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Chapter 1

Introduction

Tumours can arise from cells which belong to every kind of tissue and their
different origins determine specific structured appearances. Their birth can be
attributed to neoplasms, abnormal tissue masses where control mechanisms be-
come deficient, and cells proliferation exceed without any correlation with nor-
mal growth or tissue repair. The neoplasm consists of tumour cells and also some
blood vessels and supporting stroma. The abnormal rate of cells proliferation can
vary from slightly above normal proliferative thresholds to uncontrolled levels of
growth which may cause the subsequent neoplasm extension into the adjacent
tissues.

Tumours can be divided into two main categories [4]: benign and malignant,
which represent the extremes of a spectrum of different behaviours that can arise.
In general, benign tumours are characterized by uniform cell shapes, slow growth,
no invasion of adjacent tissues or metastasis, high differentiation. On the other
hand, malignant tumours may exhibit less grade of differentiation (how much or
how little tumour tissue resembles the normal tissue it came from), differences in
cell growth and shapes, invade the surrounding tissues and spread to other tissues
via metastasis. We can identify three main ways in which benign tumours differ
from malignant ones: their degree of differentiation, their rate of growth and
how they grow. However, we can distinguish two distinct phases in solid tumour
growth: avascular and vascular. The transition from one stage to another is made
through the secretion of chemical compounds called ’tumour angiogenesis factor’
by the solid tumour into the host tissue. TAF stimulates the growth of new
capillary vessels from the host’s pre-existing vessels [7], which ensures consequent
nutrition and progression to the vascular phase, where rapid growth and invasion
of the surrounding healthy tissue may occur.

For this reason, understanding of the avascular phase is important to prevent
further development of the tumour. When avascular tumours are prevented from
obtaining nutrition through an adjacent blood supply, they obtain vital nutrients
and growth factors via diffusion from the neighboring environment. If they do
not enter the vascular phase, they start a dormant period. Tumour dormancy
may be characterised by a balance between actively proliferating cells and cells
undergoing apoptosis. Consequent aggressive growth may be then due not to
an increase in the proliferative rate, but a decrease of the apoptotic rate. Such
a reduction in the rate of cell apoptosis has been hypothesized to be caused by
the solid stress imposed by an extracellular matrix or the surrounding tissue,

5
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6 CHAPTER 1. INTRODUCTION

which limits tumour growth. Growth inhibition might occur via a stress-imposed
increase in the rate of accumulation of viable cells in the quiescent state.

In normal tissues the processes of growth, remodelling and morphogenesis are
strongly correlated with the stress field. Helmlinger et al. (1997) demonstrated
that solid stress suppresses tumour growth in vitro regardless of host species, the
tissue of origin or differentiation state. They grew tumour spheroids in agarose gel
of different concentrations, regarding the gel as a poro-elastic material. A partic-
ular focus was also posed on how the stress macroscopic growth inhibition affects
the stress-induced changes in cellular parameters. Two different approaches were
employed. The first one was the following.

(a) Comparison between gel-embedded spheroids
with free-suspension spheroids in the diameters
growth vs. time.

(b) Comparison between gel-embedded spheroids
with free-suspension spheroids in the diameters
growth vs. time before-after gel release.

Figure 1.1: Growth kinetics of LS174T spheroids. [1]

The growth kinetics of tumour spheroids has been seen to follow the Gompertz
law, an empirical relation for volume growth:

ln

󰀕
ln

󰀕
V

V0

󰀖󰀖
= −αt+

Vmax

V0

,

where V is a measure estimation of spheroid size, V0 is the initial size and Vmax

is the final one. The scalar parameter α can be seen as the proliferation rate of
cells in the proliferative pool for two compartments experiments (proliferative vs.
nonproliferative cells). Values of the α parameter were obtained by plotting the
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growth curves (fig.1.1) as ln
󰀓
ln

󰀓
V
V0

󰀔󰀔
vs. −αt: data were best approximated

by single linear fits. For LS174 spheroids identical values of α were obtained
for 0, 3%-to-1% gel concentrations and also for free suspensions. Similar results
were detected when releasing spheroids from the gel, and free-suspension growth
resumed. For this reason, we can infer that the imposed solid stress even if
affects the macroscopic tumour growth, does not make significant changes in the
net proliferation rate when compared with free suspensions.

Another approach to quantify the difference of cell proliferation and apoptosis
in plateau-phase LS174T spheroids cultured in free suspension and gels was to use
PCNA and TUNEL assays (an investigative procedure which exploits an enzyme
that catalyzes attachment of deoxynucleotides, tagged with a fluorochrome or an-
other marker [8]). Positive PCNA staining was applied to outermost cell layers of
spheroids; on the contrary, apoptosis was examined only in the central parts. The
main difference between spheroids cultured in free-suspension and those cultured
in a gel was the presence of large voids in the inner regions attributed to necro-
sis: large voids were frequently spotted in free suspension spheroids, contrarily
in gel-cultured ones in which they were rarely detected. The experiments were
conducted by dividing the spheroids into two distinct groups depending on their
sizes: small (D < 300µm) vs. large spheroids (D > 300µm). Bold bars in (a)
and (b) of fig. (1.4) can be used to testify the rates behaviours: in (a) the slope
of bold bars is 0 for both spheroids grown in the free suspension and 0, 7% gel;
while it is positive in (b) for free suspension and 0 for gels. We can thus infer
that there was no size correlation for the PCNA data for both the analysed sce-
narios; instead, the percentage of TUNEL cells experienced an increase with size
in free suspensions spheroids, but not in 0, 7%-gel spheroids. Exploiting the size
dependence as an estimation of the previous rates, we can then affirm that solid
stress did not affect the proliferative rate (as already shown in the Gompertz
approach), but decreased the apoptotic rate seen the difference between 0, 7%
gels and free-suspension scenarios. As already stated previously, such a decrease
leads to an accumulation of quiescent cells, causing the augment of packing cell
density values, as it can be seen in fig. (1.5).

To conclude, these plateau-phase stressed spheroids displayed simultaneously,
at a cellular level, a reduction in the apoptotic rate, negligible necrosis, and a sim-
ilar proliferation rate when compared with the free-suspension cultured spheroids.
Given the simultaneous decrease in the apoptotic rate and the increase in cellular
density, we can then infer that stress-induced inhibition of macroscopic tumour
growth gives the tumour a survival advantage. Cell-Cell interactions, which are
presumably reinforced at higher cell densities, contributed to inhibiting cell death.
Increased cell density and the subsequently strengthened compaction, generated
by external stress, can be considered the pioneers of a multicellular-dependent
mechanism of amplified radiation resistance and both intrinsic and acquired drug
resistance. In fact, chemical signals do not represent the only regulators of tissue
development and cells behaviour, but, also, physical signals become crucial in
their regulation. Since cells are constantly experiencing forces, they have devel-
oped mechanical response sensors, molecules which convert physical stimuli into
a biochemical signal.

Biological processes such as cell proliferation, differentiation and migration
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8 CHAPTER 1. INTRODUCTION

are crucially modulated by mechano-transduction; in fact, alterations in forces
or inadequate cellular response to those forces lead to developmental defects and
diseases like atherosclerosis and cancer [9].

Tissues carry the ability to quantify cell density and to model and grow by the
constraints imposed by the available space. Cells, to avoid tissue-overcrowding,
can sense the surrounding mechanical cues, as well as microenvironmental ex-
ternal properties, such as rates of proliferation and accordingly shape their be-
haviour. Therefore, to guarantee tissue homeostasis, a balance between cell cycle
regulation and cell elimination must be kept.

In 2005, Shraiman [10] suggested for the first time that mechanical interactions
could influence tissue growth and cell competition. Experiments in which the total
available space is restricted were conducted with cells having different proliferative
rates and resistance to mechanical elimination. It has been shown that a hallmark
for being the winner population is displaying less sensitiveness to mechanical
elimination, which ensures the fast-growing cells with such skill to easily expand
by compressing the loser population (fig. (1.2)).

Competition for space is also evident in a tumour microenvironment. The
tumour, to expand, needs not only to overcome the compressive stress exerted
by the surrounding tissue but also the growth inhibitory mechanical feedback
activated by its high growth rate. Below it is shown how the degree of resistance
of wild type (WT) cells affect the tumour expansion (fig. (1.3)).

Figure 1.2: Impact of differential proliferation rate and resistance to mechanical
elimination during tissue development. [9]

Further experiments on stress-induced inhibition of tumour growth were con-
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Figure 1.3: Mechanical cell competition in cancer [9]

ducted by Cheng et al. in 2009.
In Cheng at al. study [5], they used embedded fluorescent micro-beads as

strain markers in agarose gel and monitored their relative displacements to esti-
mate the strain and related the corresponding accumulating mechanical stress
in the gel which surrounded non-metastatic murine carcinoma 67NR tumour
spheroids. Agarose gels are frequently utilised in tumour experiments for their
resistance to cancer cells proteinases, make it thus possible to study the solid
stress regardless of cell invasion. In their tests, growing spheroids progressively
compressed the surrounding gel, as revealed by 3D confocal microscopy. By the
day 30, as shown in the following pictures (fig.1.6), spheroids diameter had at-
tained ∼ 250µm and ρbeads (micro-beads density) in the first 10µm-thick shell of
agarose gel was ∼ 1, 6 times greater than the unstressed cases.

It has been shown, however, that there is a strong correlation between the
structure of the imposed stress and the shape of growing spheroids. The micro-
beads density increase accounts for not only the variation of gel’s strain but also
the organization of the peri-stress field around spheroids edges. The general ten-
dency of the tumour spheroids is to expand in the direction of less stress (where
the micro-beads are less concentrated, fig. 1.7); thus allowing the geometry tran-
sition to elongated-shape aggregates.

According to Helmlinger experiments, Cheng. et al. found a connection be-
tween phenotype alterations of spheroids and stress-induced changes in prolifer-
ation and apoptotic rates. While in the former ones no significant changes in
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10 CHAPTER 1. INTRODUCTION

(a) Percentage of actively
proliferating cells grouped
by spheroids diameter
size.

(b) Percentage of cells
undergoing apoptosis
grouped by spheroids
diameter size.

Figure 1.4: Cellular characteristics of 28-day-old spheroids. [1]

Figure 1.5: Cell density. Mean ± SE of the spheroid population is shown. [1]

proliferative rates were detected, on the other hand, in the latter they found that
cell division was higher in regions of lower stress (i.e., in the direction of the major
axis of oblate spheroids) as shown in fig.(1.8).

For what concerns cell-programmed death’s phenomenon, Helmlinger found
a direct correlation between imposed solid stress and the decrease of apoptotic
rates in the central regions of the tumour. Contrarily, Cheng et al. examined
the entire area of the growing spheroids observing that an augment of exter-
nal stress levels corresponds to an increase in cell death rates. Apoptosis and
consequential necrosis were found either in 0.5% and 1% agarose gels. Since
compressive stress is responsible for cell death, there should be similar scenar-
ios either if the stress is growth induced or externally applied. For this reason,
Cheng et al. compressed monolayers of cancer cells for 17hr with pressures which
vary in a range from 0 mmHg to 60 mmHg, noting an augment in cell apopto-
sis rates once the stress levels had been increased. Then the growing spheroids
were transferred from free suspensions into 1% agarose gel and cultured under
three conditions: normal medium with and without external compression, star-
vation medium without external compression. Apoptosis cell death was recorded
through the Caspase3 activity, since sequential activation of caspases plays a
central role in the execution-phase of cell apoptosis.

