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pre preteso più di chiunque altro. A me stessa. Forse è giunto il momento di
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Abstract

The analysis of extreme events, such as floods, earthquakes or sever windstorms,
has grown of importance over the years, since forecasting the occurrence of such
intense phenomena is useful for both risk management and mitigation.

In this work, the statistical methods deriving from Extreme value theory are
used to analyze rainfall measurements collected in the province of Genoa, as in
the last fifty years the area has been hit by a series of flash floods that have
caused considerable damages.

After having exposed the classical approach of Extreme value analysis, some
generalizations are presented. Such characterizations of extremes have been
developed with the aim to include additional information when modelling rare
events and are known as: the r Largest Order Statistics approach and Threshold
exceedances model.

As regards the application case, inference for distribution parameters is based
on maximum likelihood estimation, while the goodness of fit is assessed through
diagnostic plots.
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Chapter 1

Introduction

The adjective ”extremes” refers to the complete class of phenomena whose oc-
currence is rare and which can lead, precisely because of their unusual character,
to disastrous environmental, economic and human impacts.

The probabilistic theory dealing with these events is called Extreme Value
Theory and aims to develop mathematical methods and models able to describe
and to predict the occurrence of such rare phenomena.

Initially, the analysis of extremes was introduced in hydrology and meteo-
rology in order to study flood levels and natural disasters; however, in recent
years, the domain of application of this statistical methodology has managed to
include other disciplines and applied sciences such as finance, traffic prediction,
insurance and structural engineering.

The first studies on extreme values date back to the first part of the twentieth
century, when Tippet and Fisher (1928) stated an asymptotic argument which
represents the cornerstone of extreme value theory: the Extremal Types Theo-
rem. In the subsequent years, the asymptotic theory was extended and codified
by Gnedenko (1948) and Gumbel(1958), while the characterization of extremes
as observations exceeding an high threshold is due to Pickands (1970).

The present work is articulated in four chapters. Firstly, Chapter 2 contains
an overview of the classical theory of extremes: at the beginning, the univariate
case is discussed, with reference to the way of modeling block maxima data;
after that the basic theory of bivariate extremes is presented, with mention
to asymptotic dependence. Two model generalizations are then described in
Chapter 3. They mainly rely on different characterizations of extremes that
allow a greater number of observations to be used when fitting extreme value
distributions.
Inference for model parameters, together with goodness of fit procedures are
described in Chapter 4.
Finally, in Chapter 5, all previously mentioned techniques are applied to a data
set consisting of rainfall measurements collected in the province of Genoa, with
the aim of analyzing the behavior of the intense meteorological phenomena that
have affected the area over the last fifty years.
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Chapter 2

Extreme value theory

This chapter concerns the classical approach of extreme value theory, which will
be also referred as EVT. In the first part the study will focus on univariate
sequences of independent and identically distributed random variables, while in
the second part the bivariate case will be discussed.

2.1 Univariate models

2.1.1 Asymptotic Model and Extremal Types Theorem

The classical approach for studying extremes is mainly based on an asymptotic
result which can be considered as an analog of the central limit theorem. Before
exposing it, some model specifications are needed.
Let X1, X2, . . . , Xn be independent and identically distributed random variables.
The main purpose is that of studying the behaviour of the sample maximum

Mn = max(X1, X2, . . . , Xn)

Supposing that the variables have common distribution function F, the exact
distribution of Mn can be found as follows:

P{Mn ≤ z} = P{X1 ≤ z,X2 ≤ z, . . . ,Xn ≤ z}
= P{X1 ≤ z} · P{X2 ≤ z} · · · · · P{Xn ≤ z}
= Fn(z).

(2.1)

This formulation cannot be used in practice, since it requires to know the dis-
tribution F. Furthermore, the substitution of empirical estimates of F into 2.1
cannot be considered, since small discrepancies in the approximation of F, can
generate significant errors when estimating Fn.
An alternative approach suggests to study the asymptotic behaviour of Fn, try-
ing to find suitable families of models that can be estimated using extreme
observations. Defining z+ the smallest value of z for which F (z) = 1, it follows
that

lim
z→∞

Fn(z) = 0 ∀z < z+,
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so, the limit distribution degenerates to a point of mass. This problem can be
overcome by re-normalizing Mn through linear transformation:

M∗n =
Mn − bn

an
, (2.2)

where {an > 0} and {bn} are suitable sequences of constants such that the
location and scale of M∗n are stabilized as n grows.
Now it is possible to enunciate the fundamental theorem of EVT ([1]).

Extremal types theorem

Theorem 2.1.1. If there exist sequences of constants {an > 0} and {bn} such
that

P
{
Mn − bn

an
≤ z
}
→ G(z) as n→∞ (2.3)

where G is a non-degenerate distribution function, then G belongs to one of the
following families :

I. G(z) = exp
{
− exp

[
−
(
z−b
a

)]}
, −∞ < z <∞;

II. G(z) =

{
0, z ≤ b,
exp{−( z−ba )−α}, z > b;

III. G(z) =

{
exp{−[−( z−ba )−α]}, z < b,

1, z ≥ b;

for parameters a > 0, b and, in the case of families II, III, α > 0.

Theorem 2.1.1, stated by Fisher and Tippet in 1928, exposes the entire range
of limit distributions for M∗n.
Families I, II and III are referred collectively as extreme value distributions,
and are widely know as Gumbel, Fréchet and Weibull respectively. All three
families are characterized by parameters b and a, which are called location and
scale parameter, respectively. In addiction, the Fréchet and Weibull distribu-
tions have a shape parameter α. The main aspect of Theorem 2.1.1 is that it
provides an extreme value analog of the central limit theorem: it suggests that
the above mentioned types of extreme value distributions are the only possible
limits for the distribution of M∗n independently of F.

2.1.2 The Generalized Extreme Value Distribution

The three families mentioned in Theorem 2.1.1 differ according to the types of
tail behavior of the distribution function F . This can be pointed out by simply
studying the behavior of G near its upper-end point z+. In particular, it results
that for the Fréchet and Gumbel distributions z+ = +∞, while, for the Weibull,
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z+ is finite. Moreover, the different rates of decay in the tail of F make sure
that the density of G has exponential and polynomial decay for the Gumbel and
Fréchet distributions respectively. As a results, the three classes lead to quite
different representations of the extreme value behavior.

Figure 2.1: Density functions for Gumbel (µ = 0, σ = 1), Fréchet (µ = 0, σ =
1, ξ = 4) and Weibull(µ = 0, σ = 1, ξ = 2) distributions.

Unfortunately, the formulation of G in Theorem 2.1.1, which separates be-
tween the three families, is not so helpful in practice, since it requires to know
which class to adopt before estimating its parameters. However, it is possible to
reformulate the models in Theorem 2.1.1, combining the Gumbel, Fréchet and
Weibull distributions into a single family of models, characterized by distribution
functions of the form:

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
, (2.4)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy the
conditions : −∞ < µ <∞, σ > 0 and −∞ < ξ <∞.
The model in Eq 2.4 is called generalized extreme value distribution (GEV)
and has three parameters :

• a location parameter µ;

• a scale parameter σ;

• a shape parameter ξ .

4



The Fréchet and the Weibull families correspond to the cases ξ > 0 and ξ < 0,
respectively. The Gumbel distribution (ξ = 0), instead, is obtained by taking
the limit of 2.4 as ξ → 0 and has the following form:

G(z) = exp

[
− exp

{
−
(
z − µ
σ

)}]
, −∞ < z <∞ (2.5)

Thus, Theorem 2.1.1 can be restated as follows ([1]):

Theorem 2.1.2. If there exist sequences of constants {an > 0} and {bn} such
that

P
{
Mn − bn

an
≤ z
}
→ G(z) as n→∞ (2.6)

where G is a non-degenerate distribution function, then G is member of the GEV
family:

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
, (2.7)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy the
conditions : −∞ < µ <∞, σ > 0 and −∞ < ξ <∞.

This unification simplifies statistical implementations: in fact no a priori
hypothesis about which class to adopt is still required, but the most suitable
family can be chosen through inference on the parameter ξ.
The limit in 2.6 suggests that, for large values of n, maxima of long sequences
can be modelled through GEV distribution. In particular, it must be observed
that, since

P
{
Mn − bn

an
≤ z
}
≈ G(z) (2.8)

for large n , then

P {Mn ≤ z} ≈ G
(
z − bn
an

)
= G∗(z),

(2.9)

where G∗ is said to be a distribution of the same type1 of G and so also belongs
to the GEV family.
The previous arguments suggest a strategy for modelling extremes of indepen-
dent series of observations X1, X2, . . . , widely known as block maxima ap-
proach. As the name says, data are divided into sequences of length n, which
must be a large value. Then the block maxima Mn,1, . . . ,Mn,m are extracted
and modeled through GEV distribution. In most applications blocks tend to

1The distributions F and F ∗ are of the same type if there are constants a > 0 and b such
that F ∗(ax+ b) = F (x) ∀x.
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correspond to one year of observations, so the considered block maxima are sim-
ply annual maxima.
By inverting Eq.2.4, estimates of extreme quantiles are obtained:

zp =

{
µ− σ

ξ [1− {− log(1− p)}−ξ], for ξ 6= 0,

µ− σ log(− log(1− p)), for ξ = 0,
(2.10)

where G(zp) = 1 − p. The value zp is called return level associated with the
return period 1/p, since it is expected to be exceeded on average once every
1/p years. In other words, zp is the value exceeded by the annual maximum with
probability p.

2.1.3 Notes on the proof of Extremal Types Theorem

Since the formal proof of the extremal types theorem is not in the scope of this
work, only some ideas of the justification are presented in this section. First, it
is necessary to report the following definition ([1])

Definition 2.1.3. A distribution G is said to be max-stable if, for every n =
2, 3, . . . , there are constants αn > 0 and βn such that

Gn(αnz + βn) = G(z).

So, if X1, X2, ...Xn are i.i.d G and G is max stable, then taking the sample
maxima Mn = max(X1, X2, ...Xn) leads to an identical distribution, except for
a change in scale and location.
The following theorem connects the previous argument with the concept of ex-
treme value distribution ([1]).

Theorem 2.1.4. A distribution is max-stable if, and only if, it is a generalized
extreme value distribution.

