
Politecnico di Torino

DIPARTIMENTO DI SCIENZE MATEMATICHE
M.Sc. in Engineering Mathematics

Final dissertation

A Machine-Learning Approach to
Parametric Option Pricing

Supervisor: Prof. Kathrin Glau Candidate: Paolo Colusso
Co-supervisor: Prof. Paolo Brandimarte
Co-supervisor: Prof. Matthjis Breugem
Co-supervisor: Prof. Marcello Restelli

ACADEMIC YEAR 2018/2019

Summary

This work explores a deep-learning approach to the problem of Parametric Option
Pricing. In a first phase, neural networks are used to learn a pricing function start-
ing from a set of prices computed by means of a suitable benchmark method. In a
second phase, the method is coupled with a complexity reduction technique in order
for it to be scaled up to higher dimensions.
The contributions of this work are multiple. On the one hand, it shows the appli-
cability of the neural-network approach to the parametric pricing problem. While
few recent works have tackled a similar problem, this thesis shows that solutions
can be found to more complex financial products, such as American and basket op-
tions. The pricer resulting from this method is fast and accurate, thus comparing
favourably with the traditional Monte Carlo or PDE approaches. In addition, it
provides results which are comparable to those obtained by recent developments
in the use of Chebychev polynomial approximations, but without the constraints
imposed by the need of having a fixed grid of Chebychev points.
On the other hand, this work shows how to make the neural-net approach scalable
to higher-dimensional problems. Indeed, the high number of parameters which can
enter the pricing function (model and option parameters and underlying assets) can
lead to problems which are not tractable by standard machines due to memory con-
straints. This thesis proposes to exploit a tensor-train (TT) decomposition which
significantly compresses the tensor of prices used to train the neural network. As well
as ensuring an accurate representation of the tensor entries, the TT-decomposition
allows to retrieve the entries by means of simple products of three-dimensional ten-
sors. For this reason, one does not need to store the whole training tensor, but can
easily compute only the few entries of the small batch of samples which are needed
for stochastic gradient-based methods used in the training of the neural net.
The proposed methodology is tested on two practical cases: basket of call options,
with up to 25 underlying assets, and American put options. In the first example
the training data is computed by Monte Carlo methods, while finite differences for
PDE are used to generate American option prices.

ii

Sommario

Il lavoro sviluppa una metodologia basata sul deep learning per affrontare il proble-
ma del pricing parametrico di opzioni. In una prima fase si costruiscono architetture
di reti neurali per apprendere funzioni di prezzo a partire da un dataset di prezzi
ottenuto tramite il metodo di riferimento per lo specifico prodotto finanziario. In
una seconda fase, il metodo è associato ad una tecnica di riduzione della dimensio-
nalità in modo che sia reso applicabile a problemi di ordine maggiore.
Il contributo di questo lavoro riguarda più aspetti. Da un lato si mostra come le reti
neurali abbiano notevole potenziale nel problema di pricing parametrico. Sebbene
esista qualche lavoro che affronta il problema in modo simile, questa ricerca mostra
come sia possibile affrontare il pricing di derivati più complessi, per esempio opzioni
basket o di tipo americano, attraverso il machine learning. Il pricer ottenuto risulta
veloce ed accurato, e pertanto preferibile rispetto ai tradizionali metodi Monte Carlo
o di differenze finite per equazioni differenziali alle derivate parziali. Inoltre, i risul-
tati presentano metriche in linea con quelli ottenuti da recenti sviluppi nell’uso di
polinomi interpolanti di Chebychev, che impongono tuttavia il vincolo di una griglia
di punti ben definita e fissa per il passaggio di interpolazione, e quindi inadatti, per
esempio, all’apprendimento a partire da dati reali di mercato.
Un ulteriore contributo di questa tesi deriva dal rendere l’approccio tramite reti
neurali scalabile a dimensioni maggiori. Infatti, l’elevato numero di parametri da
cui può dipendere la funzione di pricing (parametri del modello, dell’opzione o degli
asset sottostanti) può portare ad un problema non trattabile con macchine stan-
dard. Questa ricerca propone di sfruttare la decomposizione tensor-train, che può
condurre ad una notevole compressione del tensore usato per il training delle reti
neurali e quindi delle dimensioni del problema. Oltre a garantire una rappresenta-
zione accurata delle entrate del tensore, la decomposizione tensor-train consente di
ottenere le entrate tramite prodotto di tensori tridimensionali. Questo permette di
non dover salvare l’intero tensore dei dati di training, ma di calcolare i pochi dati
necessari per ogni fase del training della rete neurale.
Il metodo proposto è testato su due casi concreti, quello di opzioni basket con un
numero di asset sottostanti fino a venticinque, e di opzioni put americane. Nel pri-
mo caso, i prezzi che costituiscono il dataset di training sono calcolati con il metodo
Monte Carlo, mentre differenze finite sono usate per generare i prezzi di derivati di
tipo americano.

iv

v

Acknowledgements

This thesis is the outcome of five years spent at Politecnico di Torino, to which I
cannot but be grateful. In a context of general suffering of the Italian university
system, Politecnico has managed to engage and support motivated students in their
higher education. This was the case of the program for Young Talents in the bachelor
years and of Alta Scuola Politecnica in the master years. They were the occasion to
join forces with other students, other backgrounds and other fields of specialisation
and allowed me to grow in a nurturing environment.
I owe a lot to the challenges I was made to take on in these years. And there were
many, on a daily basis, constantly putting my motivation to the test. But there
were rewards as well. Three exchange programs, in Sweden and Switzerland, which
could not have been more different and yet more enriching, as they gave me the
confidence to be here as a global citizen, while always in a different context. But
they also gave me a new lease of life each time I left, which helped.
The thesis itself was written at EPF Lausanne during my last exchange program,
under the invaluable supervision of Kathrin. Always available for clarifications and
last-minute meetings, she went to great lengths to provide fresh stimuli and encour-
age the development of new solutions, so that I could not have asked for a better
mentor.
I would also like to thank Professor Brandimarte, Professor Breugem and Professor
Restelli, my co-supervisors in Italy, who contributed to this work with insightful
discussions and sincere enthusiasm.
Many thanks as well to Francesco, whose introduction to the low-rank part was
precious.
Directly or indirectly, this thesis came to light thanks to the people I was surrounded
by. Hence, thanks to my family, who had the patience to undergo non-negligible
amounts of stress on my side, but encouraged me every single day. And thanks to
my dad for the rides in Switzerland.
Thanks to my friends at the faculty of engineering. Matteo, who’s been there when
he was there, but especially when he wasn’t. To Francesco, and to his company in
Sweden, Norway, Denmark, the Baltics and Paris – it was always fun. To Luca, and
to his – our – endurance, as things invariably seem to go wrong, but they eventually
fall into place. Thanks to Alessio, who’s been loyally cultivating talent with me in
the past five years, and to Francesco, who’s been doing so in the last two. Thanks

vii

to those who were there in my Swiss year. Gianluca, for becoming a friend in such
a short amount of time; Nora, for she’s been a source of norwegian-quebecoise pos-
itivity, and Pierre, for it takes patience to listen to my French.
This thesis also marks the end of five years at Collegio Carlo Alberto, whose rooms
and corridors have witnessed years of relentless study days, to say the least. And
thankfully of good friendships. Thanks to Marcello, as he was the most trustwor-
thy consultant and the most rigorous analyst whenever academic and non-academic
decisions had to be made, as well as simply a friend. Thanks to Francesco, for the
study days, the study breaks and the table tennis, when we still had the chance to
practice it.

viii

Contents

Summary ii

Sommario iv

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Framework and Problem Description 3
1.2 Literature Review . 5
1.3 Stochastic Models . 7

1.3.1 The Heston Model . 7
1.3.2 The Ornstein-Uhlenbeck Process 9
1.3.3 CIR Process . 14

2 Option Pricing 20
2.1 Basket Options . 20

2.1.1 Monte Carlo Methods . 21
2.1.2 Basket Option Prices . 23

2.2 American Options . 28
2.2.1 PDE Derivation . 29
2.2.2 Finite Differences . 31
2.2.3 Heston PDE Discretisation . 31
2.2.4 ADI Schemes . 36
2.2.5 Matrix Construction . 38
2.2.6 Solution . 41

3 Neural Networks 45
3.1 Structure . 45
3.2 Hidden Units . 48
3.3 Training . 50
3.4 Regularisation . 51

ix

3.5 Optimisation . 55
3.5.1 Parameters Initialisation . 57
3.5.2 Algorithms . 58
3.5.3 Batch Normalisation . 63

3.6 Good Practices . 64

4 Low-Rank Approximation 66
4.1 Tensor-Train Decomposition . 69
4.2 Manifold Optimization . 72
4.3 Completion Algorithm . 75

5 Learning Methodology 78
5.1 Basket Options . 80

5.1.1 Using Chebychev Points . 85
5.2 American Options . 86

5.2.1 Other Choices for the Grid . 89
5.3 Remarks on the MLP architecture . 91

6 Learning via an Artificial Dataset 93
6.1 The case for a larger dataset . 94
6.2 The case for a synthetic dataset . 94
6.3 Basket Options . 96
6.4 American Options . 96
6.5 Random Grid . 97
6.6 Scaling Up . 99

7 Conclusions 104

x

List of Tables

1.1 Structure of the Work . 4
2.1 Coefficients in the control variate experiment 28
5.1 Parameters in the basket option problem 80
5.2 Neural network architecture for basket options – evenly-

spaced grid . 82
5.3 Error Metrics for basket options on evenly spaced points . . 84
5.4 Computation Time per basket option price in seconds 84
5.5 Neural network architecture for basket options – Chebychev

grid . 85
5.6 Error Metrics for basket options on different grids 86
5.7 Parameters in the American option problem – Grid 1 87
5.8 Neural network architecture for American options 87
5.9 Error Metrics for American put options 88
5.10 Computation Time per American option price in seconds . . 88
5.11 Linear regression of prices on the American option parameters 89
5.12 Parameters in the American option problem – Grid 2 90
5.13 Error Metrics for American put options 91
6.1 Comparison of metrics for full and approximated tensor in

the basket case . 96
6.2 Comparison of metrics for full and approximated tensor in

the American case . 97
6.3 Error Metrics – Basket Case . 99
6.4 Completion Results for the order-15 tensor. 102
6.5 Completion Results for the order-25 tensor. 102
6.6 Accuracy results for the basket tensors. 102
6.7 Error metrics for the higher-order basket problems. 103

xi

List of Figures

1.1 Implied volatility under the Heston mode, exhibiting the typical volatil-
ity smile. 10

1.2 Simulation of three paths of the CIR process. 14
2.1 Quantile-quantile plot of the arithmetic vs. geometric Asian options. . 27
2.2 Numerical solution to the Heston PDE. 43
3.1 A simple neural net, fully connected and with L hidden layers. 47
3.2 Plots of the sigmoid and hyperbolic tangent activation functions. . . . 49
4.1 Scheme of the idea behind tensor compression. 66
4.2 Simple three-d and two-d tensors. 68
4.3 Matricisation. 69
4.4 Decomposition example of a full tensor (left) into the product of lower-

order tensors (right). 70
5.1 Values for train and validation errors across the epochs of the training

phase. 81
5.2 Neural net architecture for the basket option problem. 83
5.3 Error values and histogram for basket option prices computed on test

set by a neural net trained on evenly-spaced points. 84
5.4 Error values and histogram for basket option prices computed on a

test set by a neural net trained on Chebychev points. 86
5.5 Error values and histogram for American option prices computed on

test set by a neural net trained on Grid 1. 88
5.6 Error values and histogram for American option prices computed on

test set by a neural net trained on Grid 2. 90
6.1 Variation of the MSE for different sizes of the grid in the American

option problem. 94
6.2 Error values and histogram for basket option prices computed on a

test set by a neural net. The training dataset was obtained by tensor
completion. 96

6.3 Error values and histogram for American option prices computed on
a test set by a neural net. The neural net was trained on a tensor
obtained by tensor completion. 97

xii

6.4 Relative error on varying test sets for different sampling set sizes as
percentage of the size of the full tensor in adaptive sampling strategy
– random grid case. 98

6.5 Error values and histogram for basket option prices computed on a
test set by a neural net. The neural net was trained on a random and
approximated tensor. 99

6.6 Relative error on varying test sets for different sampling set sizes in
adaptive sampling strategy – tensors of order 15 and 25. The size is
expressed as a percentage of the size of the full tensor. 101

6.7 Error values and histogram for the order-25 basket option prices com-
puted on a test set. 103

xiii

Chapter 1

Introduction

Quantitative finance and financial engineering are active areas of research, with prac-
titioners and academics striving to find methods which strike a balance between com-
putational costs and accuracy. These methods and their applicability heavily rely on
the ease with which one can work with the related stochastic models (Black-Scholes,
Heston, SABR) for the underlying financial assets. Indeed, the modern financial
industry demands speed and precision across a wide range of tasks: pricing, model
calibration, hedging, risk assessment, risk management and high-frequency trading
and uncertainty evaluation. This is all the more true given recent regulations and
capital requirements introduced in the aftermath of the financial crisis.

In calibration, for instance, one needs to find the good model parameters match-
ing available market prices for the financial products of interest.
Consider a set of m model parameters q taking values in a parameter space Q ⊂ Rm

and a set of µ derivative parameters ζ taking values in a space Z ⊂ Rµ (think of
ζ, for simplicity, as the maturity and strike price of the derivative). Given market
prices P̂ (ζ), the calibration problem can be formulated as looking for the parame-
ters which minimise the distance between market prices and the prices obtained by
a reference stochastic model for the underlying financial assets. That is:

argmin
q∈Q

dist
(
(P̂ (ζi))i=1,...N , (P (ζi, q))i=1,...N

)
,

for a distance function which can be for instance the mean squared error.
The calibration problem is mainly tackled by heavily-traded option prices rather
than by historical asset prices: it is easy to see that solving the minimisation prob-
lem requires a large number of prices for the option in order to single out the best
model parameters, and these have to be computed efficiently. Indeed, the charac-
teristics of the markets change rapidly, making the calibration process of utmost
importance and requiring frequent adjustment of the parameters.
The previous motivating example illustrates the need for a method which allows to
compute many prices in a fast and efficient way. One might wonder why not to use

1

1 – Introduction

the stochastic model for the asset dynamics to derive prices for each combination
of model and derivative parameters in the first place. The answer lies at different
levels.
First of all, exact solutions often do not exist, so that to obtain the future price of
the underlying from a given model is only possible in few cases. One of these, the
Black-Scholes model, matches computational ease with practical limitations, pri-
marily that of its constant volatility.
Even though analytical solutions may not exist, numerical methods can, and are,
used to obtain approximated ones. Methods have recently been developed, based
for instance on the Fourier transform, Monte Carlo, moments or PDE discretisation.
This comes with a catch, though. Although sufficiently accurate, these methods are
in most cases expensive and hence hardly ever used on a large scale, as demanded,
for instance, in model calibration.
For this reason, one in practice turns to a second-level approximation, by approxi-
mating approximate numerical solutions.

This work tackles a parametric derivative pricing problem. In doing so, it deals
with both orders of approximation: at first, numerical solutions are found by exist-
ing methods in the literature for two categories of financial products. Later in the
pipeline, these prices are generalised in an efficient and accurate way to the entire
desired range of parameters’ values.
The cases considered in this work are basket options, which are discussed in Section
2.1 and American put options, whose description is provided in Section 2.2: for
each of these, a numerical solution is computed to the pricing problem under the
reference stochastic model and with the reference method.
Subsequently, those solutions are extended to an entire range of parameters via a
neural network approach, in what is called the Parametric Option Pricing (POP)
problem. This involves the fast computation of option prices for a large set of both
option and model parameters performed by a learning approach: in other words,
after computing the price with a reference method for some grid of parameters, one
also learns the price for the desired whole range of parameter values on which the
price depends.
In the literature, the last step, that of learning, has mainly been done by polyno-
mial interpolation, so as to obtain a continuous function starting from a set discrete
points. Chebychev interpolation, in particular, has proven successful because of
good convergence properties under some mild assumptions.

This thesis shows that deep learning via neural networks can be competitive in
handling tasks of the POP type and it does so by considering the two examples
mentioned above, those of American and basket options. The thesis also makes the
claim that the described methodology is not always without flaws in some cases and
proposes a solution which attempts at overcoming the limitations which can arise.
Specifically, the deep-learning approach might fail as the training grid of points rises

2

1 – Introduction

in dimensionality: for parametric problems in high dimensions the size of the training
data shows an exponential growth, which hinders the success of neural networks due
to memory constraints. This issue motivates the introduction of a dimensionality
reduction technique which allows to store the training tensor in a compact form and
retrieve the data points of the tensors only when really needed during the training
process, in an efficient way.

1.1 Framework and Problem Description

The general framework for financial pricing problems can be generalised as follows:

• a stochastic model is used to describe the dynamics of one or more assets of
interest;

• derivatives are constructed based on these assets, which are thus called under-
lyings;

• the characteristics of the asset and of the financial product determine a price
for the derivative;

• the suitable price has to be proposed for the financial contract.

It is clear that the stochastic model has to provide an adequate description of the
dynamics of the asset over time: a trade-off is needed between the quality of the
model and the ease with which it can be applied. In addition, a fair pricing mech-
anism has to be devised so that it is not possible to make profits without any risk
whatsoever.
This work considers a two-step pricing methodology and applies it to two particular
cases, basket options and American put options. While the last phase of the method
is general, the first-one is problem-specific, although widely studied in the literature.
Initially, we want to compute prices for the financial product of interest via a bench-
mark numerical method: this is Monte Carlo for the basket case, and finite differ-
ences for partial differential equations for American derivatives. The model for the
underlyings also differs in the two cases, being of multi-dimensional Black-Scholes
type in the former example and of Heston type in the latter.
Once the prices have been derived on a grid accounting for the parameters of inter-
est, the second phase allows to extend the method by learning a pricing function of
the parameters, for a suitable range of these.

f : Q×Z → R+

f : (q, ζ) 7→ f (q, ζ) = price.
This last phase is performed via neural networks, whose major highlight is flexibility:
neural nets are exploited to learn a general pricing function from a limited set of
points, in a fast and accurate way, as prescribed by the applications requirements.

3

1 – Introduction

Table 1.1: Structure of the Work

Basket Options American Options
Type Section Type Section

Stochastic Model Black-Scholes Heston 1.3

Numerical Method Monte Carlo 2.1 Finite Differences for PDE 2.2

POP Neural Nets 3 Neural Nets 3

Table 1.1 shows a comparison of the methodology for the two application cases,
basket and American options.
The structure of the work follows the pipeline of the methodology.
Section 1.3 describes and motivates the use of the Heston model and related stochas-
tic processes, namely the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross
process, employed in the American context. For these stochastic processes, some
key moments are studied.
Chapter 2 describes basket options (Section 2.1) and American options (Section 2.2),
as well as presenting the numerical methods used to derive their prices. Monte Carlo,
coupled with a variance-reduction technique, is used in the former case, while finite
differences with alternating direction implicit (ADI) method is adopted to solve the
Heston PDE numerically.
Chapter 3 describes neural networks, providing a synthetic tractation of their struc-
ture and the optimisation methods used to train them.
The implementation of the pricing methodology is presented in Chapter 5, together
with performance results.
The remaining chapters propose an extension of the methodology, motivated by
some issues which can occur throughout the pipeline. Specifically, the goal is to
deal with the curse of dimensionality which arises as options become more complex,
making the problem challenging both memory-wise and computationally. This can
happen as more parameters intervene in the POP problem or when large portfolios
of assets are considered – in the framework of the Basket case, for instance. In
these cases, even to obtain a smaller grid by reducing the number of values per pa-
rameter can prove a thorny task, demanding for a further degree of generalisation.
The approach proposed consists of computing only few of the grid elements and
approximating the remaining entries via low-rank techniques: by resorting to the
completion algorithm, it is possible to obtain a full tensor from a subset of its entries.
Furthermore, exploiting a compressed representation of the same tensor allows to
save storing space. While this approach was successfully employed to Chebychev
grids in the context of polynomial interpolation, we show that it is a viable option

4

1 – Introduction

for more general grids, claiming that it can find application in other contexts than
the financial one. In addition, although the higher-order problems require a series
of modifications in the training process to account for the different format of the
grid, which is no longer a full tensor but a compressed one, this work shows how the
compressed representation can be encompassed and how it proves invaluable in the
training phase of the neural network.
Chapter 4 describes low-rank tensor approximation together with the completion
algorithm used to obtain a full tensor with only few of the entries. Chapter 6 shows
how results are affected when working with a synthetic dataset, i.e. obtained by ten-
sor completion rather than entirely via the reference numerical method and shifts
examples to higher dimensions.
Chapter 7 draws the conclusions with an eye on related results in the recent literature
and proposes further developments of this work.

1.2 Literature Review

While several computational methods exist to obtain derivative prices, the fast and
accurate computation of many of them for different choices of parameters is receiv-
ing considerable attention at the moment, as the problem of the trade-off between
accuracy and computational costs is widely recognised as crucial.
Existing numerical methods have been developed to tackle this issue: besides the
already mentioned operator splitting technique for finite differencing of PDEs (ADI
methods in Haentjens and in ’t Hout (2015)) to tackle multi-variate problems,
methods have been proposed to refine numerical integration, e.g. via sparse grids,
as in Holtz (2011), or to extend Monte Carlo methods, with quasi Monte Carlo
or multi-level Monte Carlo, for which see for instance L’Ecuyer (2009) and Giles
(2015).
Complexity reduction techniques have been equally explored due to their capacity of
saving run-time and storage capacity with virtually no side-effects on the accuracy.
Reduced basis methods (see Hesthaven, Rozza, G. and Stamm, (2016)) have proven
successful in solving parametric PDEs which require repeated evaluation: any so-
lutions to the parametrised problem is approximated via a limited number of basis
functions. Applications have been proposed in financial engineering, for instance in
Burkovska, Glau, Mahlstedt and Wohlmuth (2018).
Another form of complexity reduction technique, polynomial interpolation is also
frequently employed in financial engineering problems. Gaß, Glau, Mahlstedt and
Mair (2018) detail Chebychev interpolation of conditional expectations, stressing
good convergence properties under hypothesis which are typically verified in the
financial problems of interest. Glau, Kressner and Statti (2019) exploit the same
polynomial interpolation together with a low-rank structure of the tensor of Cheby-
chev nodes to store the nodes, efficiently compute the Fourier coefficients and readily
evaluate option prices via a tensor prodcut.

5

1 – Introduction

The application of neural network to financial engineering and quantitative finance
is more recent, especially when it comes to pricing and calibration. Results on
the approximating powers of neural networks mainly date back to the last years of
the twentieth century, with the pioneering work of Cybenko (1989) and Barron
(1993). Neural nets were initially employed in the same years for trading strategies
or credit risk models, see for instance Altman, Marco and Varetto (1994). In the
last decade, the development of GPUs (graphics processing units) and formal results
on the universal approximating power of neural networks have given momentum to
the employment of neural net architectures in learning problems. Finance and op-
tion pricing have also started to take advantage of deep learning approaches in the
last five to ten years, in two directions.

• On the one hand, some research was devoted to exploring model and parameter-
free pricing functions, as was first done by Hutchinson, Lo and Poggio (1994):
the authors use marketed options prices as data to train the neural net and
thus recover the Black-Scholes formula. This approach can be effective when
the underlying asset dynamics is particular hard to assess or when traditional
no-arbitrage pricing formulas prove challenging, that is under model misspec-
ification. Conversely, this methodology is susceptible to failure for derivatives
which are seldom traded or which have not been traded before; in addition,
when derivative prices can be easily obtained from the asset price dynamics,
the traditional parametric approach typically performs better in pricing and
hedging tasks. While a solution to the first issue is proposed in the last section
of this work, the second drawback is hardly avoidable. And yet, as remarked
by Hutchinson, Lo and Poggio (1994) favourable conditions for the parametric
approach occur rarely.

• Another, and more recent trend, is to exploit machine learning and neural nets
in model-based pricing methodologies and complement them. Some of these,
as for example Sirignano and Konstantinos, (2018), use machine learning as
a means to solve high-dimensional PDEs; others, such as Liu, Oosterlee and
Bohte (2019), Ferguson and Green (2018) and Horvath, Muguruza and Tomas
(2019), tackle the problem in a similar way to this work, focusing on the
parametric option pricing (POP) task or the related one of learning the greeks.
The aforementioned papers cite speed and accuracy as the main advantages of
a neural-network based approach.