Compression caused a significant increase in Caspase3 activity (as shown in
fig.(1.9)): spheroids experiencing starvation showed much less apoptosis than
those which were under normal nutrient conditions but stressed. The reverse
attitude in apoptotic rates between unstressed spheroids and stressed indicates
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Figure 1.6: Mechanical stress accumulates around growing tumour spheroids. [5]

that nutrient starvation cannot be considered the only responsible factor in cell
death.

Hence, in Helmlinger experiments, although free-suspensions spheroids were
subjected to nutrient limitations, they grew faster than gel-embedded spheroids
in rich-nutrient conditions.

Based on the previous discussion, we can state that the stress field imposed
on a tumour by the neighboring tissue (in vivo) or an external matrix (in vitro),
as well as that generated internally by cells binds during expansion, can play a
pivotal role in tumour regulation. However, it has been detected experimentally
that within a spheroid there are three distinct regions: an external thin layer
of proliferating cells, a central region of quiescent cells, and an inner part of
waste and disintegrated cell material referred to as the necrotic region. Several
models exploited the concepts of oxygen diffusion, growth’s and death’s rate
dependence on nutrient levels, porous media theory to predict migration of cells.
The occurrence of necrosis is then made dependent on the attainment of a critical
oxygen concentration threshold. The assumption that there is a strong correlation
between necrosis and nutrient’s lack has been put into question by experimental
data. The experimental observations did show several behaviours in different cell
types grown in spheroids: some exhibit necrotic regions closely linked to oxygen
concentrations, but most do not display this attitude. Cell types, such as EMT6,
may not have necrotic regions even in low levels of oxygen concentrations. For
this reason, alternative biological mechanisms should be taken into account to
investigate the formation and the dynamics of necrosis.

A possible approach, inspired by Helmlinger experiments, is to consider the
pressure generated by the motion of the extracellular fluid and the intercellular
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12 CHAPTER 1. INTRODUCTION

Figure 1.7: Spheroids (green) of different shapes and their surrouding stress fields
visualized by micro-beads (red). [5]

pressures created by cellular migration. The existence of the necrotic region is
subjected by the requirement that the nature of forces between cells must be of
the compressive type, make them weakly able to give origin to tensile strengths.
When these forces become weak such that fluid pressure turns to be greater than
the cell pressure, necrosis shows up: cells die simultaneously releasing fluid and
filling their previous space. In this way, the remaining live cells will only float in
the surrounding dead cells material, no longer able to exert any strength. Hence,
the tumour is then comprised of two main regions: an outermost in which cells
are at their maximum packing density and reproduce, grow and die; an innermost
at a lower packing density where cells float in the extracellular fluid.

A mathematical model is then adopted to adequately describe the growth of
an avascular tumour spheroid in a deformable gel, with the aim of reproducing
Helmlinger experiments. A particular focus is posed on how the mechanical prop-
erties of the exterior environment affect tumour growth dynamics. The tumour
is treated as a two-phase material: cells and extracellular fluid where chemical
compounds or extracellular nutrients are free to diffuse and navigate.
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Figure 1.8: Cancer cell proliferation (green) in tumour spheroids (red) is sup-
pressed in the direction of higher mechanical stress. Arrowheads indicate the
regions with more cell proliferation. [5]

This mathematical framework, presented initially by Greenspan (1976) [14],
has been further analyzed in several models. In these models cells actively repro-
duce and die, giving origin to internal pressures of adhesion, that can be seen as
expansive forces. As a consequence, surface tension is then generated by cells in
the outer boundary to keep the compactness of the tumour.

Finally, the tumour model developed by Landmann and Please (2000) has
been adopted in this piece of work since their model formulation allows to readily
investigate the interactions between internal and external environment, one of
our main goals.

Further analysis of Landman and Please model has been carried out by Chen
et al. (2001), who reproduced the same previous modelling features but changed
the boundary conditions to mechanically link the tumour model with the outer
tissue.

Results obtained in numerical simulations by Chen
et al. [2], limitations of the model and possible
modifications

The numerical simulations made by Chen et al. [2] showed a precise bifurcation
in the tumour behaviour which crucially depends on the values chosen to char-
acterize the strain energy function and consequently the Cauchy stress tensor of
the external tissue. Non necrotic steady states appears for larger values of stress
parameters. Also, increasing the outer tissue stiffness, it is detected that the
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14 CHAPTER 1. INTRODUCTION

(a) Caspase3 activity increases in
monolayers of cancer cells in re-
sponse to higher external stress.

(b) Typical Caspase3 activity (green) in spheroids (red) cultured in three different conditions.

Figure 1.9: Mechanical stress-induced cell death in tumour spheroids. [5]

onset of necrosis is delayed and once necrosis is initiated the equilibrium radii of
the tumour and the growth rate are reduced. Under the same displacement at
the boundary, they also noted that increasing the stiffness, the growth-induced
stress augments and so the cell pressures values throughout the tumour.

The numerical simulations gained by Chen et al. [2] successfully reproduced
the macroscopic behaviour of the tumour, especially the growth inhibition due to
the outer stress increase.

Conversely, Chen et al. [2] employed several assumptions adopted by Land-
man and Please in their model [6], such as the constant volume fraction and con-
stant proliferative and death rates. Such assumptions make the tumour growth
dynamics independent of the outer tissue stress until the necrosis is reached, which
is not totally realistic and, for this reason, a mechano-sensitive feature would be
preferred and interesting to be added.

Our attempt is to reproduce the main features of the Chen et al. [2] modelling
framework, simplifying the outer tissue model: the outer tissue normal stress
component which appears in the cell pressure boundary condition at the tumour
radius will be treated as an elastic force acting on the tumour of varying stiffness.
Such simplification has been made to investigate deeply how the onset of necrosis
is retarded by the influence of the external medium’s stiffness, and how the two
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pressures values change by altering such force from lower values to greater ones.
This investigation has been conducted through the employment of an ODE

solver on MATLAB.
Such variant to the Chen et al. model [2] has been carried out with the

aim of easily changing in a further work the proliferative and death rates trying
to reproduce what was recorded in Helmlinger experiments [1] for the cellular
parameters.

In the following sections the Chen et al. model [2] will be interpreted through
multiphase models general theory and then presented to properly comment and
analyze some results and simulations gained making some simplifications and
alteration to the Chen modelling framework.
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Chapter 2

Multiphase Models

2.1 Mass and momentum balances

Mixture theory has been exploited through the years for the description of the
mechanics of biological tissues with a particular focus on the behaviour of articular
cartilages, soft tissues, heart mechanics, subcutaneous layer, flow through arteries
[3]. During last decades it has been successfully applied also to tumour growth. In
general soft tissues are mostly composed of cells and extracellular matrix. Their
structure can be associated with a porous material wet by an extracellular liquid
rich of chemical compounds. Here, the growth of the tumour is modelled through
porous media theory combining mass and force balances for each phase including
the concepts of diffusion-limited growth response to an external nutrient.

For each phase, it is possible to define the volume ratio as follows. Given a
fixed point in the mixture, let it be the center of a sequence of different sample
volumes. As it can be seen in fig. (2.1), for sizes smaller than a cell we are not able
to measure the ratio of the volume of a given constituent inside the sample to the
volume of the sample volume in a stable way because of the evident fluctuations
caused by the microscopic inhomogeneities. A similar scenario is gained at the
tissue scale, where strong macroscopic inhomogeneities might occur making it
impossible to define properly the volume ratio. For intermediate scales included
in a spatial range greater than cellular sizes and smaller than tissue levels, it is
feasible to characterize the volume fraction as a function of sample volume size
(fig. (2.1)) .

For such scales, regarding the tumour as a two-phase mixture (tumour cells
and extracellular fluid), we can associate with tumour cells and the external fluid
the volume fractions φc and φe and the densities ρc and ρe respectively.

Mass balances applied to each phase are:

∂φcρc
∂t

+∇ · (ρcφcUc) = Γc

∂ρeφe

∂t
+∇ · (ρeφeUe) = Γe,

(2.1)

with Γc and Γe being phases mass source terms and Uc and Ue cell and fluid
velocities.

17
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18 CHAPTER 2. MULTIPHASE MODELS

Figure 2.1: Volume fraction of the costituent as a function of the volume sample
size. [3]

If we sum both the equations in (2.1):

∂
∂t

(ρcφc + ρeφe)󰁿 󰁾󰁽 󰂀

ρm
⇓

density of the mixture

+∇ · (ρcφcUc + ρeφeUe)󰁿 󰁾󰁽 󰂀

ρmUm

⇓
velocity of the mixture

= Γc + Γe

⇕

∂ρm
∂t

+∇ · (ρmUm) = Γc + Γe.
(2.2)

If we postulate that the mixture is closed, it holds:

Γc + Γe = 0 ⇒ Γe = −Γc. (2.3)

Moreover, we define:

Γc = ρcφcS(C), (2.4)

with S(C) being the net proliferation and death rate of the mixture (depen-
dent on the local oxygen concentration) which will be characterised later in Chen
et al. [2] model description.

If we assume the incompressibility of the material constituting each phase,
then ρc and ρe are constants that can be simplified in the above equations (2.1).
In addition, we assume that ρc = ρe = ρ ; that, recalling the definition for the
cell mass source term (2.4), allows to write the mass balance equations as:

∂φc

∂t
+∇ · (φcUc) = φcS(C)

∂φe

∂t
+∇ · (φeUe) = −φcS(C).

(2.5)
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For what concerns the momentum balances, inertial forces can be neglected,
thus leading to [13]:

∇ · Tc +mc = 0
∇ · Te +me = 0,

(2.6)

where mc and me represent a momentum exchange term due to the interac-
tions of the phases and Tc and Te are the phase stress tensors.

If we postulate the momentum conservation of the mixture, defining its stress
tensor as Tm = Tc + Te, it holds:

∇ · Tm = ∇ · (Tc + Te) = 0. (2.7)

Equations (2.6) and (2.7) are compatible if:
󰁛

α=c,e

mα = 0. (2.8)

2.2 Characterization of Phases Stress Tensors

2.2.1 Saturation Hypothesis

If we assume that the mixture is saturated, it means:

φc + φe = 1. (2.9)

Under such an assumption, the mass balances (2.1) with the hypothesis of
closed mixture (2.3) and constant and equal densities for both phases (ρ = ρc =
ρe), if summed together, give:

∇ · (φcUc + φeUe) = 0
⇕

φc∇ ·Uc + φe∇ ·Ue +Uc ·∇φc +Ue ·∇φe = 0
⇕

φc trLc + φe trLe − (Uc −Ue) ·∇φe = 0,

(2.10)

with Lα (α = c, e) being the velocity gradient related to each phase. The
last two lines of (2.10) can be considered the kinematic version of the saturation
constraint. Such a kinematic constraint leads to indeterminacy in the phases
stress tensors and the momentum exchange terms, which corresponds to solve
a constrained problem which acquires a specific form through the second law of
thermodynamics.

