
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Matematica (Mathematical Engineering)

Tesi di Laurea Magistrale

Novel Neural Techniques for Gene
Expression Analysis in Cancer

Prognosis

Relatore
prof. Elio Piccolo
Correlatori:
prof. Giansalvo Cirrincione
prof. Alberto Tonda

Pietro Barbiero
matricola: 252818

Gabriele Ciravegna
matricola: 234726

Anno accademico 2018 – 2019

To my sweet girlfriend,

who enlightened my life with love and joy,
who comforted me in times of trouble,

who shared my burdens making them lighter.

Summary

This manuscript summarises two years of analyses, experiments and developments
in the machine learning field. During that period, authors have collaborated in
devising novel ideas and applying them to real world problems.

The main application setting is related to the analysis of patient derived xenografts
(PDXs) of metastatic colorectal cancer (mCRC). PDXs are obtained by propagat-
ing surgically derived tumor specimens in immunocompromised mice. Through this
procedure, cancer cells remain viable ex-vivo and retain the typical characteristics of
different tumors from different patients. Hence, they can effectively recapitulate the
intra- and inter-tumor heterogeneity that is found in real patients. During the last
decade, the Candiolo Cancer Institute (Italy, IRCC) has been assembling the largest
collection of PDXs from mCRC available worldwide in an academic environment.
Such resource has been widely characterized at the molecular level and has been
annotated for response to therapies, including cetuximab, an anti-EGFR antibody
approved for clinical use. The mCRC PDX samples analyzed in this manuscript
were kindly provided by IRCC the in form of microarray data, i.e. a large table
containing the gene expression levels of tumor cells. Indeed, the medical objectives
of the analyzes described in this work concern, on the one hand, the extraction of
gene expression patterns useful for the instruction of therapies and further clinical
experiments, and, on the other hand, the creation of models capable to correctly
classify unlabeled data according to the cancer response to drugs.

From a statistical and machine learning point of view, the main difficulty in deal-
ing with such data is the so-called curse of dimensionality. Indeed, only few hundreds
of PDXs (samples) were provided against tens of thousands of gene expressions (fea-
tures). Preliminary analyses performed with state-of-the-art techniques perform
poorly when dealing with this problem, reporting limited effectiveness and opaque
models. Thus, the machine learning objectives were to improve the effectiveness of
existing models and designing ad-hoc techniques to deal with high-dimensional data.

Analyses have been performed through both supervised and unsupervised meth-
ods. In particular, two different and delimited directions of work were carried out
according to the typology of methods. This choice was made at the beginning of this
work in order to also sub-divide the medical objectives to pursue. Roughly speaking,

3

in fact, the extraction of gene expression patterns is commonly achieved through un-
supervised techniques, while the creation of a classifier model can be obtained only
with supervised techniques. Nonetheless, meaningful insight into gene behaviours
were provided also through supervised learning. Authors equally contributed in the
development of all analyses presented by alternating on the two paths.

Chronologically, the research was carried out in two different stages: initially,
the high dimensional problem was addressed through the development of feature
selection algorithms. Moreover, during this phase, the dataset was analyzed with
state-of-the-art techniques for data visualization, like parallel coordinates diagrams,
as well as feature extraction and manifold analysis, like CCA. Results of these pre-
liminary analyses were published in two different chapters as book chapter of the
Springer series “Quantifying and Processing Biomedical and Behavioral Signals”:
"Unsupervised gene identification in colorectal cancer" and "Supervised gene iden-
tification in colorectal cancer". In the second stage, the attention of this research,
from the unsupervised point of view, focused on the development of a biclustering
framework capable of extracting useful gene correlations. In order to do that, a
completely novel neural clustering technique called GH-EXIN was devised. Further
details about the main features of this technique will be given in the following. The
results were presented in "Neural biclustering in gene expression analysis", in the
proceedings of the CSCI conference, Las Vegas 2017. This biclustering framework
was successfully tested also on an external dataset for face detection problem and
the results were presented in "Assessing discriminating capability of geometrical de-
scriptors for 3d face recognition by using the GH-EXIN neural network", in the
proceedings of the 2018 WIRN conference in Vietri sul Mare. From the supervised
point of view, instead, different states of the art classifiers were compared in order
to create the best classifier model. Finally, the best performer was a shallow neu-
ral network, with hyper-parameters tuned through an evolutionary algorithm. At
the same time, another feature selection algorithm based on shallow neural network
weight analysis was developed and, compared with ANOVA, performs a more ef-
fective selection for instructing a successive neural network model. The works were
proposed and accepted at the 2018 WIRN conference, in two conference articles
entitled "Evolutionary optimization of neural network hyperparameters" and "Un-
derstanding cancer phenomenon at gene-expression level by using a shallow neural
network chain".

The main innovation proposed in this manuscript is represented by GHEXIN,
a novel neural based algorithm for hierarchical clustering. The proposed approach
builds a divisive hierarchical tree in an incremental and self-organized way. Indeed,
it is a top-down technique which divides data at deeper and deeper levels. It is data
driven (self-organization), in the sense that the final tree is automatically estimated
from data. Also, it does not require a predefined number of units and levels (incre-
mental with pruning phase). With regard to state-of-the-art neural based algorithms
(as GHNG and DGSOT), GH-EXIN shows remarkable innovations:

4

• It performs a semi-isotropic quantization of the input space, by exploiting both
isotropic and anisotropic criteria. The isotropic criterion is based on the ex-
tent of the neuron neighborhood, like in most neural based approaches. The
anisotropic criterion (unique feature of GH-EXIN) is topological, as it is mod-
elled by the convex hull generated by the weight vector of the winner neuron and
the weight vectors of its topological neighbours (i.e. those connected through
edges).

• It exploits sophisticated data reallocation and outlier detection methods. Data
reallocation is the mechanism by which data associated to pruned nodes (or-
phan data) are possibly reassigned to other neurons. In GH-EXIN all orphan
data are labelled as potential outliers at the end of each epoch. For each po-
tential outlier, GH-EXIN looks for a new winner among all leaf nodes. Only
when the winner belongs to the same basic neural unit of the pruned node and
the potential outlier is outside its hypersphere, is datum definitely marked as
outlier and is not reassigned.

• It exploits a simultaneous vertical and horizontal growth in order to represent
abstract characteristics of the observed phenomenon. At the end of the training
process of a basic neural unit, the resulting graph is analyzed by searching for
connected components. If more than one connected component is detected, the
algorithm tries to abstract a representation from the observed phenomenon.
Hence, each connected component, representing a cluster of data, is associated
with a novel abstract neuron. The reference vectors of abstract neurons are
placed in the centroids of the respective clusters. The tree structure is modi-
fied by inserting abstract neurons between the leaf nodes and the father node,
resulting in a simultaneous vertical and horizontal growth.

The comparison with aforementioned techniques shows how GH-EXIN is typi-
cally more efficient, as it reaches similar performances in terms of peak-signal to
noise ratio (PSNR) by using fewer neurons. Moreover, qualitative evaluation of the
resulting topology shows how GH-EXIN is much more elegant in connecting neu-
rons, providing superior manifold representations. Finally, the restricted number of
user-dependent parameters makes the tuning process of GH-EXIN very easy. The
GH-EXIN source code was fully developed by authors in MATLAB and is publicly
available on BitBucket1. The application of the biclustering framework integrated
with GH-EXIN on the biological dataset revealed some interesting gene correlation
patterns. These results have been submitted to the attention of IRCC doctors, who
are currently analyzing them for possible scientific implications.

The results above are promising and highlight the potential for future work. From
the point of view of the biological advances, the outcomes of both the unsupervised

1Gabriele Ciravegna and Pietro Barbiero. GH-EXIN (version 1.0.1). https://
bitbucket.org/machine_learning_research/ghexin/src/master/,2018

5

https://bitbucket.org/machine_learning_research/ghexin/src/master/, 2018
https://bitbucket.org/machine_learning_research/ghexin/src/master/, 2018

and the supervised path are promising yet opaque: while the models can be used ef-
fectively, the results are difficult to interpret from a human point of view. As for the
unsupervised direction of work, the GH-EXIN neural network resulted to be effective
and easy to use as aforementioned; results provided by the biclustering framework,
instead, are rather difficult to interpret without a statistical knowledge, since biclus-
ters need several additional tools to be correctly evaluated. As for the supervised
direction, the major advances with respect to previous analyses are achieved by ex-
ploiting the shallow neural network model. Indeed, the simplicity of such model
makes it easier to handle and interpret. On limiting the number of features used,
however, the accuracy drops significantly.

Moreover, major limitations of our work directly derive from the analyzed data.
On the one hand, the analyzed data represent an estimate of the amount of times
each gene is transcribed in a tumor xenograft. However, gene replication does not
always result in protein generation. Indeed, this kind of data may not represent
cell behaviour correctly. On the other hand, the restricted amount of samples was
the most serious issue, since machine learning reliability is directly related to the
amount of data provided.

Hence, within the biological domain, future developments will involve the use
of up-to-date data (e.g. representing proteins instead of gene expressions) and the
integration with other sources of data, such as image samples. Besides, from a ma-
chine learning point of view, models easier to interpret may be developed in order
to provide more reliable and human-understandable outcomes. Future research in
this field will consist in devising new algorithms overcoming the intrinsic weaknesses
of machine learning, above all understandability. To this purpose, novel algorithms
which integrate classic symbolic artificial intelligence with machine learning tech-
niques seem to be very promising.

6

Acknowledgements

We have to thank few people who personally contributed to the production of this
work:

• Our supervisors, Elio Piccolo, Giansalvo Cirrincione, and Alberto Tonda,
who followed the development of this work with interest and passion far be-
yond institutional duties;

• Andrea Bertotti, from Istituto per la Ricerca e la Cura del Cancro (IRCC),
who instructed us about the cancer phenomenon and provided us with the
dataset;

• Giovanni Squillero, from Politecnico di Torino, who helped us in the devel-
opment of the evolutionary algorithms;

• Vincenzo Randazzo, from Politecnico di Torino, who helped us in program-
ming GH-EXIN.

The following acknowledgments are related to Barbiero Pietro only.

I want to thank many people who have always supported me during my life. They
have contributed to the achievements of this result too.

• My sweet girlfriend, who enlightened my life with love and joy;

• The co-author Gabriele Ciravegna, dear friend and personal research fellow;

• My family, who always supported me in each phase of my life;

• My friends, who walked by my side during all these years;

Thank you from the bottom of my heart.

7

Contents

List of Tables 11

List of Figures 12

I Introduction 15

1 Biological Background 17
1.1 Colorectal Cancer . 17

1.1.1 What Is Cancer? . 17
1.1.2 Why Does Cancer Arise? 18
1.1.3 CRC . 20

1.2 Xenografts . 21
1.3 Gene Expression Analysis . 21

2 Machine Learning Background 25
2.1 History . 25
2.2 Achievements . 27
2.3 Deep Learning Limits and Weaknesses 28

2.3.1 Brief Deep Learning Theory 28
2.3.2 Limits . 29

II Preliminary Data Analysis 31

3 The High Dimensional Problem 33

4 Unsupervised Manifold Analysis 35
4.1 Unsupervised Feature Selection 35
4.2 Parallel Coordinate Plot . 36

8

4.3 Sub-Manifold Analysis . 38
4.4 Biological Feedback . 40

5 Supervised Manifold Analysis 43
5.1 Supervised Feature selection 43
5.2 Sub-Manifold Analysis . 44
5.3 Lasso regression . 45
5.4 Biological Feedback . 47
5.5 Classification . 47

III Advanced Neural Techniques 49

6 Unsupervised Neural Techniques 51
6.1 Introduction . 51
6.2 Hierarchical Clustering Analysis 52
6.3 State-of-the-art of Neural Clustering 54

6.3.1 GHNG . 54
6.3.2 DGSOT . 55

6.4 Biclustering . 58
6.4.1 Neural Framework . 60

7 GH-EXIN 63
7.1 The GH-EXIN Hierarchical Tree 63

7.1.1 Tree Building . 63
7.1.2 sG-EXIN . 64
7.1.3 Neuron Pruning . 69
7.1.4 Connected Graph Test 71
7.1.5 The GH-EXIN Algorithm 71
7.1.6 Analysis of the User-Dependent Parameters 72
7.1.7 Analysis of Complexity 75

7.2 Synthetic Experiments . 77
7.2.1 Hierarchical Synthetic Experiment 81

7.3 Hierarchical Clustering for Video Sequences 84
7.4 Gene Analysis . 89

7.4.1 Neural Biclustering with GH-EXIN 89
7.4.2 Validating Techniques 89
7.4.3 Experimental Findings 92

9

8 Supervised Neural Techniques 95
8.1 Introduction . 95
8.2 Neuroevolution . 95

8.2.1 Mathematical Model of a Shallow Neural Network . . . 96
8.2.2 Genetic Algorithm . 99
8.2.3 Comparison of the Results 102

8.3 Transparent Neural Based Model for Feature Selection 104

IV Conclusion and Future Developments 109

9 Critical Analysis 111

10 Future Works: Towards Artificial General Intelligence 113

Bibliography 115

10

List of Tables

7.1 GH-EXIN hyperparameters 87
7.2 DGSOT hyperparameters . 87
7.3 GHNG hyperparameters . 87
7.4 Best leaves in terms of biclustering quality (Hcc index). 92

11

List of Figures

1.1 Cancer spreading from its original site to distant organs 19
1.2 Colorectal cancer evolution . 20
1.3 Patient-Derived Xenografts . 22
2.1 Artificial Intelligence progresses 26
2.2 Classic Neural Network Representation 29
3.1 Pareto diagram of PC’s explained variance 34
4.1 Cluster quality evaluation. The red line is the threshold. . . . 37
4.2 Parallel coordinate plot. 37
4.3 Variance explained by principal components. 39
4.4 CCA dy-dx diagram. 39
4.5 Biplot over the first three principal components. 40
4.6 Parallel plot over the resulting gene selection. 41
5.1 Cluster quality evaluation. The red line is the threshold. . . . 44
5.2 dy-dx diagram. 45
5.3 Lasso coefficients as a function of λ. 46
5.4 MSE of Lasso regression as a function of λ. 46
5.5 Confusion Matrices for the MLP classifier. 48
6.1 GHNG flowchart. 56
6.2 DGSOT flowchart . 57
6.3 Neural Biclustering Framework 60
7.1 A new data xj is presented to the sG-EXIN neural network

composed of four connected neurons 67
7.2 The anisotropic criterion: if a new data (small red dot) is

presented and lies outside the hypershphere centered on the
winner (big red dot), but within the convex hull created on its
neighbours (blue connected nodes), it is also assigned to the
winner. Furthermore, according to SCL both the winner and
its neighbours move towards it. 68

12

7.3 GH-EXIN data reallocation: small dots represent data while
big dots represent neurons. Big red dots, indicated by ar-
rows (colored as the neurons of the same sG-EXIN), mark
pruned neurons, while small red dots represent data belong-
ing to them. Different colors represent different network units
. 70

7.4 Connected Graph Test: the Voronoi regions of each neuron are
represented with solid red lines; chains in the father sG-EXIN
become sons . 71

7.5 GH-EXIN flowchart . 73
7.6 GH-EXIN: horizontal growth flowchart 74
7.7 First (up) and second (down) layers of GH-EXIN, GHNG

and DGSOT on the X-shape distribution 78
7.8 First (up) and second (down) layers of GH-EXIN, GHNG

and DGSOT on the square distribution 79
7.9 Number of times the two novelty test approaches are called

during the training phase (see Paragraph 7.1.2 and Fig. 7.2).
The blue line represents the number of calls to the convex-
hull technique (see Fig. 7.1), while the red line refers to the
isotropic threshold criterion (see Equation 7.2). Each node
training lasts ten epochs. The first ten epochs refer to the
root node, while the following ones to the second layer nodes 81

7.10 Two mixtures of Gaussians: data and contours 82
7.11 First (up) layers of GH-EXIN, DGSOT and GHNG and sec-

ond (down) layers of GH-EXIN and DGSOT on the Gaussian
distribution; GHNG second layer is not reported as it already
covers all Gaussian distribution at the first level 82

7.12 Tree structures (labelled by the cluster cardinality) of the three
algorithms for the Mixture of Gaussians dataset 83

7.13 Silhouette scores for the three algorithms on the Mixture of
Gaussian Dataset . 83

7.14 Leaf efficiency (left) and tree structure (right) of the three
algorithms for the videos dataset. Regarding the efficiency
bar plot, the row represents the number of the corresponding
leaf on which the efficiency has been computed. Each bar is
labelled on top by the class of the group of data with the
highest efficiency within the leaf. 85

13

7.15 Bar plots with the standard error of the mean (s.e.m.) bars
showing the mean of some relevant statistics for each dataset
and for each neural network 88

7.16 Parallel coordinates of a cluster of gene 90
7.17 Parallel coordinates of a bicluster. 91
7.18 Parallel coordinates of a smaller bicluster. 91
7.19 Singular values for leaf 14. 93
8.1 Shallow neural network architecture. 96
8.2 The graphical representation of an individual. It is represented

as an ordered list of “genetic material”. Each “gene” stands
for a neural network hyper-parameter. 100

8.3 During the crossover process, two individuals mix their genetic
material in order to produce two child solutions. 101

8.4 The figure shows the mutation process. The individual ran-
domly mutates one of its “genes”. 101

8.5 The figure shows the accuracy over a 10-fold cross-validation
of several classifiers. The baseline accuracy refers to the per-
formance of the classifier for random generated labels. 103

8.6 An example of histogram of the neural network weights after
the first training iteration. 105

8.7 An example of notched box plot of the neural network weights
after the first training iteration. 105

8.8 Histogram displaying the 10-fold cross validation accuracy at
each iteration of the experiment. 106

14

Part I

Introduction

15

Chapter 1

Biological Background

1.1 Colorectal Cancer
Before starting any analysis, a brief but fundamental study of the matter
has been necessary. As computer scientist and even more as data scientist,
it is always important to spend some time trying to deeply understand the
characteristics of the problem you are analyzing. Producing a deep statistical
analysis without being able to understand the results is pointless most of the
times. Nevertheless, in the case at hand, the problem is such complex that
a medical response is still necessary. The following, indeed, is only a rough
summary of main cancer features without claiming to be complete.

1.1.1 What Is Cancer?
Under the word cancer, a collection of related diseases is grouped. Common
traits to these diseases are the abnormal growth of the cells and their capacity
of spreading to surrounding tissues.

A list of different anomalies allows cancer cells to grow abnormally. Firstly,
it is possible to notice that old and damaged cells don’t die, differently from
normal cells. This characteristic is caused by the capacity of tumor cells to
ignore apoptosis signals. These signals are normally sent by the system to
get rid of unneeded cells. In cancer cells, instead, cycle-regulating genes as
RAS and p-53 result to be altered or often deactivated, causing apoptosis
pathways not to be followed. Further signals sent by the immune system
are also ignored, as those preventing cells from replicating when its DNA is
altered. Furthermore, the immune system generally stops sending nutrients
to unneeded cells causing target cells to starve. In cancer cells, however, gene

17

1 – Biological Background

responsible to autophagy are also inhibited and cells do not get destroyed
even though they are starving. Cancer cells are also able to influence sur-
rounding micro-environment to avoid this phenomenon: blood vessels are
created nearby tumoral cells in order to feed them of oxygen and nutrients,
necessary elements for cell lives. These vessels are also used by the cells to
throw away cellular waste products [1]. Secondly, but not least, new cells are
formed even though they are not needed. These new cells keep dividing by
mitosis which allows cancer to grow more and more.

