
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Matematica

Tesi di Laurea Magistrale in collaborazione con Tierra S.p.A.

Predictive Maintenance for off-road vehicles based
on Hidden Markov Models and Autoencoders for

trend Anomaly Detection

Relatori Candidato
Prof. Francesco Vaccarino Lorenzo Perini
Prof. Luca Cagliero s253570
Tutor aziendali
Dott.ssa Lucia Salvatori
Dott. Elvio Amparore
Dott. Riccardo Loti

Anno Accademico 2018-2019

2

« In the long run, all machines
break down. »

[John Maynard Keynes]

« Predictive modeling generates
the entire model from scratch.
All the model’s maths or
weights or rules are created
automatically by the computer.
The machine learning process is
designed to accomplish this
task, to mechanically develop
new capabilities from data. This
automation is the means by
which Predictive Analytics
builds its predictive power. »

[Eric Siegel, Predictive
Analytics: The Power to Predict

Who Will Click, Buy, Lie, Or
Die]

Contents

1 Introduction and relative work 19

2 Predictive-Oriented dataset construction 23
2.1 Introduction to data preparation 23
2.2 CAN parameters analysis . 24

2.2.1 What is a CAN message . 24
2.2.2 CAN data exploration . 25
2.2.3 Clustering units according to their general behaviour 26
2.2.4 Unsupervised results . 32

2.3 Diagnostic message 1 (DM1) analysis 34
2.3.1 What is a Diagnostic Message 1 34
2.3.2 DM1 data exploration: co-occurrence analysis 35
2.3.3 DM1 data exploration: lifetime analysis 37

2.4 Creation of the predictive dataset and data cleaning 42

3 Time Series 45
3.1 Sample Autocorrelation Function 47

3.1.1 Trend Analysis . 49
3.1.2 Analysis of seasonality . 50

3.2 SPN by SPN autocorrelation analysis 51

4 Feature Selection 57
4.1 Introduction to Feature Selection 57
4.2 Entropy and Mutual Information 60

3

4 CONTENTS

4.2.1 Entropy . 60
4.2.2 Joint Entropy and Conditional Entropy 61
4.2.3 Relative Entropy and Mutual Information 62
4.2.4 Mutual Information for Feature Selection 64

4.3 SVM-RFE . 69
4.3.1 Feature ranking with SVM-RFE 69
4.3.2 SPN ranking based on cross-validated selection 71

4.4 Feature Importance by ERT . 73
4.4.1 Extremely Randomized Trees 73
4.4.2 Importance Analysis . 75

4.5 Creating a new feature: Moving Average Engine Oil Pressure 78
4.6 Dynamic Time Warping . 79

4.6.1 Dynamic Time Warping Algorithm 80
4.6.2 DTW Distance for sequentiality Feature Selection 84

4.7 Final subset of SPNs for engine oil pressure analysis 91

5 DM1 prediction: a probabilistic approach 95
5.1 Discrete Time Markov Chains . 95
5.2 Intuition behind Hidden Markov Models 97
5.3 Three Basic Problems for HMMs 99
5.4 Why HMMs are suitable for DM1 Prediction 106
5.5 Hidden Markov Models application 107

5.5.1 HMM for Failure Detection 108
5.5.2 HMM for faulty trend prediction 109

6 Prediction of Faulty CAN messages using Anomaly Detection
techniques 115
6.1 Preliminary Concepts . 115

6.1.1 Stratified Cross validation 116
6.1.2 SMOTE: Synthetic Minority Over-sampling

Technique . 117
6.1.3 Precision, Recall and AUC statistics 119

CONTENTS 5

6.2 Why Anomaly Detection for Predictive
Maintenance . 124

6.3 K Nearest Neighbor Outlier Detection 126
6.4 Isolation Forest . 130
6.5 Autoencoders for Anomaly Detection 138
6.6 Autoencoders on HMM . 146

7 Testing the model on unknown DM1s 149
7.1 Feature Selection for unknown DM1s 149
7.2 Predictive models results . 152

8 Final evaluation 155
8.1 Overall results . 155
8.2 Conclusion . 157

6 CONTENTS

List of Figures

1.1 Predictive maintenance for off-road vehicles. 22

2.1 Amount of CAN messages for three units with 22, 24 and 40 SPNs
respectively. 25

2.2 Amount of CAN messages per unit. 26
2.3 K-Means algorithm example. The image is taken from the site

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.

html. 28
2.4 Table reported the Silhouette score for each value of K. 33
2.5 Table reported the amount of observations per couple of DM1 oc-

curring at the same timestamp. 36
2.6 Graph showing the loop within the group of 6 DM1s. There is one

exception related to nodes 524016 − 2 and 523867 − 12 which are
not connected. 37

2.7 For each TDC (couple of SPN and FMI) the graph shows its lifetime,
together with the number of records and how many units broadcast
that DM1. 39

2.8 Count of DM1s class by class based on the ending reason. 41

3.1 Examples of trend and seasonality for time series 48
3.2 Time series plot using the first 10.000 values for 4 different repre-

sentative SPNs: 100, 247, 30066, 30104. 53
3.3 Autocorrelation function using the first 10.000 values for 4 different

representative SPNs: 100, 247, 30066, 30104. 54

7

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html

8 LIST OF FIGURES

4.1 Violin plot representing for each feature its distribution inside the
two classes. 59

4.2 Venn diagram showing additive and subtractive relationships about
information measures associated with correlated variables X and Y . 65

4.3 Heatmap showing for each time label gap (row) the mutual infor-
mation of all the SPNs. All the mutual information values in figure
are to be intended as percentage. 67

4.4 Example of tree created using all the data and setting the maximum
depth to 3. Blue color represents the faulty classes, whereas the
orange stands for normals. 73

4.5 Bar graph showing for each SPN its mean importance computed by
ERT, together with its standard deviation. The label used is 30.0h. 76

4.6 Graph showing the reduction of noise obtained using the moving
average (100_ma). 79

4.7 Two different time series are represented (green and blue). It is
shown what is a path (black) and what will be defined as the optimal
path (red). 81

4.8 At the left, figure (a) illustrates that the alignment path must start
at the bottom left and end at the top right. In the centre , figure
(b) shows that the alignment path must not jump in time index
(continuity). At the right, figure (c) exposes that the alignment
path shall not go back in time index (monotonicity). 82

4.9 The alignment of two different time series (red and blue) using
DTW. The image is taken from the site http://josejg.com/. . . . 86

4.10 Splitting CAN messages into Normal and Faulty groups. 87
4.11 Heatmap showing for each window time series its DTW distance

from each one of the others. Lighter colors mean higher distance
values. At the left, figure (a) illustrates an example of DTW time
window for SPN 100. At the right, figure (b) illustrates DTW for
SPN 183. In this case the number of windows is 38. 89

5.1 Example of Discrete Time Markov Chains with four states. 96

http://josejg.com/

LIST OF FIGURES 9

5.2 Example of Discrete Time Markov Chain time evolution. 96

5.3 Confusion matrix showing the probabilities of predictions per classes.
The sum of the rows is equal to 1, since, given the right class of an
observation, the model predicts the two labels with complementary
probabilities. The statistics are: Precision: 0.003, Recall: 0.176. . . . 110

5.4 (a) SPN 100 time series with states predictions by Hidden Markov
Model. For each state one color is used. (b) As for (a) but using SPN
100_ma. Observe that the state 9 is assigned to the faulty CAN
messages, defining the faulty zone before that one DM1 happens. . 112

5.5 Confusion matrix showing the predictions per classes. The predicted
label for a CAN message is “Faulty” if the Hidden Markov Model
enters in the faulty state, “Normal” otherwise. In this case the statis-
tics are: - Precision: 0.630, - Recall: 0.680, - AUC : 0.831. 113

5.6 Hidden Markov Model prediction based on the state of anomalous
trends. The red color is assigned to the DM1 messages, whereas the
violet defines the interval containing CAN messages predicted as
faulty by HMM. 114

6.1 Normal and Stratified 5-Fold cross-validation using 30.0h as time
label gap. The green lines represent data inside the test set, while
dark blue lines represents the training set. At the bottom, after the
CV iterations, the general partition of the entire dataset in faulty
and normal classes is shown. 117

6.2 Distribution of SPN 100 obtained by separating values belonging to
the normal class from the others belonging to the faulty class. . . . 119

6.3 Precision and Recall curve by Autoencoder model. In red is shown
the best F1 score value which maximizes both precision and recall
scores. 120

6.4 Confusion matrix showing true positives, true negatives, false posi-
tives and false negatives positions. Colors reflect target ranges. . . . 122

6.5 ROC curve for the predictive model Autoencoder with AUC score. . 123

10 LIST OF FIGURES

6.6 Confusion matrix for KNN outlier detection with statistics: - Pre-
cision: 0.710 - Recall: 0.722 - AUC : 0.858. 128

6.7 Scatter plot related to kNN Outlier Detection showing for each data
point its model prediction. The background indicates the scores of
a potential point in that area: the darker the color, the higher the
anomaly score. In this case the dataset is divided into training and
test (stratified) with rate 0.25. The statistics are: - Precision: 0.724,
- Recall: 0.747. 129

6.8 Scatter plot showing Isolation Forest predictions. The background
indicates the scores of a potential point in that area: the darker
the color, the higher the anomaly score. In this case the dataset
is divided into training and test (stratified) with rate 0.25. The
statistics are: - Precision: 0.767, - Recall: 0.765. 136

6.9 Confusion matrix showing Isolation Forest predictions. The statis-
tics are: - Precision: 0.760, - Recall: 0.782. 137

6.10 Architecture of the autoencoder deep neural network. The input
layer and the first hidden layer form the encoder part, whereas the
second hidden layer and the output layer represent the decoder. It
is a very simple neural network architecture. 140

6.11 Autoencoder loss function calculated on training and validation set.
It measures for each epoch the mean square error between the input
and the output of the model. 142

6.12 Autoencoder precision/recall curve. It shows for each threshold the
precision and recall values that the model performs on the validation
set. The common method provides to choose the optimal threshold
by maximizing the F1 score on the validation set. 143

6.13 Scatter plot showing for each point its reconstruction error. Data
points are colored by classes. The threshold divides the predictions
of the two classes based on the error value. 144

LIST OF FIGURES 11

6.14 Plot showing SPN 100 time series for one year with its moving av-
erage (orange). The red lines underscore DM1 occurrences whereas
the violet ones highlight Autoencoder predictions (about 30 hours
before the first DM1). 145

6.15 The first graph shows an example of SPN 100 trend together with its
moving average (orange). The red lines identify when a DM1 occurs.
The second plot illustrates the Hidden Markov Model predictions
about anomalous trend, while the violet plot is related to Autoen-
coder predictions. The sample involves data from mid January 2018
to January 2019 and just one unit is considered. 146

7.1 Plot showing for each number of selected features its cross-validation
score. The best ranking is chosen according to the maximum score. 151

7.2 (a) At the left, confusion matrix showing the scores related to HMM
probabilities to detect an unknown DM1. The statistics are: - Pre-
cision: 0.0001, - Recall: 0.0083. (b) At the right, confusion matrix
showing the scores related to HMM states predictions over an un-
known DM1. The statistics are: - Precision: 0.0006, - Recall: 0.0289. 152

7.3 (a) At the left, confusion matrix showing the scores related to kNN
Outlier Detector (distance based algorithm). The statistics are: -
Precision: 0.0147, - Recall: 0.0143. (b) At the right, confusion matrix
showing the scores related to Isolation Forest, which is the tree based
model. The statistics are: - Precision: 0.0247, - Recall: 0.0247. . . . 153

7.4 Confusion matrix showing the Autoencoder final statistics: - Preci-
sion: 0.0252, - Recall: 0.0366, - AUC : 0.595. 154

8.1 Tree map showing for each model its scores (Precision, Recall, AUC).
Colors are based on recall score so that the blues are higher than
browns as reported in the legend. About the dimensions of the rect-
angle it has to be read as the bigger the higher AUC score. 156

12 LIST OF FIGURES

8.2 The graph shows two different behaviours under granularity at 10
minutes (above) and 2 minutes (below). Data are taken during 30
hours randomly selected. In the left part, you can see the time series
plot without accurately cleaning data, whereas at the right it is
reported the plot after filtering points just to values into the interval
[375, 475], which is the most likely to contain only real explainable
data. Looking from the left to the right, you can observe how the
time series becomes significantly more precise. Looking from top to
bottom, it is evident the increase of the amount of data (from 57 to
277 and 43 to 233). 158

List of Tables

4.1 Table showing for each feature the time labels where it has the rank
1. To make it more readable we stop the times at 33.0h. All the
remaining time labels appear in all the features. 72

4.2 Table with importance scores for time label gaps and features, by
ERT. 77

4.3 Table to test correlation between SPN and DM1 (multidimensional). 91
4.4 Table to test correlation between SPN and DM1 (monodimensional). 92
4.5 Table showing the final dataframe with all the scores for feature

selection. Note that RFECV column has just a ranking, whereas
the others have the exact score. 93

4.6 Table showing the final dataframe containing only those relevant
features and the respective time label. 94

7.1 Table showing the dataframe containing only those relevant features
and the respective time label. 150

7.2 Table showing the dataframe containing only those relevant features
and the respective time label for the DTW score. 151

13

14 LIST OF TABLES

Acknowledgement

Per prima cosa un grande ringraziamento al Prof. Vaccarino, relatore di questa tesi
di laurea, sia per il grande contributo che mi ha fornito in questi mesi dandomi la
conoscenza teorica sufficiente ad iniziare e concludere questo elaborato, che per la
disponibilità, la critica costruttiva e il sostegno che hanno fatto sì che portassi a
termine il lavoro. Nonostante tutti gli impegni, mi ha sempre concesso un’ora di
tempo per revisionare la tesi, confrontarci e arricchire le mie conoscenze. Senza la
sua pazienza e la sua guida non sarei riuscito a concludere un percorso di studi
in tempo per la sessione di laurea di Luglio 2019. Insieme a lui, voglio ringraziare
anche il Prof. Cagliero per l’aiuto decisivo nella fase conclusiva.

Un meritato e sentito ringraziamento va all’azienda Tierra S.p.A. e a tutto il
team di “applied research & data analytics”. Per merito di Riccardo ho iniziato
l’avventura, durata poi 5 mesi, in quest’ottima azienda che mi ha dato la possibilità
di terminare il mio percorso di studi applicativo con un lavoro di ricerca applicata
a dati reali. I miei ringraziamenti vanno soprattutto a Lucia e Elvio, i quali mi
hanno seguito fin dall’inizio dandomi spunti di riflessione e aiutandomi a trarre
ispirazione dai risultati raggiunti per andare avanti. Sicuramente è merito loro se,
nonostante le premesse non molto convincenti, alla fine il lavoro è terminato con un
buon risultato positivo. Da Lucia ho colto la grande importanza che ha la statis-
tica all’interno del lavoro di un Data Scientist, grazie ai mille confronti soprattutto
durante la pausa pranzo. Da evidenziare che, grazie a lei, ho conosciuto ed iniziato
a vedere ovunque le Heat map, come si evince dalla quantità di grafici presenti
nella tesi. Da Elvio ho invece percepito la bellezza del Machine Learning, tanto

15

16 CHAPTER 0. ACKNOWLEDGEMENT

da rafforzare l’idea che il mio futuro professionale comprenderà questo ambito. É
merito suo se ho provato e sto continuando a fare richiesta per un Ph.D. all’estero
in una delle principali università in Europa, anche se sicuramente a detta sua “lui
non conta niente”. Possono passare mesi, anni o anche decenni, ma il bigliettino
da visita di Elvio resterà sempre sopra la lavagna dell’ufficio 17.
Inoltre, vorrei ringraziare il mio ex collega tesista di ufficio Calogero per avermi
lasciato, dopo una lunga lotta durata qualche settimana, l’intera lavagna per scri-
vere i miei risultati. Dopo essere passato da tesista a dipendente, ha avuto la
grandissima responsabilità di riavviare Jupiter ad ogni mia richiesta. Questo lo ha
obbligato a lavorare anche alle 23 : 30, quando era disteso comodo sul divano di
casa ad oziare. Spero che lui riesca nell’intento di “far vivere così” il nuovo tesista
Antonio, a cui suggerisco di cambiare mood (almeno passa a “non si può quasi
vivere così”).
Un grazie di cuore anche ad Andrea M., che è stato essenziale per la scelta dei dati
da utilizzare. Il suo intervento è avvenuto nel momento in cui l’oscurità dei dati
di Tesmec stava prendendo il sopravvento sul mio modello. Per merito suo e di
Storti S.p.A., questo lavoro ha avuto un esito semi-positivo (evitiamo di sbilancia-
rci troppo!). E pensare che Andrea aveva anche previsto per me 6 mesi da passare
in solitudine insieme alle mucche a Verona!

Vorrei ringraziare i miei colleghi del corso di laurea di Ingegneria Matematica,
sia per il tempo trascorso a studiare insieme che per le rilassanti serate che mi
hanno permesso di distaccarmi dalla pressione della laurea. In particolare un gra-
zie ad Andrea per l’insistenza e la caparbietà con cui ha continuato a chiedermi di
finire e mandargli il lavoro sin dal primo giorno di tesi, a Silvia per la positività
che porta con sè e per la capacità di rendere chiare le frasi che Andrea usa quando
mi avvisa delle serate, e a Lucrezia per le mille e passa storie sulla sua amata Forlì
che, a quanto pare, è colma di storie inimmaginabili.

Un grandissimo ringraziamento anche a Serena, Giorgia, Elena, Margherita,
Max, Daniele, Jack, Seba e gli altri per tutte le serate che definirei stimolanti, in

17

quanto passate all’insegna della birra e del biliardino. Grazie alla risata isterica di
Serena, alla follia che condivide con Giorgia, al romagnolo profondo di Marghe,
alla conoscenza di qualsiasi serie TV e film di Max, al cinismo estremo e pungente
di Daniele, all’apertura e alla chiacchiera facile di Jack e alla convivialità di Seba,
la cui casa è sempre aperta, le feste trascorse insieme a voi sono state le migliori.
Inoltre un grandissimo grazie a Serena per avermi fatto capire cosa provano i tele-
spettatori delle telenovelas, raccontandomi avvenimenti immaginari, simbolici e
reali di mille e passa scene amorose per almeno un anno intero.

Passando ora alla famiglia, ringrazio prima di tutto i miei genitori per aver
reso possibile questa bellissima esperienza passata a Torino. So che sono stati due
anni brevi e pieni di sacrifici (soprattutto finanziari), ma penso e spero che ne
valga la pena. Siete e sarete sempre i miei primi due motivatori. Da voi ho sem-
pre trovato la spinta necessaria per buttarmi verso una carriera il più brillante
possibile. Alla zia e ai nonni (Antella e Sorgane) mando un caloroso abbraccio: la
domenica a pranzo è sempre stato e sempre sarà un momento di ritrovo fantastico
in famiglia. Un ricordo speciale va al nonno Franco e al nonno Ade. Nonostante
siano passati poco più di 7 anni dall’ultima volta in cui ci siamo parlati, ricordo
come fosse ieri le giratine in bici e nei boschi con il nonno Franco. A te, nonno
Adelindo, un grande saluto. É grazie a te se da oggi punterò sempre più in alto,
grazie agli ultimi suggerimenti che oggi sono diventati il mio motto: sempre meglio.
Un imbarazzatissimo saluto e ringraziamento a mio fratello Niccolò e alla Benedetta,
da cui ho trovato sostegno e apprezzamento. Se non fosse per la Benedetta non
avrei nemmeno scritto i ringraziamenti. Meno male mi hai tartassato per mesi!
Infine un profondo ringraziamento ai miei parenti di Sesto Fiorentino e di Grosseto.
Nonostante ci vediamo veramente poco, è sempre bellissimo festeggiare in famiglia!

Ai gemelli diversi Sandro e Fabio, al perenne “AFK” Dario, al saggio e anti-
quato Monto, al brillante Maestro voglio mandare un profondo ringraziamento, an-
che se in realtà non hanno contribuito minimamente alla stesura della tesi. Scherzi
a parte, i fine settimana trascorsi con voi sono i migliori, soprattutto quando il

18 CHAPTER 0. ACKNOWLEDGEMENT

Maestro prende l’iniziativa sparando idee assurde, tipo entrare in casa del Monto
(alla fine ci siamo riusciti!). Non so veramente come avrei fatto senza la perspi-
cacia di Sandro, l’abilità da neo agente immobiliare di Fabio, l’energia di Dario,
l’intraprendenza del Monto e l’umiltà del Maestro. Mi raccomando ragazzi, la
prossima volta non aspettate la laurea per salire nella città dove ho vissuto 2
anni e fatemi visita almeno entro la fine del primo anno (non ci credo nemmeno
io in questa frase, tranquilli). Un saluto anche ai due super, uno un po’ sparito
mentre l’altro appena ritrovato, anche se con la sua fantastica giacca sembra un
esattore delle tasse e/o un testimone di Geova. Un particolare ringraziamento va
alla miglior designer nel mercato Emma, che mi ha fatto un modellino 3d pazzesco
dell’autoencoder che userò come bomboniera. Oltre a lei ci tengo a ringraziare la
poetessa e neo cantante Ilaria e la tremendina, ecologista e imprenditrice Giada per
le serate passate dal Maestro e per l’aria di gioventù che hanno portato al gruppo.
Anche tutti gli altri (Sere, Lavi, Costi, Petru, Ele, Angelo, ecc. . .) nonostante non
siano mai venuti da me a Torino, meritano un ringraziamento per avermi influen-
zato chi più e chi meno e aver contribuito a raggiungere questo stupendo traguardo.

Infine, ma non ultima ovviamente, un amoroso grazie va alla Lavi per avermi
sopportato in tutti questi anni e non aver fatto troppe storie sul trasferimento a
più di 400 km da casa. Ormai la distanza non fa per niente paura, visto che ci senti-
amo quasi ogni giorno, anche se non appena ti metti al telefono a guardare i social
l’attenzione diventa praticamente nulla! Sono così fiero del percorso di crescita
che stiamo avendo insieme e vedrai che prima o poi tornerò a vivere a Firenze
(forse). Volevo inoltre ringraziarti per le conoscenze di matematica che mi hai pas-
sato in questi ultimi mesi, nel senso che mentre ti aiutavo a studiare imparavo
cose nuove! Scherzi a parte, sei il miglior sostegno che chiunque possa desiderare
e sono felice che tu approvi tutte le mie idee, togliendomi un grosso peso ogni volta.

Dopo tutti questi ringraziamenti, qualsiasi sia il mio futuro a breve e lungo
termine, spero di rimanere sempre in contatto con tutti voi, perché siete stati
fondamentali per farmi arrivare dove sono adesso.

Chapter 1

Introduction and relative work

Off-road vehicle maintenance is getting increasingly important as the unplanned
stops might significantly damage the entire work delaying the process beyond the
limits. Traditional systems are gradually improved with new planned maintenance,
according to some statistical and deterministic results. From this point of view, it
is relevant to make a clear division between preventive maintenance and predictive
maintenance. The former is commonly used and it consists of replacing periodically
vehicle components. It is a policy where, independently of the real status of the
unit, maintenance actions are applied according to the vehicle age. For this reason,
a few vehicles are repaired in time while others fail before their maintenance.
With the entry into play of artificial intelligence and IoT, predictive maintenance
methods are getting more and more central topics. Through Machine Learning and
Deep Learning approaches is currently possible to have an accurate prediction of
failure or errors inside the system with up to few days in advance. In fact, predictive
maintenance determines the general condition of the machine by monitoring its
values and then it predicts with high accuracy if a failure is going to occur and,
some times, even when it will happen. In addition, through the behaviour of each
component, the model is able to claim even which part shall be repaired.

All data are collected from the devices of the company Tierra S.p.A., which
operates in the IoT sector. The internet of things is a system of interrelated com-
puting devices, mechanical and digital machines. It is also related to the ability to

19

20 CHAPTER 1. INTRODUCTION AND RELATIVE WORK

transfer data over a network without requiring human interaction. So, the struc-
ture of data is made complicated by the interaction between machines which fill
the data with noise. As a result, more accurate data cleaning techniques have to
be applied in order to reach a reasonable accuracy score.

This thesis investigates unsupervised and supervised methods for predicting
vehicle maintenance, meaning that we predict if a diagnostic message is going to
occur. In order to achieve this goal, we are going to use probabilistic methods
based on the concept of Markov chains, distance and tree based algorithms, and
finally deep neural networks. From each of these methods pros and cons will be
discussed, together with its statistical scores evaluating the real performance into
the problem.

Final results confirms that predictive maintenance is not something we don’t
need to, but it could make people save time and money for real. By using the
artificial intelligence, we will build a model reaching about 81% of F1 score in the
prediction of diagnostic messages occurrences. The model figures the trend out
and perceives the closeness to the failure by claiming faulty values with at least
30 hours in advance.

The thesis is divided into three parts and it goes as follows. The first one
is data preparation and it involves all the passages from the analysis of many
rude datasets to the building of the right one as a base of our model [HPL02;
A+16; Pry14; BDC02]. In this chapter we will find how to merge two or more
datasets in order to achieve the main goal. So, the two most important database
are deeply analyzed in order to build a final variable response which is a binary
and deterministic label based on the timestamp of each row.

The second part involves the so called feature selection, where all the present
parameters are reviewed and, through a comparison between each variable and the
response label, just the set of the most significant for the rest of the analysis are se-
lected by 4 methods. The first method is related to theMutual Information and the
Kullback–Leibler pseudo-distance [Mur17; CT91] which compares the distributions
of data. It highlights an evident weak dependence among features and response
variables. The second one is about Recursive Feature Selection with Support Vec-

21

tor Classifier [CL11; YZ15; Guy+02], which makes a ranking of the variables from
the first relevant to the last one. Then, we apply a tree-based method based on
Importance of features called Extremely Randomized Trees [GEW06]. The last one
is a distance-based method and it considers Dynamic Time Warping distance to
create many time series and to get out a score from them [Fur08; KP01; Fol+18;
SC07; SZZ15; Rak+12]. With our kind of data, just one feature (with its moving
average) will remain after the hard (in the sense of high thresholds) feature selec-
tion we impose. This feature is the one which is directly connected to the failure
we want to predict, because it monitors directly the values that cause the damage.