To achieve the final form of the constrained problem, we have firstly to intro-
duce the Clausius-Duhem inequality for a multiphase mixture.

To this end, we can write the energy equation for both the phases of the
mixture (under the above hypothesis of constant and equal density -ρ- for both
phases):

ρ
󰀅
∂φαεα

∂t
+∇ · (φαεαUα)

󰀆
= tr (TαLα)−∇ · qα + ρφαrα + eα

α = c, e;
(2.11)
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where:

• εα is the specific internal energy;

• qα is the partial heat supply density;

• rα is the heat supply density;

• eα is the energy supply related to energy exchange between the phases;

• Lα = ∇Uα is the velocity gradient.

Before approaching the second principle of thermodynamics, it is necessary to
give the following definitions:

• ˙( · ) = ∂(·)
∂t

+Um ·∇ ( · ) with Um =
󰁓

α=c,e
ρφαUα

ρm
the velocity of the mixture

already encountered in (2.2),

• the total heat supply density rm = 1
ρm

󰁓
α=c,e ρφαrα,

• wα = Uα −Um the diffusion velocity related to each phase.

If we consider that each phase has the same temperature θ and that the second
law of thermodynamics holds true for the mixture as a whole, the Clausius-Duhem
inequality can be written ([13]):

ρmη̇m +∇ ·
󰀣
󰁛

α=c,e

qα + ρφαηαθwα

θ

󰀤
−

󰁛

α=c,e

ρφαrα
θ

󰃍 0, (2.12)

where ηα is the specific entropy of the α-phase and ηm =
󰁓

α=c,e
ρφαηα
ρm

is the
entropy density for the whole mixture.

Defining h =
󰁓

α=c,e (qα + ρφαηαθwα) the entropy flux for the mixture as a
whole [13] and recalling the definition for rm previously given, we can write (2.12)
in a more compact form as follows:

ρmη̇m +∇ ·
󰀕
h

θ

󰀖
− ρmrm

θ
󰃍 0, (2.13)

It is useful to write the previous formulation (2.12) of the second law of ther-
modynamics in a way such that constitutive relations for momentum exchange
terms can be outlined.

With this purpose we write the energy equation for the whole mixture:

ρmε̇
I
α = tr

󰀣
󰁛

α=c,e

TαLα

󰀤
−∇ · qI

m −
󰁛

α=c,e

Uα ·mα + ρmrm, (2.14)

where [13]:
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• εIm =
󰁓

α=c,e

󰀓
ρφαεα
ρm

󰀔
, the so called inner part of the internal energy for the

mixture;

• qI
m =

󰁓
α=c,e (qα + ρφαεαwα), that can be considered the heat flux for the

mixture.

We can now introduce the following quantities [13]:

• ψα = εα − θηα, the specific Helmotz free energy for the α-phase;

• Hα = ψαI− 1
ραφα

Tα, the chemical potential tensor for the α-phase;

• Ψα = ρφαψα, Helmotz free energy related to the α-phase.

Exploiting (2.14), and the definition given above for the qI
m the heat flux of

the mixture, it is feasible to write the subsequent reformulation of the second law
of thermodynamics (2.13):

− ρmηmθ̇ −
󰁛

α=c,e

Ψ′
α 󰃍 tr

󰀣
󰁛

α=c,e

ρφαHαLα

󰀤
+ h · ∇θ

θ
+

󰁛

α=c,e

mα ·Uα, (2.15)

where

( · )′ = ∂ ( · )
∂t

+Uα ·∇ ( · ) . (2.16)

Thus, the final version of the constrained problem, presented at the beginning
of the section, under the saturation hypothesis, can be written as:

−ρmηmθ̇−
󰁛

α=c,e

Ψ′
α−h·∇θ

θ
󰃍 tr

󰀥
󰁛

α=c,e

φα (ρHα − λI)Lα

󰀦
+(me − λ∇φe)·(Ue −Uc) ,

(2.17)

for any scalar multiplier λ.

The preceding inequality (2.17) has to hold true for every temperature (θ)
distribution and stress configuration. We can put in a stress-free configuration,
isothermal case, and analyse:

(me − λ∇φe) · (Ue −Uc) 󰃑 0, (2.18)

which suggests the following constitutive relation for me:

(me − λ∇φe) = −α (Ue −Uc) , (2.19)

such that the inequality (2.18) is satisfied, being α a scalar parameter. In
fact, if (2.19) holds true, (2.18) becomes:

− α |Ue −Uc|2 ≤ 0, (2.20)
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which is obviously respected.
Thus, the two stress tensors acquire the following mathematical structure:

Tc = −φcPe I+ T′
c

Te = −φePe I+ T′
e,

(2.21)

with Pe representing the extracellular fluid pressure, T′
c and T′

e being the
phases stress tensors’ parts related to the constitutive laws chosen to describe
how the particular material replies mechanically to a specific strain following a
determined motion.

For what regards the momentum exchange terms, under the momentum con-
servation (2.8), we have:

mc = −me. (2.22)

Thus, we can focus on the analysis of the me term. Through (2.19), its
structure can be split in two different contributions:

me = Pe∇φe +m′
e, (2.23)

where λ has been substituted with Pe, and m′
e = −α (Ue −Uc).

The first term on the right-hand side of the equality accounts for distribution
of the stress within the material also in equilibrium circumstances due not to
dissipation, differently from the second one (m′

e) which describes what kind of
dissipation forces arises as a consequence of a particular motion.

The aforesaid separation in two different contributions in the momentum equa-
tion of the exchange term derives from the analysis conducted before, but alter-
natively it can be achieved also by a profound study of the dissipation function,
which has to fulfill the second thermodynamic principle [11].

2.2.2 Constant Cell Volume Fraction

It is found in experiments that the volume ratio of multicellular spheroids grown
in vitro does not change much. So, the first models dealing with tumour growth,
starting from Greenspan [14], started from the assumption that it can be taken
constant (or nearly constant). Treating the cell volume fraction as a scalar con-
stant implies the addition of another mechanical constraint that both the phases
need to satisfy, thus giving rise to one more Lagrangian multiplier.

We can prove it by doing the same analysis conducted before.
Through the saturation (2.9), if the cell volume fraction is constant, we are

allowed to write:

φc = const.
⇒ φe = 1− φc = const.

󰀞
⇒ φc = φ̄ = const.

φe = 󰁨φ = const.
(2.24)
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Hence, for each phase, we have that the mass balances can be rewritten:

φc tr(Lc) =
Γc

ρ

φe tr(Le) =
Γe

ρ

(2.25)

We have thus achieved the kinematic constraint derived from the constant
cell volume fraction assumption: as in the saturation hypothesis, also here we an
indeterminacy reflected in phases stress tensors and momentum exchange terms,
which can be solved again as a constrained problem considering the following
formulation of the second law of thermodynamics:

−ρmηmθ̇ −
󰁛

α=c,e

Ψ′
α − h · ∇θ

θ
󰃍 tr

󰀥
󰁛

α=c,e

φα (ρHα)

󰀦
− φcλ̄tr (Lc)− φe

󰁨λtr (Le)

+

󰀕
me − λ̄

Γc

ρ
− 󰁨λΓe

ρ

󰀖
· (Ue −Uc) ,

(2.26)

for any couple of scalar multipliers λ̄ and 󰁨λ.

Such a constrained problem gives rise to the following phases stress tensors
structures:

Tc = −λ̄ I+ T′
c

Te = −󰁨λ I+ T′
e

(2.27)

The assumption of constant volume ratio leads also to a different structure of
the momentum exchange terms compared to (2.23):

me = −α (Ue −Uc) . (2.28)

2.3 Momentum Balances Reformulation

Neglecting shear stresses, gravitational influences, inertial forces momentum bal-
ances become force balances. In particular, Chen et al. [2] considered that the
forces acting on a point of the mixture are: the hydrodynamic drag force, hydro-
static force and intercellular force.

Denoting by Pc and Pe the cell and the fluid pressure, the force balance for
tumour cells is:

− 1

κ
φc (Uc −Ue)− φc∇Pe −∇Pc = 0, (2.29)

where κ is the constant of permeability, representing the ease with which extra-
cellular fluid travels through the extracellular matrix. As we can see in (2.29), the
drag force and the hydrostatic pressure gradient exerted by a cell volume fraction
φc must be counterbalanced by the intercellular pressure gradient.
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For the extracellular fluid the hydrodynamic drag force and the hydrostatic
pressure exerted by cells must balance the hydrostatic fluid pressure, thus leading
to:

1

κ
φc (Uc −Ue) + φc∇Pe −∇Pe = 0. (2.30)

We can now compare the momentum balances equations (2.6) written in (2.1)
with (2.29) and (2.30), characterising the constants λ̄ and 󰁨λ encountered in (2.27).

Firstly, we can analyse the fluid phase momentum balance equation:

∇ · Te +me = 0. (2.31)

Recalling the stress tensors structures in (2.27) and neglecting shear stresses
in the fluid phase (i.e., neglecting T′

e) and exploiting the characterisation of the
fluid momentum exchange term me in (2.28), equation (2.31) can be written as:

−∇ 󰁨λ+ α (Uc −Ue) = 0. (2.32)

Comparing (2.32) with (2.30), we can set:

• 󰁨λ = (1− φc)Pe = φePe;

• α = φc
1
κ
.

Thus, we have found the connection of stress tensors’ structure in (2.21) with
the one in (2.27), having fully characterised 󰁨λ.

Focusing now on the tumour cells momentum balance:

∇ · Tc +mc = 0, (2.33)

we can repeat the same analysis conducted before for the fluid phase. Ne-
glecting shear stresses in (2.27) and remembering the momentum conservation
introduced in (2.8) that allows to characterise the mc term through (2.28), equa-
tion (2.33) can be rewritten as:

−∇ λ̄+ α (Ue −Uc) = 0. (2.34)

Comparing (2.34) with (2.29):

• λ̄ = φc Pe + Pc;

• α = φc
1
κ
.

As we can see, there is a clear difference between the characterisation given
in (2.21) and the one in (2.27) in the tumour cells stress tensor: in this case, the
appearance of another Lagrangian multiplier (Pc) accounts for the constant cells
volume fraction constraint.
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2.4 The surrounding medium
Characterization of the strain energy function [12]

In case of isotropy, if a material is incompressible, then the strain energy func-
tion can be written as:

W (B) ≡ Ŵ
󰀃
Ī1, Ī2, Ī3

󰀄
= V̂

󰀃
Ī1, Ī2

󰀄
+ Û

󰀃
Ī3
󰀄

(2.35)

with Û being an affine function of Ī3, such as Û
󰀃
Ī3
󰀄
= θ

󰀃
Ī3 − 1

󰀄
(being θ an

arbitrary scalar constant).

