satellite, three multiples of the
fundamental frequency can be clearly observed. The 13 peak corresponds to the fundamental
frequency while the 25 and 37 peaks correspond to the second and third harmonics respectively.
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Figure 5.10: Fengyun 1C debris MOID to ISS evolution during 1 day.

Figure 5.11: Fengyun 1C debris MOID to ISS evolution DFT.
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Figure 5.12: Globalstar M046 MOID to ISS evolution during 1 day.

Figure 5.13: Globalstar MOID to ISS evolution DFT.
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5.3 Long term analysis

For the long term analysis, some objects shall be taken as examples to study their ISS MOID
over a larger period. The analysis looks for specific patterns in the long term period, in order
to understand possible periodic or quasi-periodic behaviours and discover possible hazardous
situations repetitions. As in the example of Fig. 5.1, the starting point of the propagation is
58402.000 MJD. The considered TLEs are hereby presented:

Figure 5.14: Considered TLEs for the long term analysis.

Cosmos 2251 debris
The debris from the Iridium-Cosmos collision of 2009 used in the short term analysis has been
considered. It has been selected to have a consistent comparison study. The ISS and the object
have been propagated for 1250 days at 6 hours sampling interval with the same starting point of
the short term propagation.
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Figure 5.15: Cosmos 2251 MOID to ISS evolution over 1250 days.
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It can be observed in this example that the MOID presents high variability. Its minimum
is near to 170 km while its maximum is higher than 280 km, and they gather in time intervals
which in some cases are less than 50 days.

The MOID variation over time presents some periodicities. The first and most noticeable
period, although it is not a proper one, is the shorter one, confined in the region between two
peaks of the MOID. Looking for a repetitive pattern, it can be deduced that after seven short
periods there is a clear repetition of the same behaviour (it is easy to see the same peaks and
valleys repetition in exactly the same order). In this case the second and larger period clearly
presents a repetitive pattern13. Its duration is between 800 and 850 days and as said, it embraces
seven shorter repetitions of more than 100 days each.

Some explications for this behaviour can be deduced from the analysis of the two objects’
orbital parameters. Considering the mean orbital elements as presented in the TLE set (Fig.
5.14), a simple analysis can be done.

The Earth parameters used in the calculation are:

µC “ 398 600.4415 km2 s´1

J2 “ 1.082 626 683 55ˆ 10´3

RC “ 6378.1363 km

(5.1)

For the ISS:

i1 “ 51.6419˝ “ 0.901 32 rad

e1 “ 1.824ˆ 10´5

n1 “ 15.53798 rev d´1

(5.2)

The ISS orbital angular velocity around the Earth and its period are thus obtained (the geocentric
inertial reference is hereinafter indicated with the 0 subscript):

ω10 “ 1.129 95ˆ 10´3 rad s´1

T10 “ 92.676 min
(5.3)

One of the mayor effects of the Earth’s oblateness is that the bulge of the equator generates a
gravitational force on the satellite which is not directed towards the Earth’s centre. This effect
creates a torque on the satellite’s orbit which induces a gyroscopic precession of it. The direction
of precession is opposite to the direction of revolution. For this reason, the node precession for
prograde orbits is also called node regression. The precession rate of the ascending node depends
on the orbital eccentricity as well as the inclination of the orbital plane relative to the equatorial
plane14. It can be computed with the following expression:

9Ω10 “
dΩ10

dt
“ ´

3

2
J2 cos i1

ˆ

RC

p1

˙2

n1 “ ´1.384 21ˆ 10´2 rev d´1 (5.4)

13The function does not repeat perfectly as a real periodic function, but in the limit of this analysis, the two
objects orbits follow the same evolution, creating a repetitive pattern. Given this premise, the MOID evolution
can be considered as periodic

14This fact is wisely exploited for Heliosynchronous orbits. The J2 effect on the node precession is adjusted
with the correct selection of the orbit eccentricity and inclination in order to make the orbital plane precess at
the same rate of the Earth’s revolution around the Sun. The result is an orbital plane which maintains a nearly
constant angle relative to the Sun direction.
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where:

p1 “ a1p1´ e
2
1q “ 6783.784 779 km, a1 “ 3

c

µC

ω2
10

“ 6783.784 781 km (5.5)

are respectively the semilatus rectum and the semi-mayor axis of the orbit.

For Cosmos 2251 debris:

i2 “ 74.0161˝ “ 1.291 82 rad

e2 “ 2.95ˆ 10´6

n2 “ 14.645 03 rev d´1

ω20 “ 1.065 02ˆ 10´3 rad s´1

T20 “ 98.326 87 min

(5.6)

Thus, the ascending node regression rate is:

9Ω20 “
dΩ20

dt
“ ´5.349 87ˆ 10´3 rev d´1 (5.7)

The differential node precession rate 9Ω21 of the debris respect to the ISS (considering the ISS
orbit fixed in space and accounting for the relative precession rate of Cosmos ascending node
respect to it) is easily obtained:

9Ω21 “ 9Ω20 ´ 9Ω10 “ 5.33582ˆ 10´2 rev d´1 (5.8)

which corresponds to a relative precession period of:

T21 “ 117.754 72 d rev´1. (5.9)

This means that, neglecting other perturbations, after a period of almost 118 days the two orbital
planes return in the same relative position. It perfectly fits the results found when considering
the MOID variation over time. There is a period of 118 days which repeats over time and which
is directly attributable to the relative node precession of the two orbits. The fit is very accurate,
the proof of it is the fact that 7 ˆ T21 » 824 days which is approximately the duration of the
larger period in Fig. 5.15.

Breeze M debris
The Breeze M debris considered in the short term analysis has been also considered for a longer
propagation. It has been selected observing its ISS MOID evolution during one day, which
supposed a secular increase. Further analysis was needed to understand the overall behaviour.
The ISS and the debris have been propagated for 1250 days at 6 hours sampling interval.
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Figure 5.16: Breeze M debris MOID to ISS evolution over 1250 days.

