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Introduction

My Master Thesis concerns methods for the segmentation of retina fundus

images based on innovative techniques from deep learning.

Systematic diseases such as diabetic retinopathy, glaucoma and aged-

related macular degeneration, are known to cause quanti�able changes in the

morphology of the retinal microvasculature. This microvasculature is the only

part of the human circulation that can be visualized non-invasively in vivo so

that it can be readily photographed and processed with the tools of digital

image analysis. As the treatment of serious pathologies such as diabetic

retinopathy can be signi�cantly improved with early detection, retinal image

analysis has been the subject of extensive studies. To carry out this task

successfully, one needs to quantify the morphological characteristics of the

vascularization of the retina. However, manual extraction of this information

is time-consuming, labor-intensive and requires trained personnel. For this

reason, several methods have been proposed for the automated segmentation

of the retinal microvasculature. Thanks to the advances in image processing

and pattern recognition during the last decade, a remarkable progress is

being made towards developing automated diagnostic systems for diabetic

retinopathy and related conditions. Despite this progress, several challenges

remain.

With recent remarkable advances in the �eld of neural networks and deep

learning, several improved methods for segmentation have been introduced in

biomedical imaging. Unlike classical model-based methods, neural networks

require a training stage, hence there is the need of training data, speci�cally
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images annotated by domain experts. Nonetheless, Convolutional Neural

Networks (CNN) like U-net can be trained with a relatively small number

of training examples. One main advantage of neural networks is that they

o�er the possibility to extract features from raw images avoiding the need of

building hand-designed features. Their ability to discover spatial local corre-

lations in the data at di�erent scales and abstraction levels, allows them to

learn a set of �lters that are useful to correctly segment the data and, at the

same time, to learn a representation of their morphological characteristics.

Since ocular fundus imaging is widely used to monitor the health status of

the human eye and other pathologies (e.g., diabetic retinopathy) and sev-

eral annotated databases are available, my investigation was focused on the

development of a CNN for the segmentation of retina fundus images. For

this goal, I adapted a U-net architecture consisting of two sections of con-

volutional �lters; the �rst section is an encoder that is designed to �nd an

e�cient representation of the image in terms of high-dimensional feature vec-

tors; the second section is a decoder that map the feature vectors of the en-

coder into an appropriate segmentation mask. By adapting existing results

from the literature, I have also investigated the inclusion of an additional

layer aimed at extracting an internal representation of the network encoding

the morphological characteristics of the image.

The training and tuning of this CNN are the core of my Master Thesis,

motivated by the goal to build an automated algorithm for the segmenta-

tion of retinal images with the ability to learn the morphology of the retinal

microvasculature and to output feature vectors encoding this critical infor-

mation.

Document structure

This Thesis is divided into four main sections.

The first chapter presents the "Background" and the motivations upon

which I built my Thesis, as well as the subject of this research.

The second chapter gives an overview of deep learning and its crucial role in



INTRODUCTION 5

the retina imaging area.

The third chapter deals an accurate explanation of all the critical concepts

on which the code has been written: Neural Network and Convolutional Neu-

ral Network.

In the fourth chapter I will examine each script composing the code.

The conclusions summarize the main results, but also present a future pos-

sible research work.

Lastly, in the appendix the implemented scripts are available.





Chapter 1

Background

1.1 Motivation

A crucial element for the sense of sight is the retina, a layered tissue coating

the interior of the eye responsible for the formation of images. By converting

light into a neural signal that will be later processed in the brain visual cor-

tex, the retinal tissue is classi�ed as highly metabolically active because of

its double blood supply which allows a direct non-invasive observation of the

circulation system [3]. In particular, this microvasculature is the only part of

the human circulation that can be visualized non-invasively in vivo, so that

it can be readily photographed and processed with the tools of digital image

analysis.

For this reason, knowing that systematic diseases such as diabetic retinopa-

thy, glaucoma and aged-related macular degeneration cause quanti�able chan-

ges in the geometry of the retinal microvasculature and that the treatment of

these serious pathologies can be signi�cantly improved with early detection,

retinal image analysis has been the subject of extensive studies. Multiple

methods have been implemented with focus on the segmentation and delin-

eation of the blood vessels: each approach attempts to recognize the vessel

structure, fovea, macula and the optic disc, and to organize the fundus image

according to a set of features [3].
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Particularly, convolution with matched �lters is an important method in this

�eld, as these �lters are approximations to the local pro�les that vessels are

expected to have and their convolution with the data outputs higher values

at the locations where the similarity is higher. Even then, it is common

that vessels show di�erent types of cross section pro�les, making the a priori

design of �lters a complex task. Therefore, despite the progress, signi�cant

challenges remain.

1.2 Anatomic structure of the retina

Retinal layer and structure

The retina is a sensitive tissue inside the eye, located in the inner surface of

the posterior two-thirds at three-quarters of the eye on human individuals.

So, the retina is a delicate, thin and transparent sheet of tissue derived from

the neuroectoderm, in which a series of electrical and chemical events occur,

triggered by the optical elements of the eye as they focus an image [5].

The retina comprises the sensory neurons and it is the beginning of the vi-

sual path way. Multiple neurons compose the neural retina (neuroretina):

it is divided into nine layers and is a key component in the production and

the transmission of electrical impulses. Then, the electrical signals generated

from this chain of events are sent to the brain via nerve �bers, where they

are interpreted as visual images.

The centre of the retina, known as macula, is responsible for the central

vision (�ne vision) and its center is designated as fovea (as we can observe in

�gure 1.1): this part allows the eye the greatest resolving power [5]. The liv-

ing tissue of the retina can be captured using photography, laser polarimetry,

�uorescein angiography or optical coherence tomography.
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Figure 1.1: Retina and structures involved in �ne vision [5].

Retinal vessels and blood supply

To understand functions and anatomy of the retina, a key concept is to study

its vessels and the blood supply. As stated before, the analysis of these struc-

tures has a crucial importance to diagnose several diseases and malfunctions.

Apart from the foveolar avascular zone, said FAZ, and the extreme retinal

periphery (that can be supplied throughout the choroidal circulation by di�u-

sion since they are extremely thin), the remaining part of the human retina is

too thick to be supplied by either the retinal circultion alone or the choroidal

circulation only [6]. Thus, the choroidal circulation supplies the outer retina,

while the inner retina is supplied by the retinal circulation. The ophthalmic

artery (the �rst branch of the carotid artery on each side) is the main supplier

of blood to the retina, since both the choroidal and the retinal circulation

has origin there.

Then there is the choroid, a vascular layer of the eye which contains connec-

tive tissues and lies between the retina and the sclera; this part receives till

80% of all the ocular blood. The remainder goes through the iris and the

ciliary body for the 15%, while the last 5% goes to the retina.

Now, the choroidal circulation is fed by the ophthalmic artery by the lateral

and medial posterior ciliary arteries, which give rise to one long and several

short posterior ciliary arteries. All the blood in the capillaries of the choroid

(the choroiocapillaris) is supplied by the short posterior arteries, which enter
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the posterior globe close to the optic nerve [7], as we can see in �gure 1.2.

Particulalrly conserning the retinal circulation, after entering the orbit the

central retinal artery branches o� the ophthalmic artery and enters the optic

nerve behind the globe. Subsequently, the central artery emerges from within

the optic nerve cup to give rise to the retinal and inferior circulation with

its four main branches, the inferior and superior nasal and temporal retinal

arteries. This circulation supplies blood to all the layers of the neuroretina

with the exception of the photoreceptors layer (which is an avascular layer

dependent on the choriocapillaris).

As last consideration, it is noticeable that the retina circulation has a recur-

sive layout, as it is characterized by the temporal retinal vessel which curves

around the fovea and the FAZ [8].

Figure 1.2: Choroidal circulation [7].
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1.3 Fundus Image

The ocular fundus imaging plays a key role in monitoring the health status

of the human eye. In general, the assessment and classi�cation of ocular al-

terations can be easily made thanks to a large number of imaging modalities.

Particularly, the color fundus photography is one the most important and

older techniques used to obtain these images. It requires a fundus camera,

which is a complex optical system comprising a specialized low power micro-

scope with an attached camera, capable of simultaneously illuminating and

imaging the retina. Overall, this system is designed to image the interior

surface of the eye, which includes the retina, posterior pole, optic disc and

macula [4]. Initially born as a �lm-based imaging, fundus photography has

been a crucial tool for the early developments in diagnoses and pathology

studies. Later, with the advent of digital imaging, the use of digital fundus

imaging allowed to reach higher resolution, easier manipulation, processing,

tracing of irregularities and faster transmission of information.

Figure 1.3: Retinal circulation illustrated through Fundus Fluorescein An-

giography [8].
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1.4 DRIVE Dataset

My study is built upon the Fundus image database DRIVE, which consists

of images obtained from a diabetic retinopathy screening program in The

Netherlands, in which the screening population were composed of 400 dia-

betic subjects between 25 and 90 years of age. Forty photographs have been

randomly selected: 33 belong to health individuals and 7 show signs of mild

early diabetic retinopathy [3]. Each image was acquired using a Canon CR5

non-mydriatic 3CCD camera with a 45-degree �eld of view (FOV) using 8

bits per colour plane at 768 by 584 pixels, and has been cropped around the

FOV, which is circular with a diameter of approximately 540 pixels, so that

the �nal dimension of each image is 584× 565 pixels.

For each image it is provided a mask image delineating the FOV, so that the

database is divided into two sets of images: a training set and a testing set,

each one composed of 20 images.

In addition, for each training image is available a manual segmentation of

the vasculature (�gure 1.4), while for the test dataset two segmentations are

provided, where the �rst one is used as gold standard and the other one can

be used to compare the segmentation performed by an independent human

observer with the computer generated segmentation.

Figure 1.4: An original DRIVE image from the training set on the left and

its manual segmentation on the right.
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Retina imaging and Deep learning

2.1 Context

As already mentioned in the previous chapter, the vascular network of the

human retina is a crucial diagnostic factor in ophthalmology. An automatic

analysis and detection of the retinal vasculature can be widely useful for the

implementation of screening programs for the diagnostic of several diseases,

computer assisted surgery and biometric identi�cation [9]. The retinal vas-

culature is composed of arteries and veins which appear as elongated features

in the retinal image. Neverthless, the segmentation of the vascular network

in fundus imaging is a nontrivial task owing to the variable size of the vessels,

relative low contrast and potential presence of pathologies such as haemor-

rhages, microaneurysms, bright and dark lesions and cotton wool spots. The

vessels are locally linear and their intensity varies gradually along the length,

but the shape, size and local grey level of blood vessels can widely vary, and

some background features may show similar attributes. In addition, vessel

crossing and branching can further complicate this task [3].

Notice that, in simple terms, while the purpose of Image Classification is

to assign a label to an image from a �xed set of categories, the Segmentation

task aims to identify a precise pattern in the image.

In general, the algorithms for the segmentation of blood vessels in medical
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images are divided into two groups. One consists of the rule-based methods,

i.e., unsupervised methods: vessel tracking, matched �lter responses, multi-

scale approaches and morphology-based techniques. The other group consists

of supervised methods (which require manually labelled images for training)

and includes pattern identi�cation, classi�cation and recent developments

in deep learning. Particularly, compared to the unsupervised learning tech-

niques, the implementation of supervised methodologies have shown an im-

portant improvement on speci�city and accuracy. Moreover, even though

the application of these techniques are still conditioned to the existence of

a ground truth, when labelled data are available, deep learning has been

further improving the performance of computers in many daily tasks.

2.2 Performance indicator

To analyse and evaluate outcomes and performances of the segmentation, it

is important to clearly understand which variables are involved to de�ne the

performance, the way they in�uence the results and the information that can

be deducted [3].