If the material is quasi-incompressible (alternatively weakly compress-
ible), then the strain energy function can be decomposed as the incompressible
case in two different contributions:

W (B) ≡ Ŵ
󰀃
Ī1, Ī2, Ī3

󰀄
= V

󰀃
Ī1, Ī2

󰀄
+ U

󰀃
Ī3
󰀄

(2.36)

but with U not necessarily being an affine function of Ī3. For example, in the

case of the Chen et al. [2] model, U
󰀃
Ī
󰀄
= γ

󰀃
Ī3 − 1

󰀄2
󰀃
Ī3 − δ

󰀄n .

The stress coming from V̂ is always-by definition- deviatoric, whilst the stress
coming from Û takes into account the volumetric deformations.

Chen et al. [2] strain energy function

As already stated, Chen et al. [2] assumed that the tumour aggregate is embedded
in an isotropic elastic tissue characterized through a hyperelastic strain density
function suggested by Helmlinger [1]:

W = η
󰀓
eβ(Ī1−3) − Ī1

󰀔
+ γ

󰀃
Ī3 − 1

󰀄
󰀃
Ī3 − δ

󰀄n , (2.37)

where the empirically determined parameters η,β, γ and n are positive and δ
stands for the solid fraction of the medium.

The usual strain invariants of an isotropic pure elastic solid I1,I2 and I3 have
been redefined in the following way:

Ī1 = I
− 1

3
3 I1

Ī2 = I
− 2

3
3 I2

Ī3 = I3

(2.38)

The usual strain invariants are given, instead, by:

I1 = trB
I2 =

1
2
{(trB)2 − tr (B2)}

I3 = detB,
(2.39)

where B is the left Cauchy-Green deformation tensor F · FT , with F
being the deformation gradient tensor.
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The energy function Chen et al. [2] decided to employ is a little modification
of (2.37) and satisfies the condition of no stress at no displacement:

W = η
󰀓
eβ(Ī1−3) − 1

󰀔
+ γ

󰀃
Ī3 − 1

󰀄2
󰀃
Ī3 − δ

󰀄n . (2.40)

Physical Meaning of the Empirical Parameters in the Strain Energy
Function

Developing (2.40) respect to small deformations and keeping only the quadratic
terms and finally making the comparison with the linear elasticity case, we gain:

µ = 2ηβ

λ = 8γ
(1−δ)n

− 4
3
ηβ,

(2.41)

where µ and λ are the LamÃĺ constants (provided λ > 0 is satisfied), which
are related to the bulk modulus:

κ = λ+
2

3
µ. (2.42)

Thus, exploiting (2.41), we can infer that:

κ =
8γ

(1− δ)n
. (2.43)

As we can see in the previous relations γ, δ and n of the strain energy function
appear in the definition of the bulk modulus κ, instead η and β are related to the
shear modulus µ.

Equations of motion for the tissue model

Neglecting the fluid pore pressure in the surrounding medium, the constitutive
equation adopted to model the tissue is typical for non-linear elastic solids; in
fact, the Cauchy stress tensor has the following shape:

T = 2 (I3)
− 1

2 {I3W3I+W1B}, (2.44)

where I3 is the usual strain invariant introduced before, and for the sake of
brevity the following notations have been adopted in the constitutive law of the
tissue in (2.44):

W1 =
∂W
∂I1

,

W3 =
∂W
∂I3

.
(2.45)

As usual, neglecting inertia contributes, the equations of motion for the tissue
are:
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∇ · T = 0. (2.46)

As for the tumour model, a non-dimensionalisation of the tissue model has
been made and the overbars on the rescaled variables have been omitted. Radial
symmetry is employed also for the surrounding medium and Chen et al. [2]
assume that growth occurs in the radial direction and such a postulation leads to
a simple structure of the representation of the stress tensor in polar coordinates,
with a lot of components being null: the only non-vanishing components remain
σrr, σθθ and σφφ.

Though the equilibrium equations are:

∂σrr

∂r
+ 2

r
(σrr − σθθ) = 0

σθθ = σφφ.
(2.47)

We can now reformulate the previous equations (2.47) by introducing the
definition of displacement u = r − R, where r and R are the radial spatial and
material coordinates respectively.

Through such definition, equations of motion (2.47) can be reduced to:

f

󰀕
R, u,

∂u

∂R

󰀖
∂2u

∂R2
− g

󰀕
R, u,

∂u

∂R

󰀖󰀕
∂u

∂R
− u

R

󰀖
= 0, (2.48)

where f
󰀃
R, u, ∂u

∂R

󰀄
and g

󰀃
R, u, ∂u

∂R

󰀄
are functions defined in Appendix A of

the Chen et al. [2] paper.

Equation (2.48) is subjected to the following boundary conditions:

u = X(t)−X0 at R = X0,

u → 0 as R → ∞,
(2.49)

where X0 is the initial radius of the tumour and X(t) is the radius at time t.
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Chapter 3

Mathematical Model

3.1 Physical description of Chen et al. Model [2]

In the initial stage, the tumour is assumed to be sufficiently small to consider
a plentiful supply of oxygen, which enables cells to reproduce driving expansion
readily. As the non-necrotic spheroid carries on expanding, the oxygen levels
start to decay, and cells begin to die of nutrient starvation.

One of the primary assumptions of Chen et al. [2] model is the constant
volume fraction: to maintain the compactness of the region, while cells are dying,
the remaining living cells will either move outwards to ensure expansion inwards
to push out the liquid released by the dead cells. In the region where the cells
die (of apoptosis), there will be an accumulation of extracellular fluid leading to
an increase of fluid pressure and a sequential decrease of the cellular-bonds of
adhesion. Thus, it is assumed in [2] that if, the fluid pressure equals the cell
pressure, the region ceases to be compact and, thus, necrosis is initiated.

3.2 Introduction to the model

The tumour model is basically a two-phase model: one is constituted by the
ensemble of extracellular membrane which keeps together the cells structure; the
other is the extracellular fluid in which nutrients and chemical compounds are
free to navigate, considered as an ideal fluid.

A quasi-steady reaction diffusion equation is adopted for local oxygen con-
centration which flows in the extracellular fluid; such equation is then combined
with mass balances applied to each phase, given the dependence of net growth
and death rate on the local oxygen concentration.

In Chen et al. [2] model, inertia forces are neglected, gaining a force balance for
unit volume applied to each phase. In fact, they consider that, a balance between
the hydrodynamic drag force, the interstitial fluid pressure and cell pressure (the
so-called expansive forces) must hold, as it can be seen in (2.29) and (2.30). Then,
summing together the force balances and postulating radial symmetry (given the
spheroid structure of the tumour under exam), they obtain a constraint on both
the pressures, that will be better specified with the introduction of the boundary
condition. Such constraint is pivotal for the onset of necrosis, which crucially
depends on the outer tissue stiffness through the boundary condition imposed on

29
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the cell pressure at the outer radius. In fact, this link establishes that the pres-
sures are equal and opposites and differ from a vertical translation at each space
point which varies with time and is regulated by the outer tissue’s normal stress
tensor component evaluated at the tumour radius. Depending on the outer tis-
sue constitutive law, different scenarios can take place. To reproduce Helmlinger
experiments [1], Chen et al. [2] theorised that the tumour is implanted in an
isotropic (porous) elastic medium, which is constitutively characterized through
a hyperelastic strain energy function suggested by Helmlinger [1]. Exploiting this
density strain energy function (which describes the properties of a compressible
material) and neglecting the fluid pore pressure, the constitutive law chosen to
describe the surrounding medium is the one typical of a non-linear elastic solid.
Also in the external model inertial forces in the momentum balance equations
are neglected. Under radial symmetry hypothesis, equilibrium equations are thus
written for the tissue as well, and its model is coupled with the tumour model
via the boundary condition posed on the cell pressure at the tumour radius.

Such a modelization of the outer tissue has the intent of recreating the stresses
generated in the external environment by the progressive displacement of the
tumour aggregate in the tissue: in fact, while expanding, the mass pushes against
the host tissue, which in turn, depending on its mechanical properties, replies to
the physical stimuli received. Moreover, the higher is the induced-stress, the
more the external medium is able to compress the tumour and push out the
liquid released by the dying cells, giving rise to non-necrotic steady states.

According to the physical description of the tumour model, necrosis has a
great relevance and is treated differently from the previous stages of growth. One
of the major novelties is to choose a mechanical occurrence of necrosis, not related
to the lack of nutrient, given the remarkable role played by the external stress
as observed in Helmlinger [1] and Cheng [5] experiments. The set of equations
needed to describe tumour growth acquires a different structure once necrosis is
initiated due to the different hypotheses that have been made during the distinct
phases of expansion. Following the physical description of the model, during the
initial stages of growth (nutrient rich phase and apoptosis) the spheroid grows
with the constraint of keeping the same volume fraction to maintain the com-
pactness of the region; as the apoptosis goes on, depending on the outer tissue
stress shape, the fluid pressure increases until it might become equal to the cell
pressure in the middle of the spheroid. In such a case the necrosis interface arises
and moves with time from the center of the tumour: the region within this inter-
face ceases to be compact and the assumption of constant cells volume fraction
terminates to hold.

3.3 Chen et al. [2] model

The model In the compacted region, indicating with φ the cell volume ratio,
and referring to section (2.1), we recall the set of equations that regulate tumour
growth:
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∂φ
∂t

+∇ · (φUc) = φS(C)

∂(1−φ)
∂t

+∇ · ((1− φ)Ue) = −φS(C)

− 1
κ
φ (Uc −Ue)− φ∇Pe −∇Pc = 0

1
κ
φ (Uc −Ue) + φ∇Pe −∇Pe = 0.

(3.1)

These equations are coupled with the reaction diffusion equation for the local
concentration of oxygen (the only nutrient considered here) through the depen-
dence of the net growth and death rate S(C) on oxygen levels. Assuming that
oxygen diffuses rapidly enough to consider a quasi-steady local concentration, we
have:

D∇2C = φΣ(C), (3.2)

where D is the diffusion coefficient and Σ is the oxygen consumption rate, which
will be specified later.

Summing the mass balances, one gets (see also eq. (2.10)):

∇ · (φUc + (1− φ)Ue) = 0, (3.3)

which, in spherical coordinates, under radial symmetry, (3.3) can be rewritten
as:

1

r2
∂

∂r

󰀃
r2φUc + r2 (1− φ)Ue

󰀄
= 0 ⇒ r2φUc + r2 (1− φ)Ue = C(t), (3.4)

being C(t) constant in space, due to the boundary conditions imposed on the
velocity field at r = 0.

