Model-based design of a novel
modulation technique.

Using FPGA based motor control board for traction

inverter.

By

Andrea Piccioni

kot skoskoskok

Supervisor(s):
Prof. P. Guglielmi, Supervisor
Prof. E. Armando, Co-Supervisor
Prof. R. Ruffo. , PhD Student support

Politecnico di Torino
2017

I would like to dedicate this thesis to my loving parents

Acknowledgements

I would first like to thank my thesis advisor Paolo Guglielmi of the Polytechnicuni-
versityof Turin. The door to Prof. Guglielmi office was always open whenever I ran
into a trouble spot or had a question about my research or writing. He consistently
allowed this paper to be my own work, but steered me in the right the direction
whenever he thought I needed it. I would also like to acknowledge Eric Armando of
the PolytechnicUniversityof Turin as my co-advisor to support me in FPGA field. I
would also like to thank the expert who were involved in the validation survey for
this research project: Ing. Riccardo Ruffo. Without their passionate participation
and input, the validation survey could not have been successfully conducted. Finally,
I must express my very profound gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment

would not have been possible without them.

Abstract

This paper analyzes the new scenario of embedded technologies from the point
of view of the control of a three-phase electric motor. Given the emergence of
electric mobility, either hybrid (HEV) or full electric (BEV), it will become the
most profitable but equally demanding market, given that the vehicle system is a
complex system full of increasingly stringent regulations. In fact, one of the main
themes in the automotive field is that of safety, of the single component and of the
overall vehicle system, called functional safety IEC-61508, and ISO-26262. So
the base of a control design engineer’s pyramid becomes security, that is design
embedded software for high-integrity systems that meet industry standards with
tools that provide documentation, test cases, and procedures that let qualify each
subsystem. Therefore, the fundamental requirement is reliability, but above all to be
able to guarantee it at any workplace that is eligible in the specifications. To ensure
that there is a need for an accurate stage of designing software, but above all an
equally hard working debugging job, during all stages of process development. It
seems more than desirable, therefore, given the needs, that the control of a car should
come from a model, composed of several subsystem models, specifically validated.
All this will be implemented through dedicated tools, thus avoiding unpleasant
inconveniences and slowdowns in process product and vehicle. By entering into
the motor control specific, one of the most critical tasks the currents-control, given
their dynamics a real time task must be assured. In addition to this task, the inverter
will have to control other slower variables, detect any faults, communicate with
the vehicle control unit, etc. In short, a hard work for the embedded engineer who
will have to force hack to an ASIC, as the general purpose microcontrollers would
be in trouble, especially for interrupt handling for task execution. Designing and
validating an ASIC is a costly and long process that can be avoided with the advent
of the FPGA control board, real-time reprogrammable, high performance (hundreds

of MHz) hardware circuits, to be entrusted with real-time tasks, leaving the static

tasks to common processors.

Contents

List of Figures

1

2

Background

1.1 Introduction
1.2 DirectcompariSOn ot
1.3 Fully customizable PWM
1.4 State of art in Automotive control PEs.

1.5 pFARAD motor controlboard

Product process design and validation

2.1 Processintroduction.
2.2 Preliminary concept and draft simulation.
23 MIL: modelintheloop..
2.4 MIL to SIL, HDL coder : Generatingcode.
2.5 SIL:softwareintheloop.
2.6 SIL to FIL, synthesizertools.
277 FIL:FPGAintheloop.

2.8 FIL to HIL: road to power stage.

pHIL, power hardware in the loop
3.1 IntroductiontopHIL.

viii

14

16
16
19
27
34
39
42
47
56

60
60

Contents vii
3.2 pHILwithnoload. 62
3.2.1 Testbenchfortesting. 62

322 Results. 62

33 pHILwithIMload. 63
3.3.1 Testbenchfortesting. 63

332 Results. 65

34 InClosing e 66
References 67
Appendix A Schematics FPGA Board. 69
Appendix B Model in the loop results. 70
Appendix C HDL coder generated code. 71
Appendix D HIL .C test-bench. 72
Appendix E Schematics ST IPM board. 73

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

2.1
2.2
2.3
24
25

2.6
2.7

Motor control board: FPGA Co-processor, FPGA SoC. 2
Key role of FPGA into a product process. 5
Time in market, technology comparison. 6
Benefit of custom PWM technique. 8
Tesla Model SHV System 9
Hierarchy of system control in Model S 10
Slaves modules and master pack. L. 11
Inverter summary structure. 12
Hardwere and PEs on TesladriveforIM. 13
pFarad powertrain summary. 14
pFarad control board HW summary. 15
State of art in product process development and validation. 17
Tools used for product process development and validation. 19
3@-load suppliedby DCsource 20
Limit of modulation, with third harmonic injection 21

Comparison of modulation technique, SINE (no zero seq. injection)
vs BEM vs DZS, in a electrical period. 23

From PI current control, to load 3@-index. 24

3(-Load view, focus in shift from linear zone to 6 step zone. 25

List of Figures ix

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
222

2.23

2.24
2.25
2.26
2.27

2.28

Instantaneous duty, focus on shift from linear zone to quasi-6-step

Harmonic spectrum up to six-step operation. Comparison between

BEMvsDZS 27
Kay benefit of model inthe loop. 29
Schematic of summary block design. 30
Control and enalble subsystem. 31
Dq to ph-medium adding zero sequence block. 32
From algorithm to code, C C++ or Vhdl Varilog. 33
HDL Corder keypoint. 36
Balance envelope modulation generated code. 38
eg. Most critical path in bem subsystem 38
Pipeline fully auto-delays generated 39
Stimuli-Driven Test Bench in HDL Simulators 41

Control block stimuli-driven by HDL Verifier+ModelSim Co-simulation. 42
ISE main schematic blocks. 44

BEM.vhdl by E.Armando, testing by black-box + ModelSim Co-
simulation. 45

Hardwere Control Unit: summary schematic about control and debug

the fully integrated system FPGA + DSC. 48
Freescale Freemaster and Code Worrior key skills. 49
MCU ISR and main called function. 50
SPICORE to CORE pin-out. 51

SPI test sending in repetition h5555 and hAAAA, one negates the
otheratbinary level. 52

DQ to phase-medium results, stimulated by V/Hz control running in
MCU master. Maximum hFFFF costant DC bus voltage. 53

List of Figures

2.29

2.30

2.31

2.32

2.33

3.1
3.2
3.3

3.4
3.5

3.6

DQ to phase-medium results, stimulated by V/Hz control running in

MCU master. Variable DC bus voltage.