The result in the retinal vessel segmentation process is a pixel−based classi-
fication outcome, so that each pixel can be classi�ed either as vessel or sur-

rounding tissue. As a consequence, each pixel belongs to one of the following

categories: true positive (TP) when the pixel is identi�ed as a vessel in both

the segmentation output and ground truth; true negative (TN) when the

pixel is identi�ed as non-vessel in both the segmentation output and ground

truth; false positive (FP) if the pixel is identi�ed as vessel in the segmen-

tation output but as non-vessel in the ground truth; false negative (FN) if

the pixel is identi�ed as nonvessel in the segmentation output but as vessel

in the ground truth. Thanks to these indicators, it is easy to calculate some

metrics of performance. Particularly, the true positive rate (TPR) is the

fraction of vessel pixels which are correctly identi�ed as belonging to ves-

sels; similarly, the false positive rate (FPR) is the ratio of non-vessel pixels
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which were erroneously classi�ed as belonging to vessels. The ratio of the

total number of correctly classi�ed pixels (that is the sum of true positive

and true negative) to the total number of pixels in the image, is de�ned as

Accuracy.

Figure 2.1: Vessel classi�cation [3].

2.3 Deep learning overview

As already mentioned, vessel segmentation is a key step for di�erent medical

applications, as it is widely used to monitor disease progression and evalu-

ate various ophthalmologic diseases. However, manual vessel segmentation

executed by trained specialists is a repetitive and time-consuming task; so

that during the last decade, thanks to the advances in image processing and

pattern recognition, a remarkable progress is being made towards developing

automated diagnostic systems for diabetic retinopathy and related condi-

tions. With the more recent advances in the �eld of neural networks and

deep learning, multiple methods have been implemented with focus on the

segmentation and delineation of the blood vessels [10].

Especially, deep learning methods such as Convolutional Neural Networks

(CNN) have recently become a new trend in the Computer Vision area, as

they allow to extract features from raw images, avoiding the use of hand-

designed features [11]. In fact, their ability to �nd strong spatially local

correlations in the data at di�erent abstraction levels, allows them to learn

a set of �lters that are useful to correctly segment the data given a labeled

training set. Then, a deep-learning network trained on labeled data can

be subsequently applied to unstructured data: higher performance can be
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achieved giving the network access to much more input than traditional

machine-learning approaches, since the more data a net can train on, the

more accurate it is likely to be.

Therefore, the process of feature extraction is the crucial concept of a con-

volutional neural network: with local receptive �elds, neurons in a CNN

can detect elementary visual features such as oriented edges, end-points and

corners, that are then combined by successive layers in order to capture

higher-order features [12].

In conclusion, the di�erent types of networks as well as the di�erent types of

available data, allows the implementation of a new and improved solution,

which can be compared with the previous works submitted in this area.



Chapter 3

Neural Networks and

Convolutional Neural Networks

Convolutional Neural Networks for semantic segmentation are being used in

a large range of research �elds, especially in the �eld of classi�cation and

segmentation of medical images. In this particular research area, the use

of Convolutional Neural Networks for a pixel-wise classi�cation has shown a

solid set of interesting results in the detection and classi�cation of a variety

of anatomic structures such as tumors, multiple vessels and brain lesions.

We can summarize the key steps of an Image Classification task as

follows:

• Input. It consists of a set of images, each labeled with one of the

di�erent classes; we de�ne this data as training set.

• Learning. We can refer to this step as training a classi�er, or learning

a model : here the training set is used to learn what every one of the

classes looks like.

• Evaluation. In this �nal step, we evaluate the quality of the classi�er

by testing it on a new set of images that it has never seen before, called

testing set ; therefore, we will then compare the labels predicted by the

classi�er to the true labels of these images, named ground truth.
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A powerful approach to Image Classi�cation that we will naturally extend to

entire Neural Networks and Convolutional Neural Networks, is based on two

major concepts: a score function that maps the raw data to class scores, as

well as a loss function that quanti�es the agreement between the predicted

scores and the ground truth labels. This will eventually give rise to an

optimization problem in which the loss function has to be minimized with

respect to the parameters of the score function [14].

3.1 Basic concepts

3.1.1 Score function

To de�ne the score function that maps the pixel values of an image to con�-

dence scores for each class, we assume a training dataset of images xi ∈ RD,

i = 1, ..., N , each associated with a label yi ∈ {1, ..., K}. So, given N ex-

amples (each with a dimensionality D) and K distinct categories, the score

function is de�ned as f : RD → RK , which maps the raw image pixels to

class scores [14].

The simplest possible case is given by the Linear classifier:

f(xi,W, b) = Wxi + b

where we assume that the image xi has all of its pixels �attened out to a

single column vector [D× 1]. The parameters of the function are the matrix

W , of size [K ×D], and the vector b, of size [K × 1]: the parameters in W

are called weights, while b is the bias vector (it in�uences the output scores

without interacting with the actual data xi). Therefore, we can notice that:

• the single matrix multiplication Wxi evaluates separate classi�ers in

parallel, one for each class, where each classi�er is a row of W ;

• the input data (xi, yi) are given and �xed, whereas we have control over

the setting of the parameters W , b. Our purpose is to set these in such

way that the computed scores match the ground truth labels across
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the whole training set. Intuitively, we wish that the correct class has a

score that is higher than the scores of incorrect classes;

• this method takes an advantage from the fact that the training data is

used to learn the parameters W , b, but once the learning is complete,

the entire training set can be discarded, so that we only keep the learned

parameters. In fact, a new test image can be simply forwarded through

the function and classi�ed with respect to the computed scores;

• lastly, classifying the test image involves a single matrix multiplica-

tion and an addition, which are two simple and e�cient operations in

computational terms.

Figure 3.1: A simple example of mapping an image to class scores [14]:

suppose the image to have only 4 pixels and assume to have 3 classes (cat,

dog, ship). We �atten out the image pixels to a column and perform matrix

multiplication to get the scores for each class. As we can deduct from the

�nal prediction, this set of weights W is not good at all, since the weights

assign the cat image a very low cat score, erroneously.

Notice now that keeping track of two sets of parameters (biases b and

weights W ) separately is a little cumbersome. As we can see in �gure 3.2,

common trick is to combine the two sets of parameters into a single matrix

that holds both of them: it is su�cient to extend the vector xi with one addi-

tional dimension that always holds the constant 1 (a default bias dimension).
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With this extra dimension, the new score function will simplify to a single

matrix multiply, i.e.:

f(xi,W ) = Wxi.

Figure 3.2: According to the bias trick [14], doing a matrix multiplication

and then adding a bias vector (on the left) is equivalent to adding a dimension

with a constant of 1 to all input vectors and extending the weight matrix by

the "bias column" bias (on the right). In this way, we only have to learn the

matrix of weights.

3.1.2 Loss function

As already seen in the previous section, we do not have control over the data

xi, yi (which are given and �xed), but we have control over the weights.

Thus, we want to set them so that the predicted class scores are consistent

with the ground truth labels in the training data.

One of te most commonly classi�er is the Softmax classifier, which

gives normalized class probabilities as output and we can think of it as a

generalization to multiple classes of the binary Logistic Regression classi�er

[14]. In the Softmax classi�er, the function f(xi,W ) = Wxi stays unchanged,

but if we now interpret these scores as the unnormalized log probabilities for
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each class, then we can de�ne the so called cross− entropy loss function:

Li = − log

(
efyi∑
j e

fj

)
or equivalently Li = −fi + log

∑
j

efj

where fj indicates the j-th element of the vector of class scores f .

So, the Softmax function is de�ned as

fj(z) =
ezj∑
k e

zk
,

which takes a vector of arbitrary real-valued scores (in Z) and maps it to a

vector of values between zero and one which sum to one.

3.1.3 Optimization

As the loss function quanti�es the quality of any particular set of weightsW ,

the goal of optimization is to �nd W such that minimizes the loss function.

For this purpose, we can search for a direction in the weight-space that would

improve our weights, giving a lower loss: thinking of W as a weight vector,

we can compute the best direction along which we should change this weight

vector, which is mathematically guaranteed to be the direction of the steepest

descend (in the limit as the step size goes towards zero).

In simple terms, in one-dimensional functions the slope is the instantaneous

rate of change of the function at any point; so the gradient is a generalization

of slope for functions which take a vector of numbers (instead of a single

number) and we can consider it as a vector of slopes (derivatives) for each

dimension in the input space. The mathematical expression for the derivative

of a 1-D function with respect to its input is given by:

df(x)

dx
= limh→0

f(x+ h)− f(x)

h

Then, when the functions of interest do not take a single number but a vec-

tor of numbers, we refer to derivates of the function with respect to each

variable as partial derivatives and the gradient is the vector ∇f of partial

derivatives in each dimension.
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The procedure of repeatedly evaluating the gradient and performing a pa-

rameter update is named Gradient Descent, that is currently by far the most

established way of optimizing Neural Network loss functions (with suitable

smoothness properties, e.g. di�erentiable).

Particularly, Stochastic Gradient Descent (SGD) is an iterative method

for optimizing the loss function. It is called stochastic as it uses randomly

selected (or shu�ed) samples to evaluate the gradients. Therefore, SGD is a

sort of stochastic approximation of the common gradient descent optimiza-

tion.

In large-scale applications, the training data can have on order of millions

of samples, thus it is wasteful to compute the loss function over the entire

training set in order to perform one single parameter update. A common

approach to address this matter is to compute the gradient over batches of

training data, which are then used to perform a parameter update. The rea-

son for which this strategy works well is that the samples in the training data

are correlated. Hence, in practice, much faster convergence can be achieved

by evaluating the mini-batch gradients to perform more frequent parameter

updates [14]. The batch size is a hyperparameter usually based on memory

constraints, or set to some value, e.g. 64, 128 or 256; in general we use powers

of 2 because many operation implementations work faster if their inputs are

sized in powers of 2.

3.1.4 Backpropagation

Backpropagation is a strategy to compute gradients of expressions through

recursive application of chain rule [14].

In Neural Networks, given a loss function f(x) where x is a vector of inputs

(which consist of the training data and the Neural Network weights), we are

interested in computing the gradient of f at x (i.e. ∇f(x)). Since we do not

have control over the training data but over the weights, we compute the

gradient only for the parameters (e.g. W , b) so that we can use it to perform
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a parameter update.

To understand this mechanism, we can look at the example in �gure

3.3, where the real-valued "circuit" shows the visual representation of the

computation. The forward pass computes values from inputs to output (in

green), whereas the backward pass performs backpropagation which starts

at the end and recursively applies the chain rule to compute the gradients

(in red) all the way to the inputs of the circuit. Hence, the gradients can be

thought of as �owing backwards through the circuit.

Figure 3.3: Intuitive understanding of backpropagation through a simple vi-

sual representation of the computation [14].

Now, observe that backpropagation is a local process: each gate in a "cir-

cuit" diagram gets some inputs and can right away compute both its output

value and the local gradient of its inputs with respect to its output value.

Moreover, we notice that every gate executes this computation completely

independently, without being aware of any of the details of the full circuit

that they are embedded in. However, once the forward pass ends, during

backpropagation process the gate will eventually learn about the gradient of

its output value on the �nal output of the entire circuit. The chain rule

says that the gate is allowed to take that gradient and multiply it into every

gradient it normally computes for all of its inputs. Therefore, we can think

of backpropagation as gates communicating to each other (through the gra-

dient signal) whether they want their outputs to increase or decrease (and
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how strongly), in order to make the �nal output value higher.

Looking at the example above, the add gate received inputs [−2, 5] and

computed output 3. Since this gate computes an addition operation, its local

gradient for both of its inputs is +1, then the rest of the circuit computed the

�nal value, that is −12. During the backward pass in which the chain rule

is applied recursively backwards through the circuit, this add gate (which

represents an input to the multiply gate) learns that the gradient for its

output was −4. Supposing the circuit to "want" to output a higher value

(which helps with intuition), then we can think of the circuit as �wanting� the

output of the add gate to be lower (owing to negative sign) and with a force

of 4. Now, to continue the recurrence and to chain the gradient, the add gate

takes that gradient and multiplies it to all of the local gradients for its inputs,

i.e.: it makes the gradient on both x and y equal to 1 ∗ (−4) = −4. Notice

that whether x, y were to decrease (responding to their negative gradient)

then the add gate's output would decrease, which in turn makes the multiply

gate's output increase, as desired.