While this work will not analyse the performance of Monte Carlo methods and finite
differences, which have been extensively studied, and will only use them as the foun-
dation of the proposed methodology, we will consider the deep-learning approach on
American and Basket options, more complex than the vanilla ones which have been
used in similar studies.
In addition, we will take the method a step further by exploring the use of dimension-
ality reduction in the framework of neural networks. This can be done in multiple
ways: first of all, it is possible to extend a small training set via a low-rank tensor

6

1 – Introduction

approximation. On the one hand, this should take some computational burden off
the benchmark method; on the other hand, it can allow to extend the market-driven
and model-free approach to financial products which are less-frequently traded, by
the creation of a synthetic training set. Alternatively, and probably more impor-
tantly, this work presents the low-rank compression as a precious tool when dealing
with high-dimensional problems.
The results obtained confirm and extend the preliminary ones presented in similar
works, and are encouraging in the novel approach proposed. The accuracy resulting
from the neural-network approaches shows that they are comparable to the bench-
mark methods, but with a significant gain in computational time. Furthermore, the
low-rank approximation for the tensor of training data demonstrates that even fewer
data are needed to represent the training grid, ensuring a further reduction in the
dimensionality and a viable solution to problems where the size scales up by some
orders of magnitude (because of an increased number of parameters or underlying
assets) or where the training data are not generated but retrieved from the markets
in a limited size.

1.3 Stochastic Models

Stochastic models in finance are intended to provide a plausible description of the
dynamics of stock prices. Even though it suffers from major limitations, the Black-
Scholes (BS) model is to date the most used model, because of its simplicity and ease
of use. Introduced in 1973 by Black, Scholes and Merton it went on to win the Nobel
Prize in economics (1997). Today, alternatives have been provided to the famous
Black-Scholes model: this section describes the more recent Heston model, which
sets itself as an extension of Black and Scholes’. Together with this description,
the Cox, Ingersoll and Ross process and the Ornstein and Uhlenbeck process are
presented, as they are useful in the presentation of the Heston model.
As mentioned in the previous chapter, we will use BS to model the underlyings in
the case of Basket options, but Heston for American put options.

1.3.1 The Heston Model

In order to overcome one of the main limitations of the Black Scholes model, namely
the constant volatility, the Heston model was introduced [Heston (1993)]. Although
some attempts were made in the 1980s to integrate stochastic volatility in the Black
Scholes model, the approach proposed by Heston presents a closed-form solution
and straightforward computation of the Greeks.
In the Heston model the price process of the underlying stock follows:

dSt = rStdt+ St
√
VtdW

1
t , (1.1)

7

1 – Introduction

where Vt is the variance stochastic process, in turn modelled as:

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t . (1.2)

W 1 and W 2 are correlated Wiener processes, with correlation ρ, which means that

E[dW 1
t dW

2
t] = ρ dt,

r is a risk-free rate and κ, θ and σ are parameters of the Cox-Ingerssoll-Ross process
(1.2), whose properties are presented in section 1.4.
Specifically, the parameters mentioned correspond to:

• r, the drift process of the stock;

• κ, the mean reversion speed for the variance, κ > 0;

• θ, the mean reversion level for the variance, θ > 0; and

• σ, the volatility of the variance, σ > 0.

Defining u(t, x, y) as the price of a financial contract at time t, when St = x and
Vt = y, of a European option with payoff function Ψ, we have that by risk-neutral
pricing:

u(t, x, y) = e−r(T−t)EQt,x,y[Ψ(ST)], (1.3)

with Q risk-neutral measure.
We first observe that, from (1.3), the discounted price is a martingale, since:

EQ[e−rTΨ(ST)] = EQ[e−rTu(T,XT , YT)] = e−rtu(t, x, y).

Using Itô formula we can derive the differential of the discounted price process as
follows:

d(e−rtu(t, St, Vt)) = e−rt
(
∂u

∂t
dt+ ∂u

∂St
dSt + ∂u

∂Vt
dVt − ru dt+ ∂2u

∂St∂Vt
d〈S, V 〉t

)
+

+ e−rt
(

1
2
∂2u

∂S2
t

d〈S〉t + 1
2
∂2u

∂V 2
t

d〈V 〉t
)
,

where angular brackets denote the quadratic variation:

〈W 〉t = lim
n→∞

∑
ti∈Πn

(Wti+1 −Wti)2,

and, similarly,
〈V, S〉t = lim

n→∞

∑
ti∈Πn

(Sti+1 − Sti)(Vti+1 − Vti),

8

1 – Introduction

for (Πn)n sequence of partitions of [0, t].
Rewriting the differential we obtain:

d(e−rtu(t, St, Vt)) = e−rt
(
∂u

∂t
dt− ru dt

)

+ e−rt
∂u

∂Vt

(
κ(θ − Vt)dt+ σ

√
VtdW

2
t

)
+

+ e−rt
∂u

∂St

(
rStdt+ St

√
VtdW

1
t

)
+

+ e−rt
(

∂2u

∂St∂Vt
ρσStVt dt

)
+

+ e−rt
(

1
2
∂2u

∂S2
t

S2
t Vt dt+ 1

2
∂2u

∂V 2
t

σ2Vt dt

)
.

However, for the discounted price process to be a martingale, the drift component
has to be equal to zero. We thus impose:

∂u

∂t
+ ∂u

∂St
rSt + ∂u

∂Vt
κ(θ − Vt) + ∂2u

∂St∂Vt
ρσStVt + 1

2
∂2u

∂S2
t

S2
t Vt + 1

2
∂2u

∂V 2
t

σ2Vt = ru,

so that the desired PDE is given by:
∂u
∂t

+ ∂u
∂St

rSt + ∂u
∂Vt
κ(θ − Vt) + ∂2u

∂St∂Vt
ρσStVt + 1

2
∂2u
∂S2

t
S2
t Vt + 1

2
∂2u
∂V 2

t
σ2Vt = ru

u(T, x, y) = Ψ(x)

The Heston model gives an interesting modelling of the variance process. In the
following subsections we will further describe such a process and compute some
related moments. This will be done by studying the Ornstein-Uhlenbeck process,
which serves as the foundation to the Cox-Ingersoll-Ross process, which in turn
is used to describe the variance dynamics in the Heston model. Figure 1.1 shows
the so-called volatility smile under the Heston model: it is the implied volatility
computed from the prices of a call option, whose discounted payoff is:

π = e−rT max {ex − ek, 0},

with k log-strike, x log-price and T maturity.

1.3.2 The Ornstein-Uhlenbeck Process

We consider a process whose differential increments are given by:

dXt = κ(θ −Xt)dt+ λdWt, (1.4)

with κ, λ > 0 and Wt standard Brownian motion.
We can find an explicit solution to (1.4) by considering the process Yt = eκtXt,

9

1 – Introduction

Figure 1.1: Implied volatility under the Heston mode, exhibiting the typical volatility smile.

10

1 – Introduction

whose differential can be derived as follows:
dYt = κYtdt+ eκtdXt = κYtdt+ eκt(κ(θ −Xt)dt+ λdWt) = κθeκt dt+ λeκtdWt =

= eκtκθ dt+ λeκtdWt.

Integrating on both sides, one obtains:

eκtXt = X0 + (eκt − 1)θ + λ
∫ t

0
eκsdWs,

which leads to:

Xt = e−κtX0 + (1− e−κt)θ + λ
∫ t

0
eκ(s−t)dWs. (1.5)

First Moment

Exploiting the solution found in the previous point, we can retrieve the expectation
of Xt and its limit when t grows large.
As far as the expectation is concerned, we notice that the last term is a well-defined
Itô integral, and thus its expectation is equal to zero. Hence, we have that 1:

E(Xt) = e−κtX0 + (1− e−κt)θ, (1.6)
which, in the time limit, converges to θ. The process is said to be mean-reverting,
since positive deviations from θ lead to a decrease in the value of the process and
vice versa for negative ones, with a speed given by the κ parameter. In the limit
and in expectation we will thus have that the process has level θ.

Second Moment

We first try to obtain the second moment of XT in a direct way. Recalling that:
E[X2

t] = Var(Xt) + E(Xt)2

As for the variance, we rely on the previous point and on Itô isometry, which holds
as the negative exponential on [0, t] is square-integrable. The first two components
of the RHS of (1.5) are deterministic and their variance is thus equal to zero, while
the last one can be computed noticing that:

E

[(∫ t

0
eκ(s−t)dWs

)2]
=
∫ t

0
E
[
e2κ(s−t)

]
ds = e−2κt

2κ
(
e2κt − 1

)
= 1

2κ
(
1− e−2κt

)
Adding the terms related to the square of the expectation one has:

E[X2
T] = e−2κTX2

0 + (1− e−κT)2θ2 + 2e−κTX0(1− e−κT)θ + λ2

2κ
(
1− e−2κT

)
= θ2 + e−2κT (X0 − θ)2 + 2θe−κT (X0 − θ) + λ2

2κ
(
1− e−2κT

)

1assuming that the sigma-algebra at time t = 0 is the trivial one, otherwise we should have E(X0).

11

1 – Introduction

A second approach to obtaining the second moment relies on defining:

v(t, x) = Et,x(X2
T), (1.7)

where Xt is a Ornstein-Uhlenbeck process, by finding the solution of the PDE:vt + Gv = 0
v(T, x) = x2 (1.8)

Gv is the generator of the process, defined as:

Gv = κ(θ − x)vx + λ2

2 vxx.

We first observe that v(t, x) is a martingale and the martingale property can be
verified as follows:

E(v(T, xT)|Ft) = E[E(X2
T |FT)|Ft] = E(X2

T |Ft) = v(t, xt).

The differential of v(t, x) takes the form:

dv(t, x) = vtdt+ vxdXt + 1
2vxxd〈X〉t,

which, plugging in (1.4), results in:

dv(t, x) = vtdt+ vx (κ(θ −Xt)dt+ λdWt) + λ2

2 vxxdt

= (vt + κ(θ −Xt)vx + λ2

2 vxx)dt+ λdWt

Since we defined v(t, x) to have constant expectation (by the martingale property),
and the Itô integral is zero in expectation, the drift term in the above expression
must be null. However, since imposing that the drift term has to be zero corresponds
exactly to the PDE (1.8), finding its solution is equivalent to finding the expression
for v. The boundary condition to the PDE is obtained by noticing that X2

T is FT -
measurable and can thus be taken out of the expectation.
An alternative derivation of (1.8) involves the use of the definition of generator as:

lim
h→0

Γh − 1
h

u(t, x) = Gu(t, x),

where ΓT−tg(x) = E[g(XT)|Ft]. The derivation process is analogous.

We look for a solution of the form v(t, x) = a(T − t) + b(T − t)x+ c(T − t)x2.
Differentiating:

vt = −a′(T − t)− b′(T − t)x− c′(T − t)x2

vx = b(T − t) + 2c(T − t)x
vxx = 2c(T − t)

12

1 – Introduction

Plugging the terms into the expression vt + Gv = 0, one obtains:

−a′(T−t)−b′(T−t)x−c′(T−t)x2+κ(θ−x) [b(T − t) + 2c(T − t)x]+λ2c(T−t) = 0,

which means that:
−a′(T − t) + κθb(T − t) + λ2c(T − t) = 0
−b′(T − t)− κb(T − t) + 2κθc(T − t) = 0
c′(T − t)− 2κc(T − t) = 0

(1.9)

with boundary conditions (motivated by the boundary conditions of (1.8)):
a(0) = 0
b(0) = 0
c(0) = 1

The third equation of (1.9) implies that c(T − t) = exp{−2k(T − t)}. The second
one can then be rewritten as:

b′ + κb = 2κθe−2κ(T−t)

and has solution:

b(s) =
∫

2κθe−2κse
∫
κ s ds ds e−

∫
κ s ds = 2θ[e−ks − e−2ks]

As for the first equation:

−a′(T − t) + κθ
(
2θe−κ(T−t) − 2θe−2κ(T−t)

)
+ λ2e−2k(T−t) = 0,

we get a solution by integrating:

a(T − t) = a(0) + θ2 + λ2

2k − 2θ2e−κ(T−t) +
(
θ2 − λ2

2k

)
e−2κ(T−t)

Combining the components we obtain:

v(t, x) = θ2+λ2

2k−2θ2e−κ(T−t)+
(
θ2 − λ2

2k

)
e−2κ(T−t)+2θ[e−k(T−t)−e−2k(T−t)]x+e−2κ(T−t)x2.

To attain E(X2
T), we still need to take the expectation of the result just found:

E(X2
T) = E[E(X2

T |Ft)] = E[E(X2
T |F0)] = E(v(0, x)) = v(0, x),

where the second equality follows from the martingale property of v(t, x). The ex-
pressions obtained for v(0, X0) and E(X2

T) eventually coincide.

13

1 – Introduction

1.3.3 CIR Process

The Cox, Ingersoll and Ross process for the variance in the Heston model can be
readily derived from a Ornstein and Uhlenbeck process for the volatility. Indeed,
consider ht = √vt and a dynamics of OU type:

dht = −βht dt+ δ dWt.

By Ito’s lemma, with vt = h2
t , we can retrieve the dynamics of the variance as:

dvt = 2ht dht + dh2
t = (δ2 − 2βvt)dt+ δ

√
vtdWt.

The stochastic differential equation defining the CIR process is hence obtained by
setting:

• κ = 2β;

• θ = δ2

2β ;

• σ = 2δ.

Three paths of the process are simulated by a forward discretisation scheme, and
are presented in the following Figure 1.2, where the choice of parameters is κ = 0.5,
θ = 0.04, σ = 2, v0 = 0.04 and T = 1/12.

Figure 1.2: Simulation of three paths of the CIR process.

As there is no explicit solution to the SDE of the CIR process, we exploit the
method of moments to retrieve the mean and the variance of the process.

14

1 – Introduction

The main features of the method are summed up in the following paragraph, pre-
ceded by some preliminary general definitions.
Consider a diffusion of type:

dXt = b(Xt)dt+ σ(Xt)dWt

and a diffusion function:
a = σσT .

Its generator is given by

Gf(x) = 1
2Tr(a(x)∇2f(x)) + b(x)T∇f(x),

and is such that, by Ito’s Lemma,

df(Xt) = Gf(Xt)dt+∇f(Xt)Tσ(Xt)dWt

Definition 1.3.1. (Polynomial Generator)
The infinitesimal generator G of a diffusion Xt is polynomial if:

GPoln(Rd) ⊂ Poln(Rd) ∀n ∈ N.

The diffusion Xt is said in this case to be a polynomial diffusion. �

Lemma 1.3.2. (Characterisation of Polynomial Generators)
Given an infinitesimal generator G, the following are equivalent:
1. G is polynomial;

2. a(x) and b(x) are such that:

b ∈ Pol1(Rd) and a ∈ Pol2(Rd).

For scalar polynomial diffusions the requirement is hence that dXt be of the form:

dXt = (b+ βXt)dt+
√
a+ αXt + AX2

TdWt.

Now consider {1, x, x2, ..., xN} as a basis of PolN(R) and denote it as HN(x).
This induces the representation of:

p(x) =
N∑
k=0

pkx
k

as p̄ = (p0, ..., pN)T .
Denote further as G the matrix representing the polynomial generator, i.e.:

GHN(x) = HN(x)GN .

Under the above notation the following theorem allows for the computation of mo-
ments in the case of polynomial diffusion.

15

1 – Introduction

Theorem 1.3.3. For any p ∈ PolN(Rd), the moment formula holds:

E[p(XT)|Xt] = HN(Xt)e(T−t)GN p̄

The result presented above can be used to retrieve the moments of the CIR
process, which falls into the class of the polynomial diffusions. Note that there is
no explicit solution to the SDE defining the CIR process, which is the reason why
Theorem 1.3.3 is of use in this context.

First Moment

The generator associated to the CIR process can be written in matrix notation as:

GN =

0 κθ 0 0 . . . 0
0 −κ 2κθ + σ2 0
0 0 −2κ 3κθ + 3σ2 . . . 0
... ... 0 . . .
... nκθ + n(n− 1)σ2

2
0 0 0 . . . −nκ

.

The moment formula for the first moment can be written as:

E[Xt|Xt] = (1, Xt)e(T−t)G
(

0
1

)
= (1, Xt)e

(T−t)

(
0 κθ
0 −κ

) (
0
1

)
.

Rewriting

eX = e

(
0 a
0 b

)
=
∞∑
j=0

Xj

j! =
0 ∑∞

j=1
abj−1

j!
0 ∑∞

j=0
bj

j!

 =
(

0 a
b
(eb − 1)

0 eb

)
,

so thta plugging in the suitable values for a and b one obtains:

E[Xt|Xt] = (1, Xt)
(

0 κθ
−κ(e−κ(T−t) − 1)

0 e−κ(T−t)

)(
0
1

)
= θ + (Xt − θ)e−κ(T−t).

Going back to the original problem, one can then write the first moment of the
variance following a Cox, Ingersoll and Ross model as:

E[vt|vs] = θ + e−κ(t−s)(vs − θ).

We see that as κ goes to infinity, the first moment tends to the long-term mean θ,
while for a very small κ it tends to stay at the current level of the variance.

16

1 – Introduction

Second Moment

Relying again on the moment formula one has:

E[Xt|Xt] = (1, Xt, X
2
t)e(T−t)G

0
0
1

 = (1, Xt)e
(T−t)

0 κθ 0
0 −κ 2κθ + σ2

0 0 −2κ

0
0
1

 .
Because of the polynomial representation, we are interested in the third column of
the powers of the matrix in the exponent. For ease of computation, we shift to the
notation:

eX = e

0 d e
0 a b
0 0 c

=
∞∑
j=0

Xj

j! .

Starting from the dj entry of the j-th power of X, one has:

dj = dj−1a = dj−2a
2 = ... = d1a

j−1,

while as far as the ej entry of the j-th power of X is concerned we can write:

ej = dj−1b+ ej−1c = dj−1b+ (dj−2b+ ej−2c)c
= bdj−1 + bcdj−2 + bc2dd−3 + ...+ bcj−2d1 + cj−1e1

= b
j−2∑
l=0

dj−l−1c
l

= b
j−2∑
l=0

daj−l−2cl = bdaj−2
j−2∑
l=0

(
c

a

)l

= bdaj−2 1−
(
c
a

)j−1

1−
(
c
a

) = dba

a− c

(
1−

(
c

a

)j−1
)
aj−2.

In order to retrieve the entry relative to the sum of the powers of the matrix, we
compute:

∞∑
j=2

ej
j! =

∞∑
j=2

dba
a−c

(
1−

(
c
a

)j−1
)
aj−2

j!

= dba

a− c

(1
a2 (ea − 1− a)− 1

ac
(ec − 1− c)

)
= db

a(a− c)(ea − 1− a)− db

c(a− c)(ec − 1− c),

17

1 – Introduction

which, plugging in the value of the matrix G2, results in:
∞∑
j=2

ej
j! = 2κ2θ2 + σ2κθ

−κ2 (e−κ(T−t) − 1 + κ)− 2κ2θ2 + σ2κθ

−2κ2 (e−2κ(T−t) − 1 + 2κ)

= (1− e−κ(T−t))
(

2θ2 + σ2θ

κ

)
− θ2(1− e−2κ(T−t))− σ2θ

2κ (1− e−2κ(T−t))

= θ2(1− 2e−κ(T−t) + e−2κ(T−t)) + σ2θ

2κ (1− 2e−κ(T−t) + e−2κ(T−t)),

which corresponds to the constant term of the conditional second moment.
One proceeds similarly to obtain the degree-one term.

bj = aj−1b+ bj−1c = baj−1 + (baj−2 + bj−2c)c
= baj−1 + bcaj−2 + bc2aj−3 + ...+ bcj−1

= b
j−1∑
l=0

claj−l−1

= baj−1
j−1∑
l=0

(
c

a

)l
= baj−1 1−

(
c
a

)j
1−

(
c
a

) = baj

a− c

(
1−

(
c

a

)j)
,

which, plugging in the value of the matrix G2, results in:

∞∑
j=1

bj
j! =

∞∑
j=1

baj

a−c

(
1−

(
c
a

)j)
j! = 2κθ + σ2

κ

 ∞∑
j=1

aj

j! −
∞∑
j=1

cj

j!

= 2κθ + σ2

κ
(e−κ(T−t) − 1)− 2κθ + σ2

κ
(e−2κ(T−t) − 1)

= 2θ(e−κ(T−t) − e−2κ(T−t)) + σ2

κ
(e−κ(T−t) − e−2κ(T−t)).

Lastly, considering the degree-two term one can see that:
cj = cj,

meaning that:
∞∑
j=0

cj

j! = e−2κ(T−t).

Summing all the contributions, the result is that:
E[X2

T |Xt] = X2
t e
−2κ(T−t)+

+Xt

(
2θ + σ2

κ

)(
e−κ(T−t) − e−2κ(T−t)

)
+

+
(
θ2 + σ2θ

2κ

)(
1− 2e−κ(T−t) + e−2κ(T−t)

)
.

18

1 – Introduction

Lastly, combining the second and (the square of) the first moment, we can obtain an
expression for the variance of the solution of the CIR stochastic differential equation.

Var[vt|vs] = vs
σ2

κ

(
e−κ(t−s) − e−2κ(t−s)

)
+ θσ2

2κ
(
1− e−κ(t− s)

)2
.

We can conclude that as κ tends to infinity, the variance of the variance tends to
zero. In addition, we had seen that in the same case the mean approached the
long-term mean θ. This means that the uncertainty of the long-term value of the
mean vanishes.
Lastly, for κ approaching zero, the variance of the variance tends to σ2vs(t− s).

19

Chapter 2

Option Pricing

This chapter covers the numerical methods used to generate the grid of prices which
will be later generalised via a learning technique. The first section, 2.1 presents
Monte Carlo methods, which are used to derive the price of Basket options for a
set of values in the parameter space. Monte Carlo is here coupled with the variance
reduction technique of the control variate. Section 2.2 is instead devoted to the
presentation of American put options. Among the possible choices for the pricing
of this financial product, this thesis describes finite differences: this approach is
accurate and can be adapted to a typical formulation of the American options,
the partial differential complementarity problem. After deriving the Heston partial
differential equation in the previous chapter, we now encompass it in the framework
of American options and describe its discretisation together with related numerical
methods.

2.1 Basket Options

The first case study on which the methodology is tested involves basket European
call options. As the name suggests, basket options are derivatives which depend on
a set of underlying assets. For these financial products the payoff is given by:

Ψ(S(T)) = max
{

0,
d∑
i=1

ωiSi(T)−K
}
,

where Si(T) is the price of stock i at maturity T . In our case, the number of stocks
considered is d = 5. However, this thesis proposes, in the last chapters, an extension
of the method to higher dimensions, with orders up to d = 25 considered.
The prices of this type of options can be computed by Monte Carlo (see Section 2.1.1
for a description of this method): by simulating the path of each of the underlying
assets a large number of times one can estimate the expected future value of the
payoff at maturity as the mean over all the simulation paths. By the no-arbitrage
pricing formula, the price is then obtained as the discounted (estimated, in the case

20

2 – Option Pricing

of Monte Carlo) expectation:

v(t, x) = e−r(T−t)Et,x [Ψ(S(T))] = e−r(T−t)E [Ψ(S(T))|S(t) = x] .

In our practical case, t is taken to be equal to zero and S(t = 0) is given.

2.1.1 Monte Carlo Methods

Derivative pricing relies heavily on Monte Carlo methods, as prices of financial
products can be represented as expectations, which can in turn be estimated by
means of Monte Carlo techniques.
The use of Monte Carlo methods dates back to the SecondWorldWar, when methods
relying on statistical sampling started being used in Los Alamos in order to forecast
the explosive behaviour of fission arms by estimating the multiplication rate of
neutrons. In general, Monte Carlo refers to all those methods which are based on
stochastic simulations: the idea is to calculate the volume of a set by interpreting it
as a probability.
The simplest example regards the estimate of π: by sampling N elements uniformly
on the square [−1, 1]× [−1, 1], the probability of them being in the circle inscribed
in the square is π/4. Hence, if we denote as Z ∼ Bin(N, π/4) the random variable
describing the number of points falling into the circle, we have that, by the Law of
Large Numbers:

lim
N→∞

P(|π − 4Z/N |≥ ε) = 0, ∀ε > 0.

