polito.it
Politecnico di Torino (logo)

Design and verification of an adaptive control system for small satellites involved in rendez-vous and docking missions.

Gabriele Aquino

Design and verification of an adaptive control system for small satellites involved in rendez-vous and docking missions.

Rel. Sabrina Corpino, Fabrizio Stesina. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Aerospaziale, 2019

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Document access: Anyone
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (5MB) | Preview
Abstract:

As the title of this dissertation may suggests, the objective is to design a control system whom is able to perform a successful operation of autonomous rendez-vous and docking between two small satellites. This type of mission is becoming increasingly used to complete various tasks like removal of space debris, on-orbit servicing and spatial repairing. In order to control the Chaser satellite it has been developed an artificial neural networks (ANN), also known as “neural networks”, which are an useful mathematic/computational tool for the resolution of problems regarding control, data analysis and pattern recognition. In aerospace field, they are a strong candidate for attitude control thanks to its inherent nonlinear behaviour, which makes them a natural choice in order to control nonlinear system. The results are compared to the ones coming from a common-use controller, the Linear Quadratic Control (LQR).

Relators: Sabrina Corpino, Fabrizio Stesina
Academic year: 2018/19
Publication type: Electronic
Number of Pages: 96
Subjects:
Corso di laurea: Corso di laurea magistrale in Ingegneria Aerospaziale
Classe di laurea: New organization > Master science > LM-20 - AEROSPATIAL AND ASTRONAUTIC ENGINEERING
Aziende collaboratrici: UNSPECIFIED
URI: http://webthesis.biblio.polito.it/id/eprint/11237
Modify record (reserved for operators) Modify record (reserved for operators)