SVM SECTOR 1 - C1: U High, C2: V High, C3: W High, C4: SPI

int, F1: differential mode Uh-Vh, F2: differential mode Vh-Wh . . .

SVM SECTOR 5 - C1: U High, C2: V High, C3: W High, C4: SPI
int, F1: differential mode Uh-Vh, F2: differential mode Vh-Wh.

SVM SECTOR 6 - C1: U High, C2: V High, C3: W High, C4: SPI
int, F1: differential mode Uh-Vh, F2: differential mode Vh-Wh.

U high (pinl), U Low (pin2), V Low (pin 5), W Low(pin 7).

Implemented Volt - Hertz control strategy.

Power stage board schematics.

pHIL test bench, 30Vdc without load: three phases legs voltage

referredto DCbus.

pHIL test bench withload.

pHIL test bench, Bus 60Vdc, modulation frequency 20kHz, with
load and three phases legs currents probes: Ipk-pk 2A at 50Hz,

without mechanicalload.

pHIL test bench, Bus 60Vdc, modulation frequency 20kHz, with
load and three phases legs currents probes: Ipk-pk 3A at 150Hz,

with mechanicalload.

57

57

58
59

61

Chapter 1

Background

1.1 Introduction

Choosing which silicon based technology to use for their design is getting harder
for embedded expert, due to the technology increase in electronic devices used for
control. Moreover, when new hybrid silicon is becoming available that blurs the lines
between these device types. The designer, based on their experience, knowledge in
base on performance (general-purpose, high dynamics, connectivity etc) and time
to market (prototyping, final sample, etc) in the control application, which devices
are best suited. A matter of fact as with most decisions, an analysis of the particular
final scope must be done to discover which device or combination of devices may
be satisfactory. The silicon candidates include a general-purpose microprocessor,
DSP, and FPGA, or the combination of such. If the application must access a wide
range of 1/O, reprogram logic or run closed-loop control at rates exceeding 1 MHz,
an FPGA is probably the right fit. A micro-controller is the more appropriate choice
if designers want general-purpose functionality and programming simplicity. If
ultimate optimization and processing speed are needed and the engineer is familiar
with underlying chip architecture and DSP programming, a DSP is the best device to

use.

2 Background

Motor CTRL co-processor

uP MAC PHY vCU

FPGA as co-processor

HDL Motor Citrl A/D
Power M
Stage
PWM
Enc
FPGA as SOC Motor CTRL Motor CTRL Board
uP MAC PHY VeU
HDL Motor Ctrl F AD
Power
M
Stage
PWM
Dig
Enc Enc

Fig. 1.1 Motor control board: FPGA Co-processor, FPGA SoC.

Furthermore embedded developers traditionally have had limited options for
accelerating performance near the end of a design cycle, as quick and dirty solutions
including buying a faster processor or last minute hand made tuning of assembly
subroutines. While both options can be effective, the tradeoffs they bring are too
large to ignore, comparing with the advantage of new hybrid solutions with FPGA.
For example, an overloaded processor scenario can be avoided using FPGAs as a
coprocessor (the difference between System on Chip (SoC) FPGA and Coprocessor
FPGA is shown in figure 1), providing simple glue logic. This technique allows

1.2 Direct comparison 3

off-loads tasks, such as communications, motor control, I/O modules, the primary
microcontroller or digital signal processor device in applications. Much final applica-
tion exceeds bandwidth, and if they do not, they will definitely do so soon especially
with the increase of regulations, required to run drive motor tasks and I/O. As a
result, you may be required to add an extra device, often an expensive solution if

your actual layout board could not accommodate this extra device.

1.2 Direct comparison

Strictlyconsider FPGA and DSP, it is obvious that DSP wins the battle for motor
control and in a general embedded system design perspective. The reason is FPGAs
are blank chips while DSP chips having microprocessor and peripherals meaning
that instantly you can begin to develop and debug your software on a DSP; while
you cannot on an FPGA. The FPGAs way needs a design of HW layer first, then
proceed to SW development and finally debug. Hence FPGAs have one level of start
up complexity higher than DSP and while this can become on one side an advantage
increased flexibility for new features, it is on the other side a drawback because the
same solution is going to take more time to develop. Not even talking about the fact
that most motor control department, is currently embedded expert with DSP/MCU
hence have not necessarily the skills for HW development, thus could not appreciate
the infinite degree of freedom given by FPGAs solutions. FPGA and IP, that is
completely different, with an FPGA and IP approach, the HW development phase
is reduced to its minimum which is to integrate IP components together (processor
IP, motor control IP, communications IP, HMI IP, etc.). While this process can be a
nightmare if not done correctly, it takes only a few minutes if done with the correct
tools (e.g. using SOPC Builder in the case of Altera FPGAs or Xilinx’s Platform
Studio in case of Spartan). Because of their low-cost programmable hardware,
integration of embedded processors, and ability to incorporate motor-control IP,
FPGA-based systems offer new features for many applications that cannot be found
in any MCU- or DSP- based system. Controlling motors with high-performance
motor controller significantly improves the overall system efficiency and dynamics,
also reduce volume (in E-motor this is strictly linked with costs and weight of active

materials) and increase durability in the mechanical point of view. To reach high-

4 Background

performance control the nowadays trend is a typically multi-chip solution (Table
1):

* For faster math focused operations, today a Digital Signal Processing is the

best choice

* A micro-processor to run the slower as Temperature control loops and do all

the other interfacing and I/O.