By the same token, we can move from volumes to integrals, as follows. Consider

Ig =
∫ 1

0
g(x) dx :

this can be seen as the expectation of the random variable g(X), withX ∼ Unif(0, 1).
If we can draw independently points on [0, 1] and evaluate g at such points, by taking
the sample mean

Īg = 1
N

N∑
i=1

g(Xi), with E(Īg) = Ig,

integrability of g and the Law of Large Numbers imply that Īg converges to Ig with
probability one as N →∞.
In addition, assuming square integrability of g and setting

σ2
g =

∫ 1

0
(g(x)− Ig)2 dx,

we can say that the error of the Monte Carlo estimate is is approximately normal
with mean zero and standard deviation equal to σg/

√
n. An estimate of the quantity

21

2 – Option Pricing

σg, which is typically unknown, is given by the sample standard deviation:

sg =
√√√√ 1
n− 1

n∑
i=1

(
g(Xi)− Īg

)2
.

Notice that Slutsky’s lemma implies that even with the sample estimate of the vari-
ance, the limiting distribution is still normal. As can be seen, the size of the error
crucially depends on the sample size used the estimate the quantity of interest.
Convergence is of the order of 1/2, which becomes competitive in higher dimen-
sions. Indeed, while for dimension d = 1 it does not compare favourably against
a trapezoidal rule (O(n−2), d = 1), the latter becomesO(n−2/d) in higher dimensions.

The Monte Carlo method finds frequent application in financial engineering,
where it is used to estimate the price of derivative securities. This can be done
by simulating sample paths of the stochastic process modelling the dynamics of the
underlying asset price and hence obtain an estimate of the expectation of quantities
which depend on the price paths, such as the price of a derivative.

Variance Reduction and Control Variates

Together with antithetic variates and stratified sampling, control variates are among
the main techniques by which it is possible to increase the efficiency of Monte Carlo
simulation. The idea of control variates is to make use of information about errors
of known quantities in order to reduce the error made when estimating an unknown
quantity.
Consider Y1, .., Yn outputs from n independent replications of a simulation. If, par-
allel to each Yi, we can compute Xi, whose expected value E[X] is known and
such that the pairs (Xi, Yi), i = 1, ..., n are i.i.d, we can, for any fixed b, obtain the
following:

Yi(b) = Yi − b(Xi − E[X]).
The sample mean

Ȳ (b) = 1
n

n∑
i=1
{Yi − b(Xi − E[X])}

is a control variate estimator of E[Y]. It is unbiased since E[Y (b)] = E[Y] and
consistent, as:

lim
n→∞

1
n

n∑
i=1

Yi(b) = lim
n→∞

1
n

∑
i=1
{Yi − b(Xi − E[X])}

= E[Y − b(X − E[X])] = E[Y],

with probability one.
The variance of Y (b) is

Var[Y (b)] = σ2
Y + b2σ2

X − 2bσY σXρXY := σ2(b), (2.1)

22

2 – Option Pricing

having denoted as σ2
Y , σ

2
X the variances of Y and X respectively and with ρXY their

correlation. Hence, the variance of the control variate estimator is σ2(b)/n, which
has to be compared to σ2

Y , if we want the new estimator to feature a higher efficiency
with respect to the traditional one. In other words, we need to establish when σ2(b)
is minimised with respect to the choice of b. The optimal value is given by:

b∗ = σY
σX

ρXY = Cov[X, Y]
Var[X] .

Plugging back the result into (2.1), we obtain that the ratio of the variance of the
control variate estimator to that of the traditional estimator follows:

Var[Ȳ (b)]
Var[Ȳ]

=
σ2
Y + σ2

yρ
2 − 2σ2

Y ρ
2

σ2
Y

= 1− ρ2
XY .

The previous expression conveys the fact the variance reduction effect is the strongest
as the control X is most correlated with Y . Furthermore, assuming that the com-
putational time per replication does not change between X and Y , the speed-up
offered by the control variate is, in terms of number of replications needed to obtain
the same variance as n replications of the variable of interest, (1− ρ2)/n.
As one can imagine, the value of b is most likely unknown, which means that one
could replace it with its sample counterpart:

b̂n =
∑n
i=1(Xi − X̄)(Yi − Ȳ)∑n

i=1(Xi − X̄)
.

2.1.2 Basket Option Prices

The following section describes the computation of the price of a basket option of d
correlated assets under the Black and Scholes model.
The first step is presented in Algorithm 1 and consists of the simulation of a number
NSim of random variables. Notice that for loops are shown for clarity, but the code
can be implemented faster exploiting the ability of Matlab and numpy of handling
matrices, so that loops become unnecessary.
The Choleski factor of the correlation matrix is used to introduce dependency be-
tween i.i.d N (0, 1) random variables. Then, the algorithm returns the simulated
prices (up to the multiplicative constant initial price) of the underlying assets stored
in a matrix M , i.e.:

Mi,j = e

(
r−σ(j)2

2

)
T+σ(j)x(j)

√
T
,

where each row i refers to the simulation index and columns j to the asset in the
basket.

Next, the price is obtained by means of a Monte Carlo technique as described in
the following Algorithm 2.

23

2 – Option Pricing

Algorithm 1: Simulation of correlated geometric Brownian motions

Input: model and payoff parameters σ, Σ, T , r; number of simulations NSim.
Output: matrix M of size (NSim, d) of simulated random variables.
Initialise

M ← zeros(Nsim, d)
L← choleski(Σ)

end
For iSim = 1, . . . , NSim

ε← vector of d independent normal random variables
x← Lε
For iStock = 1, . . . , d

M(iSim, iStock)← exp
{(
r − σ(iStock)2

2

)
T + σ(iStock)x(iStock)

√
T
}

end
end
Return M

Algorithm 2: Computation of the basket option price

Input: M , S0, strike K, weights ω, r, T .
Output: price of the basket option.
Initialise

π ← zeros(NSim)
ctr ← zeros(NSim)

end
For iSim = 1, . . . , NSim

R← M(i,:)
S ← S0 ◦R
π(iSim)← max

{∑d
i=1 ωiSi −K, 0

}
ctr(iSim)← max

{
exp
{(∑d

i=1 ωi logSi
)}
−K, 0

}
end
µ← mean of the control
sum← π − (ctr − µ)
p← mean of sum
P ← e−rT p
Return P

In the algorithm description the symbol ◦ was used to denote the Hadamard
product.
Again, some steps of the algorithm, namely those inside the for loop, can be made
more efficient by using matrix operations.
The algorithm uses a Monte Carlo estimation to compute the expectation of the
payoff and introduces a control variable in order to implement the variance reduction
technique discussed in the previous part.
The choice of the control variate stems from the similarity between basket and Asian

24

2 – Option Pricing

call options, to which this technique was first applied by Kemna and Vorst (1990).
The latter type of derivative broadly consists of call options on the arithmetic average
of the asset value over until maturity:

π = e−rTE

[
max

{
d∑
i=1

ωtiSti −K, 0
}]

.

It is easy to see that a basket option has the same form as an Asian one when
replacing the asset value over time with the value of the assets in the basket.
While the expectation of the arithmetic (weighted) average of log-normally-distributed
random variables has no closed form, the geometric average is more easily tractable.
Indeed, consider:

G =
(

d∏
i=1

Sωii

) 1∑d

i=1 ωi = exp
{

1∑d
i=1 ωi

d∑
i=1

ωi logSi
}

= exp
{

d∑
i=1

ωi logSi
}
,

where the last equality refers to the case of interest, with weights adding up to one.
In the special case where all the underlying assets have the same price the previous
equation can be simplified further to obtain the arithmetic average. In general, how-
ever, geometric and average mean are close, making it sensible to use the geometric
average as a control variate, since its expectation is known and the price can be
computed, as is shown in the following.
The price is given by P = E[(G − K)+], where K denotes the strike price and G
can be rewritten as

G = exp
{

d∑
i=1

ωi logSi
}

= exp
{

d∑
i=1

ωi

(
logSi0 +

(
r − σ2

i

2

)
T + σi

√
TZi

)}

= exp
{

d∑
i=1

ωi (µ̃i + σ̃iZi)
}

= exp
{

d∑
i=1

ωiWi

}
,

where
µ̃i = logSi0 +

(
r − σ2

i

2

)
T ;

σ̃i = σi
√
T ;

Z ∼ N (0, 1) i = 1, ..., d;
Wi ∼ N (µ̃i, σ̃2

i) i = 1, ..., d.
As product of d lognormally distributed random variable, G is itself lognormal, and
it can be seen as:

G = exp{W}, W ∼ N (µ̃, σ̃2),
with

µ̃ =
d∑
i=1

ωiµ̃i

25

2 – Option Pricing

σ̃2 =
d∑
i=1

d∑
j=1

ωiσ̃iρi,jσ̃jωj.

Having defined these quantities, one is ready to compute the price of the Asian
geometric call option. One possible way to proceed is provided hereunder.

P = E[(G−K)+] =
∫
R

(ew −K)+ 1
2
√
σ̃2
e−

(w−µ̃)
2σ̃2 dw

=
∫ ∞

logK
(ew −K) 1

2
√
σ̃2
e−

(w−µ̃)
2σ̃2 dw

=
∫ ∞

logK
ew

1
2
√
σ̃2
e−

(w−µ̃)
2σ̃2 dw −K

∫ ∞
logK

1
2
√
σ̃2
e−

(w−µ̃)
2σ̃2 dw

= I1 + I2

The first integral can be computed as:

I1 =
∫ ∞

logK
ew

1
2
√
σ̃2
e−

(w−µ̃)2

2σ̃2 dw = 1
2
√
σ̃2

∫ ∞
logK

e−
w2−2wµ̃+µ̃2−2σ̃2w

2σ̃2 dw

= 1
2
√
σ̃2

∫ ∞
logK

e−
w2−2w(σ̃2+µ̃)+µ̃2

2σ̃2 dw

= 1
2
√
σ̃2

∫ ∞
logK

e−
(w−(σ̃2+µ̃))2

2σ̃2 dw e
σ̃2
2 e

2σ̃2µ̃
2σ̃2

= e
σ̃2
2 +µ̃P(W ≥ logK) = eµ̃+ σ̃2

2 φ

(
− logK + (σ̃2 + µ̃)

σ̃

)

= eµ̃+ σ̃2
2 φ

(
− logK + µ̃

σ̃
+ σ̃

)
.

The second one can be solved in a similar fashion leading to:

I2 = −Kφ
(
− logK + µ̃

σ̃

)
.

To conclude the (not discounted) price of the Asian geometric call option- and hence
the value of the mean of the control- is given by:

µ = eµ̃+ σ̃2
2 φ

(
− logK + µ̃

σ̃
+ σ̃

)
−Kφ

(
− logK + µ̃

σ̃

)
.

The mean of the control enters Algorithm 2 and allows the implementation of the
variance reduction technique described above with geometric call options as control
variates.

We now motivate graphically the choice of the Asian geometric option as a control
variate, by verifying intuitively the properties which were previously mentioned.

26

2 – Option Pricing

Figure 2.1: Quantile-quantile plot of the arithmetic vs. geometric Asian options.

27

2 – Option Pricing

Starting from Figure 2.1, the quantile-quantile plot shows that the distributions of
geometric and arithmetic prices differ negligibly.

In addition, taking a look at the coefficients of interest we see that in a simulation
performed with 1000 samples, both the correlation between the two prices and the
bn are close to one. Results are reported in Table 2.1.

Table 2.1: Coefficients in the control variate experiment

Value

Correlation 0.9980
bn 1.0340
Cov(P,G) 0.0012
Var(G) 0.0012

The given values allow for a simplification in the control variate formula, that of
replacing b with one.

2.2 American Options

An American option differs from an European one in that it can be exercised at any
time τ ≤ T prior to expiry. If the holder of the option follows an optimal exercise
strategy, the value of an American option at time τ is given by:

u(S, τ) = sup
τ≤τ ′≤T

E

[
e−
∫ τ ′
τ
r(η) dηΨ(Sτ ′)|Sτ = S

]
,

i.e. the option value will be the highest among all the possible values in time before
the expiry of the option.
Given the choice of an optimal stopping time, it follows that the value of an American
option is never smaller than the current payoff and never smaller than the value of
a corresponding European option.
To study the price of an American option consider for now the case of discrete
exercise time, which is referred to as that of Bermudan options.
The value of the option at maturity offers no alternatives and is simply given by
the payoff Ψ(ST). Conversely, at earlier time steps tj, the holder can either wait,
obtaining the discounted value of the option value in the next time step:

u(S, tj) = E

[
e
−
∫ tj+1
tj

r(η) dη
u(Stj+1 , tj+1)|Stj = S

]
,

or exercise the option, with gain given by the current payoff Ψ(Stj). This implies
that a rational holder of the option will pick the best among the two alternatives,

28

2 – Option Pricing

which results in:

u(S, tj) = max
{

Ψ(S),E
[
e
−
∫ tj+1
tj

r(η) dη
u(Stj+1 , tj+1)|Stj = S

]}
.

This exercise strategy can be shown to be optimal and hence yields the Bermudan
option price. This can be summed up by the following principle.

Lemma 2.2.1. Under sufficient conditions on the model (strong Markov property)
and on the payoff (integrability and regularity conditions), the Bermudan option
price u(S, t) satisfies the backward dynamic programming problem:

u(S, tn) = Ψ(S) tn = T

u(S, tj) = max
{

Ψ(S),E
[
e
−
∫ tj+1
tj

r(η) dη
u(Stj+1 , tj+1)|Stj = S

]}
j < n.

Several ways have been implemented to solve this dynamic programming prob-
lem.
Longstaff and Schwartz have proposed a solution based on Monte Carlo methods,
which consist of simulating paths of the underlying and approximating the value
of the option via linear regression, with regressors given by basis functions of the
underlying value.
An alternative is based on interpolation of the value function on a grid
A third possibility, and the one chosen in this work, involves deriving a PDE for-
mulation and solving it by discretisation.

2.2.1 PDE Derivation

We consider the derivation of the PDE under the Heston model for the asset price
dynamics. Of course, the same reasoning applies to e.g. the Black and Scholes case.
As seen in Chapter 1, the Heston partial differential equation is given by:

∂u

∂t
+ ∂u

∂St
rSt + ∂u

∂Vt
κ(θ − Vt) + ∂2u

∂St∂Vt
ρσStVt + 1

2
∂2u

∂S2
t

S2
t Vt + 1

2
∂2u

∂V 2
t

σ2Vt − ru = 0.

If one now denotes the spatial operator as A:

Au = ∂u

∂St
rSt + ∂u

∂Vt
κ(θ − Vt) + ∂2u

∂St∂Vt
ρσStVt + 1

2
∂2u

∂S2
t

S2
t Vt + 1

2
∂2u

∂V 2
t

σ2Vt − ru

and applies a change of variable from time to time to maturity:

τ = T − t

the PDE can be written as:
∂u

∂τ
−Au = 0.

29

2 – Option Pricing

In the case of an American option we saw that

u(S, v, tj) = max
{

Ψ(S),E
[
e
−
∫ tj+1
tj

r(η) dη
u(Stj+1 , vtj+1 , tj+1)|Stj = S, vtj = v

]}
,

which means that:

u(S, v, tj) ≥ E
[
e
−
∫ tj+1
tj

r(η) dη
u(Stj+1 , vtj+1 , tj+1)|Stj = S

]
= uEU(S, v, tj),

where the right-hand side corresponds to the payoff of a European option maturing
at the next time instant with payoff u(Stj+1 , tj+1). Taking one step further we see
that:

−u(S, v, tj+1)− u(S, v, tj)
∆t ≥ −u(S, v, tj+1)− uEU(S, tj)

∆t ,

and hence, in the limit for a small time step:

−∂u
∂t

(S, v, t) ≥ −∂u
EU

∂t
(S, v, t) = Au.

For one time step we thus have:

−∂u
∂t

(S, v, t)−Au ≥ 0.

In addition, either the step is European, meaning that the holder of the option waits
until next time, or the step is American, and the holder decides to exercise. This
means that in the first case we have:

−∂u
∂t

(S, v, t)−Au = 0,

while in the second one the value is given by:
u(S, v, t) = Ψ(S).

The two cases give rise to the PDE(
−∂u
∂t

(S, v, t)−Au
)

(u(S, t)−Ψ(S)) = 0,

and, together with the aforementioned change of variable and a little abuse of no-
tation (switching from τ to t):(

∂u

∂t
(S, v, t)−Au

)
(u(S, t)−Ψ(S)) = 0.

The American price hence satisfies the following conditions:

∂u
∂t

(S, v, t)− ∂u
∂St

rSt − ∂u
∂Vt
κ(θ − Vt)− ∂2u

∂St∂Vt
ρσStVt − 1

2
∂2u
∂S2

t
S2
t Vt − 1

2
∂2u
∂V 2

t
σ2Vt + ru ≥ 0

u(S, t) ≥ Ψ(S)(
∂u
∂t

(S, t)−Au
)

(u(S, t)−Ψ(S)) = 0
u(S, 0) = Ψ(S)

,

(2.2)

30

2 – Option Pricing

which are sometimes referred to as the partial differential complementarity problem
(PDCP) in the literature.

2.2.2 Finite Differences

Finite difference methods are aimed at finding a numerical approximation to the
PDE solution on a bounded domain, obtained by means of truncation of the original
space.
The starting point is the discretisation of the derivatives, which can be performed
in several ways:

• forward schemes are such that

u′(x) ≈ D+
h u(x) = u(x+ h)− u(x)

h
;

• backward schemes for which:

u′(x) ≈ D−h u(x) = u(x)− u(x− h)
h

;

• centred schemes for which:

u′(x) ≈ Dc
2hu(x) = u(x+ h)− u(x− h)

2h .

By taking a similar approach, one also obtains the second derivative:

u′′(x) ≈ D+
hD

−
h u(x) = u(x+ h)− u(x)− (u(x)− u(x− h))

h2 =

= u(x+ h)− 2u(x) + u(x− h)
h2 .

The PDE is hence discretised by taking small steps in space and in time, on a
truncated domain: these points define a grid on which the value of the function is
approximated.
Conditions are provided on the boundary of the domain in order to obtain approx-
imated solutions: these can be of Dirichlet or Neumann type, if they are related to
the unknown solution u or its spatial derivative, respectively.

2.2.3 Heston PDE Discretisation

Since the spatial domain is two-dimensional in the case of the Heston PDE (s and
v), the domain considered is of the type [0, Smax] × [0, Vmax] and four boundary
conditions need to be provided, as the PDE is of order two.

31

2 – Option Pricing

Left boundary condition in S

The first Dirichlet condition can be derived by Feynman-Kac theorem, but is intu-
itively understood observing that for an initial value of zero, the underlying asset
will always present a value equal to zero. Hence, the payoff will be equal to K at
maturity for a put option.

u(0, v, t) = Ke−rt.

Right boundary condition in S

∂u

∂S
(Smax, v, t) = 0.

The right Neumann condition follows from dividing the Heston PDE by S2 and
taking the limit for S → ∞, resulting in an expression which is satisfied by the
previous equation.

Left boundary condition in V

The following condition follows from inserting the boundary value v = 0 in the PDE.

rSt
∂u

∂St
(S, 0, t) + κθ

∂u

∂Vt
(S, 0, t)− ∂u

∂t
− ru(S, 0, t) = 0

Right boundary condition in V

∂u

∂v
(S, vmax, t) = 0,

as when volatility approaches the limit, the price should be expected not to be
sensitive to changes in volatility.
It has to be remarked that the boundary conditions chosen here are not the only
possible ones. The Neumann conditions can for instance be replaced by Dirichlet
conditions – although the latter choice can lead to poorer performances due to the
act of fixing a value to the solution.

32

2 – Option Pricing

Truncated Problem

Having restricted ourselves to a truncated domain and having selected suitable con-
ditions at the boundary, we are ready to discretise the following PDE.

∂u
∂t

(S, v, t)− ∂u
∂St

rSt − ∂u
∂Vt
κ(θ − Vt)− ∂2u

∂St∂Vt
ρσStVt − 1

2
∂2u
∂S2

t
S2
t Vt − 1

2
∂2u
∂V 2

t
σ2Vt + ru = 0

u(S, v, 0) = Ψ(S)

u(0, v, t) = Ke−rt

∂u
∂S

(Smax, v, t) = 0

rSt
∂u
∂St

(S, 0, t) + κθ ∂u
∂Vt

(S, 0, t)− ∂u
∂t
− ru(S, 0, t) = 0

∂u
∂v

(S, vmax, t) = 0.

Spatial Discretisation

The first direction of discretisation is the spatial one, concerning the value of the
underlying asset and the volatility. We consider an evenly-spaced grid for both s
and v, resulting in:

si = smin + ihs = ihs;

vj = vmin + jhv = jhv;

where h denotes the distance between two consecutive points on the grid. The
corresponding values of the function u on the grid points (si, vj) are then denoted
as ui,j.
We make use of a forward scheme for the internal (i.e. non-boundary) nodes in the S
direction and of both forward and backward a scheme in the v direction. The double
choice of scheme for the discretisation of the derivatives with respect to the volatility
allows to encompass the boundary conditions into the finite-difference scheme.
As for the mixed derivative, the discretisation is performed by:

∂2u

∂s∂v
≈ u(s+ hs, v + hv)− u(s+ hs, v − hv)− u(s− hs, v + hv) + u(s− hs, v − hv)

4hshv
.

33

2 – Option Pricing

The result is that we obtain a system of differential equations in time, for each point
in the s× v grid at time t.

∂ui,j
∂t

(t) = rSi
ui+1,j − ui,j

hs
+ 1

2S
2
i vj

ui+1,j − 2ui,j + ui−1,j

h2
s

+ κ(θ − vj)
ui,j − ui,j−1

hv
1vj>θ + κ(θ − vj)

ui,j+1 − ui,j
hv

1vj<θ

+ 1
2σ

2vj
ui,j+1 − 2ui,j + ui,j−1

h2
v

+ ρσSivj
ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4hshv
− rui,j.

Unlike the Black and Scholes case, which only presents a spatial discretisation along
one variable, the Heston model features a two-dimensional grid, which makes the
system of differential equation harder to be represented. Indeed, the discretised
option value cannot fit in a vector, but requires a matrix, or the vectorisation of the
matrix following some ordering of the variables.
We can compactly represent the system of ODEs using the notation:

∂U

∂t
= A(t)U(t) = (A0(t) + A1(t) + A2(t))U(t) + F,

where the subscripts relative to the matrices A account for the differentiation along
different directions and F denotes the terms which are added on top of the finite
differencing, due to the border effects. Specifically, we will denote in the following:

• A0 as the operator of finite differencing relative to the mixed terms;

• A1 as the operator of finite differencing along the S space;

• A2 as the operator of finite differencing along the v space.

The implementation of the discretisation of the PDE is executed in Matlab. Notice
that the A matrices are tridiagonal, as the finite differences schemes only involve
the current, previous and next node on the grid. Hence, using the sparse format
provided by Matlab allows for a significant reduction in memory usage.

Time Discretisation

After obtaining what is usually defined as a semi-discrete scheme, we can attain a
fully-discrete one by performing discretisation along the temporal dimension. Typ-
ical choices are a forward or explicit Euler, a backward or implicit Euler or a θ
scheme combining the two.
The result is a grid for time as well as for the underlying asset price and for volatility,

34

2 – Option Pricing

so that grid points are indexed by umi,j.
The choice of the explicit Euler leads to:

um+1
i,j − umi,j

dt
= rSi

umi+1,j − umi,j
hs

+ 1
2S

2
i vj

umi+1,j − 2umi,j + umi−1,j

h2
s

+ κ(θ − vj)
umi,j − umi,j−1

hv
1vj>θ + κ(θ − vj)

umi,j+1 − umi,j
hv

1vj<θ

+ 1
2σ

2vj
umi,j+1 − 2umi,j + umi,j−1

h2
v

+ ρσSivj
umi+1,j+1 − umi+1,j−1 − umi−1,j+1 + umi−1,j−1

4hshv
− rumi,j,

allowing to move forward in time starting from the initial condition, which is the
payoff in our case.
Collecting the values of u into the desired vector U (either one or two dimensional),
the scheme can be compactly represented as:

Um+1 = (I + dt(Am0 + Am1 + Am2))Um + dtFm.

By a similar reasoning one obtains the implicit Euler scheme, which retrieves the
value of the solution in the next time node as the solution to the system:

um+1
i,j − umi,j

dt
= rSi

um+1
i+1,j − um+1

i,j

hs
+ 1

2S
2
i vj

um+1
i+1,j − 2um+1

i,j + um+1
i−1,j

h2
s

+ κ(θ − vj)
um+1
i,j − um+1

i,j−1

hv
1vj>θ + κ(θ − vj)

um+1
i,j+1 − um+1

i,j

hv
1vj<θ

+ 1
2σ

2vj
um+1
i,j+1 − 2um+1

i,j + um+1
i,j−1

h2
v

+ ρσSivj
um+1
i+1,j+1 − um+1

i+1,j−1 − um+1
i−1,j+1 + um+1

i−1,j−1

4hshv
− rum+1

i,j ,

Similar to what was done before, the compact representation of the scheme is:

(I − dtAm+1)Um+1 = Um + dtFm+1,

which corresponds to several systems of equations, whose solution can be computed
efficiently in Matlab.
Lastly, the θ method is commonly used and consists of a linear combination of the
explicit and implicit Euler.