It naturally follows that:

φUc = − (1− φ)Ue. (3.5)

Instead, if we sum the force balances:

∇ (Pc + Pe) = 0, (3.6)

that, in radial symmetry, in spherical coordinates, becomes:

∂

∂r
(Pc + Pe) = 0 ⇒ Pc + Pe = p(t). (3.7)

To summarize, it holds:

φUc = − (1− φ)Ue, (3.8)

Pc = −Pe + p(t). (3.9)
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Thanks to (3.8), we can also write:

Ue = − φ

1− φ
Uc. (3.10)

Substituting (3.10) in the fluid force balance in (3.1) leads to:

φ

1− φ
Uc + κ (φ− 1)

∂Pe

∂r
= 0. (3.11)

Exploiting (3.9), equation (3.12) can be formulated as well as:

φ

1− φ
Uc + κ (1− φ)

∂Pc

∂r
= 0. (3.12)

which finally brings to:

φUc = − (1− φ)2 κ
∂Pc

∂r
, (3.13)

which is a Darcy-type equation for motion [6].

3.4 Non-Necrotic Model

The main assumption underlining these stages of growth is the constant cells
volume ratio. Throughout these phases of expansion the region is assumed to be
compact and the cell pressure must be greater than the fluid pressure to ensure
strong cells bonds to keep the compactness (constant cell volume fraction φ = φ0).

Initially there is a plentiful supply of oxygen which enables the proliferative
phase to take place. The outer tumour boundary X(t), defined through the
condition of material surface

dX

dt
= Uc, (3.14)

moves towards the external tissue while cells are proliferating within the tu-
mour, guaranteeing the expansion. The local oxygen concentration levels start
to decay with time until in the center of the spheroid (r = 0) a critical threshold
α (0 < α < 1) is reached, giving orin to the apoptosis interface

rc(t) : C(rc, t) = α ∀t > t1, (3.15)

which separates the proliferative rim (rc(t) < r < X(t)) from the apoptotic
region (0 < r < rc(t)).

Such a separation of proliferation from death is ulteriorly made clear with the
definition of the net growth and death rate:

S(C) =

󰀻
󰀿

󰀽

S0 if C > α

−ρ if C 󰃑 α
(3.16)
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where S0 is a constant value which describes the proliferation rate defined
for oxygen levels above the critical threshold; whilst ρ is the constant taken for
expressing how fast or how slow cells die defined when oxygen concentration levels
start to become lower than α.

The oxygen consumption rate in (3.2) has been taken equal to a constant,
namely Σ(C) = Σ0, to achieve a simple computation of the oxygen concentration
solution.

Setting the cells volume ratio equal to φ0, the dependent variables which
characterise the proliferation and apoptosis phases are the cell pressure (related
to the fluid pressure via (3.8) and to the cell radial velocity through (3.13)) and
the oxygen local concentration.

The complete dimensional model for these stages of growth is:
󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

−κ (φ−1)2

φ

1

r2
∂

∂r

󰀕
r2
∂Pc

∂r

󰀖
= φ0S(C) 0 < r < X(t)

∂Pc

∂r
= 0 r = 0

Pc = p(t) r = X(t)

D
1

r2
∂

∂r

󰀕
r2
∂C

∂r

󰀖
= φ0Σ0 0 < r < X(t)

∂C

∂r
= 0 r = 0

C = C0 r = X(t)

(3.17)

where C0 is the oxygen availability at the tumour boundary.
The boundary conditions at the tumour spheroid center are the typical no flux

ones, given the symmetry; conversely, at the tumour border Dirichlet conditions
have been imposed. In particular, the cell pressure at the tumour radius is equal
to p(t), which is usually given or considered as a function of the deformation of
the external tissue, i.e. of tumour radius.

From (3.17), we can compute the dimensional solution for the oxygen concen-
tration, which is:

C(r, t) =
φ0Σ0

6D

󰀃
r2 −X(t)2

󰀄
+ C0 (3.18)

The oxygen concentration attains the minimum in r = 0, as it can be seen
in (3.18). During the proliferative phase, the value of such a minimum decreases
with time because cells are uptaking nutrient for duplication: when the critical
oxygen threshold defined in (3.16) is reached, apoptosis phase takes place in r = 0
and cells begin to die of nutrient starvation with an apoptotic rate ρ prescribed
in (3.16) at the time instant t1 = 3

2
log

󰀓
6(1−α)

X2
0

󰀔
(being X0 the initial tumour

radius). The tumour radius at which critical hypoxia (C = α) is felt in the center
of the spheroid is X(t = t1) =

󰁳
6 (1− α).
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34 CHAPTER 3. MATHEMATICAL MODEL

In fig. (3.1) it is reported the oxygen concentration solution (the adimensional
version which will be characterised later) plotted against the tumour radius for
different time instants until the oxygen critical threshold α (set equal to 0.6 in
the plots) is attained.

Figure 3.1: Local oxygen concentration plotted against tumour radius for some
time instants for α = 0.6.

3.5 Necrotic Model

As cells carry on proliferating in the proliferative rim (rc(t) < r < X(t)) and
dying of nutrient starvation in the apoptosis region (0 < r < rc(t)), fluid pressure
values in the latter region might increase such that they might become equal to
cell pressure ones. In such a case, necrosis is achieved in r = 0 , where the necrosis
interface L(t), subsequently defined, arises:

L(t) : Pc(L(t), t) = Pe(L(t), t) (3.19)

In the necrotic region the hypothesis of constant volume ratio ceases to hold
and the compactness is lost: the accumulation of the extracellular fluid make
cells bonds weaker than in the compact region. A schematic representation of
the tumour spheroid with the compacted and non-compacted region has been
reported in fig. (3.2).

In the necrotic region, the compactness is lost, cells begin to float in the
extracellular fluid (Uc = Ue = 0) and they are displaced by the progressive
tumour expansion.

Thus the dependent variables employed to describe the necrotic phase are the
cells volume fraction and and nutrient concentration.

In fact, the dimensional model is:
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Figure 3.2: Schematic represention of the tumour spheroid when necrosis occurs.

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∂φ

∂t
= φS(C) 0 < r < L(t) ∀t > tnecrosis

φ(t = tnecrosis) = φ0

D
1

r2
∂

∂r

󰀕
r2
∂C

∂r

󰀖
= φΣ0 0 < r < L(t) ∀t > tnecrosis

∂C

∂r
= 0 r = 0 ∀t > tnecrosis

C(L−, t) = C(L+, t) ∀t > tnecrosis

(3.20)

3.6 Non-dimensional Model

The subsequent non-dimensionalisation of the model has been made:

Σ(C) = QΣ̄(C), S(C) = S0S̄(C), C = C0C̄, φ = φ0φ̄,

x =

󰁶
DC0

φ0Q
x̄, Uc = S0

󰁶
DC0

φ0Q
Ūc, Ue = S0

󰁶
DC0

φ0Q
Ūe,

Pc =
DS0C0

Qκ (1− φ0)
2 P̄c, Pe =

DS0C0

Qκ (1− φ0)
2 P̄e, p(t) =

DS0C0

Qκ (1− φ0)
2 p̄(t),

(3.21)
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where the positive constants Q and S0 are representative values for Σ and S,
instead C0 is the constant value of oxygen concentration on the outer boundary
of the tumour. For the sake of brevity, the rescaled variables will be indicated
without the above overbars. Physically we assume that the gel is highly permeable
to extracellular fluid, thus allowing to set, without losing generality, at the tumour
boundary the pore pressure equal to zero.

We can now re-write the equations in the two different regions, exploiting the
spherical coordinates. In the compact region (L(t) < r < X(t)):

1

r2
∂

∂r

󰀕
r2
∂C

∂r

󰀖
= Σ(C), φ = 1, (3.22)

1

r2
∂

∂r

󰀃
r2Uc

󰀄
= − 1

r2
∂

∂r

󰀕
r2
∂Pc

∂r

󰀖
= S(C). (3.23)

If necrosis occurs and then L(t) > 0, and the following continuity conditions
must be respected at the necrotic interface L(t):

[C]+− =

󰀗
∂C

∂r

󰀘+

−
=

󰀗
∂Pc

∂r

󰀘+

−
= 0, at r = L(t). (3.24)

where the square brackets for a generic scalar function f of two independent
variables stand for:

[f ]+− = f(L(t)+, t)− f(L(t)−, t) = lim
r→L(t)+

f(r, t)− lim
r→L(t)−

f(r, t). (3.25)

In the necrotic region (0 < r < L(t)), then it holds:

1

r2
∂

∂r

󰀕
r2
∂C

∂r

󰀖
= φΣ(C), (3.26)

∂φ

∂t
= φS(C), Pc =

p(t)

2
, Uc = 0. (3.27)

The boundary conditions for equations (3.22)-(3.23)-(3.26)-(3.27) are:

∂Pc

∂r
= 0,

∂C

∂r
= 0 at r = 0, (3.28)

C = 1, Pc = p(t), Pe = 0, Uc =
dX

dt
at r = X(t). (3.29)

The initial boundary condition is: X(0) = X0 > 0.
As already mentioned, we suppose that the gel is highly permeable to water,

thus allowing the choice of the extracellular fluid pressure at the boundary.
Remarkable attention has to be posed, instead, to the cell pressure boundary

condition, which signs one of the main differences with Landman and Please ([6]):
in Chen et al. [2] cell pressure must balance with the outer tissue normal force,
induced by tumour growth. In fact, Γ is the non-dimensional surface tension
coefficient and σrr(X, t) is the normal stress component of surrounding medium’s
stress tensor at the boundary of tumour r = X(t). In Chen et al. model [2]
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the outer tissue stress is characterized through a poro-elastic strain function,
through which a tissue-momentum balance is written. Then the tumour and the
outer tissue models are coupled via the boundary condition and solved together
through a numerical method. In this piece of work, to investigate the influence of
surroundings mechanics in the tumour spheroid readily, the tissue normal stress
component is simply treated as an elastic force of varying stiffness acting on the
tumour, as it will be seen in the subsequent section.

The cell pressure in the necrotic region (3.27) can be analysed through (3.9)
and (3.19):

Pc = −Pe + p(t) ⇒󰁿󰁾󰁽󰂀
Necrosis condition: Pc=Pe

Pc =
p(t)

2
. (3.30)

Finally, to close the model, the kinetic terms Σ(C) and S(C) in (3.22)-(3.27)
must be specified in the non-dimensional case. A simple approach has been
preferred to carry out an analytical computation of the model ([6]):

Σ(C) = 1 and S(C) =

󰀻
󰀿

󰀽

1 if C > α,

−ρ if C < α,
(3.31)

where 0 < α < 1 is a critical oxygen threshold such that below it cells die of
nutrient starvation with an apoptotic rate designed by ρ.
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Chapter 4

Computation of the solution for the
tumour model

The purpose of this section is to highlight the different effects caused by the
surrounding medium on the tumour growth rate and size during the various
stages of expansion.

Depending on the various constitutive laws taken into account for the external
environment stress, there should be distinct scenarios for the tumour growth
dynamics.

Chen et al. [2] imposed that at the tumour boundary there should be a balance
between the cell pressure and the surface tension generated by the cells at the
tumour border combined with the normal stress component of the outer tissue.
In their simulations, they neglected the surface tension, and thus:

Pc (X(t), t) = p(t) = −σrr (X(t), t) . (4.1)

Characterising the surrounding medium through the strain energy function
described in (2.4), Chen et al. connected the tumour and the outer tissue model
via (4.1) and using a numerical method to solve them together.