» ASIC whenever there is a need for personalization, communication, a fast task

or some interface other than the usual standards.

Table 1 Silicon technology

Skill DSpP FPGA | FPGA and IP

Out of box Great Low Great
Processor Fixed No Configurable
HW phi Fixed No Configurable

Cost maintenance | High | Very high Low

Integration Tedius Easy Easy

Expert required Yes Yes No

Choosing microprocessors instead of DSPs, for control applications, traditionally
offer better on-chip peripherals, such as standard PWM and other integrated I/O for
multiple, asynchronous tasks. MCU is less specialized and is more flexible, which
usually makes them easier to understand and program, instead of low level, also
called Hardware languages Verilog and VHDL programming. Finally, if the engineer
is really lazy, a single GUI-friendly silicon access tool is easy to find by the type of
FPGA supplier. The rough difference between an FPGA and an MCU is that the first
is fuzzier. Basically, what an FPGA is at the hardware level? A lot of small SRAM
cells, all connected to a dense matrix of multiplexers. Basically, an FPGA is a whole
pile of discrete logic that can beelectronicallyre-wired simply by reprogramming the
multiplexers and SRAM cells; easy.

1.2 Direct comparison 5

€ O Cell-Based Asic O Structured ASIC FPGA
500
375
250
125
0
0 1000 10000 25000 50000 100000
(n°]
Prototyping Phase Road to mass production Mass production
<4k FPGA zone <25k <25k

Represent the
turning point.

Fig. 1.2 Key role of FPGA into a product process.

A Field Programmable Gate Array can be seen as the prototyping stage of ASICs,
which are very expensive to manufacture (sort of manufacturing stencil) and once
it’s made there is no going back. Given their fixed cost of development and the
uniqueness of the hardware process, they are not very convenient, at less than large
quantities of the life cycle products (see figure 2). But let’s not forget that if you
miss out something on validation, you have to bring the products back and replace
the components physically. Apart from the fact that if in the course of product life,
regulations become more stringent, you have to upgrade hardware or shorter time
on the market product have to be accepted. Also, FPGAs if you power it off, you
lose not only the current state but also your configuration. Now exist boards that
add a FLASH and/or a MCU to load the configuration at startup so this tends to be a
less important argument. Both ASICs and FPGAs can be configured with Hardware
Description Languages, and sometimes FPGAs are used for the end product. But

generally, ASICs kick in when the design is fixed. FPGAs as said execute multiple

6 Background

operations in parallel, unlike MCU and DSP which are sequential machines and
so execute one instruction at a time (MHz FPGA vs KHz microprocessor). The
parallel nature of FPGA operation allows for higher speed computations, therefore,
improving control performance. As a consequence it has the power to implement
functions like Fast Fourier Transform (FFT), that allows the frequency domain
analysis, so that see unwanted harmonics as for example the elimination of 5th and
7th in a three phase load. Unwanted frequencies can cause vibrations and interfere
with precise speed control or cause resonance and vibrations that reduce the longevity
of a motor assembly. Because no OS run on the FPGA, the code is implemented
in a way that ensures maximum performance and reliability, FPGAs can perform
closed-loop control at extremely fast loop rates. However, FPGAs by themselves
are not as useful as when they complement microprocessor or DSPs. Interfacing an
FPGA to the outside world through ADC and DAC controllers and a micro-controller
offers complete system designs with fast I/O, appropriate control and rapid signal
processing. Due to integration with lower bandwidth systems often speed is limited
by the sensors, actuators and I/O modules rather than by the FPGA’s processing
performance.

Return
€/p

uP+FPGA+RemoteUpdate

Longer time to market
Better & cheaper service
Better monitoring

UP+FPGA

No FPGA based control Go to market faster

Pass new generations
of regulatios

57y 10/15y Time

Fig. 1.3 Time in market, technology comparison.

Summarizing why to move on FPGA: reducing cost and time for prototyping to
market, stay in market longer (reducing service cost), as shown in figure 3. FPGAs

solutions sound like the godsend for Project Managers world: but on the other hand,

1.3 Fully customizable PWM 7

no enough Know How shared and consolidated. Summarizing the PRO point of

FPGA based control in few point:

* Custom PWM technique.
* Multiple motors control.
* Custom structured power stage.

» Easy component integration.

Parallel architectures.
* High bandwidth control loops.

* High reliability.

1.3 Fully customizable PWM

The crucial part of the current control strategy is the actuation of the referments
voltages, using one of the many PWM techniques cited in the literature. A PWM
technique controls the legs of an inverter, changing states in order to meet the time-
average value of the voltage command. The true advantage of FPGAs is that it
can make customizable what previously was fixed generic hardware in MCUs or
DSP blocks. While optimizing DC bus voltage usage, PWM custom techniques
can reduce losses in the motor and in the power converter. Furthermore, FPGA
allows to cut useless (no dynamic scope) switch losses using variable frequency
carrier, an explored solution given the power of computation: this technology con-
verts the DC in instead of fixed-carrier frequency/variable-amplitude and frequency
voltage in a variable-carrier frequency/variable-amplitude and frequency voltage. An
application-specific PWM IP core in an FPGA, completely optimized in terms of
energy efficiency and based on motor parameters, can replace the standard PWM
block, forced in an MCU solution.

8 Background

1.50
Sinusoidal PWM

g 1.25
c
L Space vector
5 1.00 PWM
=
el
L
& 0.75
E
o]
= FPGA-based optimal
3 -
5 0% PWM

0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Modulation index

Fig. 1.4 Benefit of custom PWM technique.