Um+1 = Um + dt(Am0 + Am1 + Am2)Um + dtFm

Um+1 = Um + dt(Am+1
0 + Am+1

1 + Am+1
2)Um+1 + dtFm+1

35

2 – Option Pricing

Um+1 = Um + dtAmUm + dtFm

Um+1 = Um + dtAm+1Um+1 + dtFm+1,

so that the solution at the next time step satisfies:

Um+1 = Um + (1− θ)dt(Fm + AmUm) + θdt(Fm+1 + Am+1Um+1).

In other words, one needs to find the solution to the system:

(I − θdtAm+1)Um+1 = (I + (1− θ)dtAm)Um + dt(θFm+1 + (1− θ)Fm). (2.3)

The good properties of the system are preserved, as all the matrices are tridiagonal.
Notice that when taking θ = 1 it is possible to recover the implicit Euler method,
whereas θ = 0 leads back to the explicit case. In addition, θ = 1/2 goes by the name
of Crank-Nicolson.
Having found a discretisation of the PDE, we can now go back to the original overall
problem – presented in (2.2). Simplifying further the notation introduced in (2.3)
we can write:

BU − F ≥ 0
U −Ψ ≥ 0
(BU − F)T (U −Ψ) = 0,

(2.4)

having set B = I − θdtAm+1

F = (I + (1− θ)dtAm)Um + dt(θFm+1 + (1− θ)Fm)

The system (2.4) is commonly referred to as linear complementarity problem (LCP)
and has to be solved for each time instant in the time grid, starting from the initial
condition. Various solution procedures exist, including iterative methods such as
projected Jacobi or projected SOR or direct solutions, such as Thomas algorithm
for tri-diagonal systems and Brennan-Schwartz’s.

2.2.4 ADI Schemes

The term ADI stands for Alternating Direction Implicit Method, as the technique
allows to split the finite differencing operator so that the scheme is alternately
explicit in one direction and implicit in the other one. These splitting schemes have
been shown to be efficient, stable and robust when using numerical techniques to
price European-style options via multi-dimensional PDE, see Haentjens and in ’t
Hout (2015).
The ADI schemes evolve from the θ method with the exception that the mixed
derivatives are treated in an explicit way, so that the term A0 only involves the
approximation at the previous time step.

36

2 – Option Pricing

In the following derivation assume that the dt factor is already accounted for in the
A matrices. In addition, we denote as F̂ the boundary terms, i.e.:

F̂ = dt(θFm+1 + (1− θ)Fm).

(I − θA1 − θA2)Um+1 = (I + A0 + (1− θ)A1 + (1− θ)A2)Um + F̂

(I − θA1 − θA2 + θ2A1A2)Um+1 =(I + A0 + (1− θ)A1 + (1− θ)A2 + θ2A1A2)Um+
+ θ2A1A2(Um+1 − Um) + F̂

(I − θA1)(I − θA2)Um+1 = ÂUm+1 =
= (I + A0 + (1− θ)A1 + (1− θ)A2 + θ2A1A2)Um+

+ θ2A1A2(Um+1 − Um) + F̂

≈ (I + A0 + (1− θ)A1 + A2)Um − θA2(I − θA1)Um + F̂

In the last line, the approximation follows from the fact that the term

θ2A1A2(Um+1 − Um)

is infinitesimal of higher order with respect to the other terms. Next, we rewrite the
previous expression as:

(I − θA1)[(I − θA2)Um+1 + θA2U
m] ≈ (I + A0 + (1− θ)A1 + A2)Um + F̂

We thus have: (I − θA1)Y = (I + A0 + (1− θ)A1 + A2)Um + F̂

(I − θA2)Um+1 = Y − θA2U
m,

which is best known as Douglas-Rachford method.
Further extensions of the method are shown to provide increased stability. In par-
ticular, the Hundsorfer and Verwer (HV) method proposes the following steps to
compute the solution:

(I − θA1)Y1 = (I + A0 + (1− θ)A1 + A2)Um + F̂

(I − θA2)Y2 = Y1 − θA2U
m

(I − θA1)Y3 = (I − θA1)Y1 + θ[A0 + (1− θ)A1](Y2 − Um)

(I − θA2)Um+1 = Y3 − θA2 U
m

As can be seen, the differencing operators are here decoupled, so that one starts by
solving the system implicitly in the S direction and makes an explicit step in the v
direction and exchanges the roles in the following phase of the algorithm. Iterating
these procedures one can show that greater stability is attained.

37

2 – Option Pricing

2.2.5 Matrix Construction

The current section details the construction of the matrices used to solve the finite-
differences problem:

um+1
i,j − umi,j

dt
= rSi

um+1
i+1,j − um+1

i,j

hs
+ 1

2S
2
i vj

um+1
i+1,j − 2um+1

i,j + um+1
i−1,j

h2
s

+ κ(θ − vj)
um+1
i,j − um+1

i,j−1

hv
1vj>θ + κ(θ − vj)

um+1
i,j+1 − um+1

i,j

hv
1vj<θ

+ 1
2σ

2vj
um+1
i,j+1 − 2um+1

i,j + um+1
i,j−1

h2
v

+ ρσSivj
um+1
i+1,j+1 − um+1

i+1,j−1 − um+1
i−1,j+1 + um+1

i−1,j−1

4hshv
− rum+1

i,j .

The choice made in this work consists of representing the values of the solution at
each time instant on a two-dimensional grid of dimensions ns × nv. Notice that an
alternative encoding of the solution could involve the vectorisation of the solution
matrix, which is simple in two dimensions. The operations are performed on an
inner grid of dimension (ns− 2)× (nv − 1): the remainder of the matrix is retrieved
from the boundary conditions. Rows account for the S grid, while each column
corresponds to one value of v. As a result, the structure of the solution at each time
step is of the form:

Um =

Um(S = 0, v = 0) Um(S = 0, v = hv) . . . Um(S = 0, v = nvhv)
Um(S = hs, v = 0) Um(S = hs, v = hv) . . .

...
Um(S = 2hs, v = 0) . . .

... . . .

...
Um(S = nshs, v = 0) . . . Um(S = nshs, v = nvhv)

.

S Direction

Matrix A1 deals with differencing along the S direction. Such matrix is tri-diagonal
and can thus be stored in sparse format.
In the following, subscripts 1,2 and 3 refer to the lower co-diagonal, main diagonal
and upper co-diagonal respectively; matrix B refers to terms multiplied by the
volatility; the other terms are stored in C. The first and the last element of the

38

2 – Option Pricing

diagonal is treated differently, as it has to take into account the boundary terms.

B =

−S2
2
h2
s

S2
2

2h2
s

0 0
S2

3
2h2
s
−S2

3
h2
s

S2
3

2h2
s

0 0

0 S2
4

2h2
s
−S2

4
h2
s

S2
4

2h2
s

0 . . . 0
... 0
... 0
... S2

end−2
2h2
s
−S2

end−2
h2
s

S2
end−2
2h2
s

0 . . . 0 S2
end−1
2h2
s

−S2
end−1
2h2
s

.

C =

−rS2
hs
− r

2 rS2
hs

0 . . . 0

0 −rS3
hs
− r

2 rS3
hs

0 0

0 0 −rS4
hs
− r

2 rS4
hs

0 . . . 0
... 0
... 0

0 . . . 0 −rSend−2
hs
− r

2 rSend−2
hs

0 0 − r
2

.

The matrix A1 hence results from:

A1 = dt(vB + C).

The matrix A1 will then multiply each column of the matrices Um. In other words,
it will apply the finite difference operator for each value of v. However, one also has
to consider the boundary conditions mentioned in the previous subsection. That is,
for v = 0:

rSt
∂u

∂St
(S, 0, t) + κθ

∂u

∂Vt
(S, 0, t)− ∂u

∂t
− ru(S, 0, t) = 0

39

2 – Option Pricing

the matrix A1 has a different form:

A1(v = 0) =

−rS2
hs
− r

2 rS2
hs

0 . . . 0

0 −rS3
hs
− r

2 rS3
hs

0 0

0 0 −rS4
hs
− r

2 rS4
hs

0 . . . 0
... 0
... 0

0 . . . 0 −rSend−2
hs
− r

2 rSend−2
hs

0 0 − r
2

,

up to the factor dt.
Observe that the boundary condition is enforced for the term in the entry ns − 2.
The S direction also contributes to the F term as follows:

F (2, j) = − 1
2h2

s

Ke−rTS2vj j = 2, ..., nv − 1.

This corresponds to the boundary correction relative to S2.
Lastly, notice again that the size of the matrix A1 is ns − 2× ns − 2, as the matrix
only determines the non-boundary nodes. The other ones (S = 0 and S = ns) are
found from the boundary conditions.

v Direction

In order to work along the v direction one needs to transpose Um so that the matrix
acts on columns which are then the grid points v for each value of S. Matrix D
accounts for the second-order differencing:

D =

0 0 0 . . . 0
σ2v2
2h2
v
−σ2v2

h2
v

σ2v2
2h2
v

0 0

0 σ2v3
2h2
v
−σ2v3

h2
v

σ2v3
2h2
v

0 . . . 0
... 0
... 0

0 . . . σ2vend−2
2h2
v

−σ2vend−2
h2
v

σ2vend−2
2h2
v

0 σ2vend−1
2h2
v

−σ2vend−1
2h2
v

.

40

2 – Option Pricing

The first row of D, which consists of zeros, accounts for the boundary conditions,
which imply that there is no second-order differencing for v = 0.
The first-order differences are instead operated by the matrix F , whose columns are
split due to space constraints. F =

−κθ
hv
− r

2
κθ
hv

0 . . .

−κ(θ−v2)
hv

1v2>θ
κ(θ−v2)
hv

(1v2>θ − 1v2≤θ)− r
2

κ(θ−v2)
hv

1v2≤θ 0
...

0 . . .

0 0 − r
2

. . . .

. . . 0 0

. . . 0 0

. . . 0 0

. . . 0 0
−κ(θ−vend−2)

hv
1vend−2>θ

κ(θ−vend−2)
hv

(1... − 1...)− r
2

κ(θ−vend−2)
hv

1vend−2≤θ

0 −κ(θ−vend−1)
hv

1vend−1>θ
κ(θ−vend−1)

hv
(1... − 1...)− r

2

.

The matrix A2 hence results from:

A2 = dt(D + F).

Mixed terms

The mixed terms are treated differently, as the matrix representation of the solution
makes it more difficult to perform differences along the two dimensions. For this
reason, the mixed derivatives approximations are computed from the solution at the
previous time step in a manual way, without actually constructing the matrix A0:
this is possible as the mixed terms are dealt with only explicitly, and not implicitly.

2.2.6 Solution

Starting from the initial condition, namely the payoff of a put option, the approx-
imated solution to the differential equation is built following the ADI-DR scheme
described in the previous section. In addition, the following boundary considerations
have to be made:

• the last row of the solution matrix, for S = snshs , is taken to be equal to the
previous row, due to the Neumann condition on Smax;

• the last column of the solution matrix, for v = vnvhv , is taken to be equal to
the previous column, due to the Neumann condition on vmax;

41

2 – Option Pricing

• the first row of the solution matrix, for S = 0 is simply the discounted strike,
due to the boundary condition.

Furthermore, one has to move from the plain PDE to the PDCP (2.2), i.e. implement
the American step of the option. This can be done by means of the introduction of
an auxiliary matrix λn, of size (ns − 2)× (nv − 1), i.e. that of the inner grid.
At each time step, we switch from:

(I − θdtAm+1)Um+1 = (I + (1− θ)dtAm)Um + dt(θFm+1 + (1− θ)Fm)

to:

(I − θdtAm+1)Um+1 = (I + (1− θ)dtAm)Um + dt(θFm+1 + (1− θ)Fm) + dtλ,

with the LCP becoming:

(I − θdtAm+1)Um+1 = (I + (1− θ)dtAm)Um + dt(θFm+1 + (1− θ)Fm) + dtλm+1

λm+1 ≥ 0

Um+1 ≥ Ψ

(Um+1 −Ψ) ◦ λm+1 = 0

.

(2.5)
In the approximate numerical solution, following the approach proposed by Ikonen
and Toivanen (2008), we solve:

(I − θdtAm+1)Ūm+1 = (I + (1− θ)dtAm)Ûm + dt(θFm+1 + (1− θ)Fm) + dtλ̄m+1

Ûm+1 − Ūm+1 − dt(λ̂m+1 − λ̄m+1) = 0

λ̂m+1 ≥ 0

Ûm+1 ≥ Ψ

(Ûm+1 −Ψ) ◦ λ̂m+1 = 0

,

where Ûm and λ̂m define successive approximations to the Um and λm presented in
(2.5). After obtaining Ūm as the solution to the system of ODEs and λ̄m = λ̂m−1,
one can retrieve the approximations Ûm and λ̂m from:

Ûm = max{Ūm − dtλ̄m,Ψ}

and
λ̂m = max{0, λ̄m + (Ψ− Ūm)/dt},

applying the maximum component-wise.
The solution to the PDPC is presented in Figure 2.2.
The algorithm for the computation of the price of an American option is summed
up in 3.

42

2 – Option Pricing

Figure 2.2: Numerical solution to the Heston PDE.

43

2 – Option Pricing

Algorithm 3: Approximated Solution to the Heston PDE for the American
Put option problem

Input:
model parameters: σ, κ, θ, ρ, r
payoff parameters: T , K
discretisation parameters for S: ns, Smax
discretisation parameters for v: nv, vmax
discretisation parameters for time: nt, Tmax

Output: matrix f of size (ns, nv) of prices on the grid.
Initialise

s← evenly-spaced points on [0, Smax]

sgrid← inner grid of s

v ← evenly-spaced points on [0, vmax]

vgrid← inner grid of v

uinit ← European put payoff on the inner grid

u0 ← uinit
λ← zeros on inner grid

A1 ← differencing operator along S

A2 ← differencing operator along v

F ← boundary correction

f ← zeros(ns × nv)
end
For n = 1, . . . , nt

For j = 1, . . . , nv − 1
f1(:, j) = A1(j)u0(:, j)

end
For i = 1, . . . , ns − 2

f2(i, :) = (A2u0(i, :)T)T
end
Y0 = u0 +A0u0 + f1 + f2 + Fdt

u1 = Y0 − θf1

Y1 ← solve the system (I − θA1)Y1 = u1

u2 = Y1 − θf2

Y2 ← solve the system (I − θA2)Y2 = u2

u0 = max{Y2 − dtλ, uinit}

λ = max{0, λ+ (uinit − Y2)/dt}
end
f(inner grid) ←0

f(boundary) ← as described in 2.2.6
Return f

44

Chapter 3

Neural Networks

Neural networks aim to mirror the human brain and are loosely inspired by neuro-
science. Although developments in this field come from mathematics and engineering
rather than neuroscience, the idea is to construct a structure consisting of units, the
neurons, whose function presents some analogies with the neurons of the human
brain but without the claim to explain the functioning of the brain. Rather, as Ian
Goodfellow puts it, the goal is to design function approximation machines that are
capable of achieving statistical generalization [Goodfellow, Bengio and Courville
(2016)].
The advantage of this approach is generality: as we will see, the good approximat-
ing function is learnt with the data and the engineer does not have to constrain
him/herself to some specific functional form.

3.1 Structure

Neural Nets have received increasing attention in the last years, due to their rep-
resentation power. Consider a standard regression task, with training set St =
{(xn, yn)}Nn=1: we know that a linear combination of the input features in unlikely
to predict outputs well, due to a large bias. Feature augmentation is a typical
solution to overcome this problem: by adding polynomials of the regressors, for in-
stance, one might improve performance of classifiers or predictors. However, this
can quickly lead to overfitting, as well as to an increase in the computational cost
needed to fit the model. In addition, one does not know a priori what the good
features of the model are and resorting to domain experts can be not feasible or too
restrictive an approach. Neural networks, instead, allow to learn the features as well
as the weights of the classifier at the same time.

The structure of a simple neural net is presented in Figure 3.1. Such network
consists of one input layer, L hidden layers and one output layer. Each layer consists
in turn of different nodes, which are D, K and m for the input, hidden and output
nodes, respectively, in the figure. Notice that a value k is not known beforehand

45

3 – Neural Networks

and can be different for each of the hidden nodes. The number of input nodes
corresponds to the size of the features space, i.e. the number of components of x,
while there are as many output nodes as the dimension of y. A last remark concerns
the value of L: while simple nets can present one or few hidden layers, deep neural
networks can even feature hundreds of them. Theoretically, good values for all of
the hyper-parameters mentioned should be chosen via validation.
As the computation is performed from left to the right, from input nodes to output
nodes in the direction of the arrows, the network is called a feedforward network.
The notation adopted in this thesis is as follows: x(i)

j denotes node j in layer i.
The network presented in Figure 3.1 is fully-connected, meaning that each node in
layer l is connected to each node in layer l + 1, l = 0, , , L− 1 and each node in the
last hidden layer is connected to nodes in the output layer.
Connections take place via weighted edges, where weights from node i in layer l− 1
to node j in node l are denoted as w(l)

i,j . Specifically, we can write each node of a
layer as the result of the action of a function φ, called activation function, on an
affine combination of the nodes of the previous layer, i.e.:

x
(l)
j = φ

(
K∑
i=1

w
(l)
i,jx

l−1
i + b

(l)
j

)
,

where b(l)
j is the bias term relative to the j-th node in layer l.

While the parameters w and b are part of the learning process, which occurs when
training the neural network, the activation function is chosen in the design of the
neural network. In this respect, it is crucial that φ present a nonlinearity at some
point in the hidden layers, or there would be no gain in the representation power of
the neural net with respect to a linear regression.
The representation power comes indeed from the hidden layers, which can be seen
as a mapping:

Φ : RD → RK ,

from the D-dimensional input space to an artificial K-dimensional one which leads
to better, in some sense which has to be specified, outputs. In other words, this
corresponds to the feature selection and feature augmentation phases which lead to
a suitable representation of the data and would otherwise have to be performed in
a regression or classification task.

Whatever the machine learning task one is interested in, how well the algorithm
can learn any function f(x) of the input features is of paramount importance. In
particular, we claimed that neural nets are extremely powerful in representing func-
tions, and this can be stated rigorously, under mild assumptions on the structure
of the net and on the domain of interest. The following lemma is due to Barron
(Barron (1993)).

46

3 – Neural Networks

...

...
....

x
(0)
1

x
(0)
2

x
(0)
3

x
(0)
D

x
(1)
1

x
(1)
K

x
(L)
1

x
(L)
K

y1

ym

Input
layer

First Hidden
layer

L-th Hidden
layer

Ouput
layer

Figure 3.1: A simple neural net, fully connected and with L hidden layers.

47

3 – Neural Networks

Lemma 3.1.1. Let f : RD → R be a function such that∫
RD
|ω|f̃(ω) dω ≤ C,

where
f̃(ω) =

∫
RD

f(x)e−iωx dx

is the Fourier Transform of f .
Then, for all n ≥ 1 there exists a function fn of the form:

fn(x) =
n∑
j=1

cjφ(xTwj + bj) + c0,

where φ is a sigmoid-like function, such that:∫
|x|≤r

(f(x)− fn(x))2 dx ≤ (2Cr)2

n
.

The lemma ensures that under a smoothness condition, the function f can be
approximated well enough (in a L2 sense) on a bounded domain by a neural net
with one hidden layer with n nodes. As an aside, sigmoid-like refers to functions
which have 0 as a left limit and 1 as the one and are sufficiently smooth.

3.2 Hidden Units

Although the design of hidden units is currently being investigated in research,
there exist choices which are widely used. To determine which one to use in practice
mostly comes down to trial and error.
What needs to be stressed is that many of the activation functions are not dif-
ferentiable at all the points of the domain: this mostly causes no troubles, as the
minimum of the loss function is hardly ever attained. Some strategies however exist
to avoid this issue.

Rectified Linear Units

Rectified Linear Units (ReLU) follow the principle that linear objects are easy to
optimise and consist of the activation function:

φ(x) = max{0, x}.

The fact that the second derivative is zero a.e. implies that this choice provides a
useful learning direction, without second-order effects. Conversely, learning is not
possible for cases in which the activation is zero. To make up for this problem
generalisations exist to the ReLU so that the gradient exists everywhere.
One of these, the Leaky ReLU is defined by:

φ(x) = max{0, x}+ αmin{0, x},

48

3 – Neural Networks

with α small, for instance 0.01.
Alternatively, absolute value rectification is used in contexts where features are
invariant under polarity reversal, such as image recognition:

φ(x) = max{0, x} −min{0, x} = |x|.

As a last example, maxout units divide the space into groups and produce as output
the maximum in each group, allowing to learn a piecewise linear function. Together
with the ability of learning convex functions, maxout units also lead to fewer param-
eters as the following layer will present fewer parameters by a factor corresponding
to the size of the groups.

Sigmoid Function

The sigmoid function is well known in the literature and is given by:

σ(x) = ex

1 + ex
.

The main drawback of this choice is that the sigmoidal units saturate across the
domain, only being sensitive to the input when this is close to zero, and this might
cause problems when using gradient-based methods.
An alternative to the sigmoid function is the hyperbolic tangent, which is related

(a) Sigmoid Function (b) Hyperbolic Tangent Function

Figure 3.2: Plots of the sigmoid and hyperbolic tangent activation functions.

to the sigmoid function by:

tanh(x) = 2σ(2x)− 1.

Figure 3.2 highlights the similar behaviour of the two functions.

49

3 – Neural Networks

No Activation

While complete absence of activation functions will constrain the neural net to be
linear, and hence to eliminate the need for the network altogether, some hidden
layers can in principle be linear. Having linear nodes can lead to a significant saving
in terms of the number of parameters, by introducing a low-rank structure.
Consider as an example a layer of size n with p outputs: it is represented by an n×p
matrix of parameters. If that is replaced by two linear layers, the first one with q
outputs, the total number of parameters will be n × q + q × p = (p + n)q, which,
depending on how small q is, can be much smaller than n× p.

3.3 Training

Interestingly, the previous lemma makes the learning problem that of learning a
function rather than a set of parameters. The main drawback which comes with in-
creased representation power is the loss of convexity in the most used loss functions.
This means that traditional convex optimisation algorithms are of no use in the
training of neural nets and one usually turns to iterative gradient-descent methods,
such as stochastic gradient descent. However, it is possible to compute gradients in
an efficient and exact way, which makes optimisation of the loss function feasible
in practice: this is done via the back-propagation algorithm. The nodes evolve as
described in the previous sections:

x(l) = f (l)(x(l−1)) = φ
(
(W (l))Tx(l−1) + b(l)

)
,

with the activation function φ being applied element-wise to the vector of nodes.
As a result, the output will be produced by:

y = f(x(0)) = f (L+1) ◦ f (L) ◦ . . . ◦ f (2) ◦ f (1)(x(0)).

Taking the mean-square loss as a widely-used example of loss function we will have
a cost given by:

L = 1
N

N∑
n=1

(
yn − f (L+1) ◦ f (L) ◦ . . . ◦ f (2) ◦ f (1)(x(0)

n)
)2
.

Now consider stochastic gradient descent: at each iteration, the weights and bias
terms of a randomly-chosen term are translated by a fraction of the gradient of the
loss, so as to move in the direction of its steepest descent. One thus need to compute
the gradient with respect to one sample of the loss Ln, i.e.:

∂Ln
∂w

(l)
i,j

and ∂Ln
∂b

(l)
j

.

We define two quantities z(l) and δ(l)
j and the associated forward and backward passes:

50

3 – Neural Networks

• the output of layer l−1 before applying the activation function and is computed
by moving forward in the network in the so-called forward pass

z(l) = (W (l))Tx(l−1) + b(l);

• the partial derivatives
δ

(l)
j = ∂Ln

∂z
(l)
j

,

which are obtained applying a backward pass, starting from the output and
moving backward along the network. This operation corresponds to:

δ
(l)
j = ∂Ln

∂z
(l)
j

=
∑
k

∂Ln
∂z

(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=
∑
k

δ
(l+1)
k W

(l+1)
j,k φ′(z(l)

j),

which can be written in vector form as:

δ(l) = (W (l+1)δ(l+1)) ◦ φ′(z(l)),

denoting with ◦ the Hadamard element-wise product.