Lastly, we observe that the operation computed at each gate is relatively

arbitrary (any kind of di�erentiable function can act as a gate); moreover,

caching forward pass variables is very useful in order to make them available

during backpropagation to compute the backward pass.

3.2 Neural Network

Originally, the area of Neural Networks has been inspired by the goal of

modeling biological neural systems, then it has diverged and become a matter

of engineering, achieving good results in Machine Learning tasks.

3.2.1 Inspiration from biology

The fundamental computational unit of the brain is the neuron: around 86

billion neurons can be found in the human nervous system, connected to each

other through synapses [14].
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The �gure 3.4 shows a biological neuron: every neuron receives input signals

from its dendrites and produces output signals along its axon. The axon

eventually branches out and connects the neuron via synapses to dendrites

of other neurons.

Figure 3.4: Simpli�ed biological neuron.

In the mathematical model that we can visualize in �gure 3.5, the sig-

nals that travel along the axons (e.g. x0) interact multiplicatively (e.g. w0x0)

with the dendrites of the other neuron according to the synaptic strength at

that synapse (e.g. w0). In particular, the synaptic strengths (the weights w)

are learnable and control the strength of in�uence (and its direction, which

is excitory if the weight is positive, or inhibitory if the weight is negative) of

one neuron on another. Then, the dendrites carry the signal to the cell body,

where they all get summed: if the �nal sum is above a certain threshold,

the neuron can �re sending a spike along its axon. In the computational

model, we assume that only the frequency of the �ring do communicates

information, while the precise timings of the spikes do not matter. Accord-

ing to this interpretation, we model the �ring rate of the neuron with an

activation function f , which represents the frequency of the spikes along

the axon.
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Figure 3.5: Simpli�ed mathematical model.

3.2.2 Activation functions

Binary Softmax classi�er

Following the interpretation explained above, a neuron has the capacity to

�like� (activation near one) or �dislike� (activation near zero) certain re-

gions of its input space. Hence, we can think of a single neuron as a

classi�er, with an appropriate loss function on its output. Considering a

Binary Softmax classifier, we can interpret σ(
∑

iwixi +b) to be the prob-

ability of one of the classes P (yi = 1 | xi;w), so the probability of the other

class is P (yi = 0 | xi;w) = 1 − P (yi = 1 | xi;w), since they must sum to

one. In this way we can de�ne the cross-entropy loss as already seen in the

subsection 3.1.2 and then optimize it, obtaining a binary Softmax classi�er

(also known as logistic regression).

Recti�ed Linear Unit

Every activation function, also said non − linearity, takes a single number

and performs a certain prede�ned mathematical operation on it. One of the

most common activation functions is the Rectified Linear Unit, or ReLU,

which computes the function f(x) = max(0, x), so that the activation is

simply thresholded at zero.
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There are some advantages and disadvantages to using the ReLUs:

(+) it greatly accelerates the convergence of stochastic gradient descent

compared to other activation functions such as Sigmoid or Tanh;

(+) it can be implemented by simply thresholding scores at zero;

(−) the ReLU units can be fragile during training and can �die�: for in-

stance, a large gradient �owing through a ReLU neuron could cause

the weights to update in such a way that the neuron will never activate

on any datapoint again, but then the gradient �owing through the unit

will forever be zero from that point on. This means that the ReLU

units can irreversibly die during training [14].

3.2.3 Neural Network architecture

Neural Networks are modeled as collections of neurons that are connected in

an acyclic graph, so that the outputs of some neurons can become inputs to

other neurons. Cycles are not allowed as this would imply an in�nite loop

in the forward pass of a network. Neural Network models are organized into

distinct layers of neurons: for regular Neural Networks, the most common

layer is the fully connected layer in which neurons between two adjacent

layers are fully pairwise connected, while neurons within a single layer share

no connections (which is the typical structure of a complete bipartite graph).

Observe that when we say N − layer Neural Network, we do not count
the input layer, so that a single-layer Neural Network describes a network

with no hidden layers (i.e., input directly mapped to output).

Moreover, unlike all the others layers in a Neural Network, the output layer

neurons most commonly do not have an activation function, or we can think

of them as having a linear identity activation function. This is due to the

fact that the last output layer is usually taken to represent the class scores.
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Neural Networks size

As regards the size of Neural Networks, the most used metric is the number

of parameters. Looking at the two examples in �gure 3.6:

• the network on the left has 4+2 = 6 neurons (not counting the inputs),

[3 × 4] + [4 × 2] = 20 weights and 4 + 2 = 6 biases, for a total of 26

learnable parameters;

• the network on the right has 4 + 4 + 1 = 9 neurons, [3× 4] + [4× 4] +

[4× 1] = 12 + 16 + 4 = 32 weights and 4 + 4 + 1 = 9 biases, for a total

of 41 learnable parameters.

Figure 3.6: On the left, a 2−layer Neural Network (one hidden layer of 4

neurons and one output layer with 2 neurons) with three inputs. On the

right, a 3−layer Neural Network (two hidden layers of 4 neurons each and

one output layer with 1 neuron) with three inputs.

Number of layers

First of all, notice that as we augment the size and number of layers in a

Neural Network, the capacity of the network increases, i.e.: the space of

representable functions grows since the neurons can collaborate to express

many di�erent functions.

Smaller networks are harder to train with local methods such as Gradient

Descent: their loss functions have relatively few local minima, but many
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of these minima are easier to converge to and they have high loss. On the

contrary, bigger Neural Networks contain much more local minima, but these

minima are much better in terms of loss. Since Neural Networks are non-

convex, it is hard to study these properties mathematically, anyway some

attempts to understand these objective functions have been made: from the

literature we �nd that, if we train a small network, then the �nal loss can

display a good amount of variance - in some cases it converges to a good

place, but sometimes it "gets trapped" in one of the bad minima. Instead,

if we train a large network, we will �nd many di�erent solutions, but the

variance in the �nal achieved loss will be much smaller, which means that

all solutions are about equally as good and rely less on the luck of random

initialization [14].

Weight Initialization

After constructing the network, we have to initialize its parameters: one

method is to calibrate the variances with 1/
√
n. In fact, if we randomly

initialize neurons, the distribution of the outputs has a variance that grows

with the number of inputs. So we can normalize the variance of each neuron's

output to 1 by scaling its weight vector by the square root of its number

of inputs, in order to ensure that all neurons in the network initially have

approximately the same output distribution and empirically improve the rate

of convergence [14].

Regularization

Over�tting occurs when a model with high capacity �ts the noise in the

data, instead of the underlying relationship; hence several ways of controlling

the capacity of Neural Networks to prevent over�tting have been studied.

Dropout is an extremely e�ective and simple regularization technique: during

training, dropout is implemented by only keeping a neuron active with some

probability p (a hyperparameter) or setting it to zero otherwise. As showed

in �gure 3.7, we can interpret Dropout as sampling a Neural Network within
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the full Neural Network and updating just the parameters of the sampled

network based on the input data.

Figure 3.7: A standard Neural Network on the left, and one after applying

Dropout on the right.

Loss Function

In a supervised learning problem, the data loss measures the compatibility

between a prediction (e.g. the class scores in classi�cation) and the ground

truth label. The data loss takes the form of an average over the data losses

for every individual example, i.e.: L = 1
N

∑
i Li where N is the number of

training data. If we abbreviate f = f(xi,W ) to be the activations of the

output layer in a Neural Network, in order to solve a Classi�cation problem

we assume a dataset of examples and a single correct label (out of a �xed

set) for each example. As already showed in the subsection 3.1.2, a common

choice is the Softmax classifier, which takes advantage of the following

cross entropy loss:

Li = − log

(
efyi∑
j e

fj

)
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3.2.4 Learning and Evaluation

After de�ning the static parts of a Neural Networks, such as network connec-

tivity, data and loss function, we can treat the dynamics part of a network,

that is the process of learning the parameters and �nding good hyperparam-

eters [14].

One useful quantity to monitor during training of a Neural Network is the

Loss, which is evaluated on the individual batches during the forward pass.

The �gure 3.8 shows the loss over time. Firstly, notice that the x-axis of the

plot is in units of epochs, which measure how many times every example has

been seen during training in expectation (e.g. one epoch means that every

example has been seen only once); it is better to track epochs rather than

iterations, since the number of iterations depends on the arbitrary setting of

the batch size.

Figure 3.8: E�ects of di�erent learning rates.

In addition, we observe that the shape reveals the goodness of the learning

rate. In fact, with low learning rates the improvements are linear, then they

start to look more exponential as the learning rates increase. Higher learn-

ing rates will decay the loss faster, but they get stuck at worse values of loss

(green line), since there is too much "energy" in the optimization and the

parameters are unable to settle in a nice spot in the optimization �eld.
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Lastly, looking at �gure 3.9, the amount of "wiggles" in the loss is related

to the batch size: when the batch size is 1, wiggles will be relatively high [14];

if the batch size is the full dataset, wiggles will be minimal because every

gradient update should improve the loss function monotonically (unless the

learning rate is set too high, as observed above).

Figure 3.9: Example of a typical trend of a loss function over time, during

the training.

Parameter updates

Once the analytic gradient is computed with backpropagation, the gradients

are used to perform a parameter update: one of the approaches for per-

forming the update, is the SGD. The simplest way to update is to change

the parameters along the negative gradient direction, as the gradient indi-

cates the direction of increase, but our goal is to minimize the loss function.

Therefore, assuming a vector of parameters x and the gradient dx, the sim-

plest update has the following form: x = x − learning_rate ∗ dx where

learning_rate is a hyperparameter, i.e., a �xed constant. When evaluated

on the full dataset and if the learning rate is low enough, this is guaranteed

to make non-negative progress on the loss function, as we desired.
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3.3 Convolutional Neural Network

Convolutional Neural Networks, commonly said CNN, are similar to ordi-

nary Neural Networks, so they are made up of neurons that have learnable

weights and biases; each neuron receives some inputs, performs a dot product

and possibly follows it with an non-linearity. Even in the case of CNN, the

whole network still expresses a single di�erentiable Score function: from

the raw image pixels on one end to class scores at the other end. CNN still

have a Loss function (e.g. Softmax) on the last (fully connected) layer, and

all the tricks and tips we developed for learning regular Neural Networks are

still worth.

For the so called "CNN architectures" we make the explicit assumption

that the inputs are images, allowing us to deduct certain properties into the

architecture [14].

3.3.1 CNN architecture

As we explained in the previous section, a Neural Network receives a single

vector as input and transforms it through a series of hidden layers. Each

hidden layer consists of a set of neurons where each neuron is fully con-

nected to all neurons in the previous layer, but neurons in a single layer are

completely independently and do not share any connections. The last fully

connected layer is the so called �output layer� and represents the class scores

in classi�cation settings.

Now, considering Convolutional Neural Networks, these take advantage

of the fact that the input is made up of images and they constrain the archi-

tecture in a more sensible way [14]. Particularly, the layers of a CNN have

neurons arranged in three dimensions: width, height, depth. We observe

that in this contest width and height would be the dimensions of the image,

while depth refers to the third dimension of an activation volume, not to the

depth of a full Neural Network (which is given by the total number of layers

in the network). As we will see, neurons in a layer are only connected to a
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small region of the layer before it, instead of all of the neurons as occurs in

a fully connected manner. In addition, by the end of the CNN architecture,

the full image will be reduced into a single vector of class scores arranged

along the depth dimension.

Figure 3.10: A simple example of CNN, where the red input layer holds the

image (its width and height are the dimensions of the image, while its depth

represents the 3 channels, red, green and blue); then each layer of a CNN

transforms the 3D input volume to a 3D output volume of neuron activations.

Thus, a common CNN is a sequence of layers where each layer transforms

one volume of activations to another through a di�erentiable function [14].