Cancer spreading to other tissues, instead, may occur at different levels.
At first, it is possible to notice that tumor has affected nearby tissues; after-
wards, it may be possible to notice that tumoral cells are growing on distant
organs. This phenomenon is called metastasis which from the Greek literally
means "transposition" of a disease: in this case, the tumor. It is worth to
notice that cells found inside a brain metastasis are colon tumoral cells, not
brain tumoral cells. Original cells, in fact, spread through blood or through
lymph system, attach to existing tissue of distant organs and start growing
forming the metastasis, as shown in Fig. 1.1. Among many reasons, this
occurs because cancer cells are less specialized than normal cells and, hence,
they are less likely to be rejected by new tissues.

The capacity of spreading to surrounding tissues is the main difference
between malignant and benign tumors. Another characteristic typical of
malignant tumor is the capability of growing back after being extracted.

1.1.2 Why Does Cancer Arise?
Fundamentally, cancer is a genetic disease and its appearance is due to some
gene behaviour changes. These changes are generally either inherited from
our descendants or caused by environmental factor.

Going into further details, there are three main types of gene whose mu-
tation is critical for cancer growth.
1. Proto-oncogenes: involved in cell growth or inhibition of apoptosis, these

genes may turn into oncogenes after some genetic mutations and, there-
fore, promote cancer emergence.

2. DNA-repair genes: their scope is to repair damaged DNA after a muta-
tion occurred, caused either by an environmental factor or a metabolic
activity.

3. Tumor-suppressors: their role is to protect cell from alterations either
by repressing genes that promote cell division when not needed or when

18

1.1 – Colorectal Cancer

Figure 1.1: Cancer spreading from its original site to distant organs

DNA is damaged, or by starting apoptosis if DNA damage could not
be fixed. Furthermore, they prevent tumor cells from dispersing (and
creating metastasis) by blocking locomotion when DNA is irreparably
damaged.

As first noticed in the two-hit hypothesis [2], cancer is the result of many
mutations to cell’s DNA: in particular, it is the result of both the mutation
of proto-oncogenes and the deactivation of tumor-suppressor genes.

What is really important to notice here is that each cancer is a unique
combination of genetic changes. Because of this inter-patient heterogeneity,
research in these years has focused on personalized therapies to increase
their efficiency [3]. Nevertheless, to achieve this goal further studies are
needed, in particular on bio-marker discovery, which is the scope of this work.
In fact, many gene functionalities and how different genes are co-regulated
under specific circumstances is still unknown []. For personalized therapies,
in particular, it is important to know a priori whether the patient will heal
using a certain drug or not, given the genetic expression of the cancer tissue.

19

1 – Biological Background

1.1.3 CRC

Colorectal cancer (CRC) is a particular type of cancer that develops in the
large-intestine. It generally starts as an adenomatus polyp which may turn
into an adenocarcinoma as shown in Fig. 1.2.

Figure 1.2: Colorectal cancer evolution

Recently, computer-aided diagnosis researches obtained good results in
the classification of colorectal polyps through Convolutional Neural Network
(CNN) system [4]. These systems are used in order to determine whether
analyzed cells belong to a healthy tissue, or to an adenoma (which may be
a signal of potential successive cancer), or to an adenocarcinoma (which is
already cancer). The results are commonly used to create an attention map
of possible cancer areas, which may drive doctors during a prognosis.

This type of cancer has as main causes the advanced age of the patients and
lifestyle factors: among others, diet (in particular excessive consumption of
red meat and alcohol), pollution, smoke, obesity and lack of physical activity
play a key role.

Colorectal cancers are the third most common cancer globally as reported
by the 2014 World Cancer Report [5]. There are about 1.4 million new cases
and 694 thousand deaths each year because of colorectal cancer. It is more
likely to appear in man than in woman and it is more present in the developed
countries than backward countries.

20

1.2 – Xenografts

1.2 Xenografts
Medical treatment of cancer is an extremely complex problem. Due to intra-
and inter-tumor heterogeneity, the same drug may have different levels of ef-
fectiveness on patients with the same type of cancer. Therefore, personalized
approaches are required to increase the reliability of prognostic predictions
and the efficacy of therapies. Recently, new powerful tools have been devel-
oped for biomarker discovery and drug development in oncology, which rely
on a technology called Patient-Derived Xenografts (PDXs). A Xenograft, in
general, is a cell, tissue or organ that is transplanted from one species to
another. PDXs, in this particular case, are surgically-extracted tumor tissue
specimens form patient affected by colorectal cancer. These tissues are then
transplanted into immunocompromised mice as shown in Fig. 1.3.

Through this, cancer cells remain viable ex-vivo and retain the typical
characteristics of different tumors from different patients. Hence, they can
effectively recapitulate the intra- and inter-tumor heterogeneity that is found
in real patients. Based on this idea, the PDX technology has been employed
to conduct large-scale analyses which, as in this work, try to identify reliable
correlations between genetic or functional traits and sensitivity to anti-cancer
drugs. In this context, metastatic colorectal cancers (mCRC) have been
collected for the last ten years and have generated the largest PDX biobank
available worldwide in an academic environment. This collection has been
already characterized at the molecular level and has been exploited to identify
clinically relevant biomarkers for prediction of therapeutic efficacy [6].

1.3 Gene Expression Analysis
Transcriptional data were obtained from mCRC PDXs through the Illumina
microarray technology [7]. The microarray technology is based on thousands
of DNA microscopic probes placed on a solid surface such as a piece of glass,
plastic or a chip, forming an array. These arrays allow to measure the gene
expressions on a tissue sample.

The word gene expression refers to the quantity of Messenger RNA (mRNA)
produced at a certain moment in a certain cell. The RNA synthesis (tran-
scription) is a transfer of the information from the DNA where it is stored
into mRNA which can be transported and interpreted. Later, mRNA moves
the information to the ribosomes to enable the production of protein (trans-
lation). Protein will finally respond to cellular needs for which transcription

21

1 – Biological Background

Figure 1.3: Patient-Derived Xenografts

started.
In theory, genes contain the information to produce all kind of mRNA.

Nonetheless, in the biological samples, genes are transcribed into mRNA
sequence in different quantities. This occurs for some reasons:

• Cell typology, different type of cells (brain cell, epithelial cells, liver
cells) express different genes: among other factors this is what makes
them different;

• Environmental factors such as the time of the day, whether the cell was
proliferating or not and the presence of signals sent from other cells:
according to cell needs, different gene are transcribed.

Gene expression analyzes often require measuring mRNA quantity in dif-
ferent conditions. High mRNA levels of a sequence under specific condition

22

1.3 – Gene Expression Analysis

may imply, indeed, a cellular need for the protein coded by the sequence.
This kind of need may suggest a pathological condition when found on sick
patients and not on healthy patients. As an example, if cancer cells express
higher mRNA levels associated to a specific receptor, it is possible to infer
that the receptor play a role in that type of cancer.

The focus of this work is about predicting drug sensitivity in PDXs and
human patients affected by CRC. Hence, the different condition under which
gene expression levels are evaluated are the different responses to drugs. In
particular, this research tries to find out which genes discriminate whether a
drug is capable to heal the patient or not. Further details will be given from
part II.

23

24

Chapter 2

Machine Learning
Background

In the last decade, Machine Learning proved to be the enabling technology
for many innovations in different fields. Nowadays, it is the most important
trend in computer science according to Gartner Hype Cycle[8]. Nonetheless,
it is possible that the expectation created among investors, who are putting
billions of dollars in AI research, and among customers will not be completely
satisfied in the next future, as also machine learning has some intrinsic limits.

2.1 History
The term artificial intelligence (AI) was coined by John McCarthy during a
conference at Dartmouth College in 1956. During his talk, he proposed to
design an artificial machine able to learn and reason like human beings. In
the same years, Allen Newell and Herbert Simon developed Logic Theorist,
the first program able to apply basic reasoning functionalities. However, un-
til 70’s the advances in artificial intelligence were purely academic. Indeed,
the proposed approaches were unable to tackle real world problems, due to
computational power and memory limits, and reasoning deficiencies [9]. The
first turning point in AI occurred when Feigenbaum introduced DENDRAL
and MYCIN, the first expert systems, based on symbolic approaches. These
algorithms were able to incorporate human knowledge and manipulate basic
logic principles in order to provide reliable inferences in specific domains.
The reliability guaranteed by expert systems allowed the spread of such al-
gorithms for commercial use.

25

2 – Machine Learning Background

Figure 2.1: Artificial Intelligence progresses

The second turning point happened in 1986, thanks to the work of Rumel-
hart, Hinton, Williams and McClelland on the backpropagation algorithm.
They showed how to apply efficiently this algorithm for training multi-layer
perceptron neural networks, overcoming the deficiencies pointed out by Min-
sky [9]. With backpropagation the learning problem was shifted as an op-
timization problem, where the model fits its parameters directly on data,
without being explicitly programmed. This change of perspective generated
an AI sub-field picturesquely called machine learning.

Nevertheless, until few years ago it was not feasible to effectively employ
complex (or deep in case of neural networks) models as they require large
amount of both computational power and data to be optimized. Everything
changed in 2012 when different works achieved important results using Deep
Neural Networks in challenges such ImageNet in object recognition [10]. The
technological progress provided scientists of ever more powerful processors,
while the advent of Big Data and IoT at the beginning of 2010’s started
producing the quantity of data required by models to be effective. It is
possible to state that the advances in the field of deep learning will be strictly
correlated in the future to the ones of IoT and Big Data; the information
extraction process always starts from data. As it will be possible to apply
sensors on even more objects which in the past were not accessible (e.g.
human organs), new applications of machine learning will be discovered.

26

2.2 – Achievements

2.2 Achievements
Machine learning is nowadays already changing our daily life in many differ-
ent fields:

• Preventive diagnosis: machine learning is achieving good results in health-
care, in particular for heart diseases and cancer diagnosis. In some con-
ditions, an early diagnosis can save a patient’s life. Statistics state that
17.9 million people die every year because of a heart attack [11] and 9.6
million because of cancer [12]: together they account for about half of
the global deaths. A similar idea is also applied in preventive mainte-
nance for machines: it allows companies to save thousands of dollars,
avoiding replacing parts unless it is necessary.

• Autonomous car: in the very next years we will be relieved of the chore
of driving, resulting in a significant reduction of traffic collisions and en-
hanced mobility for the elderly, children and disabled. Nowadays, around
1.3 million people die every year in a car accident [13]: hypothetically,
this number could be reduced to zero with autonomous cars.

• Security: face recognition algorithms are widely used in video surveil-
lance to find wanted criminals. Thousands of cameras have been de-
ployed in our cities, it would require hundreds of people to check them
all. Furthermore, emotion recognition and other algorithms are used
to preempt crimes from taking place by analyzing people unusual be-
haviours.

• Language translation: results provided by Google Translate are astonish-
ing, in many languages it performs almost as well as a human translator.

• Virtual assistants: many people nowadays are used to speak to their
smartphones to save appointment on the agenda or to check weather
conditions. This has become possible thanks to advances in speech recog-
nition.

• Fraud detection: machine learning is used in this field for analyzing
mails, detecting fishing attempts and generally spam. Banks and other
financial actors are also using it for analyzing bank transactions, in order
to detect illegitimate ones and money laundering.

27

2 – Machine Learning Background

• Product recommendation: Amazon completely transformed online shop-
ping by suggesting people items they may be interested in. Google Ad-
Words did the same with personalized advertising: nowadays it is the
only competitor for publishing commercials online.

Most of these achievements have been feasible due to deep learning. Nowa-
days, it is the most popular e probably powerful technique. Because of this
reason, in the following it will be analyzed in further details trying to high-
light what are its limits. Anyway, much of the below mentioned applies also
for machine learning in general.

2.3 Deep Learning Limits and Weaknesses
Deep Learning advances in recent years have brought great excitement in
AI world. Andrew Ng, one of the pioneers of Deep Learning and founder of
Google Brain, asserted: “If a typical person can do a mental task with less
than one second of thought, we can probably automate it using AI either
now or in the near future” [14]. Is it true? Is current artificial intelligence
(mainly based on deep learning) already able to carry out now or in the
next future whatever human mental task? Other researchers expressed a
different opinion about it: "Scaling up current deep learning techniques by
stacking more layers and using more training data can only superficially
palliate some of these issues. It will not solve the more fundamental problem
that deep learning models are very limited in what they can represent, and
that most of the programs that one may wish to learn cannot be expressed as
a continuous geometric morphing of a data manifold” [15] As partial proof of
it, an important project as the full-service chatbot M developed by Facebook
already failed to achieve its initial goals because they were beyond deep
learning current capacities and eventually has been closed.

2.3.1 Brief Deep Learning Theory
In order to better understand strengths and limits of deep learning, it is good
to know how it works. Basically, it is a statistical technique that performs a
mapping between an input space and an output space. Learning is performed
in a supervised way with thousands of labelled data supplied to the algorithm
to build a robust model. Internally, neural networks are made of nodes which
exchange information. They are grouped into layers with an input layer
which represents the input space, an output layer with as many nodes as

28

2.3 – Deep Learning Limits and Weaknesses

the elements of the output space are and several hidden layers: the more
the number of hidden layers the deeper is the network. Nodes are linked to
each other and a weight is associated to each connection. These networks
are generally told to represents neural cortex although in a very simplistic
way. Nodes can be thought as neurons and connections between nodes may
stand for the synapses.

Figure 2.2: Classic Neural Network Representation

2.3.2 Limits
The incredible strength of deep learning is that “In principle, given infinite
data, deep learning systems are powerful enough to represent any finite deter-
ministic ‘mapping’ between any given set of inputs and a set of corresponding
outputs” [16]. Nevertheless, this statement also reveals some of its limits:

• Generalisation: we will never be able to provide ‘infinite data’ to the
systems. This implies deep neural networks will always be brittle, failing
as fast as the context on which the model was trained change a little. An
example may be the DeepMind’s Atari game work [17]: the system learns
in 240 minutes of training to play Breakout. Nonetheless, it has been
proved [18] that the same previously trained system fails on a transfer
test where a minor number of variations are made in the game such as
inserting another wall in the middle. This implies that the system has
not really learnt to break the wall. It has only acquired a sequence of
moves to be performed to break that single wall in a very narrow context.

• Abstraction: deep learning system are only able to perform this specific

29

2 – Machine Learning Background

mapping operation. They are built without any abstract representation
of the world. They have no idea of concept such as causality nor com-
position, that all human come to the world with, neither they have the
possibility to learn it, as it is impossible to represent these concepts in
terms of features.

• Understandability: deep learning is usually considered and treated as a
black-box because the way in which this ‘mapping’ is produced is so com-
plicated that is not explainable in form of rules. This introduces several
limits to the use of this technique in critical applications as Medicine
where the reason for which a decision needs to be taken is almost as
important as the decision itself. Doctors cannot decide not to prescribe
a saving-life drug to a patient only because a deep learning system sug-
gested that it would not be effective on him, without really having the
possibility to check why.

Hence, it seems possible that even with all conceivable computational power
and data, new applications will be discovered, but deep learning effective
capabilities may not grow any further.

30

Part II

Preliminary Data Analysis

31

Chapter 3

The High Dimensional
Problem

The dataset stemming from the DNA microarrays is composed of the expres-
sion of 15396 genes in 203 Colorectal Cancer (CRC) murine tissues. For each
tissue two additional quantities are available.

1. A discrete variable describing the cancer response to drugs, whose values
are chosen as:

• +1 (regressive cancer);
• 0 (stable cancer);
• −1 (worsening cancer).

2. A continuous variable representing the cancer response to drugs after
three weeks, estimated as the difference in size of the tumor.

Data are preprocessed by the z-score technique in order to work on the same
range. All analyses in this part have been done by considering the genes as
variables. This is a very challenging problem because of analyzing very high
dimensional data by means of a small training set. The only possible way
to overcome this difficulty is the dimensionality reduction, even if it is data-
driven too. As a consequence, the Principal Component Analysis (PCA in an
under-determined framework) has been performed both for searching a first
rough estimation of the intrinsic dimensionality of data and, above all, to test
the non-linearity of the problem at hand. However, it results that at least
100 principal components are needed in order to explain the 90% of the data
variance as shown in Fig. 3.1. This number has the same order of magnitude

33

3 – The High Dimensional Problem

of the training set size and is a consequence of the high dimensionality and,
probably, of the fact that the manifold is nonlinear. Other tools are needed
in order to check if the manifold is linear or not.

In the following chapters two different kind of manifold analysis are shown
that approach the high dimensional problem in two different ways. In chap-
ter 4 the high dimensional problem is approached through an unsupervised
feature selection which make use only of gene expressions. In chapter 5,
thanks to the discrete label assigned to each patient, the feature selection is
performed in a supervised way. In both chapters, further analyses are then
conducted with different techniques according to the path: unsupervised or
supervised.

Figure 3.1: Pareto diagram of PC’s explained variance

34

Chapter 4

Unsupervised Manifold
Analysis

The unsupervised path makes use of a scoring algorithm of features based on
their clustering ability to bypass the high dimensionality issue. Traditional
methods of dimensionality reduction and projection are then used on subset
features with high discriminant power in order to better analyze the data
manifold. This chapter has been extracted from a work presented at the
2017 "Workshop Italiano sulle Reti Neurali" (WIRN2017) conference [19].

4.1 Unsupervised Feature Selection
Initially, tissues have been grouped considering all the available genes (fea-
tures) with the Unweighted Pair Group Method with Arithmetic Mean (UP-
GMA), an agglomerative hierarchical clustering approach [20]. This bottom-
up approach finds and merges the nearest pair of clusters r and s according
to their mutual average distance:

d(r, s) = 1
nrns

nr∑
i=1

ns∑
j=1

d(xri, xsj) (4.1)

The average distance algorithm has been chosen because it is robust against
noise and outliers. Among different metrics, the Minkowski distance of order
p = 1 has been found to have the highest cophenetic correlation coefficient
(here 0.8392), therefore it is used in the following analyzes [21]. However,
this approach has not provided satisfactory results; indeed, it was not able
to find meaningful groups. For this reason, tissues have been processed using

35

4 – Unsupervised Manifold Analysis

a different procedure based on the Ward’s minimum variance method [22].
This algorithm finds and merges the pair of clusters that leads to minimum
increase in the total within-cluster variance after merging. The within-cluster
variance increment due to the merging of r and s is proportional to the
distances of the resulting cluster objects from the resulting cluster centroid:

d(r, s) =
√√√√ 2nrns

(nr + ns)
||xr − xs||2 (4.2)

Differently from the first approach, the clustering algorithm is applied using
one feature at a time, determining a one-dimensional clustering which yields
the individual ability of discrimination of genes. This property is evalu-
ated using the Calinski-Harabasz index (also called Variance Ratio Criterion,
VRC, [23]):

V RCk = SSB(N − k)
SSW (k − 1) (4.3)

where N is the number of samples, k is the number of clusters, SSB is
the between cluster variance and SSW is the within cluster variance. Well
defined clusters tend to have a high VRC. Therefore, genes are ranked ac-
cording to this index. By defining a threshold in advance, several genes can
be extracted. In other words, genes are selected according to their ability to
discriminate tissues: this is estimated by checking the best possible separa-
tion (with regard to several choices of the number of clusters by means of the
parameter K ∈ [2,6]) in terms of quality of the groupings by using an index
(see Fig. 4.1).