Having these quantities at hand, the original derivatives result easily from:

∂Ln
∂w

(l)
i,j

=
∑
k

∂Ln
∂z

(l)
k

∂z
(l)
k

∂w
(l)
i,j

= ∂Ln
∂z

(l)
j

∂z
(l)
j

∂w
(l)
i,j

= δ
(l)
j x

(l−1)
i

and
∂Ln
∂b

(l)
j

= δ
(l)
j ,

noticing that wi,j only affects the j-th z entry.
The back propagation algorithm follows from the steps described above and is sum-
marised in Algorithm 4.

Computational cost

The computational cost is for the most part due to matrix-vector multiplication,
both in the forward and in the backward pass. This corresponds to O(w) for w
entries in the weight matrix. The memory cost instead refers to the need to store
the input to the nonlinearity of the hidden layers, with a cost of O(mnh), for m
number of samples in the minibatch and nh number of hidden units.

3.4 Regularisation

Regularisation deals with the importance of learning without overfitting. The goal
is that the good performance of the algorithm on a training set is matched with an

51

3 – Neural Networks

Algorithm 4: Back propagation

Input: yn, xn for some n ∈ {1, ..., N}.
Output: the gradient of the loss.
Initialise

x(0) ← xn
end
For l = 1, . . . , L+ 1

z(l) ← (W (l))Tx(l−1) + b(l)

x(l) ← φ(z(l))
end
δ(L+1) = −2(yn − x(L+1))φ′(z(L+1))
For l = L, . . . , 1

δ(l) ← (W (l+1)δ(l+1)) ◦ φ′(z(l))
end
For i, j, l

Return ∂Ln
∂w

(l)
i,j

= δ
(l)
j x

(l−1)
i

Return ∂Ln
∂b

(l)
j

= δ
(l)
j ,

end

equally good performance on a different test set. In other words, when given fresh
data as input, the algorithm should produce good results: if that were not the case,
the algorithm would simply be following too closely the training data (overfitting),
thus losing in generality. Regularisation can be defined as any modification we
make to a learning algorithm that is intended to reduce its generalization error but
not its training error [Goodfellow, Bengio and Courville (2016)]: this is usually
implemented via constraints- soft or hard- on the parameters.
In deep learning, regularisation mainly comes down to attaining a good trade off
between bias and variance, with a view to move close to the true data generating
process: given the complexity of the domains deep learning applies to, a good model
is often a large model with adequate regularisation.
Controlling how complex a model is can be done in several ways. The usual strategy
is to limit model capacity by adding a term to the cost function:

L̃(θ;X, y) = L(θ;X, y) + λΩ(θ),

where λ is a hyperparameter regulating the weight of the penalty. In turn, the
penalty Ω is a norm term. Notice that in neural nets the bias term is left unregu-
larised, as, unlike the wrights Wi,j, the bis only concern one term, and are thus less
subject to increased variance because one does not need to observe the interaction
of two variables in different conditions. In addition, regularising the bias terms is
more likely to introduce significant bias in the model.

52

3 – Neural Networks

L2 Regularisation

Best known as ridge regression, the L2 regularisation features a norm-two regular-
ising term:

L̃(ω;X, y) = L(ω;X, y) + λ

2 ω
Tω,

which induces the SGD update:

ω ← ω − α(λω +∇ωL(ω;X, y)),

meaning that:
ω ← (1− αλ)ω − α∇ωL(ω;X, y), (3.1)

where we indicate with ω the set of parameters but for the bias terms. The pre-
vious expression (3.1) motivates the phenomenon referred to as the weight decay,
whereby the weight shrinks at each iteration. To study it further, we consider an
approximation of the loss function by expanding it around its argmin as:

L̂(ω) ≈ L(ω∗) + 1
2(ω − ω∗)THL(ω − ω∗),

where we have no first-order term due to the first-order conditions.
To find the optimum ω̃ of the regularised approximate loss we take the gradient and
obtain:

λω̃ +H(ω̃ − ω∗) = 0,

(H + λI)ω̃ = Hω∗.

As H is real and symmetric, we exploit the decomposition H = QΛQT , which leads
to:

(QΛQT + λI)ω̃ = (QΛQTλI)ω∗

ω̃ = [Q(Λ + λI)QT]−1(QΛQT)ω∗

ω̃ = Q(Λ + λI)−1ΛQTω∗,

which corresponds to rescaling ω∗ along the eigenvectors vi of H by a factor of:

λi
λ+ λi

.

In other words, the shrinking effect will be higher the more λ > λi and weight decay
will be stronger in the directions where the eigenvalue of the Hessian are smaller.
That is, directions which contribute more to the reduction of the loss suffer less from
the weight decay.

53

3 – Neural Networks

Strong and Weak Constraints

Other forms of regularisation are the L1 regularisation, which presents a sparsity
property acting as a feature selection procedure; the generalised Lagrangian, written
as:

L̃(ω;X, y) = L(ω;X, y) + α(Ω(ω)− k).
An alternative to the latter consists of explicitly having a constraint, solving

the unconstrained problem and then projecting to the nearest point satisfying the
constraint, thus removing the need to optimise on α as well as on ω. Removing
the soft constraint can be of use when training neural nets because of the issue of
dead units: it might be the case that non-convex optimisation methods be stuck in
local minima corresponding to small ω, which in turn result in dead units of the
neural net. In these cases, the function being learnt by the MLP will not be affected
by these units, while it might be the case that larger weights might help to escape
the local minimum. Hard constraints and projections will only enforce the weights
to become smaller in cases where their magnitude is rising outside the constraint.
Lastly, when coupled with high learning rates, explicit constraints and projection
can allow for rapid exploration of the space of parameters without giving up on
stability. This is the case as large weights lead to large gradients and to the descent
becoming unstable.

Dataset Augmentation

This approach is performed where one can easily obtain new observations by modi-
fying existing ones, for instance in image recognition. In this context, when training
a classifier, generalisation is easily achieved by translating pixels, rotating or flipping
images: this does not change the target class one needs to classify and provides more
data. Of course this relies on the need of the classifier to be invariant with respect
to some transformations.

Early Stopping

Early stopping allows to detect the point where validation error starts increasing
despite a decreasing training error: parameters estimates are stored every time
validation error goes down, and the algorithm stops if after a given set of iterations
the validation error does not improve, returning the last stored parameters, rather
than the newest ones.
As a form of hyper-parameter tuning, the training time is less costly to set as it
does not require to try different values to be tried in different runs of the algorithm,
but can be determined in one single run. Furthermore, the requirements in terms of
memory only regard storing intermediate best parameters; in terms of overhead, the
original training algorithm is not subject to modifications, but for the introduction
of a validation phase which can however be performed in parallel.
It can be shown that early stopping plays the same role as weight decay in L2

54

3 – Neural Networks

regularisation: given a number of training steps τ and a learning rate ε, ετ can be
seen as the effective capacity, i.e. the volume of parameter space the algorithm can
explore. Early stopping has the advantage that, unlike weight decay, the hyper-
parameter value does not have to be selected via multiple runs of the algorithm.

Noise Robustness

Similarly, one can introduce noise in the observation inputs, but it proves less effec-
tive in the case of neural networks. Noise can equally be applied to the weights, in
a Bayesian fashion attributing a distribution to each of them.

Dropout

Dropout can be seen as an alternative to bagging, which quickly becomes unfeasible
due to the cost of training multiple deep neural nets. Dropout arises by training all
possible subnetworks obtained by ignoring units from the original net, which can be
practically done by removing the hidden layers’ units by zero. Training with dropout
occurs by mini-batch learning and each time a sample enters the minibatch, a mask
µ is sampled for the network, whereby each neuron is assigned either a zero or a one
value: if the mask marks a neuron as zero, it is not included in the training phase.
Typical probabilities of accepting a node are 0.8 for inputs and 0.5 for hidden layers
As dropouts tends to make weights larger, when evaluating the overall net, the
weights are rescaled by the accepting probability. Alternatively, the output is a
weighted average of the output with weights given by the probability of the mask.
Dropout makes learning more robust by making the architecture noisy. It reduces
the risk that units adapt to compensate for mistakes of other units, in a way that
works for a given training set but might not for other ones.

3.5 Optimisation

Machine learning differs substantially from standard optimisation. To begin with,
the goal of learning is a performance measure which is targeted indirectly, via a loss
function. By reducing the cost function L, one aims at improving the performance
measure, but L is not a goal in itself, as is the case with optimisation.
In addition the ultimate goal of learning would be to minimise the cost over the
distribution pdata from which the data are generated, but one settles for the empirical
distribution p̂data of the data implied by the training set.
One thus shifts from looking for the parameters minimising:

Ex,y∼pdata [L(f(x; θ), y)]

to those relative to:

Ex,y∼p̂data [L(f(x; θ), y)] = 1
m

m∑
i=1

L
(
f(x(i); θ), y(i)

)
,

55

3 – Neural Networks

with m denoting the number of observations in the training data.
However, overfitting and the difficulties arising when trying to minimise some types
of loss functions are the major reason why an objective function can still differ
slightly from the empirical risk and one considers a surrogate loss function.
One last element by which learning and optimisation differ is the timing the algo-
rithm stops. Optimisation can stop at local minima, while learning typically relies
on stopping criteria.
One key aspect in learning is that empirical quantities are obtained by means of a
restricted sample of the data, giving rise to mini-batch or stochastic algorithms; in
the latter case, one single observation is used each time. In particular, mini-batch
are favoured with respect to the batch case (entire data) or stochastic (one single
datum), for a series of reasons:

• larger datasets yield more accurate results, but returns are less than linear;

• one-item batches imply under-utilisation of multi-core architectures;

• some kinds of hardwares are optimised to work with give sizes of the data (e.g.
powers of 2);

• mini-batches lead to a regularising effect, in all likelihood ensured by the process
of adding noise that sampling the batch provides;

• parallel architectures can exploit clever decomposition in batches such that
different updates over different examples can be computed at the same time.

However, the higher variance in the gradient values demands a lower learning rate
to preserve stability.
The main issues optimisation faces when dealing with neural networks are presented
in the following paragraphs.

Ill conditioning of the Hessian

When making a gradient descent step, the change in the value of the loss is approx-
imated by

L(x)− L(x0) = L(x0 − εg)− L(x0) ≈ εgTg + 1
2ε

2gTHg, (3.2)

denoting the gradient as g, the Hessian as H and the learning rate as ε. As ill
conditioning of the Hessian is a measure of how big is the differences between second
derivatives, poor conditioning means that the descent step might be occurring in the
direction with largest increase of the derivative. The second-order term can cause
the loss to grow if it is too large, thus hampering the learning process since the
learning rate has to be kept small to prevent overshooting. What can be done to
overcome this issue is to monitor the norms of the first-order and of the second-order
terms.

56

3 – Neural Networks

Local Minima, Saddle Points and Cliffs

Local Minima have long been thought to represent a major issue in neural nets opti-
misation. Today, it seems that the case for many high-cost local minima is no longer
to be made as practitioners tend to agree that local minima are typically associated
with a low cost. Baldi and Hornik (1993) found for autoencoders that, if nonlinear-
ities are absent from the model, local minima do not have higher costs than global
minima, claiming that the results hold for neural networks with nonlinearities.
In multi-dimensional non-convex functions, saddle points present zero gradient be-
sides local minima, and, interestingly, the ratio of saddle points to local minima
increases with the dimension of the problem, as studied by De Spiegeleer, Madan,
Reyners and Schoutens (2018). The same study claims that a significant amount of
saddle points present very high cost. At the same time, however, gradient descent
seems capable of escaping saddle points in empirical trials, see for instance Good-
fellow, Vinyals and Saxe (2015), who study the case with an ad hoc example: this
is also a possible reason why (stochastic) gradient descent has traditionally been
preferred with respect to Newton’s method, which targets a zero gradient.
Cliffs represent a third obstacle for gradient optimisation: these correspond to re-
gions with large steepness, which can result in the parameters’ point being pushed
extremely far away due to the interaction of very large weights. The gradient clip-
ping heuristic is designed so that the step size is reduced when the descent step the
algorithm is attempting becomes too large.

3.5.1 Parameters Initialisation

Choosing the initial parameters for training neural nets is an active area of research.
Solutions are often heuristic and intuitive as the subject is still to be completely
understood: one difficulty being faced is that some points which can enhance the
success of the optimisation process are of detriment when it comes to generalisation.
What seems certain is the so-called breaking the symmetry principle, according to
which different units with the same activation and the same incoming nodes need
to have different starting points, or will result in the same updates. This principle
is good practice even in the case of stochasticity in the algorithm, for instance with
dropout, and motivates the use of random initialisation. The normal distribution
is a typical choice, as well as the uniform one, but the magnitude of the initial
points has consequences: larger weights contribute more to the symmetry-breaking
principle mentioned before and avoid the dispersion of signal, but their side effect is
the possibility of exploding values, linked to the so-called chaos. This phenomenon
is such that weights might be so large that the behaviour of the net appears random
when slightly different inputs result in entirely different outputs. Another aspect to
be taken into account is regularisation, which would in principle dictate the need
for smaller weights. Excessively small weights, however, may cause activations to
shrink when moving forward through the neural net.
In terms of the mean, a sensible choice can be represented by zero, hinting at a

57

3 – Neural Networks

prior which assumes that units do not interact. A possible heuristic is then to pick
weights uniformly in (−1/

√
m, 1/

√
m), with m input nodes; another one, proposed

by Glorot and Bengio (2010), is related to the desired property of all layers having
the same activation variance and all layers having the same gradient variance at
initialisation and yields weights initialised as:

Wi,j ∼ Unif
−

√
6

m+ n
,

√
6

m+ n

 ,
where m and n are input and output nodes respectively.
Interestingly, however, it is often not the case that these criteria enhance perfor-
mance, due to several possible reasons. The properties imposed in the initialisation
phase might not be desirable in the first place. Alternatively, they might be desir-
able, but they fail to be preserved throughout the training phase. Another possibility
is that they do improve optimisation, but at the cost of reduced generalisation.
Biases initialisation requires fewer considerations, as biases can be without fear of
undesired effects be set to zero. There are some situations where alternatives can
be preferred though.
Goodfellow, Bengio and Courville (2016) suggest setting the bias of output nodes
as a suitable marginal statistic of the output, such as the inverse of the activation
function applied to the marginal statistics of the output in the training set. In ad-
dition, bias of level zero should not lead to a saturation effect, as in the case of a
ReLU activation.

3.5.2 Algorithms

This section reviews the main algorithms available in the literature to learn the
parameters.

Stochastic Gradient Descent

The algorithm computes an unbiased estimate of the gradient by evaluating the
gradient on an i.i.d subset of the observations and averaging them. The estimate of
the gradient is then used to move in the direction of steepest descent. Algorithm 5
sums up the main steps needed.
Although the learning rate ε is referred to as constant in the algorithm, it is in
practice often modified over the course of the training. A typical choice is to have
ε to decay linearly until iteration τ according to:

εk = (1− α)ε0 + αετ ,

with α = k/τ , and then leave it constant. Although there are no absolute rules
when establishing the values for these parameters, Goodfellow, Bengio and Courville
(2016) propose the following guidelines:

58

3 – Neural Networks

Algorithm 5: Stochastic Gradient Descent

Input: learning rate ε, initial approximation of the parameter θ0, size
of the minibatch m

Output: θ learnt parameter.
Initialise

θ ← θ0
end
while not stopping criterion

minibatch← {(x(1), y(1)), ..., (x(m), y(m))} sampled from the
training data
ĝ ← 1

m

∑m
i=1∇θL

(
f(x(i); θ), y(i))

θ ← θ − εĝ
end
Return θ

• ετ should be about 0.01 ε0;

• too high a learning rate will lead to an oscillating behaviour of the parameters,
while if too slow the consequence might be a painfully slow learning or in the
worst-case scenario even the process being stuck;

• one could find a good value by evaluating the performance on the first hundred
iterations and then set an initial learning rate which is slightly higher than the
value identified.

The advantage of SGD is that, although convergence is slower, updates have a cost
that does not increase with the size of the training set, allowing convergence even
in the case of prohibitively large datasets. In addition, slow asymptotic convergence
is made up for by SGD capability of moving quick in good directions in the first
iterations, due to the small amounts of computation required to perform the first
steps.

Stochastic Gradient Descent with Momentum

According to momentum, the gradient moves in the direction given by a smoothed
moving average of the past gradients. Smoothness is introduced by exponential
decay of the old gradients, as shown in Algorithm 6.
In the algorithm, the magnitude of α relative to ε determines how fast the persistence
of the previous gradients with respect to the most recent one.
As an aside, the physical terminology (momentum) refers to the modelling of the
paramters’ position as particles subject to forces: on the one hand there is a force
which drives the particle where the loss surface decreases, while the other term is
related to viscosity and is proportional to the velocity.

59

3 – Neural Networks

Algorithm 6: Stochastic Gradient Descent with Momentum

Input: learning rate ε, initial approximation of the parameter θ0,
initial velocity v0 size of the minibatch m, momentum
parameter α

Output: θ learnt parameter.
Initialise

θ ← θ0
v ← v0

end
while not stopping criterion

minibatch← {(x(1), y(1)), ..., (x(m), y(m))} sampled from
the training data
ĝ ← 1

m

∑m
i=1∇θL

(
f(x(i); θ), y(i))

v ← αv − εĝ
θ ← θ + v

end
Return θ

Algorithm 7: AdaGrad

Input: learning rate ε, initial approximation of the
parameter θ0, size of the minibatch m, small constnat
δ ≈ 1e− 7.

Output: θ learnt parameter.
Initialise

θ ← θ0
r ← 0 gradient accumulation value

end
while not stopping criterion

minibatch← {(x(1), y(1)), ..., (x(m), y(m))} sampled
from the training data
g ← 1

m

∑m
i=1∇θL

(
f(x(i); θ), y(i))

r = r + g ◦ g
∆θ = − ε

δ+
√
r
◦ g

θ ← θ + ∆θ
end
Return θ

AdaGrad

In AdaGrad the learning rates are scaled by the square roots of the accumulated
squared of the gradient loss. This result in parameters which contributed more to
the loss seeing a larger decrease in the learning rate, with the aim of moving more
in less steep regions.
The phases of AdaGrad are summed up in Algorithm 7.

60

3 – Neural Networks

Algorithm 8: Adam

Input:
learning rate ε suggested to be set as 1e-3,
exponential decay rates for moment estimates,
ρ1 and ρ2 in [0, 1),
initial approximation of the parameter θ0,
size of the minibatch m,
small constnat δ ≈ 1e− 8.

Output:
θ learnt parameter.
Initialise

θ ← θ0
s← 0 first moment initialisation
r ← 0 second moment initialisation
t← 0

end
while not stopping criterion

minibatch← {(x(1), y(1)), ..., (x(m), y(m))}
sampled from the training data
g ← 1

m

∑m
i=1∇θL

(
f(x(i); θ), y(i))

t← t+ 1
s← ρ1s+ (1− ρ1)g
r ← ρ2r + (1− ρ2)g ◦ g
ŝ← s

1−ρt1
r̂ ← r

1−ρt2
r = r + g ◦ g
∆θ = − εŝ

δ+
√
r̂

θ ← θ + ∆θ
end
Return θ

Adam

The algorithm is the brainchild of Kingma and Ba (2014). The name is the acronym
of ADAptive Moments and can be seen as the evolution of AdaGrad combined to
SGD with momentum. Adam uses the first-order moment with exponential weight-
ing of the gradient as an estimate of momentum. In addition, Adam applies bias
corrections to the estimates of first and second-order moments due to their being
initialised at the origin.

Second-order Methods

We present the main ideas concerning the main second-order methods and related
ones. For a more detailed description one can for instance consult Böjers (2010).

61

3 – Neural Networks

The best-known second-order method is Newton’s, an iterative method with up-
dates:

θ = θ −H−1∇θL(θ),
which can be derived by taking the first-order conditions of a second-order lineari-
sation of the loss. In order to avoid the problem of negative eigenvalues, one can
opt for the regularised updates:

θ = θ − (H + αI)−1∇θL(θ),

which is acceptable for comparatively small and negative eigenvalues.
An even greater problem affecting Newton’s method in the context of neural nets
is the burden of computing the inverse of the Hessian matrix, which can be pro-
hibitive due to the extremely high number of parameters the MLPs can achieve.
This motivates the use of other solutions, namely conjugate gradients and Quasi-
Newton methods, which aim at finding as good directions as Newton’s, but without
the need to compute the Hessian.
The first one, conjugate gradients, tries to overcome the typical zigzagging problem
which affects steepest descent and is due to the fact that successive directions are or-
thogonal. For this reason, CG involves conjugate, rather than orthogonal directions.
These are directions that satisfy:

dTt Hdt−1 = 0.

The intuition of this condition comes from observing that for the Newton direction
dN it holds that:

−H(θnew − θold) = −HdN = ∇L ⊥ dt−1,

which implies that
dTt−1Hdt = 0

is a desirable property to be satisfied when one wants to get close to Newton’s
properties. It can then be proved that directions defined by

dt = ∇θL(θ) + βtdt−1,

are conjugate and can alleviate the zigzagging problem. In the equation, β can be
obtained by:

βt = ||∇θL(θt)||2
||∇θL(θt−1)||2 ,

which does not require knowledge of the Hessian.
Another option is BFGS (Broyden-Fletcher-Foldfarb-Shanno) algorithm, which falls
into the category of quasi-Newton methods. In this algorithm, the Hessian is re-
placed by an approximation. Algorithm 9 sums up the main steps of the method.
It must be stressed, however, that despite the fact that the computation of the Hes-
sian is not needed, its approximation is to be stored, with a significant overhead in
terms of memory due to the number of parameters, making the method of little use
in many neural nets applications.

62

3 – Neural Networks

Algorithm 9: BFGS

Input:
initial approximation of the parameter θ0,
size of the minibatch m,
small constnat δ ≈ 1e− 8.

Output:
θ learnt parameter.
Initialise

θ ← θ0
k ← 0
H ← 0
s← 1e10

end
while not stopping criterion

minibatch← {(x(1), y(1)), ..., (x(m), y(m))}
sampled from the training data
g1 ← 1

m

∑m
i=1∇θL

(
f(x(i); θ), y(i))

p← −Hg1
α← argmin L(θ + αp)
s← αp
θ ← θ + s
g2 ← 1

m

∑m
i=1∇θL

(
f(x(i); θ), y(i))

y ← g2 − g1

H ←
(
I − syT

yT s

)
H
(
I − ysT

yT s

)
+ ssT

yT s

end
Return θ

3.5.3 Batch Normalisation

This recent technique is a method of adaptive reparametrisation especially adopted
when training very deep nets. What happens in the case of models with several
parameters is that updates can lead to unforeseen outcomes, as gradients were com-
puted under the assumptions that the other parameters stayed constant.
Consider a mini-batch B of activations of the layer to be normalised, with the usual
design-matrix arrangement such that different rows correspond to different obser-
vation and normalise it by subtracting the batch mean and dividing by the batch
standard deviation:

B′ = B − µ
σ

,

obtaining σ as:

σ =
√√√√δ + 1

m

∑
i

(H − µ)2
i ,

where δ is a small constant.
The normalisation of a unit makes the net less powerful in terms of what it can

63

3 – Neural Networks

express. As a result, it is common practice to take hidden units as

y = γx̂+ β, (3.3)

where x̂ is the normalised input belonging to the minibatch B. This restores the
original expressive power of the net while possessing an easier parametrisation which
can be easily learnt by gradient descent since it does not result from many terms in
the previous layer.
Ioffe and Szegedy (2015), who proposed the method, motivate its need with the
phenomenon of the internal covariate shift, by which a change in the distribution
of the inner units causes a slowdown in learning. Indeed, each hidden layer can be
thought of as representing the input of a model with output given by the following
hidden layer. If the output of this subnet changes during the learning process, the
internal covariate shift, the parameters need to adjust accordingly so that learning
becomes slower.
Notice that only the values y produced by (3.3) are taken forward to the next layers,
while the normalised inputs x̂ remain internal to the transformation in the subnet,
with fixed distribution of mean zero and standard deviation one. This is shown to
speed up training in most cases.

3.6 Good Practices

The following section includes some guidelines one should follow when implementing
neural networks. Far from being an extensive treatment to be rigorously executed,
these should be taken recalling that while most successful pipelines are alike, each
dataset is problematic in its own way. In addition, what is state-of-the-art in deep
learning is characterised by high volatility.
The main areas which require action on the practitioner’s side are the following:

• choice of the size of the dataset, if any;

• choice of the model capacity (hidden size, depth...);

• choice of regularisation techniques, if any;

• choice of the error metric;

• choice of the optimisation model;

• underfitting or overfitting detection.