Figure 4 shows a custom PWM in an FPGA can reduce the THD in over modula-
tion by nearly 50 percent, compared to the standard PWM in MCUs or DSP blocks.
In efficiency point of view, this reduces time-harmonic losses in the motor, from a
mechanical point of view reduces audible noise and increases global motor reliability.
The FPGA’s hardware programmability enables easy implementation of dedicated
high-performance logic circuits. Dedicating logic circuits for motor current and
torque control, as opposed to software running on generic MCU or DSP blocks,
allows a very high-frequency (more than 100 kHz) control-loop bandwidth. Such
high-control bandwidth has a positive impact on current quality, previously cited,
due to better regulation. From safety and durability point of view FPGAs allows the
motor controller to extract critical information about the health of the motor during
its operation, which then can be sent to the main appliance controller to notify the
user about the risk of motor failure and to adjust motor-control parameters to reduce

risk of failure and increase safety of operation.

1.4 State of art in Automotive control PEs. 9

1.4 State of art in Automotive control PEs.

Nowadays, FPGAs are available with one or more embedded processors, this class of
FPGA is known as a SoC (System-on-Chip) FPGA. Using the embedded processor’s
cores in the SoC, to implement slower tasks as temperature or voltage bus monitoring,
while using the FPGA fabric to accelerate components where a high update frequency
will benefit the control loop, enables optimum usage of SoC resources and provides
a best-of-both-worlds benefit to you, ductility and performance. A great example
of a task of a motor control algorithm that can be implemented faster in FPGA 1is
Field Oriented Control (FOC). You could use the FPGA portion of a SoC FPGA
to accelerate your flux detection algorithm while using the embedded processor for

lazy variables control loops.

Motor

Gearbox

Inverter

Rear junction box
Charger

Charge plug
Front junction box
Cabin heater

9 Battery heater

10 HV A/C compressor
11 DC/DC

QO ~NOON P WN =

Fig. 1.5 Tesla Model S HV System

Tesla model S:

This part of the thesis will be a tribute to Tesla, because of its leadership in EV
automotive field, just to share what for many is magic, but that with various tear
down is becoming less and less magical, rather sometimes inexplicable as for the IM
motor, despite having a lossless cooled copper rotor. Since focusing on controlling
not on choosing that electric motor, an asynchronous means that you know exactly
the d-q flux component, mandatory. As previously suggested, the use of SoC FPGA
allows to improve the flow estimation, since the defense has been used for years

10 Background

(mainly for image processing), rightly Elon Musk has thought well to follow the
suggestions of U.S. Army and Co.

In figure 5 is explained the power train layout, an 85kWh battery pack that feeds
the 270kW IM, controlled by a fully legs IGBT 2-L for the automotive purpose,
summarizing all electrical architecture. Focusing only on electronic architecture,
also called EE topology in the automotive field, connected by CAN protocol, its
represent the nervous system of the vehicle. Mainly brain of the car is the Vehicle
Control Unit, that sends, acquire and process all high-level variables, info, and data.
Obviously, the battery and inverter have a crucial role in the drivetrain, so in control,

them Tesla make a masterpiece of control.

SLAVERY
BMS
16x

MCuU

Drivers

Power
Drivers Stages

3phAC
Drivers

Accerator

BMS EV VCU EPS

Master

Brake

DCDC

Charger oLV

CAN

Fig. 1.6 Hierarchy of system control in Model S

As showed in figure 6 a FPGA based control board is reserved for the master

BMS and MCU drive. This makes us understand where control is crucial:

e CTRL INV: FOC and Flux measurements and estimations.

* BMS Master: acquisition and processing of parameters for best estimation

State of Charge.

1.4 State of art in Automotive control PEs. 11

By focusing on BMS (figure 7), the solution adopted by tesla is interesting:

* BMS Slaves: 6xCell Voltage Mis. and 6xCell Balancing, a 6 Series Cell
Lithium-Ion Battery Monitor by Texas (76PL536A) and a Silicon labs general-
purpose micro-C. Each Module BMS send bt SPI local data to Master.

* BMS Master: literally a SoC FPGA (micro-C TMS320F2809 + ProASIC 3
FPGA VQG100). The acquisition and processing of variables from the slave,
in order to estimate the state of charge, is a very laborious task. Requiring
much computing power as such will be delegated to the FPGA pipeline. State
of health, pressure, failure, over-currents, over/under-voltages have to be
monitored, too.

\

SLAVE:
Texas Instruments
76PL536A-Q1

Silicon Labs pC
CB051F530A-IMR

1xModule
6 Bloks series
each bloks 74/

/
~\

MASTER:

FPGA Altera MAX V
PM12702ZT144C4N

Texas Instruments pC
TMS320F2809

16xModule
Series

Fig. 1.7 Slaves modules and master pack.

Although Tesla’s engineers have taken all the battery precautions, testing it the
main understandable problem is hotspots mainly where connectors of HV for
battery bus vehicle distribution. Analyzing the Power Stage control solution,
it immediately leaps into the eye for its unusual cylindrical shape due to

integration on the rear axle. This choice is a consequence of the fact that more

12

Background

#

x16

e

-

the inverter is close to the motor, less cable have to use (reducing not ideality
cable), exploiting the advantage of the ripple reductions, so the stem also works
from the EMI point of view. The structure is a classic two level 3 legs, but each
leg has 32 IGBTs to be controlled (16xH and 16xL); this parallelism of currents
should be carefully checked, controlling IGBT in parallel is definitely easier to
control MOSFETs, but should not be underestimated. Everyone is wondering,
why does this need to be parallelized? The answer is in Tesla requirements,
0 to 100kmh in 5sec. Boosting torque for few second, to reach 100kmbh, a
boosting current is needed: 700A more or less (1XIGBT=80A so a to expand
SOA 16xIGBT=1300A is enough). The IGBT Infineon IKW75N60T, is a
classical 600V 80A IGBT for automotive purpose, its main disadvantage is that
during conduction a Von=0.6V is present in comparison with a FET solutions,
so in high-torque high-current zone IGBTSs solution have some advantage;
this obviously leads to being disadvantaged in the low-torques low-current
operating areas where the dissipation in ON mode in FET is smaller since

there is no threshold component Von.