74



50 100 150 200 250 300

Time [Days]

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
O

ID
 t

o
 I

S
S

 [
k
m

]

MOID time evolution

BREEZE-M-DEB-35546

Figure 5.17: Breeze M debris MOID to ISS evolution during the first 300 days.

In this case, one of the most visible differences is the fact that the MOID evolution in the long
period is much less curly than the one of the Cosmos 2251 debris. There are some periodic (in
the sense of not secular) variations especially in correspondence of the lower values, as illustrated
in Fig. 5.17 which is a zoom of the first 300 days evolution.

The two cases are very different for several reasons. The Breeze M debris orbit is not quasi-
circular with a semi-major axis a3 “ 9570.448 km. There is evidence of a MOID spanning a
higher range of distances: the maximum value is higher than 2000 km while the minimum value
is of 256.1 km. The evolution is constituted by more regular periods which are interrupted by
some not-sinusoid like behaviour. There is an identifiable pattern which in this case has been
easily measured. The pattern duration is of about 667 days and like in the previous case this is
due to the differential node precession rate between the Breeze M debris and the ISS.

From the Breeze M debris TLE the following values can be obtained:

i3 “ 51.2368˝ “ 0.894 52 rad

e3 “ 0.2624

n3 “ 9.272 66 rev d´1

ω30 “ 6.7433ˆ 10´4 rad s´1

T30 “ 155.295 min

(5.10)

Thus, the ascending node regression rate of the Breeze M debris is:

9Ω30 “
dΩ30

dt
“ ´4.829 58ˆ 10´3 rev d´1 (5.11)

The differential node precession rate 9Ω31 of the debris respect to the ISS is:

9Ω31 “ 9Ω30 ´ 9Ω10 “ 9.012 52ˆ 10´3 rev d´1 (5.12)
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which corresponds to a relative precession period of:

T31 “ 110.956 71 d rev´1. (5.13)

In the previous example (Cosmos 2251 debris), it was found that the period T21 perfectly fitted
an evident low order period of the MOID evolution graphic. In the case of the Breeze M debris,
unlike the previous one, there is not direct evidence of a lower order period in the graphic which
perfectly fits the result. Nevertheless, it is interesting to notice that the observed pattern period is
667 days long. This value is nearly six times the T31 period already obtained (6ˆT31 “ 665.74).
From this observation, it can be deduced that the 667 days period is again a multiple of the
ascending node differential precession period.

Ariane 5 SYLDA adapter
One Ariane 5 SYLDA adapter15 (NORAD Catalog Number: 42953) has been selected to be
another example for long term MOID behaviour analysis. Deployment adapters are an undesired
collateral effect of multiple launches. They are indispensable for correctly deploy more than one
satellite, but the obvious consequence is that their orbits share a lot of common features with
the orbits of the deployed bodies (they remain almost in the same orbital zone of the deployed
satellites). It means that like orbital injection upper stages, they tend to rest in orbit for very
long time (i.e. they are not designed for a rapid atmospheric re-entry). They are big orbital
debris which can constitute a big threat active spacecraft.

The orbit of SYLDA presents high eccentricity (e4 “ 0.7026), with an inclination of 6.475˝.
The low inclination makes it nearly an equatorial orbit. The debris has been propagated along
with the ISS for 1250 days at 6 hours sampling interval (Fig. 5.18).

15SYLDA (French: SYstème de Lancement Double Ariane) deployed the Intelsat 37E and BSAT-4A satellites,
launched on the 29th of September, 2017.
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Figure 5.18: SYLDA MOID to ISS evolution over 1250 days.
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Figure 5.19: SYLDA MOID to ISS evolution during the first 200 days.

In the case of SYLDA, the MOID evolution graphics show a very ordinate, periodic behaviour
(Fig. 5.19). Again, as in the case of Breeze, SYLDA (whose orbit semi-major axis is a4 “

22 255 km) presents a high variability in the MOID values, they span a range of almost 3300 km.
Although there is evidence of a period of almost 33 days (the time interval between two main
peaks has a mean value of 32.97 days) it is observed that the peaks do not repeat equally. Thus,
the study focused on the individuation of a higher period pattern which repeated exactly the
same. The identification is not easy, but carefully observing, there is a periodic pattern which
repeats nearly every 561 days. It involves 17 33-days MOID oscillations as previously defined.

Also in this case, this pattern can be associated with the differential node precession rate
between SYLDA and the ISS. In fact, from the SYLDA TLE the following values are obtained:

i4 “ 6.4751˝ “ 0.113 01 rad

e4 “ 0.702 63

n4 “ 2.614 93 rev d´1

ω40 “ 1.902ˆ 10´4 rad s´1

T40 “ 550.685 min

(5.14)

Thus, the ascending node regression rate of SYLDA is:

9Ω40 “
dΩ40

dt
“ ´1.351 86ˆ 10´3 rev d´1 (5.15)

The differential node precession rate 9Ω41 of the debris respect to the ISS is:

9Ω41 “ 9Ω40 ´ 9Ω10 “ 1.249 02ˆ 10´2 rev d´1 (5.16)

which corresponds to a relative precession period of:
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T41 “ 80.062 53 d rev´1. (5.17)

The two orbital planes return at almost the same relative position after 561 days. Observing
this high order period with the calculated period of relative nodal regression, it is noticed that
561 days correspond to almost 7 times the period T41 obtained before (7ˆT41 “ 561.45). Again,
the observed pattern period is a multiple of the node regression rate between the SYLDA and
the ISS orbits.

Continuing the MOID evolution analysis, there is another interesting feature to point out.
The MOID between the SYLDA and the ISS orbits has periodic minima which are lower than
10 km (Fig. 5.20). This constitutes a threat to the ISS and, in this case, the object should be
further analysed.

Moreover, observing Fig. 5.19, there are intermediate lower peaks between two higher peaks.
They seem to be the negative continuations of the MOID function whose sign has been changed.
It is consistent with the MOID computation algorithm: the MOID cannot take negative values (a
negative distance does not make any sense). During the computation process, the two orbits pass
somehow from a configuration to the opposite. During this operation, two minima are recorded,
and they correspond to the two central minima of the lower order period of 33 days.
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Figure 5.20: Detailed view of SYLDA MOID to ISS evolution in 200 days for lower MOID values.