The last part provides models to predict a maintenance need. The first one is a
probabilistic model called Hidden Markov Model [DD99; Sal05; KD; Sta04; Rab89;
Ye+16; YXC94], that creates k hidden states and each one of those contains a
different probability to detect an error. It can be used as a trend anomaly detector
to find out when values start to be anomalous. It reaches scores around 60 −
65%. The second one is called kNN Outlier Detection [RRS00; Ota+13] and it
is a distance-based model which is able to detect outliers. It has scores around
70%, showing it limits under noisy data. The next model is called Isolation Forest
[LTZ08; LTZ12] and it is based on sequential cuts of the data intervals in order to
isolate each point. Looking at the amount of cuts needed for each data, it emits
an anomaly score to classify the test set. The results are about 78%. Then we will
apply Autoencoders Neural Networks [GE18; PAD18; Che+17] which is the best
model from the point of view of performances, reaching 79− 80% of precision and
recall with stratified cross-validation [ZM00]. The model is a neural network and it
destroys data by reducing their dimensions and then it reconstructs all the points
to compute the reconstruction error. Through this score each point is classified
as normal point or pre-error point (faulty). The final method is a two step model
called Autoencoder on Hidden Markov Model, which increases the interpretability
of Autoencoders and it makes the model more adaptable. The results are slightly
better than the Autoencoder, achieving 80− 81% of precision and recall.

22 CHAPTER 1. INTRODUCTION AND RELATIVE WORK

Figure 1.1: Predictive maintenance for off-road vehicles.

Images in Figure 1.1 are from
https://www.drivingtesttips.biz, https://www.storti.com,
http://itblueprint.ca, https://www.iconfinder.com,
https://www.internetpost.it, https://www.restroomalert.com.

https://www.drivingtesttips.biz/dashboard-warning-lights/why-is-the-oil-pressure-light-on.html
https://www.storti.com/index.cfm/it/
http://itblueprint.ca/itb-cloud-services/protecting-the-cloud/
https://www.iconfinder.com/icons/4104668/internet_internet_connection_signal_wifi_sign_wifi_symbol_icon
https://www.internetpost.it/cloud-computing-i-termini-da-conoscere/
https://www.restroomalert.com/real-time-feedback/

Chapter 2

Predictive-Oriented dataset
construction

2.1 Introduction to data preparation

The first part of data anlytics and, somehow, the most delicate and important
part, is called data preparation. In fact, in order to achieve our task, having a
precise and perfect dataframe is very relevant. Since our goal is to create a model
for the prediction of the DM1s (see section 2.3.1), at the beginning we have to look
for which DM1 (or, eventually, which DM1s) is relevant and if it’s worth to make
a deep analysis of it. Basically, this part should join together statistical skills and
domain competences. For what concerns the domain, it has been useful to have
organized a few meetings with the technician responsible for the sector. On the
other hand, the statistical part concerns a shallow analysis the CAN parameters
(see section 2.2.1) in order to select only those messages which are relevant for the
work. As a result, one dataset reporting all the cleaned data informations about
DM1s and one related to CAN messages are created. Then, the remaining part
has the aim to build the final dataset by merging, somehow, both the two previous
datasets.

23

24 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

2.2 Controller Area Network (CAN) parameters
analysis

2.2.1 What is a CAN message

The Controller Area Network (CAN) is a serial communication protocol able to
manage with high efficiency real time distributed control systems, with a high
level of security and integrity of the transmitted data (SAE J1939 protocol, see
[HPL02]). It is a vehicle bus standard and it is planned to allow devices to com-
municate with each other without using a host computer. The CAN messages are
generated at a high frequency (up to 100 Hz) and are gathered by a controller,
where they are collected and processed. In a CAN network, many short messages
like temperature, pressure or RPM are broadcast to the entire network, which
provides for data consistency in every node of the system.

All the vehicles we consider for the analysis may have from 20 to 40 electronic
control units for various subsystems. Basically, various sensor inputs from around
the vehicle are collated via the CAN bus to determine and track the current pa-
rameters of the unit. Through an analysis of those inputs it is possible to make
some predictions, based on the kind of messages communicated. At each kind of
parameters it corresponds a different code called SPN (Suspect Parameter Num-
ber), which identifies completely the CAN parameter. Basically, one SPN is a
code which stands for one controlled parameters. Two different SPNs monitor two
different parameters of the unit.

Fixed a unit, the granularity of the messages is about 10 minutes. It means
that every 10 minutes (more or less) one value for each SPN is broadcast to the
central unit control and it corresponds to a new line in the initial database (one
per SPN). It is important to make clear the main negative aspect of the way these
CAN messages are recorder: since every 10 minutes one signal reaches the server,
inside these temporal gap many messages are saved (about 60.000 per 10 minutes).
Then, in order to create just one line inside the dataframe, one of 4 statistics are
computed: max, min, average and last. This procedure is not under our control

2.2. CAN PARAMETERS ANALYSIS 25

and we feel that it will be a hard obstacle to overcome. Currently, since SPN 100
will play a relevant role in the whole work, we want to make clear that its statistic
is the “last”. This means that unit broadcast only the last value of the sample of
SPN 100 among all the observations inside the 10 minutes.

For this first work, two task should be achieved: the first one is to figure out
if there is a sort of regularity inside those parameters, whereas the second one
concerns a more specific and deep study in order to point out an eventual general
behaviour in common among all the units.

2.2.2 CAN data exploration

At the beginning let’s consider all the units present inside the database of the
same tenant, which is in this case Storti S.p.A.1 The Tierra S.p.A. dataset contains
information on 8 different unit models, belonging to the same Dobermann series.
The total number of vehicles is 22 and each unit has broadcast a different amount
of CAN messages, both in the sense of variety and quantity.

Figure 2.1: Amount of CAN messages for three units with 22, 24 and 40 SPNs
respectively.

Looking at the Figure 2.1 we should notice that, trusting us that it is a signif-
icant sample of the entire group of vehicles, all the units broadcast more or less
the same amount of observations for each SPN. Fixed a unit, the max difference
between the largest and the smallest amount of data (SPN by SPN) is two orders
smaller than the count value. So, we could claim for sure that just a small amount
of data is lost (less than 1% of data for each unit). This regularity makes the whole

1Storti S.p.A. is a leading company in the production of animal feed machines with Unifeed
technique.

26 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

analysis be more robust and the conclusion, if there exists a positive result, more
accurate. On the other hand, as reported in Figure 2.2 the total number of CAN
messages among the units is very different: it goes from about 90 timestamps for a
less used unit, to 80.000. During this work we have to keep in mind this peculiarity,
because the length of the time series may change a lot. Mostly, for the construction
of the predictive model we have to remember that since part of the approach that
we will use is related to sequenciality of temporal data, the length of a sequence
may have a different impact on the results.

Figure 2.2: Amount of CAN messages per unit.

2.2.3 Clustering units according to their general behaviour

In this second preprocessing part, the goal is to find out if there exists a substantial
division inside the Storti units in order to treat each group in a distinct way for
the rest of the analysis. In fact in case we find out the presence of many groups of
vehicles, it could be reasonable to consider for the model each group separately, in
order to achieve a higher level of accuracy by not wasting intergroup informations.

2.2. CAN PARAMETERS ANALYSIS 27

The most used methods to create distinct groups of data involve the clustering
techniques. Clustering is the process of grouping similar entities together. The
goal of this unsupervised machine learning technique is to find similarities within
the data and to group similar data points together, according to a fixed measure.

We begin by defining some notation. Let C1, . . . , CK denote cluster sets con-
taining the observations. These sets satisfy two properties:

• C1 ∪C2 ∪ · · · ∪CK = {x1, . . . , xn}. In other words, each observation belongs
to at least one of the K clusters.

• Ck ∩CkÍ = ∅ for all k Ó= kÍ. In other words, the clusters are non-overlapping:
no observation belongs to more than one cluster.

To implement a correct version of clustering, we should before decide which
distance might be the best one, in the sense of interpretability and operation. It is
also necessary to hold the structure of sequential events: each observation has a non
zero correlation with the next one, so that it could be self-defeating to treat data
as they were independent. In addition, it might be wrong to make that assumption
from a mathematical point of view. After a long analysis of which distance could
be the right one, we finally conclude that it’s the Dynamic Time Warping the most
suitable and complete distance. For the explanations of how it works, we refer you
to the chapter 4.6.

For the sake of simplicity, we take into account the two most popular clus-
tering algorithm: K-Means and K-Medoids. The input to these algorithms are
randomly distributed data points and, through them, clusters are generated ac-
cording to their similarity. The theoretic results demonstrate that K-Medoids, as
compared to K-Means, is better not only in terms of execution time, but even
because it is sensitive to outliers and it reduces noise, since it minimizes the sum
of dissimilarities of data objects, as it is shown in [A+16].

K-Means

The K-Means algorithm is a well-known partitioning method for clustering. K-
Means clustering method groups data according on their closeness to each other by

28 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

using the Euclidean distance. As we can see in the algorithm 1 where the pseudo-
code is presented, it starts getting k as an input parameter and partitioning a set of
n object inside k clusters. The mean value of data is taken as similarity parameter
to form cluster centroids. Then, the instances of the database are relocated to the
cluster represented by the nearest centroid in an attempt to reduce the square-
error (2.2). This relocation of the instances is done following the instance order. If
an instance in the relocation step changes its cluster membership, let’s say between
the s−th and t−th clusters, then the centroids of the clusters Cs and Ct and the
square-error should be recomputed. This process is repeated until convergence,
that is, until the square-error cannot be further reduced. In other words, it means
that the algorithm will stop once no instances changes its cluster membership
(Figure 2.3).

Figure 2.3: K-Means algorithm example. The image is taken from the site
https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html.

input : Number of clusters K and data-points {x1, . . . , xn}.
output: Clusters C1, . . . , CK .
Select K points as the initial centroids;
while the centroids don’t change do

Form K clusters by assigning all points to the closest centroid;
Recompute the centroid of each cluster;

end
return Clusters C1, . . . , CK .

Algorithm 1: K-Means algorithm pseudo-code.

Almost all partitional clustering methods are based upon the idea of optimiz-
ing a function F referred to as clustering criterion which, hopefully, translates

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html

2.2. CAN PARAMETERS ANALYSIS 29

one’s intuitive notions on cluster into a reasonable mathematical formula. The
function value usually depends on the current partition of the dataset in groups
{C1, . . . , CK}. That is:

F : PK(Ω)→ R, (2.1)

where PK(Ω) is the set of all the partitions of the dataset X = {x1, . . . , xn} in K
non-empty clusters. Each xi of the n elements of the database is a N -dimensional
vector. Concretely, the K-Means algorithm finds locally optimal solutions using
the sum of the l2 distance between each element and its nearest cluster center
(centroid) as clustering criterion (F). This criterion is usually referred to as square-
error criterion. Therefore, it follows that:

F ({C1, . . . , CK}) =
KØ
i=1

KiØ
j=1
ëxij − x̄ië2 , (2.2)

where K is the number of clusters, Ki the number of data in the cluster i, xij is
the j−th observation of the i−th cluster and x̄i is the centroid of the i−th cluster,
which is defined as

x̄i = 1
Ki

KiØ
j=1

xij ∀ i = 1, . . . K. (2.3)

Despite being used in a wide list of applications, the K-Means algorithm has
a few cons. Some of the most important drawbacks are listed below:

• As many clustering methods, the K-Means algorithm assumes that the num-
ber of clusters K in the dataset is known. Obviously, it is not necessarily true
in real-world applications;

• As an iterative technique, the K-Means algorithm is especially sensitive to
initial starting conditions (initial clusters);

• The K-Means algorithm converges finitely to a local minimum. The running
of the algorithm defines a deterministic mapping from the initial solution to
the final one. Although there is no guarantee of achieving a global minimum,
at least the convergence of the algorithm is ensured.

30 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

K-Medoids

The K-Medoids algorithm is used to find medoids in a cluster which is its centre
located point. K-Medoids is more robust than K-Means because in K-Medoids
the aim is to minimize the sum of dissimilarities of data, according to a fixed
dissimilarity measure, whereas K-Means uses sum of squared Euclidean distances
to look for similarities of data. This distance metric reduces noise and outliers.

In general K-Medoids algorithm is used to reduce the drawbacks of K-Means,
since it is based on medoids instead of centroids. For each cluster, the medoids is
its the data point which is most centrally located. The main difference between
centroids and medoids is that the first one are imaginary data points, which has
as components the mean of those of the data points within the same group. On
the other hand, the medoids are real data points. Because of this distinction, K-
Medoids doesn’t suffer so much from the presence of outliers. In fact it can happen
that adding a data point to a cluster, no matter how much it is different from
the others, the previous centroid doesn’t change. The pseudo-code algorithm is
reported in algorithm 2. At the beginning, medoids are selected randomly from the
n data to form the K cluster centers. Then the other remaining data are assigned
to the closest medoid, creating clusters based on the measure of dissimilarity. After
that, we have to process all the data of each cluster to find new medoids computing
the total distance between each point and all the others. The new medoid is the one
which minimizes that total distance. After finding the new centers let’s reallocate
all the data to the clusters. The location of medoids changes during each iteration.
When they stop changing, the result is achieved and the clusters C1, . . . , CK are
formed.

Silhouette Analysis

Before applying clustering techniques, we need to determine the best value of K,
which is the number of clusters. For this approach the most used method is the
silhouette analysis.

Silhouette analysis can be used to study the separation distance between the
resulting clusters, and the Silhouette score takes values in a range of [−1, 1]. Silhou-

2.2. CAN PARAMETERS ANALYSIS 31

input : Number of clusters K and data-points {x1, . . . , xn}.
output: Clusters C1, . . . , CK .
Calculate the distance between every pair of all objects based on the
chosen dissimilarity measure (d);
Select K points as the initial medoids;
while the centroids don’t change do

Find a new medoid of each cluster, which is the object minimizing
the total distance to other objects in its cluster;
Update the current medoid in each cluster by replacing with the new
medoid;
Assign each object to the nearest medoid and obtain the cluster
result;

end
return Clusters C1, . . . , CK .

Algorithm 2: K-Medoids algorithm pseudo-code.

ette coefficients near +1 indicate that the sample is far away from the neighbouring
clusters and so that the partition is very accurate, while values close to 0 indicates
that the sample is on, or very close to, the decision boundary between two neigh-
bouring clusters. Finally, negative values indicate that those samples might have
been assigned to the wrong cluster.

After that data are grouped via K-Means or K-Medoids into K clusters, for
each point xi, let a(i) be the average distance between xi and all other data within
the same cluster. We can interpret a(i) as a measure of how well xi is assigned to
its cluster (the smaller the value, the better the assignment). We then define the
average dissimilarity of point xi to a cluster C as the average of the distance from
xi to all points in C.

Let b(i) be the smallest average distance of xi to all points in any other cluster,
of which xi is not a member. The cluster with this smallest average dissimilarity
is said to be the “neighbouring cluster” of xi because it is the next best fit cluster
for that point. So it is possible to define a silhouette as:

s(i) = b(i)− a(i)
max{a(i), b(i)} . (2.4)

The average s(i) over all points of a cluster is a measure of how tightly grouped

32 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

all the points in the cluster are. Thus the average s(i) over all data of the entire
dataset is a measure of how appropriately the data have been clustered.

2.2.4 Unsupervised results

Because of the reasons explained above, the results we will take care about con-
cern the K-Medoids clustering with Dynamic Time Warping as measure of simi-
larity/dissimilarity. Obviously, the dataset consists in n data points {x1, . . . , xn}
where each one represents all the CAN messages received in a precise timestamp,
one for each SPN. But what we want to group are not the basic data points. Since
each point has a label, which indicates what’s the related vehicle, it’s possible to
consider macro data points where each observation corresponds to one unit. In
doing it, every points are composted by many CAN messages, so that they are
properly multidimensional time series (3).
Basically, the task is to cluster units having similar CAN value behaviours. In order
to build those groups, we can compare time series through the DTW distance. The
first step is to arrange distances into a matrix, in order to speed up the K-Medoids
algorithm, as reported in the first part of 2.1.

1 di s tanceMatr ix = [[0 for x in range (l en (df))]
2 for y in range (l en (df))]
3

4 for i in range (0 , l en (df)) :
5 for j in range (i +1, l en (df)) :
6 di s tanceMatr ix [i] [j] ,_ = fastdtw (df [i] ,
7 df [j] , d i s t = euc l i d ean)
8 di s tanceMatr ix [j] [i] = di s tanceMatr ix [i] [j]
9

10 for n_c lus te r s in range (2 , 1 0) :
11 model = KMedoids (n_clusters , d i s tanceMatr ix)
12 cente r s , members , cos t s , tot_cost , dist_mat =
13 model . f i t (df , verbose= False)
14 s co r e = s i l h ou e t t e_s co r e (distanceMatr ix , members ,
15 metr ic="precomputed ")

Listing 2.1: Distance Matrix and Silhouette Analysis in Python

2.2. CAN PARAMETERS ANALYSIS 33

Successively, by comparing the Silhouette scores we could find out how many
clusters to create. Applying the algorithm reported in the second part of the code
in 2.1, we obtain as a result the table 2.4. Since the best Silhouette score is reached
for K = 2 and its value is close to 0.5, it means that partitioning all the 22 units
in just two groups might be a right clustering.

Figure 2.4: Table reported the Silhouette score for each value of K.

Finally, the last step is to apply K-Medoids with K = 2 and look at the results.
The output vector of size 22, as the number of vehicles, containing for each unit
its cluster label is

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0].

The output has to be interpreted as follow: the first vehicle in the unit list belongs
to the group number 0, together with the second and the third; the fourth unit is
labeled with 1, so that it forms a group on its own; finally, the last 18 units are in
the same partition as the first three. It’s quite strange that every vehicles is put
inside the same cluster but the fourth one. It means that this unit has a totally
different behaviour, in the sense of sequenciality of CAN values, with respect to
the others. In conclusion, for the rest of the analysis we will consider, if we need to,
that unit as a separate individual group, by creating for it a different mathematical
model.

34 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

2.3 Diagnostic message 1 (DM1) analysis

Techniques for predictive maintenance are designed to help determine the condi-
tions of active and correct performing vehicles in order to estimate when mainte-
nance should be performed. This approach provides cost savings over routine or
time-based preventive maintenance, because tasks are performed only when war-
ranted. The main promise of predictive maintenance is to prevent unexpected unit
errors. By knowing which part of the vehicle needs maintenance, the work can be
better planned and almost all the “unplanned stops” are transformed to shorter
and fewer “planned stops”. Other potential advantages include increased vehicle
lifetime and fewer accidents with negative impact on them.

2.3.1 What is a Diagnostic Message 1

In this work the way we understand errors is through the active diagnostic messages
(SAE J1939 protocol, see [HPL02]), which are sent by the vehicles when a problem
occurs. Of course the range of problems we deal with might be so wide, passing from
a simple and shallow error of some not useful parts to a deep fault of the engine
work. Our main issue concerns the interpretability of those DM1s. Each DM1 is
completely identified by the Diagnostic Trouble Code (DTC), which includes the
Suspect Parameter Number (SPN) and the Failure Mode Identifier (FMI). So,
the message is codified and represented by these two parts. The first number,
the SPN, is assigned to each parameter of a parameter group or component. Of
course, it is used for diagnostic purpose and its function is to report and identify
abnormal operation of a Controller Application (CA). The second number, the
FMI, indicates why that parameter is abnormal and in which sense (too low, too
high, ecc. . .). In this sense, the basic analysis has the aim to find out whether the
situation connected to the DM1 has to be treated as relevant or might be skipped.
Since the meaning of each DM1 is unknown for us, the decision has to come from
the knowledge acquired through the data.

When a failure is captured, the related DM1 is sent by the unit device to
the remote server. So one new line is written in the dataset, composed of the

2.3. DIAGNOSTIC MESSAGE 1 (DM1) ANALYSIS 35

timestamp, the related couple SPN-FMI which indicates in a unique way what is
the considered DM1, and a few other more technical informations. This line means
that in this exact timestamp the DM1 starts. You can imagine as if an indicator
lamp turn on while you are driving your car. Then we have two case for the next
timestamp:

• If an other DM1 (or more than one) is captured, then the dataframe will have
one new line for each still active DM1. It means that if we have for example
three active DM1s and then an other problem occurs, four new lines having
the same timestamp but different SPN-FMI will be written in the dataframe.

• If a DM1 is solved by maintenance, then two cases more are possible:

– if there are still active DM1s, one line per active DM1 will be written
in the dataset (but the solved DM1).

– if no other DM1s are still active, then one new line containing
SPN = 0 and FMI = 0 meaning “no still working DM1s” is reported.

This convention has to be kept in mind for the next part regarding DM1 lifetime.
On the other hand, once our DM1 dataset will be created, we won’t use this
convention anymore because for each DM1 we will have a label indicating how it
disappeared and how long does it take to be solved, if it is.
The next step is related to the creation of the lifetime dataframe through an
accurate DM1 analysis.

2.3.2 DM1 data exploration: co-occurrence analysis

In this section we are going to explore the dataframe containing DM1 messages
and for each DM1 we will study if any other message occurs frequently in the same
moment.

At the beginning, the most relevant aspect regards the numerousness of obser-
vations. In fact, as we deal with rare and sparse events, it could be normal that
a lot of DM1s occur just few times in each vehicle or even that they have never
appeared yet. So, for this aspect, the final choice of the right DM1 to build the

36 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

model on it has to involve DM1s with at least 30-40 observations (summing up
the amount per vehicle). Then, an other symptomatic aspect is the correlation
between one DM1 occurrence and the others. It means that the more DM1s oc-
cur at the same time, the deeper might be the fault of the unit. In this way, the
analysis is directed to understand if couples of DM1s appear frequently together,
in the sense that the number of times they are sent simultaneously respect to the
number of times they appear is greater than a fixed threshold. Since we prefer a
strong selection, the threshold is put at 0.75 and we consider only those DM1s
which occur at least 30 times. The results are listed in the table 2.5.

Figure 2.5: Table reported the amount of observations per couple of DM1 occurring
at the same timestamp.

It illustrates some useful informations about recurrent pairs or, more in general,
groups of DM1s. In fact, visualizing DM1s as points in a graph (see Figure 2.6)
and the couple as the relationship, you should note that there are many loops
inside the graph. So, it means more than two DM1s occur together many times.
As a result, we conclude that:

2.3. DIAGNOSTIC MESSAGE 1 (DM1) ANALYSIS 37

524016− 2 523803− 9 523939− 9

523867− 12 3224− 9 524029− 2

Figure 2.6: Graph showing the loop within the group of 6 DM1s. There is one
exception related to nodes 524016− 2 and 523867− 12 which are not connected.

• DM1s “65702-2” and “131238-2” are broadcast by six different units and they
appear almost surely together;

• There is a long cycle of DM1, and that means all the members of the couples
belong to a unique group of recurrent DM1. This group is composted of:
“523867-12”, “523803-9”, “3224-9”, “524029-2”, “523939-9” and “524016-2”;
the limit is that only one unit is involved;

• Three different DM1s are always sent together, with respect to the threshold,
by a variety of 10 units: “65717-2”, “131252-2” and “65736-3”.

2.3.3 DM1 data exploration: lifetime analysis

In this section we are going to figure out the lifetime of each type of DM1. Some
statistics will be computed about the engine start and stop cycles, and the time
distance between DM1 messages and the corresponding timestamp of the engine

38 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

off. Furthermore, we are going to light up some very relevant considerations con-
cerning the number of not solved messages and their lifetimes. We will make a clear
division between those DM1s which are going to be recurrent in the next engine
on/off cycle and those which are probably going to be solved during the off pe-
riod of the unit. We’ll call these two category as “persistent DM1s” and “resolved
DM1s”.

To have a better scenario, currently we should create a dataframe where each
row represents a single couple of SPN-FMI with its duration, computed as the
difference between the “death” timestamp (when it’s resolved) and the “birth”
timestamp (when it appears). In order to achieve that task, it seems to be nec-
essary to look for a proper definition of “end” for each DM1. So, the question is:
how can we compute the ending timestamp for each DM1 message? After careful
considerations, we have summed up that all the DM1s end within three different
cases. Then, for each one of these cases, we put as the ending timestamp

• the next timestamp, if in the following timestamp the same DM1 is not sent
anymore by the unit;

• the next timestamp, if in the following timestamp just one DM1 is sent and
it contains SPN = 0 and FMI = 0;

• the engine off timestamp, if the engine is turning off before one of the previous
two situation happens.

So, in the first case it’s sufficient to use the next timestamp as the end of the
DM1, whereas in the second case we’ll take the “0-0” timestamp and in the last
case the engine off timestamp. Then computing the lifetime of each DM1 is very
easy (Figure 2.7).

After having constructed the dataframe reporting for each DM1 message its
lifetime, we should filter it in order not to consider multiple times the same DM1:
every time that one new DM1 appears, it will be reported together with the entire
list of active DM1s. So, if a preceding active message persists, a new row will
be printed inside the dataframe even though the observation refers to the same
DM1 as the previous row. Hence, engine on/off cycle by engine on/off cycle we

2.3. DIAGNOSTIC MESSAGE 1 (DM1) ANALYSIS 39

Figure 2.7: For each TDC (couple of SPN and FMI) the graph shows its lifetime,
together with the number of records and how many units broadcast that DM1.

40 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

have to select only those DM1s which show the maximum total seconds value or
the minimum activation timestamp. Obviously, we must group data by the engine
off timestamp and, of course, by DM1. Finally, it remains much less rows in our
dataframe and it is ready to be examined.