Vn=350V

240Ah
120V

@Ppk Motor

5C 1200A J }SJ J
D
R
I
v| © 1 [™1
= A 1 1 2 3 s
. v D IM 2 ~——— switching
1 E{ F: 270KW — 1 Capacitors
v pk 3
P E T P PR
R - s
: 16xInfineon =y :
H1_L1 3 JK ‘ J< IGBT (g0A) fiA 1
H IKW75N60T | :
[\, i 700A e
H2_L2 | 4 1 :

120V

Fig. 1.8 Inverter summary structure.

1.4 State of art in Automotive control PEs. 13

Main ICs Isabellenhiitte

3ph DC-AC) each phase
2L IGBT Inverter TITMS320 family ~ ProASIC®3 FPGA VQG100 Shunt

toMcu |

DC busbar

+
Y-Epcos EMI filter

Panasonic film
cap. 450V 400uF

Fig. 1.9 Hardwere and PEs on Tesla drive for IM.

The overall inverter structure and control is shown in figure 8 and figure
9, also drives are shown: they are the actuator of duty and also they are
(opto)coupler between the power and the control part. As demonstrated by
Tesla, a single FPGA can easily integrate part of your design into a single
device, and allow to re-program your FPGA-based design at any time only with
SW update. This approach maximizes your design’s ability to change with
evolving standards while minimizing the number of board designs required to
support each protocol standard or each additional feature. FPGAs are ideal
for parallel signal processing and therefore ideal for any system requiring a
performance boost (HW acceleration). Parallel hardware in the FPGA means
no performance cost to add more controllers and features; You can accelerate
performance with embedded processors and IP blocks on an FPGA used
as either solution as coprocessor or as SoC in your design FPGA devices,

enable you to deliver products to market faster than with other technologies,

14

Background

thus maximizing market share and extending the life cycle of your industrial

designs: the success of Tesla.

1.5 pFARAD motor control board

pFarad team started in 2008 at polytechnic of Turin, in DENERG, them
goals was design and prototype a fully electric kart with a high-performance

drivetrain:

200kg

130km/h

3,8s from O up to 100km/h

- 2x 20kW IPM-Motors (REAR)

[Figura 10]

Fig. 1.10 pFarad powertrain summary.

The general drivetrain architecture is easy to understand, and it is show in
figure 10. Focusing on control board as always, starting a preliminary analysis
based on hardware, to clarify the main subject of this study. Schematics of the
FPGA based board are in attached document (appendix 1). Instead a block
diagram of the system on chip FPGA motor control board, show in figure 11
(logic and supply point of view):

1.5 pFARAD motor control board 15

— 3x LEM current sensors.

— AD7277 and OpAmp for analog signal as (temperature and voltage bus).
- Ix Xilinx XC3S200A VQ100.

— Flash PROM XCF02S

— A Joint Test Action Group

— 2xAMP mini CT 15 pin, one J1 for 2xSPI and one J2 for legs command
(driver and power stage board).

— IxLTC3560 switching 5V to 3.3V.
— 1xTPS62207 switching 3.3V to 1.2V for FPGA core.
— 1xTPS77633 linear 5V to 3.3 for LEMs etc..

There are all chips for a state of art FPGA based motor control board. The anal-

ysis will continue taking into account the single control board for elaborations

and measurements.

Fig. 1.11 pFarad control board HW summary.

Chapter 2

Product process design and

validation

2.1 Process introduction

Since the aim is to provide innovation from the point of the modulation
techniques, leveraging the FPGA parallelism capabilities; it will need to bring
the concept explained in the appropriate paragraph from the virtual world
(simulated) to the real world (HW implementation of control). This process
is one of the classic development methods produced in the electronic and

electrical industrial world.

2.1 Process introduction 17

Common Requirment Management

Sim

Signal
Virtual World

MIL SIL
PIL HIL Inverter
Inverter TB .
) SimMotor Inverter
B Motor
B
Real
World

Consistent and comparable results

Fig. 2.1 State of art in product process development and validation.

The process from virtual to real, showed in figure 1, is the state of art of design

and validation and are divided by this steps:

— Preliminary concept and draft simulation.

— Model in the loop (MIL): if you are designing the controller from scratch

then you develop the model of the plant and controller (using Matlab,
Simulik) and use model in the loop to verify or test whether it is imple-

mentable.

Software in the loop (SIL): once your model is verified, the next stage is
where you develop a software, in this case VHDL code, depending on
the processor or FPGA, plan to use for final hardware implementation
and run the simulations for the controller model (with the plant still a
software model) with this code to verify it. If you experience any glitches

you may have to go back to MIL and make necessary changes.

Processor in the loop (PIL): once your controller is verified for its SIL
implementation, you proceed to the next stage: processor in the loop,
where you load the developed code onto the processor/FPGA and run the
simulations on the modeled plant for verification. If there are glitches
then go back to your code, SIL or MIL and rectify them.

18

Product process design and validation

— Hardware in the loop (HIL): Once your plant model has been verified us-
ing PIL, now you can replace the plant model with the original hardware:
say lab model (if its a motor whose speed controller is being designed,
then controller is in FPGA/processor which is now interfaced to the DC
motor by connecting the inputs and outputs/states at the right points of

sensors/transducers) and conduct the HIL test for verification.