The main idea is to consider Mnk, which can be seen as the maximum over
a series on n × k observations, or as the maximum of k maxima, each of them
being the greatest of n measurements. Let then suppose that

P
{
Mn − bn

an
≤ z
}
≈ G(z) (2.11)

for large n. Hence, for any integer k, the following relation is satisfied

P
{
Mnk − bnk

ank
≤ z
}
≈ G(z). (2.12)

But, since Mnk can be seen as the maximum of k variables, all having the same
distributions as Mn, it results that

P
{
Mnk − bnk

ank
≤ z
}

= P
{
Mn − bn

an
≤ z
}k

. (2.13)
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The combination of 2.12 and 2.13, gives

P {Mnk ≤ z} ≈ G
(
z − bnk
ank

)
(2.14)

and

P {Mnk ≤ z} ≈ Gk
(
z − bn
an

)
. (2.15)

As a result, since G and Gk are identical except for re-normalization coefficients,
G is max stable and, for Theorem 2.1.4, it belongs to the GEV family ([1]).

2.2 Bivariate models

2.2.1 Asymptotic characterization

Let (X1, Y1), (X2, Y2), . . . be a sequence of vectors which are independent versions
of a random vector having distribution function F (x, y). The classical approach
prescribes to study the behavior of extremes through some limit distribution for
block maxima. In this perspective, the following definition is required ([1]):

Definition 2.2.1. Let Mx,n = maxi=1,...,n{Xi} and My,n = maxi=1,...,n{Yi}.
Then, the vector

Mn = (Mx,n,My,n)

is called vector of componentwise block maxima.

Note that the index i, for which Xi is the maximum over its sequence, it’s
not necessarily the same as that of the Yi sequence. Therefore, the vector Mn

may not correspond to a bivariate observation of the original series.
As in the univariate case, the main interest is that of studying the behavior of
Mn as n → ∞. By looking at {Xi} and{Yi} separately, it is possible to extend
to them the results achieved in the previous section, since they correspond to
i.i.d sequences of random variables. In particular, the analysis can be simplified
by assuming a known marginal distribution for both the Xi and Yi. The most
common representation suggests to use a standard Fréchet distribution, which
corresponds to a GEV with µ = 0, σ = 1 and ξ = 1:

F (z) = exp

(
−1

z

)
, z > 0.

In order to obtain non degenerate marginal limits, it is better to consider the
following standardized version for Mn,

M∗
n =

(
max
i=1,...,n

{Xi}/n, max
i=1,...,n

{Yi}/n
)
. (2.16)

Now it is possible to state the bivariate analog of Theorem 2.1.1 ([1]).
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Theorem 2.2.2. Let M∗n = (M∗x,n,M
∗
y,n) be defined by 2.16, where the (Xi, Yi)

are independent vectors with standard Fréchet marginal distributions. Then if

P{M∗x,n ≤ x,M∗y,n ≤ y}
d−→ G(x, y),

where G is a non-degenerate distribution function, G has the form

G(x, y) = exp{−V (x, y)}, x > 0, y > 0 (2.17)

where

V (x, y) = 2

∫ 1

0
max

(
w

x
,
1− w
y

)
dH(w), (2.18)

and H is a distribution function in [0, 1] satisfying the mean constraint∫ 1

0
wdH(w) = 1/2. (2.19)

Theorem 2.2.2 states that the standardized vector of componentwise block
maxima converges in distribution to a member of the family introduced in 2.17,
which is known as the class of bivariate extreme value distributions. In
particular, the elements of this family are generated by functions H, satisfying
2.19, which may not be differentiable.
The function V is called exponent measure and satisfies the following property

V (a−1x, a−1y) = aV (x, y) ∀a > 0.

More precisely, V is said to be homogeneous of order −1. Applying this
property to 2.17 implies that

Gn(x, y) = G(n−1x, n−1y),

so, the distribution G has a bivariate version of the property of max-stability
defined in the previous section.
It is possible to extend the distribution in 2.17, in order to have the complete
class of bivariate limits for arbitrary GEV margins. This is simply achieved by
generalizing the marginal distributions, i.e. by defining

x̃ =

[
1 + ξx

(
x− µx
σx

)] 1
ξx

and ỹ =

[
1 + ξy

(
y − µy
σy

)] 1
ξy

.

As a result, the marginal distributions of

G(x, y) = exp{−V (x̃, ỹ)}

are GEV with parameters (µx, σx, ξx) and (µy, σy, ξy), provided that [1 + ξx(x−
µx)/σx] > 0, [1 + ξy(y − µy)/σy] > 0, and that the function V satisfies 2.18 for
some choice of H ([1]).
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2.2.2 Model examples for Componentwise Maxima

According to Theorem 2.2.2, each functionH(x) on [0, 1] satisfying the constraint
in 2.19 can generate a valid member of the class of bivariate limit distributions.
However, it is not so easy to find parametric families whose mean is constant and
for which the integral in 2.18 can be computed. The general approach prescribes
to work with sub families for H, and hence G, that are easily tractable and from
which the entire class of limit distributions can be approximated.
One standard model is represented by the logistic family:

G(x, y) = exp
{
−
(
x−1/α + y−1/α

)α}
, x > 0, y > 0, (2.20)

for some parameter α ∈ (0, 1). It can be shown that in this case H is differen-
tiable and has density function

h(w) =
1

2
(α−1 − 1){w(1− w)}−1−1/α{w−1/α + (1− w)−1/α}α−2

on 0 < w < 1. Note that h(w) is symmetric about w = 1
2 and this implies that

variables x and y are exchangeable in 2.20.
The α parameter is known as logistic dependence parameter, since it deter-
mines the level of dependence between the two processes. In fact, as α→ 1

G(x, y)→ exp{−(x−1 + y−1)},

corresponding to independent variables; while, decreasing values for α, lead to
dependence. More precisely, perfect dependence is achieved as limit for α → 0,
in which case

G(x, y)→ exp{−max(x−1, y−1)}.

The previous model can be generalized in the asymmetric case, leading to
the bilogistic model, for which

G(x, y) = exp
{

(1− w)u1−α + w (1− u)1−β
}

and the distribution function H has density

h(w) =
1

2
(1− α)(1− w)−1w−2(1− u)u1−α{α(1− u) + βu}−1

on 0 < w < 1. Parameters α and β are such that 0 < α < 1 and 0 < β < 1, and
u is the solution of

(1− α)(1− w)(1− u)β − (1− β)wuα = 0.

More precisely, the quantity α − β determines the level of asymmetry in the
dependence structure and hence, the special case with α = β corresponds to the
logistic model ([1]).
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2.2.3 Extremal dependence

The concept of dependence is crucial when studying combination of processes,
even at high levels.
Classical methods for bivariate extremes are limited to the case in which ex-
tremes events are dependent, since, in all the other cases, their application can
lead to over-estimate the probability of extreme joint events.
Therefore, it is advisable to quantify the strength of dependence between pro-
cesses tails before modelling them via traditional methodologies.
The following section presents two measures that are useful for quantifying the
extremal dependence for generic bivariate random vectors.

Measures of Extremal Dependence

Let consider a generic random vector (X,Y ), then it is possible to show that
there is a unique function C(·, ·), with domain [0, 1]× [0, 1], such that

F (x, y) = C{FX(x), FY (y)}

where FX and FY are the marginal distribution functions of X and Y .
Function C is called copula and describes the relationship between X and Y ,
independently from the marginal distributions. In other words C can be seen
as the joint distribution of variables, after transformation to U = FX(X) and
V = FY (Y ), having uniform standard margins ([2]).
As an example, the bivariate logistic model, defined in the previous section, has
the following parametric copula

Cα(u, v) = exp
{
−
[
(− log u)1/α + (− log v)1/α

]α}
,

on [0, 1]× [0, 1] where, as previously said, the value of α quantifies the extent of
dependence between the two variables .
It can be useful to summarize the information contained in the copula through
some one-dimensional function or parameter, simplifying both dependence in-
terpretation and inference.
For this purpose let define

χ = lim
u→1

P{FY (Y ) > u|FX(X) > u} = lim
u→1

P{V > u|U > u},

which measures the tendency of one variable to be large conditional on the other
variable being large. The same measure can be also obtained as limit of the
following asymptotically equivalent function

χ(u) = 2− logP{FX(X) < u,FY (Y ) < u}
logP{FX(X) < u}

= 2− logP{FX(X) < u,FY (Y ) < u}
log u

(2.21)

for 0 < u < 1 .
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In particular, the subsequent properties are satisfied ([1]):

• 0 ≤ χ ≤ 1;

• if χ = 0, variables X and Y are said to be asymptotically independent;

• for bivariate extreme value distribution, χ = 2−V (1, 1). As a consequence,
for the logistic model, χ = 2− 2α, as Vα(1, 1) = 2α ;

• within the class of asymptotically dependent variables, the value of χ grows
as the level of dependence increases at extreme levels.

According to the previous properties, χ represents a measure of the strength of
dependence when dealing with asymptotically dependent variables. However, in
the case of asymptotically independent distributions, it is unable to provide any
type of information, being χ = 0 within this class. In order to overcome this
deficiency it is possible to define a second measure. For 0 < u < 1, let

χ(u) =
2 logP{FX(X) > u}

logP{FX(X) > u,FY (Y ) > u}
− 1

=
2 log(1− u)

logP{FX(X) > u,FY (Y ) > u}
− 1

(2.22)

and
χ = lim

u→1
χ(u).

The previous measure satisfies the following properties ([1]):

• −1 ≤ χ ≤ 1;

• χ = 1, for asymptotically dependent variables;

• for independent variables χ = 0;

• within the class of asymptotically independent variables, the value of χ
grows as the level of dependence increases at extreme levels.