Currently we are ignoring if a DM1, emerged during one engine on/off cycle
and not solved before turning off the unit, is going to persist during the next
cycle. Could the vehicle be repaired during the engine off period? To answer this
question we should introduce two new support dataframes to make the analysis.
It’s sure that, in case of positive response to the question above, we’ll obtain a
situation where the next on/off cycle will not contain that DM1 because it should
be disappeared during the time gap between the previous engine off and the next
engine on timestamp. So, the first partition is between resolved DM1 and persistent
DM1. A DM1 is labelled as resolved if it occurs during an engine on/off cycle, it
doesn’t disappear before the engine is turned off and it doesn’t occur again in
the following engine on/off cycle. To be precise, we’d like to say that the following
engine on/off is not the exact next one in time but we look for the first “long” cycle
in the next 12 hours. In order to avoid to consider simple and fast trials of turning
on/off the engine, where even if there was a DM1 it couldn’t have enough time to
occur again, we search for the first cycle of at least 30 minutes in the following 12
hours and use it as parameter to understand if the DM1 is solved for real. If there
aren’t long cycle, then we use the real next one. Then, it’s quit natural to label
those DM1 which don’t belong to the solved group, but at the same time they’re
continuing to be active after the engine turning off as persistent. It means that we
can’t say that a real maintenance is done in the meanwhile and so, we suppose that
the related problem persists over time. Finally we make an other division among
the DM1s in the resolved group, based on the way they are solved. Summing up,
a DM1 is labelled as:

• Resolved, if it’s not going to appear again in the next timestamp;

• Resolved off, if it’s active before turning the engine off and in the first 30
minutes of the next engine on/off cycle it will not be captured again;

2.3. DIAGNOSTIC MESSAGE 1 (DM1) ANALYSIS 41

• Resolved by 0-0, if in the next timestamp the message contains SPN = 0,
FMI = 0;

• Persistent, if it’s active before turning the engine off and in the first 30
minutes of the next engine on/off cycle it will be reported again.

Figure 2.8: Count of DM1s class by class based on the ending reason.

In figure 2.8 it is shown the amount of DM1s per category, based on their
ending. Since most of the times one DM1 per period occurs, the most crowd class
is the resolved 0-0 one. In fact whenever a DM1 is resolved, if it is the only active
one, there appear a line with DTC 0-0.

After an accurate analysis of the results and a comparison with a domain
expert, the choice of which is the most worthable DM1 has to be taken. Since we
found out of two very interesting cases of relevant DM1s, we decided to use both
them separately.

The first choice is strictly related to the future results. Thanks to a domain
expert of Storti S.p.A., we have identified a DM1 related to the engine oil pressure
and in the CAN dataset it is present the strictly connected parameter about the
same measure. In this case we hope for a strong dependence between the parameter
and the DM1. It is the DM1 9939-31 which corresponds to the low engine oil
pressure.

42 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

The second choice, according to the table 2.5, regards those three different
DM1s that occur always together. It is a trial to see if an unknown DM1 could be
predicted by using all or someone of the available SPNs. Two reasons make us opt
for the choice of these 3 DM1s: for first, as we have already said, three distinct
problem may mean a more influent fault of the vehicle; secondly, there are involved
10 units and this amount is substantially relevant as we deal with more various
sequences (depending on the unit).

2.4 Creation of the predictive dataset and data
cleaning

Selected the worthable DM1, we have to compose together both the two dataset
containing CAN messages and DM1 messages. The creation of the right dataset
is very essential to reach the prediction task, since the response variable should
be expressed as well as possible. We add two columns in the dataframe of CAN
messages. The first one is called “DM1” and the elements are booleans. A true value
means that the line, which contains the received CAN message together with the
two timestamps where it has been computed, has a non empty intersection with
the interval of the DM1 lifetime. The false, instead, indicates that it is a message
in which no problem has arisen. The second column, called “next_dm1_ts_on”
contains the first next timestamp in which the DM1 appears. It is particularly
useful to know what’s the temporal distance between this CAN parameter and the
next time the DM1 appears.

Then, the next step concerns how to arrange the rows and columns of the
dataframe. A natural choice is to create a new column for each SPN using the times-
tamps of the CAN messages to identify each row. In this way the new dataframe
will have about from 29 to 40 columns, of which the first 8 columns are from
the original dataset and concern unit name and timestamps, whereas the others
represents the SPNs involved in the analysis.

The following part has an important role and is about the missing data analysis.
It’s important to look at eventual missing data, reported in our structure as “NaN”

2.4. PREDICTIVE DATASET AND DATA CLEANING 43

values. In a theoretic system, in every timestamp the device should send the CAN
messages all together, one for each configured SPN, in the sense that each row
of our dataframe should not have “NaN” values, since (fixed a timestamp) just
two cases would be admitted: or every SPN has a CAN value or no SPNs have it.
However in the real world, the situation is not as clean as we would want: devices
could have many problems connected with the network or the environment and,
as a result, messages could have been sent in different moments. By exploring
data, it’s easy to realize that often a part of the CAN messages are sent during
a timestamp and the other one after one or two seconds. Thankfully there is no
overposition of SPNs, in the sense that it doesn’t happen that a CAN is sent once
and then is sent again few second later. So, the ideas is to adjust the rows joining
together the rows where the interval between them is less or equal to three seconds.
The rest of the rows, if any, are dropped if a “NaN” value is hidden inside it.

The last clarification concerns all the messages that don’t have a DM1 in the
future because it’s not happened yet. Basically we have to introduce a sort of
agreement regarding a treatment for those CANs messages which do not lead to a
new DM1 observation. Easily, in this case a false DM1 timestamp is set as default:
“2014-01-01”. This data is surely in the past respect to the CAN timestamp, since
the first timestamp we got is close to the end of 2014. The decision to put a data
in the past is functional for the analysis we will make and it can be used for every
kind of problem.

44 CHAPTER 2. PREDICTIVE-ORIENTED DATASET CONSTRUCTION

Chapter 3

Time Series

For this chapter we take cue from the article [BDC02]. Let’s begin giving the simple
basic definition of stochastic process.

Definition 3.1. A stochastic process is a parametrized collection of random vari-
ables

{Xt}t∈T (3.1)

defined on a probability space (Ω,F ,P) and assuming values in Rn.

An important part of the analysis of a time series is the selection of a suitable
probability model (or class of models) for the data. To allow for the possibly
unpredictable nature of future observations it is natural to suppose that each
observation xt is a realized value of a certain random variable Xt. So, a time series
is a set of observations xt, each one being recorded at a specific time t. A discrete-
time time series, which is the type we are going to use, is one in which the set T of
times at which observations are made is a discrete set, as is the case, for example,
when observations are made at fixed time intervals. Continuous-time time series
are obtained when observations are recorded continuously over some time interval,
e.g., when T = [0, 1].

Remark 1. We will frequently use the term time series to mean both the data and
the stochastic process of which it is a realization. When we talk about the process,
we will use uppercase letters while the lowercase letters stand for the data points.

45

46 CHAPTER 3. TIME SERIES

Definition 3.2. Let {Xt} be a time series with E(X2
t) < ∞. The mean function

of {Xt} is
µX(t) := E(Xt) ∀ t ∈ R. (3.2)

The covariance function of {Xt} is

γX(r, s) := Cov(Xr, Xs) = E [(Xr − µX(r)) (Xs − µX(s))] ∀ r, s ∈ R. (3.3)

Definition 3.3. Let {Xt} be a time series and let FX(xt1+h, . . . , xtn+h) represent
the cumulative distribution function of the unconditional (that is, with no reference
to any particular starting value) joint distribution of {Xt} at times t1+h, . . . , tn+h.
Then, {Xt} is said to be strictly stationary if

FX(xt1+h, . . . , xtn+h) = FX(xt1 , . . . , xtn) ∀h, t1, . . . , tn ∈ R,∀n ∈ N (3.4)

Remark 2. Strict stationarity of a time series of kind {Xt, t = 0,±1, . . . } is
defined by the condition that (X1, . . . , Xn) and (X1+h, . . . , Xn+h) have the same
joint distributions for all integers h and n > 0.

Let’s now introduce a weak concept of stationarity:

Definition 3.4. A time series {Xt} is (weakly) stationary if

• µX(t) is independent of t;

• γX(t+ h, t) is independent of t for each h.

It is easy to check that if {Xt} is strictly stationary and E(X2
t) < ∞ for all

t, then {Xt} is also weakly stationary. Whenever we use the term stationary we
shall mean weakly stationary as in Definition 3.4, unless we specifically indicate
otherwise.

Definition 3.5. Let {Xt} be a stationary time series. The autocovariance function
(ACVF) of {Xt} at lag h is

γX(h) := γX(h, 0) = γX(t+ h, t) = Cov(Xt+h, Xt) ∀ t ∈ R. (3.5)

3.1. SAMPLE AUTOCORRELATION FUNCTION 47

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) := γX(h)
γX(0) = Cor(Xt+h, Xt) ∀ t ∈ R. (3.6)

3.1 Sample Autocorrelation Function

As in most other analyses, in time series it is assumed that the data consist of
a systematic pattern (usually a set of identifiable components) and random noise
(error) which usually makes the pattern difficult to identify. Most time series anal-
ysis techniques involve some form of filtering out noise in order to make the pattern
more significant.

Although we have just seen how it is defined the autocorrelation function for
time series, in practical problems we start with observed data {x1, x2, . . . , xn}. To
assess the kind of dependence in the data and to choose the right model for the
data, one of the most important tools we could use is the sample autocorrelation
function (sample ACF). If we believe that the data are realized values of a station-
ary time series {Xt}, then the sample ACF might be an accurate estimate of the
ACF of {Xt}. The following definitions are natural consequence of the definitions
for the autocovariance and autocorrelation functions given earlier for stationary
time series.

Definition 3.6. Let x1, . . . , xn be observations of a time series. The sample mean
of x1, . . . , xn is

x̄ := 1
n

nØ
t=1

xt. (3.7)

The sample autocovariance function is

γ̂(h) := 1
n

n−|h|Ø
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n. (3.8)

The sample autocorrelation function is

ρ̂(h) := γ̂(h)
γ̂(0) , −n < h < n. (3.9)

48 CHAPTER 3. TIME SERIES

Remark 3. The sample autocovariance and autocorrelation functions defined above
can be computed for any data set {x1, . . . , xn} and are not restricted to observa-
tions from a stationary time series. For data containing a trend, |ρ̂(h)| will exhibit
slow decay as h increases. On the other hand, for data with a substantial deter-
ministic periodic component, the value |ρ̂(h)| will exhibit similar behaviour with
the same periodicity. Thus ρ̂(·) can be useful as an indicator of nonstationarity.

Figure 3.1: Examples of trend and seasonality for time series

A lot of time series patterns can be described in terms of three basic classes
of components: trend, seasonality and noise. Since the noise is a stationary time
series, let’s focus on the first two concepts. As it is shown in the example in
Figure 3.1, the first one represents a general systematic linear or (most often)
nonlinear component that changes over time and does not repeat within the time
range captured by our data. It means that trend is the component of increasing or
decreasing of the time series. The second one repeats itself in systematic intervals
over time. It is the component of the time series which corresponds to the pattern
of the trajectory.

Summing up, through the inspection of a graph of the time series, we could
represent the data as a realization of the process called “the classical decomposition
model”

Xt = mt + st + Yt, (3.10)

where mt is a slowly changing function representing the trend component, st is a

3.1. SAMPLE ACF 49

function with known period d referred to the seasonal component and Yt is the
random noise component.

Usually the aim is to estimate and extract the deterministic components mt

and st in the hope that the residual or noise component Yt will turn out to be
a stationary time series. In order to do it, the following two subsections are very
explanatory of what should be done.

3.1.1 Trend Analysis

There are no proven “automatic” techniques to identify trend components in the
time series data; however, as long as the trend is monotonous (consistently in-
creasing or decreasing) that part of data analysis is typically not very difficult. If
the time series data contain considerable error, then the first step in the process
of trend identification is smoothing.

Smoothing always involves some form of local averaging of data such that
the non systematic components of individual observations cancel each other out.
The most common technique is moving average smoothing which replaces each
element of the series by either the simple or weighted average of n surrounding
elements, where n is the width of the smoothing “window”. Basically, it permits us
to reduce the amount of noise present in the time series and to focus on the real
trend. Medians can be an alternative to means. The main advantage of median
as compared to moving average smoothing is that its results are less biased by
outliers (within the smoothing window). Thus, if there are outliers in the data,
median smoothing in general produces smoother or at least more “reliable” curves
than moving average based on the same window width. The main disadvantage
of median smoothing is that in the absence of clear outliers it may produce more
“wavy” curves than moving average and it does not allow for weighting.

Moving average is essentially non-parametric methods for trend (or signal)
estimation and not for model building. Let’s assume that the time series has no
seasonal components. Then, the model becomes the following:

Xt = mt + Yt, t = 1, . . . , n (3.11)

50 CHAPTER 3. TIME SERIES

with E(Yt) = 0.
Now, let q be a non-negative integer and consider the two-sided moving average

Wt = 1
2q + 1

qØ
j=−q

Xt−j (3.12)

of the process {Xt} defined above (3.11). Then, for q + 1 ≤ t ≤ n− q,

Wt = 1
2q + 1

qØ
j=−q

mt−j + 1
2q + 1

qØ
j=−q

Yt−j ≈ mt, (3.13)

assuming that mt is approximately linear in the interval [t− q, t+ q] and that the
average of the error component is sufficiently close to zero. So, as a result, the
moving average makes us achieve the goal to estimate the trend component,

m̂t = 1
2q + 1

qØ
j=−q

Xt−j, q + 1 ≤ t ≤ n− q. (3.14)

The choice of the interval for t values is obliged by the fact that we don’t know
what’s the value of Xt outside the interval [0, n].

In the relatively less common cases (in time series data), when the measure-
ment error is very large, other methods should be used. In fact there are many
methods which filter out the noise and convert the data into a smooth curve that
is relatively unbiased by outliers. One example could be the “Trend Elimination
by Differencing” which consists to eliminate the trend by differencing and then to
find an appropriate stationary model for the differenced series. Since it is not so
useful for our problem, that doesn’t concern the time series value predictions, we
won’t go deeper inside that aspect.

3.1.2 Analysis of seasonality

Seasonal dependency (seasonality) is the other general component of the time
series pattern. It is formally defined as correlational dependency of order k between
each i-th element of the series and the (i − k)-th element and measured by the

3.2. SPN BY SPN AUTOCORRELATION ANALYSIS 51

autocorrelation. The autocorrelation is the measure of a correlation between the
two terms. Usually the value of k is called the lag. If the measurement error is
not too large, seasonality can be visually identified in the series as a pattern that
repeats every k elements.

A way to examine seasonal patterns of time series is the correlograms. The
correlogram (autocorrelogram) displays in a graph and numerically the autocorre-
lation function (ACF). It means that in the graph are printed the correlation coef-
ficients and their standard errors for consecutive lags in a specified range. Ranges
of the standard errors for each lag are usually marked in correlograms but typically
the size of autocorrelation is more interesting than its reliability because we are
usually interested only in very strong, and so highly significant, autocorrelations.

While examining correlograms, we should keep in mind that autocorrelations
for consecutive lags are generally dependent. Let’s make a simple example. If the
first element is closely related to the second one, and the second one to the third
one, then the first element must also be somewhat related to the third, etc. Obvi-
ously what could change is the strength of the correlation. In fact it is true what we
said before, but we have to remind even that weak correlations are not interesting
for the problem. So, from this relation it follows that the pattern of serial de-
pendencies can change considerably after removing the first order autocorrelation,
that means after differencing the series with a lag of 1.

3.2 SPN by SPN autocorrelation analysis

Since we have a multidimensional problem, let’s first give the right definition.

Definition 3.7. A p-dimensional multivariate time series of length n

X = {X(tl) ∈ Rp; l = 1, . . . , n}

is a sequence of data points such that:

• tl < tlÍ for l < lÍ;

• tl ∈ T = [a, b], ∀ l = 1, . . . , n;

52 CHAPTER 3. TIME SERIES

• X(t) ∈ Rp, ∀ t ∈ T .

In particular, each dimension corresponds to one SPN. Actually, we are going
to study only few SPNs, because looking at all the dataframe, it seems that mostly
of those sequences have a similar behaviour in term of autocorrelation and trend.
So, behaviours can be grouped in four families represented by SPN 100, 247, 30066,
30104, as reported in Figure 3.2 where the 4 graphs are shown.

The first step in the analysis of any time series is to plot the data. If there
are any apparent discontinuities in the series, such as a sudden change of level,
it may be advisable to analyze the series by first breaking it into homogeneous
segments. If there are outlying observations, they should be studied carefully to
check whether there is any justification for discarding them (as for example if an
observation has been incorrectly recorded). However, this part of data cleaning has
already been done in the previous chapter, so that all the points present in the
graph have a reason to be inside the dataframe.

The first type of group is represented by SPN 100. It doesn’t have any sort
of trend or seasonality. However, it’s relevant that there are two different zones
of values: most of values fall inside the gaps [250, 550] and a smaller group inside
[100, 250]. This situation is very significant for the problem we are dealing with
because vehicles perceive two states: a unit can have a normal parameter behaviour
when its data fall into a normal interval, like in this case the most crowed of the
two, and it may have a less dense zone meaning a sort of anomaly values. The
choice of SPN 100 is not a random choice, since it is the parameter connected with
the DM1 we are going to use for the model.

About the second time series, it looks like to have a very smooth and linear
trend. This is motivated by the nature of that parameter: it represents the engine
hours, in the sense that it measures the amount of hours when the vehicle is active.
It is an incremental value, so that the correlation must be very strong. So, it’s
logical that its trend is increasing with the passage of time and, of course, between
intervals of the same time length the increment results to be equal. In this case
the trend could be eliminated just using the “Trend Elimination by Differencing”
which is basically the use of the difference with the previous value instead of the

3.2. SPN BY SPN AUTOCORRELATION ANALYSIS 53

Figure 3.2: Time series plot using the first 10.000 values for 4 different represen-
tative SPNs: 100, 247, 30066, 30104.

value itself. But, since it is a non significant feature, we prefer to delete it rather
than falling trivially in overfitting.

The third group contains a categorical variable taking the values of 0 and
1. Usually is too hard to identify trends or seasonalities within binary variables,
unless the categories represent very different situations. So, it means that we can
skip this part and ignore eventual weak patterns.

The last group is represented by SPN 30104 which is related to the level of Urea
into the tank. From the graph it is immediate to recognize a seasonality inside the
data: we have a lot of cycles where the SPN begins at a high level and finishes close
to 20 or 30. The interpretation is quite simple: the first observation is taken when
the tank is full and then, going on with the work, the container is gradually going
to empty. So we can expect that the ACF will be with many peaks and maybe not
so high for long lags.

54 CHAPTER 3. TIME SERIES

Figure 3.3: Autocorrelation function using the first 10.000 values for 4 different
representative SPNs: 100, 247, 30066, 30104.

In the Figure 3.3 it is shown for each representative SPN its autocorrelation
function, taking only the first 10.000 observation of one unit as significant sample.
The first and third SPN have very low autocorrelation, meaning that the time series
don’t have long strong correlations. The second one, as we said before, has a very
interesting pattern that confirms us the trivial dependence among the consecutive
values. Even the last SPN has a notable autocorrelation which persists even for
long lags. On the other hand, ACF for SPN 30104 takes values within a gap of
[−0.2, 0.2] which is not so high as we could have intended.

This chapter has to be considered as a preliminary analysis for the future
creation of the model. It is useful just to figure out the general behaviour of time
series we are going to use. The informations we take out of it are the following:

• SPN 247 has a trivial trend and it doesn’t add informations, so it can be
ignored.

3.2. SPN BY SPN AUTOCORRELATION ANALYSIS 55

• We have a group of SPN with a strong seasonality, like SPN 30104, which is
due to the cycle of a unit work.

• Quantitative variables have no strong trends of seasonalities.

• There is a group of SPNs represented by SPN 100 with two or more dense
zones of values. There could be possible to detect anomalies inside them
looking for values in one of those intervals.

• Many SPN parameters have low autocorrelation with wide lags.

In the next chapter we are going to select the interesting SPNs, which are useful
for real into the analysis and for the model we will build.

56 CHAPTER 3. TIME SERIES

Chapter 4

Feature Selection for
High-Dimensional Data

4.1 Introduction to Feature Selection

Feature selection has the role to identify a subset of original features from a given
dataset while removing irrelevant and/or redundant features. It has the tasks to
improve the performance of the predictors, to provide faster and more efficient
predictors, and to provide a better knowledge of the underlying process that gen-
erated data. In order to have a better model, we need to include high predictive
capability features and exclude low ones from the original group. For this reason,
the methods choose a subset of the original features to be used for the entire pre-
dictive work. Hence, only the data generated from those selected features need
to be collected in future, ignoring all the other ones which are not important for
the analysis. Time series data contains temporal ordering, which makes its feature
selection use different methods from the normal approach. A time series is called
a multivariate time series when the number of features is equal to, or greater than
2. A multivariate time series is naturally arranged in an n×m matrix, where n is
the number of observations and m is the number of variables, for example in our
case, CAN parameters.

Data cleaning is an important part of the DM1 prediction process in order to

57

58 CHAPTER 4. FEATURE SELECTION

eliminate useless variables, such as CAN parameters that have nothing to do with
the kind of error we would want to predict. Since most of the variables are unknown,
as most of the diagnostic messages, discovering a new significant subset of feature
might be important even for practical interpretability reasons. For example, if the
method selects only m0 variables concerning the engine oil, it lead us to think that
the chosen DM1 might be related to the engine oil.

For this part it is essential to make a net division between CAN messages
close to the DM1 occurrences and CAN messages far from them, as it is done in
the article [Pry14]. In fact, we want to figure out if there is a, probably weak,
dependence between the first group of CAN parameters (close to DM1s) and the
second one (far from them). In order to do it, we put a label to each CAN message
adding a column into our dataframe. The label identifies the nature of the CAN:
fixed a time gap, for example from the DM1 occurrence until 30 hours before it
happens (going backward), all the rows of our dataframe, falling into this time
gap, are labeled as “Faulty”. It means that they are changing because of the use
of the vehicle and they are leading the unit towards a DM1 signal. The remaining
messages are labeled as “Normal”, since they are far from the DM1 and so they
represent a normal behaviour of the unit. Comparing these two groups for each
chosen time label, we should figure the potential dependence out. In practice, we
add columns into the dataset called “x.0h”, where x is an integer multiple of 3
from 3 to 48 (16 new columns).

Before exploring more accurately all the methods for feature selection, let’s
have a look at the Figure 4.1. In the violin plot a subset of features corresponding
to all the quantitative (real) SPNs is shown. Violin plots are similar to box plots,
except that they also show the probability density of the data at different values,
smoothed by a kernel density estimator. At the first sight we immediately see in
graph 4.1 that only one feature really changes its distribution between the two
classes, while the others may have just a little, or maybe even not significant,
mutation. So, as a result, we could expect that the subset of feature will contain
only SPN 100.

In the next sections we are going to discuss three different canonical methods

4.1. INTRODUCTION TO FEATURE SELECTION 59

Figure 4.1: Violin plot representing for each feature its distribution inside the two
classes.

60 CHAPTER 4. FEATURE SELECTION

for feature selection and one more uncommon, based on the DTW distance.

4.2 Entropy and Mutual Information

The concept of “information” is too wide to be summarised completely by a unique,
brief and precise definition. However, fixed any probability distribution, we define
for it a quantity called entropy, which has many properties that agree with the in-
tuitive common notion of measure of information, in the sense that it corresponds
to the general idea we should have. This notion is then extended to define mutual
information, which is a measure of the amount of information that a random vari-
able X contains about another one Y . Then we can see entropy as an estimate
of the self-information of a random variable. Finally, mutual information is a spe-
cial case of a more general quantity called relative entropy, which is defined as a
measure of the distance between two probability distributions [CT91].

4.2.1 Entropy

Firstly let’s define the concept of entropy, which is a measure of uncertainty of a
random variable.

Definition 4.1. Let X be a discrete random variable defined on an alphabet X ,
with probability distribution function pX(x) = P{X = x} for any x ∈ X . The
entropy H(X) of X is defined as

H(X) := −
Ø
x∈ X

pX(x) log pX(x), (4.1)

with the assumption that 0 log 0 = 0 (by continuity).

So, the last assumption is clearly important because it means that adding zero
probability terms don’t change the total entropy.

Remark 4. Observe that entropy is a functional of the distribution of X, and it
doesn’t depend on the proper values of X, but only on its probabilities.

4.2. ENTROPY AND MUTUAL INFORMATION 61

Now, we derive the immediate consequences of the definition. For any random
variable X,

H(X) ≥ 0. (4.2)

In fact, from 0 ≤ pX(x) ≤ 1, it follows that − log pX(x) ≥ 0 and so the inequality
above.

Remark 5. Entropy might changed from one base to another one by multiplying
by the appropriate factor.

To prove it, assume that H(X) is related to the log base a. Then

Hb(X) = (logb a)Ha(X), (4.3)

since logb p = (logb a) · (loga p) .

4.2.2 Joint Entropy and Conditional Entropy

In information theory, the conditional entropy quantifies the amount of information
needed to describe the outcome of a random variable Y given that the value of
another random variable X is known. Before talking about conditional entropy,
we have to extend the definition of entropy to more variables.

Definition 4.2. Let X and Y be two discrete random variables on two alphabets
X ,Y and let pX(x), pY (y) be the respective probability density functions. The
joint entropy H(X, Y) of the pair (X, Y) with a joint distribution pX,Y (x, y) is
defined as

H(X, Y) := −
Ø
x∈ X

Ø
y ∈ Y

pX,Y (x, y) log pX,Y (x, y). (4.4)

For the sake of simplicity, when the notation is not misleading, we indicate
each distribution with p... instead of p...(. . .).
Then we can also define the conditional entropy of Y given X as the expectation of
the entropy of the conditional distribution (pY |X), averaged over the conditioning
random variable X.

62 CHAPTER 4. FEATURE SELECTION

Definition 4.3. Let X and Y be two discrete random variables on two alphabets
X ,Y and (X, Y) ∼ pX,Y , Y |X ∼ pY |X . Then the conditional entropy H(Y |X) is
defined as

H(Y |X) :=
Ø
x∈ X

pXH(Y |X = x) = −
Ø
x∈ X

Ø
y ∈ Y

pX,Y log pY |X . (4.5)

Remark 6. Note that H(Y |X) Ó= H(X|Y). However,

H(X)−H(X|Y) = H(Y)−H(Y |X), (4.6)

is a property that we will discuss and prove later.

The conditional entropy and the joint entropy are connected through the chain
rule formula.

Theorem 4.1 (Chain rule). Let X, Y be as in definition 4.3. Then,

H(X, Y) = H(X) +H(Y |X). (4.7)

4.2.3 Relative Entropy and Mutual Information

The relative entropy is a measure of the distance between two distributions. It is
represented by the symbol D(p||q) and it is a measure of the inefficiency obtained
by assuming that the true distribution is q when the real true distribution is p. For
example, if we knew the true distribution of the random variable, then we could
build an approximate distribution using a mathematical technique, and finally we
could measure the distance between the real and the built distributions. In this case
the measure could be computed using the relative entropy as score of goodness.