Once you complete all the above tests, your controller is said to be ready for

hardware implementation.

— Power stage test bench: use the legs command high and low to control

the optocoupler and drivers for power stage integration.

— Power stage + E-Motor test bench: connect the 3 phase cable of power

stage to a real (or simulated) motor.

Nowadays the transition from one step to the next in the production process is
greatly facilitated by the wide choice of programs and tools that can accompany
throughout the process, especially during virtual world part of the process.
Often, these tools are easily interoperable, an example can be the strong
link between the MathWorks world and Mentor graphics, bringing the process
flowing, safe, and the right time to finish. The scope of figure 2 is to understand
who are the partner, who will accompany the development of this product
system, while the detailed purpose of each tool will be described in the next
paragraphs dedicated to the appropriate step-process.

2.2 Preliminary concept and draft simulation.

19

"
: o _‘

"“ 'I:'E D!NE LECROY

Everywhereyoulook™

HIL
Inverter TB

Fig. 2.2 Tools used for product process development and validation.

2.2 Preliminary concept and draft simulation.

First of all we should analyze the system to understand the variables and the
imposed constraints. It is shown in figure 3 and consists of:

— A DC source, conveniently splited to produce medium point.

— A 3@-inverter which can drive both signs of the current, and its control.
— A balanced 3@-load.

20

Product process design and validation

— %
re it
T 9 1 R
2 +1 2 3 I P
. Voc V W
@ 3 E M
o : 8
N J@(|\
uC

Fig. 2.3 3@-1oad supplied by DC source

Once the variables displayed write some relationships visible:

3
Z Iph = 0
ph=1
Zin=Zp=2Z3=7
3
Z Vph-n=0

ph=1

Vphfm = Vph—n +Viem

/

> 3@-load constraint. (2.1)

(2.2)

using the degree of freedom as going from a linear dependence we lose, then

could be:

3
Y Vi #0
=1

(2.3)

To describe the inverter 3@system certainly the phases to neutral voltage are a

need, but are only two out of three necessary to determine its status. Because

the sum of three phases current is equal to zero, so the sum of phases-neutral

voltages is zero, too. Meanwhile, the phase-medium voltages are limited by

2.2 Preliminary concept and draft simulation. 21

the amplitude of the DC physical system, as shown below:
~Vpe < Vpn—pn < Vpe (2.4)

So the limit mentioned above will move to the phase-neutral components with

the implicit coefficient:

Vph—ph = \/gvph—n (2.5)
Vbe N Vbe
() <y, < [2EE 2.6
(ﬁ) = Vo (ﬁ) -
Voh—n
Mph = (—’&) 2.7)
2

Do) e

harmonic injection

overmodulation

no harmonic injection
]

>
Nt ri

|

|

2
B

I
LINEAR MODULATION « | » NONLINEAR MODULATION

Fig. 2.4 Limit of modulation, with third harmonic injection

So extending the forcing up to 15% in the control, resulting in a linear behavior
of the voltages at the load. This is clearly visible in figure 4 showing the linear

limit, then with a completely logical reasoning continuing to ask more as

22

Product process design and validation

a reference, having however, not a more linear response due to the PWM
saturation. So asking more going into a non-linear zone, due to the loss of
reality in the modulator, called a quasi-six-step zone, up to the limit that
is six-step mode. A further characteristic of the three-phase system visible
is that: in every sixth of the period, there are always 2 phases in envelopes,
respectively one positive and one negative, while the third phase is in transition.

Accordingly another definition of three-phase variables:

Vinia = mid (V) 2.9)

Vinin = min(Vph—n)

This feature of the three-phase system allows you to easily obtain third har-
monic functions for zero-sequence injection. There has been so much talk in
the scientific literature, on which is the right function to be added to pulse
width modulation techniques. Concluding that for the use of DC voltage and
harmonic spectrum the Balance Envelope Modulation results to be the best,
since it modulate longer than the other techniques.

Vinid

2€T050q. = = (2.10)

Since modular means switching, switching means to lose by switching and
losses are heat: it may be useful in some conditions to use the degree of free-
dom offered to reduce losses. In this regard [17] , it analyzes a discontinuous
modulation technique in order to reduce losses in an IGBTs VSI power inverter.
In fact, from the equation of the zero sequence it can be seen that given the
availability of the maximum, minimum and average value, there are only a
few sums to be implemented in the previous BEM technique. This technique

is called discontinues, so when:

—1—Vyin ifVy3ig >0
2105, = i Tmid Q.11)
1 —Viax otherwise

This kind of technique, as demonstrated by the results of the preliminary draft
simulation shown in the figure, has a worst harmonic spectrum, but every sixth
of a period there is a phase that does not lose in switching (or is ON or OFF). It

2.2 Preliminary concept and draft simulation. 23

will not be ideal for network applications but greatly improves the appearance

of leakage, so significant thermal and reliability benefits can be achieved.

| | | o
o DN L us07y ¢ obuoawr | pusorr | @) Swichimlones
average | DV.e:0,287 | DVae: 0,717 | Dv..: ON | Dvae: 0,717 | @Secmwhe,e\,midm
| Dwme: 0,287 | Dwae: OFF | Dwee: 0,287 | Dwae:0,717 i @ Harmonics

| |
DUse: 0,912 | DU.:0,800 | DUw:0,200 | DUw: 0,087 | © Harmonics

a‘::';" . DVave: 0,200 : DVae: 0,800 : DVae: 0912 : DVae: 0,800 D © Cﬂ:td"mhm '0\?9_; o
& | Dwae: 0, 200 | Dwae: 0,087 | Dwave: 0,200 | Dwawe: 0,800 | @ Sse'tmh“'i Erel i
N N . N witching losses
-1,5 '
U v W ssssss TR/2 —omm—)n) —o—\T — T Dzs UmD?ZS e \/mDZS WmbDZSs