4.2 Parallel Coordinate Plot
Parallel coordinates are a powerful way of visualizing high-dimensional data.
This kind of data visualization was invented during the 19th century and
sharpened by Wegman in 1990 [24].

A point in n-dimensional space is represented as a polyline with vertices
on equally spaced parallel axes each of one representing a feature; the po-
sition of the vertex on the i-th axis corresponds to the i-th coordinate of
the point. This plot is used in order to understand deeply the gene capac-
ity of discrimination, by visualizing the distribution of the murine tissues
(colored polylines) along all the dimensions (genes) represented as parallel
vertical axes. In this figure blue lines represent worsening cancers, red lines

36

4.2 – Parallel Coordinate Plot

Figure 4.1: Cluster quality evaluation. The red line is the threshold.

Figure 4.2: Parallel coordinate plot.

stable cancers and yellow lines regressive cancers, respectively. The intersec-
tions of the polylines with the vertical axes show there are some genes highly
discriminating the three colors, which means that some mice have particu-
lar expression levels for some genes. Also, the colored grouping of polylines

37

4 – Unsupervised Manifold Analysis

show coherency, which means there is discrimination for tissues. Hence, these
genes can be used as markers of CRC subtypes. This tool has been used as
a visualization tool for the validation of the previous gene selection, based
on the cluster quality evaluation. This technique has confirmed the selection
of 22 genes (see Fig. 4.2). This allows the study of the data manifold repre-
senting the tissues in a lower dimensional space, just alleviating the problem
of the curse of dimensionality.

4.3 Sub-Manifold Analysis
The reduced submatrix is composed of 203 rows, i.e. the tissue values (sam-
ples) and 22 columns, i.e. the selected genes (features). In order to check
the intrinsic dimensionality and the linearity of the data manifold, the Prin-
cipal Component Analysis (PCA, [25]) has been performed. The plot of the
variance explained by the principal components shows an intrinsic dimension-
ality of about 5 (see Fig. 4.3), corresponding to 90% of variance explained.
This result suggests that tissues belonging to the 22-dimensional space lay
on a 5-dimensional hyperplane. The remaining 10% can be justified by either
noise or small departure from linearity, that is nonlinearity only on a large
scale, but not locally. In order to confirm this hypothesis, the Curvilinear
Component Analysis (CCA, [26]) has been used. CCA is a neural technique
for dimensionality reduction which projects points by preserving as many
distances as possible in the input space. However, CCA is here used not
for the exploitation of the projection, but for the information that can be
derived from its dy-dx diagram (see Fig. 4.4). This plot represents distances
between pairs of points in the input space (the dx value) and in the reduced
(latent) space (the dy value) as a pair (dy, dx). If a distance is preserved
in the projection, the corresponding pair is on the bisector (indicated in the
figure). If the pair is under the bisector, it represents the projection as an
unfolding of the input data manifold.

If the manifold is linear, all points tend to lie on or around (because of
noise) of the bisector. Clusters of points on the bisector, but far from the
origin, represent large inter-cluster distances, and, hence, reveal the presence
of clusters. Fig. 4.4 shows this plot for a five-dimensional latent space
(this choice is suggested by the previous PCA). The smaller grouping near
the origin represents the intra-cluster distances and suggests the idea of one
or several hyperplanes as data manifold. This is confirmed by the other
groupings at larger distances. They represent the inter-distances and suggest

38

4.3 – Sub-Manifold Analysis

Figure 4.3: Variance explained by principal components.

Figure 4.4: CCA dy-dx diagram.

the presence of at least four distinct clusters. The fact that, above all, the
groupings of farthest distances have the biggest departure from the bisector,
yields the idea of a curvature at large scale. Resuming, the data manifold in
the space of the selected genes is composed of several well distinct nearly-flat
submanifolds. This confirms the validity of our approach, in the sense that
the extracted features discriminate well with regard to tissues.

Biplots [27] are now used in order to understand the reciprocal behavior
(in statistical terms) between all tissues and the selected genes. They are a
generalization of scatter plots. A biplot allows information on both samples

39

4 – Unsupervised Manifold Analysis

and variables of a data matrix to be displayed graphically. Samples are
displayed as points while variables are displayed as vectors. Fig. 4.5 shows
the biplot over the first three principal components. With regard to tissues
(red points), there are only few data along the first and the second principal
component. Instead, the third component has a good discriminant capacity
over tissues. With regard to genes (blue vectors), most of them are strongly
related to the first or the second principal component. However, five genes
(in the figure, represented as 8, 10, 13, 20 and 21) stay along the third axis,
thus explaining the variance of tissues along this direction. The biplot shows
that a combination of these genes has a bimodal behavior along the third
principal component. Fig. 4.6 shows a parallel coordinate plot of these five
genes. This graph points out relationships between these genes and their
bimodal behavior. Blue lines represent worsening cancers, red lines stable
cancers and yellow lines regressive cancers, respectively. The most interesting
gene is shown in the first vertical axis because it marks a coherent bundle of
segments which represents a set of worsening cancers.

Figure 4.5: Biplot over the first three principal components.

4.4 Biological Feedback
The previous analysis shows that the selected genes, whose biological names
are CRMP1, CSAG1, EIF1AY, PRAC1 and RPS4Y1 have a high discrimi-
nant power. From a biological point of view, some of these genes are strongly
related with cancer. In particular:

40

4.4 – Biological Feedback

• CRMP1 is supposed to be related to inhibition of metastasis [28];

• CSAG1 is supposed to be related to squamous cell carcinoma [28];

• PRAC1 is supposed to be related to human prostate and colorectal can-
cer [28].

Figure 4.6: Parallel plot over the resulting gene selection.

41

42

Chapter 5

Supervised Manifold
Analysis

As anticipated at the beginning of this part, in this chapter a supervised
manifold analysis is performed. In addition, a simple model is built through
a classic Multi Layer Perceptron (MLP): it correctly classifies unlabeled data
according to the patient response to drug. Most of content exposed in this
chapter was presented at the WIRN2017 conference [29].

5.1 Supervised Feature selection
As in the previous case, a manual feature selection based only on the par-
allel plot analysis is unfeasible due to the huge amount of features (15396)
and to the difficulty to ascertain the colored bundle groupings. In order to
circumvent this problem, a new algorithm for supervised feature selection,
based on the Davies-Bouldin [30] clustering index, has been devised. Each
gene has been evaluated in its capability of discriminating tissues with dif-
ferent response to drugs which is indeed the skill in grouping well-separated
clusters, with high level of cohesion. Specifically, tissues have been divided,
for each gene, into unidimensional clusters, exploiting only the associated
label. Then, the resulting cluster quality is estimated. The Davies-Bouldin
index is suitable for the case of study, because it considers both inter-cluster
distances and intra-cluster distances, estimated according to the Euclidean
distance. A quality threshold has been empirically selected in such a way
that only the best genes are chosen. Hence, 19 genes have been retained as
shown in Fig. 5.1. This way of selecting feature is unconventional because

43

5 – Supervised Manifold Analysis

it does not calculate directly the correlation between genes and the response
to drugs, but it still selects the genes that will be more useful and reliable
for a classification model based on those genes only.

Figure 5.1: Cluster quality evaluation. The red line is the threshold.

5.2 Sub-Manifold Analysis

A subspace composed of the genes selected by the feature selection has been
extracted from the original dataset, creating a matrix composed by 203 tis-
sues and only 19 genes. In order to have a better insight of the data extracted,
a PCA analysis has been performed for this reduced database as in the pre-
vious section. The inspection of the PCA explained variance suggests the
intrinsic dimensionality of the manifold to be 11. This could imply data
stay on a 11-dimensional hyperplane. A further insight of the manifold has
been obtained through a CCA. Here CCA performs a projection from a 19-
dimensional to a 11-dimensional space. As shown by the dy-dx diagram (see
fig. 5.2), most pairs stay around the bisector, just confirming the hypothesis
of 19-dimensional hyperplane.

44

5.3 – Lasso regression

Figure 5.2: dy-dx diagram.

5.3 Lasso regression
Lasso regression [31] generally targets to improve the prediction accuracy
and interpretability of the regression model by selecting only a subset of
the available variables to use in the final model rather than using all of
them. Lasso is able to achieve it by forcing the sum of the absolute value of
the regression coefficients to be less than a fixed value, which forces certain
coefficients to be set to zero, effectively choosing a simpler model that does
not include those coefficients. It requires a regularization parameter λ which
controls the trade-off between regression and constraint on the coefficients.
Greater values of λ correspond to a lower number of variables inserted in the
model. In the case of study, Lasso regression has been useful to confirm the
intrinsic dimensionality of the reduced matrix previously established and,
more importantly, to identify the 11 genes. This step has been possible
because it is based on the linearity assumption of the reduced database,
deduced from the previous manifold analysis. The response variable used
previously cannot be exploited here, because it is discrete. Instead, the other
variable associated to the tissues can be used (the tumor difference in size
after 3 weeks). Fig. 5.3 shows gene coefficients that decrease until zero as
λ increases. The value of λ suggested by Lasso (the dotted line in figure) is
given by 0.05, because it is the one that guarantees the least Mean Square
Error (MSE) as shown by Fig. 5.4. It is important to notice that the number
of nonzero LASSO coefficients still present at λ = 0.05, is 11. This result
confirms the previous assumption about the fact that the reduced manifold

45

5 – Supervised Manifold Analysis

is a 11-dimensional hyperplane.

Figure 5.3: Lasso coefficients as a function of λ.

Figure 5.4: MSE of Lasso regression as a function of λ.

46

5.4 – Biological Feedback

5.4 Biological Feedback
The 11 genes selected are the most meaningful for predicting the increment
or decrement of the cancer volume size after three weeks. Their names are
the following: LOC645233, FSCN1, ACSS2, SMAD9, MED1, TMEM118,
LOC728505, SF3B4, LOC651316, SERPHIN1, GPR126. Some of these genes
are already well known in the medical literature as correlated with cancer:

• FSCN1 is supposed to be related to cell motility [28];

• ACSS2 is supposed to be related to cancer cell survival [28];

• MED1 is supposed to be related to gene transcription [28]).

Correlation with cancer of the remaining genes has not been proved yet.
Their presence in this work, however, suggests that they should be involved,
at least in this particular context of the CRC response to drugs. In fact, it
is important to observe that a gene expression may not be relevant for the
presence of a tumor, but it may remain important for the survival of tu-
moral cells. Specifically, average expressions in patients of genes LOC645233
and ACSS2 seems to be in contrast with literature. Nevertheless, results
regarding those genes have been published, since they are not an artifact of
the analysis but they concern raw data. This analysis proposes a novel ap-
proach whose results may be considered as suggestions for further biological
research.

5.5 Classification
At last, the expression of the selected 11 genes is used in order to train a
classification model. Several models have been tested: the one that shows
the best accuracy on the test set is the Support Vector Machine (SVM, [32])
with an accuracy of 78%. The model is tested through the hold-out validation
with 25% of data randomly put in the test set. A further attempt to improve
the accuracy of the model has been done through the use of a Multilayer
Perceptron (MLP, [32]). It is composed of 11 inputs, 20 hyperbolic tangent
hidden neurons and 1 output whose activation function is the logistic sigmoid.
It is equipped with the cross-entropy error function and the backpropagation
learning algorithm is used in order to evaluate the error derivatives for the
BFGS training. For the purpose of this analysis two target classes have been
selected: the first (1) corresponding to tissues with a regressive or stable

47

5 – Supervised Manifold Analysis

response and the second (0) for tissues where the disease has worsened. The
robustness of the model is corroborated by both validation and test sets. The
accuracy is shown in the Test Confusion Matrix (fig. 5.5) and is given by
80%. This result is not only important in itself, but can be considered as a
figure of merit for the selected 11 genes: how accurate 11 genes over 15396
are in modeling the progression of the tumor.

Figure 5.5: Confusion Matrices for the MLP classifier.

48

Part III

Advanced Neural
Techniques

49

Chapter 6

Unsupervised Neural
Techniques

6.1 Introduction

Following the unsupervised path previously introduced in chapter 4 of part
II, further and deeper analysis have been conducted using several neural
techniques. A further analysis in this direction has been required as class
discovery is a key aspect in analyzing gene-expression data as reported in
[33]

As already explained the high dimensional problem prevents a direct ap-
plication of clustering algorithms in the feature space. Nonetheless, this is
a common problem in gene expression analysis and in general while clus-
tering high-dimensional data. As suggested in [34], this obstacle may be
overcome through the use of Biclustering. This technique has been the key
of the work: several advanced neural networks techniques performing cluster-
ing have been indeed tested in a biclustering framework. Eventually, a novel
neural network, Growing-Hierarchical EXIN (GH-EXIN), devised ad hoc for
the problem at hand has been successfully employed. GH-EXIN is based on
a novel unsupervised neural approach called G-EXIN (Growing-EXIN [35]).

In Sec. 6.4, the biclustering technique is explained; in the following one,
Sec. 6.3, two state-of-the-art techniques, used also in the context of biclus-
tering, are reported; in chapter 7 the novel neural network, GH-EXIN, is
introduced; a comparison between this technique and the previous ones is
presented in Sec. 7.2; results of the neural framework applied on the current
dataset is reported in Sec. 7.4.

51

6 – Unsupervised Neural Techniques

6.2 Hierarchical Clustering Analysis
The hierarchical cluster analysis (HCA, [36]) is a multi-resolution clustering
technique. It builds a tree of clusters with different levels of data interpreta-
tion. In data mining, for instance, HCA can yield a richer information than
plain clustering. It is generally performed in two ways:

• Hierarchical Agglomerative Clustering (HAC), where each data in the
beginning corresponds to a singleton cluster, and then pairs of clusters
are merged until only one cluster containing all data is reached (bottom-
up approach).

• Hierarchical Divisive Clustering (HDC), in which all data start in one
cluster and splits are performed recursively until all clusters are single-
tons (top-down approach).

The top-down approach of HDC represents better the dataset because
it starts taking into account all data. Instead, the bottom-up approach of
HAC is, in this sense, more arbitrary in the initial steps, thus influencing
the quality of the resulting tree. Also, HAC is intractable in case of large
datasets. However, the way HDC splits the clusters is still an open prob-
lem. A promising approach is represented by the use of neural networks for
clustering.

The neural algorithms for HDC can be classified according to both the
way the neural tree is trained and the kind of basic neural network used for
each node (basic neural unit). As a first taxonomy, there are two approaches:
synchronous training (ST), where the training is performed on the whole tree,
and asynchronous training (AT), where the training is performed node by
node. The Dynamic Neural Tree Network (DNTN, [37]) adapts a dynamic
hierarchy to data, as an output layer fed by the input: all growing nodes
are fed by the same input and are trained simultaneously (ST). It requires
a tolerance for determining the new neurons and a threshold for the child
growth. It is not able to represent correctly the outliers. A variant of DNTN,
the Competitive Evolutionary Neural Tree (CENT, [38]) claims it does not
require user dependent parameters. Indeed, they become internal parameters
which are dependent on data, but are empirical and not justified. CENT is
based on the neuron activity (which is decreased in time for avoiding the
poor initialization) and addresses the DNTN problem of outlier detection.
Another ST approach uses the Self-Organizing Map (SOM), considered as
a tree (TreeSOM, [39]). It is based on the interpretation of SOM as a tree

52

6.2 – Hierarchical Clustering Analysis

when a distance threshold is decreased in time [40]. TreeSOM addresses the
problem of the sensitivity of the tree to the SOM topology and initialization
by using the idea of consensus tree, which is a virtual tree averaging the trees
resulting from different initial conditions. The best tree is the closest to the
consensus tree.

Most neural approaches fall into the AT category. They can be classi-
fied according to the clustering technique used for each node. In [41], the
k-means algorithm is exploited. It divides data in a fixed number of clusters
(HDC), but uses an additional HAC for refinement. The Hierarchical Clus-
tering Algorithm based on k-means with Constraints (HCAKC, [42]) uses an
improved Silhouette for determining the k parameter. In [43] and [44], a pre-
processing based on Principal Component Analysis and divide-and-conquer,
respectively, is used for dealing with high-dimensional data. In [45], the
Growing Hierarchical Tree SOM (GHTSOM) uses an elementary SOM given
by three connected neurons as basic module (triangle). It requires two kinds
of links: the train links for defining the neural triangles and the class links
for clustering at each level of the tree. The use of triangles, which does not
yield necessarily a Delaunay triangulation, limits heavily the performance of
the network. If the basic neural unit is a Growing Cell Structure (GCS, [46])
the hierarchical version is called Hierarchical GCS (HiGCS, [47]). If, instead,
the Growing Grid (GG, [48]), with decreasing learning rate and neighborhood
range, is used, the algorithm is called Growing Hierarchical SOM (GH-SOM,
[49]). The vertical and horizontal tree growths are controlled by using the
mean quantization error, by means of two parameters whose setting is tricky,
as discussed in [50]. In [50], a novel algorithm, called Growing Hierarchical
Neural Gas (GHNG), is proposed, which exploits the Growing Neural Gas
(GNG, [51]) as basic neural unit. In [50] it is proved it has a better perfor-
mance than GHSOM. Another algorithm performing AT is the Dynamically
Growing Self Organizing Tree (DGSOT, [52]) which is an enhanced dynamic
version of the Self Organizing Tree Algorithm (SOTA, [53]), which builds a
binary hierarchy.

In the following sections, the last two algorithms (GHNG and DGSOT)
are discussed, along with the proposed AT approach (GH-EXIN), highlight-
ing similarities, differences and novelties. More specifically, in Sec. 7.2 the
GHNG and DGSOT algorithms are briefly summarized. In Sec. 7.1 the
novel neural network is presented, together with considerations on the re-
quired user-dependent parameters and the analysis of the time complexity.
Results and comparison of the three algorithms on the synthetic experiments
are reported and discussed in Sec. 7.2. Real-world applications are presented

53

6 – Unsupervised Neural Techniques

in Secs. 7.3 and 6.4, in a typical problem in video recognition and in two-way
clustering, respectively.