Resuming, the above mentioned measures, taken together, are useful to quan-
tify the extremal dependence for any random vector (X,Y ). In fact, if χ = 1,
the variables are asymptotically independent and χ can be use to measure the
extent of extremal dependence. On the contrary, χ = 0 implies that X and Y
are asymptotically dependent and, this time, the value of χ must be used to
quantify the strength of dependence at high levels([1]).
Estimates for χ(u) and χ(u) can be obtained using empirical observations. More
precisely, such estimates can be plotted as the value of u changes, in order to
study their behavior as u→ 1. The resulting graph is also known as chiplot and
provides an informal mean, useful to make inference on extremal dependence.
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Chapter 3

Model generalizations

Extreme observations are scarce by definition and this lack of data often leads
to models characterized by high variance. Considering only block maxima, when
just few years of observations are available, can cause a great waste of data, since
there could be more than one extreme measurement in a single block.
The desperate need of additional information has resulted in the search of differ-
ent characterizations, that allow the use of additional observations when model-
ing extreme values. The two main generalizations are:

• the r Largest Order Statistic Model

• the Threshold Exceedances Model.

Both characterizations are presented in the following sections.

3.1 The r Largest Order Statistic Model

This first model generalizes the block maxima approach by considering, for each
block, not only the maximum, but the set of the r largest order statistics, for
small values of r.
Just as in the previous chapter the main aim is that of describing the asymptotic
behavior of i.i.d sequences of random variables Xi.
Let define

M (k)
n = kth largest order statistic of {X1, . . . , Xn}

then, Theorem 2.1.1 can be generalized as follows ([1]).

Theorem 3.1.1. If there exist sequences of constants {an > 0} and {bn} such
that

P
{
Mn − bn

an
≤ z
}
→ G(z) as n→∞ (3.1)

for some non degenerate distribution function G, so that G is the GEV distri-
bution function given by 2.4, then, for fixed k,

P

{
M

(k)
n − bn
an

≤ z

}
→ Gk(z) as n→∞
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on {z : 1 + ξ(z − µ)/σ > 0}, where

Gk(z) = exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
(3.2)

with

τ(z) =

[
1 + ξ

(
z − µ
σ

)]− 1
ξ

.

Theorem 3.1.1 shows that the normalized kth largest order statistic in a
block has limit distribution 3.2, where Gk(z) has the same parameters of the
GEV distribution of the block maxima.
However, this result is not so helpful in practice, since in most applications, for
some value of r, the whole set of largest order statistics is available for each
block. So, rather than estimating the behaviour of a single component, it would
be preferable to approximate the limiting joint distribution of the entire vector

M(r)
n = (M (1)

n , . . . ,M (r)
n ).

In the following theorem, the joint density function of the limit distribution is
presented ([1]).

Theorem 3.1.2. If there exist sequences of constants {an > 0} and {bn} such
that

P
{
Mn − bn

an
≤ z
}
→ G(z) as n→∞ (3.3)

for some non degenerate distribution function G,then, for fixed r, the limiting
distribution as n→∞ of

M̃
(r)
n =

(
M

(1)
n − bn
an

, . . . ,
M

(r)
n − bn
an

)
falls within the family having joint probability density function

f(z(1), . . . , z(r)) = exp

−
[

1 + ξ

(
z(r) − µ

σ

)]− 1
ξ

×
r∏

k=1

σ−1

[
1 + ξ

(
z(k) − µ

σ

)]− 1
ξ
−1

,

(3.4)
where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞; z(r) ≤ z(r−1) ≤ · · · ≤ z(1); and
z(k) : 1 + ξ(z(k) − µ)/σ > 0 for k = 1, . . . , r.

The r largest order statistic model certainly represents an improvement, in
terms of waste of data, with respect to the block maxima approach. However,
in most applications, data are not available in this form and it can happen that
the number of extreme observations in each block is different. For this reason it
would be better to avoid the use of blocking methods, especially when the entire
series of measurements is available.
The approach described in the following section moves in this direction.
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3.2 The Threshold Exceedances Model

As previously said, when the data at disposal consist of entire time series of
measurements, it would be better to exploit all information.
In this perspective, let X1, X2, . . . be a sequence of random variables i.i.d F ,
then all values of the Xi exceeding some high threshold u can be read as extreme
observations.
Now, let X be an arbitrary term of the i.i.d sequence, the following conditional
probability can be used to describe the behavior of extreme events

P{X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, y > 0. (3.5)

Unfortunately, in real applications, the CDF F is unknown and this makes it
impossible to directly apply Eq. 3.5. Therefore, it would be desirable to find
approximations of the parent distribution of excesses, which are valid for fairly
large threshold values.

3.2.1 The Generalized Pareto Distribution

In this context, the following theorem contains an important result ([1]).

Theorem 3.2.1. Let X1, X2, . . . be a sequence of independent random variables
with common distribution F, and let

Mn = max{X1, . . . , Xn}.

Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies
2.1.2, so that for large n,

P{Mn ≤ z} ≈ G(z),

where

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
for some µ, σ > 0 and ξ. Then , for large enough u, the distribution function of
(X − u), conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̂

)− 1
ξ

(3.6)

defined on {y : y > 0 and (1 + ξy/σ̂) > 0}, where

σ̂ = σ + ξ(u− µ). (3.7)

Theorem 3.2.1 suggests that, if the block maxima can be approximated
through GEV distribution, then the excesses over a threshold u have limit distri-
bution within the family mentioned in Eq. 3.6, which is known as generalized
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Pareto family.
It is important to note that the parameters of H(y) in 3.6 are completely deter-
mined by those of the relative GEV distribution of block maxima. In particular
the parameter ξ is the same for the two models and its value is decisive for the
behavior of the Pareto distribution.
More precisely, if ξ < 0, the distribution of excesses has an upper bound of
u− σ̂/ξ, while for ξ ≥ 0 it is unbounded. Once again the case ξ = 0 is equivalent
to considering the limit of 3.6 as ξ → 0, which leads to

H(y) = 1− exp
(
− y
σ̂

)
, y > 0,

which corresponds to an exponential distribution with parameter 1/σ̂ ([1]).

3.2.2 Notes on the justification for the Generalized Pareto Model

In this brief section a simplified proof of Theorem 3.2.1 is presented.
Let consider a random variable X with distribution function F . Theorem 2.1.1
states that

Fn(z) ≈ exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
(3.8)

for large n, and for some parameters µ, σ > 0 and ξ. Thus, by taking logarithmic
transformation,

n logF (z) ≈ −
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

. (3.9)

For large values of z, a Taylor expansion implies that

logF (z) ≈ −{1− F (z)}, (3.10)

so, by substituting 3.9 into 3.10, it follows that, for large values of u,

1− F (u) ≈ 1

n

[
1 + ξ

(
u− µ
σ

)]− 1
ξ

.

Similarly, for y > 0,

1− F (u+ y) ≈ 1

n

[
1 + ξ

(
u+ y − µ

σ

)]− 1
ξ

.

Therefore,

P{X > u+ y|X > u} ≈ n−1[1 + ξ(u+ y − µ)/σ]−1/ξ

n−1[1 + ξ(u− µ)/σ]−1/ξ

=

[
1 +

ξ(u+ y − µ)/σ

1 + ξ(u− µ)/σ

]−1/ξ
=

[
1 +

ξy

σ̂

]−1/ξ
,

(3.11)
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where
σ̂ = σ + ξ(u− µ),

as required ([1]).

3.2.3 Return levels

Also in this case it is possible to derive return levels from the estimated extreme
value model. Let assume that the family of distributions in Eq. 3.6 is appropriate
for modeling the exceedances over a threshold u for a random variable X, that
is

P{X > z|X > u} =

[
1 + ξ

(
z − µ
σ

)]− 1
ξ

.

for z > u. As a consequence

P{X > z} = P{X > u}P{X > z|X > u}

= P{X > u}
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

.

Now, let denote with pu = P{X > u}, it follows that the level zm exceeded on
average once every m observations corresponds to the solution of the equation

pu

[
1 + ξ

(
zm − µ
σ

)]− 1
ξ

=
1

m
. (3.12)

By solving Eq 3.12, it results that

zm = u+
σ

ξ
[(mpu)ξ − 1],

which is valid for zm > u. By definition, zm is the m-observation return
level, however, since in most application the focus goes on the N-year return
level, it would be more convenient to consider

zN = u+
σ

ξ
[(Nnypu)ξ − 1],

for which m = N × ny is the number of observations in N years, each of which
consisting of ny measurements ([1]).
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Chapter 4

Inference and Model
assessment

The previous chapter provides an outline of the main theoretical results of EVT.
In the following sections some specifications about inference and model assess-
ment are presented, since they will be exploited in the real data analysis.

4.1 Profile likelihood and Likelihood ratio test

All the models presented in the previous chapter can be used to fit extreme value
distributions to data. In order to make inference on the value of parameters,
maximum likelihood procedures are usually used. In particular, let recall that,
if x1, x2, . . . , xn are independent observations of a random variable X having
parametric distribution function F , indexed by θ ∈ Rd, the related likelihood
function is

L(θ) =

n∏
i=1

f(xi, θ)

where f(xi, θ) is the probability density function of X. The value of θ for which
L(θ) is maximized is called maximum likelihood estimator and, under ap-
propriate regularity conditions, it is possible to show that it has limit distribu-
tion within the class of multivariate normal distributions. This last asymptotic
argument can be exploited to compute confidence intervals for the parameters;
however, more accurate results can be obtained through an alternative technique
based on the so called profile likelihood.
Let l(θ) be the logarithmic transformation of L(θ), also called log-likelihood,

l(θ) = logL(θ) =
n∏
i=1

log f(xi, θ).

The function can be also written in the form l(θi, θ−i) , where θ−i indicates the
set of all components of θ excluding θi. Hence, the profile log-likelihood for
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an arbitrary θi can be defined as

lp(θi) = max
θ−i

l(θi, θ−i).

In other words the profile log-likelihood for θi is obtained by maximizing the log
likelihood with respect to all components of θ, except θi.
For this type of likelihood function is possible to derive an asymptotic result
very useful for both parameter inference and model selection ([1]).

Theorem 4.1.1. Let x1, x2, . . . , xn be independent realizations from a paramet-
ric distribution function F , and let θ̂ denote the maximum likelihood estimator of
the d-dimensional model parameter θ = (θ(1), θ(2)), where θ(1) is a k-dimensional
subset of θ. Then, under suitable regularity conditions, for large n

Dp(θ
(1)) = 2{l(θ̂)− lp(θ(1))} ∼ χ2

k. (4.1)

Function Dp in Eq.4.1 is called deviance function and, as it measures the
amount of uncertainty affecting the maximum likelihood estimator, it can be
used to derive alternative confidence intervals for parameters.
As an example, the region Cα = {θi : Dp(θi) ≤ cα} corresponds to the (1 − α)
confidence interval for θi , where cα is the (1−α) quantile of the χ2

1 distribution.