Falcon 9 Rocket Booster
In order to better analyse the long term MOID variation on very eccentric orbits, a Falcon 9
Rocket Booster (NORAD catalog number: 40108) has been selected because of its characteristics.
It has an eccentricity e5 “ 0.6461 and an inclination i5 “ 23.9685˝. It has been propagated along
with the ISS for 600 days at 6 hours sampling rate.
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Figure 5.21: Falcon 9 Rocket Booster MOID to ISS evolution over 600 days.

The graphic shows a similar behaviour respect to the SYLDA MOID evolution: the MOID
spans a high range of distances, the maximum values being over 3000 km while the minimum
values approach zero.

It seems that for very eccentric orbits the MOID variability is higher than the one ob-
served in the case of quasi-circular orbits. This trend is confirmed in the last three examples.
Moreover, for the SYLDA adapter (e4 “ 0.7026, a4 “ 22 255 km,) and the Falcon 9 Rocket
Booster (e5 “ 0.6461, a5 “ 18 522 km) the variability range is higher that the Breeze M debris
(e3 “ 0.2624, a3 “ 9570 km) variability range.

Continuing the analysis of Fig. 5.21, there is a clear period of nearly 33 days (32.957 d) which
repeats constantly although the peaks does not reach the same value. A high order pattern
involving five 33 days periods can be observed. It has a mean period of about 165 days.

Considering the orbital values which appear in the Falcon 9 TLE, the ascending node regres-
sion rate is:

9Ω50 “
dΩ50

dt
“ ´1.785 91ˆ 10´3 rev d´1 (5.18)

Which gives a differential node precession rate 9Ω51 respect to the ISS:

9Ω51 “ 9Ω50 ´ 9Ω10 “ 7.575 129ˆ 10´2 rev d´1 (5.19)

and this corresponds to a relative precession period:

T51 “ 82.95 d rev´1. (5.20)

It can be observed that the high order period of about 165 days is twice as large as the T51

period (2 ˆ T51 “ 165.89). Again, it results that the observed pattern period corresponds to a
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multiple of the ascending node differential precession rate.

Finally, as in the SYLDA example, it has to be highlighted the fact that the Falcon 9 R/B
ISS MOID reaches values very close to 0. Again, in this example MOID inversions can be seen,
i.e. the MOID function seems to present the negative values symmetrically transformed respect
to the x axis in the positive semi-plane.

5.4 Real time monitoring

One of the advantages of the tool is the possibility of a fast and nearly real time threats assess-
ment. Because of its speed in fact, the tool can process a large quantity of space debris against
a common primary. This means that the second filter proposed by Hoots [8] can be applied to
almost all the space debris which endanger a spacecraft. This is a benefit in terms of the orbit
planners risk assessment capacity.

In order to put into practice the MOID evolution filter to assess a spacecraft threats, the steps
could be the following:

1. Select the spacecraft whose threats shall be analysed, i.e., the spacecraft against which all
the other space objects will be compared. This will be the primary spacecraft.

2. Select the TLEs which can endanger the primary spacecraft. If the analysis is conducted
for the first time, it could be ran on all the TLEs database in order to understand which
classes of debris are more dangerous (for instance, it could be found out that some debris
clusters do not constitute a danger for the primary). Another option is to run the analysis
only on those objects which have firstly passed by the first filter proposed by Hoots (the
Apogee-Perigee filter).

3. The analysis is ran for a specified period (a two week period for instance), in order to
understand the MOID evolution of all the considered objects. The number of MOID
samples in the selected period does not need to be very dense because further analysis will
be done on potential threats.

4. Based on the MOID behaviour in the selected period, the most interesting objects are
selected (i.e., they pass the filter) for further and more detailed analysis. The selection
criteria can be various: the potential threats can be selected based on the minimum MOID
(all the objects whose minimum MOID is lower that a fixed threshold are selected); they can
be selected based on MOID secular variation (if the MOID decreases secularly in the study
period they are chosen for further analysis); finally, they can be selected by a combination
of the two previous criteria.

5. This analysis can be ran every determined period (every one or two days, for instance)
in order to update the situation with a new available database. The refreshing period is
selected in function of the forecast period duration and the approximation which is needed
for the analysis.

The process detailed above has been applied to the ISS, as an example to better visualise the
work flow.

To understand the possible threats to the ISS in the immediate future, five groups of space
debris are selected to be compared against it in order to find out potential hazardous situations.
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The ISS MOID evolution of every one of the space debris will be displayed in a determined
interval of time and further decision are proposed. The TLE data are made available in the
CelesTrak website already divided by debris group and are updated several times a day.

The analysis will embrace a period of 14 days starting from midnight, the 16th of June 2019
(58 650 MJD). The MOID sampling time is 1 hour.

Breeze M debris cloud
In the following graphic (Fig. 5.22), the MOID evolution of all the Breeze M debris to date
still in space is displayed. After this example, all the graphics will present only the significant
cases, it is, all the cases whose MOID is under a determined value. This is done for presentation
purposes, in fact, it would be useless to plot hundreds of MOIDs evolutions if the values were
always (during the considered period) higher than a safe value.
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Figure 5.22: Breeze M debris cloud MOID to ISS analysis over 14 days.

For the purpose of this analysis, in order to make the examples clear, in Fig. 5.23 only MOIDs
under 125 km are displayed.
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Figure 5.23: Breeze M debris cloud MOID to ISS analysis over 14 days (MOIDs under 125 km).

Iridium 33 debris cloud
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Figure 5.24: Iridium 33 debris cloud MOID to ISS analysis over 14 days (MOIDs under 125 km).
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Cosmos 2251 debris cloud
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Figure 5.25: Cosmos 2251 debris cloud MOID to ISS analysis over 14 days (MOIDs under 50 km).