6.3 State-of-the-art of Neural Clustering

6.3.1 GHNG

The Growing Hierarchical Neural Gas (GHNG, [54]) is a hierarchical self-
organizing neural model, which learns a tree of Growing Neural Gas (GNGs)
where each subgraph (i.e. each GNG) is the child of a processing unit (a.k.a.
neuron) of the upper level. At each hierarchical level a GNG network is
created by using the Voronoi set of the father neuron. Initially, a GNG net-
work is composed of two neurons joined by a connection. At first, each one
is initialized to a random sample from the Voronoi set of the father unit.
When a new sample xt is presented to the GNG network, the algorithm finds
the nearest neuron wq and the second nearest one ws to the sample, and it
increments the age of all the edges departing from wq. The error variable as-
sociated to the winner eq is incremented with the squared Euclidean distance
between the winner itself wq and the new sample xt:

eq(t+ 1) = eq(t) + ||wq(t)− xt||2 (6.1)

Then, all the direct topological neighbors of wq (i.e. neurons joined to wq
with an edge) are updated with step size εn, and wq itself is updated with
step size εb:

wi(t+ 1) = (1− ε)wi(t) + εxt (6.2)

If the winner wq and the second winner ws are connected with an edge,
the age of this edge is set to zero; otherwise, if they are not joined, an edge
is created linking the two neurons. Finally, all the edges older than age amax
are removed, as well as all the isolated neurons (if any). At this point, if
the current time step t is a multiple of a user-dependent parameter λ, then
a backup copy of the GNG network is saved. Then the algorithm selects the
neuron having the largest error wr and, among its neighbors, the one having
the largest error wz. A new neuron wk is then created halfway between wr
and wz, decreasing the quantization error of the GNG graph. Otherwise, if

54

6.3 – State-of-the-art of Neural Clustering

the time step t satisfies the relationship:

mod (t, 2λ) =
3

2λ
 (6.3)

a check is done in order to evaluate if the growth process has resulted in
an improvement of the quantization error. Given the mean quantization of
the last backup copyMSEold and of the current GNG networkMSEnew, the
backup graph is restored if:

MQEold −MQEnew
MQEold

< τ (6.4)

where τ ∈ [0,1] is a user-dependent parameter. If the above relationship
is satisfied, then the graph enters the convergence phase. Thus, for high
values of τ the quantization error improvement must be significant in order
to continue the growth phase. Finally, the error variables are decreased by
multiplying them by a user-dependent constant d. If the maximum number
of time steps is reached the algorithm stops. Otherwise another sample is
presented to the GNG graph. When the learning process ends, then the
Voronoi set of each neuron is used to train another GNG network recursively
(see Fig. 6.1). The vertical growth in a branch of the hierarchy stops when
the deepest GNG enters the convergence phase having only two neurons.
This leaf node is pruned because it is too small to represent any relevant
distribution.

6.3.2 DGSOT
The Dinamically Growing Self-Organizing Tree (DGSOT) [52] is a self-organizing
neural network. Similarly to all clustering algorithms presented in this work,
it builds a hierarchical divisive tree.

It is an enhanced version of the Self Organizing Tree Algorithm (SOTA)
[53]: basically, DGSOT adds to each vertical growth performed in SOTA also
a horizontal growth which allows to better determine cluster partitioning at
each level. SOTA, in fact, builds a binary tree: each cluster, if partitioned,
is only split into two parts, but this is a very limiting approximation.

The type of tree built by DGSOT is slightly different from the one built by
GHNG: in the latter, each node in the tree seems to represent the training of
an associated neural network (GNG), which is composed of many neurons. In
this case, instead, each node effectively represents a neuron. In the following,

55

6 – Unsupervised Neural Techniques

Train modified
GNG

𝑙𝑒𝑣𝑒𝑙 > 𝐿𝑀𝐴𝑋

No

Yes
Return

|𝐻| == 2

No

Yes

For each unit 𝐻𝑖

Call recursively
the algorithm

with the Voronoi
set of leaf 𝐻𝑖

Tree
initialization

Figure 6.1: GHNG flowchart.

hence, the terms "neuron" and "node" will be used alternatively, as, at least
in this context, they are interchangeable.

The tree initialization consists in the assignments of all data to the root
node and in its positioning as the centroid of the dataset.

Then, while there exists at least a leaf whose heterogeneity is higher than a
threshold TR, a vertical growth is performed on this leaf. The heterogeneity of
a node is defined as the average distance of the data to the neuron reference
vector. Two descendent nodes of the current node are created and their
reference vectors are initialized with father node’s reference vector.

A learning process, in general, is the presentation of all data (epoch) for
a few times to neurons for them to learn. The learning, basically, consists in
the assignment of data to winner neurons and in the following reference vec-
tor adaptation. In this particular case, data previously assigned to the father
node, are presented through the K-level up Distribution (KLD) mechanism.
It selects potential winner neurons among all the leaves belonging to the
sub-tree starting from the K-ancestor node, the ancestor node K-level above
father node, where K is a parameter of the network. This mechanism allows

56

6.3 – State-of-the-art of Neural Clustering

Figure 6.2: DGSOT flowchart

improperly clustered data in early hierarchical levels to be re-evaluated dur-
ing later at lower layers. The winner, as commonly done, is chosen as the
nearest node. Weight adaptation, instead, occurs not only for the winner
but also for its neighbours, in a winner-take-most strategy. Neighborhood
is defined as the union siblings and father node. For both winner node and
neighbor nodes, reference vectors are updated according to the following
function:

∆wi = φ(t) · (x− wi) (6.5)

where wi is the reference vector of the winner node, x is the datum and φ(t)
is defined as:

φ(t) = α · η(t) (6.6)

where α is a user-dependent parameter which differs according to node taken
into consideration, and, in general, is close to 1 for the winner, smaller for
the siblings and close to 0 for the father node; η(t), at last, is a function of

57

6 – Unsupervised Neural Techniques

the time t which represent the number of times a neuron is selected as winner
node: a good choice may be η(t) = 1/t

The learning process is repeated until the relative heterogeneity of all
child nodes compared to the previous epoch is less than a user-dependent
parameter TE.

After the learning process a horizontal growth is performed. This kind of
growth consists in the addition of a node to the current group of child nodes.
It is always followed by a further learning process in which the current group
of nodes finds the correct quantization associated to the current number of
neurons. These two steps are repeated until the current number of neurons
is found. After the learning process, in fact, a cluster validation test is
performed in order to check the quantization error of the current neural
network. In order to do that, DGSOT calculates the Cluster Separation
(CS) as:

CS = Emin
Emax

(6.7)

Where Emax is the maximum distance between two of the current neurons,
while Emin is the minimum distance. In case CS is above a given threshold
Tc, user-dependent parameter, the process is repeated - i.e. a horizontal
growth is performed again followed by a learning process. Otherwise, the
last child is deleted and previous configuration is restored through another
learning process.

6.4 Biclustering
Biclustering was introduced in the 60’s, but has been properly defined only
by Cheng and Church in 2000 and is also known as two-way clustering or
manifold (subspace) clustering, [55]. As previously introduced, this tech-
nique has been chosen as it allows to perform grouping on a reduced dataset,
overcoming the high dimensional problem. Nonetheless, this is not its only
quality.

Basically, clustering can be applied to either the rows or the columns of the
data matrix, separately. Biclustering, instead, performs clustering in both
dimensions simultaneously. In this work it is achieved by alternating both
row and column clustering on projected data derived from the previous steps.
Compared to clustering, biclustering has several advantages since it groups
items based on a subset of the features so that it does not only perform
grouping but also discovers the context (subspace) in which the groups are

58

6.4 – Biclustering

found. Furthermore, the projection of the biclusters into the features or the
samples space allows to analyze the results as grouping of samples or features,
respectively. In this work, biclusters are projected into the sample space in
order to discover in which conditions - i.e. for which individuals - different
genes coregulate.

In fact, common requirements in analyzing gene data are the grouping of
genes according to their expression under multiple conditions (tissues) and
the grouping of conditions based on the expression of a number of genes.
These can be achieved by using clustering techniques. However, many acti-
vation patterns are common to a group of genes only under specific experi-
mental conditions. Indeed, subsets of genes are coregulated and coexpressed
only under certain experimental conditions, but behave almost independently
under other conditions. Finding these local expression patterns is the goal of
biclustering [34] and is the key for class discovery which in this specific case
means uncover unknown genetic pathways.

Biclustering searches for biclusters with constant values, with constant
values on rows or columns and with coherent values, respectively. It can be
proved that the rank of the corresponding submatrices is less than or equal
to three in the noiseless case. Hence, the numerical rank can be used as a
figure of merit of the quality of the bicluster. The Hcc index, introduced by
Cheng and Church [55], is used to control the quality of the bicluster as it
also takes into account the noise in data. It is expressed as:

Hcc =
∑Nr
i

∑Nc
j r2

ij

NrNc
(6.8)

where Nc represents the total number of columns of the matrix, Nr represents
the total number of rows and ri,j is the residue, which is calculated as:

rij = aij −
∑C
k aik
C

−
∑R
h ahj
R

+
∑R
i

∑C

j aik

C

R
(6.9)

The terms ai,j are the elements of the matrix (rows and columns represent
faces and descriptors). C and R are the number of columns and of rows of
the bicluster at hand, respectively. The second term is the average value of
the ith row, the third term is the average value of the jth column, while the
last one is the average value of the whole bicluster. This index decreases as
the values in the bicluster tend to be constant, differing for a constant on
the rows or a constant on the columns. It goes to zero for the trivial 1x1
bicluster. This fact implies additional controls on the biclusters in order to
avoid this drawback.

59

6 – Unsupervised Neural Techniques

Figure 6.3: Neural Biclustering Framework

6.4.1 Neural Framework
In order to detect biclusters in the gene expression matrix, gene and tissue
clustering are alternated. The preferable type of clustering in this case is a
hierarchical divisive clustering: it easily allows to select the desired cluster
resolution level at each iteration, by simply stopping the network when a
certain height in the hierarchy has been reached. This is fundamental in
biclustering because it allows to alternate the clustering in the two spaces

60

6.4 – Biclustering

several times until the best biclusters are found. As shown in Fig. 6.3, in-
deed, a first a hierarchical clustering is achieved on genes in the tissue space,
because it is the lowest dimensional space (in order to avoid the curse of di-
mensionality, which cannot be avoided if working on the gene space). Then
another hierarchical clustering is performed on the tissues in the space of
the genes associated to the best leaves produced in the first step (reduced
gene space, as an orthogonal projection from the original space). The best
leaves of the second step reduce the tissue space for the genes selected after
the first step. This corresponds to another orthogonal projection. Resum-
ing, each cluster (leave) decreases the dimensionality of the problem for the
subsequent clustering, whose leaves yield a further dimensionality reduction.
Considering that clustering implies a feature selection, this can be viewed as
an orthogonal projection of the vectors. Indeed, selecting only some com-
ponents results in setting the other components to zero. Considering that
the basis is canonical, it corresponds to an orthogonal projection into the
reduced subspace (cluster). These two steps, which pseudocode is illustrated
in Alg. 1, are repeated (alternated projections) until bicluster candidates are
identified.

The growth of the tree is controlled by the index Hcc, by simply modifying
the stop criteria of the chosen algorithm. However, as seen before, the index
tends to zero as the cardinality of the leaves decreases. In order to avoid
trivial biclusters, before each clustering step, a check on the minimum number
of data in the leaf (Cmin) is performed both in the tissue space and in the
gene space (additional check). The choice of the quality index depends on
the goal of the analysis. Other indices can be added (e.g. an index about the
shape of the cluster) or replace Hcc. However, this choice remains basically
heuristic and is an open problem.

Resuming, the parameters needed by the biclustering algorithm are the
minimum cardinalities of leaves for both dimensions i.e. both in the number
of genes grouped and in the number of tissues. These parameters, together
with the bicluster quality index (Hcc), control the search and require a deep
analysis, which, however is out of the scope of the work.

61

6 – Unsupervised Neural Techniques

Algorithm 1 Biclustering Pseudocode
1: biclustering:
2: Clustering on genes
3: for all leaves do
4: if leaf.cardinality ≤ Cmin1 then
5: skip leaf
6: else
7: Clustering on the tissues of the leaf (projection)
8: for all leaves do
9: if projectedLeaf.cardinality ≤ Cmin2 then

10: skip leaf
11: else
12: save projected leaf
13: goto biclustering
14: end if
15: end for
16: end if
17: end for
18: return

62

Chapter 7

GH-EXIN

7.1 The GH-EXIN Hierarchical Tree
The proposed approach builds a divisive hierarchical tree in an incremental
and self-organized way. It is data driven (self-organization), in the sense
that the final tree is automatically estimated. Also, it does not require a pre-
defined number of units and levels (incremental with pruning phase). The
resulting tree is neither binary nor balanced, because of its dependence on
data. Both the GH-EXIN (Figs. 7.5 and 7.6), GHNG and DGSOT algo-
rithms follow these criteria.

7.1.1 Tree Building
The hierarchical divisive clustering algorithms build a tree starting from a
root node. By means of vertical and horizontal growths, successive splits
are determined. These splits correspond to the transformation of the corre-
sponding leaf into a node, called father neuron, whose sons are its associated
leaves. For each father neuron a neural network (i.e. a basic neural unit)
is trained on its corresponding Voronoi set, i.e. the set of data represented
by the father neuron. The sons are then the neurons of the associated basic
neural unit and determine a subdivision of the father Voronoi set. For each
leaf the procedure is repeated.

Root Node

Both DGSOT and GH-EXIN associate the whole data set to a fictitious
neuron (a.k.a. root node). The first basic neural unit is then trained on

63

7 – GH-EXIN

the Voronoi set of this fictitious unit. Conversely, GHNG does not have any
fictitious father, all nodes created at the first layer are orphans (they do not
originate from a father neuron). It could be argued that GHNG builds a
forest other than a single tree.

Vertical Growth

Vertical growth is the process in which a leaf becomes a node and a deeper
layer is added. In these algorithms, it is always required the creation of
a seed, i.e. a pair of neurons, which represents the starting structure of a
new basic neural unit. This kind of growth is exploited as long as a higher
resolution is needed. In order to evaluate whether a vertical growth is neces-
sary, all algorithms check if the quantization error of the basic neural unit is
below a user-defined threshold. DGSOT checks data heterogeneity, defined
as the average distance of the data to the neuron reference vector. GHNG,
instead, checks whether the number of levels in the hierarchy exceeds a user-
dependent parameter MAX_Level. GH-EXIN simultaneously checks both
data heterogeneity using a task-dependent index, say Hmax, and the data
cardinality (mincard), i.e. the size of the leaf Voronoi set. The H index is
based on the quantization error and determines the quality of the clustering.
Several choices are possible, in general depending on the application. In this
paper the Hcc index [55] has been chosen. It is designed for biclustering
problems, but, here, it is extended to two-way clustering. Its description is
given in Sec. 6.4. Considering the characteristics of the biclusters that can
be found, it can also be used for normal clustering, as seen in Sec. 7.2.

Horizontal Growth

Horizontal growth refers to the addition of further neurons to the initial
seed, i.e. the creation of siblings. This method allows to expand a layer of
the tree and build more complex hierarchical structures other than binary.
This process is performed by all algorithms through the respective neuron
creation mechanism later described (see Sec. 7.1.2).

7.1.2 sG-EXIN
The basic neural unit is intended as the neural network chosen for the clus-
tering of the input data. All these methods use a basic neural network for
the processing of each leaf. GH-EXIN is based on the stationary variant of
G-EXIN [56], say sG-EXIN. GHNG uses a variant of GNG, while DGSOT,

64

7.1 – The GH-EXIN Hierarchical Tree

deriving from SOTA, exploits as basic neural network an enhanced version of
SOM. All these neural units do not employ any fixed topology (the induced
topology is generated in the linking phase). Neural networks are composed of
units called neurons, which are represented by weight (a.k.a. reference) vec-
tors. As an abuse of language, the terms neuron and weight vector are used
with the same meaning. With regard to training, both sG-EXIN and DG-
SOT are based on the idea of epoch, which is the presentation, in a random
order, of the complete training set. After each epoch controls are made for
the horizontal growth by means of user-dependent parameters: Hperc (GH-
EXIN), TE (DGSOT). However, this is not the classical batch learning, which
requires the weights to be updated after the presentation of the whole batch.
For these two neural networks, instead, weights are updated or created at
each iteration (data presentation). Also, GHNG learns at each iteration, but
it is not clear if it requires epochs. Indeed, its algorithm does not use epochs;
however, in the examples in [50], epochs are mentioned. There are some pros
and cons with the choice of epoch-learning. Despite the fact that it lowers
the training cost (GHNG is the fastest one), the use of epochs before controls
implies the exploitation of the complete batch, which means all information
is used for building a tree. It must be highlighted that the onset of the hier-
archical tree is fundamentally a static problem, thus requiring the processing
of the whole database for an accurate tree.

Neuron Creation

The basic neural units use incremental neural networks, i.e. they have a
variable number of neurons (driven by data), achieved by the mechanism of
neuron creation and pruning. Both DGSOT and GHNG decide in advance
when to create a new neuron: DGSOT by considering the batches of the
whole set of samples, at the end of an epoch, GHNG every λ (user-dependent
parameter) iterations. On the contrary, for GH-EXIN, the creation of a
neuron, is related to a novelty test: if the existing neurons are not able to
describe the new data, say xi, a new neuron is created. The test approach
is less rigid because it is only driven by data. As discussed in the following,
the choice of the test is not trivial.

Semi-Isotropic Region of Influence The novelty test requires, in gen-
eral, a model of the region of influence of a neuron in the input space. All
existing algorithms determine, in a way or another, a threshold value repre-
senting the radius of an hypersphere which models this region. An exhaustive

65

7 – GH-EXIN

description can be found in [57]. This model is isotropic, in the sense that it
does not take into account the orientation of the vector connecting the new
data to the winner, but only its norm. As a drawback it does not consider the
topology of the data manifold of the winner Voronoi set. The GH-EXIN pro-
posed approach considers, at the same time, the shape (anisotropic criterion)
and the extent (isotropic criterion) of the neuron neighborhood (determined
by the linking phase, see Sec. 7.1.2). The anisotropic criterion consists of
the analysis of the convex hull built on the neighbor neurons of the winner
as explained in Fig. 7.1 and in more detail in [56]. In case xi lies inside
the convex hull, it is assigned to the winning neuron (wγ), as shown in Fig.
7.2, and the weight adaptation is performed (see Sec. 7.1.2). Otherwise,
the isotropic criterion is applied to check if the data is really novel w.r.t the
existing units. The neuron isotropic threshold, say Tγ, is computed as the
average of the Euclidean distances between the winning neuron (wγ) and its
N neighbors (wi):

Tγ = 1
N

N∑
i=1
||wγ − wi||2 (7.1)

In case xi is farther from the winner than Tγ, a new neuron is created on the
data. Otherwise, it is assigned to the winner, and the weights are updated
according to the mechanism described later (see Sec. 7.1.2).