Fig. 2.5 Comparison of modulation technique, SINE (no zero seq. injection) vs BEM vs
DZS, in a electrical period.

ny_rif = A-sint)
) 2.1
ny_yif =A-sin (t — T) (2.12)

4.
n3_rif =A-sin (t— T)

Max(n¢ rif) +Min(ng
i — — (ns_ tf)z (s _rir) (2.13)

my_rif = N_rif + Me_yif
my_yif =N rif +Mc_yif (2.14)

M3_rif = N3_rif T Mc_rif

24 Product process design and validation

RIF I CARRY
! ouT
T ARNERSE
- from kewl STV B S ‘ N
RAMP mir &'M‘ P & X al
> PWM Gen D1
sin1 n2r (2L
‘:] Dzave Mzave ‘
ié g m2r by 4 Uref P [
sin2 A4
nar PWM Gen D2 =
N G
sin3 [. D3ave M3ava ma
m3r -+ Uref P X
¥
PWM Gen D3 DioM
2103GDL @3 M
»{Mc

|
‘ - “‘ 3102GDL

Merif
[l Mc|
Min Max
o) el * 1 Bivde

Product

Fig. 2.6 From PI current control, to load 3@-index.

All command legs go into a 2-Level PWM generator, which transforms the
continuous functions in time in binary functions: discontinuous at a frequency
equal to the carrier one. Obviously, the leg is composed of two forced switching

elements, then it will create 6 signals but 3 will be the negated of the other:

Diip="5" 105

e
Dy ip = % 105 (2.15)
D3 i = T5rif 1025

Then the implementation takes place, that is, the saturation:
0<Dp, <1 (2.16)

HP: fo, > fow (2.17)

2.2 Preliminary concept and draft simulation. 25

Under this hypothesis by an average of discontinuous functions can be stated
that:

D, =D,
D, =D, (2.18)
D3 = D;

Results of the Simulink model, visible in the scope of Figures 6 and 7, confirms
the theoretical statements by means of an analysis of the equation system.
While Figure 7 focuses on the voltages received by the load, showing the gain
of 15%; Figure 8 instead explains where the limit is: the loss of modulation

due to saturation.

T ‘ .

| ft /1 (Y L] | |
| BRI | | |

0 A A o

NI |

11 |

Crrrteer et v e i il

Fig. 2.7 3@-Load view, focus in shift from linear zone to 6 step zone.

26 Product process design and validation

=2
‘ [
b8 Din
08 |
|
07 {
06
04
03 |
02 {
o1
o |]
02
i D2n
|
o ‘
o2
1 1 0an
08
4
078 08 082 084 085 088 09 092

>

0

Fig. 2.8 Instantaneous duty, focus on shift from linear zone to quasi-6-step zone.

Summarizing the point, DZS allows a reduction of switching losses of about a
third, due to each phase is ON or OFF one third of a period. Previously men-
tioned, even the harmonic spectrum seen from the load (phase-neutral point)
has been simulated, thanks to the FTT block. As stated above, applying the
BEM algorithm is confirmed the lower harmonic distortion in overmodulation.
While the DZS tends to the worst situation (6-step operation) of harmonic
spectrum, more suddenly at the same ramp.

2.3 MIL: model in the loop. .
u\mwumwwm = =
||||r|[||||||1|r‘||I —= -
HUHHF\‘HHW\M Ean:

IEEEZN

[HHEL]

Fig. 2.9 Harmonic spectrum up to six-step operation. Comparison between BEM vs DZS

2.3 MIL: model in the loop.

Model in the loop (MIL) testing and simulation is a technique used to abstract

the behavior of systems or sub-systems in a way that this model can be used

to test, simulate and verify that mode, sounds like started from the bottom.

Whether you want to design a control card from scratch, whether you want

to implement new control tasks as in our case, starting from the model is

always the best thing: first of all to verify the feasibility of our ideas, also

28

Product process design and validation

stability and ultimately the performance achieved. Model-based development
and verification approaches are highly desirable in the development of safety-
critical embedded systems because they help to identify functional and non-
functional issues in the early development stage when verification complexity
is relatively lower than that of the implemented systems. Verification and
validation are the backbones of any robust model-based development process.
It can be used to check the accuracy of the models and algorithms based on
code generated by test hardware and software interactions. If the concept of
why passing through the MIL has not yet been understood the figure 8 will take
away any doubt, as it highlights all the potentialities of this Model process:

— Improve reliability due to design and instant simulation, "what if" analy-
sis faster and easier.

— Testing design control, verification by scope to detect error and wrong

loops earlier.

— Repeatability, easy to share and let’s remember that the model is also

accessible to those who do not have programming language properties.

— Self-generated code: Matlab coder (C/C++) or HDL coder (. VHDL/varilog).

2.3 MIL: model in the loop. 29

“ONE TRUTH"
\/

{ Ripetibility by]

Executable
without doubt

analysis, improving Design&Sim Model and test with loop earlier

reliability. ' design

Self-generetic
code

Interative “what-if" Verification {Detect error and,]

/\

Nomore handmade
error to coding.

Fig. 2.10 Kay benefit of model in the loop.