While in the model description we have limited ourselves to the description of
feedforward networks due to the topology of the data in our application, other
structures require different models: convolutional nets for images as inputs or gated
recurrent nets for data which output a sequence.

64

3 – Neural Networks

Typical choices of the optimisation model are SGD with momentum or Adam, en-
riched with batch normalisation. The latter can be especially useful for convolutional
nets and sigmoidal nonlinearities and can also contribute slightly to regularisation.
As for regularisation, dropout is a popular choice because of its ease of use.

The decision of whether to extend the dataset or not is based on where perfor-
mance is poor.
If training accuracy is low, one should enrich the model by adding more hidden
layers or units – as it might be the case that it does not possess enough expressing
power – or adapt the way the model is learning by adjusting the learning rates. If
neither of these work it might be the case that the dataset suffers form bad quality.
If test accuracy is instead faring worse, further data collection usually proves bene-
ficial, although it comes at a cost and in the worst case might not even be possible.
As an alternative, simplification of the model is also worth trying, as well as intro-
ducing or increasing regularisation. In the general case, a good performance of the
algorithm follows from the combination of a large model and adequate regularisa-
tion, the latter probably deriving from the use of dropout.

Goodfellow, Bengio and Courville (2016) mention the brute force approach as a
means to achieve virtually guaranteed success: this involves the iteration of increas-
ing model capacity and increasing the dataset size. By subsequently performing
these operations one should achieve the desired results on test set.

65

Chapter 4

Low-Rank Approximation

This chapter presents some concepts which are used to extend the pricing method-
ology proposed in this thesis.
Although more details will be presented in the next chapter, and particularly in
Chapter 6, we mention for now two problems which can arise when training neural
networks with standard machines. First of all, the dataset might be too large to be
stored, due to memory constraints, or too cumbersome to be generated via Monte
Carlo or other numerical methods. Alternatively, one might have a few data points,
but not enough for the neural network to be trained.
In these cases it would be desirable to have a compressed representation of the train-
ing tensor or one which allows to retrieve more entries from the few ones available,
exploiting the tensor structure of the data.
This chapter proposes a solution based on dimensionality reduction techniques which
addresses – and possibly solves – the issues highlighted.
Figure 4.1 – taken from http://www.maths.qmul.ac.uk/∼kglau/ – shows the idea
behind tensor compression: the goal of this chapter is to exploit a method which
gives back a tensor in a compact representation after sampling a few of its entries.

(a) Full tensor (b) Sampling (c) Compression

Figure 4.1: Scheme of the idea behind tensor compression.

After introducing some preliminary concepts related to tensors, the chapter describes
the tensor-train decomposition, which consists of a compressed representation of a

66

4 – Low-Rank Approximation

given tensor (Section 4.1) and the completion algorithm, used to obtain such a
representation (Section 4.3).

Vectorisation of a Matrix

Given a matrix A ∈ Rm×n, the vectorisation of A is denoted as vec(A) where

vec : Rm×n → Rmn.

For instance, with matrix A below, its vectorisation is obtained by stacking its
columns as follows:

A =

a11 a12
a21 a22
a31 a32

 and vec(A) =

a11
a21
a31
a12
a22
a32

.

Kroenecker Product

For a matrix A ∈ Rm×n and B ∈ Rk×l, the Kroenecker product is defined by:

B ⊗ A =

b11A . . . b1lA
... ...

bk1A . . . bklA

 ∈ Rmk×nl.

It holds that:

1. vec(AX) = (I ⊗ A)X;

2. Im ⊗ In = Imn.

Definition 4.0.1. A d-th order tensor χ of size n1 × n2 × . . . nd is a d-dimensional
array with entries

χi1,...,id , iµ ∈ {1, ..., nµ} for µ = 1, .., d.

In our case, the entries of the tensor are real, so that:

χ ∈ Rn1×...×nd .

�

Simple tensors of order three (left) and two, a matrix, (right) are shown in Figure
4.2. We now introduce common operations on tensors.

67

4 – Low-Rank Approximation

(a) Tensor of order 3 (b) Tensor of order 2

Figure 4.2: Simple three-d and two-d tensors.

• Vectorisation is one of the possible ways to stack the entries of a tensor in a
long column vector and is denoted as vec:

vec : Rn1×...×nd → Rn1...nd .

Vectorisation stacks the entries of the tensor in reverse lexicographical order
into a vector. For instance, in three dimensions and with n1 = 3, n2 = 2,
n3 = 3 one has:

vec(χ) =

χ111
χ211
χ311
χ121
χ221
...

χ123
χ223
χ323

.

• Matricisation consists of making a dth-order tensor χ a matrix. One says that
for µ = 1, ..., d, the µ-mode matricisation of χ is the matrix

X(µ) ∈ Rnµ×n1...nµ−1nµ+1...nd .

Figure 4.3 shows the one-matricisation operation on a simple 3× 3× 2 tensor
turned into a 3× (3 · 2) matrix.

As an example, notice that for a matrix one has A(1) = A and A(2) = AT .

• The 1-mode matrix multiplication takes a matrix A of sizem×n1 and multiplies
it by the 1-mode matricisation of χ and is denoted as:

Y = A ◦1 χ ⇐⇒ Y (1) = AX(1),

68

4 – Low-Rank Approximation

(a) Tensor of order 3 (b) Matricisation of the tensor

Figure 4.3: Matricisation.

which of course can be generalised to other modes.

• By definition, one has that:

vec(χ) = vec(X(1)) and vec(A ◦1 χ) = vec(AX(1)).

This implies, recalling the aforementioned properties:

vec(A ◦1 χ) = (I ⊗ A)vec(X(1)) = (Ind...n2 ⊗ A)vec(χ)
= (Ind ⊗ . . .⊗ In2 ⊗ A)vec(χ),

where the first equality follows from the definition of the operations of Kroe-
necker product and vectorisation, the second one from the previous observation
and the third one from the second property of the Kroenecker product.

4.1 Tensor-Train Decomposition

We now introduce the dimensionality reduction technique which is used in the second
part of this work. The tensor-train (TT) decomposition serves both purposes of
compactly storing a high-dimensional tensor and obtaining such a representation.
A tensor χ is in tensor-train decomposition if it can be written as:

χ(i1, ..., id) =
r1∑

k1=1
. . .

rd−1∑
kd−1=1

U1(1, i1, k1)U2(k1, i2, k2) . . .Ud(kd−1, id, 1). (4.1)

The smallest possible tuple r1, ..., rd−1 is called the TT rank of χ, while

Uµ ∈ R(rµ−1×nµ×rµ)

are called the TT cores for µ = 1, ..., d, setting r0 = rd = 1. Compression is high
when the TT ranks are small. Indeed, if we denote as

r = max {r0, . . . , rd}

69

4 – Low-Rank Approximation

and as
n = max {n1, . . . , nd},

the memory needed with the compressed representation is O(dnr2) rather than
O(nd) achieved in the full case.
Figure 4.4 shows the original tensor, on the left, and a possible decomposition into
lower-order tensors, on the right. The gain in space saved is of course larger as the
order of the full tensor increases.

(a) Tensor of order 3 (b) Possible TT decomposition with tensors U1, U2 and U3

Figure 4.4: Decomposition example of a full tensor (left) into the product of lower-order tensors (right).

Denote now a slice of the core as:

Uµ(iµ) = Uµ(:, iµ, :) ∈ Rrµ−1×rµ ;

then:
χ(i1, ..., id) = U1(i1)U2(i2) . . . Ud(id),

which is the more familiar matrix product.
If we now group the first µ factors together:

χ(i1, ..., iµ, iµ+1, . . . , id) =
rµ∑

kµ=1

 ∑
k1,...,kµ−1

U1(1, i1, k1) . . .Uµ(kµ−1, iµ, kµ)

 ∑
kµ+1...kd−1

Uµ+1(kµ, iµ+1, kµ) . . .Ud(kd−1, id, 1)
 ,

which turns out to be the product of two matrices.
Now define the µ-th unfolding of χ ∈ Rn1×n2×...×nd by arranging the entries in a
matrix:

X<µ> ∈ R(n1n2...nµ)×(nµ+1...nd). (4.2)
This can be obtained easily in Matlab, via the reshape function, specifying the
number of rows and the number of columns.

70

4 – Low-Rank Approximation

Similarly, take the interface matrices:
X≤µ ∈ R(n1n2...nµ)×rµ

and
X≥µ+1 ∈ Rrµ×(nµ+1nµ+2...nd)

as:
X≤µ(irow, j) =

∑
k1,...,kµ−1

U1(1, i1, k1) . . .Uµ(kµ−1, iµ, j)

and
X≥µ+1(j, icolumn) =

∑
kµ+1...kd−1

Uµ+1(j, iµ+1, kµ) . . .Ud(kd−1, id, 1),

where irow and icolumn are given by:

irow = 1 +
µ∑
ν=1

(iν − 1)
ν−1∏
τ=1

nτ

icol = 1 +
d∑

ν=µ+1
(iν − 1)

ν−1∏
τ=µ+1

nτ

As a result,
X<µ> = X≤µX≥µ+1, µ = 1, ..., d− 1.

Notice that these matrix factorisations are nested, so that, for instance:
X≤µ = (Inµ ⊗X≤µ−1)UL

µ , with UL
µ = U<2>

µ ,

and
XT
≥µ = UR

µ (XT
≥µ−1 ⊗ Inµ), with UR

µ = U<1>
µ .

One thus has:
vec(χ) = X≤d = (Ind ⊗X≤d−1)UL

d

= (Ind ⊗ ((Ind−1 ⊗X≤d−2)UL
d−1))UL

d

= (Ind ⊗ Ind−1 ⊗X≤d−2)(Ind ⊗ UL
d−1)UL

d

= . . .

= (Ind ⊗ Ind−1 ⊗ . . .⊗ In2 ⊗ UL
1) . . . (Ind ⊗ UL

d−1)UL
d .

By construction and definition of tensor-train rank, the TT rank of the tensor is
bounded from below by the ranks rµ of the unfolding matrices X<µ>, µ = 1, . . . , d.
In addition it can be shown, Oseledets (2011), that TT-ranks not higher than rµ
can be achieved with TT decomposition (4.1).
Theorem 4.1.1 (Theorem 2.1 in Oseledets (2011)). If for each unfolding matrix
X<k> of form (4.2) of a d-dimensional tensor χ

rankX<k> = rk,

then there exists a decomposition (4.1) with TT-ranks not higher than rk.

71

4 – Low-Rank Approximation

The proof allows for the construction of an algorithm (described in Algorithm
10) implementing truncation in TT format and is reported hereunder.

Proof. The first unfolding matrix has rank r1 and can hence be decomposed as:

X<1> = U1X̃
<1>

with U1 ∈ Rn1×r1 and X̃<1> ∈ Rr1×n2...nd .
As a result

X̃<1> = (UT
1 U1)−1UT

1 X
<1>

and U1 is the first TT core U1. In addition, one has X≥2 = X̃<1>.
Replicating the reasoning presented a few lines above we have:

X≤2 = (In2 ⊗X≤1)U<2>
2 ,

so that:

X<2> = X≤2X≥3 = (In2 ⊗X≤1)U<2>
2 X≥3

= (In2 ⊗X≤1)X̃<2>.

The second TT core is given by U<2>
2 via a suitable reshaping. In turn, U<2>

2 can
be derived by decomposing X̃<2> as done for X̃<1>. Notice that:

rank(X̃<2>) = rank(X<2>),

since by assumption rank(X<2>) = r2 and X≤1 = U1 is full column rank.
The reasoning can be iterated to obtain all the cores as well as:

vec(χ) = (Ind ⊗ Ind−1 ⊗ . . .⊗ In2 ⊗ UL
1) . . . (Ind ⊗ UL

d−1)UL
d .

The proof can be implemented as an algorithm constructing the TT decomposi-
tion in order to approximate a given tensor in TT format: it is shown in Algorithm
10.

4.2 Manifold Optimization

One aims at solving the problem:

min
X∈Mr

f(X)

whereMr is a manifold of rank-r tensors. In order for the iterates to remain on the
manifold one has to modify traditional optimisation algorithms such as line search
or Newton’s.

72

4 – Low-Rank Approximation

Algorithm 10: Truncation in TT Format

Input:
χ ∈ Rn1×...×nd

target TT rank r1, ..., rd−1.
Output:

TT cores Uk ∈ Rrk−1×nk×rk defining the TT
decomposition.
Initialise

r0 ← 1
rd ← 1
χ ∈ R1×n1×...×nd

end
For k = 1, . . . , d− 1

X<2> ← reshape(χ, rk−1nk, nk+1 . . . nd)
X<2> ≈ UΣV T of rank rk
Uk ← reshape(U, rk−1, nk, rk)
χ updated via X<2> ← UTX<2> = ΣV T

end
Ud ← χ
Return U

Manifold

We say that a subset M of Rn is a manifold of dimension m if every point X ∈
M is contained in an open subset U of M that can be parametrised by some
function ϕ : Ω ⊂ Rm → U , ϕ being a homeomorphism and with injective first
derivative (see Gallier (2018) for a more rigorous definition). We say that ϕ is a
local parametrisation ofM at X and that ϕ−1 : U → Ω is the local chart.
As an example, GL(n,R) is a manifold: indeed, it is an open subset of Rn2 , as it is
the inverse image of the determinant mapping, which is continuous.

Tangent Space

Given a smooth curve
γ : R→M,

with x = γ(0), γ′(0) is called a tangent vector at x.
The tangent space TxM is the set of all tangent vectors at x and we call the tangent
bundle TM the disjoint union of all tangent spaces.

Retraction

A mapping R:
R :

⋃
x∈M

TxM→M,

73

4 – Low-Rank Approximation

where R : (x, ξ) 7→ Rx(ξ), is called a retraction on M if for every X0 ∈ M there
exists a neighbourhood U around (X0, 0) ∈ TM such that:

• U is in the domain of R and R restricted to U is smooth;

• the retraction on a point on the manifold is the point itself; restricted to the
zero section is the identity on the first variable.

• the retraction does not act on the direction of curves. Namely, if ξ is a tangent
vector in TxM and one takes a curve γ : β 7→ Rx(βξ), then γ′(0) = ξ.

Riemannian Gradient

Consider v ∈ TxM and γ : (−ε, ε)→M such that γ′(0) = v.
In addition take a smooth function:

F :M→ R.

Define then:
DF (x)[v] = d

dt

∣∣∣∣∣
t=0
F (γ(t)).

When each element of the tangent space is endowed with a smoothly varying inner
product, the manifold M is said to have a Riemannian structure. In the case at
hand we can restrict the canonical scalar product in Rn to obtain such a structure.
If this is the case, the Riemannian gradient of a smooth function f : M → R at
point x ∈M is defined as the unique element ∇Rf ∈ TxM such that:

〈∇Rf(x), ξ〉 = Df(x)[ξ] ∀ξ ∈ TxM.

Line Search and Extensions

In the simple Euclidean case, an optimisation problem of the type:

min
x∈Rn

f(x)

can be tackled by line search, i.e. by iteratively solving:

min
α
f(xj + αηj)

for a search direction ηj and step size α, so as to set:

xj+1 = xj + αηj.

This is problematic on a manifold as addition is not well defined. What one can do
is to move along the tangent space and go back to the manifold via retraction.

74

4 – Low-Rank Approximation

4.3 Completion Algorithm

The completion problem consists of retrieving the entries of a tensor, when only a
small fraction of them are known. A possible solution can involve the assumption,
which is then to be verified, that the tensor exhibits a low-rank structure, namely
that it can be approximated closely enough by a lower-rank tensor than the tensor
itself.
Define first the projection onto a set Ω:

PΩ : Rn1×...×nd → Rn1×...×nd

as:

PΩX =
Xi1,...,id if (i1, ..., id) ∈ Ω

0 else
,

where Ω is a sampling set, Ω ⊂ {1, .., n1} × . . . × {1, .., nd}, containing the indices
of the known entries of the tensor.
The completion problem can thus be formulated as:

min
χ

f(χ) = 1
2 ||PΩχ− PΩA||2F (4.3)

subject to χ ∈Mr := {χ ∈ Rn1×...×nd | rankTT = r},

with A original tensor and χ its approximation.
SinceMr, the set of TT tensors with given TT ranks, is a smooth manifold, Rieman-
nian optimisation techniques can be applied. Specifically, and following Steinlechner
(2016), a Riemannian conjugate gradient method (CG) is applied. Thanks to re-
traction, iterates produced by the algorithm at each step stay on the manifold.
The algorithm moves in directions which depend on the Riemannian gradient and
reaches new points which are brought back into the manifold via retraction: it is
shown in Algorithm 11.
In the algorithm, Txk−1→xk refers to the vector transport, which addresses the prob-
lem of bringing the the point in the previous iteration to the tangent space of the
new point so as to make the two directions compatible.
In addition, the Riemannian gradient, denoted as ∇R in the algorithm, is obtained
by the projection of the Euclidean gradient onto the tangent space – for a more
rigorous statement and proof, see Absil, Mahony and Sepulchre (2008). In other
words, one needs to set:

∇Rf(X) = PTXMr∇f = PTXMr(PΩX − PΩA).
The Riemannian Conjugate Gradient Algorithm is brought to a halt when a desired
level of accuracy is attained, compatibly with the TT ranks. A test set is chosen of
index points ΩC not in Ω and the error is evaluated both at these points and at Ω.
One computes:

εΩ(χk) = ||PΩA− PΩχk||
||PΩA||

.

75

4 – Low-Rank Approximation

Algorithm 11: Completion by CG

Input: Ω, PΩX.
Output: X, completed tensor.
Initialise

X0 ← initial guess
ξ0 ← ∇Rf(X0)
η0 ← −ξ0
α0 ← argminαf(X0 + αη0)
X1 ← R(X0, α0η0)

end
For k = 1, 2, . . .

ξk ← ∇Rf(Xk)
ηk ← −ξk + βkTxk−1→xkηk−1
αk ← argminαf(Xk + αηk)
Xk+1 ← R(Xk, αkηk)

end
Return Xk+1

When the error stagnates, i.e.,

|εΩ(χk)− εΩ(χk+1)|
|εΩ(χk)|

< δ

and
|εΩC (χk)− εΩC (χk+1)|

|εΩC (χk)|
< δ

the algorithm stops, with δ > 0 small number.
The ranks which determine the optimisation problem are set adaptively: one starts
with the simplest possible rank structure, namely (r0, . . . , rd) = (1, . . . , 1), and.
if the desired accuracy is not attained, the rank is increased to (r0, . . . , rd) =
(1, 2, 1, . . . , 1) and so on, until increasing the ranks does not lead to improved accu-
racies.
As for the test set Ω, following Glau, Kressner and Statti (2019), starting for a set
of given size, this is added to the set Ω whenever the stopping criterion on the test
accuracy is not satisfied. After adding the new samples, the algorithm is run again
until a sampling percentage is reached, as shown in Algorithm 12.
The algorithm implementation used in this work is contained in the Matlab pack-
age developed by Steinlechner, for which see Steinlechner (2016), and extended by
Statti, as shown in Glau, Kressner and Statti (2019).

76

4 – Low-Rank Approximation

Algorithm 12: Adaptive Sampling Strategy

Input:
rmax maximum rank admitted
PΩA sample points on the tensor
p maximal percentage of the size of Ω

Output: χ, completed tensor of TT ranks rµ ≤ rmax.
Initialise

Ωnew
C test set

end
Perform adaptive rank strategy and obtain completed tensor χC .
errnew ← εΩnew

C
(χk)

while |Ω|/size(A) < p
errold ← errnew
χ̄← rank(1, . . . , 1) approximation of χC
Ωold
C ← Ωnew

C

Create new test set Ωnew
C such that Ωold

C ∩ Ωnew
C = ∅

Ω← Ω
⋃

Ωnew
C

Perform adaptive rank strategy and obtain completed tensor χC
starting from χ̄.
errnew ← εΩnew

C
(χk)

if stopping criterion
break

end
end
Return χ← χC

77

Chapter 5

Learning Methodology

This section describes the steps taken to learn prices on a hyper-rectangle of the
parameters of interest. Learning is performed by means of neural nets and is su-
pervised. This means that for the algorithm to learn a pricing function, a dataset
containing inputs and outputs has to be provided. The learning process will be such
that the algorithm learns how to construct a function which maps inputs – option
and model parameters – into the right outputs, the price.
In order to achieve this, the following steps need to be implemented, both in the
case of basket and of American options:

• construct a dataset of parameters’ values and corresponding option prices as
follows:

1. generate different combinations of parameters;
2. compute the price for each combination of parameters with the benchmark

numerical method, that is Monte Carlo with a variance reduction technique
for basket options and PDE for American put options;

• construct a neural net architecture;

• input the dataset to the neural net and learn the pricing function through the
training of the neural net;

• test the pricing function on fresh data.

Each of the previous points poses some challenges, which are discussed in order.

First of all, the definition of the grid on which prices are computed. Our initial
approach consists of picking evenly spaced points on the interval of interest for each
of the parameters, so that the hyper-rectangle of parameters would look, if it were
in two dimensions, similar to that represented in Figure 4.4a. This can be a possible
choice for neural nets, but it usually leads to poor results when applying polynomial
interpolation methods, whose accuracy depends crucially on the loci of the points.
Other possibilities for the choice of the grid will be presented later: we will examine

78

5 – Learning Methodology

the performance when Chebychev points are employed and then turn to random
points. The latter choice is crucial when one needs to move from learning from
computed prices (via a benchmark technique) to learning from real data.
Notice that the flexibility in the choice of the points – as well as flexibility in general
– is an advantage of the neural-net approach compared to other methods: polyno-
mial methods, for instance would in all likelihood not be able to handle real data
points, as convergence would be poor for prices selected randomly on the space of
parameters.

In addition, the construction of the dataset can prove painfully slow. On the one
hand, a good number of points has to be provided to the neural net in order for
the learning to be successful. On the other hand, however, computing the prices for
each of the parameters’ combinations is expensive. This is especially true for Monte
Carlo-based approaches, which require a good number of data points, and less so
for the PDE solution, which can be computed faster exploiting efficient solutions of
the systems of equations and sparse representation of matrices.
While this does not make the process infeasible in our initial setting, and it will
not in yet more complex ones, when striving to work in very high dimensions other
solutions should be conceived. This is due to both time and memory constraints,
which become binding as the dimensions of the problem scale up. These issues will
be discussed in Chapter 6, where this thesis introduces a novel approach based on
the construction of an approximated synthetic dataset. By doing so, it will be pos-
sible to speed up the data generation process and overcome the limitations posed
by memory.

A further element to be discussed is the architecture of the network, which fun-
damentally requires trial and error. As mentioned in Chapter 3, one has to try with
different combinations of values for the number of hidden layers, of hidden nodes, of
learning rate and with different regularisation techniques. Choices will be presented
and motivated in the following sections.

The current chapter describes the learning methodology and results for the basket
option case in Section 5.1, where two different types of grids are presented as training
data, namely the evenly-spaced one and the Chebychev grid. Section 5.2 shifts the
focus to American option, trained on equally-spaced points. For American options,
we also consider taking more nodes for those parameters which seem to be more
correlated with the option price: results are shown in Paragraph 5.2.1. Final remarks
on the neural networks follow in Section 5.3.

79

5 – Learning Methodology

5.1 Basket Options

Basket options were discussed in Chapter 2.1. The approach followed in this thesis
to obtain prices for the intervals of interest for each parameter consists of generating
prices on the grid of parameters as described in the previous sections and using them
to train the neural network.
The network architecture was chosen after several trials, together with cross vali-
dation techniques for some of the parameters of interest, namely the learning rate
and the number of hidden nodes. Although the results of cross validation for the
choice of parameters may vary sensibly depending on the network architecture, cross
validation was used to form a general idea of the behaviour of the multi-layer per-
ceptron with respect to the parameters.
We aim at learning a pricing function which takes as input the initial price of five
underlying assets and yields the basket option price. The problem can be formalised
as having to learn a function f such that:

f : [1, 1.5]5 → R+

f :
(
S

(0)
1 , S

(0)
2 , S

(0)
3 , S

(0)
4 , S

(0)
5

)
7→ price = f

(
S

(0)
1 , S

(0)
2 , S

(0)
3 , S

(0)
4 , S

(0)
5

)
.