However, at the present level, the normal stress component is treated as an
elastic force acting on the tumour cells as follows:

σrr(X(t), t) = −β (X(t)−X0) ,

where β can be considered as the tissue stiffness and X0 the initial radius.
Looking at the tumour growth rate equation (3.14) and the structure of the

kinetic terms (3.31), we can infer that the tumour growth dynamics is not influ-
enced by the external stress during the nutrient rich and apoptosis phases.

The impact of the surrounding mechanical properties on the tumour growth
rate and size can be observed once necrosis is initialised through the stated me-
chanical condition:

Pc(r, t) ≤ Pe(r, t) 0 ≤ r ≤ X(t),

namely when cells pressure is not strong enough to keep a compact structure of
the tumour.

When necrosis occurs, instead, the tissue stiffness interferes with the dynamics
of the external radius, since its evolution equation becomes:

3X2dX

dt
= X3 − (1 + ρ)r3c + ρL3. (4.2)

39
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In turn, the necrosis radius is crucially influenced by the outer stress, since it
stands (from a cell pressure continuity condition in at L(t)):

1

2

󰀕
Γ

X
− σrr(X, t)

󰀖
− 1

3X

󰀃
X3 − (1 + ρ)r3c + ρL3

󰀄
+
1

2

󰀃
X2 − (1 + ρ)r2c + ρL2

󰀄
= 0.

(4.3)

As it can be seen in the above condition (4.3), it appears the necrotic interface
L and the outer tissue normal stress component evaluated at the tumour bound-
ary σrr (X, t): this means that the necrotic interface is profoundly influenced by
the outer stress and such influence is brought in the growth rate equation (4.2).

It’s so clear the connection between the tumour dynamics and the tissue me-
chanical properties during this stage.

Besides the tumour expansion is independent of outer stress in the initial
stages, and consequently of necrosis, it is reasonable to examine whether necrosis
occurs or not or if it is delayed by changing the outer stress stiffness (β), the local
oxygen threshold from which apoptosis commences (α), and the death rate (ρ).

4.1 Proliferative Phase
Initially the tumour is assumed to be small, non-necrotic and compact. Integrat-
ing equations (3.22)-(3.23) and exploiting the boundary conditions (3.28)-(3.29),
we then have the following solutions with Σ(C) = 1:

C = 1− 1

6

󰀃
X2 − r2

󰀄
, (4.4)

Uc = −∂Pc

∂r
=

1

r2

󰁝 r

0

y2S(C(y, t))dy, (4.5)

Seen the constraint of material surface given in the boundary condition (3.29),
the expression of tumour growth rate is:

dX

dt
=

1

X2

󰁝 X

0

y2S(C(y, t))dy (4.6)

The expression for the cell pressure can be easily obtained by integrating (4.5)
by parts:

Pc =

󰀕
1

r
− 1

X

󰀖󰁝 r

0

y2S(y, t)dy +

󰁝 X

r

󰀕
y − y2

X

󰀖
S(y, t)dy − σrr(X, t). (4.7)

During the early stage of the tumour, it can be assumed that there is a plentiful
supply of oxygen, thus no programmed death occurs and we can consider that it
holds C > α such that S(C) = 1. Hence, the shape of the solutions is:

C = 1− 1

6

󰀃
X2 − r2

󰀄
, Uc =

r

3
, (4.8)

X = X0e
t
3 , Pc = −σrr(X, t) +

1

6

󰀃
X2 − r2

󰀄
. (4.9)
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The value of σrr(X, t) does not interfere with the tumour growth dynamics at the
present stage, but it determines whether necrosis occurs or not.

According to these solutions, cells experience their highest compression in the
center of the spheroid (i.e., the cell pressure maximum in r = 0), where cells
uptake nutrient to grow and duplicate, driving the tumour expansion (seen the
positive sign in the expression of the velocity field (4.8)).

4.2 Apoptosis and Necrotic Phase
With the progression of the expansion, r = 0 (the point at which local oxygen
concentration attains the minimum) will be the first region to experience the
dropping off of oxygen levels to the critical threshold α, leading to the apoptotic
phase of the tumour growth.

The time at which significant death appears in r = 0, already introduced in
(3.4), is:

t1 =
3

2
log

󰀕
6 (1− α)

X2
0

󰀖
, (4.10)

attaining greater or lower values depending on how large the critical threshold
α is (the greater it is, the faster apoptosis occurs), and how big the initial radius of
the tumour X0 is (the smaller it is, the later programmed death occurs given the
stronger intercellular bonds which keep the ensemble together preventing more
cells from death).

From this time instant, the apoptotic interface rc defined in (3.15) arises,
separating the proliferative rim (rc(t) < r < X(t)) from the death region (0 <
r < rc(t)).

The interface rc between live and dead cells can be also characterised in the
following manner exploiting its definition (3.15) and the solution for the oxygen
local concentration given in (4.4):

r2c = X2 − 6(1− α) ∀t > tapoptosis. (4.11)

The apoptotic interface interferes in the tumour growth dynamics, as it can
be seen through the equation for the tumour growth rate (4.6), which written for
this stage is:

3X2dX

dt
= X3 − r3c (ρ+ 1). (4.12)

Exploiting equations (4.5)-(4.7) and the continuity conditions of Uc, Pc and
∂P
∂r

across the rc(t) interface, we gain the following solutions which hold true until
necrosis occurs:

Uc =

󰀻
󰀿

󰀽

−ρr
3
, 0 < r < rc(t),

1
3r2

(r3 − (1 + ρ) r3c ) , rc(t) < r < X(t),
(4.13)

Pc =

󰀻
󰁁󰀿

󰁁󰀽

1
6
(ρr2 +X2)−

󰀃
1+ρ
2

󰀄
r2c +

󰀃
1+ρ
3

󰀄 r3c
X
− σrr(X, t) 0 < r < rc(t),

1
6
(X2 − r2)− (ρ+ 1) r3c

3r
+ r3c

3X
(ρ+ 1)− σrr(X, t) rc < r < X(t),

(4.14)
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while, the local oxygen concentration solution does not change:

C = 1− 1

6

󰀃
X2 − r2

󰀄
. (4.15)

If no necrosis occurs, a non-necrotic steady state is consistent for tumour
radius:

X(t) = X∞

where

X2
∞ = 6 (1− α)

(1 + ρ)
2
3

(1 + ρ)
2
3 − 1

> r2c∞ =
6 (1− α)

(1 + ρ)
2
3 − 1

, (4.16)

which are obtained from setting to zero the right-hand side of the evolution
equation (4.12). It is interesting to note that:

X3 − (1 + ρ) r3c = 0 ⇔ X = (1 + ρ)
1
3 rc = rPcmax

. (4.17)

The radius at which cell pressure attains the maximum comes to coincide with
the expression of the steady state solution for the tumour boundary.

As rc and X are both increasing functions of time, it is reasonable that the
rPcmax

interface travels with time towards the outer boundary.

When the fluid pressure values increase until they reach those of cell pressure
in r = 0, necrosis, instead occurs and the necrosis interface L(t) arises and during
time it separates two different regions: a compacted region occupying L < r < X
where both proliferation and death occur and a non-compacted necrotic region
confined in 0 < r < L.

Solution can be found through the equations (3.22)-(3.23)-(3.27) coupled with
the boundary conditions (3.28)-(3.29) and the continuity conditions (3.24) across
the necrotic interface L(t).

Specifying the kinetic terms (3.31) Σ and S previously defined in (3.31), it
is possible to show that the shape of the radial velocity component of the cell
velocity field is:

Uc =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

0, 0 < r < L(t),

− ρ
3r2

(r3 − L3) , L(t) < r < rc(t),

1
3r2

(r3 − (1 + ρ) r3c + ρL3) rc(t) < r < X(t),

(4.18)

and for the cell pressure, we have:
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Pc =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

p(t)
2

0 < r < L(t)

1
6
(ρr2 +X2)−

󰀃
1+ρ
2

󰀄
r2c +

󰀃
1+ρ
3

󰀄 r3c
X
+ ρL3

3

󰀃
1
r
− 1

X

󰀄
− σrr (X, t) L(t) < r < rc(t)

1
6
(X2 − r2) +

󰀃
1
r
− 1

X

󰀄 󰀓
ρL3

3
−
󰀃
1+ρ
3

󰀄
r3c

󰀔
− σrr (X, t) rc(t) < r < X(t)

(4.19)

Recalling the equations of the non-compacted region (3.26)-(3.27), we have:

1
r2

∂
∂r

󰀃
r2 ∂C

∂r

󰀄
= φ,

∂φ
∂t

= −ρφ,
(4.20)

with the solution of the second equation for φ being

φ = e−ρ(t−T (r)), (4.21)

where T (r) is the time at which the necrotic condition Pc = Pe is accomplished
at the radius r.

We can now focus on the first equation of (4.20) for the local oxygen concen-
tration:

1

r2
∂

∂r

󰀕
r2
∂C

∂r

󰀖
= φ. (4.22)

Before integrating the above equation, given the solution found for the cell
volume fraction (4.21), it is convenient to change the independent variable from
r to T through the definition r = L(T ) (thus requiring that the necrotic interface
L(t) is an increasing function with time) previously written. Thus, we have:

1

r2
∂

∂r

󰀕
r2
∂C

∂r

󰀖
=

1

L2L′
∂

∂T

󰀕
r2
∂C

∂r

󰀖
= e−ρ(t−T (r)). (4.23)

Thanks to the no flux condition (3.28) at r = 0 for the oxygen concentration,
we can integrate the preceding equation (4.23) from tN (namely the time at which
necrosis commences in r = 0) to T (r):

r2
∂C

∂r
=

󰁝 T (r)

tN

L2L′eρ(τ−t) dτ, for 0 < r < L(t) (4.24)

providing the flux condition at r = L(t) for the solution of oxygen concentra-
tion in the compacted region (3.22) when necrosis occurs, which is then:

C = 1− 1

6

󰀃
X2 − r2

󰀄
+

ρ

3

󰀕
1

r
− 1

X

󰀖󰁝 T (r)

tN

L3eρ(τ−t) dτ, for L(t) < r < X(t).

(4.25)
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Chapter 5

Analysis and simulations

5.1 Proliferative phase

In fig. (5.1), it is reported the behaviour of cell and extracellular fluid pressures
for β = 0.08 as elastic force stiffness during the proliferative phase until apop-
tosis occurs. During the initial time steps, there is a plentiful supply of oxygen
which guarantees cells proliferation. Thus, cells start to proliferate driving tu-
mour expansion and consequently the displacement u = (X(t)−X0) increases
with time: the surrounding medium exerts a major compression over time on
the tumour spheroid. As a consequence, cell pressures values at the boundary
become greater with time, leading to a gradual separation from extracellular fluid
pressures values and to a general increase of cell pressure valors in the tumour
inner regions. If a greater stiffness is chosen (β = 0.8 compared to β = 0.08), as
in fig. (5.2), such a feature is accentuated. It is, in fact, clear how a different
compression is reached at the tumour boundary, in particular, when apoptosis
occurs, as shown in fig. (5.3).