Definition 4.4. Let p and q be two different approximations of the probabil-
ity distribution function of X, discrete random variable. The relative entropy or
Kullback - Leibler distance between p and q is defined as

D(p || q) :=
Ø
x∈ X

p(x) · log
A
p(x)
q(x)

B
= Ep

C
log

A
p(X)
q(X)

BD
(4.8)

4.2. ENTROPY AND MUTUAL INFORMATION 63

Then, we introduce the concept of mutual information. As we said before, it
quantifies the “amount of information” (usually expressed in bits) obtained about
one random variable by observing another one. In a certain sense, it is a measure of
the reduction of the random variable uncertainty due to the knowledge of another,
comparing the distribution of values. For its computation, we should compare the
joint distribution of two random variable with respect to the product of both the
marginal distributions. In fact, as a support of the theoretical concept above, if
two random variables are independent, then the joint distribution is equal to the
product of marginal distributions. So, the more is “far” the joint distribution from
the product, the more one variable explains about the other. But, let’s give the
formal definition of mutual information.

Definition 4.5. Consider two random variables X and Y with a joint probability
density function pX,Y and marginal probability density functions pX and pY . The
mutual information I(X, Y) is the relative entropy between the joint distribution
and the product distribution pX pY , that is

I(X, Y) :=
Ø
x∈ X

Ø
y ∈ Y

pX,Y log
A
pX,Y
pXpY

B
= D(pX,Y || pXpY). (4.9)

Mutual information can be equivalently expressed as

I(X, Y) =
Ø
x,y

pX,Y log
A
pX,Y
pXpY

B

=
Ø
x,y

pX,Y log
A
pX|Y

pX

B

= −
Ø
x,y

pX log pX +
Ø
x,y

pX,Y log pX|Y

= −
Ø
x

pX log pX −
A
−
Ø
x,y

pX,Y log pX|Y

B

= H(X)−H(X|Y),

(4.10)

where pX,Y = pX,Y (x, y), pX|Y = pX|Y (x|y) and pX = pX(x). In addition, for the

64 CHAPTER 4. FEATURE SELECTION

last equality we used the two definitions 4.1 and 4.3. From the result in 4.10 we
can see that the mutual information is the reduction of uncertainty of X due to
Y . As obviously the definition of mutual information shows, since it is symmetric
by changing the role of X with Y , we obtain the same value. So, this is the proof
of property 4.6

H(X)−H(X|Y) = I(X, Y) = I(Y,X) = H(Y)−H(Y |X). (4.11)

Another important property, which explains why we said that the entropy is a
measure of uncertainty of a random variable, is the following. By using the mutual
information and the property 4.10

I(X,X) = H(X)−H(X|X) = H(X), (4.12)

so that the entropy is the measure of how much X explain of itself (it is referred to
as self-information). Let’s summarize the properties we treated above and someone
else less important in a theorem.

Theorem 4.2 (Mutual information and entropy).

I(X, Y) = H(X)−H(X|Y), (4.13)

I(X, Y) = H(Y)−H(Y |X), (4.14)

I(X, Y) = H(X) +H(Y)−H(X, Y), (4.15)

I(X,X) = H(X). (4.16)

A relevant recap of theorem 4.2 is shown in Figure 4.2, where the connections
between all the concepts reported in this chapter are illustrated.

4.2.4 Mutual Information for Feature Selection

After having introduced the theoretical part about mutual information, in this
section we use that concept to make a feature selection of our CAN parameters

4.2. ENTROPY AND MUTUAL INFORMATION 65

H(X|Y) H(Y|X)I(X,Y)

H(X,Y)

H(X) H(Y)

Figure 4.2: Venn diagram showing additive and subtractive relationships about
information measures associated with correlated variables X and Y .

[Mur17]. First of all, we have to highlight that the response variable is the one
which takes the value “Faulty” whether the timestamp of the line falls inside the
fixed time gap, “Normal” otherwise. It can be seen even as a binary variable, where
1 means “Faulty” and 0 stands for “Normal”.

Here we discuss the estimation of mutual information between two discrete-
time time series. Note that mutual information is a deterministic function of the
joint density of the underlying random processes. Therefore, it can be estimated
by first estimating the (local) joint distributions, and then using these densities to
compute mutual information. For this approach it is possible to use a kernel density
estimator for the local densities. On the other hand, the estimation method we use
to solve our problem is based on the K Nearest Neighbours (kNN) algorithm. It is
important to emphasize that when estimating densities or probabilities, commonly
we assume that the underlying process are stationary, ergodic, and smooth.

Let’s consider two random variables X and Y , where X is one SPN at the
time and Y is the response variable. Observing N pairs (Xi, Yi) from the joint
probability density function pX,Y , we are interesting to estimate the MI using the

66 CHAPTER 4. FEATURE SELECTION

formula 4.15
I(X, Y) = H(X) +H(Y)−H(X, Y).

Fixed k ∈ N, the distance between data point we select is the l2-distance. As-
suming a uniform local density in a small environment around each sample (this
assumption implies that the density pX is smooth), we can use the set of distances
among data points to estimate the local distribution. Without falling deeper, since
we assume a local homogeneous density, we can use a ball of radious equal to the
kNN distance and approximate the density within all the points inside the ball. It
means that we use the k−th distance for the approximation. To make it simpler,
we don’t go deeper insider the method used for the approximation, leaving in this
way freedom of choice.
Then, we can estimate, by using the approximated density, the entropy via em-
pirical averaging. So, indicating the estimation of functionals with the hat symbol
(ˆ), it follows that

Î(X, Y) = Ĥ(X) + Ĥ(Y)− Ĥ(X, Y). (4.17)

The negative aspect of this approach is that theoretically we can choose different
k values for estimators, with different kNN distance. Since the estimators are not
coupled, for a finite number of samples the bias can be non-negligible. This method
is exceeded by a more accurate one, which is to modify the estimators of the first
two individual entropy terms such that their correlation with the estimator of the
joint entropy term will be higher, leading to a smaller bias.

Results

So, SPN by SPN we compute the mutual information between the X variable and
the response variable Y . For the kNN distance we select k = 1000. The results
depend on the chosen time label gap and are shown in figure 4.3.

Looking at the picture 4.3, we note that the mutual information is very low,
meaning that there is a general weak dependence between SPNs and DM1 occur-
rences. So, because of these low values, the method we decide to apply doesn’t

4.2. ENTROPY AND MUTUAL INFORMATION 67

Figure 4.3: Heatmap showing for each time label gap (row) the mutual information
of all the SPNs. All the mutual information values in figure are to be intended as
percentage.

68 CHAPTER 4. FEATURE SELECTION

take high scores into account but we put a very low threshold in order not to have
an empty feature set (mutual information score > 0.5%). Mutual score equal to 0
means that the two variables are independent, and our results are very close to 0,
so that it seems quite natural to expect low final statistics by predictive models.
Even the next technique uses an absolute value to quantify the dependence be-
tween each SPN and the response variable. However, the last one considers relative
scores instead of absolute one: in this way we can use a threshold more significant
than before, because all the values are normalized with respect to the others.

4.3. SVM-RFE 69

4.3 Support Vector Machine Recursive Feature
Elimination

4.3.1 Feature ranking with SVM-RFE

Support vector machine recursive feature elimination (SVM-RFE) is an embedded
Feature Selection algorithm [CL11]. It uses criteria connected with the weights of
the coefficients in SVM models to select features, and recursively removes features
that have the smallest weight. There are two different versions of the algorithm:
linear and nonlinear. The second one uses a special kernel strategy and it has
to be used when the optimal decision function is obviously nonlinear. Since it
is a backward elimination method, SVM-RFE has the role to model the poten-
tial dependencies between all the features. Compared to others Feature Selection
methods, this algorithm has 3 peculiarities:

• It is further away from overfitting;

• It uses all the available data;

• It is much faster even if there are a lot of features (when the set of feature
is very large, the gap is higher).

However,there is an issue related to SVM-RFE that makes the method not as
perfect as it seems to be. If a set of the features contains variables highly correlated
to each other, the defined criterion of features selection will be influenced, and their
importance could be underestimated. It means that the correlated features received
smaller weights due to the shared role they have in the classification models. So,
instead of assessing the real contribute of each variable in the model, it penalises
the entire group because of the shared relation. This is a crucial problem, especially
for sensor features that are often correlated. The solution that was found is the
following. When a set of features are removed in one iteration of recursive feature
elimination algorithm, the group could be full of correlated features and they may
be removed all together at the same time. Obviously, there might be two causes of
the elimination: features could be truly irrelevant or the criterion underestimates

70 CHAPTER 4. FEATURE SELECTION

their importance. In both the two cases, we can insert a representative feature of
the entire eliminated set back to the actual feature list in the next step. So, it can
be evaluated again without the influence of all the others.

Now let’s explain how the method works. First of all, we have to keep in mind
that the output of the SVM-RFE is a ranked feature list, where each feature has
the rank based on its importance. Then we can select the most significant feature
using a top-ranked method. The way the features are ranked is totally related to
the SVM algorithm, which is a common method for classification. Its intuition is
to find a hyperplane which separates the data points with the largest margin as
possible. Basically, given a set of training samples {xi, yi} such that xi ∈ Rp and
y ∈ {−1, 1}, for i = 1, . . . , n, the decision function of a linear SVM is

f(x) = w · x+ b, (4.18)

where w represents the weight and it is computed through the training set.

To find the function f , the problem can be reformulated using the Lagrangian
formulation, which introduces the multipliers αi:

LD =
nØ
i=1

αi −
1
2

nØ
i,j=1

αiαjyiyj(xi · xj), (4.19)

where the constraints are

αi ≥ 0 and
nØ
i=1

αiyi = 0. (4.20)

The α values are known as support vectors. After having found the coefficients α,
we can compute the vector of weight w by

w =
nØ
i=1

αiyixi. (4.21)

Finally, the method assign a rank to each feature k which is the square of the k-th
element of w:

rank(k) = w2
k. (4.22)

4.3. SVM-RFE 71

The main meaning of the ranking is the following. Since the SVM creates the best
separator hyperplane, it has one coefficient for each feature. The coefficients of the
equation of the plan represents its orthogonal vector, so that

w =

w1
...
wp

 (4.23)

is orthogonal to all the points belonging to the hyperplane. Then, by computing
the inner product between w and a point, the result explains which is the class
where the data is classified. So, the higher is the component wk the more influent
it is for the classification. As a result, higher wk values means more significant
features.
Iteration by iteration of the recursive feature elimination process, a linear SVM
model is trained on data. At each step, the feature with the smallest ranking value
is removed because it means that it has the weak effect on the dual classification
problem. All the remaining features are used for building a new SVM model in
the following iteration. This process is repeated until all the features are removed.
After removing all the features, we have the order of elimination that leads us to
a general ranking where the score 1 is assigned to the last feature removed, 2 is
for the second to last and so on. Basically, the features are ordered by the order of
removal. The heart of the method is the feeling that the later a feature is removed,
the more important it should be.

4.3.2 SPN ranking based on cross-validated selection

Recursive Feature Elimination would require a specified number of features to
keep, however it is often not known in advance how many features are necessary
for the problem. To find the optimal number of features we use the cross-validation
approach with RFE to score different feature subsets and select just the best
scoring collection of features. As the other Feature Selection methods, we repeat it
for each time label gap, since we want to find a result for each different gap. After

72 CHAPTER 4. FEATURE SELECTION

feature label_time

0 100 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
1 110 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
2 183 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
3 190 12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
4 30000 12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
5 30036 3.0h-6.0h-9.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
6 30054 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
7 30058 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
8 30059 12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
9 30060 12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
10 30064 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
11 30065 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
12 30066 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
13 30067 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
14 30068 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
15 30069 12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
16 30070 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
17 30071 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
18 30072 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
19 30073 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
20 31067 12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h
21 31068 6.0h-12.0h-15.0h-18.0h-21.0h-24.0h-27.0h-30.0h-33.0h

Table 4.1: Table showing for each feature the time labels where it has the rank
1. To make it more readable we stop the times at 33.0h. All the remaining time
labels appear in all the features.

computing the ranking for the SPNs importance for each time label, we select
for each SPN the time labels where it has the rank 1. So, grouping SPN by SPN
and merging all this time labels into a unique string, the results are shown in the
table 4.1.

As we saw with the mutual information scores, even this method perceives a
general weak importance. In fact we see that from time label 12.0h all the features
are ranked as 1. This is due to the fact that the method isn’t able to distinguish the
variables by their importance and so it classifies all of them as the most important
features. This two approach that we have seen until now look for the absolute
importance of each feature within the problem. Since the relation is too weak, the
next method find out the relative importance of each feature, so that we can have
at least a real normalized rank.

4.4. FEATURE IMPORTANCE BY ERT 73

4.4 Feature Importance by Extremely Random-
ized Trees

We start explaining how the method called Extremely Randomized Trees works
and then we will apply it into our problem of feature selection. It basically consists
on randomizing strongly both attribute and cut-point choices while splitting a tree
node. In the extreme case, the method randomly picks a single attribute and cut-
point at each node, and hence builds totally randomized trees whose structures
are independent of the target variable values of the learning sample. In Figure 4.4
it is shown an example of tree with maximum depth equal to 3.

100 â�¤ 318.0

entropy = 0.13

samples = 77261

value = [75870, 1391]

class = Normal

190 â�¤ 1280.25

entropy = 0.401

samples = 16942

value = [15593, 1349]

class = Normal

True

100 â�¤ 378.0

entropy = 0.008

samples = 60319

value = [60277, 42]

class = Normal

False

100 â�¤ 182.0

entropy = 0.165

samples = 14272

value = [13926, 346]

class = Normal

100 â�¤ 266.0

entropy = 0.955

samples = 2670

value = [1667, 1003]

class = Normal

entropy = 0.629

samples = 1488

value = [1253, 235]

class = Normal

entropy = 0.072

samples = 12784

value = [12673, 111]

class = Normal

entropy = 0.935

samples = 1232

value = [432, 800]

class = Faulty

entropy = 0.587

samples = 1438

value = [1235, 203]

class = Normal

190 â�¤ 1531.75

entropy = 0.033

samples = 12238

value = [12196, 42]

class = Normal

entropy = 0.0

samples = 48081

value = [48081, 0]

class = Normal

entropy = 0.011

samples = 9766

value = [9757, 9]

class = Normal

entropy = 0.102

samples = 2472

value = [2439, 33]

class = Normal

Figure 4.4: Example of tree created using all the data and setting the maximum
depth to 3. Blue color represents the faulty classes, whereas the orange stands for
normals.

4.4.1 Extremely Randomized Trees

The Extremely Randomized Trees algorithm (ERT) creates a set of unpruned
decision trees using the classical tree based approach [YZ15; GEW06]. There are
two main differences with the other methods:

• ERT splits nodes by choosing all the cut-points completely randomly.

• It uses the entire sample to grow the three and not just a part of it.

74 CHAPTER 4. FEATURE SELECTION

This algorithm has 2 parameters:

• K, the number of features randomly selected at each node. It determines the
strength of the feature selection process.

• Nmin, the minimum number of feature for splitting a node. It determines the
strength of averaging output noise

In addition, let’s denote by M the number of trees generated by the algorithm.
It is important for the variance reduction of the final model. Once M trees are
generated, their predictions are aggregated to compute the final prediction, by
using the so called “majority vote” in classification problems and by calculating
the arithmetic average in regression problems. This approach is powerful because
it should be able to reduce variance more than any other method. In addition, the
use of all the training samples is motivated in order to minimize the bias.

In the limit of M → ∞, one can show that for any N -dimensional space and
Nmin ≥ 2, it produces a continuous piecewise multi-linear approximation of the
sample. It means that, when M → ∞, the model is much more accurate and
smooth than other tree based algorithms. To give an idea of it, let’s consider a
sample of data

X = {(xi, yi)|i = 1, . . . , n},

where xi = (xi1, . . . xiN) is a data point with N features and yi is the output label
value. Then, denote with

(x(1)
j , . . . , x

(n)
j) (4.24)

the sorted sample values (increasingly) restricted to the j−th column related to the
j−th feature. Then, for notation, we indicate with x(0)

j = −∞ and x(n+1)
j = +∞

for all j = 1, . . . , N and we denote, ∀(i1, . . . , iN) ∈ {0, . . . , n}N , by I(i1,...,iN)(x) the
characteristic function of the rectangle

[x(i1)
1 , x

(i1+1)
1 [× · · · × [x(iN)

N , x
(iN +1)
N [. (4.25)

By using this formalism, it is possible to prove that, for M → ∞ that means for

4.4. FEATURE IMPORTANCE BY ERT 75

an infinite set of trees, the model achieve the approximation in the form

ŷ(x) =
nØ

i1=0
· · ·

nØ
iN =0

I(i1,...,iN)(x)
 Ø

X ⊂{x1,...,xN }
λX

(i1,...,iN)
Ù
xj∈X

xj

 , (4.26)

where λX
(i1,...,iN) are real parameters valued through the training set which depend

on nmin and K. Observe that, when nmin = 2 the equation 4.26 is such that
ŷ(xi) = y(xi) for all (xi, yi) belonging to the initial set. In addition, if the space
is monodimensional, i.e. n = 1, then it’s easy to note the linearity of the model,
since equation 4.26 becomes

ŷ(x) =
nØ

i1=0
I(i1)(x)

 Ø
X ⊂{x1}

λX
(i1)

Ù
xj∈X

xj

 =
nØ

i1=0
I(i1)(x1)

1
λ∅
i + λ

{x1}
i xi

2
. (4.27)

The values of λ parameters can be computed directly from the n equations ŷ(xi) =
y(xi) and the constraints. In conclusion, extremely randomized tree ensembles
provide an interpolation of any output variable which, for finite M is piecewise
constant, and for M →∞ becomes piecewise multi-linear and continuous.

4.4.2 Importance Analysis

Extremely Randomized Trees consist of many decision trees, each of them built
over a random extraction of the features, using all the available observations. Not
every tree sees all the features and this guarantees that the trees are uncorrelated
and so further away from overfitting. Each tree is also a sequence of 0/1 results
based on a single or combination of features. At each node, the Extremely Ran-
domized Trees divides the dataset into 2 buckets, each of them hosting observations
that are more similar among themselves and different from the ones in the other
bucket. Therefore, the importance of each feature is derived from how “pure” each
of the buckets is. For the measure of this pureness we decide to use the entropy
score, as it is defined in a previous section.
So, time label gap by time label gap we test our Extremely Randomized Trees in
order to estimate the importance of each SPN (feature) and make a ranking. An

76 CHAPTER 4. FEATURE SELECTION

example of feature importance ranking by ERT is shown in Figure 4.5, where the
time label considered is 30.0h. Since we want only those features which explain as

0.0 0.1 0.2 0.3 0.4
30069
30059
30070
30067
30073
30068
30066
30064
30072
30058
30054
30071
30065

110
31068
30060
30036

183
30000
31067

190
100

Feature importances with standard deviation

Figure 4.5: Bar graph showing for each SPN its mean importance computed by
ERT, together with its standard deviation. The label used is 30.0h.

more variance as possible, we set a threshold. So, if the importance of one SPN is
greater than or equal to the threshold, then it remains and it’s not filtered. The
threshold is set to 10.0% and the results are shown in the table 4.2.

From the table we see that with this approach two out of all the SPNs are
relatively important for the model: SPN 100 and 190. But even if the first one is

4.4. FEATURE IMPORTANCE BY ERT 77

label_time feature importance_ETC

0 3.0h 100 42.51
1 3.0h 190 10.21
2 6.0h 100 42.11
3 9.0h 100 42.61
4 9.0h 190 10.11
5 12.0h 100 43.07
6 12.0h 190 10.47
7 15.0h 100 42.84
8 15.0h 190 10.47
9 18.0h 100 42.73
10 21.0h 100 42.43
11 24.0h 100 42.37
12 24.0h 190 10.63
13 27.0h 100 42.43
14 27.0h 190 10.44
15 30.0h 100 42.39
16 30.0h 190 10.75
17 33.0h 100 42.10
18 33.0h 190 11.02
19 36.0h 100 42.35
20 36.0h 190 10.58
21 39.0h 100 42.09
22 39.0h 190 11.09
23 42.0h 100 41.40
24 42.0h 190 10.84
25 45.0h 100 40.84
26 45.0h 190 10.69
27 48.0h 100 40.47
28 48.0h 190 10.62
29 72.0h 100 37.05
30 72.0h 190 11.07
31 96.0h 100 34.06
32 96.0h 190 10.84
33 120.0h 100 30.92
34 120.0h 190 11.46
35 144.0h 100 28.74
36 144.0h 190 11.22

Table 4.2: Table with importance scores for time label gaps and features, by ERT.

78 CHAPTER 4. FEATURE SELECTION

dominating the SPN 190, it is totally unexpected the occurrence of the engine speed
into the most significant parameters to predict the anomaly engine oil pressure.

4.5 Creating a new feature: Moving Average En-
gine Oil Pressure

A great limitation of our problem is that we use time series with a lot of noise. In
general, it might be very hard to guess a method that could make time series as
perfect and clean as we can create a model with no noise. Usually this inability
happens because we can’t use the same method for all the different kind of time
series. In many cases, the information we provided doesn’t help us to get a sure
decision. As we said in the previous chapter, a method that we can use is the
moving average. Since the important SPN is 100, its behaviour is suitable to apply
this method.
Feature creation is that part of machine learning that needs human intervention
in creatively finding the best approach to mix or derive features in order to create
a new one more accurate and useful.

So, before going on with the last uncommon method for feature selection,
let’s observe that most likely the only one SPN weakly correlated with the DM1
occurrences is the SPN 100. In fact we will do an intersection of all the results, such
as the parameters which pass all the three tests are significant for real. Actually, it
misses another one important test and for this reason an important decision has to
be taken. As the time series related to the engine oil pressure is very fluctuating,
we feel that it would be important to correct just a little this characteristic adding
a new column with the moving average of SPN 100. It is necessary to separate as
well as we can the two different behaviours of that SPN. Through this new factor
the sequenciality could be more relevant and we might obtain better results. So,
the new feature is called “100_ma” which stands for moving average of engine oil
pressure and it is created by using the formula 3.12 with q = 20. The choice of q is
related to the data points: looking into the values, we can see that, when it starts
changing because of a unit problem, about 20 timestamps are different from the

4.6. DYNAMIC TIME WARPING 79

general behaviour of the parameter. So, as 20 is large enough to clear partially the
noise, we decide to fix this value and leave eventually its optimal choice at the end
of the work. The result can be seen in Figure 4.6.

Figure 4.6: Graph showing the reduction of noise obtained using the moving aver-
age (100_ma).

Now we are able to carry on and finish this very significant part about feature
selection, testing all the SPNs present in the dataset and the new moving average
SPN.

4.6 Dynamic Time Warping

When a comparison between time series is required, measurement functions pro-
vide meaningful scores to characterize similarity between two or more sequences.
Usually, time series are warped in time, i.e, although they may exhibit shape sim-
ilarity, they appear dephased in time. A very simple distance measure, such as
Euclidean distance will suffice in the case that two sequences have approximately
the same overall component shapes. Unfortunately, as mostly of the times, our time
series have different shapes from each other. In order to find the similarity between

80 CHAPTER 4. FEATURE SELECTION

such sequences we must “warp” the time axis of one (or both) sequences to achieve
a better alignment. The most common algorithm to overcome this challenge is the
Dynamic Time Warping, which is a technique for achieving the warping efficiently.
It aligns each sequence prior establishing distance measurements. For this section
we refer to articles [Fur08; KP01; Fol+18; SC07; SZZ15; Rak+12].

4.6.1 Dynamic Time Warping Algorithm

Suppose now that we have two time seriesX and Y , of length n andm respectively,
where:

X = x1, x2, . . . , xn := X(t1), X(t2), . . . , X(tn);

Y = y1, y2, . . . , ym := Y (s1), Y (s2), . . . , Y (sm).

To align two sequences using DTW we create an n − by − m matrix where
the general element (r, s) of the matrix D contains the distance d(xr, ys) between
the two p-dimensional points xr and ys. In this thesis, as most of the times, the
Euclidean distance is used, so that

dr,s = d(xr, ys) = ëxr − ysë2, (4.28)

and
D = {dr,s : r ∈ {1, . . . , n}, s ∈ {1, . . . ,m}}.

Each matrix element (r, s) corresponds to the alignment between the points
xr and ys. A warping path w, is a contiguous (in the sense stated below) set of
matrix elements that defines a mapping between the series X and Y . By defining
the k-th element of w as wk = (r, s)k, we obtain that:

w = (w1, w2, . . . , wk, . . . , wK)

4.6. DYNAMIC TIME WARPING 81

with
max(n,m) ≤ K < n+m− 1.

An example of how DTW works is shown in the figure 4.71.

Figure 4.7: Two different time series are represented (green and blue). It is shown
what is a path (black) and what will be defined as the optimal path (red).

The warping path is typically subject to several constraints:

• Boundary condition: w1 = (1, 1) and wK = (n,m), this requires the warping
path to start and finish in diagonally opposite corner cells of the matrix
(Figure 4.8a)2.

• Continuity condition: Given wk = (a, b) then wk+1 = (aÍ, bÍ) where a−aÍ ≤ 1
and b − bÍ ≤ 1. This restricts the allowable steps in the warping path to
adjacent cells, including diagonally adjacent cells (Figure 4.8b)3.

1
http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/.

2
http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/.

3
http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/.

http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/
http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/
http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/

82 CHAPTER 4. FEATURE SELECTION

• Monotonicity condition: Given wk = (a, b) then wk+1 = (aÍ, bÍ) where a−aÍ ≥
0 and b − bÍ ≥ 0. This forces the points in w to be monotonically spaced in
time (Figure 4.8c)4.

(a) (b) (c)

Figure 4.8: At the left, figure (a) illustrates that the alignment path must start at
the bottom left and end at the top right. In the centre , figure (b) shows that the
alignment path must not jump in time index (continuity). At the right, figure (c)
exposes that the alignment path shall not go back in time index (monotonicity).