We will stack these layers in order to give rise to a complete CNN architec-

ture; according to the leterature in this area, the following CNN structure

illustrates a very common layer pattern:

• Input layer - it holds the raw pixel values of the image; this layer

should be divisible by 2 many times, hence common input layer sizes

include numbers such as 64, 384, or 512;

• Conv layer - the Convolutional layer computes the output of neurons

that are connected to local regions in the input, each computing a dot

product between their weights and the small region they are connected

to in the input volume;

• ReLU layer - the Recti�ed Linear Unit applies an elementwise ac-

tivation function, such as the thresholding at zero, max(0, x); so we
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can interpret this activation function as a layer that applies a simple

non-linearity;

• Pool layer - the Pooling layer performs a downsampling operation

along the spatial dimensions (width, height);

• FC layer - the Fully Connected layer computes the class scores; hence,

each of its numbers correspond to a class score. As occurs in ordi-

nary Neural Networks, each neuron in this layer is connected to all the

numbers in the previous volume.

This pattern is repeated until the image has been merged spatially to a small

size, then the last fully connected layer holds the output (class scores); i.e.,

following a pattern like that, a CNN transforms the original image layer by

layer from the original pixel values to the �nal class scores [14].

Note that some layers contain parameters and others do not: for instance,

ReLU and Pool layers will implement a �xed function. On the other hand,

the Conv and FC layers perform transformations that are a function of both

the activations in the input volume and the parameters, i.e. weights and

biases of the neurons, which will be trained with gradient descent so that

the class scores that the CNN computes are consistent with the labels in the

training set for each image.

Convolutional Layer

The Convolutional layer (we can say Conv layer) is the core building block

of a Convolutional Neural Network. The Conv layer's parameters consist

of a set of learnable �lters: each �lter is small spatially, along width and

height, but it extends through the full depth of the input volume, as we can

observe in �gure 3.11. For instance, a common �lter on a �rst layer of a CNN

may have size 5 × 5 × 3 (i.e. 5 pixels width and height, and 3 pixels depth

which represent the three color channels). During the forward pass, we slide

(or convolve) every �lter across the width and height of the input volume

and compute dot products between the entries of the �lter and the input
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at any position: since we slide the �lter over the width and height of the

input volume, we will obtain a 2 − dimensional activation map that gives

the responses of that �lter at every spatial position. Intuitively, the network

will learn �lters which activate when they "see" some type of visual feature

we are interested in, such as an edge of some orientation or a blotch of some

color on the �rst layer, or some precise patterns on higher-level layers of the

network [14].

In this way, we have now an entire set of �lters in each Conv layer, each

of them producing a separate 2-dimensional activation map: thus, we will

stack these activation maps along the depth dimension in order to produce

the output volume.

Figure 3.11: An example of input volume in red and of a volume of neurons

in the �rst Conv layer: every neuron in the Conv layer is connected only to

a local region in the input volume spatially, but to the full depth; so there

are multiple neurons (here 5) along the depth, all looking at the same region

in the input volume.

According to a biological interpretation, we can think of every entry in

the 3D output volume as an output of a neuron that looks at only a small

region in the input and shares parameters with all neurons to the left and

right spatially (as these numbers all result from applying the same �lter).

In the case of CNN, since we deal with high-dimensional inputs such as

images, it is unobtainable to connect neurons to all neurons in the previous

volume; so, it is much more convinient to connect every neuron to a local

region of the input volume. The spatial extent of this connectivity is a
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hyperparameter said receptive field of the neuron, or filter size. First, we

observe that the extent of the connectivity along the depth axis is always

equal to the depth of the input volume. Hence, it is important to emphasize

that the connections are local in space (along width and height), but always

full along the entire depth of the input volume.

The formula for calculating the spatial size of the output volume is given

by
W − F + 2P

S
+ 1

where W is the input volume size, F is the receptive �eld size (or �lter size)

of the Conv layer neurons, S is the stride with which they are applied, and

P is the amount of zero padding used on the border.

In particular, we can summarize the three crucial hyperparameters which

control the size of the output volume as follow:

• the depth of the output volume corresponds to the number of filters

we would like to use, each learning to search for something di�erent in

the input. For instance, if the �rst Convolutional layer takes as input

a raw image, then di�erent neurons along the depth dimension might

activate in presence of various oriented edges or blobs of color. So we

can de�ne as depth column a set of neurons that are all looking at the

same region of the input (see �gure 3.11);

• the stride with which we slide the �lter, allow us to produce smaller

output volumes spatially: if the stride is 1, then we move the �lters

one pixel at a time; if the stride is 2, then the �lters jump 2 pixels at

a time as we slide them around;

• zero padding allow us to control the spatial size of the output volumes,

by padding the input volume with zeros around the border. In general,

it is very common to use zero-padding in order to ensure that the input

volume and the output volume will have the same size spatially (where

"size spatially" means width and height). For example, if the stride is

S = 1, we can set zero padding to be P = F−1
2
.
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Figure 3.12: A simple example with only one spatial dimension (along the x-

axis), input size W=5, one neuron with a receptive �eld size of F=3, and zero

padding of P=1. The biases are zero and the neuron weights are [1, 0,−1]

(shown on the right), which are shared across all yellow neurons. On the left,

the neuron strided across the input in stride of S=1, so that the output has

a size (5 − 3 + 2)/1 + 1 = 5. On the right, the stride is S = 2, giving an

output of size (5− 3 + 2)/2 + 1 = 3. Observe that stride S = 3 could not be

used, as it would not �t neatly across the volume, in fact 5− 3 + 2 = 4 is not

divisible by 3.

Notice that the spatial arrangement hyperparameters have mutual con−
straints, thus we have to size CNN in an appropriate way so that all the

dimensions "work well". We can alleviate this matter through the use of

zero-padding and some design guidelines.

Lastly, parameter sharing scheme is used in Convolutional Layers to

control the number of parameters. Looking at real-world examples, it turns

out that we often have a very high number of parameters, but we can dra-

matically reduce this number by making one reasonable assumption: if one

feature is useful to compute at some spatial position (x, y), then it is useful

to compute also at a di�erent position (x2, y2). That is, denoting a single

2-dimensional slice of depth as a depth slice, we will constrain the neurons

in each depth slice to use the same weights and bias. Thanks to this pa-

rameter sharing scheme, the Conv layer would now have a much smaller and

unique set of weights (one for each depth slice). In other words, all neurons in

each depth slice will now be using the same parameters. Practically, during

backpropagation, each neuron in the volume computes the gradient for its
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weights, then these gradients will be added up across each depth slice and

only update a single set of weights per slice.

Observe that if all neurons in a single depth slice are using the same weight

vector, then the forward pass of the Conv layer can in each depth slice be

computed as a convolution of the neuron's weights with the input volume, for

this reason we refer to this operation as Convolutional Layer and we com-

monly refer to the sets of weights as a �lter (or a kernel), that is convolved

with the input.

To sum up, we can schematize the action of the Conv layer as follow [14]:

• it takes as input a volume of size W1 ×H1 ×D1;

• it requires to set four hyperparameters:

- the number of �lters K

- the spatial extent of each �lter F

- the stride S

- the zero padding "size" P

• it outputs a volume of size W2 ×H2 ×D2, where:

- W2 = W1−F+2P
S

+ 1

- H2 = H1−F+2P
S

+ 1

(that means that width and height are computed equally by sym-

metry);

- D2 = K

• thanks to the parameter sharing strategy, it introduces F ·F ·D1 weights

per �lter, for a total of (F · F ·D1) ·K weights and K biases;

• looking at the output volume, the d-th depth slice (which has a size

of W2 ×H2) is the result of performing a valid convolution of the d-th

�lter over the input volume with a stride of S, and then o�set by d-th

bias.
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In general, Conv layers should be using small �lters such as 3 × 3 or at

most 5× 5, with a stride of S = 1, and padding the input volume with zeros

in such way that the Conv layer preserves the spatial dimensions of the input.

For instance, if F = 3, then using P = 1 will retain the original size of the

input; generally, with P = F−1
2

the input size remains unchanged.

Pooling Layer

This type of layers is built upon lower level and more complex information.

In Convolutional Neural Networks, it is used to make the detection of certain

features in the input invariant to scale and orientation changes. It helps over-

�tting by providing an abstracted form of the representation, and reduces

the computational cost by reducing the number of parameters to learn. In

particular, the pooling operation consists in placing windows in each feature

map and keeping one value per window, so that the resulting feature maps

are sub-sampled. Thus, pooling enables to move from high resolution data

to lower resolution information [3].

Between successive Conv layers in a CNN architecture, it is common to

periodically insert a Pooling layer, which progressively reduces the spatial

size of the representation in order to reduce the amount of parameters and

computation in the network, thus to also control over�tting. This layer op-

erates independently on every depth slice of the input and resizes it spatially

by using the MAX operation, giving rise to max pooling.

We can schematize the action of the Pooling Layer as follow [14]:

• it takes as input a volume of size W1 ×H1 ×D1;

• it requires two hyperparameters:

- the spatial extent of each �lter F

- the stride S

• it outputs a volume of size W2 ×H2 ×D2 where:

- W2 = W1−F
S

+ 1



3.3. CONVOLUTIONAL NEURAL NETWORK 41

- H2 = H1−F
S

+ 1

(that means that width and height are computed equally by sym-

metry);

- D2 = D1

• it does not introduce new parameters, since it computes a �xed function

of the input

Notice that for Pooling layers it is not common to pad the input using

zero-padding and, in practice, there are only two common variations of the

max pooling layer: one with F = 3, S = 2 (also known as overlapping

pooling) and one with F = 2, S = 2. The most common form is the second

one (see the example in �gure 3.13), with �lters of size 2 × 2 applied with

a stride of 2, which downsamples each depth slice in the input by 2 along

both width and height, discarding exactly 75% of the activations in the input

volume. In this case, each MAX operation takes a max over 4 numbers (i.e.,

little 2 × 2 region in some depth slice), while the depth dimension remains

unchanged.

Figure 3.13: Here a Pool layer. On the left, an example of input volume of

size [224 × 224 × 64], which is pooled with �lter size 2 and stride 2 into an

output volume of size [112 × 112 × 64], so the volume depth is preserved.

On the right, a simple representation of max pooling with a stride of 2 and

�lters 2× 2, so that each max is taken over little 2× 2 squares.
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Fully Connected Layer

In a Fully Connected layer, neurons have full connections to all activations

in the previous layer, as occurs in regular Neural Networks, thus their ac-

tivations can be computed with a matrix multiplication followed by a bias

o�set. See subsection 3.2.3.

3.3.2 Computational considerations

When constructing CNN architectures, we must be aware of its memory

bottleneck. Many of the modern GPUs have a limit of 3/4/6 GB memory,

with the best GPUs having about 12GB of memory [14]. So we have to keep

track of three major sources of memory:

• First, from the intermediate volume sizes. These are the raw number

of activations at each layer of the CNN and their gradients (of the same

size). In general, most of the activations are on the �rst Conv layers

and are needed for backpropagation; but a smart implementation that

runs a CNN only at test time, could reduce this by a huge amount,

by only storing the current activations at any layer and discarding the

previous activations on layers below.

• Secondly, from the parameter sizes. These numbers hold the network

parameters and their gradients during backpropagation, and commonly

also a step cache if the optimization is using momentum. Hence, the

memory to store the parameter vector must usually be multiplied by a

factor of at least 3.

• Lastly, each CNN implementation has to maintain miscellaneous mem-

ory, such as the image data batches, their augmented versions, and so

on.

Once we have a rough estimate of the total number of values, this number

should be converted to size in GB, in order to check the amount of memory

we need. If the network does not �t, a common way to �make it �t� is to
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decrease the batch size, as most of the memory is usually consumed by the

activations.





Chapter 4

The Code

The code has been written in Python.

Python is an object-oriented and high-level programming language, with

dynamic semantics. These features allow Python to express powerful ideas

in few lines of code, while being very readable at the same time. This is

possible also thanks to the large set of libraries (i.e., sets of routines and

written functions that carry out a speci�c task) holded by Python; then,

these libraries can be recalled according to the issue.