This peculiarity is even confirmed by the cell pressure maximum attained in
r = 0, whose valors are greater over time in the stiffer case, as it can be seen in
fig. (5.4).

An equivalent alteration for varying the intensity of the elastic force acting on
the tumour is changing the initial tumour radius, keeping the stiffness (β) fixed.
If the tumour has an initial smaller size, the compressive forces are less intense
during the initial stages of growth, as it can be noticed in fig. (5.5).

Reversely, when apoptosis phase is almost reached, the tumour sizes for the
two different initial radii choices become comparable, and so the cell pressure
values. It is remarkable to note, that, if the initial tumour size is smaller, the
spheroid take more time to grow and to reach considerable dimensions, thus
postponing the onset of apoptosis and the hypoxia experienced initially in the
tumour center, as it can be detected in fig. (5.6).

In fact, recalling the local oxygen concentration solution for this stage of
growth, it attains a minimum in the spheroid center, which over time decreases
towards the critical threshold α, because of which programmed death begins
accordingly to the net growth and death rate definition.

The evolution of the two tumour boundaries corresponding to the different
choices for the initial radius is reported in fig. (5.7), again emphasizing how the
initial difference in size leads to a different time for the onset of apoptosis.
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(a) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for each
time step from t0 = 0 for the first time instants for β = 0.08 elastic force stiffness.

(b) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for each
time step from t0 = 0 until apoptosis occurs for β = 0.08 elastic force stiffness.

Figure 5.1: Evolution of pressures during the proliferative phase from the first
time instants until apoptosis occurs for β = 0.08 elastic force stiffness. As the
time goes on, the progressive displacement in the external tissue increases, thus
leading to a greater compression felt by the tumour, in particular at the boundary.
As it can be seen the value of the cell pressure at the tumour radius increases with
time, bringing to a clear separation between cell and extracellular fluid pressures
values.

5.2 Apoptosis Phase
Plots in fig. (5.8) describe how the general behaviour of both pressures varies
from the proliferative phase to the apoptosis phenomenon.
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(a) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for each
time step from t0 = 0 until apoptosis occurs for β = 0.08 elastic force stiffness.

(b) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for each
time step from t0 = 0 until apoptosis occurs for β = 0.8 elastic force stiffness.

Figure 5.2: Evolution of pressures during the proliferative phase from the first
time instants until apoptosis occurs for β = 0.08 and β = 0.8 elastic force stiff-
nesses. In the stiffer case, the compression exerted by the external tissue is bigger:
cell pressure values verge on major values and the separation from extracellular
fluid pressure values is more evident than the less stiff case.

During the proliferative phase, intercellular forces are stronger in the center
of the spheroid, gradually decreasing, instead, towards the tumour edges where
new-born cells guarantee the tumour expansion. On the contrary, the extracel-
lular fluid pressure experiences its lower values from r = 0 (where it attains the
minimum) increasing instead outwards ,where there is, in fact, more availability
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Figure 5.3: Cell pressures plotted against tumour boundary at the onset of apop-
tosis for the two different β choices. In green, we can see the cell pressure of
the stiffer case reaching clearly larger values than the ones attained by the blue
curve.

of nutrient (oxygen) uptaken by cells to duplicate.

When the critical oxygen threshold α (chosen to be equal to 0.6 in these
simulations) is achieved, the apoptosis interface rc(t) arises in the center of the
spheroid separating the region in which proliferation takes place (rc(t) < r <
X(t)) from the one where programmed death happens (0 < r < rc(t)). Thus,
the shape of pressures solutions change. In the center of the spheroid, cells
while dying, release fluid, giving rise to an increase of extracellular fluid pressure
values and to weaker cellular bonds of adhesion. Such a feature is kept while the
apoptosis interface rc(t) travels with time. In the proliferative region, instead,
the tendency of the solutions is similar to the one described in the previous phase
of growth.

For such a β = 1.5 choice no necrosis occurs, as it can be seen in fig.
(5.9). The external compression is powerful enough to make the cell pressure
value at the boundary increase with time. Stronger external compressions bring
the cell pressure to higher values in the tumour inner regions, leading again
to a clear separation with extracellular fluid pressure valors. Moreover, the
r = rPcmax

= (1 + ρ)
1
3 rc(t) interface, where Pc attains the maximum, creates

two different regions in which a reverse mechanical attitude can be spotted.
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(a) Cell pressure maximum attained in r = 0 plotted over time until apoptosis occurs for β = 0.08
case.

(b) Cell pressure maximum attained in r = 0 plotted over time until apoptosis occurs for β = 0.8
case.

Figure 5.4: Comparison of cell pressure maximum valors over time for two differ-
ent β choices (β = 0.08 and β = 0.8). The stiffer case show how larger values are
reached over time.

For r > rPcmax
, to ensure expansion, as the tumour boundary is still an in-

creasing function of time, cells tend to go outwards. For this reason, cell pressure
decreases with radius where the tumour is expanding.

On the contrary, for r < rPcmax
cells move towards the center of the spheroid

guarantee the constraint of constant volume fraction.

Under this external tissue stiffness, the compressive forces become very pow-
erful over time, and, thus, cell migration is even more impeded, leading the rPcmax
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(a) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for the first
time instants for β = 0.08 elastic force stiffness and X0 = 0.1 initial tumour radius.

(b) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for the first
time instants for β = 0.08 elastic force stiffness and X0 = 0.01 initial tumour radius.

Figure 5.5: Evolution of pressures during the proliferative phase for the first time
instants for X0 = 0.1 and X0 = 0.01 initial tumour radii, being β = 0.08. In
the X0 = 0.01 scenario, the tumour has an initial tumour radius one order of
magnitude minor than the other case. Consequently, the tumour spheroid has
much smaller sizes during the first time instants, originating weaker compressive
forces. Cell pressure values differ from one order of magnitude.

interface to a progressive accumulation of cells, bringing the Pcmax on higher val-
ues, as it can be observed clearly in the time instants plotted in fig. (5.10).

The tumour and apoptosis interfaces are then reported in fig. (5.11) during
their evolution in the proliferative and apoptosis phases.
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(a) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for each
time step from t0 = 0 until the onset of apoptosis for β = 0.08 elastic force stiffness and X0 = 0.1
initial tumour radius.

(b) Evolution of cell and extracellular fluid pressure plotted against tumour boundary for each
time step from t0 = 0 until the onset of apoptosis for β = 0.08 elastic force stiffness and X0 = 0.01
initial tumour radius.

Figure 5.6: Evolution of pressures during the proliferative phase until the onset
of apoptosis for X0 = 0.1 and X0 = 0.01 initial tumour radii, being β = 0.08. In
the X0 = 0.01 scenario, the time at which apoptosis commences is achieved much
later by the tumour aggregate compared to the greater initial radius choice.

It is of remarkable importance to outline even for this stage of growth what
kind of features arises with the tumour initial radius variation, keeping instead
the stiffness (β) fixed.

Varying the tumour initial radius entails two different times for the onset of
apoptosis.
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Figure 5.7: Outer tumour interfaces over time until apoptosis commences for two
different choices of initial tumour radius.

Choosing X0 = 0.01 as initial tumour radius, combined with β = 1.5 elastic
force stiffness choice conducts again to a non necrotic scenario.

It is interesting to note that the behaviour of the two cell pressures corre-
sponding to the different choices of initial tumour radius in fig. (5.2). Both cell
pressures are plotted against the tumour radius at the last time instant of the
time interval chosen for the simulations (i.e., tfinal = tapoptosis +12): cell pressure
values corresponding to the X0 = 0.01 choice are greater than the non-variated
case. Also, cell pressure maximum, attained in the proliferative rim, has over
time (even if the onset of apoptosis is different for X0 = 0.01 choice), during the
apoptosis phase, greater valors than the ones attained in the other scenario.

If we go back in the proliferative phase, as shown in fig. (5.12), cell pressure
values reached at t = 4.0690 and t = 8.2210 (time of onset of apoptosis for
X0 = 0.1 case) of the lower initial tumour radius are smaller.

When apoptosis is reached also for the X0 = 0.01 case, the corresponding cell
pressure values become greater than the ones of X0 = 0.1 scenario at the onset
of apoptosis, as shown in fig. (5.13).

Such a behaviour can be explained by the fact that, initially, the tumour sizes
for the X0 = 0.01 scenario are very much smaller compared to the X0 = 0.1 case.
For this reason, the progressive displacement in the external tissue will be less at
these initial stages, leading to weaker compressive forces and lower cell pressure
values in the proliferative phase. The time at which apoptosis commences is
delayed in the X0 = 0.01 scenario: tapoptosis2 = 15.1287 > tapoptosis1 = 8.2210. In
general, the tumour radius at which apoptosis is initiated is X(t = tapoptosis) =
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(a) Evolution of the cell pressure during the proliferative and apoptosis phase plotted against
tumour boundary for some time instants for β = 1.5 elastic force stiffness in a non necrotic
scenario

(b) Evolution of the extracellular fluid pressure during the proliferative and apoptosis phase plotted
against tumour boundary for some time instants for β = 1.5 elastic force stiffness in a non necrotic
scenario

Figure 5.8: Evolution of cell and fluid pressures during the proliferative and
apoptosis phases in case of no necrosis for β = 1.5. The tissue stiffness is strong
enough to guaranteeing an increase of cell pressure values with time from the
outer boundary to inner regions of the proliferative rim.

󰁳
6 (1− α), independent of the initial tumour radius X0. Therefore, the tumour

radius at tapoptosis = 15.1287 for the X0 = 0.01 choice will be the same of the
X0 = 0.1 case at tapoptosis = 8.2210, but the displacement in the surrounding
medium u = (X(t = tapoptosis)−X0 will be considerably greater for the X0 = 0.01
scenario, provoking the increase of the external compressive forces. Such an
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Figure 5.9: Evolution of cell and extracellular fluid pressures during the apoptosis
phase in case of no necrosis for β = 1.5.

Figure 5.10: Cell pressure plotted against tumour radius at some time instants
in the apoptosis phase for β = 1.5. As the time passes, cell pressure verges on
larger values.
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Figure 5.11: Evolution of tumour and apoptosis interfaces with time during pro-
liferative and apoptosis phases in case of no necrosis for β = 1.5.

increase accounts for the cell pressure greater values in the X0 = 0.01 scenario
during the apoptosis phase.

5.3 Apoptosis phase with the onset of necrosis

Choosing lower values for the β elastic force stiffness causes the weakening of
intercellular bonds and consequently the increase of extracellular fluid pressure
values, until, in the center of the spheroid (r = 0), the necrosis condition (Pc = Pe)
is satisfied, as it can be seen in fig. (5.14)-(5.15)-(5.16)-(5.17).