Another important application of Theorem 4.1.1 concerns model selection.
In particular, let assume thatM1 is a model with parameter vector θ = (θ(1), θ(2)) ∈
Rd and letM0 be a nested model ofM1, i.e its parameters correspond to a (d-k)-
dimensional subset of θ, e.g θ(2). Then, let l1(M1) and l0(M0) be the maximized
log-likelihood for M1 and M0, respectively, and define the statistic

D = 2{l1(M1)− l0(M0)}.

For Theorem 4.1.1, a (1 − α) confidence region for the true value of θ(1) is
represented by Cα = {θ(1) : Dp(θ

(1)) ≤ cα} , where cα is the (1 − α) quantile
of the χ2

k distribution. As a consequence, if 0 belongs to Cα, or equivalently if
D < cα, then M0 represents a plausible reduction of M1 ([1]).
The just described test is known as likelihood ratio test and, as already
pointed out, provides a useful tool for model selection when dealing with nested
models.

4.2 Diagnostic Plots

After a model is estimated, it is necessary to assess its validity in terms of
goodness of fit. Since, in practice, it’s not possible to find others sources of
data against which to compare the model, the only alternative for checking its
accuracy is to evaluate how much it is in agreement with the observations used
to extrapolate it. For this reason goodness of fit techniques are mainly based on
the comparison between model based and empirical estimates of the distribution
function. Two of the most common graphical procedures in this sense are the
probability plot and the quantile plot.
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Probability plot

Let consider a series x1, x2, . . . , xn of independent realizations from a distribution
function F , and let F̂ indicate an estimate obtained through some extrapolation
procedure. If x(1), x(2), . . . , x(n) denote the order statistic of the sample ( i.e
x(1) ≤ x(2) ≤ · · · ≤ x(n)), then the empirical distribution function of F can
be defined as

F̃ =
i

n+ 1
for x(i) ≤ x ≤ x(i+1).

The probability plot allows to check the accuracy of the estimated model by
comparing F̂ (x(i)) and F̃ (x(i)) for i = 1, . . . , n. More precisely, it is defined as
the set of points: {(

F̂ (x(i)),
i

n+ 1

)
: i = 1, . . . , n

}
.

If F̂ provides a good approximation of the real distribution, the points in the
probability plot should lie close to the bisector. As a consequence, all departures
from linearity must be considered a symptom of lack of fit ([1]).

Quantile plot

Given F̂ and the series of order statistics as above, the quantile plot consists in
the set of points {(

F̂−1
(

i

n+ 1

)
, x(i)

)
: i = 1, . . . , n

}
,

where F̂−1( i
n+1) and x(i) provide model based and empirical estimates for the

i
n+1 quantile of the distribution function F . It contains the same information as
the probability plot, just presented on a different scale. However, since it tends
to be more sensitive to lack of fit, especially in tail of data, it should be preferred
for validity checks ([1]).

In the context of Extreme value models, in addiction to the just describe
techniques, it is possible to define another graphical procedure for model assess-
ment, called return level plot.
In the following rows the graph will be described in the case of the annual max-
imum distribution, however, note that it is possible to obtain equivalent results
for the Generalized Pareto model.
Let recall the definition presented in Section 2.1.2. The return level associated
with the return period 1/p is

zp =

{
µ− σ

ξ [1− {− log(1− p)}−ξ], for ξ 6= 0,

µ− σ log(− log(1− p)), for ξ = 0,
(4.2)

where G(zp) = 1 − p. By imposing yp = − log(1 − p), Eq.4.2 can be re-written
as:

zp =

{
µ− σ

ξ [1− y−ξp ], for ξ 6= 0,

µ− σ log(yp), for ξ = 0.
(4.3)
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The curve obtained by plotting zp against log yp, corresponds to the so called
return level plot and has the following characteristics ([1]):

• for ξ < 0, it is convex and has asymptotic limit at µ− σ/ξ, as p→ 0 ;

• for ξ > 0, it is concave with no finite bound ;

• finally, it is linear for ξ = 0.

The described graph allows for model interpretation and validation. In par-
ticular, the choice of plotting probabilities on a logarithmic scale helps to high-
light the effect of extrapolation in the tail, making it possible to display return
level even for long return period. Moreover, the addition of empirical estimates
for the return level function in the plot allows validity checks. If the fitted GEV
distribution is adequate for the data, the empirical estimates are expected to
be in agreement with the model based curve, while, any disagreement must be
interpreted as a sign of scarce adequacy.

4.3 Threshold selection

Theorem 3.2.1 in Section 3.2 is based on the characterization of extreme values
as observations exceeding an high threshold u. In particular, for large enough
u, such exceedances can be approximated through a member of the Generalized
Pareto family. In this context the choice of a suitable threshold is required before
applying estimation procedures and such selection imply a balance between bias
and variance. In fact, too high a threshold will lead to a model characterized
by large variance, since only few observations will be used to fit it; while, too
small value for u will produce bias, as the asymptotic assumption behind the
approximation may no longer be satisfied.
Two methods are available for threshold selection.

4.3.1 Mean residual life plot

This first methodology is based on the mean of the generalized Pareto distribu-
tion. If X is distributed according to a generalized Pareto with parameters σ
and ξ, then for ξ < 1

E(Y ) =
σ

1− ξ
,

otherwise the mean is infinite.
So, let u0 be the threshold value for which the excesses generated by the series
X1, X2, . . . , Xn can be approximated through a member of the generalized Pareto
family. Then, for each u > u0

E(X − u|X > u) =
σu

1− ξ
,

where σu is the scale parameter corresponding to the excesses over the threshold
u. In particular, by virtue of Eq. 3.7 in Theorem 3.2.1, σu = σu0 + ξ(u − u0) ,
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where σu0 represents the scale parameter corresponding to the threshold u0.
As a consequence, the mean of excesses is expected to depend linearly from u
above a value u = u0 for which the assumptions of Theorem 3.2.1 are satisfied.
The previous arguments suggest a technique for selecting the more suitable
threshold, which consists in plotting the sample mean of excesses against the
value of u, looking for a point from which the graph is approximately linear in
u. Such plot is known as mean residual life plot and can be defined as the
set of point {(

u,
1

nu

nu∑
i=1

(x(i) − u)

)
: u < xmax

}
,

where x(1), . . . , x(nu) are the nu measurements exceeding u, and xmax is the
largest of the Xi ([1]).

4.3.2 Alternative technique

In general, the mean residual life plot results difficult to interpret. For this
reason a complementary technique have been developed, in order to assess the
hypothesis derived from the previous graph.
The procedure mainly consists in estimating the generalized Pareto model for
a range of thresholds, with the aim of studying the behavior of parameters. In
fact, as already discussed in the previous paragraph, if u0 is the value at which
the generalized Pareto provides a reasonable approximation for the distribution
of excesses, then, for any threshold u > u0, the scale parameter can be expressed
in the form

σu = σu0 + ξ(u− u0).

Now, let consider the following constant reparameterization of σu

σ∗ = σu − ξu,

it follows that, if u0 represents a suitable threshold, then both σ∗ and ξ are
expected to be approximately stable above u0 ([1]).
In the light of this argument the procedure prescribes to plot the estimates for
the generalized Pareto parameters as u changes, looking for the lowest value
u = u0 for which they remain stable.
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Chapter 5

Real data application

5.1 Introduction

The history of the Genoa area is deeply linked to that of the torrents that cross
it, like the Polcevera, the Bisagno and other minor watercourses.
These waterways have long been associated with disastrous geo-hydrological
events that injured the city with serious consequences both in terms of vic-
tims, damage and destruction.
From the flood of 1970, that caused 44 victims and over 2000 displaced, Genoa
has continued to be hit and to record damage and victims.
Such extremes phenomena, well known to the national news, have been repeated
with different intensities until today.
From the available data in the Genoa area, it emerges that many of the histori-
cal events that caused substantial damages, including deaths and missing people,
were due to rains of short duration and high intensity, very characteristic of the
Ligurian territory.
Despite the progress of modern weather forecasts, such intense phenomena are
still difficult to predict accurately.
In Liguria, as in other areas of the country, intense weather events produce rain-
fall that easily exceeds 70 mm in an hour, 120 mm in 2 hours, and 200 mm in
6 hours. Precipitation falls in small-sized hydrographic basins, leading to flash
floods, which in turn produce a considerable transport of sediments that can
undermine rivers estuary.
Modelling such meteorological phenomena can be useful to predict future ex-
tremes events and manage their risks.
In this chapter the main results of the Extreme Value Theory are applied to rain-
fall observations collected in the province of Genoa. Firstly, some approaches
derived from the univariate theory are exploited to model the measurements of
a single station. Then, the bivariate analysis is applied to a data set consisting
of couple of observations from two different rain gauges.
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5.2 Daily rainfalls data

The data at disposal are extracted from the Ligurian weather and climate database
in the form of daily aggregate rainfall measurements.
Only meteorological stations located in areas of great interest, as the torrents
basins, are considered in the choice of the sample. Moreover, since hydrological
annals are often characterized by big amounts of missing values and meteoro-
logical stations can be active in different periods, the following requirements are
needed, in order to ensure the consistency of data:

• the measurements must cover a period of at least 50 years;

• the maximum number of missing values for each year must be at most 60
days;

• there must be at least two stations active in the same period.

The resulting dataset is composed by the observations collected at two rain
gauges located in the Polcevera’s basin, which were active from 1960 to 1998
and from 2003 to 2014.

Figure 5.1: Polcevera’s basin
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5.3 Univariate analysis

In this section the observations recorded at the Isoverde station are considered
for the analysis . Apart from the four years with no measurements (1999-2002),
during which the rain gauge was disabled, the dataset contains 43 missing values.
All days with no observations are deleted from the data set, since their percentage
is negligible and the elimination wont introduce bias in the model.

5.3.1 Block maxima approach

In order to fit the GEV distribution using the block maxima approach, the series
of annual maximum rainfalls is considered.