The combination of shorter development times, �exibility and consistent syn-

tax, make Python suitable for the development of sophisticated forecasting

models, production systems and machine learning [16][18].

To develop this code, I particularly took advantage of the PyTorch li-

brary, a popular Deep Learning library created by Facebook: this library

aims to give users a fast and �exible modeling experience, spreading Py-

Torch to the Deep Learning community. Even if PyTorch is less mature than

Tensor�ow (a very common library in deep learning areas), its community is

growing rapidly since it is easier to learn and use [17].

In this chapter I will examine each script composing the code, starting

with the data preprocessing tecnques; then I will provide a detailed descrip-

tion of the Convolutional Neural Network I implemented; lastly, I will de-

scribe the evaluation part.
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4.1 Preprocessing

The input data have a crucial role in the deep learning based approaches,

as well as in every machine learning algorithm in general. Since the training

process bene�ts from an adequate preprocessing, in this section I will describe

the approach I used to generate the preprocessed patches of retinal images.

The following preprocessing techniques has been applied to both the training

and testing datasets of the DRIVE database.

So, the image preprocessing method used on this study starts with the

conversion from the original RGB image into a black and white one, through

the function rgb2gray which converts the image to a single channel. Then

I applied the dataset_normalized function, that is a Gray-scale normal-

ization owing to the fact that as a result of the acquisition process, retinal

fundus images are often non-uniformly illuminated and show local contrast

and luminosity variability. So I adjusted luminosity and contrast of the im-

ages by subtracting the global mean and diving by the standard deviation,

as follows:

x′ =
x− x̄
σ

In the segmentation of retinal vessels is important to detect also smaller

vessels, such as terminal vessels and small rami�cations of the vascular tree.

As they frequently exhibit a low contrast to the background, through the

clahe_equalized function I performed a contrast limited adaptive histogram

equalization operating in 8 × 8 square tiles (so the image has been divided

into small blocks of size 8×8) in order to enhance the contrast between these

small vessels and the background. In this way I approximated the histogram

of the intensities inside each square tile to a given histogram: even though

this approach does not improve meaningfully the contrast of large structures,

it makes the more subtle features more pronounced [3].

To further improve the delineation of smaller vessels, I performed a gamma

correction applying the function adjust_gamma: this tecnique builds a lookup

table mapping the pixel values in the range [0, 255] to their adjusted gamma
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values.

Now, in order to take advantage of deep learning strategies to segment

the vasculature, we need to extract small patches from retinal images, as the

DRIVE dataset (like many other public databases) does not contain many

images. Particularly, in this project I considered square patches, as the ma-

jority of the literature suggests, in order to achieve a better coherence between

the data and the network. Thus, images are then divided into overlapping

patches that are subsequently used as input for the Neural Network: from

each image of the training dataset, 2000 square patches of size 48× 48 have

been extracted from the FOV region (checking this constraint through the

function is_patch_inside_FOV), whereas I extracted 11445 square patches

from each image of the testing dataset.

4.2 Utils_dataset

In this short script I de�ned the class Retina, that is crucial in order to

store and load the extracted patches from the images of both the training

dataset and the testing dataset. In addition, this script contains the Scale

function, which simply scales the input so that its values range in [−1, 1].

4.3 Model

The goal of this script is to train an Encoder−Enhanced Fully Convolutional
Neural Network, to segment the retinal vasculature and to implicitly learn

a compact representation of such vasculature simultaneously.

The general methodology is an element-wise classi�cation where the CNN

is trained patch by patch and the output is the probability of the center pixel

being in a certain class (we consider a two class classi�cation, as each pixel

may be vessel or non vessel). This approach use a large number of small

square patches from a preprocessed training set of images as input of the

Neural Network. So the network is trained with said data and then tested
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with patches from the test dataset.

Figure 4.1: Diagram of this study, where I trained an Encoder-Enhanced

Fully Convolutional Neural Network to segment the retinal vasculature and

learn a compact representation of such vasculature at the same time [1].

In a patch segmentation approach, the CNN predicts the probability of

each pixel in the patch to belong to a vessel. The U-net architecture is an

encoder−decoder type network for image segmentation, whose name derives

from its unique shape. In this architecture, the feature maps of decreasing

resolution in the downsampling step are fed into the convolutional layers in

the upsampling step (skip-layer connections). The contracting path is an

encoder which captures contextual information by successively reducing the

resolution of feature maps, while the connection path combines feature maps

from the contracting and expanding paths to fuse local information with ac-

curate localization [2].

Now, looking at �gure 4.2, we can observe that the contracting path fol-

lows the typical architecture of a convolutional network, so it consists of the

repeated application of two 3 × 3 convolutions, each followed by a recti�er

linear unit ReLU and a 2 × 2 max pooling operation with a stride of 2 for

downsampling, which reduce the spatial resolution and increase the number
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of �lters.

In contrast, every step in the expansive path consists of an up− sampling
of the feature map, followed by a concatenation with the correspondingly

cropped feature map from the contracting path and two 3×3 "up− convolu-
tions" (each followed by a ReLU), which decrease the number of �lters and

increase image resolution until reaching the �nal layer.

Moreover, this implementation takes advantage of dropout regularization lay-

ers with 0.2 ratio between the two convolutional layers at each resolution

level.

Figure 4.2: Here the U-shaped Neural Network architecture, where the

dashed box represents the encoding layers, each blue box represents a 3D

dimensional tensor, whose dimensions are written on the left and on the top

of the box, showing the �rst two dimensions (image x-y) and last dimension

(number of �lters) respectively. Lastly, each round box represents a vector

(with its size) and the arrows represent operations [1].

Lastly, the final layer is a convolutional layer from which the �nal seg-

mentation results are obtained; in particular, as the �nal goal is to obtain a

binary classi�cation (whether a pixel is vessel or non vessel), in this output
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layer I applied the activation function Softmax, given by

f(xi) =
exi∑
j e

xj

The softmax function calculates the probabilities distribution of the event

over n di�erent events, i.e.: this function will calculate the probabilities of

each pixel of being a vessel or background. The main advantage of using

Softmax is the output probabilities range, that is between 0 and 1, so that

the sum of all the probabilities will be equal to 1.

As already mention, notice that the activation function in the hidden layers

of this CNN is the standard ReLU function, which is given by the equation

f(x) = x+ = max(0;x). This activation function allows to greatly accelerate

the convergence of stochastic gradient descent and is very e�cient in terms

of computation.

The main changes over a typical U-Net architecture are the encoding

layers allowing the creation of the vasculature embedding: in fact, I relaxed

the fully convolutional network approach and added three fully connected

non-convolutional layers on the saddle point of the network, where the imag-

ing scale is lowest and the number of �lters is highest. Thus, these fully

connected layers are included in the U-shaped network and act as an implicit

encoder to compress the relevant information �owing through the convolu-

tional �lters [1].

To train this implementation, I took advantage of the preprocessed images

derived from the preprocessing (explained in 3.1); in fact, the data transfor-

mation used in combination with an activation function, is critical to the

training performance and to the �nal results.

4.4 Main

The Main script contains the main �ow of operations in order to perform

the segmentation task, based on a powerful deep learning tecnique as Con-

volutionl Neural Networks. Referring to the summarized explanation at the
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beginnig of chapter 3, we can identify in this scripts all the key steps of the

Image Classification task, starting from the loading of the input data, then

passing through the training part in which we wish the Neural Network to

learn patterns in the input data (training set), and �nally performing the

testing step in order to evaluate how well the Neural Network can predict

patterns in a new set of images (testing set).

In this applications in retina imaging, the training procedure ran for 150

epochs in less than one day, using a batch size of 256 patches. So I trained the

network end-to-end applying a stochastic gradient descent (SGD) optimizer

with a learning rate of 0.01, a decay of 1e-6 and a momentum of 0.3. Then

I considered the binary cross entropy as loss function, which is computed

uniquely between the target vessel segmentation and �nal layer. The result is

then back-propagated using SGD to all layers, including the fully connected

layers in the encoding layers. Once trained, the network receives an image

patch as input and outputs a vessel segmentation map at the �nal layer.

To sum up, I trained the network on the DRIVE dataset using a randomly

sampled set of 40000 patches extracted from the 20 images in the training

set. Then, I performed the testing part on 228900 patches extracted (in an

ordered and overlapped way) from the 20 images in the testing set.

4.5 Evaluation

The last script has been implemented in order to perform the evaluation

task, to evaluate the quality of the "trained model" by testing it on a new

set of images, called testing set.

As already showed in section 2.2, the result in the retinal vessel segmenta-

tion process is a pixel-based classi�cation outcome, so that each pixel can be

classi�ed either as vessel or surrounding tissue. Hence, in order to segment

the "reconstructed" images, I applied a threshold to the scores predicted by

the model, assigning 1 to all the scores above the threshold, and 0 otherwise.

Therefore, in this script I compared the labels predicted by the model to
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the ground truth, i.e., the true labels of these new images. Then, I compute

the accuracy score, which is given by the ratio between the total number of

correctly classi�ed pixels (the sum of true positive and true negative) and

the total number of pixels in the image (see section 2.2).

Figure 4.3: A test image from the DRIVE dataset.

Figure 4.4: On the left, the "reconstructed" image correspondig to �gure

4.3, before thresholging; on the right, the �nal segmented image.
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Conclusions and Future work

5.1 Conclusions

The focus of my research thesis was to analyse methods for the segmentation

of retina fundus images based on innovative techniques from deep learning,

as well as build an algorithm able to segmented fundus images from the

DRIVE Dataset. Therefore, I have introduced an approach to learn vascula-

ture embeddings from vessel segmentation data without the need of de�ning

vasculature morphology variables a priori.

To understand how this process works and which aspects can in�uence its

performance and results, I implemented, tested and analyzed a methodology

based on Convolutional Neural Network.

The results have shown that the use of a more complex U-net architecture

yields better results in the patch segmentation task, when compared to a

simpler architecture without enhanced encoding layers.

Taking into account that complex networks need considerably more time to

run, the training process can be further improved by using dropout between

the fully connected layers of the network and by normalizing the network

input data. Several attempts have shown that these two mechanisms induced

lower training times and larger accuracies on the test set.

By this study, it came out that also some details and parameters such as the
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learning rate and the optimizer can in�uence �nal results.

Moreover, I improved the results by adopting preprocessed images derived

from di�erent preprocessing operations, as some non-uniformity of the RGB

image are eliminated, as well as a higher number of thinner vessels and other

details of the microvascularization of retinal tissue become more apparent

after correcting some nonuniformities of the images and enhancing small

structures.

The results obtained are encouraging, even if further work is needed to

test repeatability and validity as candidate image based biomarker, as well

as direct comparison with alternative methods to characterize vasculature.

Another interesting aspect of this work is the versatility of the U-net imple-

mentation: in fact, the methodology developed is not inherently speci�c to

retina fundus images, so that other imaging modalities could be explored in

future work.

5.2 Acknowledgements and Future work
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Neurodegenerative disorders such as Alzheimer's disease (AD) are a huge

human and economic burden on our society, and early detection of the dis-
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ease is critical for the success of any therapy. The goal of this research is to

develop an innovative quantitative method for the discovery of image-based

biomarkers of neurodegenerative disorders using Optical Coherence Tomog-

raphy Angiography (OCTA), a new noninvasive imaging technique of the

retina [13].