Notice that, in fact, the parameters r, Σ, σ, T and K are fixed, so that:

f = fr,Σ,σ,T,K ,

r being the risk-free rate, Σ the correlation matrix between the assets, σ the vector of
volatilities for the assets, T the maturity of the option andK the strike price. Hence,
one can easily understand that the problem can be further extended to include
explicit dependency of the pricing function f on all the parameters mentioned. This
would further increase the dimensions of the problem, calling for other solutions in
terms of the data generation and the storage of the training set: one such solution
will be presented and discussed in Chapter 6.
The values of the parameter are summed up for the sake of clarity in Table 5.1.

Table 5.1: Parameters in the basket option problem

Value or value range

S
(i)
0 , i = 1, . . . d [1,1.5]
d 5
ρ [-1,1]
σ 0.2
Σ Id
T 0.25
r 0

80

5 – Learning Methodology

In Table 5.1 we denoted as Id the identity matrix of size d× d and as d the number
of underlying assets in the basket. The assets are taken to be uncorrelated. Further
experiments will present results where the correlation matrix between the assets is
different from the identity.
Training was performed with the use of a validation set to monitor the behaviour
of the net throughout the iterations: one typically observes that accuracy on the
training set, which affects directly the training process of the net, practically always
goes down during the training phase, before becoming stationary. The introduction
of a validation set helps detect overfitting. Indeed, the net will try to adhere to the
training points in order to improve performance, to the detriment of generality. For
this reason, the training performance will improve, but evaluating the net on fresh
points will reveal poorer results whenever the number of training iterations increases
disproportionately. Hence, monitoring performances on a fresh validation set can
suggest when to stop the training phase so as to prevent overfitting. In addition,
the algorithm is written so as to store the best-performing model attained, based on
validation results. By doing so, when overfitting occurs, one is able to retrieve the
best model previously obtained.
Figure 5.1 shows graphically how monitoring was performed: as one can see, both the
validation and the training errors are decreasing during the training phase. When
this is not the case, the model might be tending to overfit.

Figure 5.1: Values for train and validation errors across the epochs of the training phase.

The architecture of the neural net for basket options trained on an evenly-spaced
grid is summarised in Table 5.2 and shown in Figure 5.2, as the small size allows for
its complete representation. This is also the reason why the training of the neural
net is extremely fast, as a good performance is achieved after a few seconds (≈ 20s).

81

5 – Learning Methodology

Table 5.2: Neural network architecture for basket options – evenly-spaced grid

Input Size Output Size

Linear 5 10
Sigmoid
Linear 10 7
Sigmoid
Linear 7 5
Sigmoid
Linear 5 1
ReLU

The net consists of alternating linear and sigmoid units, with the exception of the
last layer, which features a rectified linear unit: this last step is paramount in order
to ensure that positive prices are attained.

Once the neural net has been trained, a test set is used to evaluate its performance.
A set of 1000 points is hence generated randomly on the parameter space, which is
taken slightly smaller than the parameter space itself in order to counteract border
effects. The model produced by the neural net is hence applied to each of the points
of the test set and the output is set against the benchmark price generated with
Monte Carlo to obtain the error. Then, some statistics are computed.
Errors are presented in Figure 5.3, together with their histogram. The left-hand
side panel shows the error on each sample of the test set, labelled on the horizontal
axis, while the histogram on the right-hand side is constructed with 100 bins. It is
easy to see that deviations from the Monte Carlo prices are heavily concentrated
around zero, with very few exceptions.

Denoting the prediction obtained by the neural net as ŷ and the true value generated
by the benchmark method (Monte Carlo in the basket case), the error metrics for
the neural net are computed as:

MSE = 1
N

N∑
i=1

(ŷi − yi)2;

MAE = 1
N

N∑
i=1
|ŷi − yi|,

MAPE = 1
N

N∑
i=1

|ŷi − yi|
yi

,

and
Maximum Absolute Error = max |ŷ − y|,

82

5 – Learning Methodology

S
(0)
1

S
(0)
2

S
(0)
3

S
(0)
4

S
(0)
5

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

x
(1)
5

x
(1)
6

x
(1)
7

x
(1)
8

x
(1)
9

x
(1)
10

x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

x
(2)
5

x
(2)
6

x
(2)
7

x
(3)
1

x
(3)
2

x
(3)
3

x
(3)
4

x
(3)
5

y

Input
layer

First Hidden
layer

Second Hidden
layer

Third Hidden
layer

Ouput
layer

Figure 5.2: Neural net architecture for the basket option problem.

83

5 – Learning Methodology

(a) Error for each point of the test set, indexed on
the horizontal axis (b) Histogram of the Error

Figure 5.3: Error values and histogram for basket option prices computed on test set by a neural net trained
on evenly-spaced points.

where the maximum is taken over the entire test set.
The error metrics are presented in Table 5.3. As one can see, in the worst-case
scenario the error only appears in the fourth digit. On average, the error only
affects the fifth digit.

Table 5.3: Error Metrics for basket options on evenly spaced points

Value

MSE 4.93e-10
Maximum Absolute Error 1.94e-4
MAE 1.68e-5
MAPE 7.85e-5

Lastly, it ought to be stressed that the deep-learning approach shows a significant
improvement in terms of speed with respect to Monte Carlo. Table 5.4 compares
the time needed to compute the value of one price with Monte Carlo and by means
of the ANN. The gain in speed is striking and of the order of 10000.

Table 5.4: Computation Time per basket option price in seconds

Neural Network Monte Carlo

Time 1.23e-7 2.54e-3

Lastly, notice that a confidence interval for the Monte Carlo method is in the order
of 10−4. This means that the deep-learning approach, because of what was seen in
Table 5.3, has the same degree of accuracy as the benchmark method.

84

5 – Learning Methodology

5.1.1 Using Chebychev Points

We know that Chebychev points lead to good convergence properties in the polyno-
mial approximation of functions. Hence, we want to empirically see if they present a
similar behaviour when they are used as points of the training grid for a multi-layer
perceptron.
In addition, Chebychev points will be used in the following Chapter 6 to experiment
with tensor completion and compression of the training set, so that this serves as a
preliminary exercise.
The Chebychev points on the interval [1, 1.5] are given by:

Pc = {1.0063, 1.0545, 1.1415, 1.25, 1.3585, 1.4455, 1.4937},

while an evenly spaced grid on the same interval results in:

Pe = {1.0000, 1.0833, 1.1667, 1.2500, 1.3333, 1.4167, 1.5000}.

As can be seen, Chebychev points tend to be more dense when moving further from
the mid-point. In addition, they cover a slightly smaller range of values.
The structure of the neural nets is in all respects identical to the previous exercise
(compare Tables 5.2 and 5.5), but for the activation function of the hidden layers,
which is in the Chebychev case taken as a rectified linear unit.

Table 5.5: Neural network architecture for basket options – Chebychev grid

Input Size Output Size

Linear 5 10
ReLU
Linear 10 7
ReLU
Linear 7 5
ReLU
Linear 5 1
ReLU

The errors for the Chebychev case are summarised in Table 5.6 and presented in
Figure 5.4. The plots show a good behaviour of the deviations from the Monte Carlo
prices, conveying the fact that the two approaches can be used equivalently and that
Chebychev points can substitute evenly-spaced grids for the training phase.

A comparison between the error metrics between the different choices of the grid
confirms that behaviours are similar in the two cases.

85

5 – Learning Methodology

(a) Error for each point of the test set, indexed on
the horizontal axis

(b) Histogram of the Error

Figure 5.4: Error values and histogram for basket option prices computed on a test set by a neural net
trained on Chebychev points.

Table 5.6: Error Metrics for basket options on different grids

Evenly
Spaced Chebychev

MSE 4.93e-10 4.98e-10
Maximum Absolute Error 1.94e-4 1.81e-4
MAE 1.68e-5 1.76e-5
MAPE 7.85e-5 7.75e-5

5.2 American Options

This section covers the practical case of American Options. The procedure is similar
to that being followed in the case of the basket options, although with a different
data generation process and slightly modified neural network architectures.
The goal is again to learn a pricing function for different ranges of the parameters.
In our case study, the parameters consist of the Heston parameters κ, θ, σ and ρ and
the option strike K. Maturity, initial price of the underlying, initial volatility and
risk-free rate are fixed, but could in principle be included in the learning process:
this would obviously scale up the dimensionality of the problem, and would probably
require a different data-generating scheme. Please refer to the following Chapter 6
for a possible way to tackle the problem.
To formalise the framework, we need to learn a pricing function f such that:

f : [2, 2.4]× [−1, 1]× [0.2, 0.5]× [1, 2]× [0.05, 0.2]→ R+

f : (K, ρ, σ, κ, θ) 7→ price = f (K, ρ, σ, κ, θ) .

86

5 – Learning Methodology

Notice that, since the parameters for maturity T , initial price S0 and initial volatility
v0 we should write in a more meaningful way:

f = fT,S0,v0,r.

The values of the parameter are summed up for the sake of clarity in Table 5.7.

Table 5.7: Parameters in the American option problem – Grid 1

Value or value range Number of points

K [2.0,2.4] 10
ρ [-1,1] 10
σ [0.2,0.5] 10
κ [1,2] 10
θ [0.05,0.2] 10
S0 2 1
v0 0.0175 1
T 0.25 1
r 0.1 1

The dataset was generated so as to include 10 evenly-spaced points for each parame-
ter, meaning that the size of the problem is 105. For each combination of parameters,
the price was computed as the numerical solution of the Heston PDE, adjusted to
encompass the American type of the derivative.
Training was performed, as in the basket option case, with a validation test to mon-
itor the tendency of the model to overfit. As one can notice, the dimensionality is
higher than for the basket option problem, and, as a result, the size of the network
is bigger, as shown in Table 5.8.

Table 5.8: Neural network architecture for American options

Input Size Output Size

Linear 5 50
ReLU
Linear 50 55
ReLU
Linear 55 50
ReLU
Linear 50 45
ReLU
Linear 45 1
ReLU

With respect to the previous case (compare with Table 5.2), one should notice an

87

5 – Learning Methodology

increase in the number of hidden nodes, as well as an extra hidden layer.
The errors, Figure 5.5a, and their distribution, Figure 5.5b, highlight a good be-
haviour of the neural net, although slightly weaker than in the basket case. In
particular, the histogram points to a satisfactory performance of the learning pro-
cess, with errors peaking around zero.

(a) Errors for each point of the test set, indexed in
the horizontal axis (b) Histogram of the Error

Figure 5.5: Error values and histogram for American option prices computed on test set by a neural net
trained on Grid 1.

Furthermore, Table 5.9, confirms intuitions from the graphical representations of the
errors, with metrics larger by approximately one order of magnitude with respect to
the basket case.

Table 5.9: Error Metrics for American put options

Value

MSE 1.37e-7
Maximum Absolute Error 1.55e-3
MAE 2.51e-4
MAPE 2.05e-3

Lastly, the computational time shows a significant improvement of the neural-net
approach with respect to the benchmark case. Results are shown in Table 5.10.

Table 5.10: Computation Time per American option price in seconds

Neural Network PDE

Time 9.52e-7 4.8e-1

88

5 – Learning Methodology

5.2.1 Other Choices for the Grid

Unlike the basket case, one might argue that in the American problem not all the
parameters are equally important in affecting the option price. To inspect this issue
we run a linear regression, which, however limited, can yield a first insight onto the
role of the parameters. Results are shown in Table 5.11 and hint at a predominant
contribution of the strike price K and of the long-term mean of the volatility θ in
explaining the derivative price.

Table 5.11: Linear regression of prices on the American option parameters

Dependent variable:
Price

K 0.480∗∗∗
(0.006)

ρ −0.001
(0.002)

σ −0.003
(0.016)

κ 0.008
(0.005)

θ 0.163∗∗∗
(0.031)

Constant −0.879∗∗∗
(0.016)

Observations 1,000
R2 0.866
Adjusted R2 0.866
Residual Std. Error 0.043 (df = 994)
F Statistic 1,289.280∗∗∗ (df = 5; 994)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.11 motivates a different choice for the grid of points than the one proposed
before now. Indeed, although still considering evenly-spaced points, we propose
rebalancing the weight from the parameters which show less correlation with the
option price to those which show more. This means shifting points from the grids
of ρ, σ and κ to those of θ and K. For the change to be of some use, the overall

89

5 – Learning Methodology

number of points should be comparable to that used in the previous case: in fact,
we manage to bring the number of points down by approximately 50% (see Table
5.12).

Table 5.12: Parameters in the American option problem – Grid 2

Value or value range Number of points

K [2.0,2.4] 24
ρ [-1,1] 6
σ [0.2,0.5] 6
κ [1,2] 6
θ [0.05,0.2] 10
S0 2 1
v0 0.0175 1
T 0.25 1
r 0.1 1

Results are satisfactory, with MSE down by one order of magnitude and MAE,
MAPE and maximum absolute error reduced by approximately one half, as can be
seen by Table 5.13.
The neural network architecture is a slight modification of that shown in Table 5.8.

(a) Errors for each point of the test set, indexed in
the horizontal axis (b) Histogram of the Error

Figure 5.6: Error values and histogram for American option prices computed on test set by a neural net
trained on Grid 2.

Figure 5.6 shows again performances that are slightly worse than in the basket case,
but with errors that are more densely distributed around zero than in the previous
choice of grid for the American problem. Haentjens and in ’t Hout (2015) show
that the accuracy of the benchmark ADI method is of the order of 1e − 3 in the
maximum norm, meaning that the new methodology is faster while confirming the

90

5 – Learning Methodology

Table 5.13: Error Metrics for American put options

Old Grid New Grid

MSE 1.7e-7 3.41e-8
Maximum Absolute Error 1.55e-3 7.61e-4
MAE 2.51e-4 1.30e-4
MAPE 2.05e-3 9.83e-4

same accuracy.

5.3 Remarks on the MLP architecture

The previous paragraphs showed that deep learning can be a precious resource and
a flexible tool in tackling the POP problem. Results were satisfactory in both the
basket and the American problem for different choices of the training grid. The
flexibility of this method, however, comes at a cost, which has to be measured in the
tuning of the neural net structure. Together with cross validation, trial and error
was used to obtain suitable parameters for the architecture of neural networks. This
section briefly discusses a few of the choices made.

• The mean-squared error was taken as loss function: as well as being a typical
choice in the literature, it is well-suited for gradient-based methods. However,
other cost functions are evaluated on a test set, namely the MAE and the
maximum absolute error.

• Adam was set as the optimiser.

• The learning rate was set as 1e − 3 at the beginning of training phase; then,
after approximately 10000 epochs, it was decreased to 1e− 4 and subsequently
to 1e − 5, for a larger number of epochs. The idea was to allow for a rapid
exploration of the parameter space, and then to identify the good parameters
by a more careful search in the domain. This is why the first phase is typically
faster, while the second one requires more epochs in order for the mean-squared
error to decrease.

• Dropout was described as a powerful resource against overfitting. However,
monitoring the error on training set and validation or test set showed that the
model does not tend to overfit. While the MSE goes down on the training
set, even though sometimes oscillations can occur due to a poor choice of the
learning rate, it does so also on the validation set. When this is not the case,
either because it stagnates or starts to move upwards, the learning process is
interrupted, and the best previous result is recovered from the best model that
was saved.
The lack of overfitting might be due to the fact that the dataset is large enough

91

5 – Learning Methodology

for the MLP architecture. Compared to those in the literature, the architectures
devised are limited in the number of hidden nodes and modest in the depth.
Indeed, when introducing a dropout rate, however limited and despite it being
only inserted on one or two hidden layers, the training process failed. This is a
feature which is also highlighted by Liu, Oosterlee and Bohte (2019), who put
it down to the sensitivity of the price to the input, which is for instance higher
than that to the pixels of an image.

• Batch normalisation did not seem to contribute to better training results, as
did not input standardisation.

• Regularisation by means of a penalty for the norm of the coefficients in the
cost function tended to slow down the learning process, without introducing
significant improvements in the loss.

92

Chapter 6

Learning via an Artificial Dataset

This section proposes a further extension to the neural-net approach. We discussed
how neural nets are successful in tackling the parametric option pricing problem, in
that they can learn a function which generalises prices on a given grid. We showed
different metrics describing the behaviour of the model on fresh data and started
to observe that several factors intervene in determining how successfully a model
performs.
To begin with, the size of the training set proves crucial, as the multi-layer percep-
tron fails to generalise when not enough cases are provided for it to learn from. At
the same time, inputting more data points is expensive, which is the reason why the
thesis was aimed at finding a method not to entirely compute them with traditional
approaches in the first place.
Furthermore, the problem is inherently multi-dimensional, which means that in-
creasing the number of nodes implies an exponential increase of the dimensionality
of the problem; not to mention the fact that we might want to consider higher-
dimensional cases notwithstanding the number of points we strive to funnel into the
neural net. For instance, in the case of a basket option, the finance industry can be
interested in offering a derivative contract whose number of underlying assets is 25
instead of 5, which was the case described in Chapter 5.1.
These are some of the issues practitioners can face and this chapter is devoted to
proposing a general and viable solution to them. Section 6.1 motivates the need for
larger training sets, while the following 6.2 explains why an approximated dataset,
which we label as synthetic, can be of use in this and other types of applications.
Paragraphs 6.3 and 6.4 revisit the examples presented in the previous chapter in the
light of the synthetic approach, showing that to work with a dataset obtained by ten-
sor completion would not make practitioners worse off. The same approach is tested
on random grids rather than on evenly-spaced ones in Section 6.5. Lastly, Section
6.6 of this thesis shows how to apply both tensor completion and tensor compression
to handle problems in higher dimensions. By storing the approximated tensor in
TT format, we can train neural nets from huge tensors and achieve adequate error
metrics dodging the curse of dimensionality.

93

6 – Learning via an Artificial Dataset

6.1 The case for a larger dataset

Consider the American option problem on an evenly-spaced grid consisting of the
same number of points along each dimension.
Figure 6.1 shows how the mean-squared error varies with the number of points on
the grid. In particular, three different datasets where generated with 6, 8 and 10
nodes for each parameter and several neural nets were trained on them. Next, the
models were evaluated on a test set and the metrics of interest were computed. The
figure points to a clear advantage of a larger dataset, with the mean-squared error
going down by one order of magnitude from the 6 to the 10-node case. However,
the difference in the number of points in the two cases is not negligible, as we move
from 65 = 7776, through 85 = 32768 to 105 = 100000, the latter demanding a good
couple of hours to be generated on a standard machine.

Figure 6.1: Variation of the MSE for different sizes of the grid in the American option problem.

In addition, the problem might grow in size even when leaving the number of
nodes per parameter fixed. This occurs when one would like to expand the parameter
space in the POP problem – for instance by including different values of r and/or
different maturities T to the set of varying parameters – or add more assets in the
basket. Under this circumstances, we would witness an exponential growth in the
number of points, which would hinder the feasibility of the process.

6.2 The case for a synthetic dataset

In the cases described above it might be impractical to retrieve all the points via the
benchmark method or even impossible. Indeed, one could face the problem where
generating more data is too expensive in terms of time or where data are scarce.
The latter case arises in particular with real data for more exotic options: in this
context, prices are not always widely available, and all the more so for the different
values of the many parameters of interest.

94

6 – Learning via an Artificial Dataset

Even when one would rather have the full tensor of prices computed with the bench-
mark method, however lengthy its generation, it might still be important to start
work with a preliminary and fast solution.
Lastly, practitioners might find themselves working with too large a dataset and
impossible to store or manipulate with the use standard machines. In these cases,
a possible idea can be that of working with approximated and possibly compressed
tensors. Tensor completion was described in Chapter 4 and is used here as an in-
termediate step before learning the pricing function via a neural net. Specifically,
the completion algorithm is used to approximate the tensor and store it in the com-
pressed TT format.
The proposed pipeline is hence the following:

• starting from few data points – i.e. only few entries of the tensor – approximate
the tensor of prices and obtain a completed tensor;

• use the approximated tensor to train the neural net. The completed tensor can
be handled in two ways, based on the context:

– the full tensor can be retrieved from its compressed version, if the dimension
of the problem allows to store all the data;

– alternatively, it is possible to work with the compressed tensor in TT for-
mat.

Both possibilities are explored in the remainder of this chapter.

The process of learning the tensor before learning the pricing function can be seen as
a form of bagging, as it is in some respects a combination of two learning methods:
at first one tries to form an educated guess – via tensor completion – of the tensor
entries, and then to extend the learning process – via a neural net – to the entire
parameter space.
We know from Glau, Kressner and Statti (2019) that tensor approximation works
well on a Chebychev grid: in the paper, the authors compute option prices via a
compressed representation of the Chebychev tensor and perform polynomial inter-
polation by means of tensor-train products.
As we showed in the previous Chpater, and recalling Table 5.6, it is possible to use a
Chebychev grid to train the neural net, as the equally spaced and Chebychev points
showed a similar behaviour in terms of the error metrics: we will, however, extend
the argument to other possibilities by considering different cases. Specifically, we
want to shift the focus so as to encompass in this discussion:

• a general grid instead of a Chebychev one;

• the approximated tensor, both full and compressed, as the training set for the
supervised learning process.

95

6 – Learning via an Artificial Dataset

6.3 Basket Options

The procedure is experimented on the basket option case where an approximated
tensor is used instead of the full one. The tensor in the example consists of a five-
dimensional grid with 7 evenly-spaced points on each dimension. Results (see Table
6.1) are encouraging: when compared to the full tensor, a network trained on the
approximated tensor shows similar error statistics.

(a) Errors across the 10000 samples of the test set,
indexed on the horizontal axis. (b) Histogram of the Error

Figure 6.2: Error values and histogram for basket option prices computed on a test set by a neural net.
The training dataset was obtained by tensor completion.

Figure 6.2 confirms the results summarised in the previous table, with errors hardly
ever reaching the fourth decimal digit. The plot of the errors highlights the fact
that exceptions in the size of the error are limited and infrequent.

Table 6.1: Comparison of metrics for full and approximated tensor in the basket case

Real Data Artificial Data

MSE 4.93e-10 6.70e-10
Maximum Absolute Error 1.94e-4 3.39e-4
MAE 1.68e-5 2.23e-5
MAPE 7.85e-5 1.02e-4

6.4 American Options

The same experiment is performed in the case of American options, with equally
satisfying results. The errors are reported in Table 6.2 and suggest that the differ-
ences in the values might be due to the stochasticity of the training process rather
than to the quality of the training data.
Indeed, while the values are comparable in terms of order of magnitude between real

96

6 – Learning via an Artificial Dataset

and synthetic data, the MSE favours real data, while the MAE synthetic ones.
Figures 6.3a and 6.3b are also comparable to their real analogue, for which one
should go back to the previous section.

(a) Errors across the 1000 samples of the test set,
indexed on the horizontal axis (b) Histogram of the Error

Figure 6.3: Error values and histogram for American option prices computed on a test set by a neural net.
The neural net was trained on a tensor obtained by tensor completion.

Table 6.2: Comparison of metrics for full and approximated tensor in the American case

Real Data Artificial Data

MSE 1.7e-7 6.12e-7
Maximum Absolute Error 1.55e-3 4.84e-3
MAE 2.05e-3 3.52e-3

6.5 Random Grid

The current paragraph is devoted to studying the behaviour on a random grid. The
main reason for doing so is to show that a dataset can be extended when only few
random observations are available: needless to say, this is not always guaranteed to
lead to optimal results, but it proves fairly adequate in our case.
We remark that this approach goes beyond the mere learning of a pricing function,
and can potentially be applied to different contexts where one seeks to construct a
grid from the few available observations.
In our case, it is of special interest when working with real data, which are naturally
scarcer for exotic options. To test the effectiveness of this idea, we consider a ran-
dom grid, as we expect that parameters of real-life options are randomly distributed
on the parameters space. At any rate, an application would involve few points with
given parameters’ values and their relative price: we model this setting by taking
few random points on the parameter space and completing the tensor by means of

97

6 – Learning via an Artificial Dataset

the completion algorithm, ensuring a prescribed accuracy is maintained.
Figure 6.4 shows that the accuracy of the approximation approaches 10−4 on the
test set, meaning that the completion algorithm produces a reasonable result.

Figure 6.4: Relative error on varying test sets for different sampling set sizes as percentage of the size of
the full tensor in adaptive sampling strategy – random grid case.

The setting proposed mimics the situation where one finds him/herself with some
option prices and wants to build a full grid starting from the few ones available.
The constructed full grid is then used to train the neural net, either in a full or in
a compressed format.
Results are shown graphically in Figure 6.5 and in Table 6.3 and are promising, as
they suggest that adopting a synthetic dataset is not to the detriment of the learning
process, even when the grid has a random structure, rather than the regular one
seen in the previous case studies.