Figure 5.2: Annual maximum rainfalls recorded at Isoverde station

In Figure 5.2 it is possible to identify different extreme observations, probably
related to the floods that hit the area from 1970 to 2014. Moreover, since there
is no strong evidence of change in the pattern variation the data can be assumed
to be independent observations drawn out from the GEV distribution.

Model fitting

Maximization of the GEV log-likelihood is performed using the function fevd of
the package extRemes. The method function ci, instead, allows to find confi-
dence intervals for parameters and return levels.

GEV3<-extRemes::fevd(maxima, type=’GEV’)

normcint<-ci(GEV3, alpha=0.05, type="parameter")
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The resulting estimates and approximate 95% confidence intervals for the three
parameters are:

Parameter 95% lower CI Estimate 95% upper CI
µ 100.6075 112.0366 123.4658
σ 28.5475 37.1118 45.6760
ξ -0.1060 0.0983 0.3027

The value of ξ̂ is positive, but the 95% confidence interval extends also below
zero, so the statistical evidence for an unbounded distribution is not so strong.
In this situation the profile log-likelihood can be use to obtain more accurate
intervals.

cint<-ci(GEV3, alpha=0.05, type="parameter" which.par=3, method=’proflik’,

xrange=c(-0.13, 0.4))

Parameter 95% lower CI Estimate 95% upper
ξ -0.0847 0.0983 0.3308

The confidence interval obtained from the profile likelihood is slightly translated
with respect to the previous calculation, adding no useful information for the
inference on the shape parameter, especially because 0 still lies in the interval.
(see Figure 5.3).

Figure 5.3: Profile likelihood for ξ with 95% normal approximated (blue) and
profile (black) confidence intervals
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Diagnostic plots

Some diagnostic plots can be used to assess the goodness of the GEV model.

Figure 5.4: Diagnostic plots for GEV fit

The points in the probability plot are near-linear, and the estimated density
curve seems consistent with empirical one, suggesting that the fitted GEV pro-
vides a quite good approximation of the data. However, the q-q plot presents
some departures from linearity in correspondence of the tails, which are probably
due to the increasing level of uncertainty that characterizes model extrapolation
at high levels. The empirical estimates in the return level plot lie very close to
the model based line, which results to be almost linear, since the approximation
for the shape parameter is near to zero. However, even if the return level esti-
mates seem convincing, the increasing confidence bands for large return periods
indicate, once again, the uncertainty that affects the model at high levels.
Anyway, alternatives methodologies, like r-largest order statistics and peaks over
threshold approaches, can be exploited in the attempt to improve model accu-
racy.
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Return levels

Estimates and 95% confidence intervals for the return levels are obtained using
the function return.level.

ret.lev<-return.level(GEV3, return.period=c(10,20,30,50,100), do.ci=TRUE)

95% lower CI Estimate 95% upper CI
10-year return level 173.4266 205.5154 237.6042
20-year return level 191.5596 240.0557 288.5545
30-year return level 199.9981 261.0624 322.1268
50-year return level 208.2666 288.5415 368.8417
100-year return level 214.9789 327.9238 440.8687

The previous results suggest that the level z ≈ 205.5 mm is expected to be
exceeded on average once every 10 years. However, caution is necessary when
dealing with return-level estimates, since inferences can be poor, especially for
long return periods. This can be deduced from the return level plot in Figure
5.4 : the confidence bands (dashed lines) tend to become wider as the return
period increases.
Once again greater accuracy for confidence intervals can be obtained considering
the profile likelihood.

Figure 5.5: Profile likelihood for 10-year return level with 95% normal approxi-
mated (blue) and profile confident intervals (black)
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Figure 5.6: Profile likelihood for 50-year return level with 95% normal approxi-
mated (blue) and profile confident intervals (black)

From the previous figures it is possible to observe that, as the return level
grows, the confidence intervals obtained from the profile log-likelihood differ
more and more from those computed through normal approximation. In partic-
ular, the great gap between upper bounds in Figure 5.6 is due to the fact that
the normal approximation is not able to reflect the uncertainty that affects the
model.

Fitting Gumbel distribution

Since zero is contained in the confidence interval for ξ and the diagnostic plots
in Figure 5.4 arise some doubts about the goodness of the GEV distribution, the
suitability of modeling the data using the Gumbel family can be assessed.

GUMBEL<-extRemes::fevd(maxima, type="Gumbel")

The maximum likelihood estimates for the location and scale parameters with
95% confidence intervals are:

Parameter 95% lower CI Estimate 95% upper CI
µ 102.9351 114.0063 125.0775
σ 30.0251 38.4878 46.9055
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For what concerns the return levels, the following estimates and intervals are
obtained:

95% lower CI Estimate 95% upper CI
10-year return level 175.8900 200.6181 225.3462
20-year return level 197.9750 228.3227 258.6705
30-year return level 210.6054 244.2605 277.9156
50-year return level 226.3341 264.1835 302.0229
100-year return level 247.5116 291.0561 334.6006

The main difference between the two models is related to the accuracy of es-
timation: in fact both parameters and return levels have narrower confidence
intervals for the Gumbel family. Since an increase in model precision would be
appreciated, statistical criteria and tests can be exploited in order to compare
the goodness of fit for the two models.
The AIC and BIC criteria, for example, are useful when comparing maximum
likelihood estimates on the same data. They provide a measure of statistical
quality, penalizing model complexity, and are defined as :

AIC = 2k − 2 ln(L)

BIC = K ln(n)− 2 ln(L)

where k is the number of parameters of the model and L is maximum value of
the likelihood function. Let note that the model to be selected is that with the
lowest value for both estimators.
In the considered example the compute values are:

AIC BIC
GEV 541.5011 547.2966

Gumbel 540.4965 544.3601

Both measures result smaller for the Gumbel family, suggesting that this dis-
tribution would be preferable for the data. However, it is better to perform a
likelihood ratio test to assess the reduction to the Gumbel family.
The command lr.test(GUMBEL, GEV3, alpha = 0.05) returns the following
values:

D Cα α p-value
0.99537 3.8415 0.05 0.3184

The previous hypothesis is confirmed by the likelihood ratio test : the D statistic
is smaller than the (1 − α) quantile of the Chi-square distribution, so is not
possible to reject the null-hypothesis of reduction to the Gumbel family.
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5.3.2 r Largest Order Statistic approach

In general the r largest order statistic approach can be used to get improved
accuracy, since with respect to the block maxima analysis it allows to include
more information.
In order to choose how many statistics to consider, the model is fitted for differ-
ent values of the r parameter and the behaviour of the standard error is analyzed.
The function rlarg.fit in the ismev package implements the maximum-likelihood
fitting for the order statistic model.

Figure 5.7: Standard error pattern for location parameter

Figure 5.8: Standard error pattern for scale parameter
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Figure 5.9: Standard error pattern for shape parameter

The standard error always decreases as the value of r grows, indicating an
increase in model precision. However, all three graphs present an elbow between
2 and 4, suggesting that there would not be such significant improvement in
considering a greater number of order statistics.
The following table shows the values for µ̂, σ̂ and ξ̂, obtained by fitting the model
with different numbers of ordered statistics.

r µ̂ σ̂ ξ̂
1 112.0314 37.1128 0.0985
3 113.7729 36.5578 0.0793
5 115.1741 35.7699 0.0876
7 114.6938 35.7034 0.1021
9 114.7851 35.4204 0.1031

The estimates for the three parameters remain approximately stable as r grows.
This lend support to the approximation of data using the r-largest order statistic
approach, in fact, if the approximation results valid for a particular value of r,
the estimates are expected to be stable when using fewer order statistics.
Anyway, the selected value for r may not be too large, as the asymptotic argu-
ments supporting the model can be violated, leading to a biased approximation.
Therefore, the model is fitted using r=3 order statistics and the obtained maxi-
mum likelihood estimates are:

µ̂ σ̂ ξ̂
113.7729 36.5578 0.0793

The approximations for the three parameters are very similar to those obtained
through block maxima approach. This means that model extrapolation on the
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basis of a greater number of observations has lead to similar conclusions. Proba-
bly the order statistics subsequent to the annual maxima are not able to provide
enough information, useful for modeling extreme events.

Diagnostic plots

In order to assess the goodness of fit some diagnostic plot are realized.

Figure 5.10: Diagnostic plots for order statistic model with r = 3

The graphs in Figure 5.10 are very similar to those obtained for the GEV
model in the previous section, which is not surprising, as the estimated param-
eters for the two distributions are very similar.
The probability plot seems convincing, while the quantile plot presents some
departures from linearity in correspondence of the extremes. Model accuracy
tends to decrease when extrapolating at high levels and this is deductible from
the increasing width of confidence bands in the return level plot. Therefore, cau-
tion is required when trying to make inferences using this approximation, since,
for example, estimates for return levels can be poor, especially for long return
periods.
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5.3.3 Peaks over threshold approach

Threshold choice

To support the choice of the threshold both techniques discussed in Section 4.3
are used.
Firstly, the function mrlplot, in package extRemes, is employed to produce a
mean residual life plot, including 95% confidence intervals.

> extRemes::mrlplot(rain mm)

> title(’Mean residual life plot’)

Figure 5.11: Mean residual life plot for daily rainfall data

As previously told, the plot represents the sample mean of excesses when the
value of the threshold u changes, and it is expected to be approximately linear
in u, above a certain threshold u0 for which the excesses can be modeled by the
Generalized Pareto distribution.
The graph in Figure 5.11 seems approximately linear between u = 100 and
u ≈ 170 and after that it declines steeply. A certain stability in the trend seems
to be reached after u ≈ 170. Unfortunately, only seven observations excess this
threshold, not enough to fit an asymptotic model. It would be probably better
to chose u = 100.
Since the interpretation of the mean residual life plot is not so easy, the comple-
mentary technique explained in Section 4.3 can be used to confirm the earlier
hypothesis. The function gpd.fitrange in package ismev fits the GPD model
for different values of the threshold u and realizes graphs of the parameter esti-
mates together with confidence intervals.
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Figure 5.12: Parameter estimates against threshold values for daily rainfall data

The model-based technique suggests to look for stability of the Generalized
Pareto parameters. In Figure 5.12 the estimates of ξ and σu become unstable
for u > 100 and this supports the arguments derived from the mean residual
life plot. Taking u = 100, the excesses data set is composed by 80 observations,
good compromise between bias and variance.