As an extension of the central nervous system, the retina shares many fea-

tures with the brain, in terms of response to injury, immunology and physi-

ological characteristics. Emerging evidence indicates that neurodegenerative

processes associated with AD induce changes in the microvascularization of

retinal tissue and this suggests the potential for utilizing OCTA to detect

retinal neurovascular biomarkers of AD. However, progress in discovering ro-

bust biomarkers of AD has been slow, due to the complexity of the images,

the di�culty in de�ning variables a priori of neurovascular dysfunction and

developing quantitative methods speci�c to these variables. To address this

challenge, we propose to integrate methods from time-frequency analysis and

representation learning: the main novelty of this approach is to quantify mor-

phology and structural changes of retinal vascularization by leveraging the

internal representation of a new encoderenhanced convolutional neural net-

work, trained with images annotated by domain experts. One major novelty

is the development of an enhanced encoder section in the network consisting

of convolutional �lters that are constrained by imposing geometric conditions

based the theory of sparse multiscale representations and are trained to learn

the fundamental morphological characteristics of the retinal vascularization.

In the pilot study I conducted on fundus retina images, we demonstrated

the feasibility of this method, so we are con�dent that the application of

this approach to OCTA images will e�ectively transfer neurovascular struc-

tural characteristics learned by the network into embedding vectors encoding

critical information for biomarkers of neurodegeneration. Since OCTA is a

non-invasive imaging technique, the ability to detect such biomarkers would

make it very a promising method for largescale population screening and

early detection of AD.



56 CONCLUSIONS



 
Appendix A 
 

Python Scripts 
 

 

A.1    Preprocessing 
 

import os 

import argparse 

from tqdm import tqdm 

from glob import glob 

from sys import argv 

import matplotlib.pyplot as plt 

 

import cv2 

import numpy as np 

from PIL import Image 

 

 

FLAGS = None 

 

 

def is_patch_inside_FOV(x, y, img_w, img_h, patch_size): 

    ''' check if the patch is fully contained in the FOV ''' 

 

    x_ = x - int(img_w/2)  # origin (0,0) shifted to image center 

    y_ = y - int(img_h/2)  # origin (0,0) shifted to image center 

    R_inside = 270 - int(patch_size * np.sqrt(2.0) / 2.0) 

    # radius is 270 (from DRIVE db docs), 

    # minus the patch diagonal (assumed it is a square 

    # this is the limit to contain the full patch in the FOV) 

    radius = np.sqrt((x_*x_)+(y_*y_)) 

    if radius < R_inside: 

        return True 

    else: 

        return False 

 

 

def zero_padding(array, patch_size, stride): 

    p1 = (array.shape[0]-patch_size) % stride 

    p2 = (array.shape[1]-patch_size) % stride 

    if p1 != 0: 

        array = np.lib.pad(array, ((0, stride-p1), (0, 0), (0, 0)), 

      mode='constant', constant_values=0) 

    if p2 != 0: 

        array = np.lib.pad(array, ((0, 0), (0, stride-p2), (0, 0)),  

      mode='constant', constant_values=0) 

    return array 

                                      57 



def extract_ordered_overlap(array, patch_size, stride): 

    ''' extract patch from each image in array ''' 

    w, h, c = array.shape[0], array.shape[1], array.shape[2] 

    assert((h-patch_size) % stride == 0 and (w-patch_size) % stride == 0) 

    # print("Number of patches along h : " +str(((h-patch_size)//stride+1))) 

    # print("Number of patches along w : " +str(((w-patch_size)//stride+1))) 

    M, N = len(range((h-patch_size)//stride+1)),  

      len(range((w-patch_size)//stride+1)) 

 

    N_patch = M * N 

    patch = np.zeros((N_patch, patch_size, patch_size, c), dtype=np.uint8) 

    k = 0 

    for j in range((w-patch_size)//stride+1): 

        for i in range((h-patch_size)//stride+1): 

            patch[k] = array[j*stride:(j*stride)+patch_size,  

      i*stride:(i*stride)+patch_size] 

            k += 1 

    return patch 

 

 

def recompone_overlap(preds, img_w, img_h, stride): 

    # the reference array is the original test images 

    assert (len(preds.shape)==4)  #4D arrays 

    assert (preds.shape[1]==1 or preds.shape[1]==3)# check the channel is 1 or 3 

    patch_size = preds.shape[2]   # == preds.shape[3] 

    N_patches_w = (img_w-patch_size)//stride+1 

    N_patches_h = (img_h-patch_size)//stride+1 

    N_patches_img = N_patches_w * N_patches_h 

    N_image = int(len(preds) / N_patches_img) 

    print('\nN_image: ', N_image) 

    print("N_patches_w: " +str(N_patches_w)) 

    print("N_patches_h: " +str(N_patches_h)) 

    print("N_patches_img: " +str(N_patches_img)) 

    print("According to the dimension inserted, there are "+str(N_image)+ 

         " full images (of " +str(img_w)+"x" +str(img_h) +" each)") 

 

    # initialize to zero mega array with sum of Probabilities 

    full_prob = np.zeros((N_image, preds.shape[1],img_w,img_h),  

       dtype=np.float32) 

    full_sum = np.zeros((N_image, preds.shape[1],img_w,img_h),  

       dtype=np.float32) 

 

    #iterator over all the patches 

    # nrows, ncols = len(range(N_patches_w)), len(range(N_patches_h)) 

    k = 0 

    for i in range(N_image): 

        for w in range(N_patches_w): 

            for h in range(N_patches_h): 

                full_sum[i, :, w*stride:(w*stride)+patch_size, 

h*stride:(h*stride)+patch_size] += 1 

                full_prob[i, :, w*stride:(w*stride)+patch_size, 

h*stride:(h*stride)+patch_size] += preds[k] 

                k += 1 

 

    assert(np.min(full_sum) >=  1.0)  #at least one 

    final_avg = full_prob/full_sum 

    print('final_avg.shape: ', final_avg.shape) 

    assert(np.min(final_avg) >= 0.0)  # min value for a pixel is 0.0 

    assert(np.max(final_avg) <= 1.0) # max value for a pixel is 1.0 

 

    return final_avg 

 

 



 

# PRE_processing (use for both training and testing!) 

def my_PreProc(data): 

    assert (len(data.shape) == 4) 

    assert (data.shape[1] == 3)  # use original images 

 

    # Black-white conversion 

    train_imgs = rgb2gray(data) 

 

    # My preprocessing: 

    train_imgs = dataset_normalized(train_imgs) 

    train_imgs = clahe_equalized(train_imgs) 

    train_imgs = adjust_gamma(train_imgs, 1.2) 

    print('train_imgs.dtype: ', train_imgs.dtype) 

     

    return train_imgs 

 

 

# ============================================================ 

# ========= PRE PROCESSING FUNCTIONS ========================# 

# ============================================================ 

 

def rgb2gray(rgb): 

    # convert RGB image in black and white 

    assert (len(rgb.shape) == 4)  # 4D arrays 

    assert (rgb.shape[1] == 3) 

    bn_imgs = np.float32(rgb[:, 0, :, :]*0.299 + rgb[:, 1, :, :]*0.587  

         + rgb[:, 2, :, :]*0.114) 

    bn_imgs = np.reshape(bn_imgs, (rgb.shape[0], 1, rgb.shape[2], rgb.shape[3])) 

 

    return bn_imgs 

 

 

def dataset_normalized(imgs): 

    # normalize over the dataset 

    assert (len(imgs.shape) == 4)  # 4D arrays 

    assert (imgs.shape[1] == 1)  # check if the channel is 1 

    imgs_std = np.std(imgs) 

    imgs_mean = np.mean(imgs) 

    imgs_normalized = np.float32((imgs - imgs_mean) / imgs_std) 

    for i in range(imgs.shape[0]): 

        imgs_normalized[i] =  

  np.float32(((imgs_normalized[i] - np.min(imgs_normalized[i])) / 

        (np.max(imgs_normalized[i]) - np.min(imgs_normalized[i]))) * 255) 

 

    return imgs_normalized 

 

 

def clahe_equalized(imgs): 

    # Contrast Limited Adaptive Histogram Equalization 

    # enhances the contrast between small vessels and background   

    assert (len(imgs.shape) == 4)  # 4D arrays 

    assert (imgs.shape[1] == 1)  # check if the channel is 1 

    # create a CLAHE object (Arguments are optional). 

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) 

    imgs_equalized = np.zeros(imgs.shape, np.uint8) 

    for i in range(imgs.shape[0]): 

        imgs_equalized[i, 0] = clahe.apply(np.array(imgs[i, 0], dtype=np.uint8)) 

    return imgs_equalized 

 

 

 

 



def adjust_gamma(imgs, gamma=1.0): 

    # build a lookup table mapping the pixel values [0, 255] to their  

    # adjusted gamma values 

    assert (len(imgs.shape) == 4)  # 4D arrays 

    assert (imgs.shape[1] == 1)  # check if the channel is 1 

    invGamma = 1.0 / gamma 

    table = np.array([((i / 255.0) ** invGamma) * 255 for i in  

        np.arange(0, 256)]).astype("uint8") 

 

    # apply gamma correction using the lookup table 

    new_imgs = np.zeros(imgs.shape, np.uint8) 

    for i in range(imgs.shape[0]): 

        # print(cv2.LUT(np.array(imgs[i, 0], dtype=np.uint8), table).dtype) 

        new_imgs[i, 0] = cv2.LUT(np.array(imgs[i, 0], dtype=np.uint8), table) 

 

    return new_imgs 

 

#=============================================================================== 

 

 

def main(): 

 

    # SETTINGS 

 

    if FLAGS.computer == 'mariachiara':  

 

        train_path='/home/dlabate/Documents/TESI/retina_pytorch/DRIVE/training' 

 

        test_path='/home/dlabate/Documents/TESI/retina_pytorch/DRIVE/test' 

 

        save_path='/home/dlabate/Documents/TESI/retina_pytorch/DRIVE/np_dataset' 

 

    elif FLAGS.computer == 'sabine': # cluster 

 

        train_path = '/brazos/labate/DRIVE/training' 

 

        test_path = '/brazos/labate/DRIVE/test' 

 

        save_path = '/brazos/labate/DRIVE/np_dataset' 

 

    

#=============================================================================== 

 

    train_images_path = [os.path.join(train_path, 'images',  

       '%d_training.tif' % k) for k in range(21, 41)] # [0:FLAGS.tot_img] 

 

    train_masks_path = [os.path.join(train_path, 'mask',  

  '%d_training_mask.gif' % k) for k in range(21, 41)] # [0:FLAGS.tot_img] 

 

    test_images_path = sorted(glob(os.path.join(test_path, 'images',  

          '*.tif'))) # [0:FLAGS.tot_img] 

 

    test_masks_path = sorted(glob(os.path.join(test_path, 'mask',  

          '*.gif'))) # [0:FLAGS.tot_img] 

 

    assert len(train_images_path) == len(test_images_path) == \ 

           len(train_masks_path) == len(test_masks_path) 

 

    Nimages, Nmasks = len(train_images_path), len(train_masks_path) 

    Ntest_images, Ntest_masks = len(test_images_path), len(test_masks_path) 

 

    

 



    train_images = np.zeros((FLAGS.N * Nimages, FLAGS.patch_size, 

    FLAGS.patch_size, FLAGS.nchannels), dtype=np.uint8) 

 

 

    train_masks = np.zeros((FLAGS.N * Nmasks, FLAGS.patch_size,  

     FLAGS.patch_size), dtype=np.uint8) 

 

    test_images = np.zeros((FLAGS.Ntest_patches * Ntest_images,  

           FLAGS.patch_size, FLAGS.patch_size, FLAGS.nchannels), dtype=np.uint8) 

 

    test_masks = np.zeros((FLAGS.Ntest_patches * Ntest_masks,  

     FLAGS.patch_size, FLAGS.patch_size, 1), dtype=np.uint8) 

 

 

#===============================TRAINING_DATASET================================ 

 

    print('\n\nTRAINING\n') 

    for k, (item1, item2) in tqdm(enumerate(zip(train_images_path,  

       train_masks_path))): 

 

        image = np.asarray(Image.open(item1)) 

        image = image[9:574, :, :] 

        mask = np.asarray(Image.open(item2)) 

        mask = mask[9:574, :] 

        # print('mask shape, image shape:  ', mask.shape, image.shape) 

 

        W, H = image.shape[0], image.shape[1] 