Let’s sum up what we have said above formalizing what is a warping path in a
definition:

Definition 4.6. A warping path is a sequence

w = (w1, w2, . . . , wk, . . . , wK)

where for k in {1, . . . , K},

wk = (r, s)k = (rk, sk)

with rk ∈ {1, . . . , n} and sk ∈ {1, . . . ,m}, satisfying the boundary, continuity and
monotonicity conditions.

For simplicity, we write w = (r, s) as a path in accordance with definition 4.6.
There are exponentially many warping paths that satisfy the above conditions,

however we are interested only in the path which minimizes the total distance.
Luckily, this path can be found very efficiently. In fact, the optimal warping path

4
http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/.

http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/

4.6. DYNAMIC TIME WARPING 83

is the path that has the minimum total cost among all possible warping paths
for a certain defined cost function. One could test every kind of warping path and
determine the minimum cost candidate, but such method will lead to a exponential
computational complexity in the lengths of n and m. Using dynamic programming
we can compute an accumulated cost matrix C in order to find the path that
minimizes the warping cost in an O(nm) complexity. The time cost of building
this matrix equals the cost of the algorithm 3, where X and Y are the input time
series and D is the local cost matrix representing all the pairwise distances between
X and Y .

input : X and Y , two time series of length n and m,
D, the local distance/cost matrix;

output: C, the accumulated cost matrix.
n← |X|;
m← |Y |;
C ← new[n×m];
C(0, 0)← 0;
for i = 1; i ≤ n; i+ + do

C(i, 1)← C(i− 1, 1) +D(i, 1);
end
for j = 1; j ≤ m; j + + do

C(1, j)← C(1, j − 1) +D(1, j);
end
for i = 1; i ≤ n; i+ + do

for j = 1; j ≤ m; j + + do
C(i, j)← D(i, j) + min{C(i− 1, j);C(i, j − 1);C(i− 1, j − 1)};

end
end
return C

Algorithm 3: Accumulated Cost Matrix

Coming back to a more formal part, we have to define the cost function and
the Dynamic Time Warping Distance with much more accuracy.

Definition 4.7. Let X and Y be two time series with local distance matrix D.

84 CHAPTER 4. FEATURE SELECTION

Then, for a fixed path w = (r, s), we define the cost c as:

c(w) =
KØ
k=1

Drk,sk
.

Definition 4.8. The Dynamic Time Warping Distance (DTWD) is the sum of
the pointwise distances along the optimal path ŵ, for the cost function formulated
in definition 4.7:

ŵ = arg min
w

c(w), DTWD(X, Y) = c(ŵ).

Basically, starting with local distances matrix D, then the minimal distance
matrix between sequences is computed using a dynamic programming algorithm
and the following optimization criterion:

ĉr,s = dr,s + min(ĉr−1,s−1, ĉr−1,s, ĉr,s−1), (4.29)

where ĉr,s is the minimal distance between the sub-sequences x1, x2, . . . , xr and
y1, y2, . . . , ys. It means that each element of the accumulated cost matrix is de-
fined as the local cost measure in the current cell plus the minimum of the local
distance/cost measures in the adjacent cells.

Once the accumulated cost matrix has been built, the optimal warping path
could be found by the simple backtracking from the end point with coordinates
(n,m) to the first one with coordinates (1, 1) following the greedy strategy as
described by the Algorithm 4.

One time series X can be aligned to another Y by using the optimal path
defined in Definition 4.8. The basic concept of DTW alignment is illustrated in
Figure 4.9.

4.6.2 DTW Distance for sequentiality Feature Selection

In this section we are going to explain how can we use DTW distance for our
problem. First of all, it’s necessary to keep in mind that the task we want to

4.6. DYNAMIC TIME WARPING 85

input : C, the accumulated cost matrix;
output: path, the optimal warping path.
path[]← new array;
i = rows(C);
j = columns(C);
while (i > 1) and (j > 1) do

if i == 1 then
j = j − 1;

end
else if j == 1 then

i = i− 1;
end
else

if C(i− 1, j) == min{C(i− 1, j);C(i, j− 1);C(i− 1, j− 1)} then
i = i− 1;

end
else if C(i, j − 1) == min{C(i− 1, j);C(i, j − 1);C(i− 1, j − 1)}
then
j = j − 1;

end
else

i = i− 1;
j = j − 1;

end
end
path.add((i, j));

end
return path

Algorithm 4: Optimal Warping Path

86 CHAPTER 4. FEATURE SELECTION

Figure 4.9: The alignment of two different time series (red and blue) using DTW.
The image is taken from the site http://josejg.com/.

achieve concerns the feature selection. In a certain way it could be classified as a
first method to predict a DM1 observation, even if the main role of this part is to
understand which CAN parameters are strictly connected with DM1 occurrences.
This filter based method finds the most important parameters by analysing them
individually. After having used three approaches based on CAN values, we continue
checking if there exist a real dependence between CAN parameters and the DM1
selected, from the point of view of sequentiality of values. Basically, the main idea
is to use the time series distance as a measure of dependence between features and
the predictive label.

Remind that the proposed method splits the data of one parameter into two
groups according to the time distance from the next diagnostic message. The first
group includes all data labelled as “Normal” while the second one includes all data
labelled as “Faulty”. We them split the first group into many sub-groups: once we
have computed the length of the data labelled as “Faulty”, we divide “Normal”
data into the maximum number of groups having the same length as the faulty
group, as reported in Figure 4.10. In order not to create an enormous number of
groups, we set the maximum value at 200. If the maximum is reached, for example
because “Normal” data more than 300 times the “Faulty” ones, it makes sense to

http://josejg.com/

4.6. DYNAMIC TIME WARPING 87

consider just the last 200 sub-groups. It means that we take “Normal” data from
the end of the list until all the groups are composed. This decision comes from the
idea that farther data are more affected by noise then the others. In addition, it is
necessary to select just a portion of groups (200 in this case) to make the model
not too slow: since we are going to compute many distances, this process might
request a lot of time to be processed.

Figure 4.10: Splitting CAN messages into Normal and Faulty groups.

In this way many time series are obtained. The zero-task is to understand if
the future presence of the DM1 is strictly correlated, in a wide sense that we are
going to explain, with a change in the time of the CAN messages. So, if there
exists a real dependence between them, hopefully, we will find that the maximum
distance between each time series and all the others (one at a time) will be reached
in correspondence of the “Faulty” one or, at least, in the nearby. In general, we
are going to estimate the variation of CAN parameters during the time in the
sense of sequentiality. In fact, if the CAN messages from a certain period of time
corresponds to the time series from which all the other groups have the maximum

88 CHAPTER 4. FEATURE SELECTION

possible distance, then it means in that period those CAN messages have had a
mutation, and it could be connected to the appearance of a DM1.

Finally, we are going to repeat this computation many times, using time win-
dows for labelling data set to different values. The way we choose those time
windows is very basic and a little bit naive: since we don’t know what’s the im-
pact of the DM1 on the vehicle (and so when CANs start changing), we use a
linear generator of windows. It starts labelling as “Faulty” all the CAN from three
hours before until the time the DM1 appears and as “Normal” all the CANs before
the first “Faulty”, according to the previous consideration (until 200 groups are
formed). The next “Faulty” window is wide 6 hours, then 9 hours and so on until a
maximum of 48 hours before. The reason and the goal of using many window labels
concerns the kind of correlation between SPNs and the DM1: it might be possible
that one SPN is very connected with the error message and it starts changing
many hours before, whereas an other one has a little mutation very close it (and
for this little change the DM1 appears).

Let’s summarize: we consider the first timestamp when the DM1 appears; then
we divide CAN messages into two different labelled groups, the “Normal” and the
“Faulty” one. After that, we can create as many time series inside the “Normal”
group as we can (until 200 groups) using the time window length equal to the
number of “Faulty” CANs. For example, if there are 50.000 messages in the “Nor-
mal” group and 1000 inside the other one, we should create exactly 50 different
time series inside the first one, partitioning normal data in order to hold in each
group 1000 timestamps.

Finally, it’s possible to measure the change in time of those CANs in term
of sequentiality: computing the DTW distance between each pair of time series,
we are going to obtain, as a result, one by one which time series is the furthest
from those CAN messages. In fact, as we have seen in the theoretical part, while
computing the DTW distance the first time series is matched into the other one by
a process of “all VS all”. It means that the algorithm matches all the subsequences
of the first time series into all the parts of the other one, looking for similarities.

4.6. DYNAMIC TIME WARPING 89

(a) (b)

Figure 4.11: Heatmap showing for each window time series its DTW distance from
each one of the others. Lighter colors mean higher distance values. At the left,
figure (a) illustrates an example of DTW time window for SPN 100. At the right,
figure (b) illustrates DTW for SPN 183. In this case the number of windows is 38.

DTW-FS results

Let X1, . . . , Xn be the time series created as explained in the previous chapter,
where n ≤ 200. Furthermore, let’s keep in mind that the faulty time series is the
last one (Xn). In order to visualize better the main support idea of this approach,
in figure 4.11 are shown two examples of two opposite situations. First of all,
let’s consider a unit and a DM1 occurrence. Then, proceeding as above, we can
print a heat map showing for each time window the distance value from all the
others. Let’s comment the results in the picture 4.11. The first image represents
the heat map using mono-dimensional time series with SPN 100, which is directly
connected with the DM1 and so it will reach high scores. The other involves one
SPN which is probably not dependent of the response variable. The two heat maps
are completely different: the first shows high values only in the last column (or
row), meaning that the related window time series is the farthest from the others.
On the other hand, the second one has uniform chaotic values, meaning that there
is no farthest window inside.

For each sequence Xi we are going to compute the distance with all the others,
so that the result will be represented in a distance matrix W , such that

Wi,j = DTWD(Xi, Xj) i, j ∈ {1, . . . , n}, n ≤ 200.

90 CHAPTER 4. FEATURE SELECTION

Then, for each row ofW we will save just the index (and the timestamp start/end)
of the time series that corresponds to the maximum distance. It means that for
each sequence Xi, create the set

Ki = {j ∈ {1, . . . , n} : Wj,i = max{Wj,k : k ∈ {1, . . . , n}} (4.30)

Then, fixed an index i, the set Ki in 4.30 indicates from how many sequences the
time series Xi reach the maximum distance, in the sense that it has the deepest
sequentiality change. A particular look has to be done at the index n, which we
could think it might have the largest set Kn. In addition, a basic statistic we can
use is the rate

ri = |Ki|
n− 1 i ∈ {1, . . . , n} (4.31)

where | · | stands for the cardinality of the set. It indicates the rate of the amount
of the indexes in Ki with respect to the total number of time series. Then, for
each vehicle, time label and DM1 observation we are going to save only the time
sequence with the highest rate. Furthermore, since we would want to measure if the
mutation of data can cause the DM1, we are particularly interested in the faulty
sequence. Then we are going to count the number of them still present and call this
number with “n Faulty CAN”. As we are testing this method over different time
window lengths and we only care about it, we are going to group the results over
units and number of DM1 observations, adding values time window label by time
window label. First of all we suppose all the time series to be p-dimensional, where
p indicates the number of available CAN parameters. In fact, at the beginning we
want to find if there exist a multidimensional correlation from the point of view
of sequentiality. For this case, the results are summarised in the table 4.3. The
“Count” column represents the total number of test we do, that is the number of
times the DM1 appears non consecutively. The last column “Rate Faulty/Normal”
is the fraction between the number of “Faulty CAN” and the “Count”. We define
a faulty time series as significant if its rate Faulty/Normal is ≥ 0.75. In table 4.3
there are no significant faulty time series, that means the p−dimensional CAN
parameter doesn’t change a lot close to the DM1.

4.7. FINAL SUBSET OF SPNS FOR ENGINE OIL PRESSURE ANALYSIS 91

Time label n Faulty CAN Count Rate Faulty/Normal

0 3.0h 0.0 11 0.000000
1 6.0h 0.0 9 0.000000
2 9.0h 0.0 9 0.000000
3 12.0h 0.0 9 0.000000
4 15.0h 0.0 9 0.000000
5 18.0h 0.0 9 0.000000
6 21.0h 0.0 9 0.000000
7 24.0h 1.0 8 0.125000
8 27.0h 1.0 8 0.125000
9 30.0h 1.0 7 0.142857
10 33.0h 0.0 6 0.000000
11 36.0h 0.0 6 0.000000
12 39.0h 1.0 6 0.166667
13 42.0h 1.0 6 0.166667
14 45.0h 2.0 6 0.333333
15 48.0h 2.0 6 0.333333

Table 4.3: Table to test correlation between SPN and DM1 (multidimensional).

Subsequently, known that all the SPN together don’t correlate with the error,
we are going to filter only those SPNs which really have an impact on analysis.
So, dimension by dimension let’s repeat this sort of test and let’s report the final
table, obtained after filtering the significant time series. In 4.4 is shown the list of
SPNs and time labels passing the test. We can see that only two SPNs are strongly
correlated with the DM1. For this two features, we use the same optimal time label
which is the first in common of both: 30.0h. So, for the rest of the analysis we are
going to make predictions using just these two SPNs, which correspond to the
engine oil pressure and its moving average.

4.7 Final subset of SPNs for engine oil pressure
analysis

Currently we have all the results from each method we have used. So, the last
part has the role to group together the informations and extract the final subset of
features. However, it is not a simple job because of the very weak results. In fact,
choosing the wrong thresholds would make different features be selected. Generally

92 CHAPTER 4. FEATURE SELECTION

spn Time label n Faulty CAN Count Rate Faulty/Normal

0 100 27.0h 8.0 8 1.000000
1 100 30.0h 7.0 7 1.000000
2 100 33.0h 6.0 6 1.000000
3 100 39.0h 6.0 6 1.000000
4 100 42.0h 6.0 6 1.000000
5 100 45.0h 6.0 6 1.000000
7 100_MA 30.0h 6.0 7 0.857143
8 100_MA 33.0h 5.0 6 0.833333
9 100_MA 39.0h 5.0 6 0.833333
10 100_MA 42.0h 6.0 6 1.000000
11 100_MA 45.0h 6.0 6 1.000000

Table 4.4: Table to test correlation between SPN and DM1 (monodimensional).

talking about feature selection, it is extremely relevant either to minimize the
curse of dimensionality or to help deal with overfitting, just to explicitly claim two
different ways to explain the issue of excessively complex modeling.
However, there is not way to find the perfect and exact threshold to select a feature.
So, as we want to point out the uselessness of most of SPNs, the thresholds will
not be relaxed to force the occurrence of more SPNs.

By intersecting all the previous results we obtain a dataframe of which a sample
of 15 rows is reported in table 4.5.

Then, by applying the thresholds, we reach the goal to have the set with just
the relevant features. For the sake of honesty, we report once again the threshold
we put:

• Mutual information score (MI (%)) has to be greater then 0.5;

• Importance of Extremely Randomized Classifier (ETC (%)) has to be greater
than 10.0;

• Recursive Feature Elimination Cross Validation ranking (RFECV) has to be
exactly 1.0;

• Dynamic Time Warping Faulty Normal rate (DTW (%)) has to be greater
than 85.0.

4.7. FINAL SUBSET OF SPNS 93

label_time feature MI (%) ETC (%) RFECV DTW (%)

3.0h 30000 0.00 6.35 5.0 0.0
3.0h 30058 0.61 0.89 3.0 0.0
9.0h 100 1.87 42.61 4.0 77.8
9.0h 110 0.27 4.37 4.0 11.1
15.0h 30058 0.56 0.98 1.0 0.0
18.0h 183 0.11 5.47 1.0 0.0
21.0h 30064 0.51 0.91 1.0 0.0
30.0h 30000 0.00 6.05 1.0 28.6
33.0h 30072 0.07 0.96 1.0 0.0
33.0h 30073 0.47 0.36 1.0 0.0
36.0h 110 0.28 4.49 1.0 33.3
39.0h 30065 1.00 2.11 1.0 0.0
42.0h 30064 0.59 0.99 1.0 0.0
45.0h 100 3.25 40.84 1.0 100.0
45.0h 110 0.26 4.35 1.0 16.7

Table 4.5: Table showing the final dataframe with all the scores for feature selec-
tion. Note that RFECV column has just a ranking, whereas the others have the
exact score.

So, the final result is shown in table 4.6. It is clear that there is only one SPN
significant for the DM1 and it is the 100. Obviously, its moving average is out of
this final result, since it has been considered only for the DTW score.

From this point on, we are going to use only two features to make the model
as accurate as we can: SPN 100 and the derived moving average feature 100_ma.
Furthermore, because of all the time labels between 21 hours and 45 hours are
relevant, we decide to use as default one the 30.0h which is a mid time. This
choice is motivated by the results of the following methods, which are slightly
higher than the others.

94 CHAPTER 4. FEATURE SELECTION

label_time feature MI (%) ETC (%) RFECV DTW (%)

21.0h 100 2.23 42.43 1.0 88.9
24.0h 100 2.49 42.37 1.0 87.5
27.0h 100 2.78 42.43 1.0 100.0
30.0h 100 2.94 42.39 1.0 100.0
33.0h 100 3.08 42.10 1.0 100.0
36.0h 100 3.08 42.35 1.0 100.0
39.0h 100 3.13 42.09 1.0 100.0
42.0h 100 3.19 41.40 1.0 100.0
45.0h 100 3.25 40.84 1.0 100.0

Table 4.6: Table showing the final dataframe containing only those relevant features
and the respective time label.

Chapter 5

DM1 prediction: a probabilistic
approach

5.1 Discrete Time Markov Chains

In order to figure out the reasons why Markov models could be useful for our
purpose, let’s start giving some general definitions, as in [DD99]. Let {Xt}t∈T be
a stochastic process.

Definition 5.1. A discrete time stochastic process with discrete state space S is
a collection of random variables {Xt}∞

t=0 with the property that the range of Xt

is the discrete space S, for every t ∈ N. We say that S is a discrete space if
S = {S1, S2, . . . , SN} or S = N.

If S = {1, 2, 3}, then one example of transition graph of the process is shown
in the figure 5.1. In addition, a possible time evolution of the process, given that
X0 = 1 is shown in the picture 5.2.

Definition 5.2. Let {Xt}∞
t=0 be a discrete time stochastic process with a discrete

state space S. We say that {Xt}∞
t=0 is a discrete time Markov chain if it has the

Markov property, that means for any j, i, it−1, . . . , i0 ∈ S

P (Xt+1 = j|Xt = i,Xt−1 = it−1, . . . , X0 = i0) = P (Xt+1 = j|Xt = i) . (5.1)

95

96 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

0 1 2 3p0,0
p0,1

p0,3

p1,1

p1,2

p2,2

p2,3
p3,2

p3,1

p2,1p1,0

Figure 5.1: Example of Discrete Time Markov Chains with four states.

Figure 5.2: Example of Discrete Time Markov Chain time evolution.

5.2. INTUITION BEHIND HIDDEN MARKOV MODELS 97

From this point on we will indicate the one step transition probabilities with

pi,j := P (Xt+1 = j|Xt = i) . (5.2)

The identity 5.1 tells us that the probabilities associated with future states only
depends on the current state, and not on all the past states of the process. Basically,
it means that the future depends on the past only through the present. Note that,
in the case we are going to consider, the transition probabilities are not time
dependent. This particularly case is called homogeneous. When the state space is
finite we can write the one step probabilities pi,j, defined in 5.2, in a finite matrix P ,
with entries pi,j. This matrix is called transition matrix (or transition probability
matrix). It satisfies two relevant properties:

• 0 ≤ P (i, j) ≤ 1, for all i, j ∈ S;

• qj∈S P (i, j) = q
j∈S pi,j = 1, for all i ∈ S.

The above stochastic process {Xt}∞
t=0 could be called an observable Markov model

since the output of the process is the set of states at each instant of time, where
each state corresponds to an observable event.

For each i ∈ S, let πi be the probability of the system or object to be in state
i at time t = 0, where it is assumed that

• πi ∈ [0, 1];

• qi∈S πi = 1.

The vector π = (π1, . . . , πM)Û of the probabilities π1, . . . , πM defines the initial
distribution of the Markov chain.

5.2 Intuition behind Hidden Markov Models

Hidden Markov models are a general statistical modeling technique for “linear”
problems like sequences or time series and have been widely used in a lot of dif-
ferent scenarios. Within the HMM formalism, it is possible to apply formal, fully

98 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

probabilistic methods to profiles and gapped sequence alignments. The key idea is
that an HMM is a finite model that describes a probability distribution over an
infinite number of possible sequences [Sal05; KD; Sta04; Rab89; Ye+16; YXC94].

Considering Markov models as if they corresponded to an observable event
in each state is too restrictive to be applied to many problems. So, the common
Model has to be extended in order to include cases where the observation is a
probabilistic function of the state. It means that the resulting model is a doubly
embedded stochastic process with an underlying stochastic process that is not
observable (for this reason it is called hidden), but it can only be observed through
another set of stochastic processes that produce the sequence of observations. To
have a better idea of what a HMM is and how it can be applied to our scenario,
we now formally define the elements of an Hidden Markov Model and explain how
the model generates observation sequences. It is composted by:

• N , the number of states in the model. Even if these states are hidden, in
many practical applications there is a meaning attached to each state or,
more in general, to sets of states of the model. Usually the model is ergodic,
in the sense that all the states are interconnected in such a way that any of
those can be reached from any other state. We denote the individual states
as S = {S1, S2, . . . , SN} and the state at time t as Xt.

• M , the number of distinct observation symbols per state, which correspond to
the physical output of the modeled system. We denote the individual symbols
as V = {v1, v2, . . . , vM}. The set of observation symbols is sometimes called
the alphabet of the HMM.

• The state transition probability distribution P = {pi,j}, where pi,j is defined
in 5.2. For the special case where we assume that any state can reach any
other state in one single step, we have that pi,j > 0 for all i, j. Otherwise, in
all the other cases, we would have pi,j = 0 for one or more couple of states.

• The observation symbol probability distribution in each state j ∈ {1, . . . , N}.

5.3. THREE BASIC PROBLEMS FOR HMMS 99

This is called emission matrix, B = {bj(k)}, where

bj(k) = P [vk at time t|Xt = Sj] 1 ≤ j ≤ N, 1 ≤ k ≤M. (5.3)

• The initial state distribution π = {πi}, where

πi = P [X1 = Si] , 1 ≤ i ≤ N. (5.4)

So, given N,M,P,B, π we can use the HMM to generate sequences like

O = o1o2 . . . oT

where ot ∈ V and T is the number of observations inside the sequence. The pro-
cedure to create that sequence is, basically,

1. Choose the initial state X1 = Si, according to π and set t = 1.

2. Extract ot = vk using bi(k), the symbol probability distribution of the state
Si.

3. Change state to a new one Xt+1 = Sj through pi,j, the transition probability
distribution.

4. Increment t and continue if t < T , terminate the procedure otherwise.

From now, we are going to write the model with a compact notation λ = (P,B, π)
to indicate the complete parameter set, without explicitly stating N and M .

5.3 Three Basic Problems for HMMs

Given a Hidden Markov Model λ, we can consider three problems connected to
its real application. Let’s consider a sequence of observations O = o1o2 . . . oT . The
three questions are the following:

100 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

1. How can we do to compute efficiently P(O|λ), that is the probability of the
sequence given the model?

2. How can we choose the corresponding state sequenceX = X1X2 . . . XT which
is optimal in some meaningful sense?

3. How do we adjust the model parameters to maximize P(O|λ)?

The first question concerns the evaluation problem: given a model and a se-
quence of observations, how do we compute the probability that the exact sequence
was produced by our model? The second problem regards the attempt to find the
correct state sequence, looking into the hidden states. This is sometimes called a
decoding problem. The last one is about training problem and the related method
to optimize the model parameters to describe as well as possible how a given obser-
vation sequence comes about. It is called either learning problem or optimization
problem.

At the beginning, we would want to compute the probability of an observation
sequence O, as we said above, given the model λ. A possible but not so efficient
way of doing this is through enumerating all the feasible state sequence of length
T . Then, let’s fix one of them X = X1X2 . . . XT , where X1 is the first state, X2

the second one, and so on. The probability of the sequence (of observations) O for
the fixed state sequence is

P (O|X,λ) =
TÙ
t=1

P (Ot|Xt, λ) (5.5)

where we assume that each observation is independent from the others. So, in this
case

P(O|X,λ) = bX1(o1) · bX2(o2) · · · · · bXT
(oT). (5.6)

Since the probability of the state sequence can be written as

P(X|λ) = πX1 · pX1,X2 · pX2,X3 · · · · · pXT −1,XT
, (5.7)

and the product of the events “O occurs given X and λ” and “X occurs given λ”

5.3. THREE BASIC PROBLEMS FOR HMMS 101

give us the joint probability of O and X,

P(O,X|λ) = P(O|X,λ) · P(X|λ) (5.8)

then the final probability of O is obtained summing over all the possible state
sequences:

P(o1o2 . . . oT |λ) =
Ø

{X|X is a feasible sequence of states}
P(O|X,λ) · P(X|λ)

=
Ø

X1,X2,...,XT

πX1bX1(o1)pX1,X2bX2(o2) . . . pXT −1,XT
bXT

(oT).
(5.9)

The interpretation is quite simple: we start from the state X1 with probability
π1 and we observe symbol o1 with probability bX1 . Then we move on state X2

with probability pX1,X2 and we observe symbol o2 with probability bX2 , and so and
so on. The computational cost of these operations is very high (about 2 × T ×
NT calculations). Fortunately, there is a more efficient procedure called forward-
backward procedure. We are going to explain how does the forward procedure work
leaving the backward to the most curious readers. The forward procedure is based
on the use of a “forward variable” αt(i), defined as

αt(i) := P(o1o2 . . . ot, Xt = Si|λ) (5.10)

that corresponds to the probability of the partial observation sequence until time
t and state Si at time t. Then, by recursion

αt+1(j) =
C
NØ
i=1

αt(i)pi,j
D
bj(ot+1) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N, (5.11)

where the initial and the final step are

α1(i) = πibi(o1)

102 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

and
P(O|λ) =

NØ
i=1

αT (i) =
NØ
i=1

P(o1o2 . . . oT , XT = Si|λ). (5.12)

The recursive formula can be read as follow. Fixed a step t, αt(i) indicates the
probability that the sequence of observations occurs until time t and that in the
last time the state reached is the Si. So, in the next time t + 1, the new forward
variable is computed in two steps: firstly, summing α for all the possible ending
states at the time t multiplied by the probability to pass in the new state Sj,
and then multiplying the result for the probability of having the observation ot+1

in the state j. The computational cost of this approach is on the order of N2T

calculations.