The use of an anisotropic criterion is justified by the need of representing
better the data manifold, which is not guaranteed by using only the isotropic
threshold. Fig. 7.2 shows one of these cases. It is proved in [56] that this
approach better models the border of the data manifold.
On the contrary, GHNG and DGSOT do not require a region of influence, but
keep adding neurons as far as the quantization error (a.k.a. cluster separation
in [52]) does not fall below a user-dependent threshold. GHNG computes the
quantization error from data, by considering the average distance between
the reference vectors and their Voronoi sets, while DGSOT from network
topology, by considering the rate between the minimum and the maximum
distance among neurons. As a consequence, GHNG and DGSOT are prone
to the choice of a predetermined parameter, instead of exploiting the neigh-
borhood topology, as in the case of GH-EXIN.

Lonely Neuron A neuron with no edges is named lonely neuron: in Fig.
7.2 the neuron at the bottom with no edges is a lonely neuron. Since DGSOT
does not make use of edges, all its neurons are lonely. On the contrary, both
GHNG and GH-EXIN exploit the concept of lonely neurons to determine

66

7.1 – The GH-EXIN Hierarchical Tree

w2

w3

w1

w4

V1 = w1 – xj

V1 • a > 0

V4 = w4 – xj

V4 • a > 0

xj

w5

(a) If all the dot products between the vectors vi from the new data xj and
the neuron wi, and the vector a, sum of the vi’s, have equal sign, then the
new data is outside the convex hull of the winner (w1)

w2

w3

w1

w4

V1 = w1 – xi

V1 • a < 0

V2 = w2 – xi

V2 • a > 0

xj

w5

(b) If all the dot products, between the vectors vi from the new data xj and
the neuron wi, and the vector a, sum of the vi’s, have not the same sign,
then the new data is inside the convex hull of the winner (w1)

Figure 7.1: A new data xj is presented to the sG-EXIN neural network
composed of four connected neurons

67

7 – GH-EXIN

Figure 7.2: The anisotropic criterion: if a new data (small red dot) is pre-
sented and lies outside the hypershphere centered on the winner (big red
dot), but within the convex hull created on its neighbours (blue connected
nodes), it is also assigned to the winner. Furthermore, according to SCL
both the winner and its neighbours move towards it.

leaf neuron pruning. In both algorithms, a neuron may become lonely in
case all its edges are pruned. However, in GHNG neurons already have
connections when created. In GH-EXIN, instead, new neurons are created
lonely. Connections may be generated only in the next iterations.

Soft-Competitive Learning

The weight computation (training) is based on the Soft Competitive Learning
(SCL) paradigm [58], which requires a winner-take-most strategy and the
network topology, whose setting is explained in Sec. 7.1.2. The closest
neuron to the new data is named (first) winner. The set of potential winners
differs according to the clustering algorithm. In both GHNG and GH-EXIN,
only neurons belonging to the same basic neural unit are competitive in the
learning phase. In DGSOT, instead, all leaf neurons belonging to the sub-
tree below the K-ancestor of the current node are competitive.
At each iteration, both the winner and its neighbors change their weights
but in different ways as shown in Fig. 7.2. The winner wγ and its direct

68

7.1 – The GH-EXIN Hierarchical Tree

topological neighbors wi are moved towards xj by fractions αγ(t) and αi(t)
(learning rates), respectively, of the vector connecting the weight vectors to
the data. The update is given by:

∆w = α(t) · (w − xj) (7.2)

where α(t) = α0/t, and α0 is a user dependent parameter, higher for the
winner and smaller for the neighbours, and t is the number of times a neuron
wins (conscience). Regarding the weight adaptation, the difference among
the three algorithms consists on the neighborhood determination. DGSOT
considers as neighbors all neurons belonging to the same basic neural unit,
plus the father neuron. On the contrary, the neighborhood of both GHNG
and GH-EXIN is composed of only those neurons connected to the winner
through an edge. Hence, GHNG and GH-EXIN exploit a more local infor-
mation.

Edge Creation and Network Topology

Edges are exploited in order the determine the topology (neighborhood) of a
network. Both GH-EXIN and GHNG use the Competitive Hebbian Learning
(CHL) rule [58] for creating the neuron connections: each time a neuron wins
(first winner), an edge is created, linking it to the second nearest neuron
(second winner), if it does not exist yet. If there is already an edge, its
age is set to zero. Furthermore, in both GHNG and GH-EXIN the same
aging procedure is applied: the age of all links emanating from the winner
is incremented by one. In case a link age is greater than the agemax scalar
parameter, it is eliminated (pruned).

7.1.3 Neuron Pruning

Neuron pruning is the process through which neurons can be removed if
redundant. DGSOT does not exploit any pruning technique, in the sense
that the redundancy is only checked each time a neuron is added, but old
neurons cannot be removed. Vice versa, GHNG and GH-EXIN remove all
lonely neurons. GH-EXIN checks for lonely neurons at the end of each epoch
(see Fig. 7.6), while GHNG checks at each iteration. Besides, GHNG may
prune an entire set of neurons if its modified GNG enters the convergence
phase. However, the onset of this phase is empirically determined.

69

7 – GH-EXIN

(a)
(b) (c)

Figure 7.3: GH-EXIN data reallocation: small dots represent data while
big dots represent neurons. Big red dots, indicated by arrows (colored as
the neurons of the same sG-EXIN), mark pruned neurons, while small red
dots represent data belonging to them. Different colors represent different
network units

Data Reallocation Data reallocation is the mechanism by which orphan
data, i.e. associated to pruned neurons (their Voronoi sets) or lonely neurons
(data coincident with the neuron) are possibly reassigned to other neurons.
This mechanism is a novelty introduced in GH-EXIN (see Fig. 7.6), and is an
improvement of the KLD method used in DGSOT. In fact, in GHNG, when
neurons with no edges are removed, the associated data are not reallocated.
In GH-EXIN, instead, all orphan data are labelled as potential outliers at
the end of each epoch. For each potential outlier, GH-EXIN seeks a new
winner among all leaf neurons. The data is reassigned in case it is inside the
hypersphere (or the convex-hull) of another neuron within the same neural
unit (Fig. 7.3(a)) or in case the nearest neuron belongs to another neural
unit (Fig. 7.3(b)). If, instead, the winner belongs to the same neural unit
of the pruned neuron, but the data is outside its hypersphere, the data is
definitely marked as outlier and is not reassigned (Fig. 7.3(c)). This outlier
identification can be useful in a lot of applications.
Resuming, only GH-EXIN and DGSOT may correct possible cluster errors
made in the previous layers. Instead, this is not possible for GHNG: the
advantage of the speed of its algorithm is counterbalanced by the fact that
the errors always affect the final tree. As said before, the building of a tree is
basically a static process. So, GHNG is less suited to hierarchical clustering
than the other two techniques.

70

7.1 – The GH-EXIN Hierarchical Tree

Figure 7.4: Connected Graph Test: the Voronoi regions of each neuron are
represented with solid red lines; chains in the father sG-EXIN become sons

7.1.4 Connected Graph Test
Another remarkable novelty introduced by GH-EXIN consists of a possible
double vertical growth. As shown in Fig. 7.5, at the end of the sG-EXIN
training process, the resulting graph of the basic neural unit is analyzed by
searching for connected components. If more than one connected component
is detected, the algorithm tries to extract an abstract representation of data.
Hence, each connected component, representing a cluster of data, is associ-
ated with a novel abstract neuron. The reference vectors of abstract neurons
are placed in the centroids of the respective clusters. The tree structure is
therefore modified by inserting a new layer between the leaf nodes and the
father node, resulting in a double simultaneous vertical growth, as shown in
Fig 7.4.
The proposed test is justified by the exploitation of the topology graph built
by GH-EXIN. The estimated connected components are directly translated
into the hierarchical tree through this additional vertical growth. In this
sense, GH-EXIN does not only partition the data into nested Voronoi sets,
but exploits its induced Delaunay triangulation, created by the CHL rule.

7.1.5 The GH-EXIN Algorithm
Resuming, for each node, an sG-EXIN neural network is trained on its cor-
responding Voronoi set (set of data represented by the father neuron). For

71

7 – GH-EXIN

each leaf, the vertical growth is performed until either the H index of the leaf
has fallen below Hmax or the cardinality of the leaf is less the mincard (both
are user-dependent parameters). For each epoch, the basic iteration starts
at the presentation of a new data, say xi. All neurons are ranked according
to the Euclidean distances between xi and their weight vectors. In case the
data is considered new, i.e. it is both outside the convex polytope and the
hypersphere of radius Tγ of the winner w1 (novelty test), a new neuron xnew
is created (left branch of Fig. 7.6). The initial weight vectors and neuron
thresholds Tγ are given by heuristics: the novel neuron has its weight xnew
equal to xi, and its threshold is set equal to the w1 threshold. No edge is
created at this time: xnew is labelled as lonely neuron.

Otherwise, in case the data is not new (right branch of Fig. 7.6), the first
winner w1 and the second winner w2 are linked by an edge (CHL), if it does
not exist yet. If there is already an edge, its age is set to zero. Also, the age of
all other links emanating from the winner is incremented by one; if a link age
is greater than the agemax scalar parameter, it is eliminated (edge pruning).
Reference vectors of w1 and its direct neighbors are updated according to Eq.
7.2. Thresholds of the winner and of its neighbors are recomputed, as their
position has been modified. This process is repeated for all data of the father
Voronoi set. At the end of each epoch, if a neuron remains unconnected (no
neighbors) or is still lonely, it is pruned, but the associated data are analyzed
and possibly reassigned.

The training epochs, i.e. the horizontal growth, are stopped when the
estimated H average value falls below a percentage (Hperc) of the H value of
the father neuron.

This technique builds a vertical growth of the tree. The horizontal growth
is generated by the neurons of each network. However, a simultaneous double
vertical growth is possible, as specified in Sec. 7.1.4.
GH-EXIN has been developed in MATLAB. The code is freely available at
[59].

7.1.6 Analysis of the User-Dependent Parameters
The user dependent parameters can be grouped according to their function in
three classes: learning, hierarchy and design variables. The learning param-
eters handle the training of the basic neural unit. GH-EXIN uses sG-EXIN,
which requires CHL and SCL. They are performed by using:

• the two learning rate constants, αγ0 and αi0, used to update reference
vectors of the winner and its neighbours, respectively;

72

7.1 – The GH-EXIN Hierarchical Tree

Figure 7.5: GH-EXIN flowchart

• the scalar agemax used for edge pruning: it has to be lowered if more
edges (and neurons) have to be pruned, indirectly controlling the leaf
cardinality.

Instead, GHNG requires three more parameters, λ, α, and D, which are
related to the creation of a new neuron. In particular, deciding in advance
when to insert it (it depends on λ) is a serious drawback. In the case of

73

7 – GH-EXIN

Figure 7.6: GH-EXIN: horizontal growth flowchart

DGSOT, there are three learning rates, for the winner, the parent and the
siblings, respectively. Its horizontal growth can be compared to a neuron
creation and is controlled by a threshold, TE. The stop criterion for GH-EXIN
depends on Hperc (other criteria can be used according to the application).
GHNG controls the growth process by the parameter τ . It is then followed
by a refinement step, terminated by a maximum number of epochs, decided
in advance. DGSOT stops learning when the relative error of the entire three
is less than the error threshold TE.

The hierarchy parameters control the growth of the tree. GH-EXIN uses
the Hmax, which depends on the task. Instead, more rigidly, GHNG uses a
MAX_Level threshold, which is not guided by the application at end, and
can also be considered as a design variable. DGSOT controls the vertical
growing using the threshold TR for controlling the heterogeneity of any leaf.

The design parameters are not important for the hierarchical clustering

74

7.1 – The GH-EXIN Hierarchical Tree

but help in deciding in advance a preferred tree depth. In this sense, they
cannot be considered as relevant for the user dependent setting. GH-EXIN
uses mincard, the minimum cardinality of leaves, used to avoid small clus-
ters. The same holds true for GHNG, which seeks only for clusters with a
cardinality more than three.

Both GH-EXIN and DGSOT have the possibility to reallocate data. How-
ever, this process is completely automatic in GH-EXIN, while DGSOT re-
quires a parameter K.

Resuming the meaningful parameters to be set are 5 for GH-EXIN, 8
for GHNG and 7 for DGSOT. As a consequence, GH-EXIN is easier to be
calibrated.

7.1.7 Analysis of Complexity
Define N as the number of data in the whole training set, d as the dimen-
sionality of the input, J as the average number of epochs for the basic neural
unit training, and k as the average number of neighbors for each neuron. Let
be b as the average branching factor of the tree. Then, the height of the tree
is h = logbM , where M is the number of leaves in the hierarchy. For a full
tree (each leaf node associated with one data), M is O(N) where N is the
number of data.

GH-EXIN Complexity

The computational cost of GH-EXIN can be estimated by considering the
algorithm step-by-step (see Figs. 7.5 and 7.6).

sG-EXIN Iteration At each iteration in an epoch, see Fig. 7.6, an input
xi is fed to the network and the two closest neurons (weights), w1 and w2,
are found according to their Euclidean distances from the data. Let mi the
number of neurons of sG-EXIN at the i-th iteration. Then, the distance
estimation is O(mid). If a simple min algorithm is employed, the second
step (i.e. first and second minimum search) is performed in O(mi). In order
to take into account an average of the cardinality of all the Voronoi sets in an
horizontal growth, mi can be safely replaced by the average branching factor
b. Resuming, both steps have a complexity of O(bd) +O(b) = O(b), because
d is constant w.r.t. the evaluation of the algorithm complexity. Once the
winner is determined, the neighborhood convex hull test is performed. It
requires the identification of the convex hull of the winner, i.e. its neighbors.

75

7 – GH-EXIN

For considering, in a global way, the vicinity of all neurons in the network,
the average of the neighborhood cardinality, say k, is considered here. As
explained in Fig. 7.1, to check if the input belongs to the winner convex
hull, the vector a, sum of the difference vectors, vi, between the winner
neighborhood and the input xi, needs to be computed; this requires O(kd)
operations. Then, the inner products between a and all the vi’s cost O(kd)
in the worst case (all comparison are needed). Resuming, the test costs
O(kd) = O(k), according to the previous considerations. After the novelty
check, two scenarios can occur: either a new neuron is created or w1 and its
neighbors adapt their weights according to the SCL. It is easy to prove that
the former costs O(1) because it is just a sequence of atomic operations whose
cost is, by definition, O(1). The latter case, i.e. the SCL weight adaptation, is
slightly more complex: the CHL linking is O(1); the aging and pruning phase
exactly needs O(k) operations; the SCL adaptation requires O(kd) because it
performs a vector adjustment, k times (i.e. the size of the neighborhood), by
means of adding a scaled difference vector to the weight, whose computational
cost is, of course, O(d); the threshold re-estimation implies to evaluate, for
each of the k neurons moved by the SCL, the distances from its neighbors
(i.e. O(k2d)), assuming as negligible the search for the maximum neighbor
distance. Resuming, it can cost either O(1) in case of neuron creation or
O(k2) in case of SCL weight adaptation.
In conclusion, a single sG-EXIN training iteration employs O(b) + O(k2)
operations. However, it must be taken into account that the branching factor
represents the number of neurons of a neural unit, and that GH-EXIN builds,
by construction, a tree and not a fully connected graph. Hence, b >> k and
the overall cost becomes O(b).

GH-EXIN Horizontal Growth The horizontal growth of GH-EXIN cor-
responds to the training of an sG-EXIN neural network (see Fig. 7.6), which
means presenting all the father node Voronoi set to the sG-EXIN neural
unit for several epochs. In other words, it implies to repeat the sG-EXIN
iteration for an number of times equal to one epoch (i.e. the cardinality of
the Voronoi set) and then, repeat this procedure for the necessary number
of epochs. For considering, in a global way, all the horizontal growths (i.e.
sG-EXIN training) of a single level of the hierarchy, the average number of
epochs, J, is considered here. Furthermore, in the worst case all leaves be-
come father nodes; then, the sG-EXIN networks are trained on input sets
whose cardinality sums exactly to N. As a consequence, a GH-EXIN hori-
zontal growth costs O(JNb) (neuron pruning and outlier reallocation have a

76

7.2 – Synthetic Experiments

negligible cost).

GH-EXIN Cost The overall complexity of GH-EXIN can be estimated
by considering the cost of repeating a full horizontal growth (i.e. expansion
of all the leaves) for all the levels of the hierarchy, that is, the height h of the
tree. According to the previous considerations, h = logbM , and M = O(N)
then the overall training is O(b ∗ J ∗N ∗ logbN). Note that both J and b are
usually smaller compared to N ; it implies that J and b can be considered as
constants. The overall GH-EXIN complexity is then O(N ∗ logbN).

Complexity Comparison

As pointed out in [60], DGSOT has the same cost as GH-EXIN. However,
the DGSOT analysis of the cost in [60] does not take into account the com-
plexity of the horizontal growth. Indeed, both the approach in [60] based
on the Minimum Spanning Tree and the approach in [52] based on the CS
index, are very time consuming. Hence, the DGSOT complexity is probably
underestimated.
On the contrary, GHNG is cheaper. Indeed, its cost is O(N), according to our
personal analysis, because there is no complexity estimation of this algorithm
in the literature. However, a so simple technique prevents from building a
really adaptive tree: the neuron creation does not depend on the data at
hand, the tree height is predetermined (the number of levels is a hyperpa-
rameter) and the horizontal growth is only controlled by the leaf minimum
cardinality. The latter is probably the worst problem, because it tends to
flatten the hierarchical tree, in the sense that all the detected subgroups in
a cluster are represented in the same level, even if they still contain nested
levels.

7.2 Synthetic Experiments
GH-EXIN, GHNG and DGSOT are here tested on artificial datasets, for
comparing their performances. At first, the same two planar datasets used
in [50] have been chosen both for the analysis of their partitioning properties
and for direct visual inspection. With regard to their ability in building a
hierarchical tree, a third database has been expressly created.

The first two databases are randomly drawn from i) a planar uniform
X-shape manifold and ii) a planar square-shaped manifold having a Beta
distribution (higher density in the borders). The parameters of each network,

77

7 – GH-EXIN

(a) GH-EXIN 1st layer (b) DGSOT 1st layer (c) GHNG 1st layer

(d) GH-EXIN 2nd layer (e) DGSOT 2nd layer (f) GHNG 2nd layer

Figure 7.7: First (up) and second (down) layers of GH-EXIN, GHNG and
DGSOT on the X-shape distribution

used in these experiments and in the next ones, are reported in Tabs. 7.1,
7.2 and 7.3.

For evaluating the quality of clustering, some internal indexes are used:
the peak-signal to noise ratio (PSNR) index [50], the Davies–Bouldin index
(DB) [61] and the global Silhouette value (S) [62].

The PSNR index is defined as follows (in decibel, higher is better):

PSNR = 10 log10

MAX2
l

MSE

 (7.3)

where MAX2
l is the squared Euclidean norm of the vector which joins the

two most distant points in the input distribution support and MSE is the
Mean Squared Error computed as the sum of the Euclidean distances between
the reference vector of each leaf neuron and its associated data. PSNR
takes into consideration only the intra-cluster compactness, while ignoring
the inter-cluster separation. For this reason, it is not a very accurate index
of the clustering quality. However, it is here introduced because of its use in
[50].