         

        l = 0 

        while l < FLAGS.N: 

            i = np.random.randint(FLAGS.patch_size//2,  

     W - FLAGS.patch_size//2, 1)[0] 

            j = np.random.randint(FLAGS.patch_size//2,  

     H - FLAGS.patch_size//2, 1)[0] 

 

            # check whether the patch is fully contained in the FOV 

            if not is_patch_inside_FOV(j, i, H, W, FLAGS.patch_size): 

                continue 

 

            train_images[FLAGS.N*k+l] = image[ 

                                  i-FLAGS.patch_size//2: i+FLAGS.patch_size//2, 

                                  j-FLAGS.patch_size//2: j+FLAGS.patch_size//2] 

 

            train_masks[FLAGS.N*k+l] = mask[ 

                                 i-FLAGS.patch_size//2: i+FLAGS.patch_size//2, 

                                 j-FLAGS.patch_size//2: j+FLAGS.patch_size//2] 

            l += 1 

 

    train_images = np.transpose(train_images, (0, 3, 1, 2)) 

    train_masks = np.expand_dims(train_masks, axis=1) 

    train_masks = np.concatenate((train_masks, 1-train_masks), axis=1) 

    print('images.shape', train_images.shape) 

    print('masks.shape', train_masks.shape) 

    train_images = my_PreProc(train_images) 

    print('train_images.shape', train_images.shape) 

    print('train_masks.shape', train_masks.shape) 

 

    np.save(os.path.join(save_path, 'train_images.npy'), train_images) 

    np.save(os.path.join(save_path, 'train_masks.npy'), train_masks) 

 

 

 

 



#===========================TESTING_DATASET===================================== 

 

    print('\n\nTESTING\n') 

 

    for k, (item1, item2) in tqdm(enumerate(zip(test_images_path, 

        test_masks_path))): 

 

        image = np.asarray(Image.open(item1)) 

        mask = np.expand_dims(np.asarray(Image.open(item2)), 2) 

 

        image = zero_padding(image, FLAGS.patch_size, FLAGS.stride) 

        mask = zero_padding(mask, FLAGS.patch_size, FLAGS.stride) 

        # print('mask shape, image shape:  ', mask.shape, image.shape) 

 

        Nstrides_V = (image.shape[0] - FLAGS.patch_size) //  

       FLAGS.stride + 1  # 109 

        Nstrides_H = (image.shape[1] - FLAGS.patch_size) //  

       FLAGS.stride + 1  # 105 

 

        Ntest_patches = Nstrides_V * Nstrides_H 

        assert Ntest_patches == FLAGS.Ntest_patches 

 

 

        test_images[FLAGS.Ntest_patches*k: FLAGS.Ntest_patches*(k+1)] = \ 

            extract_ordered_overlap(image, FLAGS.patch_size, FLAGS.stride) 

 

        test_masks[FLAGS.Ntest_patches*k: FLAGS.Ntest_patches*(k+1)] = \ 

            extract_ordered_overlap(mask, FLAGS.patch_size, FLAGS.stride) 

 

 

    test_images = np.transpose(test_images, (0, 3, 1, 2)) 

    test_masks = np.transpose(test_masks, (0, 3, 1, 2)) 

    test_masks = np.concatenate((test_masks, 1 - test_masks), axis=1) 

    print('images.shape', test_images.shape) 

    print('masks.shape', test_masks.shape) 

    test_images = my_PreProc(test_images) 

    print('test_images.shape', test_images.shape) 

    print('test_masks.shape', test_masks.shape) 

 

    np.save(os.path.join(save_path, 'test_images.npy'), test_images) 

    np.save(os.path.join(save_path, 'test_masks.npy'), test_masks) 

 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description='PreProcessing:  

    retina fundus images _ retina imaging PyTorch') 

 

    parser.add_argument('--tot_img', type=float, default=20, 

                        help='total number of images (default: 20)') 

 

    parser.add_argument('--N', type=float, default=2000, 

                        help='total number of images extracted from each image 

    in the TRAINING (default: 9500)') 

 

    parser.add_argument('--patch_size', type=int, default=48, 

                        help='width and height of each extracted patch') 

    parser.add_argument('--stride', type=float, default=5, 

                        help='stride') 

    parser.add_argument('--nchannels', type=int, default=3, 

                        help='number of channels') 

    parser.add_argument('--Ntest_patches', type=int, default=11445, 

                        help='number of patches for the testing dataset') 

 



    parser.add_argument('--computer', type=str, default='mariachiara', 

                        help='RUN: mariachiara or sabine; TERMINAL: argv[1]') 

 

    FLAGS, _ = parser.parse_known_args() 

    main() 

 

 

 

A.2    Utils_dataset 
 

import torch 

import numpy as np 

from torch.utils.data import TensorDataset 

 

 

class Retina(TensorDataset): 

    def __init__(self, images_path, masks_path, transform=None): 

        super(Retina, self).__init__() 

        self.images = np.load(images_path) 

        self.masks = np.load(masks_path) 

        self.transform = transform 

 

    def __getitem__(self, idx): 

        sample = \ 

            { 

                'image': self.images[idx], 

                'mask': self.masks[idx], 

            } 

 

        if self.transform: 

            sample = self.transform(sample) 

        return sample 

 

    def __len__(self): 

        # print('len(self.images): ', len(self.images)) 

        return len(self.images) 

 

 

class Scale(object): 

    def __call__(self, sample): 

        sample['image'] = np.float32((1./255) * sample['image']) 

        sample['mask'] = np.float32((1./255) * sample['mask']) 

        return sample 

 

 

class ToTensor(object): 

    """Convert ndarrays in sample to Tensors.""" 

 

    def __call__(self, sample): 

        # print(sample['image'].shape, sample['mask'].shape) 

        return {'image': torch.from_numpy(sample['image']), 

                'mask': torch.from_numpy(sample['mask'])} 
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A.3    Model 
 

 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import math 

 

 

class Unet(nn.Module): 

    def __init__(self, input_channels): 

 

        super(Unet, self).__init__() 

        self.c_in = input_channels 

        self.nonlinearity = nn.ReLU(inplace=True) 

 

        # 1 – Contracting path  

        self.conv1 = nn.Conv2d(self.c_in, 32, 3, padding=1) 

        self.dp1 = nn.Dropout(.2) 

        self.conv2 = nn.Conv2d(32, 32, 3, padding=1) 

 

        # 2 

        self.conv3 = nn.Conv2d(32, 64, 3, padding=1) 

        self.dp2 = nn.Dropout(.2) 

        self.conv4 = nn.Conv2d(64, 64, 3, padding=1) 

 

        # 3 

        self.conv5 = nn.Conv2d(64, 128, 3, padding=1) 

        self.dp3 = nn.Dropout(.2) 

        self.conv6 = nn.Conv2d(128, 128, 3, padding=1) 

 

        # Encoding layers 

        self.fc1 = nn.Linear(12 * 12 * 128, 128) 

        self.fc2 = nn.Linear(128, 128 * 12 * 12) 

 

        # 4 – Expansive path   

        self.conv7 = nn.Conv2d(192, 64, 3, padding=1) 

        self.dp4 = nn.Dropout(.2) 

        self.conv8 = nn.Conv2d(64, 64, 3, padding=1) 

 

        # 5 

        self.conv9 = nn.Conv2d(96, 32, 3, padding=1) 

        self.dp5 = nn.Dropout(.2) 

        self.conv10 = nn.Conv2d(32, 32, 3, padding=1) 

 

        # 6 

        self.conv11 = nn.Conv2d(32, 2, 1, padding=0) 

 

        for m in self.modules(): 

            if isinstance(m, nn.Conv2d): 

                stdv = 1. / math.sqrt(m.weight.size(1)) 

                m.weight.data.uniform_(-stdv, stdv) 

                if m.bias is not None: 

                    m.bias.data.uniform_(-stdv, stdv) 
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    def forward(self, x): 

 

        # 1 

        x = self.conv1(x) 

        x1 = self.nonlinearity(x) 

        x1 = self.dp1(x1) 

        x1 = self.conv2(x1) 

        x1 = self.nonlinearity(x1) 

        pool1 = nn.MaxPool2d((2, 2))(x1) 

 

        # 2 

        x2 = self.conv3(pool1) 

        x2 = self.nonlinearity(x2) 

        x2 = self.dp2(x2) 

        x2 = self.conv4(x2) 

        x2 = self.nonlinearity(x2) 

        pool2 = nn.MaxPool2d((2, 2))(x2) 

 

        # 3 

        x3 = self.conv5(pool2) 

        x3 = self.nonlinearity(x3) 

        x3 = self.dp3(x3) 

        x3 = self.conv6(x3) 

        x3 = self.nonlinearity(x3) 

 

        # encoding layers 

        e3 = x3.view(-1, 128*12*12) 

        e3 = self.fc1(e3) 

        e3 = nn.ReLU(inplace=True)(e3) 

        e3 = self.fc2(e3) 

        e3 = nn.ReLU(inplace=True)(e3) 

        e3 = e3.view(-1, 128, 12, 12) 

 

        # 4 

        u4 = F.interpolate(input=e3, scale_factor=2, mode='nearest',) 

        u4 = torch.cat((x2, u4), dim=1) 

        x4 = self.conv7(u4) 

        x4 = self.nonlinearity(x4) 

        x4 = self.dp4(x4) 

        x4 = self.conv8(x4) 

        x4 = self.nonlinearity(x4) 

 

        # 5 

        u5 = F.interpolate(input=x4, scale_factor=2, mode='nearest',) 

        u5 = torch.cat((x1, u5), dim=1) 

        x5 = self.conv9(u5) 

        x5 = self.nonlinearity(x5) 

        x5 = self.dp5(x5) 

        x5 = self.conv10(x5) 

        x5 = self.nonlinearity(x5) 

 

        # 6 

        x5 = self.conv11(x5) 

        x5 = self.nonlinearity(x5) 

        out = nn.Softmax2d()(x5) 

 

        return out 
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A.4    Main 
import torch 

import torch.nn as nn 

import torch.optim as optim 

from torchvision.transforms import Compose 

from torch.utils.data import TensorDataset 

 

import os 

import gc 

import numpy as np 

import matplotlib.pyplot as plt 

import argparse 

from tqdm import tqdm 

from multiprocessing import cpu_count 

from sys import argv 

 

from utils_dataset import Retina, Scale, ToTensor 

from model import Unet 

from preprocessing import extract_ordered_overlap, recompone_overlap 

 

 

FLAGS = None 

 

 

def train(sample, device, optimizer, model, criterion, batch_idx, N_batches, 

epoch): 

    image, mask = sample['image'].to(device), sample['mask'].to(device) 

    # print(image.shape, mask.shape) # [256, 1, 48, 48] 

    optimizer.zero_grad() 

    out = model(image) 

    # print(out.shape) # [256, 1, 48, 48] 

    loss = criterion(out, mask) 

    loss.backward() 

    optimizer.step() 

    if (batch_idx + 1) % FLAGS.log_interval == 0 or  

      (batch_idx + 1) == N_batches: 

        print('\n==>>> epoch: {}, batch index: {}, train loss: 

    {:.6f}'.format(epoch, batch_idx+1, loss.item())) 

        gc.collect() 

 

 

def test(model, test_loader, device, batch_size, scores_per_patch): 

    model.eval() 

    print('Total number of batches for Testing: ', len(test_loader)) 

 

    for batch_idx, sample in tqdm(enumerate(test_loader)): 

        image = sample['image'].to(device) 

        out = model(image) 

        scores_per_patch[batch_idx * batch_size: batch_idx * batch_size +  

              len(out)] = 

 

            out.cpu().data.numpy() 

 

        if (batch_idx+1) % FLAGS.test_interval == 0: 

            print('test image (.1, .25, .5, .75, .9) quantiles: ', 

                  np.quantile(image.cpu().data.numpy(), (.1, .25, .5, .75, .9))) 

            print('test out (.1, .25, .5, .75, .9) quantiles: ', 

                  np.quantile(out.cpu().data.numpy(), (.1, .25, .5, .75, .9))) 

    gc.collect() 