The second question is much more “open”, in the sense that there are several
ways to answer it. The goal of this part is to find the optimal state sequence, ac-
cording to the sequence of associated observations. The first approach we can have
is to use as optimality criterion the individual most likely state, which means that
we choose the state Xt that maximizes the likelihood of the relative observation.
For this reason we define the probability of being in the state Si at time t given O
and the model as

γt(i) := P (Xt = Si|O, λ) = αt(i)βt(i)qN
i=1 αt(i)βt(i)

, (5.13)

where βt(i) is the backward coefficient, which has the same meaning of αt(i)
except for the use of the last part of the sequence of observations (it involves
ot+1ot+2 . . . oT). Obviously, summing over all the states Si we observe that γt is a
probability measure. As a result, we can use γt to solve our problem choosing Xt

at the time t as
Xt = arg max

1≤i≤N
γt(i) 1 ≤ t ≤ T. (5.14)

The main issue related to this approach comes out when the HMM has one or
more state transitions which have zero probability. For example if i1 is the most
likelihood state after i0 but pi0,i1 = 0, then the choice of that state is not allowed by
our chain and the method collapses. It’s due to the fact that this solution doesn’t

5.3. THREE BASIC PROBLEMS FOR HMMS 103

examine the probability of occurrence of the entire sequences of states. Since a
basic solution could be to maximize the expected number of correct pairs of states
(or triples of states and so on), the most used criterion is to find the single best
state sequence (path). It is equivalent to maximize the probability P(X,O|λ). The
algorithm for finding it is called Viterbi algorithm and it is based on dynamic
programming. According to the Viterbi algorithm, the first step is to define the
score along a single path at time t, taking into account the first t observations and
ending in state Si, as

δt(i) := max
X1,X2,...,Xt−1

P[X1X2 . . . Xt = Si, o1o2 . . . ot|λ]. (5.15)

Similarly to the forward case above, by recursion we have

δt+1(j) = max
i

[δt(i)pi,j] · bj(ot+1). (5.16)

It can be read as follow: given the best score at time t (δt(i)), the best new one
at time t + 1 for the state j is the score of the most likely new state multiplied
by the probability of having observation ot+1. The approach based on dynamic
programming is shown in algorithm 5. For doing it, we use two support arrays (T1

and T2, not to be confused with T , the length of the sequence).

The last issue is how to determine a method to adjust the model parameters
in order to reach the maximum probability of the observation sequence given the
model. The negative part of the theory is that there is no known optimal way to
estimate the model parameters in order to reach maximize the probability of the
observation sequence. On the other hand, we can find them such that P(O|λ) is
locally maximized. Standard techniques for estimating HMM parameters involve
batch learning, based either on specialized Expectation– Maximization (EM) tech-
niques, such as the Baum-Welch (BW) algorithm, or on numerical optimization
techniques, such as the Gradient Descent algorithm. We are going to have a breif
look at one iterative procedure, based on Baum-Welch method. Let’s define for
first an important probability measure. We use ξt(i, j) to indicate the probability
of being in state Si at time t and state Sj at time t + 1, given the observation

104 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

input : V , the observation space,
S, the state space,
π, the initial probabilities,
O = o1o2 . . . oT , the sequence of observations,
P , the transition matrix,
B, the emission matrix;

output: X = X1X2 . . . XT , the most likely hidden state sequence.
for j = 1; j ≤ N ; j + + do

T1[j, 1]← πj ·Bj,o1 ;
T2[j, 1]← 0;

end
for i = 2; j ≤ T ; i+ + do

for j = 1; j ≤ N ; j + + do
T1[j, i]← maxk(T1[k, i− 1] · Pk,j ·Bj,oi

);
T2[j, i]← arg maxk(T1[k, i− 1] ·Bj,oi

);
end

end
zT ← arg maxk(T1[k, T]);
XT ← SzT

;
for i = T ; i ≥ 2; i−− do

zi−1 ← T2[zi, 1];
Xi−1 ← Szi−1 ;

end
return X

Algorithm 5: Viterbi algorithm

5.3. THREE BASIC PROBLEMS FOR HMMS 105

sequence and the model:

ξt(i, j) := P(Xt = Si, Xt+1 = Sj|O, λ). (5.17)

We can rewrite the probability measure above using forward and backward vari-
ables, so that

ξt(i, j) = P(Xt = St, Xt+1 = Sj, O|λ)
P(O|λ) = αt(i)pi,jbj(ot+1)βt+1(j)qN

i,j=1 αt(i)pi,jbj(ot+1)βt+1(j)
. (5.18)

Recalling the previous definition of γt(i) = P (Xt = Si|O, λ), we can observe that
summing over all the states j the variable ξt(i, j) we obtain exactly γt(i), i.e.

γt(i) =
NØ
j=1

ξt(i, j). (5.19)

Then, summing over the time index t individually both the two probabilities above,
we obtain two meaningful interpretations

T−1Ø
t=1

γt(i) = expected number of transitions from Si

T−1Ø
t=1

ξt(i, j) = expected number of transitions from Si to Sj.
(5.20)

Finally, by using these two results in equations 5.20, we obtain a method for
the estimation and the adjustment of the model parameters.

π̄i = expected frequency in state Si at time t = 1

= γ1(i)

p̄i,j = expected number of transitions from Si to Sj
expected number of transitions from state Si

=
qT−1
t=1 ξt(i, j)qT−1
t=1 γt(i)

b̄j(k) = expected number of times in state Sj observing vk
expected number of times in state Sj

106 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

=
q

{t : 1 ≤ t≤T, ot = vk} γt(j)qT
t=1 γt(j)

Through these three parameters we build a new HMM λ̄ = (P̄ , B̄, π̄) which has
been proven that over estimates the likelihood, in the sense that P(O|λ̄) > P(O|λ).
Proceeding iteratively and using λ̄ instead of λ we improve the probability of O
to be observed from the model until the method reaches a limit. At this point the
limit is called maximum likelihood estimate of HMM and the method stops. It has
been proved more accurately that maximizing the function

f(λ, λ̄) =
Ø
X

P(X|O, λ) log[P(O,X|λ̄)] (5.21)

bring us to the three formulas above, in addition to the fact that its maximiza-
tion leads to increased likelihood. The last comment about this procedure regards
the fact that the stochastic constraints of the parameters (I mean, all the three
parameters are probabilities and so they must sum up to 1) are satisfied at each
iteration, which means that

NØ
i=1

π̄i = 1,
NØ
j=1

p̄i,j = 1,
MØ
k=1

b̄j(k) = 1 1 ≤ i, j ≤ N. (5.22)

Finally, let’s remark that since the problem has a structure typical for opti-
mization problems, standard gradient techniques can be used to find the optimal
values of the model parameters.

5.4 Why HMMs are suitable for DM1 Prediction

Generally, failure prediction can either rely on trends of faults or on their detec-
tion. About the first group, prediction methods mostly use continuously available
measures such as workload to identify trends or anomalies. Indeed in this case
the shorter is the time of reception of messages, the better will be the prediction.
Methods belonging to the second group often only take the time of occurrence of
the error into account. The first approach we use belongs to the second group. But

5.5. HIDDEN MARKOV MODELS APPLICATION 107

after the results, we decide to change method using one related to the first group.
For the second attempt we make two assumptions, since we have to motivate the
method. The first basic assumption in my approach is that the occurrence of fail-
ures can be predicted by identifying special patterns in the behaviour of the SPNs.
This assumption is supported by the fact that dependencies among the parameters
of the units and the DM1 exist, even if it is weak. Due to these dependencies, an
error in one component of the unit should be caused by an anomaly trend of the
correspondent selected SPN. The other not so restrictive assumption is that the
new special faulty condition reached by a parameter always lead the unit to an
error. It means that every time the system fall in the special faulty condition, then
one DM1 inevitably occurs, no matter when exactly but before the system come
back to a regular state.

Hidden Markov models (HMMs) in literature have been used successfully in
pattern recognition tasks such as speech recognition or DNA sequence analysis.
The main reason is that they exhibit the property to be flexible and adaptive
while at the same time providing structure and simplicity that allows for formal
analysis as well as deep understanding. The use of HMMs for DM1 prediction is
further motivated by the fact that faults are unknown and can’t be measured, but
they produce an error message on their occurrences. This matches perfectly the
theoretical notion of Hidden Markov models. In fact, there are unobservable hid-
den states (corresponding to trend patterns intervals leading to errors) producing
symbols corresponding to errors.

5.5 Hidden Markov Models application

In this section we are going to build a Hidden Markov Model on our data. This is
a significant probabilistic model which has as support idea the non-deterministic
values of each SPNs. In fact, values are not only affected by noise, but also they
are potentially spoiled during the transmission to the remote server. HMM is a
doubly stochastic model which is appropriate for the problem since we can consider
the unit consumption over time as the hidden stochastic process and the resultant

108 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

values of the SPNs as the measurable process.
Here, we provide two different kinds of application for HMM. In both these two

applications we set the number of states of HMM to 10, which ideally corresponds
to 10 intervals inside [min SPN100, max SPN100]. The first one is the common way
that people use this algorithm. In this case the prediction of DM1s comprises two
steps. First the model estimate the current state according to the previous events.
Then, starting from the current state, it makes a prediction on future behaviour
and, according to the next predicted state, the DM1 probability is computed in
the following step.
The other application is quite more abstract and it is based on the idea that the
model finds out a own state for all the faulty CAN messages. This is not certainly
a sure assumption, since the model when training on data chooses the states as
explained in the previous section. But it is supported by the strong mutation that
SPN 100 and 100_ma may have in correspondence of the DM1 occurrence.

5.5.1 HMM for Failure Detection

The first application of HMM to DM1 prediction is divided into two steps, where
at the start the model compute the probability δ0

i of being in a certain current
state Si after having encountered some observation O = o1o2 . . . oT . So, by the
Viterbi algorithm it is easy to compute δ0, since it is

δ0
i = max

X1,X2,...,XT −1
P (X1X2 . . . XT−1XT = Si, o1o2 . . . oT |λ) (5.23)

where X1 . . . XT−1 is the sequence of states encountered by the model to be in the
state Si at the time T , while the observation sequence is o1o2 . . . oT .
The goal of this approach is to compute the probability of a DM1 in the next step
(so that it means in the next 10 minutes), which is the probability that the Markov
process defined by the hidden states, transition matrix A and initial probability
vector δ0 produces an observation symbol with the DM1 at the following step,
given that the current state is the Si.
So, what we do here is to compute the emission probability of oT+1, where oT+1

5.5. HIDDEN MARKOV MODELS APPLICATION 109

contains the DM1. In order to do it, we assume to be currently in the state Si,
which is the most likely, and then we compute the probability by multiplying the
probability to pass from state Si to state Sj for the emission probability of oT+1

given the new state. Then we sum all these values over all the possible states and
finally we obtain the probability of DM1 occurrence. Summarising,

P(oT+1|XT = Si, λ) =
NØ
i=1

pi,jbj(oT). (5.24)

Remark 7. Since the model training has a random component, in order to make
more accurate results we repeat many times (20) training and test parts of the
model. Each time we use 2 of the 3 units as training set and the last one as test
set, by applying a sort of cross-validation (rotating the units). It means that finally
we have done training and test of 60 models (3 times to choose the unit as test,
20 times to repeat all). As a result, we compute the average of the scores and we
report all in a unique confusion matrix.

So, proceeding in this way we obtain the results shown in Figure 5.3, where
the matrix has to be interpreted as a normalized one, with probabilities instead of
absolute values.

The comment of this approach is quite obvious: since the results are very low,
it means that it could not be the right model or it may be the wrong way to adapt
it. In both these cases the results don’t permit us trust its prediction. In a certain
way, it might have been possible to predict the failure of this exact application
because we are dealing with few DM1s. Since the amount of DM1s is very low, a
model as HMM which works with probabilities and averages could fail because it
isn’t able to recognize the DM1 presence. So, for this reason the next approach
should be better, as we don’t consider the observations anymore but we provide a
prediction base on hidden states.

5.5.2 HMM for faulty trend prediction

This subsection is related to a different application of HMM, without taking DM1
occurrences into account. The idea comes from the following question: Does HMM

110 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

Figure 5.3: Confusion matrix showing the probabilities of predictions per classes.
The sum of the rows is equal to 1, since, given the right class of an observation,
the model predicts the two labels with complementary probabilities. The statistics
are: Precision: 0.003, Recall: 0.176.

5.5. HIDDEN MARKOV MODELS APPLICATION 111

assign to each faulty CAN message the same states? It might be very surprising
the answer, since we have no way to figure out what are the informations hidden in
each state. In fact, states are configured and created according to the optimization
problem we talked about in the previous section. But, at the same time, Hidden
Markov Models are able to point out different patterns among data such that they
can recognize if the time series is going into an anomalous trend. By the way, it is
exactly what we are looking for: in order to make a prediction we have used the
ploy to divide data into normal and faulty categories; however, using just states to
look for the future trend doesn’t need the label or to specify the closeness to DM1
occurrence. In Figure 5.4 it is shown the states prediction of HMM for a sample of
2000 points from the same unit. See that states are labeled taking sequences into
account.

Defined the probability of being in the state Si at time t given the sequence of
observations O and the trained model as in 5.13,

γt(i) = P(Xt = Si|O, λ) (5.25)

we use this probability to find out the sequence of states which has the maximum
probability,

Xt = arg max
1≤i≤N

γt(i), (5.26)

for all t ≤ T , where i indicates the state Si. Note that the number of states is
set to 10 and we make the assumption that one of this 10 is strictly connected
to the faulty zone of CAN messages. Then, whenever HMM model enters into the
faulty state, it means that its prediction is faulty. So we could create a confusion
matrix, taking as true values the partition of data into normal/faulty according to
the time label 30.0h.

In the figure 5.5, we observe the results of the method: precision and recall are
much higher than the previous part, even if we don’t achieve so perfect scores.
The main reason and the limit of this approach is related to the time label we
set. Because of labeling data as faulty about 30 hours before one DM1 occurrence,
the constraint is limiting the strength of HMM. In fact, as a result, through an

112 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

(a)

(b)

Figure 5.4: (a) SPN 100 time series with states predictions by Hidden Markov
Model. For each state one color is used. (b) As for (a) but using SPN 100_ma.
Observe that the state 9 is assigned to the faulty CAN messages, defining the
faulty zone before that one DM1 happens.

5.5. HIDDEN MARKOV MODELS APPLICATION 113

Figure 5.5: Confusion matrix showing the predictions per classes. The predicted
label for a CAN message is “Faulty” if the Hidden Markov Model enters in the
faulty state, “Normal” otherwise. In this case the statistics are:
- Precision: 0.630, - Recall: 0.680, - AUC : 0.831.

114 CHAPTER 5. DM1 PREDICTION: A PROBABILISTIC APPROACH

accurate empirical analysis of wrong predictions made by HMM, we might observe
that each DM1 observation has preceded by a different duration of the mutation of
values. So, increasing these scores are impossible, even changing time label because
we should adapt a different time label to each DM1 occurrence, falling in the trivial
overfitting case.

Figure 5.6: Hidden Markov Model prediction based on the state of anomalous
trends. The red color is assigned to the DM1 messages, whereas the violet defines
the interval containing CAN messages predicted as faulty by HMM.

As a support, look at the figure 5.6. It is shown an example of SPN 100 time
series with its moving average, where DM1 occurrences are highlighted in red and
HMM predictions in violet. We see that HMM is able to detect anomalous trend
from the very beginning. In addition, it points out anomalies even if the DM1
doesn’t occur. So, the model has a strong effect on trend anomaly detection, even
thought it is a different problem with respect to the DM1 prediction.

Chapter 6

Prediction of Faulty CAN
messages using Anomaly
Detection techniques

6.1 Preliminary Concepts

In this short section we introduce two techniques used in the evaluation of the
model and we explain the three score we look at for estimating the performances
of each model. The first one is the stratified cross validation and it is used when the
classes in the response variable are not balanced. The second technique is applied
after the previous one and is called SMOTE. It is important to create data in
order to balance the two classes. For the sake of honesty, we report the structure
of SMOTE method even if we don’t apply it to the anomaly detection problem.

Then we introduce the three performance metrics that are used to evaluate
the models we will build: precision, recall and AUC. It is interesting that all these
three scores are connected and can’t be used separately. They in fact measure
different qualities of the model and a high score of one of them doesn’t imply that
the model is perfect: by maximizing all of them we can find out the most suitable
parameters for each model.

Keep in mind that all the graphs shown in this section are taken from the

115

116 CHAPTER 6. ANOMALY DETECTION APPROACH

Autoencoder model output, which will be explained in the section 6.5.

6.1.1 Stratified Cross validation

Generally, in supervised learning a classifier is constructed by using a learning al-
gorithm which uses a labeled training set to learn from data. Then, its performance
is usually measured by the accuracy, that is the probability of correctly classifying
unseen cases, labeled by the trained classifier. A common strategy for the estima-
tion of the true accuracy is to divide the starting dataset into two groups: training
set and test set. The training set has the aim to train a classifier, whereas the test
set is used to evaluate the accuracy of the chosen classifier. This process is usu-
ally repeated multiple times (with different random partitions of the data set into
training and test sets), and the average of each performance gives an estimation
of the true accuracy. This procedure is called cross validation.

However, what we want to do here is called stratified cross-validation [ZM00].
Fixed k, the number of cross validation times, the stratified cross validation divides
the data set into k folds in such a way that a balanced distribution in the feature
space is maintained for each class. It means that if we have two classes in the
response variable and there are much more elements belonging to one than the
other, then the division into training and test set is done holding the rate among
the sizes of the classes. Suppose, as in our case, to have 77261 data and 75678 of
these are labeled with 0, whereas just 1583 data are in the class 1. Assume that the
cross validation divides data into k = 5 folds, that is 61808 data inside the training
set and 15453 inside the test set. So, if the cross-validation is stratified, then in
every fold the training set will be composted by exactly 1266 elements of the class
1 and 60542 of the class 0, while the test set by 317 elements of the 1 and 15136
of 0. This numbers come from the fact that the rate 1266/61808 and 317/15453
has to be equal to the initial rate 1583/77261 ≈ 2.05%. It is easier to think that
each fold of 15453 elements has to hold the rate 0.0205 among the two classes and
so it is composted as above. The normal common cross-validation, instead, choose
the data without taking this proportion into account and so it could be possible
that one or more partitions contains only elements belonging to the same class.

6.1. PRELIMINARY CONCEPTS 117

This usually lead the model to wrong results or, eventually, to formal errors. The
comparison between stratified and normal cross-validation is shown in picture

Figure 6.1: Normal and Stratified 5-Fold cross-validation using 30.0h as time label
gap. The green lines represent data inside the test set, while dark blue lines repre-
sents the training set. At the bottom, after the CV iterations, the general partition
of the entire dataset in faulty and normal classes is shown.

6.1.2 SMOTE: Synthetic Minority Over-sampling
Technique

Synthetic Minority Over-sampling Technique (SMOTE) is an approach to the con-
struction of classifiers from imbalanced datasets [Cha+02]. As we can imagine, a
dataset is defined as imbalanced if the number of elements in each category is
not approximately the same. This is a common problem, since often in the real
world datasets are generally made of “normal” data with only a small percentage
of “abnormal” samples. In addition, usually the cost of misclassifying an abnormal
data as a normal one is much higher than the cost of the reverse error. So, the
under-sampling technique of the majority class is useful to increase the sensitivity
of the classifier to the minority class. In fact, through balanced classes the classifier
should be able to learn how to distinguish them. However, decreasing the number
of data inside the bigger class makes the dataset be much smaller and it could
be seen as a waste of data. This might be a problem mostly for machine learning
algorithm which needs of a lot of data to be very accurate. So, a substitute method

118 CHAPTER 6. ANOMALY DETECTION APPROACH

is the over-sampling by creating new synthetic samples instead of using a sort of
replacement. In order to generate new data points belonging to the smaller class,
the method operates in the feature space. It selects for any points xi its k nearest
neighbours (usually k = 5, but it depends on the number of samples we need) and
for each of them it create another point by choosing randomly it inside the linear
combination set of the previous two points. In practice, we consider two points in
the smaller class, say xi and xj (i Ó= j) and then we create the third data point p
by selecting a random number α ∈ [0, 1] and

p = αxi + (1− α)xj.

This forces the decision region of minority class to become more general.
It seems to be feasible for out problem which has very unbalanced classes. On

the other hand, SMOTE can’t be applied in all the situations since it depends on
the distribution of data. In fact, if data a not normal distribution like categorical
variables or simply bi-modal variables, the interpolation and the linear combination
of 2 points belonging to different classes (for the first case) or close to different peak
(for the second one) could produce a third data point that is not very probable
according to the distribution. In the first case we can’t create another class, whereas
in the second one we will have a point in a low density zone and it won’t be so
useful. But after the feature selection, the CAN parameters 100 has the smaller
class with a distribution very similar to the normal one (even if it’s not normal)
and so SMOTE is able to generate synthetic data without changing a lot the initial
distribution of values. To be confident with this assumption, look at the figure 6.2
and in particular at the faulty CAN values.

This kind of approach is really useful in mostly of the problems with unbalanced
classes. However, since we adapted the predictive maintenance structure to the
anomaly detection one, we prefer not to apply it on the algorithm. The reason
is related to the fact that we want the algorithm to recognize if a data point is
anomalous or normal. So, for this reason we cannot have a lot of anomalous points,
especially when we use distance based anomaly detection methods. Since for the
methods that aren’t related to anomaly detection strategies it results to be very

6.1. PRELIMINARY CONCEPTS 119

Figure 6.2: Distribution of SPN 100 obtained by separating values belonging to
the normal class from the others belonging to the faulty class.

strong and feasible, we decide to report it as a potential attractive alternative.

6.1.3 Precision, Recall and AUC statistics

Precision and Recall statistics are typically used in binary classification problems in
order to study the output of a binary classifier. They are useful measures of success
of prediction when the classes are very imbalanced. Generally speaking, precision
score is a measure of the relevance of the result, while the recall is a measure of
how many truly relevant results are labeled. We indicate the two classes with 0
and 1, where of course 1 represents the class with rare events (faulty CAN).

The Precision-Recall curve shows the trade off between precision and recall.
An example it is reported in Figure 6.3. A high area under the curve represents
both high recall and high precision. In general high precision values relate to a
low false positive rate, whereas high recall values relate to a low false negative
rate. As a result, high scores for both show that the classifier is returning very
precise results (high precision), as well as returning a majority of all positive re-
sults (high recall). On the other hand, a model with high recall but low precision

120 CHAPTER 6. ANOMALY DETECTION APPROACH

Figure 6.3: Precision and Recall curve by Autoencoder model. In red is shown the
best F1 score value which maximizes both precision and recall scores.

returns many 1 values, but most of them are incorrect when compared to the real
labels. It implies that the model predict many 0 values as 1 and for this reason
the precision is low. On the contrary, a system with high precision but low recall
is just the opposite, returning very few 1 labels, but most of its predicted labels
are correct when compared to the real labels. An ideal system with high precision
and high recall will return many results, with all results labeled correctly.
By looking at the confusion matrix, through the 4 values reported inside it, we can
define and compute the precision, recall and AUC scores. An example of confusion
matrix, illustrating the positions of TP, TN, FP and FN, is shown in Figure 6.4.
Let’s remember that true positives / true negatives are data point classified re-
spectively as positive / negative by the model that actually are positive / negative,
that means the model assign to these data the correct label. On the other hand,
false negatives are data points that the model predicts as negative while actually
are positive (incorrect) and false positives are cases the model incorrectly labels
as positive that are actually negative.

6.1. PRELIMINARY CONCEPTS 121

Definition 6.1. The precision score P is defined as the number of true positives
Tp over the number of true positives plus the number of false positives Fp,

P := Tp
Tp + Fp

. (6.1)

Definition 6.2. Recall R is defined as the number of true positives Tp over the
number of true positives plus the number of false negatives Fn,

R := Tp
Tp + Fn

. (6.2)

Definition 6.3. Both precision and recall are related to the F1 score, which is
defined as the harmonic mean of them,

F1 := 2× P ×R
P +R

. (6.3)

Note that the precision may not decrease with recall. The definition of pre-
cision 6.1 shows that decreasing the threshold of a model classifier may increase
the denominator, by increasing the number of results returned. However, if the
threshold was previously set too high, the new results may all be true positives,
which will increase precision. If the previous threshold was about right or too low,
further lowering the threshold will introduce false positives, decreasing precision.
Recall is defined as

1
Tp

Tp+Fn

2
, where the denominator does not depend on the clas-

sifier threshold. This means that decreasing the classifier threshold may increase
recall, because it increases the number of true positive results. It is also possi-
ble that lowering the threshold may leave recall unchanged, while the precision
fluctuates. The relationship between recall and precision can be observed in the
precision-recall plot where for each threshold corresponds a precision and recall
value. Let’s summarize:

• Recall: ability of a classification model to identify all relevant instances;

• Precision: ability of a classification model to return only relevant instances;

• F1 score: single metric that combines recall and precision (harmonic mean).

122 CHAPTER 6. ANOMALY DETECTION APPROACH

Usually to find out the optimal threshold we maximize the F1 score: since it is a
statistic which penalizes extreme values of recall and precision, by maximizing it
we should find the best threshold to have both precision and recall high at the
same time.

Figure 6.4: Confusion matrix showing true positives, true negatives, false positives
and false negatives positions. Colors reflect target ranges.

ROC curve and AUC score

The other main visualization technique for showing the performance of our clas-
sification model is the Receiver Operating Characteristic (ROC) curve. The idea
is relatively simple: the ROC curve shows how the recall vs precision relation-
ship changes as we vary the threshold for identifying a positive in our model. The
threshold represents the value above which a data point is considered in the pos-
itive class. Since we have a model for identifying a faulty CAN, our model might

6.1. PRELIMINARY CONCEPTS 123

output a score for each CAN parameter between 0 and 1 and we can set a threshold
in this range for labeling a timestamp as having the fault (a positive label). By
altering the threshold, we can try to achieve the right precision vs recall balance.