The most remarkable feature of the aforesaid graphics is how to a decrease of
the external tissue stiffness (β) corresponds an anticipation of necrosis time.

We can now focus on the β = 0.05 scenario and analyze some interesting
characteristics.

In fig. (5.18) it is reported more specifically how necrosis is reached in such a
stiffness case, by plotting the cell and extracellular fluid pressures just for some
time instants including the curves that mark the triggering of necrosis in r = 0.

In fig. (5.19), for the same β scenario, tumour and apoptosis interfaces have
been inserted in their evolution during the proliferative and apoptosis phase until
necrosis is attained.

If we keep the stiffness (β) fixed, we can play with the oxygen critical threshold
α parameter as well to see how the onset of necrosis is anticipated or retarded
according to its variations.
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(a) Cell pressures plotted against tumour radius at last time instant chosen for the simulations of
the apoptosis phase for β = 1.5 corresponding to the two different initial tumour radius (X0 = 0.01
and X0 = 0.1) choices in a non necrotic scenario.

(b) Cell pressure maximum plotted against tumour boundary for each time step of the two different
apoptosis phases corresponding to the diverse choices of initial tumour radius

Intuitively, for example, if we increase the valor of such a parameter (α) from
0.6 to 0.7, it takes less time for the oxygen concentration to attain the critic
value and enhancing the beginning of apoptosis. In other words, under the same
stiffness, changing the α parameter to a greater one, means anticipating the onset
of apoptosis and consequently of necrosis.

As evidence, two series of plots have been added.

m
In fig. (5.20) the tumour and apoptosis interfaces are reported in their evo-

lution over time during the proliferative and apoptosis phases until necrosis is
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(a) Cell pressure during the proliferative phase
before the onset of apoptosis plotted against
tumour radius at t=4.0690 for β = 1.5
and X0 = 0.01

(b) Cell pressure during the proliferative phase
before the onset of apoptosis plotted against
tumour radius at t=4.0690 for β = 1.5 and
X0 = 0.1

(c) Cell pressure during the proliferative phase
before the onset of apoptosis plotted
against tumour radius at t=8.2210
for β = 1.5 and X0 = 0.01

(d) Cell pressure during the proliferative phase
plotted
against tumour radius at tapoptosis=8.2210
for β = 1.5 and X0 = 0.1

Figure 5.12: Cell pressures plotted against tumor radius for different time instants
for β = 1.5 corresponding to the two different initial tumour radius choices X0 =
0.1 and X0 = 0.01.

reached for both α choices. As predicted, the starting times for apoptosis and
necrosis in the α = 0.6 option are preceded by those of the other parameter
value. The magenta line in fig. (5.20), which represents the apoptosis interface
for α = 0.7, appears and vanishes earlier in time, marking anticipated apopto-
sis and necrosis, as the green line, which stands for the outer tumour boundary
for α = 0.7, terminates before the blue line (the tumour border for the other
scenario), signaling the earlier outset of apoptosis.

In fig. (5.21), we can detect the different behaviour kept by both the pres-
sures for the two different α scenarios. In the higher α choice, a major decrease
of the cell pressure in the apoptosis region can be spotted, given the fact that
the apoptosis phenomenon had taken place earlier. In fact, being α = 0.7 com-
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Figure 5.13: Cell pressures plotted against tumour radius for different time in-
stants in the proliferative phase before the onset of apoptosis for β = 1.5 cor-
responding to the two different initial tumour radius choices X0 = 0.01 and
X0 = 0.1

pared with α = 0.6, it means that there is less availability of nutrient for cells
duplication: less cells are able to duplicate and to drive tumour expansion and
the apoptosis is then reached readily. To keep the constraint of constant volume
fraction in this kind of scenario, it implies that cells should increase in size, then
the number cell density would be lower and intercellular bonds weaker. Such an
attitude would explain the cell pressure lower values for the α = 0.7 case, even
though this modelling framework is pretty simplified and it is not really able to
detect cell single behaviours.

A last interesting characteristic to be also analysed in this section is the be-
haviour of cell pressure maximum in the apoptosis phase if necrosis is spotted.
As we can see in fig. (5.22), lowering the stiffness, the maximum tends to de-
crease over time until necrosis is reached, and the shape of the solution changes.
In case of β lower values, compressive forces are indeed weaker compared to β
greater values, and so are the intercellular forces. If such compressive forces are
not so strong to keep a powerful structure of the ensemble of cells, cells migra-
tion is eased in comparison with major compressive scenarios. For this reason, the
rc[Pcmax

interface goes through a progressive loss of cells: cells which move towards
the boundary to drive expansion and other inwards to keep the compactness of
the spheroid structure.

What happens, instead, increasing the stiffness, gives rise to a different kinetic
attitude, as it is shown in fig. (5.23): progressively widening the values of beta, we
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Figure 5.14: Cell and fluid pressures during the apoptosis phase in case of no
necrosis apperence for β = 0.7 and X0 = 0.1. The arrows indicate the direction
of time increase. Differently from the β = 1.5 in the apoptosis without necro-
sis occurring in (5.2), cell pressure values start from higher values and, in the
apoptotic region (0 < r < rc(t)), they tend to decrease with time seen the minor
stiffness of the external tissue (β = 0.7 vs. β = 1.5). Even if extracellular fluid
pressure values are increasing in the apoptotic region, no necrosis here occur be-
cause a non-necrotic steady state is reached in the tumour boundary (as it can
be spotted in the last time instants cell pressure curves) and the values for both
the pressures stabilize.

can observe a clear augmentation of cell pressure values over time, especially in the
non-necrotic cases, which strong intercellular forces prevent the tumour aggregate
from entering in the necrosis phase. In such scenarios compressive forces are very
powerful to guarantee a massive robust structure of the spheroid and so cell
migration, instead, here, is made harder over time. Indeed, the rc[Pcmax

interface
experiences a gradual accumulation of cells (being the maximum achieved in the
proliferative rim) which leads to greater Pcmax values over time. Probably cells
reduce their sizes to maintain the same volume ratio as the lower beta cases, even
if, as already mentioned before in this section, we are not able to detect it under
this simplified modelling framework.



✐
✐

“tesidastampare” — 2019/7/10 — 18:31 — page 60 — #60 ✐
✐

✐
✐

✐
✐

60 CHAPTER 5. ANALYSIS AND SIMULATIONS

Figure 5.15: Cell and fluid pressures during the apoptosis phase in case of necrosis
apperance for β = 0.65 and X0 = 0.1. The arrows indicate the direction of time
increase. Decreasing the elastic force stiffness of 0.05 (β = 0.65 vs. β = 0.7),
necrosis here occurs.
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Figure 5.16: Cell and fluid pressures during the apoptosis phase in case of necrosis
apperance for β = 0.5 and X0 = 0.1. The arrows indicate the direction of
time increase. Decreasing the elastic force stiffness β, the onset of necrosis is
anticipated. As we can see, the cell pressure values in the apoptosis region rapidly
decrease with time, given the weakening of intercellular bonds, until the necrosis
condition (Pc = Pe) is readily achieved in r = 0 by the two pressures.
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Figure 5.17: Cell and fluid pressures during the apoptosis phase in case of necrosis
apperance for β = 0.05 and X0 = 0.1. The arrows indicate the direction of time
increase. Decreasing the elastic force stiffness β of one order of magnitude in
respect of the preceding case (fig. (5.16) ), the decrease of cell pressure values in
the apoptosis region is much accentuated and the necrosis is attained faster than
the β = 0.5 case.
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Figure 5.18: Graphics of cell and fluid pressures for the β = 0.05 stiffness case
against tumour radius for some time instants, with a particular focus to the necro-
sis time. The magenta and cyan curves for the cell and fluid pressure respectively
represent the last solution for the pressures in the apoptosis phase, starting from
which the necrosis phase is initialized.
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Figure 5.19: Tumour and apoptosis interfaces in their evolution with time for
the proliferative and apoptosis phases and the apoptosis phase respectively until
necrosis commences, for the β = 0.05 case.
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Figure 5.20: Tumour and apotosis interfaces plotted over time during the prolif-
erative and apoptosis phases until necrosis occurs for α = 0.6 and α = 0.7.
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Figure 5.21: Cell and fluid pressures plotted against tumour radius at the necrosis
time for each α choice (α = 0.6-α = 0.7).
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Figure 5.22: Behaviour over time of cell pressure maximum in case of necrosis for
different stiffnesses β values during apoptosis phase.
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Figure 5.23: Behaviour over time of cell pressure maximum either in case of
necrosis/necrosis for different stiffnesses β values during apoptosis phase.
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Conclusions

In this piece of work, much analysis has been devoted on how the growth induced
stress affects tumour growth during the various stages of expansion, by treating
the external medium as an elastic force at the boundary.

Interesting features have arisen by varying the elastic force stiffness in every
phase of growth. Increasing the external tissue stiffness means giving the tumour a
more compact structure, seen the simultaneous increase of the intercellular forces.
It is of pivotal importance to understand critically how such strengths are weak-
ened or reinforced by the external stress: a more compact and powerful structure
confers a survival advantage to the tumour. Indeed, increased compaction, as
caused by the external surrounding medium, or as found in the tumour spheroid
inner layers, triggers a multicellular-dependent mechanism of increased radiation
resistance [17] and both intrinsic and acquired drug resistance [18]. To analyse
more precisely how the surrounding medium mechanics influences the tumour ag-
gregate dynamics and kinetics would be better to consider a non-isotropic stress
field. Also, the next crucial step would be adding a mechano-sensitive property, in
order to make tumour growth dynamics dependent on the outer stress also during
the proliferative and apoptosis phases and not only once necrosis is begun. Thus,
the model could capture how the microscopic cellular parameters vary according
to the alterations in the structure of the external tissue stress. Such compressive
forces would influence the tumour growth rate from the initial stages of expansion
and not only when necrosis is triggered.

Understanding what kind of macroscopic and microscopic features might change
given a particular outer stress field through a more accurate model would help
in characterising accurately the growth-induced tumour inhibition detected in
Helmlinger experiments [1].

Such improvements might also help in raising the efficacy of some medical
treatments and therapies, leading to a significant awareness of the tumour future
evolution.
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thank them endlessly for every single help they gave me for the production of this
dissertation.
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where all the things that you could not believe would have been possible came to
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Everything I listed was possible only thanks to the most important people
in my life: my parents, my best friends. They have always taught me that
everything I wanted to reach could be attained with hard work, intense passion,
and humbleness. There were more moments in which I did not believe in myself
enough, and I thought I was not as good as the standards requested by the degree
course I was attending. They were there to support me, allowing every experience
I needed for my future and never making me feel weak, even in my failures. I
would not be the person I am today without their teachings, support and giant
love.

Also, every person, every new friend I made during these years was crucial
for building every single piece of the current myself. With their help, different
perspectives enriched my way of seeing things in life and their company was a
relief in the saddest moments and an added value in the happiest ones.
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mathematics: it has given me one of my biggest passions in life developing my
sake for discovery and it made me understand that most everything in life has a
solution, if you sit there with constance and you look for it.
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