Fengyun 1C debris cloud
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Figure 5.26: Fengyun 1C debris cloud MOID to ISS analysis over 14 days (MOIDs under 100 km).
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Microsat R debris cloud (2019 Indian ASAT Test)
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Figure 5.27: Microsat R debris cloud MOID to ISS analysis over 14 days (MOIDs under 100 km).

Given the MOID time evolution of five debris clouds respect to the ISS, the analysis can be
carried out. As mentioned before, the data are not complete (the debris are actually more than
the few ones displayed), only the lower MOIDs have been displayed. Even though, the graphics
of above show interesting cases in which some debris could constitute hazard in the immediate
future. Four out of five examples show some debris ISS MOIDs which assume dangerous values.
In those cases, there are at least 3 objects per debris cloud whose ISS MOID almost becomes
zero. Those cases would be selected for further analysis, i.e., they would pass the filter.

Collision risk assessment needs rapid filters in order to reduce rapidly and effectively the
databases of dangerous objects. From this point of view, it is interesting to observe the com-
putational time needed for these last analysis (Table 5). It is remembered that the propagation
time is of 14 days at 1 hour sampling rate, obtaining 337 MOIDs per analysed object.

Table 5: 3812 debris propagation and MOID calculation computational time.

Debris cloud # obj Prop. time [ms/obj] MOID comp. t. [ µs/MOID] tTOT [s]

Breeze M R/B 12 1402.556 185 17.580
Iridium 33 300 1761.689 247 553.524
Cosmos 2251 1010 1706.420 226 1731.185
Fengyun 1C 2490 1643.058 190 4251.335
Microsat R 44 1746.437 211 79.974
TOTAL 3812 6633.598

The time needed to assess 3812 objects is of about 6634 s « 1 h 51 min. Thus, the assessment
of the most dangerous space debris clouds respect to the ISS took nearly 2 hours. The whole
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NORAD SATCAT encompasses 44 336 publicly released objects16. Between them, 24 672 had
already decayed, leaving 19 664 ephemerides still valid in the TLE data set. Given this quantity
and the results of above, a rapid calculation can be made: it would take 34 222 s « 9.5 h to
span all the TLE database for a 2 weeks propagation at 1 h sampling rate. This means that the
calculation can be run on the whole available data set on a daily basis, leaving time for further
data analysis.

5.5 Hazardous situations

In order to prove the validity of the tool against an already existing software, an example from
the SOCRATES database has been selected.

The Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space (SO-
CRATES) update the Top 10 Conjunctions by Maximum Probability and Top 10 Conjunctions
by Minimum Range lists in order to warn orbital planners over the risk of close encounters in
space. These two lists are available in the CelesTrak website. An example from the Top 10 Con-
junctions by Minimum Range list has been selected in the CelesTrak website. This list presents
10 pairs of objects which from the STK/CAT software models are reported to come close within
a week time. The list also presents the latest TLEs of all the presented pairs.

The chosen example is constituted by STEX (Space Technology EXperiments) satellite, an
inactive space technology demonstrator, and a debris from CBERS 1 satellite which suffered a
break up on the 18th of February 2007. The two objects were reported to have a close approach
with a minimum range of about 0.638 km, expected by the 21st of June 2019, at 18:57:58.129
UTC (Fig. 5.28).

Figure 5.28: A pair of close encountering space objects as reported by SOCRATES.

The corresponding objects TLEs are presented for completeness:

Figure 5.29: TLEs of the two objects with high probability of collision.

The two objects have been propagated with the DROMOID tool in order to confirm its
capability to detect close encounters in space. They have been propagated for 7 days at 1 minute
sampling interval. The starting date is noon, 16th of June 2019 (58 650.5 MJD). The 1 week
propagation time allows to include the 21th of June 2019 which is a date of particular interest,
as the to objects are reported to get very close on that date.

16As of the 20th of June, 2019.
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Figure 5.30: CBERS 1 DEB MOID to STEX evolution over 1 week since 2019, June the 16th 12:00.
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Figure 5.31: CBERS 1 DEB MOID to STEX evolution betweee day 5 and day 6 since 2019, June the
16th 12:00.

As can be seen in Fig. 5.30, the DROMOID tool gives a MOID evolution in the considered
week which is quite clarifying. The MOID value between the two objects appears to be below
3 km during the whole week; moreover, it oscillates very fast between a maximum value of 3 km
and the null value. The two orbits maintain a minimum distance for a long period. Given this
orbits relative position, it means that the probability of the two objects to came very close and
possibly collide is very high. In particular, it can be observed that the range of variability is
even shorter (under 2 km) between approximately day 2 and 6 after the starting point. This can
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be interpreted as an even higher probability of close encounter.
In Fig. 5.31 the MOID evolution between day 5 and day 6 is detailed because in this period

SOCRATES forecasts the close encounter. It can be observed how the MOID oscillates and
presents many peaks following one another. They can be interpreted (like in the case of SYLDA
and Falcon 9 R/B propagation) as the negative parts of the function which have been transformed
to the positive semi-plane. It could be explained with the fact that the two orbits are crossing
each other many times at some point in the space.

Unfortunately the STEX satellite is inactive, thus making impossible to realise useful collision
avoidance manoeuvres. In the case of a collision, SOCRATES shows a collision relative velocity
of about 9.707 km s´1. Such a violent impact would mean the formation of a dangerous cloud of
hundreds (even thousands) of new space debris.

DROMOID tool shows similar results for the other cases from the same list as well. This is a
further and very valuable confirmation of this method efficiency to detect hazardous situations.

88



89



6 Conclusions

The whole process of theoretical analysis and software development detailed in the present work
has conducted to an operative tool for MOID evolution analysis. The DROMOID application
allows to study the MOID evolution between any two selected objects from the TLEs database
over the convenient period. The DROMOID development and the MOID evolution analysis lead
to interesting results and reflections over them.