A ROC curve plots the true positive rate on the y-axis versus the false positive
rate on the x-axis. The true positive rate (TPR) is the recall and the false positive
rate (FPR) is the probability of a false alarm. Both of these can be calculated from
the confusion matrix:

TPR = TP

TP + FN
; (6.4)

FPR = FP

FP + TN
. (6.5)

Figure 6.5: ROC curve for the predictive model Autoencoder with AUC score.

Look at the figure 6.5. The dark blue diagonal line indicates a random classifier
and the red curve relates the classification model. Obviously for a given model,
we can only stay on one curve, but we can move along the curve by changing our
threshold for labeling a positive case. Generally, as we decrease the threshold, we
should move to the right and upwards along the curve. On the other hand, with
a threshold of 1.0 we would be in the lower left of the graph because we identify

124 CHAPTER 6. ANOMALY DETECTION APPROACH

no data points as positives leading to no true positives and no false positives
(TPR = FPR = 0). As we decrease the threshold, we label more data points as
positive, leading to more true positives, but also more false positives (the TPR
and FPR increase). Eventually, at a threshold of 0.0 we identify all data points as
positive and find ourselves in the upper right corner of the ROC curve (TPR =
FPR = 1.0).

Finally, we can measure a model’s ROC curve by computing the total Area
Under the Curve (AUC), which is a metric that falls between 0 and 1. As most of
statistical scores, a higher number indicates a better classification performance. In
the graph 6.5, the AUC for the red curve will be greater than that for the blue line,
meaning the red model is better at reaching a composition of precision and recall.
A random classifier (the dark blue line) achieves an AUC of 0.5 and it means that
it is impossible (in the sense that it will have no meaning) for a model to have an
AUC score less than 0.5.

6.2 Why Anomaly Detection for Predictive
Maintenance

Every machine learning application will encounter in future many different kinds
of risks such as statistical uncertainties. This will happen inevitably, since nature
of data is probabilistic and not deterministic. One such risk is the presence of sta-
tistical errors or inconsistencies due to distributional outliers or noisy observations.
Precisely because of this case, anomaly/novelty detection was born. It highlights
some of these risks, and its development is one of the most important and criti-
cal machine learning issue. The idea to apply Anomaly Detection methods to the
problem comes from articles [GE18; PAD18], even if their approach is completely
different from the one we use.

In the classic anomaly detection problem, we have data from a “normal” class
of values, emerging from some unknown distribution, and the goal is to build an
appropriate classifier which is able to detect out of distribution “abnormal” values.
There are a few variants of this basic anomaly detection problem. For example, in

6.2. WHY ANOMALY DETECTION 125

the positive version, where the outliers are labeled as 1, we have a sample from the
“normal” class, as well as a sample that is contaminated with abnormal instances.
All this data are obviously passed as input without their label.
So, anomaly detection is the problem of identifying whether a new data point has
to be considered as an inlier or an outlier. From a pure statistical point of view
this process usually occurs while the distribution of inliers is the only available
information. This is also the most difficult and significant situation because out-
liers are often very rare and sparse. They could be even dangerous to experience
and for this reason we have to rely only on inlier training data. The most used
approaches tend to either use a one-class classifier, or to use as anomaly score, the
reconstruction error of the chosen machine learning algorithm.

An important clarification has to be done and concerns the role of anomaly
detection for this work, which is classified as predictive maintenance. These two
concepts seem to be in contrast to each other. In fact predictive maintenance is,
somehow, a set of techniques having the aim to predict and prevent a fault in the
system a few hours in advance, while anomaly detection consist of recognizing an
outlier after it occurs. So, the first has to anticipate the fault and to prevent it,
while the second one has to recognize it afterwards. Now the questions are clear:

• How can we combine them together?

• Why their intersection could be useful for our issue?

Basically, we want to predict in advance when a DM1 occurs. But it is caused
by a significant change in some CAN parameters and, hopefully, this mutation
inside the CAN values starts many hours before the failure. So, for this reason,
we have built the dataset dividing CAN messages into faulty and normal, since it
wants to mean that all the values close to the DM1 occurrence are very different
from those which are far from it. In this case the enlightening idea is that we
can adapt the problem into one of anomaly detection, where the anomaly is not
the DM1 occurrence but it corresponds to the faulty CAN message. So, anomaly
detection techniques are applied to recognize the faulty CAN message in order to
understand if the vehicle is in a phase close to the DM1 failure. Then, after having

126 CHAPTER 6. ANOMALY DETECTION APPROACH

decided if a CAN is faulty, the maintenance could be done in advance since we
know that the first DM1 will appear within few hours (depending on the time
label gap chosen). The second question deals with a more technical aspect. DM1
occurrences are rare and sparse events and they correspond to about 1.5% of the
data. Common machine learning techniques will make random results, as they will
not be able to point them out. However, anomaly detection deals with this kind
of events and for this reason it produce more accurate results. In the remaining
part of this work, we are going to apply different anomaly detection principles to
detect faulty CAN messages and to prevent the DM1 occurrences.

6.3 K Nearest Neighbor Outlier Detection

In the previous section 6.2 we said that the classical methods of anomaly detection
use a classifier connected to the reconstruction error of data. The main problem
with this approach is that in many situations, we might simply not have enough
knowledge about the underlying data distribution to set the problem in that way.
So, here is presented an uncommon method based on the distance between data.
All the procedure is supported and founded by the sentence [RRS00]:
An object O in a dataset T is a DB(p, d)-outlier if at least fraction p of the objects
in T lies greater than distance d from O.
The term “DB(p, d)-outlier” is a shorter notation for a Distance-Based outlier
(detected using parameters p and d). It means that a point O in a dataset is a
distance based outlier with respect to parameters p and d if no more than p ×
size(T) points in the dataset are at a distance of d or less from O.

This definition of outliers has the pros to be very intuitive and easy to under-
stand, as well as to have a low computational cost even for very large datasets.
However, it has two cons:

• We need to specify a distance d which could be difficult to determine and
could make the problem become much more computationally heavy.

• It doesn’t build a ranking for the outliers, in the sense that if a point has
many neighbours with respect to the distance d, then it is more probable

6.3. KNN OUTLIER DETECTION 127

that it is considered as inlier or, in somehow, a weaker outlier then a point
which has few neighbouring points.

The algorithm based on distance outlier definition that we use is the kNN . Fixed
the l2 distance as a measure of how much data points are different from each
others, the method takes as score for each data point its distance from the k-th
nearest neighbour. In fact, fixed the number of neighbours k and a point x, Dk(x)
indicates the l2 distance of x from the k-th closest point and it is a measure of how
much x is an outlier for the dataset. The support idea of this approach is that an
outlier is more isolated than the normal points, since it is a rare and sparse event.
Here we immediately note that the choice of d is extremely significant because it
is the anomaly score used for the classification.

Definition 6.4. Given N data points {x1, . . . , xN} and fixed two parameters n
and k, a point xi is a Dk

n outlier if there are no more than n − 1 other points xj
such that Dk(xj) > Dk(xi).

In this way we can make a ranking according to the Dk distance of each data
point. So, the anomaly score is calculated for each data point. Then, by using just
the training set, the algorithm select a threshold to separate the two classes (inlier
and outlier). In order to do it, as it will be explained much better in the next
section, the model requires as parameter an approximate number which indicates
the amount of expected outliers (more or less, usually they set a rate of the entire
dataset as 1% or 2%). So, through the knowledge of the number of outliers, the
algorithm looks for the distance value (the anomaly score) of the last point in the
ranking sorted by anomaly score and the threshold is set to its value. So, once
the threshold is chosen, a data point in the test set is claimed to be outlier if its
anomaly score exceeds the threshold. The result of the method will be a classifi-
cation of all the data set points into inliers or outliers.
Another consideration has to be made: to compute the kNN distance, the algo-
rithm applies the K − d Tree Algorithm, which is a common approach to approx-
imate kNN based on spatial clustering. The k − d tree is a binary tree in which
every node is a k−dimensional point. Every node of the tree, which is not a leaf,

128 CHAPTER 6. ANOMALY DETECTION APPROACH

could be thought as if it implicitly generates an hyperplane partitioning the space
into two different parts known as half spaces. Then the representation is quite
simple and immediate: all the data belonging to the left part of the hyperplane
are put together as representing the left subtree of that node, whereas the other
points to the right represents the right subtree. To have more details about how
K − d Tree Algorithm works you can read the article [Ota+13].

Now we can apply the algorithm to our situation. It is important to note that
we have to choose the number of neighbours of each point. Since our dataframe has
more than 77.000 rows, it has no meaning to select a small number of neighbours.
For this reason, our choice is to put k = 1000.
For the validation part, we use the cross validation stratified (without the SMOTE
technique), as explained in the section 6.1.1.

Figure 6.6: Confusion matrix for KNN outlier detection with statistics:
- Precision: 0.710 - Recall: 0.722 - AUC : 0.858.

6.3. KNN OUTLIER DETECTION 129

In the Figure 6.6 it is shown the confusion matrix related to one fold of cross-
validation. The results are not as perfect as we would want since the recall and
precision are not so high. In fact, probably the method tends to predict faulty for
all the data located at the boundary of the dense zone, while it predicts normal if
a point fall inside the crowded region, as we can see in the Figure 6.7.

Figure 6.7: Scatter plot related to kNN Outlier Detection showing for each data
point its model prediction. The background indicates the scores of a potential point
in that area: the darker the color, the higher the anomaly score. In this case the
dataset is divided into training and test (stratified) with rate 0.25.
The statistics are: - Precision: 0.724, - Recall: 0.747.

So, as a result, the model works very accurately with data located in the dense

130 CHAPTER 6. ANOMALY DETECTION APPROACH

area, whereas it tends to predict faulty too many times when only one of the two
features is low. In this case the point might be in very close to be considered as
faulty, such as values slightly earlier in time than the beginning of the faulty class.
On the other hand, points with low moving average values and normal engine oil
pressure could be labeled as faulty because of the first feature even if they might
be the first CAN messages after the maintenance. So, with respect to the limits of
the data, we can conclude by saying that the results obtained with the kNN Out-
lier Detection method are really competitive. After cross-validation technique, by
averaging the statistical scores, we obtain the final result about a general accuracy
of the model which provides:

Precision : 0.706, Recall : 0.702, AUC : 0.848.

6.4 Isolation-based Anomaly Detection:
Isolation Forest

The method we propose in this section is called Isolation Forest and it is a tree
based method [LTZ08; LTZ12]. It consist on creating many trees which, by splitting
data in the canonical way, produce anomaly scores according to the average path
lengths. Basically, a tree splits one data point as many times as it is isolated from
all the others. Then, the support idea is that a point is anomalous if it needs
few splits to be isolated, since it has values far from the normal point ones. The
approach is interesting because it isn’t based on distance or density measures, so
that it has low computational cost. In addition, it is able to handle large data sets
both in terms of large amounts of data and in terms of high dimensional points.
By building randomly binary trees, each instance is recursively partitioned and the
paths connected with anomalies are significantly shorter because of two reasons:

• Anomalous data points occupy less-dense regions so that trees need few it-
erations to completely isolate them.

• If a data has at least a very different attribute, it is more likely to be separated

6.4. ISOLATION FOREST 131

early with respect to points with common values.

As we said above, many different trees are generated and each one creates randomly
many splits so that each point has a lot of paths. By computing the average path
lengths, we find out the true path score that will be normalized in order to compare
path lengths from models with different sub-sampling sizes.
So, now let’s give two definitions:

Definition 6.5. A tree is an Isolation Tree if its nodes are either external-nodes
with no child or internal-nodes with exactly two offspring (Tl, Tr) and a test. The
test is composted by an attribute q and a split value p such that the test q < p

makes a data point go into Tl or Tr.

Definition 6.6. Given a data point x ∈ X = {x1, . . . , xn}, the path length h(x)
is measured by the number of edges crossed by the point x, from the root node to
its own external node.

Given the dataset X , let X ⊂ X be a sample of data. Then, we use X to
generate the isolation tree in order not to fall into an overfitting problem. The
procedure is quite simple and common:

• Extract X from X ;

• Recursively divide X by selecting the attribute q and splitting the value p
randomly;

• If a data fall into an external node, then stop;

• Otherwise, stop the algorithm when all data at the node have the same
values.

After a brief introduction to isolation trees and about the general idea of the algo-
rithm, let’s now pass to the next question: how to use isolation trees for anomaly
detection?
The first part is related to the training stage, where isolation trees are generated
by recursively partitioning a sub-sample X until all the data points fall into an

132 CHAPTER 6. ANOMALY DETECTION APPROACH

external node. The choice of sub-sample X is made without replacement and, obvi-
ously, the subset is randomly selected by fixing just its size M (so that |X| = M).
In algorithm 6 it is reported the pseudo code of the construction of each isolation
tree.

input : X, the input randomly selected sub-sampling of data
output: I, the isolation tree.
if X can’t be divided anymore then

return externalNode{Size ← |X|};
end
else

let Q be a list of attributes in X;
randomly select an attribute q ∈ Q;
randomly select a split point p ∈ [min q,max q];
Xl ← filter(X, q < p);
Xr ← filter(X, q ≥ p);
return internalNode{
Left ← isolationTree(Xl),
Right ← isolationTree(Xr),
SplitAttribute ← q,
SplitValue ← p}

end
Algorithm 6: IsolationTree

Note that it is a recursive algorithm, since if a node is an internal node, than for
each of its two offspring we must repeat the algorithm. It will stop whenever each
data has its external node. Of course, at each step we save even the split attribute,
which corresponds to the feature that splits data, and the splitting point, that is
randomly chosen inside the maximum interval.
Two parameters as to be set for generating the correct model: the sub-sampling
size M and the number of trees T . Since the problem has a lot of data, our choice
is to set the size M of X to the 0.15% of the entire dimension of the dataset.
This is related to the decision to use 1000 trees, which is a high number. So, in
order to avoid overfitting, we don’t use a high percentage of data. Furthermore,
the algorithm is much more efficient and accurate when setting a low size of the
sample. This consideration not only has theoretical supports, but also by providing

6.4. ISOLATION FOREST 133

empirical scores trying as many different values as we can, we can observe that in
practice it is much better to put scores to the order of 0.01− 0.5%.

input : x, the data point,
I, the isolation tree,
hlim, the height limit,
e, the current path length.

output: P , the path length of x.
if I is an external node or e ≥ hlim then

return e + cost(I.size);
end
a← I.splitAttribute;
if xa < I.splitValue then

return ComputePathLength(x, I.left, hlim, e+ 1);
end
else

return ComputePathLength(x, I.right, hlim, e+ 1);
end

Algorithm 7: ComputePathLength

The evaluation step, reported in algorithm 7, has as output value the sum of
the path length and a cost adjustment. So first, the algorithm has to compute
the path length of a data point x, counting the amount of edges of the tree x
pass through. It is of course an iterative algorithm, since at each step the data
attribute is splitted according to the random split selected. Then it goes on until
an external node of the isolation tree is reached by x. The second part of the sum
is an adjustment, based on the size of the external node which means on how
many data points are inside it. In fact we would want to take the size of external
nodes into account in order to create a score which is comparable within nodes
of different sizes. So, called MI the size of the isolation tree, we define the cost
function as

cost(MI) :=

2H(MI − 1)− 2 · MI−1

n
if MI > 2;

1 if MI = 2;

0 otherwise.

(6.6)

134 CHAPTER 6. ANOMALY DETECTION APPROACH

The cost function definition involves H, which is the harmonic number,

H(i) :=
iØ

k=1

1
k
≈ ln(i) + 0.5772156649. (6.7)

The explanation is not so trivial. Since all the procedure depends on the amount
of data we put in the randomly selected subset X, be careful to observe that the
number or data inside an external node increases with the order of log |X|. In
fact there are many exponential splits to reach an external node. On the other
hand, the maximum possible height of an isolation tree grows in the order of |X|,
because a tree might separate at each split just one point from all the others.
So, an adjustment is needed to compare different isolation trees cost. The use of
harmonic numbers comes from the Binary Search Tree method.
Finally we can compute the anomaly score of a data point x as

s(x,MI) := 2− E[h(x)]
cost(MI) , (6.8)

where E[h(x)] stands for the average of h(x) (the length of a path). The score has
3 properties:

• if E[h(x)]→ 0, then s→ 1; it follows the idea that an anomalous point has
a low number of splits and so low h(x);

• if E[h(x)] → MI − 1, then s → 0; on the contrary, if the number of split is
very high (to the maximum of MI − 1) then the score s goes to zero;

• E[h(x)]→ cost(MI), then s→ 0.5; it means that we can’t distinguish accu-
rately if it is an anomalous point.

Informally speaking, the cost function is the theoretical average path length and
if the expected path length (E[h(x)]) is equal to it, then it means that we can’t
say surely what kind of point it is.

Currently, we point out how anomaly scores are computed, in order to make
a classification which separates inlier from outlier (normal data from anomalous
data). However, it is not clear the way the algorithm operates: how it is computed

6.4. ISOLATION FOREST 135

the threshold to make a correct classification? What’s the role of the training set?
How do we test the model?

To answer this questions we will not go into the mathematical details, but we
provide just an accurate explanation. At the beginning, by using training data, the
algorithm calculates for each data point one anomaly score value as we explained
before. Then it has to be chosen the right threshold, obviously through the train-
ing anomaly scores. The threshold is based on the concept of “contamination“.
Contamination K is an a-priori knowledge and it corresponds to the percentage
of outlier with respect to all the data points and it can be estimated through the
training set. In our case, fixed the training set, we put the contamination value as
the empirical number of outliers in the dataset X, so that

K(X) = Number of anomalous data in X
Total number of data in X . (6.9)

In order to find out the right threshold, we consider the total number of anomalous
data. Then, the value of the threshold is set to the last score in the ranking with
exactly |X| × K(X) most abnormal data. The threshold is calculated to classify
data in the test set. So, the ending part is related to testing the method on the test
set. As you can imagine, for each data point in the test set the model computes its
anomaly score and, according to the previous threshold, it makes the classification
claiming anomalous data (which is label 1) if its score is such that s ≥ threshold,
normal point otherwise (label 0). In the figure 6.8, it is shown the results obtained
by applying isolation forest to our dataset splitted with rate 0.25 in training and
test set with the stratified technique.

Results are clearly very high for a simple and efficient model as it is. Since it
uses a feature at the time for the splitting part, it is unsurprising that the errors
it makes are in the intermediate position between normal values and faulty ones.
As a result, the main disadvantage of this approach is that features have the same
weight. Looking carefully at the graph 6.8, we can observe that green points are
located into the same zone at the left, whereas the blue points are all in the right
one. It means that the model predicts too many times faulty when the x-axis is
low, so when SPN 100 is too low. At the same time it should predict faulty when

136 CHAPTER 6. ANOMALY DETECTION APPROACH

Figure 6.8: Scatter plot showing Isolation Forest predictions. The background in-
dicates the scores of a potential point in that area: the darker the color, the higher
the anomaly score. In this case the dataset is divided into training and test (strat-
ified) with rate 0.25.
The statistics are: - Precision: 0.767, - Recall: 0.765.

6.4. ISOLATION FOREST 137

SPN 100 has slightly higher values (up to 300) but the moving average hold its
values between 250 and 300. Basically, we should weight a little more the moving
average feature instead of setting the same weight to both of them. By the way,
it is both a limit of the model and a limit of data which are full of non-cleanable
noise.

Finally, by applying stratified cross-validation new results happen, even if they
are not so different from those in the previous figure. Having a brief look at the
figure 6.9, we see that one fold of cross-validation has results around the previous
ones.

Figure 6.9: Confusion matrix showing Isolation Forest predictions.
The statistics are: - Precision: 0.760, - Recall: 0.782.

After cross-validation technique, by averaging the statistical scores, we obtain
the final result about a general accuracy of the model which provides:

Precision : 0.782, Recall : 0.782, AUC : 0.889.

138 CHAPTER 6. ANOMALY DETECTION APPROACH

6.5 Autoencoder Anomaly Detection using
Reconstruction Error

Unlike the previous methods, here we are going to talk about spectral anomaly
detection techniques. The approach, generally, is supported by the idea that in a
lower dimensional space the two classes are expected to be well separated from
each other. So, these kind of algorithms reduces the spaces into a lower one and
then each data point is reconstructed, that means a point is brought back into
its original form. Then, by the reconstruction error, which is the measure of the
distance between the original data and the reconstructed one, each point can be
classified as normal or anomalous. The meaning of the procedure is based on the
the expectation to obtain the true nature of a data by destroying it and then
reconstructing. In fact, the eventual surrounding noise should be eliminated.

Many algorithms might be used for the problem, all the ones which can perform
a dimensionality reduction of data. Our choice is to apply a deep autoencoder, as it
is done in the article [Che+17]. Autoencoders are artificial neural networks formed
by two different parts: encoders and decoders. The first one has the role to decrease
the dimension by merging the features, while the second one has to reconstruct
data.

So, let’s consider a dataset X = {x1, x2, . . . , xn} where each point is k− dimen-
sional xi = (xi1, xi2, . . . , xik). In our case each dimension corresponds to a different
SPN, so that in practice we will have k = 2. The autoencoder model can be trained
to reconstruct its input. So we call reconstruction error the difference between the
original data and the reconstructed ones. In order to measure this difference, we
will use the common mean square error.
The two parts of an autoencoder are represented by two nonlinear functions fθ and
gθ, where the first one is referred to the encoder and the other one to the decoder,
and θ is the parameter. So, fθ maps each data point xi into a lower dimensional
latent space Z by compressing xi into zi. The compressed latent representation is
then brought back by the decoder function gθ into a reconstructed point x̂i. More

6.5. AUTOENCODERS FOR ANOMALY DETECTION 139

formally,
z = f lθ(x) = σl0

1
W l

0(f l−1
θ (x)) + bl

2
(6.10)

and
x̂ = glθ(z) = σl1

1
W l

1(gl−1
θ (z)) + dl

2
, (6.11)

where l is the number of layers (we are assuming that data passes more than one
step), θ = {W0, b,W1, d} is the set of model parameters, σ0 and σ1 are nonlinear
activation functions, W0 ∈ Rdxl−1 ×dxl , W1 ∈ Rdxl

×dxl−1 , b ∈ Rdxl and d ∈ Rdxl−1 are
offset bias vectors. We denoted with dxl

the data dimension selected with l layers,
meaning that the encoder function at the step with l layers reduces the dimension
of a point from dxl

to dxl−1 . So, the encoder function will do the same but with
the inverse order. The basic assumption is that we will use as many steps for the
encoder part as for the decoder one.
In order to achieve the best approximations as possible, the autoencoder is trained
on a training set to find out which parameters θ̂ minimize the dissimilarity between
the original point x and its reconstruction x̂ = gθ(fθ(x). The optimization problem
to solve is, consequently, the following

θ̂ = arg min
θ
ëX − gθ(fθ(X))ë. (6.12)

Since we fixed the mse metric, the norm above is the euclidean. So, as part of the
network training the loss functions L, defined by the mean square error metric,
that has to be minimized is

Lθ(X, X̂) = 1
n

nØ
i=1

kØ
j=1

1
xik − x̂ik

22
. (6.13)

It is important to claim that inside the encoder the dimension of data has
to be reduced from dxl

to dxl−1 . Otherwise, the function is trivially the identity
function, since by using the identity the error between the original point and the
reconstructed one is 0. But through the dimensionality reduction technique, the
identity function is not suitable for the problem and so we obtain not trivial results.

In the related work where we have to apply the autoencoder model the feature

140 CHAPTER 6. ANOMALY DETECTION APPROACH

dimension is 2, so that just one level of layers we could put in. As a result, the
reduction goes from 2 to 1 and the problem becomes a little easier to be formulated.
In fact,

z = fθ(x) = σ0(W0 · x+ b) (6.14)

and
x̂ = gθ(z) = σ1(W1 · z + d), (6.15)

where W0 ∈ R2×1, W1 ∈ R1×2, b ∈ R and d ∈ R2. Finally, the activation functions
we choose are both the hyperbolic tangent functions (tanh).

Figure 6.10: Architecture of the autoencoder deep neural network. The input layer
and the first hidden layer form the encoder part, whereas the second hidden layer
and the output layer represent the decoder. It is a very simple neural network
architecture.

The architecture of the neural network is shown in Figure 6.10. It is easy to
note that from the point of view of architecture, it is a very simple deep neural
network, since there are few layers. What is very peculiar to be a neural network
is its use. As we explained how the autoencoder model works, currently we have
to pass to its application to the problem of trend anomaly detection. The main
idea is that we want to separate the two classes faulty and normal based on the

6.5. AUTOENCODERS FOR ANOMALY DETECTION 141

anomaly score of each data point. So, we would like to have anomalous points with
high score and normal data with low score. In order to have it, the fundamental
concept is that autoencoder should learn only how to create a normal point. In
fact, by training the network on just normal data, we make sure that the decoder
part would reconstruct each point as if it was normal because it knows just how
to do it. So, basically a faulty data will have a higher reconstruction error because
of it will be probably reconstruct as a normal data, with different CAN values.
After that, the model is tested on the entire test set and we compute the statistical
scores based on a stratified sample of data.

One question has to be solved: how can we compute the threshold separating
the two classes into anomalous and normal data? Well, as the previous models,
once the anomaly score has been calculated for each CAN message, we have to set
the right threshold in order to maximize certain performances of the model. Here
it comes the role of the validation set: the idea is to use few data (around 10/15%
of the whole data set) to test the trained model in order to find out the optimal
threshold which maximizes precision and recall. For this part it is essential not to
use the test set, avoiding eventually overfitting of data. Obviously, because of we
want to maximize two statistics, the model threshold has to maximize the F1 score
which is the combination of the two previous scores.

Let’s summarize how to use an Autoencoder for rare-event classification, as to
separate faulty CANs from normal CANs:

• we divide the data into two parts: Faulty CANs and Normal CANs;

• the normal labeled data are treated as normal state of the process. A normal
state is when the process is not affected by DM1s;

• we ignore the faulty points of training set and train the autoencoder model
on only normal data;

• this Autoencoder has now learned the features of the normal process.

• Then, a well-trained Autoencoder will predict any new data that is coming
from the normal state of the process (as it will have the same pattern or

142 CHAPTER 6. ANOMALY DETECTION APPROACH

distribution);

• therefore, the reconstruction error of normal points will be small;

• however, if we try to reconstruct a faulty point, the Autoencoder will struggle
since it knows only how to recreate normal points;

• this will make the reconstruction error of faulty CANs high;

• we can catch such high reconstruction errors and label them as a faulty CAN
prediction.