Figure 5.13: Excesses over threshold u = 100
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Model fitting

Now it is possible to fit the Generalized Pareto Distribution, once again using
the function fevd of package extRemes.

> GPD3<-extRemes::fevd(rain mm, threshold=100, type="GP")

The maximum likelihood estimates together with the 95% confidence intervals
are:

Parameter 95% lower CI Estimate 95% upper CI
σ̂ 21.0394 31.5098 41.9802

ξ̂ -0.1162 0.1352 0.3867

The value of ξ̂ suggests an unbounded distribution (ξ > 0), however conclusions
cannot be drawn, since 0 lies in the interval. Once again confidence intervals
derived form the profile likelihood can be used to provide more accurate range
for the parameter values.

Figure 5.14: Profile likelihood for the shape parameter in the GPD model

The new confidence interval represented in Figure 5.14 turn out to be exclu-
sively above zero, supporting the earlier hypothesis for an unbounded distribu-
tion.

Diagnostic plots

Figure 5.15 shows the diagnostic plots for the fitted GPD model.
Even if, in the probability plot, points lie almost perfectly on the bisector, the
departures from linearity in the q-q plot give rise to some doubts about the
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reliability of the model. Moreover, the return level plot presents extremely wide
confidence bands as the return period increases.

Figure 5.15: Diagnostic plots for GPD model

The uncertainty that characterizes the large values of the model can be also
derived by computing the profile likelihood for high return levels.

Figure 5.16: Profile likelihood for 100-year return level in GPD model
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Figure 5.16 shows the profile likelihood for the 100-year return level. The
curve is greatly asymmetric and the upper bound of 608.05 in the confidence
interval is very high, providing evidence of the great amount of uncertainty
that affects the model. Note that the normal approximation for the 100-year
return level confidence interval, [204.03, 453.52], is not able to reflect the previous
arguments, that is why it is better to use the profile likelihood whenever an
accurate measure of uncertainty is needed.

5.4 Bivariate analysis

In this section, the results for bivariate extremes, discussed in the Chapter 2,
are applied to data sets consisting of componentwise rainfalls observations.
Before model fitting, empirical estimates of the dependence functions χ(u) and
χ(u) are constructed and their behaviour is analyzed. After that the componen-
twise block maxima is exploit to fit asymptotic distributions.

5.4.1 Componentwise Block maxima approach

Asymptotic dependence

Figure 5.17 shows the annual maximum rainfalls recorded at Isoverde and Mignanego
stations during the observation period (1960-1998 and 2003-2014). There is evi-
dence for large values at one location to correspond to the maxima of the other.

Figure 5.17: Annual maximum rainfalls recorded at Isoverde and Mignanego
stations

The empirical estimates for χ(u) and χ(u) shown in Figure 5.18 are obtained
using the function chiplot in package evd.
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The value χ = 1 as limit of the χ(u) is plausible, indicating that the distributions
of extremes are asymptotically dependent. In this contest the value of χ can be
used as measure of dependence strength. According to the solid line in the plot
χ(u) > 0 ∀u and as u → 1 also χ(u) → 1. However the wide confidence bands
and the unstable behaviour of the graph don’t allow to draw reliable conclusions
about the value of the measure. This condition is typical of componentwise block
maxima : sometimes data are insufficient or too sparse and this makes it difficult
to assess the validity of model choice.

Figure 5.18: Empirical estimates for χ(u) and χ(u) with approximate 95% con-
fidence intervals
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Model fitting

In the light of the considerations arising from the chiplot, a bivariate extreme
value distribution would like to be fitted. Let recall the expression for the logistic
family seen in Section 2.2.2.

G(x, y) = exp
{
−
(
x−1/α + y−1/α

)α}
, x > 0, y > 0. (5.1)

The previous model is chosen, due to the quite symmetrical distribution of the
plotted points in Figure 5.19, which have been re-scaled in order to have uniform
marginal distributions.

Figure 5.19: Componentwise maxima transformed to have uniform marginals
distributions

The maximum likelihood estimation is performed using the function fbvevd

in package evd and produces the following results:

Isoverde Mignanego
µx σx ξx µy σy ξy α

MLE 112.1576 36.8001 0.09778 81.2629 29.0419 0.3208 0.5259

The previous outcomes are obtained through a two-stage estimation procedure:
first the two series are separately modeled using the GEV distribution, then the
bivariate model is produced by maximum likelihood estimation, after transfor-
mation to standard Fréchet margins.
The estimate for the logistic parameter α̂ = 0.5259 corresponds to a quite sig-
nificant level of dependence and this is consistent with the previous empirical
analysis. In fact, by replacing the value of α̂ in the formula χ = 2 − 2α the
estimate χ̂ = 0.56013 is obtained, very close to the mean value assumed in the
chiplot, providing support for model validity.
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5.5 Comparing models on different time periods

Let consider again the series of annual maxima analyzed in Section 5.3.1. This
time the observations are equally divided into two groups and the related scatter-
plots are presented in following pictures.

Figure 5.20: Annual maxima recorded between 1960 and 1985

Figure 5.21: Annual maxima recorded between 1986 and 2014
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From the previous pictures it is possible to deduce that the behaviour of
extremes rainfalls has changed throughout the years; in particular the amount
of rainfall observed during the intense events seems to have increased between
the first and the second period.
In the light of these considerations, the block maxima approach is applied to
each sub-sample and the fitted GEV are compared in order to point out the
evolution in the extremal behaviour.
Firstly, the years going from 1960 to 1985 are considered. Maximum likelihood
estimation on this data provides the following results:

Parameter 95% lower CI Estimate 95% upper CI
µ̂1 94.8936 104.9569 115.0201
σ̂1 14.8844 23.1435 31.4025

ξ̂1 -0.0604 0.2589 0.5782

The positive estimate for the shape parameter and the confidence interval, which
lies almost exclusively in the positive domain, suggest an unbounded distribution.
This hypothesis is reinforced by the profile likelihood confidence interval for ξ1,
whose lower-end limit lies above zero, as shown in Figure 5.22.

Figure 5.22: Profile likelihood for ξ with 95% confident interval

However, a likelihood ratio test can be performed to substantiate the earlier
arguments. Considering a level of significance α = 0.05, the statistic D = 4.1156
exceeds the Chi-square critical value Cα= 3.8415, leading to reject the null hy-
pothesis of reduction to the Gumbel family, in favour of the GEV distribution.

The analysis is then repeated on the observations collected in the period going
from 1986 to 1999 and from 2003 to 2014. The maximum likelihood estimates
for the three parameters are shown in the following table.
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Parameter 95% lower CI Estimate 95% upper CI
µ̂2 100.9297 122.9018 144.8739
σ̂2 33.2917 49.1178 64.9438

ξ̂2 -0.3751 -0.0586 0.2579

The values of µ̂2 and σ̂2 are a little greater than those obtained for the previous
time period, while the estimate for ξ2 results negative, indicating a bounded
distribution. However, since 0 lies inside the confidence interval, the evidence
for the previous hypothesis is not strong. In order to make inference on the
shape parameter, the Gumbel distribution is fitted to the data and the nested
models are compared using the AIC/BIC criteria and the likelihood ratio test.

AIC BIC
GEV 278.2964 281.9530

Gumbel 276.4335 278.8713

D Cα α p-value
0.13712 3.8415 0.05 0.7112

Both methods suggest to prefer the Gumbel family: the AIC and BIC criteria
are smaller for the Gumbel distribution and the high p-value in the test makes
it impossible to reject the null hypothesis of reduction to the nested model.
The validity of the fitted distribution is confirmed by the diagnostic plots.

Figure 5.23: Diagnostic plot for Gumbel fit
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In the probability and quantile plots, points lie close to the unit diagonal,
indicating that the estimated model provides a good approximation of data, even
in correspondence of the distribution tails. The reliability of the fitted distribu-
tion is also suggested by the return level plot : in fact, the return level estimates
are in agreement with the modeled curve and the confidence bands remain nar-
row, even for long return periods.
The previous analysis have highlighted considerable differences in terms of ex-
tremal distributions between the two time periods. However, the most interesting
difference arises from the computation of return levels.
Let consider, for each period, the most reliable model ( i.e. GEV(µ̂1, σ̂1, ξ̂1) and
Gumbel(µ̂2, σ̂2)) the following estimates are obtained:

First period (1960-1985)
95% lower CI Estimate 95% upper CI

10-year return level 134.9524 175.6437 216.3350
20-year return level 140.3010 208.4394 276.5779
30-year return level 139.8138 230.2682 320.7225
50-year return level 134.3987 261.0618 387.7248
100-year return level 116.1613 309.7075 503.2536

Second period (1986-2013)
95% lower CI Estimate 95% upper CI

10-year return level 186.7455 230.6722 274.5988
20-year return level 211.8109 265.5249 319.2388
30-year return level 226.0985 285.5748 345.0510
50-year return level 243.8698 310.6381 377.4065
100-year return level 267.7303 344.4441 421.1579

The return level derived from the GEV distribution fitted on the period going
from 1960 to 1985 tend to be lower than those obtained by extrapolation on the
subsequent years. This can be traced to the fact that, as already pointed out,
the rainfalls observed in the first period were less abundant than those in the
second one.
However, it is important to notice that, as a consequence of the changing in
extreme rainfalls behavior, the return level estimates are different depending
on whether the model is fitted using the entire set of annual maxima or just a
sub-sample. In particular, the return levels presented in Section 4.3.1 tend to
be halfway between those computed on separated periods. As an example, let
consider the 10-year return level : it results to be z ≈ 205.5, when the GEV is
estimated using all annual maxima, while it becomes z ≈ 230.7 if only the years
from 1986 to 2013 are considered.
Therefore, fitting the model on the overall period, without taking into account
the variation in the weather conditions, could lead to and underestimation of
return levels.

All the the previous arguments suggest that the behaviour of intense rainfalls
has evolved over the years. However, it would be interesting to understand if
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the two modeled distributions could be considered statistically different or not.
Figures 5.24 and 5.25 show the comparisons between modeled densities and
probability distributions. The density curve, corresponding to the period going
from 1986 to 2014, is smoother than the other one and a little bit translated.
These differences are due to the location and scale parameters that, as pointed
out in the previous analysis, are bigger for the second sub-sample.
In Figure 5.25, it is possible to notice that the two CDFs are not overlapping
and in correspondence of the value x = 100 their order is reversed.