78

7.2 – Synthetic Experiments

(a) GH-EXIN 1st layer (b) DGSOT 1st layer (c) GHNG 1st layer

(d) GH-EXIN 2nd layer (e) DGSOT 2nd layer (f) GHNG 2nd layer

Figure 7.8: First (up) and second (down) layers of GH-EXIN, GHNG and
DGSOT on the square distribution

The DB index, instead, takes into consideration both aspects, and is de-
fined as follows:

DB = 1
N

N∑
i=0

max
j /=i

RMSEi +RMSEj
Di,j

(7.4)

where RMSEi is the Root Mean Squared Error for the ith cluster, Di,j is
the Euclidean distance between the centroids of the ith and jth clusters and
N is the number of clusters. The lower the value, the better is DB.

Also the S index takes into account both the intercluster and the intra-
cluster distances and is computed as follows:

S = 1
C

C∑
i=1

b(i)− a(i)
max(a(i), b(i)) (7.5)

where a(i) is the average distance of the ith point from the points in the
same cluster, while b(i) is the minimum among the average distances of the
ith point from the points in the other clusters and C is the cardinality of the
current dataset. The Silhouette index, in general, is defined for each point
in the dataset. Hence, the average value is considered. While DB aims at

79

7 – GH-EXIN

identifying sets of clusters that are compact and well separated, the S index
is more suitable for estimating if, on average, samples are correctly assigned
to the nearest neighbouring cluster.

On the X-shape distribution (Fig. 7.7), at the first layer, the three al-
gorithms have learnt approximately well the manifold. With regard to the
second level of the hierarchy, GH-EXIN uses less neurons than GHNG for
covering the manifold. Furthermore, the proposed approach represents the
symmetry of the manifold using symmetric branches composed of the same
number of neurons. On the contrary, GHNG neurons and edges do not re-
spect the symmetry (branches have not the same number of neurons). Also
there are some higher neuron densities in branches. More specifically, DG-
SOT yields the worst results in terms of symmetry (e.g. the overlap of three
neurons in the SW branch of the manifold), because of the absence of con-
nections. For instance, the SW branch and the NE branch have eight and
three neurons, respectively.

Bar plots in Fig.7.15 report some statistics about the algorithms and the
quality of the clustering. Results have been validated by running all the algo-
rithms 10 times for each data distribution and the bar plots report the mean
value and the standard error mean. With regard to the X-letter experiment,
GH-EXIN uses less neurons on average and takes a few more seconds to end.
In this experiment, the quality of GH-EXIN and GHNG clusterings is similar
for all indexes, except for DB, which is slightly worse for GH-EXIN. They
both overcome DGSOT results (S and DB). Nonetheless, GHNG and DG-
SOT are less stable than GH-EXIN in terms of number of neurons created.
While this does not seem to affect GHNG performance on average, DGSOT
DB index, instead, changes too much at each run.

On the square dataset (Fig. 7.8), with regard to the first layer, GH-EXIN
and DGSOT distribute the four neurons in a more symmetrical way with
respect to GHNG. However, the GH-EXIN distribution represents better the
rectangle manifold (isosceles trapezoid). Concerning the second layer, GH-
EXIN uses less neurons than GHNG and DGSOT for covering the manifold.
Further, the proposed approach represents the symmetry of the manifold,
correctly placing nodes along the sides of the squares, according to the point
distribution, while mostly ignoring the emptier central part. On the contrary,
GHNG and above all DGSOT place many neurons also in the central part
and do not respect the symmetry of the dataset. From a quantitative point
of view, GH-EXIN is the best algorithm for all indexes but PSNR, while
using far fewer neurons. Nevertheless, also in this case it takes longer to
terminate than DGSOT and, above all, GHNG. On this dataset, algorithms

80

7.2 – Synthetic Experiments

(a) X-shape distribution (b) Square distribution

Figure 7.9: Number of times the two novelty test approaches are called dur-
ing the training phase (see Paragraph 7.1.2 and Fig. 7.2). The blue line
represents the number of calls to the convex-hull technique (see Fig. 7.1),
while the red line refers to the isotropic threshold criterion (see Equation
7.2). Each node training lasts ten epochs. The first ten epochs refer to the
root node, while the following ones to the second layer nodes

seems to be quite stable on average.
With regard to the GH-EXIN novelty test, Figs. 7.9(a) and 7.9(b) show

the importance of the convex-hull mechanisms with regard to the isotropic
threshold for explaining the X-shape and the square distribution, respec-
tively. The convex-hull criterion is extensively exploited for the square dis-
tribution because of the importance of the border.

Resuming, in both experiments GH-EXIN yields the best clustering, as
confirmed by the visualization, and in terms of the S and DB indexes. It
requires fewer neurons, but is more time consuming.

7.2.1 Hierarchical Synthetic Experiment
The previous experiments highlight the performance in quantization of the
three algorithms for each level. However, these techniques have been con-
ceived not for partitional, but for hierarchical clustering. The proposed ex-
periment checks for the quality of the estimated tree, by using, as a ground
truth, a predefined hierarchical clustering. At this aim, a dataset composed
of two Gaussian mixture models has been devised: the first model is made
of three Gaussians, the second one of four Gaussians, as shown in Fig. 7.10.

81

7 – GH-EXIN

Figure 7.10: Two mixtures of Gaussians: data and contours

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) GH-EXIN 1st layer-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) DGSOT 1st layer -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) GHNG 1st layer

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) GH-EXIN 2nd layer -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e) DGSOT 2nd layer

Figure 7.11: First (up) layers of GH-EXIN, DGSOT and GHNG and sec-
ond (down) layers of GH-EXIN and DGSOT on the Gaussian distribution;
GHNG second layer is not reported as it already covers all Gaussian distri-
bution at the first level

The results, visualized in Fig.7.11 whose trees are shown in Fig. 7.12,
clearly show that only GH-EXIN and DGSOT build the correct hierarchy:
two nodes in the first layer (level), which represent the two clusters, and as

82

7.2 – Synthetic Experiments

3500

1500 2000

512 476 505 307 512 424 351 389

(a) GH-EXIN tree

3500

1500 2000

506 511 483 519 487 459 535

(b) DGSOT tree

3500

509 473 514 502 475 504 523

(c) GHNG tree

Figure 7.12: Tree structures (labelled by the cluster cardinality) of the three
algorithms for the Mixture of Gaussians dataset

(a) GH-EXIN Silhouette (b) DGSOT Silhouette (c) GHNG Silhouette

Figure 7.13: Silhouette scores for the three algorithms on the Mixture of
Gaussian Dataset

many leaves as Gaussians in the second layer, which represent the mixtures.
Neurons are also positioned correctly w.r.t. the centers of the Gaussians.
On the contrary, GHNG spreads all the information in the first level. In
this sense, it only partitions, but does not reveal the hierarchy. The quality
indexes, as illustrated in Fig. 7.15, only refer to the final partition. They
show a slightly better PSNR and S for GH-EXIN, but a similar DB. This
assessment is supported also by the analysis of the Silhouette plots reported
on Fig. 7.13, which shows the S values for each neuron: the S values for GH-
EXIN are mostly positive and the other values are only slightly negative,
unlike the other two methods. All the algorithms require a similar number
of neurons, but GHNG is much faster.

Resuming, GHNG is a faster algorithm, but is better for partitional clus-
tering, even if it has been conceived for finding hierarchies in the data. It
opens the question if its performance simply results from its modified GNG
module.

83

7 – GH-EXIN

7.3 Hierarchical Clustering for Video Sequences
The first real experiment is the same proposed in [50], where GHNG is com-
pared to GHSOM, GNG and SOM (GHNG is comparable to GNG and better
than GHSOM and SOM). It has been devised for checking the quality of the
hierarchical clustering. A database [63] composed of five video sequences,
each representing exclusively either one of four people (two men, classes 2
and 4, and two women, classes 1 and 5) or one container (class 3), is used, with
the goal of grouping frames of the same class. There are 1432 input frames of
dimensionality 25344 (176×144 pixels), each with 3 channels (RGB). At first
the color images are converted to grayscale images by eliminating the hue and
saturation information while retaining the luminance. Because of the high
dimensionality of data, the inputs are linearly projected to dimension 8 by
using the Principal Component Analysis (PCA), performed by the eigenface
method [64]. The projection retains 83% of the original data variance.

Fig.7.14 shows the hierarchical trees (labeled by the numbers of the nodes
and leaves) and the associated best leaf efficiencies. The efficiency of a class in
a cluster is defined as the percentage (w.r.t. the whole database) of elements
of the class in the cluster. The best efficiency reported for each leaf in Fig.7.14
is the maximum of these values (the number on the top of the bar corresponds
to the class) and represents an external qualitative index of the clustering. It
has been observed that all leaves of the GH-EXIN and DGSOT trees have a
100% purity, while a few GHNG leaves do not share this property, where the
purity is defined as the percentage of elements in a cluster belonging to the
most common class. The following conclusions about the experiment can be
drawn.

• GH-EXIN nodes 2 and 3 have been built by the double simultaneous
vertical growth (red edges in Fig.7.14(b)) and reflect the fact two chains
have been found in the global dataset. The node 2 Voronoi set only
contains data from classes 1, 2 and 5. The node 3 Voronoi set is only
composed of data from classes 3 and 4. Hence, the first level of the GH
EXIN tree perfectly divides in two clusters.

• DGSOT, which has not this double vertical mechanism, has a first level
which is comparable with the second level of GH-EXIN. DGSOT finds
exactly all data of class 1 in node 2, all data of class 3 and 65% data
of class 4 in node 3, all data of class 2 and 5 in node 4 and 35% data
of class 4 in node 5. Resuming, node 2 is 100% pure and efficient, but
node 5 is 100% pure and only 35% efficient.

84

7.3 – Hierarchical Clustering for Video Sequences

Efficiency of GHEXIN leaves
5 1

3

3

4

2

2

2
4

4

4 4

6 7 10 11 12 13 14 15 16 17 18 19
Row Clusters

0

0.2

0.4

0.6

0.8

1
Ef

fic
ie

nc
y

(a) GH-EXIN leaves efficiency

1

2 3

4 5

6 7

8 9

10 11 1213 14 15 16 17 18 19

(b) GH-EXIN tree
Efficiency of DGSOT leaves

1

1

1

4

4 4

4 4

4

3
3

3 3

4 4

5

5 5 2 2

2 2 2
2

10 15 20 25 30 35
Row Clusters

0

0.2

0.4

0.6

0.8

1

Ef
fic

ie
nc

y

(c) DGSOT leaves efficiency

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(d) DGSOT tree
Efficiency of GHNG leaves

4

4

4

2

2

1

1

3

4

5 2

2

8 10 11 12 13 14 15 16 17 18 19 20

Leaves

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

n
c
y

(e) GHNG leaves efficiency (f) GHNG tree

Figure 7.14: Leaf efficiency (left) and tree structure (right) of the three
algorithms for the videos dataset. Regarding the efficiency bar plot, the row
represents the number of the corresponding leaf on which the efficiency has
been computed. Each bar is labelled on top by the class of the group of data
with the highest efficiency within the leaf.

85

7 – GH-EXIN

• The GH-EXIN second level finds exactly all data of class 2 in node 5, all
data of class 3 and 25% data of class 4 in node 8, all data of class 1 and
5 in node 4 and 75% data of class 4 in node 9. W.r.t. DGSOT, node
9 is 100% pure but 75% efficient for the same class of DGSOT node 5.
Also, node 4 perfectly identifies the two women classes.

• The GH-EXIN third level and the DGSOT second level neurons have
Voronoi sets composed of a unique class. However, 65% class 4 data
for DGSOT and 25% class 4 data for GH-EXIN are nested in another
cluster (together with class 3).

• The GHNG tree first level does not compute a correct clustering. In-
stead, node 2 retains a portion of class 2 and 4 data, with the conse-
quence that these classes will be grouped in the next levels by clusters in
different branches. The absence of a reallocation tool in the algorithm
prevents from correcting this problem.

• The GHNG tree second level has more nodes than the same level for
the other two algorithms. Class 2 is shared, nearly fifty-fifty, by node 9
and node 5, belonging to different branches. The same can be repeated
for node 4 and 7 w.r.t. class 4. Class 1 is perfectly retrieved in node
6, while class 3 is only retrieved at the third level. The worst result is
yielded in the third level by node 8, which only retains less than 0.1%
class 5 data, thus preventing a correct clustering of class 5 in the tree.
Indeed, the node 8 Voronoi set is empty (this is allowed by the GNG
algorithm1). However, this value of efficiency derives from the recall
phase, in which it is possible that an empty neuron wins because it has
moved in the Voronoi set of another neuron. The same considerations
can be repeated for the empty neuron 12. On the contrary, this problem
is avoided in GH-EXIN because of the reallocation technique.

With regard to the results in Fig.7.15, GH-EXIN requires fewer neurons,
before being automatically stopped. GHNG, as usual, is by far the fastest.
The quality indexes, which do not take into account the hierarchy, but only

1GNG creates a neuron in the middle between the father and the mother neurons. Its
position does not depend on the presence of a data. It is linked to its parent neurons.
If it never wins, but one of its two neighbors wins, it is possible that it changes position
(SCL) and approaches data of another cluster, which will not be presented anymore to
the network. Hence, it remains empty, but may win in the recall phase.

86

7.3 – Hierarchical Clustering for Video Sequences

the quality of the final partitioning, show comparable PSNR and a far better
S index for GH-EXIN, despite the better DB for DGSOT. Notice the very
high value of DB for GHNG. It has been found experimentally that it is
related to the presence of empty neurons.

Summing up the previous observations, GH-EXIN and DGSOT find an
optimal hierarchical clustering. GH-EXIN is also able to detect the difference
between male and female faces. On the contrary, GHNG yields a very poor
hierarchy. Probably, this explains why, in [50], the authors of GHNG do not
show the entire tree, but only the results of some nodes, with the associated
leaves.

Table 7.1: GH-EXIN hyperparameters

Hmax Hperc αγ0 αi0 agemax mincard
X-shape 0.00002 0.9 0.1 0.01 5 10
Square 0.00002 0.9 0.35 0.001 10 30
Gaussians 0.001 0.9 0.5 0.05 5 300
Videos 0.8 0.9 0.8 0.1 20 10

Table 7.2: DGSOT hyperparameters

α σ0 TR TE εAD εET K
X-shape 0.2 1 0.3 10 0.046 0.03 1
Square 0.1 1 0.001 10 0.09 0.03 0
Gaussians 0.2 1 200 2 0.2 0.05 1
Videos 0.2 1 250 2 0.2 0.05 1

Table 7.3: GHNG hyperparameters

MAXLEV EL τ λ εB εN α Amax D
X-shape 2 0.25 100 0.1 0.01 0.5 50 0.995
Square 2 0.3 100 0.35 0.01 0.5 50 0.995
Gaussians 2 0.1 100 0.4 0.01 0.5 14 0.995
Videos 3 0.2 100 0.001 0.001 0.5 50 0.995

87

7 – GH-EXIN

X letter square Gaussians videos
0

10

20

30

40
nu

m
be

r o
f n

eu
ro

ns

gh-exin dgsot ghng

(a) Number of neurons

X letter square Gaussians videos
0

2

4

6

8

10

12

tra
in

in
g

tim
e

gh-exin dgsot ghng

(b) Training time

X letter square Gaussians videos
0

5

10

15

20

25

30

PS
N

R
 in

de
x

gh-exin dgsot ghng

(c) PSNR index

X letter square Gaussians videos
0

0.1

0.2

0.3

0.4

0.5

0.6

si
lh

ou
et

te
 in

de
x

gh-exin dgsot ghng

(d) Silhouette index

gh-exin dgsot ghng
X letter square Gaussians videos

D
av

ie
s-

Bo
ul

di
n

in
de

x

0

1

2

3

97

98

99

(e) Davies-Bouldin index. Notice
that the s.e.m. error bar of GHNG
on the videos dataset is not reported
as it would have impaired the visu-
alization of the other bars

Figure 7.15: Bar plots with the standard error of the mean (s.e.m.) bars
showing the mean of some relevant statistics for each dataset and for each
neural network

88

7.4 – Gene Analysis

7.4 Gene Analysis

7.4.1 Neural Biclustering with GH-EXIN
In the previous sections, we presented the GH-EXIN neural network and
we compare its pros and cons with state-of-the-art hierarchical neural tech-
niques. In this section we exploit GH-EXIN in order to analyze CRC mi-
croarray data. The previously introduced high-dimensional issue in handling
microarray data may be bypassed by unsupervised techniques thanks to bi-
clustering. Indeed, by considering genes as samples and cellular tissues as
features, the dimensionality of the input space is dramatically reduced. Suc-
cessively, each batch of genes is further analyzed by clustering cellular tissues
in a lower dimensional space. We will refer to neural biclustering as the suc-
cessive exploitation of GH-EXIN in biclustering microarray data. Each time
GH-EXIN is exploited, a tree is built, either in the gene or in the tissue space,
for the gene clustering in the higher-level leaves. The validity of the leaves is
tested and possibly GH-EXIN is called again in the corresponding projected
space of each leaf. This procedure is recursively repeated until the cardinality
of the tissues or the cardinality of the genes of a leaf is under the minimum
threshold. At this point the leaf is saved and the algorithm continues by
processing the other leaves. The order in which leaves are processed depend
on their ranking, based on their Hcc value. Low values of Hcc associated to
an acceptable cardinality do not imply a final bicluster has been detected,
above all for the presence of high noise in data. An additional analysis is
required, which depends on several considerations.

Here, the final leaves are studied from two different points of view: parallel
coordinates and singular value decomposition (SVD), for the analysis of the
numerical rank of the submatrices associated to the biclusters.

7.4.2 Validating Techniques
Fig. 7.16 shows this kind of plot by visualizing genes as samples (colored
polylines) and murine tissues as features (parallel vertical axes) on a leaf
of GH-EXIN in the gene space, whose characteristics are shown in the top
line of the figure. Blue polylines represent all genes available in the dataset,
while red polylines stand for genes collected in the 19th gene cluster. The
red grouping of polylines show coherency, which confirms the quality of gene
clustering. A similar validation analysis is used after the GH-EXIN clustering
in the tissue space which is run after projecting the Voronoi set of the 19th

89

7 – GH-EXIN

gene leaf (cluster).
Figs. 7.17 and 7.18 show two parallel coordinate plots in which verti-

cal axes (here visualized as the corresponding abscissas in the coordinate
axis) represent the 41 genes belonging to cluster 19, while polylines stand
for murine tissues. In particular, blue polylines represent all the tissues and
red ones the tissues grouped in the bicluster. The difference between the two
images consists in a different setup of a parameter of the algorithm, Cmin2,
which regulates the maximum number of tissues accepted in a bicluster. In
the first case a higher value of the parameter is set, in order to find a bigger
bicluster. However, both pictures show an excellent bicluster coherency re-
vealing the goodness of GH-EXIN as a tool for biclustering. The biclusters
shown in both figures are coherent additive values biclusters in which the val-
ues vary both according to the rows (the axes in this case) and according to
the columns (the polylines). This can be inferred from the pictures, because
a difference is present between two gene expressions on different polylines but
along the same axes, but this difference remains stable along the polyline.
The same is also valid between two gene expressions on different axes of the
same polylines.