 

    return scores_per_patch 



def main(): 

 

    # SETTINGS 

 

    # print("number of cpus: ", cpu_count()) 

    use_cuda = torch.cuda.is_available() 

    kwargs = {'num_workers': cpu_count(), 

              'pin_memory': True} \ 

        if use_cuda else {} 

    device = torch.device("cuda" if use_cuda else "cpu") 

 

    W0 = 588  # from 584 

    H0 = 568  # from 565 

    NpatchesV = (W0-FLAGS.patch_size)//FLAGS.stride+1  # 109 

    NpatchesH = (H0-FLAGS.patch_size)//FLAGS.stride+1  # 105 

 

    score_per_image = np.zeros((FLAGS.N_epochs, FLAGS.tot_img, 1, W0, H0),  

        dtype=np.float32) 

 

    

#=============================================================================== 

 

    if FLAGS.computer == 'mariachiara': 

 

        main_path = 

       '/home/dlabate/Documents/TESI/retina_pytorch/DRIVE/np_dataset' 

 

        png_path = 

       '/home/dlabate/Documents/TESI/retina_pytorch/retina_imaging/test_results' 

 

    elif FLAGS.computer == 'sabine': # cluster 

 

        main_path = '/brazos/labate/DRIVE/np_dataset' 

 

        png_path = '/brazos/labate/retina_imaging/test_results' 

 

 

#=============================================================================== 

 

    # TRAINING 

    train_ds = Retina( 

        os.path.join(main_path, 'train_images.npy'), 

        os.path.join(main_path, 'train_masks.npy'), 

        transform=Compose([ 

            Scale(), 

            ToTensor()]) 

    ) 

    train_loader = torch.utils.data.DataLoader(train_ds,  

   batch_size=FLAGS.batch_size, shuffle=True, **kwargs) 

 

    # TESTING 

    test_ds = Retina( 

        os.path.join(main_path, 'test_images.npy'), 

        os.path.join(main_path, 'test_masks.npy'), 

        transform=Compose([ 

            Scale(), 

            ToTensor()]) 

    ) 

    test_loader = torch.utils.data.DataLoader(test_ds,  

   batch_size=FLAGS.batch_size, shuffle=False, **kwargs) 

 

#=============================================================================== 

 



    model = Unet(input_channels=1) 

    if torch.cuda.device_count() > 1: 

        model = torch.nn.DataParallel(model) 

    model.to(device) 

 

    # Stochastic Gradient Descent optimizer 

    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.3,  

        weight_decay=1e-6) 

 

    criterion = nn.BCELoss() # Binary Cross Entropy Loss function 

 

    print('Total number of epochs: N_epochs = ', FLAGS.N_epochs) 

    N_batches = len(train_loader) 

 

    for epoch in tqdm(range(1, FLAGS.N_epochs+1)): 

 

        # TRAINING 

        print("\nEpoch ", epoch, " ==>>> Total number of batches for Training:", 

          N_batches) 

 

        model.train() 

 

        for batch_idx, sample in tqdm(enumerate(train_loader)): 

            train(sample, device, optimizer, model, criterion, batch_idx,  

        N_batches, epoch) 

 

        # TESTING 

        print('\nEpoch ', epoch) 

 

        scores_per_patch = np.zeros((FLAGS.tot_img * (NpatchesV * NpatchesH), 2,  

  FLAGS.patch_size, FLAGS.patch_size), dtype=np.float32) 

 

        scores_per_patch = \ 

              test(model, test_loader, device, FLAGS.batch_size,  

   scores_per_patch=scores_per_patch) 

 

        print('\nscores_per_patch: ', scores_per_patch.shape) #(228900,2,48,48) 

 

        score_per_image[epoch-1] = \ 

            recompone_overlap(np.expand_dims(scores_per_patch[:,0,:,:], axis=1),  

            W0, H0, FLAGS.stride) 

 

        print('\nscore_per_image[epoch-1]: ', score_per_image[epoch-1].shape) 

        print('UNIQUE: ', np.unique(score_per_image[epoch-1])) 

        print('percentile: ', np.percentile(score_per_image[epoch-1].flatten(), 

             (25, 50, 75))) 

 

 

    print('\nscore_per_image.shape: ', score_per_image.shape) 

    print('UNIQUE score_per_image: ', np.unique(score_per_image)) 

    print('percentile score_per_image:',np.percentile(score_per_image.flatten(),  

             (25, 50, 75))) 

 

    np.save(os.path.join(main_path, 'score_per_image.npy'), score_per_image) 

 

    

#=============================================================================== 

 

    for i in range(FLAGS.tot_img): 

        plt.imshow(score_per_image[FLAGS.N_epochs-1, i, 0, :, :]) 

        plt.savefig(os.path.join(png_path, 'image_%s.png' % str(i+1))) 

        plt.show() 

 



if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description='retina fundus images _ retina  

          imaging PyTorch') 

 

    parser.add_argument('--tot_img', type=int, default=20, 

                        help='total number of images (default: 20)') 

 

    parser.add_argument('--N_epochs', type=int, default=5, 

                        help='total number of epochs (default: 100)') 

 

    parser.add_argument('--log_interval', type=int, default=20, 

                        help='how many batches to wait before printing  

    training status (default: 20)') 

 

    parser.add_argument('--test_interval', type=int, default=100, 

                        help='how many batches to wait before printing  

    testing status (default: 100)') 

 

    parser.add_argument('--batch_size', type=int, default=256, 

                        help='batch_size (default: 256)') 

    parser.add_argument('--stride', type=int, default=5, 

                        help='stride (default: 5)') 

    parser.add_argument('--patch_size', type=int, default=48, 

                        help='patch_size (default: 48)') 

    parser.add_argument('--Ntest_patches', type=int, default=11445, 

                        help='number of patches for the testing dataset') 

 

    parser.add_argument('--computer', type=str, default='mariachiara', 

                        help='RUN: mariachiara or sabine; TERMINAL: argv[1]') 

 

    FLAGS, _ = parser.parse_known_args() 

    main() 

 

 

A.5    Evaluation 
 

import os 

import numpy as np 

import matplotlib.pyplot as plt 

import argparse 

from tqdm import tqdm 

from sklearn.metrics import accuracy_score 

from PIL import Image 

from glob import glob 

from sys import argv 

 

from preprocessing import zero_padding 

 

 

FLAGS = None 

 

 

def main(): 

 

    # SETTINGS 

 

    if FLAGS.computer == 'mariachiara': 
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        test_path = '/home/dlabate/Documents/TESI/retina_pytorch/DRIVE/test' 

 

        results_path = 

       '/home/dlabate/Documents/TESI/retina_pytorch/retina_imaging/test_results' 

 

        score_path = 

     '/home/dlabate/Documents/TESI/retina_pytorch/DRIVE/np_dataset' 

 

    elif FLAGS.computer == 'sabine': # cluster 

 

        test_path = '/brazos/labate/DRIVE/test' 

 

        results_path = '/brazos/labate/retina_imaging/test_results' 

 

        score_path = '/brazos/labate/DRIVE/np_dataset' 

 

    W0 = 588  # from 584 

    H0 = 568  # from 565 

 

    score_per_image = np.load(os.path.join(score_path, 'score_per_image.npy')) 

 

    

#=============================================================================== 

 

    print('EVALUATION') 

 

    test_masks_path = sorted(glob(os.path.join(test_path, 'mask', '*.gif')))  

        # [0:FLAGS.tot_img] 

 

    test_masks = np.zeros((FLAGS.tot_img, 2, W0, H0), dtype=np.float32) 

 

    for k, item in tqdm(enumerate(test_masks_path)): 

        mask = np.expand_dims(np.asarray(Image.open(item)), 2) 

       .reshape((584, 565, 1)) 

        mask = zero_padding(mask, FLAGS.patch_size, FLAGS.stride) 

       .reshape((1, W0, H0))/255 

        test_masks[k] = mask 

        test_masks[k] = np.concatenate((mask, 1 - mask), axis=0) 

 

    print('\ntest_masks.shape: ', test_masks.shape) 

 

    labels = np.expand_dims(test_masks[:,0,:,:], axis=1) 

    print('\nlabels shape: ', labels.shape) 

    print('labels type: ', labels.dtype) 

    labels = labels.flatten() 

    labels[labels > FLAGS.thres ] = 1 

    labels[labels <= FLAGS.thres ] = 0 

    print('UNIQUE labels: ', np.unique(labels)) 

    print('np.sum(labels==1): ', np.sum(labels == 1),', np.sum(labels==0): ',  

             np.sum(labels == 0)) 

 

    accuracy_scores = np.zeros(FLAGS.N_epochs) 

    epochs = np.arange(FLAGS.N_epochs) + 1 

 

    for epoch in range(FLAGS.N_epochs): 

        print('\nEpoch: ', epoch+1) 

 

        p = score_per_image[epoch].flatten() 

        print('score_per_image type: ', p.dtype) 

        p[p > FLAGS.thres ] = 1 

        p[p <= FLAGS.thres ] = 0 

        print('UNIQUE p: ', np.unique(p)) 

        print('np.sum(p==1): ', np.sum(p == 1),', np.sum(p==0): ', 



        np.sum(p == 0)) 

 

        # Accuracy 

        accuracy = accuracy_score(labels, p) 

        print('==>> epoch: {}, accuracy: {}'.format(epochs[epoch],  

        accuracy * 100)) 

 

        accuracy_scores[epoch] = accuracy * 100 

 

        # Segmented images (last epoch) 

        p = p.reshape(FLAGS.tot_img, 1, W0, H0) 

        if epoch == (FLAGS.N_epochs - 1): 

            for i in range(FLAGS.tot_img): 

                plt.imshow(p[i, 0, :, :]) 

                plt.savefig(os.path.join(results_path, 'segm_%s.png'  

        % str(i + 1))) 

                plt.show() 

 

    

#=============================================================================== 

 

    # SAVE THE RESULTS 

 

    accuracy_mean = accuracy_scores.mean() 

 

    print('\nEpoch {} ==>> Accuracy: {:.5f}'.format(FLAGS.N_epochs,  

     accuracy_scores[FLAGS.N_epochs-1])) 

 

    print('Mean Accuracy: {:.5f}'.format(accuracy_mean)) 

 

    file_perf = open(os.path.join(results_path, 'performances.txt'), 'w') 

    file_perf.write("Last epoch accuracy: 100*(TP+TN)/total_scores = %s"  

     % accuracy_scores[FLAGS.N_epochs-1] 

 

                    + "\nMean accurancy: %s" % accuracy_mean) 

 

    plt.figure() 

    plt.title('Accurancy values') 

    plt.plot(epochs, accuracy_scores, 'b',  

    label='accuracy_mean = %0.5f' % accuracy_mean) 

    plt.xlim([1, FLAGS.N_epochs]) 

    plt.xlabel('epochs') 

    plt.ylabel('Accurancy') 

    plt.savefig(os.path.join(results_path, 'Accurancy_values.png')) 

    plt.show() 

 

 

if __name__ == '__main__': 

 

    parser = argparse.ArgumentParser(description='retina fundus images _ retina  

          imaging PyTorch') 

 

    parser.add_argument('--tot_img', type=int, default=20, 

                        help='total number of images (default: 20)') 

 

    parser.add_argument('--N_epochs', type=int, default=50, 

                        help='total number of epochs (default: 100)') 

 

    parser.add_argument('--thres', type=int, default=0.95, 

                        help='threshold (default: 0.9)') 

 

    parser.add_argument('--patch_size', type=int, default=48, 

                        help='width and height of each extracted patch') 



    parser.add_argument('--stride', type=float, default=5, 

                        help='stride') 

    parser.add_argument('--computer', type=str, default='mariachiara', 

                        help='RUN: mariachiara or sabine; TERMINAL: argv[1]') 

 

    FLAGS, _ = parser.parse_known_args() 

    main() 
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