Table 6.3 compares and sums up the main cases hitherto considered for the training
grid: the full tensor of evenly-spaced points entirely computed via the benchmark
method, the same tensor, but achieved via tensor completion, and lastly the com-
pleted tensor of a grid with a random structure.
The errors metrics are on average in line with those obtained by the tensor of real
and of synthetic data, meaning that the new pricing methodology can be extended
to the cases mentioned earlier.

98

6 – Learning via an Artificial Dataset

(a) Errors across the 1000 samples of the test set,
indexed on the horizontal axis (b) Histogram of the Error

Figure 6.5: Error values and histogram for basket option prices computed on a test set by a neural net.
The neural net was trained on a random and approximated tensor.

Table 6.3: Error Metrics – Basket Case

Real Data Artificial Data Random Grid

MSE 4.93e-10 6.70e-10 2.91e-9
Maximum Absolute Error 1.94e-4 3.39e-4 1.52e-4
MAE 1.68e-5 2.23e-5 4.52e-5
MAPE 7.85e-5 1.02e-4 1.69e-4

6.6 Scaling Up

Until now, this work has showed that deep learning can be used to tackle the para-
metric option pricing problem.
In Chapter 5 we constructed a full tensor of prices which was used as a training
set to a neural net which had to learn a pricing function on the hyper-rectangle of
parameters.
The first part of Chapter 6 performed a similar task, with the full tensor of prices
replaced by a full tensor of approximated prices obtained by tensor completion. We
showed in the experiments that results were only slightly worse, or comparable,
when the compressed approximated tensor was used instead of the real one.
However, the examples considered before have not fully exploited the tensor-train
decomposition described in Chapter 4. The dimensions of those problems still al-
lowed to make use of the full tensor of prices even with standard machines. For
instance, the basket problem involved a tensor of order 5, with 75 entries, while the
American-option case was based on a 5-order tensor and 100000 entries. As a result,
it was still possible to vectorise the full tensor in a one-dimensional vector of prices
and a matrix of parameters.
This procedure quickly becomes unfeasible when the number of parameters scales
up and the remainder of this chapter is devoted to devising a solution to the curse of

99

6 – Learning via an Artificial Dataset

dimensionality. Indeed, when the tensor is of higher orders, memory requirements
become dominant and demand for a different encoding of the data. In this thesis,
the TT decomposition is presented as one possible way to overcome such problem.

The example studied in the following consists of learning a pricing function for
a basket option with 15 and 25 underlying assets. It is easy to understand that
memory constraints do not allow to directly store the full tensor of prices. When
one considers a grid of five points in the interval of interest, this corresponds to a
training tensor of 515 = 30517578125 = O(1010) entries in the problem of order 15.
The RAM requirement is of 244 GigaBytes, which makes the problem intractable
on standard machines.
Solving this issue requires a slightly different formulation of the solution concept
than the one which was used in dimension five.
Specifically, the key changes regard:

• the tensor encoding;

• the training of the neural network.

As far as the training tensor is concerned, we represent the tensor in TT-format.
While previous applications involved computing the approximated tensor in TT for-
mat and then vectorising the full tensor to obtain a vector of prices, the extension of
the method does not retrieve the full tensor, but relies on its approximation stored
in TT-format.
The TT-format allows to have a representation of the tensor without the memory
burden which having the full tensor would entail. In addition, the entries of the
tensor – the prices for a combination of parameters – are obtained by the product
(4.1), a matrix multiplication which can be easily parallelised.

As far as the second modification of the solution structure is concerned, the
method involves inputting small batches of the tensor entries (computed via (4.1))
to the neural network. Each epoch hence consists of the training process going
through a small sample of the data, and a new subset is retrieved when a new epoch
begins. The memory requirements hence vanish, as few of the tensor entries are
computed when the training phase needs them. In the example of order 15, the
subsets of data were taken to be of size 10000, which is roughly 107 times less than
the size of the full tensor. Within each subset of the data, mini-batches were taken
to solve the problem of the minimisation of the loss via the gradient-based Adam
method.

When compressing the tensor in TT format, it is of utmost importance to ensure
that the quality of the approximation is adequate. This is measured by resorting
to a test set, as described in the Completion Algorithm with Adaptive Sampling
Strategy (see Algorithms 11 and 12).

100

6 – Learning via an Artificial Dataset

We consider as an example the cases of basket options with 15 and 25 underlying
assets. Notice that the tensors associated with these problems are huge and would
be intractable without some form of dimensionality reduction. As mentioned, the
tensors are compressed, and the training process exploits sampling and the TT-
format of the tensor. Despite a predictable slowdown in the training process with
respect to the lower-dimensional cases, we will show that the performance of the
neural network is comparable and the completion is satisfactory.
Figures 6.6a and 6.6b show the evolution of the error on a varying test set across the
different iterations of the algorithm for the completion of an order-15 and order-25
tensor, respectively.

(a) Order 15 (b) Order 25

Figure 6.6: Relative error on varying test sets for different sampling set sizes in adaptive sampling strategy
– tensors of order 15 and 25. The size is expressed as a percentage of the size of the full tensor.

The Tables 6.4 and 6.5 sum up the characteristics of the completion process for the
basket tensors of order 15 and 25. Notice that the completion of the tensor takes
place in a reasonable amount of time, in both cases, as shown in the third column.
In addition, and more importantly, the amount of memory needed in the two cases
decreases strikingly. We defined the compression ratio as the ratio of the points
needed for the accuracy to achieve the desired level to the size of the full tensor: the
value for this quantity is in the order of 10−8 for the case with 15 underlying assets
and 10−14 for that with 25 The compression ratio can be computed as the ratio of the
second column to the fourth column. The second column of the tables show the final
size of Ω, namely the number of points needed to achieve an adequate approximation
of the full tensor. The memory requirements – in terms of the number of points to
be stored – are featured in the last two columns and are computed as follows:

• full storage sf :
sf = 8nd

101

6 – Learning via an Artificial Dataset

• TT storage st:

st = n(r1r2 + · · ·+ rd−2rd−1) + n(r1 + rd−1),

where the last term accounts for the last and the first tensors, which present
one less dimension. To go from the number of nodes to the size of RAM needed
it suffices to multiply the numbers by 8.

Lastly, the second row details the TT-ranks obtained in the completion process.

Table 6.4: Completion Results for the order-15 tensor.

Compression Ratio Final Size Time Completion Full Storage TT Storage

3.5062e-08 1070 71.53s 30517578125 410

TT Ranks: 1 3 2 2 2 3 2 3 3 3 3 2 2 2 2 1

Table 6.5: Completion Results for the order-25 tensor.

Compression Ratio Final Size Time Completion Full Storage TT Storage

1.3999e-14 4172 100.51s 298023223876953152 925

TT Ranks: 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 3 3 2 2 3 1

The accuracy of the completion measured on the test set is also satisfactory, being
in the order of 10−7 in the 15-asset problem and in the order of 10−9 for the 25-asset
problem. Detailed results are reported in Table 6.6, which shows the relative error
attained in the last iteration for the two case studies.

Table 6.6: Accuracy results for the basket tensors.

Order 15 Order 25

Relative Error 6.61e-07 2.77e-09

The error metrics are collected in Table 6.7, which shows a comparison of the results
for the three problems considered – of orders 5, 15 and 25, although, for the sake
of brevity, the completion results were not gathered in a table, as the magnitude of

102

6 – Learning via an Artificial Dataset

the compression is less striking.

Table 6.7: Error metrics for the higher-order basket problems.

Order 5 Order 15 Order 25
Order 25

Uncorrelated
Assets

MSE 3.08e-7 3.41e-08 8.61e-9 1.92e-8
Maximum Absolute Error 1.65e-3 5.16e-4 2.89e-4 3.85e-4
MAE 4.5e-4 1.56e-4 7.46e-5 1.12e-4
MAPE 4.5e-4 6.36e-4 3.13e-4 4.56e-4

To begin with, observe that the dimensionality no longer represents a bottleneck in
the training process. In addition, the increased number of points does not result in
lower performance metrics. As seen in previous examples, the error in the worst-case
scenario still enters after the fourth digit. Mean-squared error is also decreasing with
the order of the problem, and is in the order of 10−7, 10−8 and 10−9 for the orders
5, 15 and 25 respectively. This is due to the fact that the increased size of the data
results in a better accuracy of the model rather than hindering the learning process.
As a last remark, we also consider the case where the assets’ dynamics exhibits a
correlation. Introducing a covariance in the processes does not impact severely on
the performance metrics of the neural net, as shown by the last column of Table 6.7.
The neural network architecture consisted of four hidden layers and 75 hidden nodes
for each of them.
The plot of the errors is shown in Figure 6.7 for the order-25 problem. Although
the peak around zero is less striking than in previous plots, the absolute numbers
still look adequate, highlighting that the learning process proceeded successfully.

(a) Errors for each point of the test set, indexed in
the horizontal axis (b) Histogram of the Error

Figure 6.7: Error values and histogram for the order-25 basket option prices computed on a test set.

103

Chapter 7

Conclusions

The first part of this work consisted of employing different computational methods
to obtain prices of different financial products. The first application involved basket
options, for which the Black-Scholes model was used. Conversely, American put
options were coupled with the Heston model. In the former case we exploited the
representation of prices as expectations, what is commonly referred to as the risk-
neutral valuation formula, while the price as a solution to the model PDE was used
in the case of American options.
The different representations of prices lead to different solution concepts, Monte
Carlo and finite differences for PDE, both being widely adopted in the financial in-
dustry. Monte Carlo is certainly the reference method due to its ease of application,
but presents several drawbacks, the computational burden on top. The method
requires several simulations to guarantee adequate results, so that it becomes a bot-
tleneck when it has to be employed repeatedly. Finite differences do not fare better,
but recent developments have allowed for extensions in more dimensions. The ap-
plication we considered is two-dimensional in space, and can be made faster with
alternating direction schemes, as was shown in Section 2.2.

We discussed in the beginning how exact solutions are simply not available for
more complex models and financial products, as things become more challenging
when moving away from vanilla options under Black and Scholes. However, numer-
ical solutions also present downsides which are hard to disregard when using them
extensively and repeatedly.
Despite advancements and refinements of traditional numerical methods, this mo-
tivates, in the framework of parametric option pricing (POP), a further degree of
approximation other than that of numerical solutions: the approach followed, which
is well-established in the literature, consisted of obtaining prices for the financial
product of interest on a grid, and generalising it on a domain for the parameters.
As a result, after numerically computing prices on a given set of points (with Monte
Carlo or finite differences), the goal is to be able to retrieve prices also for points
which are not part of the grid. In other words, we have an offline phase with a view

104

7 – Conclusions

to simplify traditional numerical pricers, and an online phase which allows to easily
compute the price by means of a simplified model.
The offline one is inherently more expensive, but is performed only once and com-
bines numerical methods for the grid generation with interpolation or learning for
the generalisation. The result is that the onus is shifted from the online to the offline
part, so that when prices are really needed – online – they are readily available in
instants, with high accuracy.
Interpolation has been successfully employed, especially of Chebychev type. How-
ever, recent developments in computational performances of computers, made pos-
sible by GPUs and TPUs, have suggested that a viable way to go is with neural
networks, whose representation power has been formally established in the last two
decades.
As first proven by the pioneering works of Cybenko and Barron, and later by fur-
ther results due to many others, the advantages of neural networks are certainly
flexibility, speed and accuracy, all of which are highly sought after by the financial
industry.
In its second part, this work showed the potential of the neural network approach,
its limitation and a possible solution to it. The advantages of deep learning are
summed up in the following paragraphs.

Speed is certainly central. As mentioned in the introduction to this thesis, the
finance industry needs fast results in virtually all of its tasks: ever-changing market
scenarios and information transmitting themselves so rapidly mean that financial
products have to be updated in real time to ensure no losses occur. Calibration,
which was presented as a motivating example in the first lines of Chapter 1, is only
one of the many examples in which speed matters: saying that to work with a prop-
erly calibrated model is important is possibly an understatement. The same holds
for hedging or for the computation of the Greeks. The neural-network approach
performed approximately 10000 times faster than Monte Carlo in the Basket exper-
iment (see Table 5.4) and similarly for the American case.

Accuracy is also a highlight of the neural-network approach. The method was
tested against the benchmark methods, Monte Carlo for basket options and FD for
American options. The goal is to see whether learning the pricing function from few
points on the grid is fundamentally different than computing each single price via
the reference method – assuming that was doable in the first place.
The basket option results, for which see for instance Table 5.3 and Figures 5.3,
show that the significant gain in computational time does not make the method less
competitive than Monte Carlo. Mean-squared error is in the order of 10−9, mean ab-
solute error is O(10−5) and in the worst case of the 10000-sample test set, the error
only showed up in the fourth decimal digit. In addition, these results are in line with
respect to Chebychev interpolation, which, however, demands a specific grid type,
making it less versatile. Ferguson and Green (2018) also consider a basket-option

105

7 – Conclusions

task with neural networks which are deeper and larger. Accuracies in their case are
slightly lower in absolute terms, despite working with different magnitudes of the
initial prices.
American options are traditionally more complex to deal with, and examples in the
literature are harder to come by. Oosterlee and co-authors (Liu, Oosterlee and Bo-
hte (2019)), for instance, consider vanilla options in the Heston and Black-Scholes
model in a similar problem to that analysed here. The study proposes a different
choice for the training set, obtained by Latin hypercube sampling and featuring a
much larger size. The neural networks proposed are also significantly larger, though
not deeper, and a restricted test set is taken with respect to the training set. Also in
their case study, neural networks perform well, with gains in computational speed
not going to the detriment of the desired accuracy.

The final section of this work has tackled potential issues and relative solutions of
the neural-network approach, having discussed the theoretical background in Chap-
ter 4 and presented the results in Chapter 6.
The main issue arises when the dimensions of the problem scale up: if a grid is
constructed with n points in each dimension, it is easy to see that the size of the
grid will soon reach prohibitive dimensions, O(nd) for a d-dimensional problem. In
this case, generating and storing the whole nodes of the grid becomes problematic,
hindering the success of the machine-learning approach due to reasons of time and
memory. The solution proposed in this work consists of constructing the tensor of
nodes by low-rank approximation starting from a subset of points and to store it in
compressed TT format. The completion algorithm described in Section 4.3 allows
for the approximation of high-dimensional tensors with a prescribed accuracy: by
working with an approximated tensor we are able to train a neural network with
extremely limited consequences on the error metrics.
The advantages of an approximated tensor go beyond the computational gains at-
tained when generating the training grid. As stressed by Hutchinson, Lo and Poggio
(1994), neural networks have limited scope with real data in pricing financial prod-
ucts as prices are scarce for many options. Tensor approximation could allow for
the creation of a synthetic dataset from the few available prices on the market.
In fact, the approach can be of use also beyond the financial sector. Neural nets
are becoming the leading learning method across virtually any conceivable domain.
For many of these, however, data are hard to retrieve. By exploiting the manifold
structure of a tensor one could extend the available data via tensor completion.
Glau, Kressner and Statti (2019) showed that the approach is successful for Cheby-
chev grids in very high dimensions (up to 25). In our work, we experimented with
more general grid types – evenly spaced and random – to show that the method
can be of use for most data configurations. This solution concept, which we called a
third-degree approximation in the pricing process, leads to error metrics that are still
adequate and can deeply extend the scope of the neural net approach to encompass
very high-dimensional problems. In addition, the accuracy of the approximation

106

7 – Conclusions

can be tailored so as to match the goals of the application, making the method
extremely versatile.
Results in Table 6.3 showed that synthetic data (obtained from the approximated
tensor) still lead to a mean absolute error which is in the order of 10−5, hinting at
the fact that the approach can be easily extended to any type of data. The random
grid, indeed, mirrors the case where a few samples obtained from the real world are
used to generate a full-tensor training grid.

The last experiments considered fully exploited the TT decomposition in the
training process. By storing the tensor in TT format, it was possible to provide a
solution to the curse of dimensionality, as the high-order tensors were replaced by
more compact three-dimensional ones. By doing so, this thesis showed how high-
dimensional problems (up to 25) can be solved with standard machines and how
training sets which would otherwise require hundreds of GigaBytes of RAM can still
be used in the learning process. Results confirmed that training is successful when
one exploits the TT format of the tensors coupled with stochastic optimisation al-
gorithms. The samples needed in the batch-based training can be easily retrieved
when needed from the tensor in TT form, meaning that the memory ceases to rep-
resent an issue.

Follow-up experiments could be oriented to further scaling up the problem, so
as to extend the pricing function to more parameters of the problem. This would
increase the generalisation to a higher extent.
In addition, as the deep-learning approach was successful for the pricing problem
of American and Basket options, we claim that it can be exploited for other exotic
options which have received less attention in the literature.

107

Bibliography

Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization algo-
rithms on matrix manifold, Princeton University Press, Princeton, NJ.

Altman, E. I., Marco, G. and Varetto, F. (1994) Corporate distress diag-
nosis: Comparison using linear discriminant analysis and neural networks (the
Italian experience), Journal of Banking and Finance, 18, 505—529.

Baldi, P., Hornik, K. (1989). Neural networks and principal component analysis:
Learning from examples without local minima, Neural Networks, 2, 53–58. 286.

Barron, A. E. (1993) Universal approximation bounds for superpositions of a
sigmoidal function, IEEE Transactions on Information Theory 39(3):930 - 945.

Bayer, C., Stemper, B. (2018) Deep calibration of rough stochastic volatility
models, Preprint at: https://arxiv.org/pdf/1810.03399.pdf.

Böjers, L. C. (2010). Mathematical Methods of Optimization, Studentlitteratur.

Brandimarte, P. (2014). Handbook in Monte Carlo Simulation: Applications in
Financial Engineering, Risk Management, and Economics, John Wiley & Sons,
NJ.

Brandimarte, P. (2016). An Introduction to Financial Markets: A Quantitative
Approach, John Wiley & Sons, Hoboken, NJ.

Bühler, H., Gonon, L., Teichmann, J. and Wood, B. (2018) Deep Hedging,
available at arXiv:1802.03042.

Burkovska, O., Glau, K., Mahlstedt, M. and Wohlmuth, B. (2018) Com-
plexity reduction for calibration of American options Forthcoming in J. Comput.
Finance, https://arxiv.org/abs/1611.06452.

Culkin, R. and Das, S. R. (2017). Machine Learning in Finance: The Case of
Deep Learning for Option Pricing, Journal of Investment Management.

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function,
Math. Control Signals Systems (1989) 2:303-314, Springer-Verlag, New York.

108

BIBLIOGRAPHY

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S.,
Bengio Y. (2014) Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Advances in neural information processing
systems 2933 - 2941.

De Spiegeleer, J., Madan, D. B., Reyners, S. and Schoutens, W.
(2018)Machine Learning for Quantitative Finance: Fast Derivative Pricing, Hedg-
ing and Fitting, Available at SSRN: https://ssrn.com/abstract=3191050 or
http://dx.doi.org/10.2139/ssrn.3191050

Dingeç, K. D., Hörmann, W. (2013). Control variates and conditional Monte
Carlo for basket and Asian options, Insurance: Mathematics and Economics
52(3):421 - 434.

Ferguson, R., Green, A. D. (2018). Deep Learning Deriva-
tives, Available at SSRN: https://ssrn.com/abstract=3244821 or
http://dx.doi.org/10.2139/ssrn.3244821.

Gallier, J. (2004), Manifolds, Riemannian Metrics, Lie Groups, Lie al-
gebra, and Homogeneous Manifolds With Applications to Machine Learning,
Robotics, and Computer Vision, CIS610 at UPenn, Spring 2018, available at
http://www.cis.upenn.edu/ cis610/cis610-18-sl1.pdf.

Gaß, M., Glau, K., Mahlstedt, M. and Mair, M. (2018) Chebyshev inter-
polation for parametric option pricing, Finance Stoch., 22 (2018), pp. 701–731,
http://dx.doi.org/10.1007/s00780-018-0361-y.

Giles, M. B. (2015) Multilevel Monte Carlo methods, Acta Numer., 24, pp. 259–
328, http://dx.doi.org/10.1017/S096249291500001X.

Glasserman, P. (2004),Monte Carlo Methods in Financial Engineering, Springer,
New York.

Glau, K., Kressner, D., and Statti, F. (2019), Low-rank tensor approx-
imation for Chebyshev interpolation in parametric option pricing, pre-print at
https://arxiv.org/abs/1902.04367.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks, AISTATS’2010.

Goodfellow, I. J., Vinyals, O., and Saxe, A. M. (2015). Qualitatively
characterizing neural network optimization problems., International Conference
on Learning Representations.

Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning, The MIT
Press, Cambridge, Massachusetts, London, England.

Haentjens, T. and in ’t Hout, K. (2015). ADI Schemes for Pricing American
Options under the Heston Model, Applied Mathematical Finance 22:3, 207-237.

109

BIBLIOGRAPHY

Hesthaven, J. S., Rozza, G. and Stamm, B. (2016) Certified reduced basis
methods for parametrized partial differential equations, SpringerBriefs in Mathe-
matics, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao,
http://dx.doi.org/10.1007/978-3-319-22470-1, BCAM SpringerBriefs.

Heston, S. L. (1993). A Closed-Form Solution for Options with Stochastic Volatil-
ity with Applications to Bond and Currency Options, The Review of Financial
Studies, Volume 6, Issue 2, April 1993: 327-343.

Holtz, M. (2011) Sparse grid quadrature in high dimensions with
applications in finance and insurance, vol. 77 of Lecture Notes in
Computational Science and Engineering, Springer-Verlag, Berlin,
http://dx.doi.org/10.1007/978-3-642-16004-2.

Horvath, B., Muguruza, A. and Tomas, M. (2019). Deep Learning Volatility,
The Review of Financial Studies, Volume 6, Issue 2, April 1993: 327-343.

Hutchinson, J., Lo, A. W. and Poggio, T. (1994). A Nonparametric Approach
to Pricing and Hedging Derivative Securities Via Learning Networks, The Journal
of Finance, 49: 851-889, doi:10.1111/j.1540-6261.1994.tb00081.x.

Ikonen, S. and Toivanen, J. (2008). An Operator Splitting Method for Pricing
American Options, Partial Differential Equations 10.1007/978-1-4020-8758-5 –16.

Ioffe, S. and Szegedy, C. (2015) Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift, International Conference on
Machine Learning (ICML).

Kemna, A., Vorst, A. (1990). A pricing method for options based on average
asset values, Journal of Banking & Finance 14, 113–130.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization,
arXiv:1412.6980.

L’Ecuyer, P. (2009). Quasi-Monte Carlo methods with ap-
plications in finance, Finance Stoch., 13, pp. 307–349,
http://dx.doi.org/10.1007/s00780-009-0095-y.

Liu, S., Oosterlee, C.W., Bohte, S.M. (2019) Pricing Options and Computing
Implied Volatilities using Neural Networks. Risks 2019, 7, 16.

McGhee, W. A., (2018). An Artificial Neural Network Repre-
sentation of the SABR Stochastic Volatility Model, Available at:
http://dx.doi.org/10.2139/ssrn.3288882.

Oseledets, I. V. (2011). Tensor-train Decomposition, SIAM 33:5, 2295-2317.

Rouah, F. D. (2013). The Heston Model and Its Extensions in Matlab and C,
Wiley.

110

BIBLIOGRAPHY

Sirignano, J., and Konstantinos, S. (2018) DGM: A deep learning algorithm
for solving partial differential equations, Journal of Computational Physics.

Steinlechner, M. (2016). Riemannian Optimization for High-Dimensional Ten-
sor Completion, SIAM J. Scientific Computing, 38.

111

	Summary
	Sommario
	List of Tables
	List of Figures
	Introduction
	Framework and Problem Description
	Literature Review
	Stochastic Models
	The Heston Model
	The Ornstein-Uhlenbeck Process
	CIR Process

	Option Pricing
	Basket Options
	Monte Carlo Methods
	Basket Option Prices

	American Options
	PDE Derivation
	Finite Differences
	Heston PDE Discretisation
	ADI Schemes
	Matrix Construction
	Solution

	Neural Networks
	Structure
	Hidden Units
	Training
	Regularisation
	Optimisation
	Parameters Initialisation
	Algorithms
	Batch Normalisation

	Good Practices

	Low-Rank Approximation
	Tensor-Train Decomposition
	Manifold Optimization
	Completion Algorithm

	Learning Methodology
	Basket Options
	Using Chebychev Points

	American Options
	Other Choices for the Grid

	Remarks on the MLP architecture

	Learning via an Artificial Dataset
	The case for a larger dataset
	The case for a synthetic dataset
	Basket Options
	American Options
	Random Grid
	Scaling Up

	Conclusions