6.1 Software development

The DROMOID software development has constituted a considerable effort of theory imple-
mentation and code debugging. The complications raised during the development have been
successfully overcome and many lessons have been learnt during the process. In particular, it is
worth mentioning:

• The DROMOID tool allows to combine the power of two optimized tools for celestial mech-
anics applications. The propagator based on DROMO theory has been of fundamental im-
portance because of its accuracy and speed. Its solid theoretical foundations make possible
a rapid propagation which does not present singularities. This ensures that once the state
vector is expressed in DROMO variables, the propagation is easily conducted. Neverthe-
less, is very important to carefully transform the state vector between different notation
conventions. The MOID computation algorithm also ensures speed in the calculations.
Once again, the strong theoretical foundations of the tool make it a strong and reliable
calculator.

• The modularity of the DROMOID tool is very important. The integration between the two
basic tools, as exhaustively described in this work, is done through an interfacing text file.
This fact constitutes a big advantage: every time a new version of the DROMO propagator
or the MOID calculator are available, they can be simply updated and integrated in the
DROMOID tool. The only thing to care is the correct data interface between the tools.
This reduces to the correct writing and reading of the interface file ensuring the fastest and
most secure data flow. The modularity is an important advantage of the software.

• DROMOID allows to analyse a big database of space objects in near real time. One of
the advantages of this tool is that it uses publicly available data for the propagation. The
TLE database is used by NASA and it can be thus considered one of the most reliable
sources of space debris ephemerides. Data can be downloaded at any time and the tool
ensures a rapid propagation (depending on the refinement of the propagation tool and the
propagation sampling, the whole TLE database can be analysed in a few hours time). The
propagation is available for the desired period and sampling time.

6.2 MOID time evolution analysis

Once a rapid and reliable tool is set up, the MOID time evolution is made available for a big
number of space objects and this constitutes a privileged and powerful analysis tool. Some
important conclusions can be derived by its analysis:

• The MOID between two orbits evolves according to the evolution of the two object’s very
orbits. It is important to consider the different time scales at which the phenomena take
place in order to make good predictions on future MOID behaviour.
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• The short term MOID evolution is characterized by high variability and it seems to have
a harmonic behaviour which rules the continuous variations in minutes and hours scale.
There is evidence of the fact that the principal detected harmonics of MOID variation are
due to the orbital periods of the considered objects. The revolutions per day of the objects
in fact, determine the two first fundamental frequencies and the second and third harmonics
as well. In the majority of the studied cases, there was no evidence of further harmonics nor
their combinations. This result can be considered for instance when assessing the collision
risk between spacecraft: similar configurations and hence similar risks can repeat in hours
time thus highlighting the necessity of immediate actions to change orbital paths.

• The long term MOID evolution is characterized by some recognizable periodicity although
not in the strict sense of the term. There is evidence of MOID evolution high order
patterns which repeat almost in the same way over time. This effect has been correlated
to the precession of the orbit ascending node in all the studied cases. There is evidence of
a connection between the differential precession of the ascending nodes and the duration
of the high order period. It manifests in the fact that the high order period duration is a
multiple of the differential node precession rate. This result can be useful to orbit planners
who can assess the collision risk before the mission start, thus allowing an appropriate and
solid orbit design.

• The MOID evolution of thousands of objects can be used as an advanced application of
the second filtering stage concept as proposed by Hoots. It is important to define the
right criteria in order to properly create a filter which effectively discards the harmless
space debris and only takes in consideration the hazardous cases. Two weeks time MOID
evolution seems a reasonable time period over which extend the propagation. This allows
to draw significant conclusions over MOID time evolution. Nevertheless, this filter must
be repetitive over time. It means that it cannot be considered as an exhaustive filter over
time. To work properly, it needs to be periodically run over the whole database of space
debris because their orbital changes can affect significantly the future behaviour.

• The MOID evolution can be used simply to identify possible dangerous MOID minima.
It means that what ultimately helps in the danger identification is the MOID instant
value. If two orbits present a MOID evolution which at some time in the future present
an unexpected dangerous minimum, this fact constitutes a sufficient proof for their further
analysis.

6.3 Future development

The DROMOID tool, as every software, presents the possibility to be further developed. New
functionalities and capabilities can be implemented and, as already said, the two constituting
modules can be changed as well if a new version is available. Further development could be:

• To consider how the TLEs determination errors can propagate over time and how they
affect the MOID computation accuracy. The TLEs database does not provide covariance
matrix to understand their position and velocity errors. If new ephemerides (along with
their covariance matrices) would be made available, an interesting improvement would be
to compute the error evolution along with the corresponding object state vector evolution.

• To analyse all the possible pairs of objects within a TLE database. The work addresses
to all the MOID variations between a studied object and the rest of objects present in the
database. In order to look for all the possible collisions in space (including the collisions
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between two debris, just for information and knowledge purposes) a sweep on all the data-

base is necessary. It means that if a database presents N objects, NpN´1q
2 MOID evolution

computations are necessary, thus increasing the number of computations of one order.

• To develop an analytical approximation of the DROMO derivatives in the case of the main
problem to speed up the computation. In the simplification constituted by considering
only the J2 term, the DROMO theory can be approximated by an Asymptotic solution
which can ensure a considerable time saving. This approximation has been investigated
in [25] and there are evidences of one order computational time reduction respect to the
DROMO propagator. The theory in [25] needs to be further revised and correctly set up,
but it promises to be a powerful candidate to upgrade the propagation module. The basis
of the Asymptotic solution theory are presented in Appendix B along with some methods
comparison.
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Appendix A Discrete Fourier Transform

A.1 Discrete Fourier Transform theory

The Discrete Fourier Transform (DFT) is the approximation of the continuous Fourier transform
for functions known only at N instants separated by sample times ∆t in the period T1 (N∆t “ T1,
the minimum frequency being f1 “

1
T1

), it is, when only a finite sequence of data is available.
Let fptq be the continuous time signal which is the source of the data. Its Fourier Transform

would be:

F pωq “

ż `8

´8

fptqe´iωtdt ω P p´8,`8q (A.1)

where i is the imaginary unit and ω is the frequency.
In the case of having only N samples over one period of the function (fptnq “ fpn∆tq “

f rns, n “ 0, ..., N ´ 1), fptq can be approximated by a sum of finite impulses:

fptq “
N´1
ÿ

n“0

δpt´ tnqfptnq (A.2)

where δpt´ tnq is the Dirac delta function and tn “ n∆t. Substituting and operating:

F pωq “

ż `8

´8

N´1
ÿ

n“0

δpt´ tnqfptnqe
´iωtdt “

N´1
ÿ

n“0

fptnqe
´iωtn (A.3)

where ω “ 2πf . Having only N sample points, only N fundamental frequencies can be studied.
Hence:

F pfq “
N´1
ÿ

n“0

fpn∆tqe´i2πfn
T1
N (A.4)

Expressing the multiples of the minimum frequency by fk “ kf1, pk “ 0, ..., N ´ 1q and remem-
bering that f1T1 “ 1 it remains:

F rks “
N´1
ÿ

n“0

f rnse´i2πk
n
N , pk “ 0, ..., N ´ 1q (A.5)

F rks is the Discrete Fourier Transform of the sequence f rns. It represents the frequency amp-
litudes constituting the frequency spectrum of the original signal. The set of N amplitudes (which
in general can be complex numbers) are evaluated at angular frequencies: 2πk

N∆t , k “ 0, ..., N ´ 1.

The previous equation can be written in matrix form:
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N W

´2pN´1q
N
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N
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1 W
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N W
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N . . . W
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ffi

ffi

ffi

ffi

ffi

ffi
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(A.6)

where WN “ e
i2π
N , W k

N “ e
i2πk
N , k “ 0, ..., N ´ 1 and W kN “ 1, k “ 0, ..., N ´ 1.
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A.2 MOID evolution DFT

The Discrete Fourier Transform (DFT) is used in order to convert the finite number of MOID
samplings taken at equidistant instant of time into a complexed-value function of frequency.
Applying the DFT theory to the MOID evolution frequency spectrum study, it is important to
very well define the sampled data and the interesting frequencies.

As said in the previous section, the DFT is rigorously applied to periodic functions. In this
case thus, an assumption is made and it correspond to consider the MOID evolution function as
1-day-periodic although it is not necessary true. The MOID function DFT is then applied to a
collection of N discrete samplings corresponding to one period of it. From this point of view,
the base period of MOID evolution is thus:

T1 “ 86 400 s (A.7)

while the sample period is:
∆t “ 1 s. (A.8)

The sample size is then N “ 86400, corresponding the the 86 400 MOIDs evaluated one every
second during one day. The sample points are tn “ n∆t, n “ 0, ..., N ´ 1, while the sampled
values are xrns “ xptnq, n “ 0, ..., N ´ 1.

The DFT is calculated17:

Xk “
1
?
N

N´1
ÿ

n“0

xrnse´i2πk
n
N P C, pk “ 0, ..., N ´ 1q (A.9)

in a rigorous sense, it corresponds to the function xn which is obtained by the inverse transform
and which is not exactly the same MOID function of the beginning:

xn “
1
?
N

N´1
ÿ

k“0

Xke
i2πk nN P R, pn “ 0, ..., N ´ 1q (A.10)

It is important to observe that the DFT base frequency is f1 “
1
T1

because of the very assumption
that have been made. All the resulting frequencies will be thus expressed as multiples of it. The
base frequency is a fictitious fundamental frequency when the signal is not T1-periodic, then, it
must not be considered in the count of the fundamental frequencies. They are the frequencies
which determine the MOID oscillatory behaviour in the short period, and f1 is clearly not one
of them.

The l possible fundamental frequencies fi which may appear in the DFT analysis are given
by the following relation:

fi “
ni
T1
, i “ 1, ..., l (A.11)

where

ni “ min
k

"

|Xk| " 0 : k ą ni´1,
k

ni´m
R N @ 1 ď m ă i´ 1

*

(A.12)

This means that the possible fundamental frequencies constituting the MOID function must
satisfy the following conditions:

17The DFT leaves some freedom in the choice of the frequencies amplitude set normalization value. MAPLE
software utilises 1?

N
as normalization value for the DFT and the inverse transform default functions. It is

important to remember this normalization when analysing the graphics of section 5.2.
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1. The Xk complex number representing the k frequency amplitude must have a positive
modulus and must be very well identifiable respect to the rest of the almost null moduli of
the series.

2. The k frequency amplitude index must be higher than the prior identified fundamental
frequency index.

3. The k frequency amplitude index must not be multiple of any of the previous identified
fundamental frequencies indexes.

All the frequencies satisfying the first two conditions but not the third (i.e., they are multiple
of any of the fundamental frequencies), are called harmonics and they are numbered according
to their corresponding multiplier (i.e., the double of the fundamental frequency is the second har-
monic, etc.). Obviously, all the frequencies will appear as multiple of the base frequency f1, but,
as said in the previous explanation, this is a necessary consequence of the theory assumptions.
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Appendix B DROMO Asymptotic Solution

The asymptotic solution developed by Sánchez Fernández-Mellado [25] is based on the on the
simplification represented by the main problem formulation. Considering only the J2 coefficient of
the geopotential expansion, the asymptotic solution looks for an analytical DROMO formulation
for orbit propagation. Once set up, the new formulation could suppose large savings in terms of
propagation time. This makes the asymptotic solution suitable to be applied to the problem of
the rapid propagation of large amounts of space debris.

B.1 Asymptotic solution theory

The ε term which was introduced in section 3.4.1:

ε “ J2

ˆ

RC

Lc

˙2

(B.1)

is little (10´3) compared to the main term of the Earth’s gravitational field spherical expansion
which is of order unity. If the only term in the gravitational perturbation is the one containing
J2, as described in section 3.2, it means that the exact solution of the DROMO formulation of
the main problem is still an approximate solution. From this viewpoint, even the exact solution
of the equations will not be pursued, and an asymptotic solution to solve the main problem is
presented [25].

The objective in this case is to analytically solve the equations of motion described in the
DROMO theory, saving the time of a numerical propagation. In order to do so, the asymptotic
solution consists in the following approximation of DROMO variables:

τ “ τ p0q ` ετ p1q ` ... η1 “ η
p0q
1 ` εη

p1q
1 ` ...