Figure 5.24: Comparison between model densities

Figure 5.25: Comparison between cumulative distribution functions
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In order to assess if the difference between the two distributions is statisti-
cally significant, a two-sample Kolmogorv Smirnov test can be performed, using
the function ks.test in package stats. The two alternatives "greater" and
"less" corresponds to the null hypothesis that the true distribution function of
the first sample is respectively not greater than, or not less than the distribution
of the second one.

> stats::ks.test(maxima1,maxima2, alternative="greater")

D+ p-value
0.36769 0.03187

> stats::ks.test(maxima1,maxima2, alternative="less")

D− p-value
0.12 0.6928

Hence, considering a significance level α = 0.1 it is not possible to reject the hy-
pothesis that the distribution of the data in the first time period is stochastically
bigger than the other one.
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Chapter 6

Conclusion

The main purpose of this thesis has been that of exploiting the statistical pro-
cedures deriving from extreme value theory in order to model the behavior of
extreme rainfalls. In particular, it was decided to study the observations col-
lected in the province of Genoa, since in the last fifty years the area has been
hit by intense meteorological phenomena.
The candidate meteorological stations for the study had to meet some specific
requirements in terms of missing values and length of the activity period, in
order to ensure data consistency.
Firstly, the series of annual maxima has been analyzed through block maxima
approach and the Gumbel distribution has resulted to be the more suitable model
in terms of accuracy for both return levels and parameter estimates.
After that, since the entire series of measurements was available, the others
characterizations of extremes have been exploited in order to achieve greater
precision. However, the extrapolation based on a greater number of observa-
tions has led to very similar conclusions, adding no further improvement to the
analysis.
The study carried out on the pairs of observations collected from two different
rain gauges has pointed out an extremal dependence between processes, suggest-
ing that a bivariate extreme value distribution, such as the logistic model, would
be suitable for the those data.
Anyway, the most interesting results derive from the analysis realized by compar-
ing the annual maxima from two different time periods. It is possible to affirm
that the behaviour of intense rainfalls has evolved over the years. In particular,
since 1986, the annual maxima have increased, leading to even more frequent
and intense precipitations. Such meteorological changes can result in misleading
estimates, especially for what concerns return levels, in fact the failure to take
into account the variations in weather conditions has led, in this case, to under-
estimated values.
Extreme value analysis certainly represents the more suitable technique able to
predict the occurrence of extreme events. However, as it tries to make infer-
ence outside of the range of available data, a critic view is always required when
applying such methodology to real life examples.
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Appendix A

Code

The following code has been used to produce all the figures and results presented
in the previous chapters.

#LIBRARIES

library(readxl)

library(evd)

library(evir)

library(extRemes)

library(lmomco)

library(truncgof)

library(POT)

library(ismev)

library(stats)

#Plotting densities for Extreme value distributions

n=10000

gumbel <-rgumbel(n, loc=0, scale =1)

frechet <- rfrechet(n, loc=0, scale=1, shape =4)

weibull <- rrweibull(n, loc=0, scale=1, shape =2)

plot(density(frechet),main="",xlab="",xlim=c(-4,5),ylim=c

(0,2))

lines(density(gumbel),lwd=2,lty=3)

lines(density(weibull),lwd=2,lty=2)

legend (2.5,1.8, legend=c("Gumbel","Frechet","Weibull"),lty=c

(3,1,2),lwd=c(2,1,2),title="Density",y.intersp =1.5,bty="n

")

# BLOCK MAXIMA APPROACH

#Data visualization

plot(annual_maxima , xlab="Year")

title("Annual maxima")

#Creating a numeric array containing annual maximum

observations

maxima <-annual_maxima [,2]

maxima=as.matrix(maxima)
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summary(maxima)

#Histogram and density for annual maximum observations

hist(maxima , main=(’Frequency distribution ’))

par(mfrow=c(1,1))

plot(density(maxima ,adjust =2),main=(’Density distribution ’))

#Fitting GEV to block maxima

GEV3 <-extRemes ::fevd(maxima , type=’GEV’)

summary(GEV3)

#95% confidence intervals for GEV parameters

norm_cint <-ci(GEV3 , alpha =0.05, type="parameter")

norm_cint

#Profile likelihood curve for shape parameter with

confidence intervals

prof_cint <-ci(GEV3 ,alpha =0.05, type="parameter",which.par=3,

method=’proflik ’,xrange=c(-0.13, 0.4))

prof_cint

par(mfrow=c(1,1))

profliker(GEV3 , type="parameter",which.par=3,xrange=c(-0.13,

0.4),main="Profile Log -Likelihood for Shape Parameter")

abline(v=prof_cint [1])

abline(v=prof_cint [3])

abline(v=norm_cint[3,1], col="blue")

abline(v=norm_cint[3,3], col="blue")

#Diagnostic plots

par(mfrow=c(2,2))

plot(GEV3 , type=c("probprob"), main="Probability Plot")

plot(GEV3 , type=c("qq"), main="Q-Q Plot")

plot(GEV3 , type=c("density"), main="Density Plot")

plot(GEV3 , type=c("rl"), main="Return level Plot")

#Return levels with 95% confident intervals

ret.lev <-return.level(GEV3 ,return.period=c(10 ,20 ,30 ,50 ,100),

do.ci=TRUE)

ret.lev

#Profile likelihood for the 10-year return -level with

confidence intervals

par(mfrow=c(1,1))

profliker(GEV3 , type="return.level", return.period =10, xrange

=c(160 ,370), main="10-year return level profile

likelihood")

ci_rl<-ci(GEV3 , alpha =0.05, type="return.level",return.

period =10, method="proflik", xrange=c(160 ,370))

abline(v=ret.lev[1,1], col=’blue’)

abline(v=ret.lev[1,3], col=’blue’)

abline(v=ci_rl[1])
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abline(v=ci_rl[3])

#Profile likelihood for the 50-year return -level with

confidence intervals

par(mfrow=c(1,1))

profliker(GEV3 , type="return.level", return.period =50, xrange

=c(200 ,700), main="50-year return level profile

likelihood")

ci_rl<-ci(GEV3 , alpha =0.05, type="return.level",return.

period =50, method="proflik", xrange=c(200 ,700))

abline(v=ret.lev[4,1], col=’blue’)

abline(v=ret.lev[4,3], col=’blue’)

abline(v=ci_rl[1])

abline(v=ci_rl[3])

#Fitting Gumbel distribution

GUMBEL <-extRemes ::fevd(maxima , type="Gumbel")

summary(GUMBEL)

#95% confidence intervals for Gumbel parameters

norm_cint2 <-ci(GUMBEL , alpha =0.05, type="parameter")

norm_cint2

#Return levels with 95% confidence intervals

ret.lev2 <-return.level(GUMBEL , return.period=c

(10 ,20 ,30 ,50 ,100),do.ci=TRUE)

ret.lev2

#Diagnostic plots

par(mfrow=c(2,2))

plot(GUMBEL , type=c("probprob"), main="Probability Plot")

plot(GUMBEL , type=c("qq"), main="Q-Q Plot")

plot(GUMBEL , type=c("density"), main="Density Plot")

plot(GUMBEL , type=c("rl"), main="Return level Plot")

#Likelihood ratio test

lr.test(GUMBEL , GEV3 , alpha = 0.05)

# r-LARGEST ORDER STATISTIC APPROACH

#Data matrix creation

#Each row is a vector of decreasing order , containing the

largest order statistics for each year

year <-annual_maxima$Anno

A=matrix(0, nrow=length(year), ncol =366)

j=1

for(i in c(1: length(year))){

tmp=data_rain$mm[data_rain$Anno==year[i]]

tmp=sort(tmp , decreasing = TRUE)

tmp=t(tmp)

A[j, 1: length(tmp)]=tmp

j=j+1
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}

#Fitting the model for different values of r

k=10

MLE=matrix(0, nrow=k, ncol =3)

SE=matrix(0, nrow=k,ncol =3)

NLLH=array(0, dim=k)

for(i in c(1:k)){

RLOS=rlarg.fit(A, r = i, show=FALSE)

MLE[i ,1:3]= RLOS$mle

SE[i ,1:3]= RLOS$se

NLLH[i]=RLOS$nllh

}

#Plotting SE pattern for the three parameters

plot(SE[,1], type=’l’,ylab=’SE’, xlab=’r value’,main="

Standard error for location parameter", ylim=c(0 ,6.5))

plot(SE[,2], type=’l’,ylab=’SE’, xlab=’r value’,main="

Standard error for scale parameter", ylim=c(0,5))

plot(SE[,3], type=’l’,ylab=’SE’, xlab=’r value’,main="

Standard error for shape parameter", ylim=c(0 ,0.12))

#Plotting MLE pattern for the three parameters

plot(MLE[,1], type=’l’,ylab=’MLE’, xlab=’r value’,main="

Maximum likelihood estimation for location parameter")

plot(MLE[,2], type=’l’,ylab=’MLE’, xlab=’r value’,main="

Maximum likelihood estimation for scale parameter")

plot(MLE[,3], type=’l’,ylab=’MLE’, xlab=’r value’,main="

Maximum likelihood estimation for shape parameter")

#Fitting the model for the selected value of r

RLOS_BEST=rlarg.fit(A, r=3, show=FALSE)

RLOS_BEST$mle

RLOS_BEST$se

#Diagnostic plots

rlarg.diag(RLOS_BEST)

# PEACKS OVER THRESHOLD APPROACH

#Dataset of daily rainfall data

rain_series <-data_rain [1: dim(data_rain)[1] , 1:2]

plot(rain_series [1:3650 ,])

rain_mm<-data_rain$mm

rain_mm<-as.matrix(rain_mm)
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#THRESHOLD SELECTION

#1- Mean residual life plot

extRemes :: mrlplot(rain_mm)

abline(v=174)

abline(v=100)

title(’Mean residual life plot’)

#Number of excesses

soglia =100

count =0;

for(i in c(1: length(rain_mm))){

if (rain_mm[i]>=soglia){

count=count+1

}

}

#2 - Fitting the GPD Model Over a Range of Thresholds

gpd.fitrange(rain_mm , 0, 150, 75)