This visualization tool can be considered as a first validation of the quality
of the leaves. A second validation can be performed by analyzing the singular
values of the resulting bicluster matrices. According to the theory, in case of

Figure 7.16: Parallel coordinates of a cluster of gene

90

7.4 – Gene Analysis

Figure 7.17: Parallel coordinates of a bicluster.

Figure 7.18: Parallel coordinates of a smaller bicluster.

noiseless data, biclusters with constant values and with constant values on
rows or columns have rank one, while biclusters with coherent values have
rank three. The difficulty raises in case of noise, because there are no more
zero singular values. Indeed, the size of the last values increases with the

91

7 – GH-EXIN

level of noise. It then becomes a problem in numerical rank estimation. The
SVD of the matrix of the bicluster in fig. 7.17 has the first two singular values
(42.5 and 4.5) well separated from the other ones (the third one is equal to
1.5), considering also that the matrix has been scaled in the preprocessing
stage). This result represents the sum of two biclusters of rank one, certainly,
considering the associated parallel plot, two constant row biclusters. Indeed,
fig. 7.17 shows two clusters (coherent polylines, whose thickness depends
on noise level). Hence, it can be deduced that a further clustering (and
projection) is needed in order to have a single bicluster. Instead, the SVD
of the matrix of the bicluster in fig. 7.18 (see fig. 7.19) has only the first
singular value (32.5) well separated from the remaining ones (the second one
is equal to 1.1). As also confirmed in fig. 7.18, it represents a constant row
bicluster. This result does not require a further analysis.

Leaf node Cardinality Hcctissue class genes tissues
1 54 8 0.027
1 58 6 0.059
2 8 8 0.027
2 8 6 0.029
2 71 5 0.031
2 5 5 0.039
3 7 8 0.025
3 7 13 0.025
3 19 6 0.026
3 19 5 0.026
3 41 13 0.028
3 19 8 0.029

Table 7.4: Best leaves in terms of biclustering quality (Hcc index).

7.4.3 Experimental Findings
In order to better analyze genetic expressions common for different patients,
the dataset has been divided into three parts (classes). This division follows
the murine tissues response to anti-cancer drugs. At the end, three datasets
have been derived, one for the mice which started recovering after three weeks
of treatments, a second one for the mice which had a stable situation and at

92

7.4 – Gene Analysis

Figure 7.19: Singular values for leaf 14.

last one also for the case in which drugs had no effect and the cancer kept
growing. This type of division has been maintained also in the summary
Table 7.4, where it has been reported the information about the cardinality
of the biclusters, both in the tissue and in the gene space and the value
of the Hcc index. In the table there are only the best biclusters for each
class, ranked according to the class and the Hcc index. As last step, as a
biological feedback, the scientific relevance of the selected genes has been
taken in account. Among all the biclusters found, the one that grouped the
most interesting genes in the cancer field has been the one that also had the
lowest Hcc index value. Indeed, the 7 genes present in the bicluster are the
following:

• "CSAG1", "CSAG3", "CSAG3A", which belong to the same CSAG fam-
ily. These genes are well known in literature as associated with chon-
drosarcomas, but they are also present in normal tissues. Furthermore,
CSAG3 and CSAG3A are gene coding the "Chondrosarcoma-associated
gene 2/3 protein" which is a "drug-resistance related protein, its ex-
pression is associated with the chemotherapy resistant and neoplastic
phenotype. May also be linked to the malignant phenotype" [65].

• "MAGEA2", "MAGEA3", "MAGEA12", "MAGEA6", which belong to
the same MAGEA family. These genes are melanoma antigens which
“Reduce p53/TP53 transactivation function” and also "Represses p73/TP73
activity" [66]. Both p53 and p73 are tumor suppressor proteins which

93

7 – GH-EXIN

regulate cell cycle and induct apoptosis.

The relevant issue is that these gene families are not only important by
themselves, but this analysis suggests that, at least in the observed condition,
they may also coregulate each other. It is also important to notice that this
bicluster phenomenon has been observed within the tissues belonging to the
third class, the one where tissues unable to respond to drugs are present.

94

Chapter 8

Supervised Neural
Techniques

8.1 Introduction
In the following chapters, the supervised path is enriched with advanced and
deeper analyzes. In the first chapter a powerful combination of evolutionary
algorithm and neural techniques are exploited in order to enhance class pre-
diction models in the context of cancer prognosis. Although powerful and
accurate when tested on unseen samples, the neuroevolved model is opaque
i.e. it is difficult to understand and interpret from a human point of view.
This issue motivates section 8.3, where a very simple neural-based model
has been used to investigate the underlying phenomenon more transparently.
The analysis of both sections were presented in two different works at the
2018 WIRN conference [67] [68].

8.2 Neuroevolution
Evolutionary Algorithms (EA) are powerful metaheuristic procedures able
to explore efficiently the search space of complex (NP-hard or NP-complete)
problems finding good approximate solutions. The hyper-parameter opti-
mization of a neural network is a complex problem because there are no
polynomial-time algorithms able to solve it. In the following, we exploit EA
in order to find satisfying approximate solutions to address this problem.
One of the most widely spread EA is the Genetic Algorithm (GA) [69][70].
GAs are metaheuristics inspired by natural selection processes. Broadly

95

8 – Supervised Neural Techniques

speaking, GAs involve the evolution of a population of candidate solutions
towards better ones. A predefined fitness function evaluates the individual
goodness.

8.2.1 Mathematical Model of a Shallow Neural Net-
work

The neural network architecture we used in the following experiments is
known as Adaline [71][72]. It has 20023 inputs corresponding to the input
features (genes) and one output neuron equipped with a linear output func-
tion. The network does not have hidden layers. During forward propagation,
the network computes the dot product between the weight vector w and the
ith sample x(i) plus the bias b. This corresponds to a weighted sum of the
inputs with bias correction (as in a linear regression model):

z(i) = wTx(i) + b (8.1)
ŷ(i) = f(z(i)) = z(i) (8.2)

where w is the weight vector, b the bias, f the activation function and ŷ(i)

the network output.

Figure 8.1: Shallow neural network architecture.

96

8.2 – Neuroevolution

Objective Function

The squared error function evaluates the performance of the algorithm on an
individual sample:

L(ŷ(i), y(i)) = (y(i) − ŷ(i))2 (8.3)

where y(i) is 1 if the ith sample belongs to class 1 and 0 if it belongs to
class 0. In order to evaluate the global performance of the classifier, we
use a cost function with L2 regularization of the weights. L2 regularization
is a technique that applies to objective functions in ill-posed optimization
problems [73][74]. In our case, the proposed neural model is ill-posed, since
the solution is not unique and it changes continuously according to initial
conditions and randomness in the cross-validation procedure. Appending a
term to the cost function that penalizes large weights leads to a reduction of
the search space, and the problem becomes less sensitive to initial conditions:

J(w, b) = 1
m

m∑
i=1
L(ŷ(i), y(i)) + λ

2m ||w||
2
w (8.4)

where λ is the regularization parameter and ||w||2w is the L2 norm of the
weight vector. For big values of λ the regularization is stronger, increasing
the penalization related to weights. As a result, the weights which are not
useful for the purpose of minimizing the MSE (i.e. the first part of the
objective function) are shrunk towards zero. On the contrary, for low values
of λ, the regularization effect is weaker1. In order to provide a quantitative
measure of the network performance, we transform the regression outcomes
into class labels by using a Heaviside step function:

ĉ(i) = d

dŷ
max{0, ŷ(i)} (8.5)

and we compute the accuracy as if it were a classification task.

Parameter Optimization

Since the cost function measures the errors in the current predictions, the
problem of the learning process is equivalent to the minimization of the cost
function. Whereas the training samples are fixed, the cost function depends

1The described shallow neural network model is equivalent to a linear regression model
with an L2 regularization of the parameters also known as Ridge Regression [74].

97

8 – Supervised Neural Techniques

only on the network’s parameters (weights and bias). So, the cost function
minimization is equivalent to the optimization of the network parameters.
For the following analyses, we use the Adaptive momentum estimation opti-
mizer (Adam). Adam is an algorithm for first-order gradient-based optimiza-
tion of stochastic objective functions, based on adaptive estimates of lower-
order moments [75]. It is a variant of the classical gradient descent algorithm,
designed to combine the advantages of two popular methods: AdaGrad and
RMSProp. According to [75] Adam’s advantages are that its step-sizes are
approximately bounded by the learning rate, it does not require a stationary
objective, it works with sparse gradients, and it naturally performs a form
of step size annealing. In the context of feed-forward neural networks, the
objective function to be minimized is the cost function Jt(θ), where t denotes
the tth epoch and θ is a label for w and b. The authors identify with gt the
gradient, i.e. the vector of partial derivatives of Jt, w.r.t w and b evaluated at
epoch t (8.6). This estimate is then used to update two exponential moving
averages of the gradient (mt, (8.7)) and the squared gradient (vt, (8.8)). The
two hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of
these moving averages. High values for β1, β2 reduce the time-window size of
the moving averages, resulting in low inertial effects and greater oscillations.
On the contrary, low values of β1, β2 increase the time-window size, providing
a stronger smoothing effect. The first moving averagemt is an estimate of the
1st order moment (the mean) of the gradient. The second one instead is an
estimate of the 2nd order moment (the uncentered variance) of the gradient.
Since these moving averages are initialized as vectors of zeros, the moment
estimates are biased towards zero during the initial time-steps (especially
when the decay rates are small, i.e. the βs are close to 1). This issue can
be alleviated by the bias correction shown in (8.9) and (8.10). The ratio of
the two moving averages corresponds to a standardization of the first order
moment of the gradient. The network parameters are finally updated by us-
ing the classical formula of gradient descent in (8.11). The term ε (typically
10−8) ensures that the denominator is always non-zero, avoiding numerical

98

8.2 – Neuroevolution

issues.

gt = ∇θJt(θt−1) (8.6)
mt = β1 ·mt−1 + (1− β1) · gt (8.7)
vt = β2 ·mt−1 + (1− β2) · gt � gt (8.8)

m̂t = mt

1− βt1
(8.9)

v̂t = vt
1− βt2

(8.10)

θ = θ − α m̂t√
v̂t + ε

(8.11)

The initial conditions are: m0 = 0, v0 = 0 and t = 0. Typical values for βs
are β1 ≈ 0.9 and β2 = 0.999. Overall, Adam is a very efficient algorithm,
requiring very few computations and memory space, which is crucial in our
case, given the size of the data set.

8.2.2 Genetic Algorithm
Individuals

As previously outlined, the objective of this work is the optimization of a
neural network model. In particular, the Adaline model presented in the
previous section can be optimized tuning its hyper-parameters. Since each
set of hyper-parameters uniquely identifies a neural network, then each neural
network can be represented by its hyper-parameters. For this reason, an
ordered list of hyper-parameters is an efficient representation of an Adaline
model. Having assigned a value to each hyper-parameter from its domain,
then the list is called candidate solution or individual. The set of optimized
hyper-parameters is composed of:

• the learning rate α;

• the learning decay rate r;

• the number of epochs T ;

• the regularization parameter λ.

99

8 – Supervised Neural Techniques

Figure 8.2: The graphical representation of an individual. It is represented
as an ordered list of “genetic material”. Each “gene” stands for a neural
network hyper-parameter.

Generator

The generator is an EA method devoted to the initialization of new individ-
uals. One of the most common generators is a random generator. In this
case each hyper-parameter is sampled by a uniform distribution within a user
defined range. The ranges chosen are:

• α ∈ [10−1, 10−7]

• r ∈ [10−1, 10−7]

• T ∈ [10, 300]

• λ ∈ [10−1, 10−8]

The uniform distribution guarantees that the initial individuals are suffi-
ciently different from each other. This biodiversity will help the EA search
since there is more genetic material available for exchanges.

Evaluator

In order to optimize individuals generation by generation, the next popula-
tion should be better that the previous one. Therefore, after the generation
process, each individual is evaluated in order to estimate the goodness of its
genetic material. To do this, an Adaline is built for each candidate solution,
i.e. it is set up by using the corresponding hyper-parameters. The learn-
ing process is validated through a 10-fold cross validation. At the end of the
training process, the average validation accuracy is considered as an estimate
of the individual fitness.

Selector

After the evaluation process, the GA selects a random set of individuals from
the population and selects a subset of them through a fitness-based criterion.

100

8.2 – Neuroevolution

It ranks the randomly selected individuals in ascending order according to
their fitness and it picks out some of the best ones. These small sets of
individuals are then used to produce the next generation.

Variator

In order to modify and (hopefully) improve the current population, the se-
lected solutions should be slightly modified. At first, they go through a
crossover (or recombination) process in which pairs of individuals mix their
genetic material to produce two new child solutions.

Figure 8.3: During the crossover process, two individuals mix their genetic
material in order to produce two child solutions.

Secondly, the child solutions randomly mutate one of their components
(hyperparameters).

Figure 8.4: The figure shows the mutation process. The individual randomly
mutates one of its “genes”.

Replacer

After having generated new candidate solutions, the replacer method selects
the best half of old population individuals and the best half of offspring in

101

8 – Supervised Neural Techniques

order to select the candidate solution of the next generation.

Terminator

For the purpose of this work, the entire process is repeated for a certain
amount of generations exploring the hyper-parameter space and (hopefully)
providing better and better configurations.

Algorithm 2 Genetic Algorithm
1: Input: DNA microarray and cancer growth targets
2: Generate random individuals
3: for each generation do
4: for each individual do
5: Evaluate the individual through cross-validation
6: end for
7: Select next generation parents
8: Breed random parents
9: Mutate child individuals

10: Replace old individuals with the new generated ones
11: go to next generation
12: end for
13: Output: best individual

8.2.3 Comparison of the Results
The GA set up includes at least the choice of the population size, the maxi-
mum amount of generations and the mutation rate. In this work the following
choices are made:

• population size: 100

• number of generations: 100

• mutation rate: 20%

In the end the GA provides the list of the candidate solutions of the last
(and hopefully the best) generation. The best individual is picked up and
the corresponding neural network is evaluated by using an unseen test set.
The experiment is repeated 10 times in a 10-fold cross-validation setting.
The outcomes are then compared with state-of-the-arts algorithms [76] in
Fig. 8.5.

102

8.2 – Neuroevolution

Figure 8.5: The figure shows the accuracy over a 10-fold cross-validation of
several classifiers. The baseline accuracy refers to the performance of the
classifier for random generated labels.

The proposed algorithm outperformed state-of-the-art techniques. How-
ever, linear based techniques, such as Ridge, show great performances, very
close to the evolutionary approach. Nonetheless, although powerful and accu-
rate, these algorithms are excessively complex (they are composed of thou-
sands of parameters), resulting in opaque models, difficult to analyze and
interpret from a human point of view. This consideration lead us towards a
simpler and more transparent approach described in the following section.

103

8 – Supervised Neural Techniques

8.3 Transparent Neural Based Model for Fea-
ture Selection

In this section, we propose a supervised feature selection process based on the
recurrent exploitation of the Adaline model described in the previous section.
In order to assess the goodness of the proposed approach, we perform a
series of cross-validated training of the Adaline model. In particular, at each
iteration the neural network is trained 30 times, each of which using a 10-fold
cross validation with random folds. The neural network hyperparameters are
heuristically fixed to:

λ = 1
#samples (8.12)

α = 1
λ+ L+ 1 (8.13)

according to [77][78], where L is the maximum sum of the squares over all
samples. Since the objective function to minimize contains the L2 norm
of the weights (see equation 8.4), weights who are not fundamental for the
classification task are shrunk towards zero by the optimizer [74]. Fig. 8.6 and
8.7 show respectively the histogram and the notched box plot of the weights
after the training process in the first iteration. It is important to notice that
most of the weights are set to zero or are very close to zero. This means that
their contribution to the weighted sum in equation (8.1) is almost negligible.
Exploiting this result, for each fold we take note of the input features (i.e.
the genes) which correspond to weights having an absolute value wj after a
training process:

|wj| > 2σw (8.14)

where σw is the variance of the weight distribution (see fig. 8.7). At the
end of the 30 iterations, we found that some input features are chosen more
frequently than others.

Biologically speaking, this result suggests that the information contained
in the DNA-microarray related to these genes may be relevant in under-
standing the cancer resistance to drugs. In order to investigate more deeply
the biological phenomenon, we repeat the same experiments, modifying the
database by keeping only the most frequently selected features, i.e. those
which are selected at least half of the times after the 300 training processes.
So, iteration by iteration we gradually reduce the number of input features
used to train the neural network. Fig. 8.8 shows for each iteration the

104

8.3 – Transparent Neural Based Model for Feature Selection

Figure 8.6: An example of histogram of the neural network weights after the
first training iteration.

Figure 8.7: An example of notched box plot of the neural network weights
after the first training iteration.

number of features used to train the neural network and the corresponding
10-fold cross validation accuracy. The blue bars correspond to the feature
selection technique described above, while the violet ones to the ANOVA-F
statistic method2. Notice that, initially, by using the original data set, the

2The corresponding standard deviation is always in the order of few percentage decimals
and it is not directly displayed since it is not relevant for the purpose of the discussion.
However, you can reproduce the experiment by using our code if you need more precision.

105

8 – Supervised Neural Techniques

cross-validation accuracy is around 0.7. Such result may have two main ex-
planations. First, the classes are not perfectly balanced, since 66% of samples
belong to class 0. Secondly, the high dimensionality of the data may gener-
ate a slight overfitting. However, by reducing the input features using the
method previously, the cross-validation accuracy raises above 0.9, decreasing
progressively as the number of features are further diminished.

Figure 8.8: Histogram displaying the 10-fold cross validation accuracy at
each iteration of the experiment.

It is important to notice that the neural network used as classifier is linear,
i.e. geometrically speaking it delimits the input space with a hyperplane in
order to classify data. This means that the proposed approach provides
better results if the underlying phenomenon represented by the input data
set is also linear. The results in fig. 8.8 show how the shallow neural network
classifier delivers better results in the 737-dimensional space identified by the
proposed feature extraction technique, than in the original 20023-dimensional
data set. This may suggest that the underlying biological phenomenon at the
DNA-microarray level is more linear in the reduced space than in the original
one. Practically speaking, a linear problem is much easier to understand and
tackle because the superposition principle holds i.e. the net response caused
by two or more stimuli is the sum of the responses that would have been
caused by each stimulus individually. Therefore, from a biological point of
view, these results may suggest that the above experiment generates sub-
spaces of the input features where the cancer resistance to treatments can be

106

8.3 – Transparent Neural Based Model for Feature Selection

studied more easily. In particular, in the 737-dimensional space the biological
phenomenon is easier in the sense that it is more linear than in the original
space; while in the 90 or 20-dimensional spaces it is easier because, while the
classification accuracy decreases, the limited number of genes involved can
be more thoroughly analyzed by human experts.