ζ1 “ ζ
p0q
1 ` εζ

p1q
1 ` ... η2 “ η

p0q
2 ` εη

p1q
2 ` ...

ζ2 “ ζ
p0q
2 ` εζ

p1q
2 ` ... η3 “ η

p0q
3 ` εη

p1q
3 ` ...

ζ3 “ ζ
p0q
3 ` εζ

p1q
3 ` ... η4 “ η

p0q
4 ` εη

p1q
4 ` ...

(B.2)

The work presented in [25] develops the expansion for the first two terms of the asymptotic
solution starting from the pericenter position. It obtains an approximate solution which neglects
10´6 order terms. This approximation is consistent with the main problem formulation, it in
fact already neglects terms of the same order. The approximation is thus the same of the exact
solution for the DROMO equations but leads to a considerable gain of time.

Here are summarized the expansion terms presented in the work.

First of all, the order 0 terms are quite trivial to define, because (except for the non-
dimensional time) they are constant and depend only on the initial condition:

ζ
p0q
1 “ ζ10, ζ

p0q
2 “ ζ20, ζ

p0q
3 “ ζ30

η
p0q
1 “ C1, η

p0q
2 “ C2, η

p0q
3 “ C3, η

p0q
4 “ C4

(B.3)

The non-dimensional time term instead requires a deeper definition, being a function of the
orbit’s eccentric anomaly u:

τ p0qpuq “
1

ζ3
30p1´ e

2
0q

3{2
pu´ e0 sinuq (B.4)

98



For the ε order terms, their value is obtained in [25] through a symbolic manipulator. Again,
every term apart from the non-dimensional time has a common definition. For this reason they
are presented with the following expression:
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(B.5)

where A is a matrix of 7ˆ 12 size which only depends on the initial conditions. The value of its
coefficients is detailed in [25].

The non-dimensional time term, as in the case of 0 order, has a specific and more complicate
definition, its expression being the following:

τ p1q “
5
ÿ

i“0

gipσq (B.6)

where the gi terms are function of the ideal anomaly σ and they are hereby expanded. The value
of the Hi terms intervening in the definitions of the gi terms are collected in [25] as well.

g0pσq “ ´
H0

16
¨

1

p1´ e2
0q

5{2
¨

„

1

2
p2` e2

0qu´ 2e0 sinu`
1

4
e2

0 sinp2uq



g1pσq “ ´
H1

16
¨

1

p1´ e2
0q

5{2
¨

„

´
3

2
e0u` p1` e

2
0q sinu´

1

4
e0 sinp2uq



g2pσq “ ´
H2

16
¨

1

p1´ e2
0q

2
¨

„

1´ cosu`
1

4
e0pcosp2uq ´ 1q



g3pσq “ ´
H3

16
¨

1

p1´ e2
0q

5{2
¨

„

3

2
e2

0u´ 2e0 sinu`
1

4
p2´ e2

0q sinp2uq



g4pσq “ ´
H4

16
¨

1

p1´ e2
0q

2
¨

„

2e0pcosu´ 1q `
1

2
p1´ cosp2uqq



g5pσq “ ´
H5

16
¨

1

2
¨

1

p1´ e2
0q

3{2
¨

„

σpuq
p1´ e0 cosuq2

p1´ e2
0q

1{2
´ u` e0 sinu



(B.7)

B.2 Application and results

The asymptotic solution propagator, has been programmed and tested in a C++ routine in order
to proof its validity and efficiency.

The routine is intended to substitute the DROMO numeric propagator once it is perfectly set
up and validated. It would be used for the MOID evolution study as described in this work. The
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modularity of the DROMOID tool in fact, ensures the ability to change either the propagator or
the MOID computation tool in a rapid way.

The asymptotic solution propagator needs to be reliable and fast. In order to check its valid-
ity, the results obtained with it are compared with two other propagators: a traditional Cowell’s
method propagation, implemented through a 4th order Runge-Kutta integrator and the DROMO
numeric propagator (which will be called DROMO propagator) implemented through the same
RK4 integrator.

The asymptotic solution routine, implemented as a function called in the main program,
is a relatively simple one. It is needed to analytically calculate the final state vector of the
propagation. In the main code, the object state vector is firstly converted in DROMO variables
as seen in section 3.3.3. It is then inserted as an argument to the Asymptotic Solution function.
After the propagation, the vector is transformed from DROMO variables to a state vector in
the inertial frame. The whole process is included in the computation time because the two
conversions are part of the calculation. The function uses the initial conditions to calculate only
once the 0 order solution as well as the Aij and Hi coefficients. The asymptotic solution, after
the initialization of all the constants, is able to evaluate the final DROMO vector.

The Cowell’s method propagator is implemented with a function called in the main program
as well. It receives the initial state vector in the inertial frame, not needing any conversion. The
state vector is propagated for the considered time and it is finally presented as an output of the
function. In this case, only the propagation time is included in the whole computation time.

The DROMO propagator is implemented in the code as another function called by the main
program. After having converted the state vector in DROMO variables, it is given to the function
which propagates it for the specified time. The function returns the final DROMO vector, which
needs to be converted into an inertial state vector. Again, the double conversion of the vectors is
considered in the propagation time computation, being the two operations essential for the result.

It is possible to make a comparison between the three propagation tools in order to evaluate
the benefits of each one of them. A sample state vector is presented:

Table 6: Sample LEO object.

Initial state vector

x 2568.067 822 101 631 00
kmy 5574.251 441 585 716 70

z 3543.409 444 444 444 90
vx 3.314 425 337 758 61

km s´1vy ´5.740 753 082 891 55
vz 6.628 850 675 517 22

This vector is propagated for 1 day (86 400 s) by the different routines and the results are
compared in terms of precision and computational time. The final error is computed in terms
of the position and velocity relative error after the propagation. The DROMO propagator is
taken as a reference, being it the most accurate method. The computational time is calculated
following the aforementioned rules.
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Table 7: Comparison after 1 day propagation.