Now we can go on showing the results. First of all, since the problem has only
two features and not so many data, the number of epoch of the training set could
be lower than the usual value. In fact, for each epoch the model learn through the
training set and evaluate itself on the validation set. But because of the simple
structure of data, the loss error tends to be stable just after few epochs, as it is
shown in Figure 6.11

Figure 6.11: Autoencoder loss function calculated on training and validation set. It
measures for each epoch the mean square error between the input and the output
of the model.

Then after tracing the history of the model, let’s have a look at the precision
recall curve, shown in Figure 6.12. The optimal threshold is set to 6.27. In order

6.5. AUTOENCODERS FOR ANOMALY DETECTION 143

to find that value, we computed for each threshold the F1 score. It is an important
method to figure out which are the best combination of precision and recall, mostly
when we have a lot of couples to examine and many of them are not easy to be
compared each other. In fact, generally we should compare couples where, for
example, precision of the first is higher than precision of the second but for the
recall it’s true the opposite relation. So, if the values were the same but inverted,
such as (precision1, recall1) = (a, b) and (precision2, recall2) = (b, a), we would
prefer a higher recall. We think it might be more useful to predict faulty when the
CAN is normal instead of the contrary. As a result, the recall score is much more
important for the problem than the precision.

Figure 6.12: Autoencoder precision/recall curve. It shows for each threshold the
precision and recall values that the model performs on the validation set. The
common method provides to choose the optimal threshold by maximizing the F1
score on the validation set.

Then, the next step involves the prediction on the test set, by computing for
each point its reconstruction error and then labeling it as faulty if the score is
higher or equal than 6.27, normal if it is lower. In order to compute the model
performances on the test set, look at the Figure 6.13. Green points represent all
the true normal data, whereas the faulty CANs are colored red. The violet line
is the optimal threshold, which has the equation (y = 6.27). So, the scatter plot
shows that each point under the violet line is predicted as normal and that the

144 CHAPTER 6. ANOMALY DETECTION APPROACH

Figure 6.13: Scatter plot showing for each point its reconstruction error. Data
points are colored by classes. The threshold divides the predictions of the two
classes based on the error value.

model doesn’t make so many errors: just few red points are below the threshold, so
that we could expect a high AUC score (see Figure 6.5 for the result). In addition, a
little more green points are located in the above region, even if the majority of data
are red. Overall, the results achieved are pretty good, meaning that the algorithm
is well working even if the amount of data is not so elevate and the number of
features is 2. By the Figure 6.14, we have a clearer situation of the performance of
Autoencoder neural network. Observe that the model predict always faulty when
values are inside the faulty gap and rarely it makes a mistake claiming faulty when
a DM1 is not close to occur. So, as a result, by using stratified cross-validation on
the data set the model reaches the following scores:

Precision : 0.802, Recall : 0.796, AUC : 0.994.

6.5. AUTOENCODERS FOR ANOMALY DETECTION 145

Figure 6.14: Plot showing SPN 100 time series for one year with its moving aver-
age (orange). The red lines underscore DM1 occurrences whereas the violet ones
highlight Autoencoder predictions (about 30 hours before the first DM1).

146 CHAPTER 6. ANOMALY DETECTION APPROACH

6.6 Increasing the interpretability of
Autoencoders using Hidden Markov Models

In this section we focus again on Autoencoders, state of the art models in Ma-
chine Learning problem solving. Following the recent progress in deep learning,
researchers of machine learning are developing many deep models based on Au-
toencoders. Furthermore, the importance of understanding and interpreting what
goes on deep neural networks gives value to the search for new methods to make
the models more complete. Our approach to increasing interpretability is by com-
bining an Autoencoder with a Hidden Markov Model (HMM), a simpler and more
transparent model. So, what could be the role of HMM for the new model?

Figure 6.15: The first graph shows an example of SPN 100 trend together with its
moving average (orange). The red lines identify when a DM1 occurs. The second
plot illustrates the Hidden Markov Model predictions about anomalous trend,
while the violet plot is related to Autoencoder predictions. The sample involves
data from mid January 2018 to January 2019 and just one unit is considered.

Currently we have a dataset where the response variable of the models is binary

6.6. AUTOENCODERS ON HMM 147

and its values are chosen by an empirical and deterministic approach. We selected
the best time when CANs start changing substantially their values and we put that
time as a separation of the two classes faulty and normal. But, can we automate
this mechanism by searching for a method which is independent of the time but
looks just for the significant variation in the CAN trends? Well, as we explained
in a chapter before, Hidden Markov Models can be trained exactly for this aim.
Looking at the Figure 6.15, we can observe the different roles that HMM and
Autoencoder have. In fact, while HMM is less accurate but it is able to predict
DM1 until 5 days before, Autoencoder is very precise but it predicts DM1 just 30
hours in advance and it has to be trained on a well defined normal behaviour of
data. By the way, the new two-steps model has the following form:

• First, we train a HMM on the training set and through its prediction of the
states we label a data point as faulty or normal, like in section 5.5.2.

• Then we assume that the prediction is true, in the sense that the trend is
changing state for real.

• As a result, we train the Autoencoder model on the training set, using the
labels defined by the HMM.

• Finally, in order to evaluate the performances we looks for the true empirical
response variable defined with time label 30.0h.

Actually, the sense of this approach regards the interpretability of data. Since the
goal is to predict within more or less a range of 30 hours the occurrence of a DM1,
the data into the training set are affected by a lot of noise. It causes many mistakes
due to the fact that most of the CANs close to the threshold between the classes
(we mean those messages which are broadcast about 30 hours before) are assigned
to a class whereas it is likely that they belong to the other one. So, instead of using
a deterministic classification, we take the HMM results as they were true to train
the deep neural network model.
Finally, the results computed by using cross-validation are shown below:

Precision : 0.810, Recall : 0.808, AUC : 0.995.

148 CHAPTER 6. ANOMALY DETECTION APPROACH

By comparing the results with those obtained by Autoencoder without assuming
the HMM output as true status, we could observe that they are slightly better. In
fact, probably the normal situation is much better defined because all the points
with an anomalous trend are considered as faulty even if didn’t appeared any
DM1. So, the training is performed at the top. The boundary is related to the test
data points which are hard to classify correctly, according to the noise surrounding
them.

Chapter 7

Testing the model on unknown
DM1s

The whole model seems to work when one DM1 has data from its related parameter
inside the dataset. But, as we said in the section 2.3.2, without the suggestions
by a domain expert we probably would choose the 3 DM1s which frequently occur
together. It might be a relevant choice because their occurrence at the same time
could be a symptom of of a more serious problem. So, in order to keep the same
structure as before, we consider those 3 DM1s as a unique more complex DM1 and
we are going to repeat the whole procedure to predict it.

We will skip the data preparation part because it is exactly the same as the
other DM1, so that we start discussing the results from the feature selection part.

7.1 Feature Selection for unknown DM1s

Following the previous approach, we have to apply the Mutual Information, SVM-
RFE and ERT algorithms. So, without repeating again the theory behind all the
methods, let’s use the same thresholds as for the engine oil pressure DM1. The
results are far from the previous ones: since in this case the dependence is really
low, the final table representing the features passing all the tests is empty. So, in

149

150 CHAPTER 7. TESTING THE MODEL ON UNKNOWN DM1S

label_time feature mutual_info_score importance_ETC rank_RFECV

0 1.0h 30036 0.31 10.43 1.0
1 2.0h 30036 0.30 10.64 1.0
2 2.0h 30104 0.21 10.00 1.0
3 2.5h 30036 0.32 10.40 1.0
4 3.5h 30036 0.30 10.55 1.0
5 5.0h 30036 0.31 10.43 1.0
6 5.0h 30104 0.22 10.68 1.0
7 12.0h 30104 0.23 10.59 1.0
8 30.0h 30036 0.30 10.48 1.0
9 30.0h 30104 0.30 9.94 1.0
10 36.0h 30036 0.31 10.48 1.0
11 36.0h 30104 0.26 9.60 1.0

Table 7.1: Table showing the dataframe containing only those relevant features
and the respective time label.

order to have at least one feature, we decide to reduce thresholds to:

Threshold Mutual Information = 0.2 %; (7.1)

Threshold Importance ERT = 10.0 %; (7.2)

Threshold ranking RFE-SVC = 1.0. (7.3)

Proceeding in this way, the results are shown in the table 7.1. See that just
two SPNs are relevant for the problem, even if they obviously are low dependent
from the response variable (low scores). The CAN parameters number 30036 is
related to the Engine Battery Voltage, whereas the number 30104 measures the
Engine Urea Tank Level. Since they both are not qualitative variables, we add two
columns containing their moving averages. Before going on, note that choosing
the RFE-SVC threshold equal to 1 is not restrictive. In fact, as it is shown in
Figure 7.1, through the cross-validation score exactly 12 features are selected and
ranked as first. The main reason is always the same, that is the weak dependence.

Let’s move on the next step, which corresponds to the time series distance by
DTW. The technique considers one SPN at the time among 30036, 30036_ma,
30104 and 30104_ma. Then, it computes the DTW score by the rate of faulty

7.1. FEATURE SELECTION FOR UNKNOWN DM1S 151

Figure 7.1: Plot showing for each number of selected features its cross-validation
score. The best ranking is chosen according to the maximum score.

windows over the total number of time series (see the section 4.6.2). If the same
threshold as the previous case is used, then the result is an empty set of features.
So, let’s use the threshold of 0.25. The results shown in table 7.2. As you can see
there, just SPN 30036 is a little significant from the point of view of sequential
values. It means that neither SPN 30104 nor the moving averages are very relevant
for the problem. But in order to use the methods we developed, we are going to
add to the SPN 30036 its moving average, so that the dimensions will be at least
2.

spn time_label faulty_can count rate Faulty/Normal

1 30036 1.5h 10.0 39 0.256410
2 30036 2.5h 10.0 39 0.256410
3 30036 3.0h 11.0 38 0.289474
4 30036 4.5h 10.0 37 0.270270
5 30036 5.0h 10.0 37 0.270270

Table 7.2: Table showing the dataframe containing only those relevant features
and the respective time label for the DTW score.

152 CHAPTER 7. TESTING THE MODEL ON UNKNOWN DM1S

(a) (b)

Figure 7.2: (a) At the left, confusion matrix showing the scores related to HMM
probabilities to detect an unknown DM1. The statistics are: - Precision: 0.0001,
- Recall: 0.0083. (b) At the right, confusion matrix showing the scores related to
HMM states predictions over an unknown DM1. The statistics are: - Precision:
0.0006, - Recall: 0.0289.

7.2 Predictive models results

Starting from the Hidden Markov Model, we hope that all the faulty CANs belong
to the same state. Looking at the confusion matrix in the Figure 7.2b, you can
immediately imagine that the expected situation doesn’t occur: since the true
positive rate is really low, faulty CAN messages are distributed over many different
states so that the HMM can’t be used as a classifier. Both the two confusion
matrices are reported in Figure 7.2, showing the extremely low values achieved
with this kind of data. As a result, the model isn’t efficient to predict and prevent
a failure.

Moving on to the kNN Outlier Detector model, let’s find if the distance-based
model might be more effective. So, the number of neighbours is put to the amount
of faulty CAN messages plus 100. The contamination score, as in the Isolation
Forest, is the ratio of the number of faulty CANs to the total number of CANs

7.2. PREDICTIVE MODELS RESULTS 153

(a) (b)

Figure 7.3: (a) At the left, confusion matrix showing the scores related to kNN
Outlier Detector (distance based algorithm). The statistics are: - Precision: 0.0147,
- Recall: 0.0143. (b) At the right, confusion matrix showing the scores related to
Isolation Forest, which is the tree based model. The statistics are: - Precision:
0.0247, - Recall: 0.0247.

inside the training set. In addition, we test the model also with the Isolation Forest
technique, which is connected to the tree based approaches. Both the results are
reported in the Figure 7.3.

The last method we test is the Autoencoder model. Since we have left two
features inside the dataset to use properly this neural network, let’s set the hidden
dimension to 1 and use one encoder and one decoder. The number of epochs is set
to 25 and the procedure is cross-validated. As a result, look at the Figure 7.4 to
figure out the scores.

As the previous algorithms, low scores have the meaning of low dependence
between the features and the response variable. Basically, from this chapter it
emerges that if the chosen DM1 has the related SPN parameter monitored, then
the model might achieve high results and it might be efficient for the real prediction.
On the other hand, if the SPN is not controlled then the analysis shall not be made
as in this thesis.

154 CHAPTER 7. TESTING THE MODEL ON UNKNOWN DM1S

Figure 7.4: Confusion matrix showing the Autoencoder final statistics: - Precision:
0.0252, - Recall: 0.0366, - AUC : 0.595.

Chapter 8

Final evaluation

8.1 Overall results

After data preparation, which refers to the construction of an appropriate dataset
for the prediction, the feature selection process outputs are really interesting. As
we discussed above, just one SPN (100) is dependent from the engine oil pressure
DM1 even if its measure of dependence is very low, meaning that a lot of noise
affects data.
Now we can compare all the results obtained with the algorithms above. The final
scheme is reported in Figure 8.1.

Looking at the tree map, we see that the Markov model based on the emission
probabilities is not competitive with respect to the others. Then, taking hidden
states into account, the precision, recall and AUC scores dramatically increase.
Distance based method called largest kNN achieves scores around 70% (precision
and recall), highlighting its limits related to the use of distance as anomaly score.
In fact, our problem has to detect just low values and not extreme points in a
wider sense, as the kNN model might do.
The isolation forest algorithm divides the space into a sort of grid by cutting each
feature once at the time. Then, the outliers are those points which are located in
a less density zone. So, the results are quite high because of the method is able
to separate low values from the normals through sequential cuts. The limit of the

155

156 CHAPTER 8. FINAL EVALUATION

Figure 8.1: Tree map showing for each model its scores (Precision, Recall, AUC).
Colors are based on recall score so that the blues are higher than browns as reported
in the legend. About the dimensions of the rectangle it has to be read as the bigger
the higher AUC score.

model is to give the same weight to the variables, so that when just one of the two
SPNs is low it predicts faulty.
With the Autoencoder model the scores are almost to the top. Basically, it’s limits
concerns the amount of data which could not be sufficient to perform perfect
results. Furthermore, its performances might decrease because of the 2 dimensional
space. In this case, even the presence of noise surrounding all the points could affect
the results.
By training Autoencoders on Hidden Markov Model output, the interpretability
of the problem increase because what we did is to consider variable time interval
before the DM1 instead of putting a deterministic and empirical one. So, it means
that the situation is completely disjointed from the time context, even if we want
to make a prediction with a gap of 30 hours.
Finally, the two step model is the best in term of performances, but it requires a
lot of data and features to perform at the top.

8.2. CONCLUSION 157

8.2 Conclusion

Off-road vehicles usually work in suburbs where mechanics can’t get there in a
short time. So, unplanned stops could make them loose a large amount of time.
For this reason a properly maintained vehicle might reduce the risk of errors and
keep the unit working without wasting time. Predictive maintenance is the an-
swer to those problems because it is able to introduce in-time recommendations
which might limit the waste of time and make works more efficient. Here we have
presented a mathematical approach based on HMMs and Autoencoders for pre-
dicting upcoming error messages about the engine oil pressure too low. The model
is formed by using the currently available vehicle CAN messages together with the
related DM1s. Consider that this data are taken day by day and they are designed
for other purposes. Actually, they are not used for predictive maintenance but just
for statistical analyses. It creates many challenges, as the one connected to the
granularity of data and the connection between the parameters messages and the
error messages we dealt with in this work. This challenge is presented and handled
in order to build a right predictive model.

As we said before, the research contribution can be divided into two parts:
granularity of data and dependence between SPNs and DM1. About the first one,
since what we would want to do is to build a predictive model, we should have as
more precise as possible data and, mostly, as much data as we can . In order to
make a really accurate data cleaning, messages should be taken every one or two
minutes at the most. Currently the granularity is 10 minutes, so that we don’t have
many data and they are full of noise since each point is a statistic on a 10-minute-
sample (about 60.000 records). In fact if we selected data into an accurate interval
of normal CANs (no faulty) which probably doesn’t contain any outliers or dirty
points, the result would be as in picture 8.2. It illustrates how values would be
after we cleaned as more precise as we can all the normal points, and the difference
between the amount of data moving from 10 minutes to 2 minutes of granularity.
From this we conclude that, while we can’t do it currently because of the small
number of 10 minutes data, by changing the granularity to 2 minutes we might
have enough points to make the same analysis as before but with a cleaner and

158 CHAPTER 8. FINAL EVALUATION

more accurate dataset. The last observation about the amount of data is connected

Figure 8.2: The graph shows two different behaviours under granularity at 10
minutes (above) and 2 minutes (below). Data are taken during 30 hours randomly
selected. In the left part, you can see the time series plot without accurately
cleaning data, whereas at the right it is reported the plot after filtering points
just to values into the interval [375, 475], which is the most likely to contain only
real explainable data. Looking from the left to the right, you can observe how the
time series becomes significantly more precise. Looking from top to bottom, it is
evident the increase of the amount of data (from 57 to 277 and 43 to 233).

with the procedure we assume inside this thesis. Since to mark each CAN message

8.2. CONCLUSION 159

with Normal or Faulty labels the method goes backward in time until 30 hours
are reached, we feel it has to be remarked that the number of messages influence
a lot the entire model, mostly the feature selection part. Suppose that one SPN
predicts the DM1 about 1 hour in advance or even 30 minutes. Then, just 3 or 4
or 5 messages are likely to be labelled as faulty. It means that we should compute
distributions or sequentiality measures with just few data and it might negatively
affect the results. For this reason, a lower granularity is needed.

The second contribution is a practical demonstration of the uncorrelation, in
the wider sense of non-dependence, between SPNs and DM1s as it emerged from
the chapter 7. Generally the applied feature selection methods eliminate all the
SPNs but the one which directly influences the DM1. In fact, one experiment in-
volving one unknown DM1 revealed that no SPNs are connected with the response
variable. Of course it means that, through the same thresholds we put, the result
was an empty dataframe. So the suggestion we can propose is to change the kind of
recorded parameters. Since the dependence is very low even if the SPN is directly
involved into the DM1 occurrence, in order to have an accurate prediction they
should take care of as many as possible parameters related to the DM1 of interest.
So, for first it is necessary to detect a relevant DM1 through the knowledge of
the domain, and then they could put sensors that detect DM1-related data to get
more information about the problem. It will increase substantially the accuracy of
the model, so that a valid implementation could be performed.

160 CHAPTER 8. FINAL EVALUATION

Bibliography

[Rab89] Lawrence R Rabiner. “A tutorial on hidden Markov models and se-
lected applications in speech recognition”. In: Proceedings of the IEEE
77.2 (1989), pp. 257–286.

[CT91] Thomas M Cover and Joy A Thomas. “Entropy, relative entropy and
mutual information”. In: Elements of information theory 2 (1991),
pp. 1–55.

[YXC94] Jie Yang, Yangsheng Xu, and Chiou S Chen. “Hidden markov model
approach to skill learning and its application to telerobotics”. In: IEEE
transactions on robotics and automation 10.5 (1994), pp. 621–631.

[DD99] Richard Durrett and R Durrett. Essentials of stochastic processes.
Vol. 1. Springer, 1999.

[RRS00] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient
algorithms for mining outliers from large data sets”. In: ACM Sigmod
Record. Vol. 29. 2. ACM. 2000, pp. 427–438.

[ZM00] Xinchuan Zeng and Tony R Martinez. “Distribution-balanced strati-
fied cross-validation for accuracy estimation”. In: Journal of Experi-
mental & Theoretical Artificial Intelligence 12.1 (2000), pp. 1–12.

[KP01] Eamonn J Keogh and Michael J Pazzani. “Derivative dynamic time
warping”. In: Proceedings of the 2001 SIAM international conference
on data mining. SIAM. 2001, pp. 1–11.

[BDC02] Peter J Brockwell, Richard A Davis, and Matthew V Calder. Intro-
duction to time series and forecasting. Vol. 2. Springer, 2002.

161

162 BIBLIOGRAPHY

[Cha+02] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling
technique”. In: Journal of artificial intelligence research 16 (2002),
pp. 321–357.

[Guy+02] Isabelle Guyon et al. “Gene selection for cancer classification using
support vector machines”. In:Machine learning 46.1-3 (2002), pp. 389–
422.

[HPL02] Steve Corrigan HPL. “Introduction to the controller area network
(CAN)”. In: Application Report SLOA101 (2002), pp. 1–17.

[Sta04] Mark Stamp. “A revealing introduction to hidden Markov models”. In:
Department of Computer Science San Jose State University (2004),
pp. 26–56.

[Sal05] Felix Salfner. “Predicting failures with hidden Markov models”.
In: Proceedings of 5th European Dependable Computing Conference
(EDCC-5). 2005, pp. 41–46.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely ran-
domized trees”. In: Machine learning 63.1 (2006), pp. 3–42.

[SC07] Stan Salvador and Philip Chan. “Toward accurate dynamic time warp-
ing in linear time and space”. In: Intelligent Data Analysis 11.5 (2007),
pp. 561–580.

[Fur08] Titus Felix Furtună. “Dynamic programming algorithms in speech
recognition”. In: Revista Informatica Economică nr 2.46 (2008), p. 94.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In:
2008 Eighth IEEE International Conference on Data Mining. IEEE.
2008, pp. 413–422.

[CL11] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support
vector machines”. In: ACM transactions on intelligent systems and
technology (TIST) 2.3 (2011), p. 27.

BIBLIOGRAPHY 163

[LTZ12] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation-based
anomaly detection”. In: ACM Transactions on Knowledge Discovery
from Data (TKDD) 6.1 (2012), p. 3.

[Rak+12] Thanawin Rakthanmanon et al. “Searching and mining trillions of time
series subsequences under dynamic time warping”. In: Proceedings of
the 18th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM. 2012, pp. 262–270.

[Ota+13] Dr Otair et al. “Approximate k-nearest neighbour based spatial clus-
tering using kd tree”. In: arXiv preprint arXiv:1303.1951 (2013).

[Pry14] Rune Prytz. “Machine learning methods for vehicle predictive main-
tenance using off-board and on-board data”. PhD thesis. Halmstad
University Press, 2014.

[SZZ15] Skyler Seto, Wenyu Zhang, and Yichen Zhou. “Multivariate time series
classification using dynamic time warping template selection for hu-
man activity recognition”. In: 2015 IEEE Symposium Series on Com-
putational Intelligence. IEEE. 2015, pp. 1399–1406.

[YZ15] Ke Yan and David Zhang. “Feature selection and analysis on correlated
gas sensor data with recursive feature elimination”. In: Sensors and
Actuators B: Chemical 212 (2015), pp. 353–363.

[A+16] Preeti Arora, Shipra Varshney, et al. “Analysis of k-means and k-
medoids algorithm for big data”. In: Procedia Computer Science 78
(2016), pp. 507–512.

[Ye+16] Ning Ye et al. “Vehicle trajectory prediction based on Hidden Markov
Model.” In: KSII Transactions on Internet & Information Systems
10.7 (2016).

[Che+17] Min Chen et al. “Deep features learning for medical image analysis
with convolutional autoencoder neural network”. In: IEEE Transac-
tions on Big Data (2017).

164 BIBLIOGRAPHY

[Mur17] Yonathan Murin. “k-NN Estimation of Directed Information”. In:
arXiv preprint arXiv:1711.08516 (2017).

[Fol+18] Duarte Folgado et al. “Time Alignment Measurement for Time Series”.
In: Pattern Recognition 81 (2018), pp. 268–279.

[GE18] Izhak Golan and Ran El-Yaniv. “Deep Anomaly Detection Using Geo-
metric Transformations”. In: Advances in Neural Information Process-
ing Systems. 2018, pp. 9758–9769.

[PAD18] Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto.
“Generative Probabilistic Novelty Detection with Adversarial Au-
toencoders”. In: Advances in Neural Information Processing Systems.
2018, pp. 6822–6833.

[KD] Marius Kloft and BERLIN DE. “Hidden Markov Anomaly Detection”.
In: ().

	Introduction and relative work
	Predictive-Oriented dataset construction
	Introduction to data preparation
	CAN parameters analysis
	What is a CAN message
	CAN data exploration
	Clustering units according to their general behaviour
	Unsupervised results

	Diagnostic message 1 (DM1) analysis
	What is a Diagnostic Message 1
	DM1 data exploration: co-occurrence analysis
	DM1 data exploration: lifetime analysis

	Creation of the predictive dataset and data cleaning

	Time Series
	Sample Autocorrelation Function
	Trend Analysis
	Analysis of seasonality

	SPN by SPN autocorrelation analysis

	Feature Selection
	Introduction to Feature Selection
	Entropy and Mutual Information
	Entropy
	Joint Entropy and Conditional Entropy
	Relative Entropy and Mutual Information
	Mutual Information for Feature Selection

	SVM-RFE
	Feature ranking with SVM-RFE
	SPN ranking based on cross-validated selection

	Feature Importance by ERT
	Extremely Randomized Trees
	Importance Analysis

	Creating a new feature: Moving Average Engine Oil Pressure
	Dynamic Time Warping
	Dynamic Time Warping Algorithm
	DTW Distance for sequentiality Feature Selection

	Final subset of SPNs for engine oil pressure analysis

	DM1 prediction: a probabilistic approach
	Discrete Time Markov Chains
	Intuition behind Hidden Markov Models
	Three Basic Problems for HMMs
	Why HMMs are suitable for DM1 Prediction
	Hidden Markov Models application
	HMM for Failure Detection
	HMM for faulty trend prediction

	Prediction of Faulty CAN messages using Anomaly Detection techniques
	Preliminary Concepts
	Stratified Cross validation
	SMOTE: Synthetic Minority Over-sampling
	Precision, Recall and AUC statistics

	Why Anomaly Detection for Predictive
	K Nearest Neighbor Outlier Detection
	Isolation Forest
	Autoencoders for Anomaly Detection
	Autoencoders on HMM

	Testing the model on unknown DM1s
	Feature Selection for unknown DM1s
	Predictive models results

	Final evaluation
	Overall results
	Conclusion