107

108

Part IV

Conclusion and Future
Developments

109

Chapter 9

Critical Analysis

In this work we presented a summary of the analyzes performed on the largest
CRC xenograft data set available in the academic world. On one hand, these
analyzes are relevant because the outcomes could be used to instruct further
biological and clinical research. On the other hand, the issues encountered
in approaching high-dimensional data has led to the development of novel
techniques, which may be exploited in different fields other than biology.

The major machine learning novelty is represented by the creation of GH-
EXIN, a new neural-based technique for hierarchical clustering. The compar-
ison with DGOST and GHNG techniques shows how GH-EXIN is typically
more efficient, as it reaches similar performances in terms of peak-signal to
noise ratio (PSNR) by using fewer neurons. Moreover, qualitative evaluation
of the resulting topology shows how GH-EXIN is much more elegant in con-
necting neurons, providing superior manifold representations. Finally, the
restricted number of user-dependent parameters makes the tuning process of
GH-EXIN very easy.

The application of the biclustering framework integrated with GH-EXIN
on the biological dataset revealed some interesting gene correlation patterns.
These results have been submitted to the attention of IRCC doctors, who
are currently analyzing them for possible scientific implications.

Other minor novelties have been introduced within both the unsupervised
path and the supervised one. They always enhanced effectiveness levels com-
pared to current state-of-art techniques.

The results above are promising and highlight the potential for future
work. From the point of view of the biological advances, the outcomes of
both the unsupervised and the supervised path are promising yet opaque:
while the models can be used effectively, the results are difficult to interpret

111

9 – Critical Analysis

from a human point of view. As for the unsupervised direction of work,
the GH-EXIN neural network resulted to be effective and easy to use as
aforementioned; results provided by the biclustering framework, instead, are
rather difficult to interpret without a statistical knowledge, since biclusters
need several additional tools to be correctly evaluated. As for the supervised
direction, the major advances with respect to previous analyses are achieved
by exploiting the shallow neural network model. Indeed, the simplicity of
such model makes it easier to handle and interpret. On limiting the number
of features used, however, the accuracy drops significantly.

Moreover, major limitations of our work directly derive from the analyzed
data. On the one hand, the analyzed data represent an estimate of the
amount of times each gene is transcribed in a tumor xenograft. However,
gene replication does not always result in protein generation. Indeed, this
kind of data may not represent cell behaviour correctly. On the other hand,
the restricted amount of samples was the most serious issue, since machine
learning reliability is directly related to the amount of data provided.

Hence, within the biological domain, future developments will involve the
use of up-to-date data (e.g. representing proteins instead of gene expressions)
and the integration with other sources of data, such as image samples. Be-
sides, from a machine learning point of view, models easier to interpret may
be developed in order to provide more reliable and human-understandable
outcomes. Future research in this field will consist in devising new algo-
rithms overcoming the intrinsic weaknesses of machine learning, above all
understandability. To this purpose, novel algorithms which integrate classic
symbolic artificial intelligence with machine learning techniques seem to be
very promising. Further details are given in the next chapter. Both authors
will carry on these researches during the doctorate.

112

Chapter 10

Future Works: Towards
Artificial General
Intelligence

Strictly concerning machine learning, future works will consist first of an
analysis of current state of art of Machine Learning (ML), in order to clearly
understand whether it is possible to enrich current techniques capabilities.

A second part of the future researches, instead, will consist in devising new
AI algorithms that may go towards an Artificial General Intelligence (AGI).
This part will be considered either in case machine learning issues result to be
unsolvable, or not, as it seems to be promising per se. A good starting point
"may be to integrate deep learning, which excels at perceptual classification,
with symbolic systems, which excel at inference and abstraction. One might
think such a potential merger on analogy to the brain; perceptual input
systems, like primary sensory cortex, seem to do something like what deep
learning does, but there are other areas, like Broca’s area and prefrontal
cortex, that seem to operate at much higher level of abstraction" [16]

Interestingly, symbolic systems and Machine Learning in computer science
somehow correspond in philosophy to deductive and inductive reasoning re-
spectively. In fact, deductive reasoning is a process that tries to reach a
certain conclusion by applying general rules, narrowing the space of possi-
ble conclusions until only one is left. Classic logic and expert systems are
strongly based on these principles. Inductive reasoning, instead, is the pro-
cess in which starting from observations a possible conclusion is derived. The
conclusion anyway cannot be considered as undoubtedly truth. All the ML

113

10 – Future Works: Towards Artificial General Intelligence

techniques are based on these assumptions.
Summing up, a long-standing controversy exists in literature regarding the

role of induction and deduction in reasoning. Nevertheless, none would state
that human reasoning is based on only one of them and neither we should
suppose it in AI: combining several approaches is the only way to reach AGI.

At the same time, future researches will also study developmental psy-
chology to understand how reasoning processes take place in human brain in
order to get useful hints about what are the best ways of replicating them. It
is also possible that completely new paradigm, with little in common with ex-
isting ones, can be derived from these observations as happened with neural
networks.

114

Bibliography

[1] National Cancer Institute . What Is Cancer? . https://www.cancer.
gov/about-cancer/understanding/what-is-cancer , Feb 2015 . Ac-
cessed on 2018-10-06.

[2] Alfred G. Knudson. Mutation and cancer: Statistical study of
retinoblastoma. Proc Natl Acad Sci U S A, 68(4):820–823, Apr 1971.
5279523[pmid].

[3] J. S. de Bono and Alan Ashworth. Translating cancer research into
targeted therapeutics. Nature, 467:543 EP –, Sep 2010. Perspective.

[4] Y. Komeda, H. Handa, T. Watanabe, T. Nomura, M. Kitahashi,
T. Sakurai, A. Okamoto, T. Minami, M. Kono, T. Arizumi, M. Tak-
enaka, S. Hagiwara, S. Matsui, N. Nishida, H. Kashida, and M. Kudo.
Computer-aided diagnosis based on convolutional neural network system
for colorectal polyp classification: Preliminary experience. Oncology,
93(suppl 1)(Suppl. 1):30–34, 2017.

[5] Shelley McGuire. World cancer report 2014. geneva, switzerland: World
health organization, international agency for research on cancer, who
press, 2015. Adv Nutr, 7(2):418–419, Mar 2016. 012211[PII].

[6] Manuel Hidalgo, Frederic Amant, Andrew V. Biankin, Eva Budinská,
Annette T. Byrne, Carlos Caldas, Robert B. Clarke, Steven de Jong,
Jos Jonkers, Gunhild Mari Mælandsmo, Sergio Roman-Roman, Joan
Seoane, Livio Trusolino, and Alberto Villanueva. Patient derived
xenograft models: An emerging platform for translational cancer re-
search. Cancer Discov, 4(9):998–1013, Sep 2014. 25185190[pmid].

[7] Illumina . BeadArray Microarray Technology . https://emea.
illumina.com/science/technology/beadarray-technology.html ,
July 2017 . Accessed on 2018-10-08.

[8] Gartner . Top Trends in the Gartner Hype Cycle for Emerg-
ing Technologies . www.gartner.com/smarterwithgartner/
top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

115

https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://emea.illumina.com/science/technology/beadarray-technology.html
https://emea.illumina.com/science/technology/beadarray-technology.html
www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

Bibliography

, July 2017 . Accessed on 2018-10-08.
[9] Marvin Minsky and Seymour Papert. Perceptrons: an introduction to

computational geometry. 1969.
[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Asso-
ciates Inc.

[11] WHO: World Health Organization . Cardiovascular diseases (CVDs)
. http://www.who.int/cardiovascular_diseases/en/ , July 2017 .
Accessed on 2018-08-08.

[12] WHO: World Health Organization . Cancer . http://www.who.int/
cancer/en/ , July 2017 . Accessed on 2018-08-08.

[13] WHO: World Health Organization . Road traffic deaths. . www.who.
int/gho/road_safety/mortality , July 2017 . Accessed on 2018-08-
08.

[14] Andrew Ng . What Artificial Intelligence Can and
Can’t Do Right Now . https://hbr.org/2016/11/
what-artificial-intelligence-can-and-cant-do-right-now ,
November 2016 . Accessed on 2018-10-10.

[15] Francois Chollet. Deep Learning with Python. Manning Publications
Co., Greenwich, CT, USA, 1st edition, 2017.

[16] Gary Marcus. Deep learning: A critical appraisal. CoRR,
abs/1801.00631, 2018.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518:529 EP –, Feb
2015.

[18] Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel
Lázaro-Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor,
D. Scott Phoenix, and Dileep George. Schema networks: Zero-shot
transfer with a generative causal model of intuitive physics. CoRR,
abs/1706.04317, 2017.

[19] Pietro Barbiero, Andrea Bertotti, Gabriele Ciravegna, Giansalvo Cirrin-
cione, Eros Pasero, and Elio Piccolo. Unsupervised Gene Identification
in Colorectal Cancer. In Quantifying and Processing Biomedical and

116

http://www.who.int/cardiovascular_diseases/en/
http://www.who.int/cancer/en/
http://www.who.int/cancer/en/
www.who.int/gho/road_safety/mortality
www.who.int/gho/road_safety/mortality
https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now
https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now

Bibliography

Behavioral Signals, pages 219–227. Springer International Publishing,
2018.

[20] Sokal R. R. and Michener C. D. A statistical method for evaluating sys-
tematic relationships. University of Kansas Science Bulletin, 28:1409–
1438, 1958.

[21] Sokal R. R. and Michener C. D. The comparison of dendrograms by
objective methods. Taxon, 1962.

[22] Ward Joe H. JR. Hierarchical grouping to optimize an objective func-
tion. Journal of the American Statistical Association, 1963.

[23] Calinski T. and Harabasz J. A dendrite method for cluster analysis.
Communications in Statistics, 1974.

[24] Wegman Edward J. Hyperdimensional data analysis using parallel co-
ordinates. Journal of the American Statistical Association, 1990.

[25] Jolliffe I. T. Principal Component Analysis. Springer Series in Statistics,
2002.

[26] Demartines P. and Hérault J. Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets. IEEE
Transactions on Neural Networks, 1997.

[27] Gower J. C. and Hand D. J. Biplots. Chapman and Hall, 1996.
[28] Usa national center for biotechnology information.
[29] Pietro Barbiero, Andrea Bertotti, Gabriele Ciravegna, Giansalvo Cirrin-

cione, Eros Pasero, and Elio Piccolo. Supervised gene identification in
colorectal cancer. In Quantifying and Processing Biomedical and Behav-
ioral Signals, pages 243–251. Springer International Publishing, 2018.

[30] Davies D. L. and Bouldin D. W. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1979.

[31] Tibishirani R. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, 1996.

[32] Bishop C. M. Pattern Recognition and Machine Learning. Springer,
2016.

[33] James J Chen. Key aspects of analyzing microarray gene-expression
data. Pharmacogenomics, 8(5):473–482, 2007. PMID: 17465711.

[34] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological
data analysis: a survey. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1(1):24–45, Jan 2004.

[35] Cirrincione G. Ciravegna G. Pasero E. Randazzo, V. Inonstationary
topological learning with bridges and convex polytopes: the g-exin neu-
ral network. In IEEE - Proceedings of IJCNN 2018 International Joint
Conference on Neural Networks, 2018.

117

Bibliography

[36] B.S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley
Series in Probability and Statistics. Wiley, 2011.

[37] T Li, Y.Y. Tang, S.C. Suen, L.Y. Fang, and A.J. Jennings. A Struc-
turally Adaptive Neural Tree for Recognition of Large Character Set.
Proceedings of the 11th IAPR International Joint Conference on Pat-
tern Recognition, 2:187 – 190, 01 1992.

[38] R. G. Adams, K. Butchart, and N. Davey. Hierarchical Classifica-
tion with a Competitive Evolutionary Neural Tree. Neural Networks
, 12(3):541 – 551, 1999.

[39] Elena Samsonova, Joost Kok, and Ad Ijzerman. TreeSOM: Cluster Anal-
ysis in the Self-Organizing Map. Neural networks : the official journal
of the International Neural Network Society, 19:935–49, 07 2006.

[40] Johan Himberg. A SOM Based Cluster Visualization and its Application
for False Coloring. IEEE Int. Joint Conf. on Neural Networks, 3:587 –
592 vol.3, 02 2000.

[41] M Venkat Reddy, Makara Vivekananda, and R U V N Satish. Divi-
sive Hierarchical Clustering with K-means and Agglomerative Hierar-
chical Clustering. International Journal of Computer Science Trends
and Technology (IJCST), 5, 10 2017.

[42] GuoYan Hang, DongMei Zhang, Jiadong Ren, and ChangZhen Hu. A
Hierarchical Clustering Algorithm Based on K-Means with Constraints.
Innovative Computing ,Information and Control, International Confer-
ence on, 0:1479–1482, 12 2009.

[43] George Aloysius. Efficient High Dimension Data Clustering using
Constraint-Partitioning K-Means Algorithm. International Arab Jour-
nal of Information Technology, 10, 11 2013.

[44] Madjid Khalilian, Norwati Mustapha, Nasir Suliman, and Ali Mamat.
A Novel K-Means Based Clustering Algorithm for High Dimensional
Data Sets. In International MultiConference of Engineers and Computer
Scientists, pages 17–19, 2010.

[45] Alberto Forti and Gian Luca Foresti. Growing Hierarchical Tree SOM:
An Unsupervised Neural Network with Dynamic Topology. Neural net-
works, 19(10):1568–1580, 2006.

[46] Bernd Fritzke. Growing cell structures–a self-organizing network for
unsupervised and supervised learning. Neural Networks, 7:1441–1460,
1994.

[47] Vanco Burzevski and Chilukuri K. Mohan. Hierarchical Growing Cell
Structures. In IEEE int. conference on neural networks, pages 207–218,
1996.

118

Bibliography

[48] Bernd Fritzke. Growing Grid - A Self-Organizing Network with Con-
stant Neighborhood Range and Adaptation Strength. Neural Processing
Letters, 2(5):9–13, Sep 1995.

[49] A. Rauber, D. Merkl, and M. Dittenbach. The Growing Hierarchical
Self-Organizing Map: Exploratory Analysis of High-Dimensional Data.
IEEE Transactions on Neural Networks, 13(6):1331–1341, Nov 2002.

[50] Esteban J Palomo and Ezequiel López-rubio. The Growing Hierarchi-
cal Neural Gas Self-Organizing Neural Network. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–10, 2016.

[51] Bernd Fritzke. A Growing Neural Gas Network Learns Topologies. In
Advances in neural information processing systems, pages 625–632, 1995.

[52] Latifur Khan and Feng Luo. Hierarchical Clustering for Complex Data.
International Journal on Artificial Intelligence Tools, 14:791–810, 2005.

[53] Joaquin Dopazo and José María Carazo. Phylogenetic Reconstruction
Using an Unsupervised Growing Neural Network that Adopts the Topol-
ogy of a Phylogenetic Tree. Journal of Molecular Evolution, 44(2):226–
233, 1997.

[54] Esteban J Palomo and Ezequiel López-rubio. The Growing Hierarchical
Neural Gas Self-Organizing Neural Network. pages 1–10, 2016.

[55] Yizong Cheng and George M. Church. Biclustering of Expression Data.
Proceedings. International Conference on Intelligent Systems for Molec-
ular Biology, 8:93–103, 2000.

[56] Vincenzo Randazzo, Giansalvo Cirrincione, Gabriele Ciravegna, and
Eros Pasero. Nonstationary Topological Learning with Bridges and Con-
vex Polytopes: the G-EXIN Neural Network. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–6. IEEE, jul 2018.

[57] Mohamed-Rafik Bouguelia, Yolande Belaid, and Abdel Belaid. Online
Unsupervised Neural-Gas Learning Method for Infinite Data Streams.
In Pattern Recognition Applications and Methods, pages 57–70. Springer,
2015.

[58] Giansalvo Cirrincione, Vincenzo Randazzo, and Eros Pasero. The Grow-
ing Curvilinear Component Analysis (GCCA) neural network. Neural
Networks, 103:108–117, 2018.

[59] Gabriele Ciravegna and Pietro Barbiero. Gh-exin (version 1.0.1).
https://bitbucket.org/machine_learning_research/ghexin/src/
master/, 2018.

[60] Farokh Bastani I-Ling Yen Feng Luo, Latifur Khan and Jizhong Zhou.
A dynamically growing self-organizing tree (DGSOT) for hierarchical
clustering gene expression profiles. Bioinformatics, 20:2605–2617, 2004.

119

https://bitbucket.org/machine_learning_research/ghexin/src/master/
https://bitbucket.org/machine_learning_research/ghexin/src/master/

Bibliography

[61] David L. Davies and Donald W. Bouldin. A Cluster Separation Measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979.

[62] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 1987.

[63] M. Reisslein, L. J. Karam, P. Seeling, F. H. Fitzek, and T. K. Madsen .
YUV Video Sequences . http://trace.eas.asu.edu/yuv/index.html
, December 2010 . Accessed on 2019-06-07.

[64] Matthew A Turk and Alex P Pentland. Face recognition using eigen-
faces. In Proceedings. 1991 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 586–591. IEEE, 1991.

[65] http://www.genecards.org/cgi-bin/carddisp.pl?gene=CSAG3. Ac-
cessed: 2017-11-20.

[66] http://www.genecards.org/cgi-bin/carddisp.pl?gene=MAGEA2.
Accessed: 2017-11-20.

[67] Barbiero P., Bertotti A., Ciravegna G., Cirrincione G., Piccolo E., and
Tonda A. Dna microarray classification: Evolutionary optimization of
neural network hyperparameters. In Italian Workshop on Neural Net-
works (WIRN 2018), 06 2018.

[68] Barbiero P., Bertotti A., Ciravegna G., Cirrincione G., Piccolo E., and
Tonda A. Understanding cancer phenomenon at gene-expression level
by using a shallow neural network chain. In Italian Workshop on Neural
Networks (WIRN 2018), 06 2018.

[69] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evo-
lution Programs, 1996.

[70] Aaron Garrett. inspyred (version 1.0.1) inspired intelligence. https:
//github.com/aarongarrett/inspyred, 2012.

[71] Widrow B. and Lehr M. A. Artificial neural networks of the perceptron,
madaline, and backpropagation family. Neurobionics, 1993.

[72] François Chollet et al. Keras. https://keras.io, 2015.
[73] Ng A. Y. Feature selection, l1 vs. l2 regularization, and rotational in-

variance. In International Conference on Machine Learning, 2004.
[74] Hastie T., Tibshirani R., and Friedman J. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics, 2009.

[75] Kingma D. P. and Ba J. Adam: A method for stochastic optimization.
International Conference for Learning Representations. 2017.

[76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

120

http://trace. eas.asu.edu/yuv/index.html
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CSAG3
http://www.genecards.org/cgi-bin/carddisp.pl?gene=MAGEA2
https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
https://keras.io

Bibliography

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[77] Schmidt M., Le Roux N., and Bach F. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 2013.

[78] Defazio A., Bach F., and Lacoste-Julien S. Saga: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives. Advances in Neural Information Processing Systems, 2014.

121