Cowell’s method DROMO propagator Asymptotic solution

x ´453.598 36 ´453.439 ´329.9059
kmy ´18 869.539 ´18 869.318 ´18 710.335

z 1962.491 1962.7339 2157.5694
vx ´1.821 086 2 ´1.821 088 5 ´1.821 280 2

km s´1vy ´2.524 197 6 ´2.524 294 ´2.604 796 1
vz ´2.775 642 7 ´2.775 632 6 ´2.763 677 7
Pos. err. 365.0165 - 280 172.97 m
Vel. err. 0.096 955 - 81.385 161 m s´1

Time 1 885 488 43 971 6774 µs

In the above comparison table, the different precisions of the methods are compared against
the DROMO propagator. It can be seen that Cowell’s method has a very little error while the
asymptotic solution presents a far bigger one. Nevertheless, it is observed how the Asymptotic
solution constitutes a big gain of time (one order of magnitude lower than the DROMO propag-
ator computational time), compared to Cowell’s method, which has a computational time of two
orders of magnitude higher than DROMO propagator.

In the following graphics, the three methods are visually compared in terms of the posi-
tion vector modulus and the velocity vector modulus time evolutions. The Cowell’s method
completely overlaps the DROMO propagator vector evolutions, thus only two curves are visible.
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Figure B.1: Radius vector
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As can be seen in the Fig. B.1 and Fig. B.2, the asymptotic solution represents a good
approximation of the satellite evolution over time. Nevertheless a computation of the error
evolution over one day time has been done in order to understand how the error is propagated.
Again, the DROMO propagator has been considered as a reference and the error has been
evaluated for the asymptotic solution and for Cowell’s method. The errors computations have
been done according to the following relations:

∆r “
|r´ rDROMO|

|rDROMO|
∆r r%s “

|r´ rDROMO|

|rDROMO|
¨ 100

∆v “
|v ´ vDROMO|

|vDROMO|
∆v r%s “

|v ´ vDROMO|

|vDROMO|
¨ 100

(B.8)
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Figure B.3: Asymptotic solution error evolution over 1 day.
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(b) Velocity error.

Figure B.4: Cowell’s method error evolution over 1 day.

As can be seen in the above images, the position error for the DROMO asymptotic solution
appears to be very high and it presents an overall increase over time. On the contrary, the
Cowell’s numeric solution position error appears to be very low and does not present an overall
increase during time18. The same behaviour appears in the velocity error evolution.

The actual version of the Asymptotic solution software presents an unacceptable error propaga-
tion, not allowing its implementation in the current DROMOID tool. It needs to be further de-
veloped and consolidated. Once the solution is completed and successfully tested, it would imply
a considerable gain of propagation time coupled to accuracy preservation, as its approximation
is of the same order of that of the main problem simplification.

18The drop in the error curve which appears almost every 20000 seconds in Fig. B.3a is due to an error in the
program when it resets the σ angle every orbit (in order to maintain it in the r0, 2πs interval).

103



References

[1] https://www.esa.int/Our Activities/Space Safety/Space Debris/
Space debris by the numbers

[2] NASA Orbital Debris Program Office, Orbital Debris Quarterly News, 11 (2), (April 2007).

[3] NASA Orbital Debris Program Office, Orbital Debris Quarterly News, 13 (2), (April 2009).

[4] NASA Orbital Debris Program Office, Orbital Debris Quarterly News, 23 (1&2), (May 2019).

[5] Dana M. Lear and Eric L. Christiansen and James L. Hyde and Jeph Herrin and Frances
Lyons and Justin Hamilton Kerr and Silke Ryan, Investigation of Shuttle Radiator Micro-
Meteoroid & Orbital Debris Damage, AIAA 2009-2361, (2009).

[6] ESA, SPACE DEBRIS: THE ESA APPROACH, ESA publications Brochures, BR-336,
(March 2017).

[7] T. S. Kelso, S. Alfano, Satellite orbital conjunction reports assessing threatening encounters
in space (SOCRATES), Modeling, Simulation, and Verification of Space-based Systems III,
vol. 6221, International Society for Optics and Photonics, (2006).

[8] Felix R. Hoots, Linda L. Crawford, and Ronald L. Roehrich: An analytic method to determ-
ine future close approaches between satellites, Celestial Mechanics, 33 (2), 143-158, (1984).

[9] https://celestrak.com/NORAD/documentation/

[10] David A. Vallado, Paul J. Cefola: Two-Line Element Sets - Practice and Use, IAC-12-
A6.6.11, 63rd International Astronautical Congress, Naples, Italy, (2012).

[11] David A. Vallado, Paul Crawford, Richard Hujsak and T. S. Kelso: Revisiting Spacetrack
Report #3: Rev 2, AIAA-2006-6753-Rev2, (2006).

[12] https://celestrak.com/columns/v04n03/

[13] Felix R. Hoots, Ronald L. Roehrich: SPACETRACK REPORT NO.3 Models for Propaga-
tion of NORAD Element Sets, (1980).

[14] Felix R. Hoots, Paul W. Schumacher Jr and Robert A. Glover: A History of the Analytical
Orbit Modelling in the United States Space Surveillance System, (2004).

[15] Michael F. Henry: The OrbitTools Libraries. NORAD SGP4/SDP4 Implementations in
C++ and C#, http://www.zeptomoby.com/satellites/

[16] David A. Vallado, Paul Crawford: SGP4 Orbit Determination, AIAA-2008-6770, (2008).

[17] David A. Vallado, Wayne D. McClain: Fundamentals of Astrodynamics and Applications,
Springer, New York, (2007).

[18] Sean E. Urban, P. Kenneth Seidelmann, Explanatory Supplement to the Astronomical Al-
manac, University Science Books, (2013).

[19] International Astronomical Union: Standards of Fundamental Astronomy,
http://www.iausofa.org/

[20] William E. Wiesel: Modern Astrodynamics, Aphelion Press, (2010).

104
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tial Mechanics & Dynamical Astronomy, 124 (1), 1-31, (2016).
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