#Plotting excesses

excess <-rain_series[which(rain_mm >= soglia),]

ind=which(rain_mm >= soglia)

n=365*30

plot(rain_series [1:n,])

points(excess[which(ind <n),],pch=16, col=’blue’)

plot(excess , pch=16, col=’black’)

#Empirical density of excesses

par(mfrow=c(1,1))

plot(density(rain_mm[ind], adjust =2), main=(’Density

distribution ’))

#Fitting GPD model on excess dataset:

GPD3 <-extRemes ::fevd(rain_mm , threshold =100, type="GP")

summary(GPD3)

#95% confidence intervals for GPD parameters

norm_cint3 <-ci(GPD3 , alpha =0.05, type="parameter")

norm_cint3

#Profile likelihood for shape parameter with confidence

intervals

prof_cint2 <-ci(GPD3 , alpha =0.05, type="parameter", which.par

=2, method=’proflik ’, xrange=c(-0.1, 0.6))

par(mfrow=c(1,1))

profliker(GPD3 , type="parameter", which.par=2,xrange=c

(-0.13, 0.6),main="Profile Log -Likelihood for Shape

Parameter")

abline(v=prof_cint2 [1])

abline(v=prof_cint2 [3])

abline(v=norm_cint3[2,1], col="blue")
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abline(v=norm_cint3[2,3], col="blue")

#Diagnostic plots

par(mfrow=c(2,2))

plot(GPD3 , type=c("probprob"), main="Probability Plot")

plot(GPD3 , type=c("qq"), main="Q-Q Plot")

plot(GPD3 , type=c("density"), main="Density Plot")

plot(GPD3 , type=c("rl"), main="Return level Plot")

#Return levels with 95% confidence intervals

ret.lev3 <-return.level(GPD3 , return.period=c

(10 ,20 ,30 ,50 ,100),do.ci=TRUE)

ret.lev3

#Profile likelihood for 100-year return level with confident

intervals

prof_cint3 <-ci(GPD3 , alpha =0.05, type="return.level", return

.period =100, method="proflik",xrange=c(240 ,800),verbose=

TRUE)

profliker(GPD3 , type="return.level", return.period =100, main

=’Profile Log -Likelihood ’, xrange=c(240 ,800))

abline(v=prof_cint3 [1])

abline(v=prof_cint3 [3])

# ANALYSIS ON SEPARATED PERIODS

# BLOCK MAXIMA APPROACH

#Creating two dataset from the database maxima

maxima1 <-maxima [1:26]

maxima2 <-maxima [27: length(maxima)]

#Plotting two series of maxima

par(mfrow=c(1,1))

plot(annual_maxima [1:26,], xlab="Year")

title("Annual maxima (1960 - 1985)")

plot(annual_maxima [27: length(maxima),],xlab="Year")

title("Annual maxima (1986 -1998 2003 -2014)")

#1960 - 1985 - Fitting GEV distribution

GEV_m1<-extRemes ::fevd(maxima1 , type=’GEV’)

summary(GEV_m1)

#95% confidence intervals for GEV parameters

cint_norm1 <-ci(GEV_m1 , alpha =0.05, type="parameter")

cint_norm1

#Profile likelihood for shape parameter with confidence

intervals

cint_m1<-ci(GEV_m1 , alpha =0.05, type="parameter",which.par

=3, method=’proflik ’, xrange=c(-0.1, 1))

cint_m1

par(mfrow=c(1,1))
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profliker(GEV_m1 , type="parameter", which.par=3, xrange=c

(-0.1, 1),main="Profile Log -Likelihood for Shape

Parameter")

abline(v=cint_m1[1])

abline(v=cint_m1[3])

abline(v=cint_norm1[3,1], col="blue")

abline(v=cint_norm1[3,3], col="blue")

#Diagnostic plots

par(mfrow=c(2,2))

plot(GEV_m1 , type=c("probprob"), main="Probability Plot")

plot(GEV_m1 , type=c("qq"), main="Q-Q Plot")

plot(GEV_m1 , type=c("density"), main="Density Plot" )

plot(GEV_m1 , type=c("rl"), main="Return level Plot")

#Return levels with 95% confidence intervals

ret.lev.m1<-return.level(GEV_m1 , return.period=c

(10 ,20 ,30 ,50 ,100),do.ci=TRUE)

ret.lev.m1

#Fitting Gumbel distribution

GUMBEL_m1<-extRemes ::fevd(maxima1 , type="Gumbel")

summary(GUMBEL_m1)

#Diagnostic plots

par(mfrow=c(2,2))

plot(GUMBEL_m1 , type=c("probprob"), main="Probability Plot")

plot(GUMBEL_m1 , type=c("qq"), main="Q-Q Plot")

plot(GUMBEL_m1 , type=c("density"), main="Density Plot")

plot(GUMBEL_m1 , type=c("rl"), main="Return level Plot")

#Likelihood ratio test

lr.test(GUMBEL_m1 , GEV_m1 , alpha = 0.05)

#1986 - 2014 - Fitting GEV distribution

GEV_m2<-extRemes ::fevd(maxima2 , type=’GEV’)

summary(GEV_m2)

#95% confidence intervals for GEV parameters

cint_norm2 <-ci(GEV_m2 , alpha =0.05, type="parameter")

cint_norm2

#Profile likelihood curve for shape parameter with

confidence intervals

cint_m2<-ci(GEV_m2 , alpha =0.05, type="parameter",which.par

=3, method=’proflik ’,xrange=c(-0.28, 0.35))

cint_m2

par(mfrow=c(1,1))

profliker(GEV_m2 , type="parameter", which.par=3,xrange=c

(-0.28, 0.35),main="Profile Log -Likelihood for Shape

Parameter")
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abline(v=cint_m2[1])

abline(v=cint_m2[3])

abline(v=cint_norm2[3,1], col="blue")

abline(v=cint_norm2[3,3], col="blue")

#Diagnostic plots

par(mfrow=c(2,2))

plot(GEV_m2 , type=c("probprob"), main="Probability Plot")

plot(GEV_m2 , type=c("qq"), main="Q-Q Plot")

plot(GEV_m2 , type=c("density"), main="Density Plot" )

plot(GEV_m2 , type=c("rl"), main="Return level Plot")

#Return levels with 95% confidence intervals

ret.lev.m2<-return.level(GEV_m2 ,return.period=c

(10 ,20 ,30 ,50 ,100),do.ci=TRUE)

ret.lev.m2

#Fitting Gumbel distribution

GUMBEL_m2<-extRemes ::fevd(maxima2 , type="Gumbel")

summary(GUMBEL_m2)

#Likelihood ratio test

lr.test(GUMBEL_m2 , GEV_m2 , alpha = 0.05)

#Diagnostic plots

par(mfrow=c(2,2))

plot(GUMBEL_m2 , type=c("probprob"), main="Probability Plot")

plot(GUMBEL_m2 , type=c("qq"), main="Q-Q Plot")

plot(GUMBEL_m2 , type=c("density"), main="Density Plot" )

plot(GUMBEL_m2 , type=c("rl"), main="Return level Plot")

#Return levels with 95% confidence intervals

ret.lev.m2g <-return.level(GUMBEL_m2 ,return.period=c

(10 ,20 ,30 ,50 ,100),do.ci=TRUE)

ret.lev.m2g

#Plotting empirical densities

plot(density(maxima1 ,adjust =2),main="",xlab="")

lines(density(maxima2 , adjust =2),lwd=2,lty=3)

legend (200 ,0.01 , legend=c("First Period","Second period "),

lty=c(1,3),lwd=c(1,2),y.intersp =1.5,bty="n")

#Extracting model parameters

# GEV (1960 -1985)

loc1=as.numeric(GEV_m1$results$par [1])

scale1=as.numeric(GEV_m1$results$par [2])

shape1=as.numeric(GEV_m1$results$par [3])

# GUMBEL (1986 -2013)

loc2=as.numeric(GUMBEL_m2$results$par [1])

scale2=as.numeric(GUMBEL_m2$results$par [2])
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#Plotting modeled densities

n=100000

gumbel=revd(n, loc2 , scale2 , 0)

gev=revd(n, loc1 , scale1 , shape1)

plot(density(gev), xlim=c(0 ,300), ylim=c(0 ,0.02), xlab="",

lwd=2,lty=3, main="Modeled densities")

lines(density(gumbel),lwd=2,lty=2)

legend (200 ,0.02 , legend=c("First Period","Second period "),

lty=c(3,2),lwd=c(2,3),y.intersp =1.5,bty="n")

#Plotting CDF

seq=c(0:500)

d1=pevd(seq , loc1 , scale1 , shape1 , type="GEV")

d2=pevd(seq , loc2 , scale2 , 0, type="Gumbel")

plot(seq , d1 , type="l", xlab="x",ylab= "CDF", main="

Cumulative distribution functions", lwd=2, lty=1)

lines(d2 , lwd=2, lty=2)

legend (350,0.8, legend=c("First Period","Second period "),lty

=c(1,2),lwd=c(2,2),y.intersp =1.5,bty="n")

#Two sample Kolmogorov -Smirnov test

stats::ks.test(maxima1 , maxima2 , alternative="greater")

stats::ks.test(maxima1 , maxima2 , alternative="less")

#BIVARIATE ANALYSIS

#Creating a matrix containing bivariate rainfall

observations

bi_max <-as.matrix(bivariate_maxima [ ,2:3])

#EXTREMAL DEPENDENCE

#Bivariate plot

plot(bi_max[,1], bi_max[,2],

xlab="Isoverde Annual maximum rainfalls (mm)",

ylab="Mignanego Annual maximum rainfalls (mm)")

#Plotting estimates of the dependence measures chi and chi -

bar

par(mfrow=c(1,2))

chi <-chiplot(bi_max)

#Bivariate plot - Uniform scale

library(tiger)

b1<-to.uniform(bi_max[,1])

b2<-to.uniform(bi_max[,2])

par(mfrow=c(1,1))

plot(b1 ,b2)

abline (0,1)

#Maximum -likelihood Fitting for Bivariate Extreme Value

Distributions

BEVD <-fbvevd(bi_max ,model="log")
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BEVD$estimate # dep = logistic dependence parameter

BEVD$std.err

BEVD$dep.summary #Maximum likelihood estimate for chi
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