The MathWorks word offers a wide range of possibilities for generating,
testing and validating your own model. Obviously, when talking about models,
it’s more logical to pull Simulink, but other packet environments are also
well exploited, such as using .m for S-functions or flow charts (Stateflow
MathWork’s app) to realize State machines. With this wide range of apps, it’s
a flexible tool that lets the developer get to the ultimate model in really short
time. In fact, the Mathworks ambient is so winner that the entire industrial
world considers it mandatory as a requirement for embedded engineering for
control purposes. Obviously, a complete model development of the "paradox”
motor control board is already present as a background. The purpose of the
elaborate remains, however, an implementation of a subset of modulation, not
of the motor control, in order to improve the performance of the entire motor
control set. As such, our interest focuses on the management of fixed axle
voltages (d, q), which together with the angle will allow us to derive the 3
voltages, to be applied as modulating to the PWM. All is summed up in a

simple diagram shown in figure 11; for a more in-depth discussion referring to

30 Product process design and validation

the dedicated chapter "Preliminary concept and draft simulation". The state of
the modern art in modulation techniques is the injection of the third harmonic
into the three-phase load, so as to achieve a linearity extension of + 15% of

the fundamental harmonic.

a
B
clk
rst
d Vum
q dqg aB uvw P
- i o N Vvm \['}
sin aB uvw M
coS zeroSQ Vwm
common
mode
EN_BEM
ENB Start_Mod Zero
sequence
No_Mod elaboration

Fig. 2.11 Schematic of summary block design.

To bring the concept diagram of Figure 11, in a Simulink model some equations

must be described to understand the process behind:

Vo =V4-cos6 —V,-sinb (2.19)
Vp=Vy- cos@ +V, - sin6 (2.20)
V= Vg (2.21)

—Vo + V3V,
V, = “—\/_B (2.22)

2

Vo — V3V,

V= “fﬁ (2.23)
—EN—EP TR

== — 2.24
me 3 3 ()

2.3 MIL: model in the loop. 31
Vim = Vo +me (2.26)
Viem = Vip +me (2.27)

Having understood the logic, after listing the mathematical process through

these equations, there is nothing to arm the Simulink libraries and to represent

the model in .slx In addition to the above considerations, it should have in

mind that the FPGA is a fixed point, which requires the correct scaling of the

variables. We opted for a 12bit resolution, so every time:

— sfix12 x sfix12 = sfix24 so extract upper 12 bit

— sfix24 + sfix24 =sfix25 so extract upper 12 bit

— sfix12 + sfix12 = sfix13 so extract upper 12 bit

Having also specified the type of data to run the model, let’s go for it. Let’s

see how there are 4 hierarchies in architecture, shown:

Fig.21 control box.

Fig.21 enable logics.

Fig.22 from fixed axes to phase-neutral voltage.

Fig.22 zero sequence injection to have phase-medium voltage.

Controlblk

)
EN_BEM

No_mod
3

GHCh

.1 »
. —Pr>=1

({>=1

<
‘ Switch1

START_mod

Switch

Switch2 n l

¢_l

B0

»
=

0

SIN

cos

Q
o]
71

¢l

Vdc

<
8

n

Vbeta12sfix

Vmu

Vv

Vmw

Valpha12sfix

enabled

Fig. 2.12 Control and enalble subsystem.

Product process design and validation

Fig. 2.13 Dq to ph-medium adding zero sequence block.

Obviously, for graphics issues in the images shown in this model, there is no
scope for displaying the magnitudes, but it is obvious that during development
it should be used for immediate verification of the variables. Some of the
fundamental variables, mainly those listed in the equations, can be viewed in
the appendix (appendix 2, scopes of MIL). Checks on the model:

— Requirements

— Functional

Equivalence

Coverage

Property Proving

Virtual Platforms

Since the results shown in the appendix respect the model specifications, it is
immediate that once the MIL is checked, you will go to the next step. The next
step is to turn the model into real code, that is to switch from .m / .slx to .c /
.VHDL files. If the software developer decides to implement in C, the Matlab
Coder tool has been widely used for years: a lot of know-how is present and is
now used in all industrial environments. The task becomes a bit more difficult
if you have to implement a low-level language, as the presentation is almost
nothing. Mass-production applications, using a hardware language, are only
present in media acquisition and processing: so there is not much-deployed

know-how about motors control.

2.3 MIL: model in the loop.

33

Algorithm design

Matlab HDL
Coder Coder
Vhdl
C Varilog
MCU DSP Asic FPGA

Fig. 2.14 From algorithm to code, C C++ or Vhdl Varilog.

34

Product process design and validation

2.4 MIL to SIL, HDL coder : Generating code.

"Writing VHDL is tedious, and the handwritten code still needs to be verified.
With Simulink and Simulink HDL Coder, once we have simulated the model
we can generate VHDL directly and prototype an FPGA. It saves a lot of time,
and the generated code contains some optimizations we had not thought of."
says Frantz Prianon, digital design manager at Semtech. So with the rapid
advancement in FPGA design technologies, hardware, and software providers
have been working towards producing more advanced and user-friendly tools
for designing and testing FPGA programs. The emphasis lies on rapid pro-
totyping of the FPGA design, even with minimal knowledge of Verilog and
VHDL programming languages. To this end, MATLAB HDL Coder which
can be used with MATLAB Simulink is tool enables the developers to use
Simulink model environment, with drag and drop block sets, for designing
their algorithms without having to write a single line of VHDL code, even for
very large and complex designs. The HDL Workflow Advisor in HDL Coder
automatically converts MATLAB code from floating-point to fixed-point and
generates synthesizable VHDL and Verilog code. This capability lets you
model your algorithm at a high level using abstract MATLAB constructs
and System objects while providing options for generating HDL code that is
optimized for hardware implementation. HDL Coder provides a library of
ready-to-use logic elements, such as counters and timers, which are written in
MATLAB. The HDL Workflow Advisor generates VHDL and Verilog code
from Simulink and Stateflow, too. With Simulink, you can model your algo-
rithm using a library of more than 200 blocks, including Stateflow charts. This
library provides complex functions, such as the FFT, FIR filters, and so on for
modeling signal processing and communications systems and generating HDL

code. As shown in figure 15, the main features of HDL Coder are:

— Synthesizable VHDL and Verilog code.

— Code generation support for MATLAB functions, System objects, and
Simulink blocks.

— Mealy and Moore finite-state machines and control logic implementations

using Stateflow.

— Workflow advisor for programming Xilinx and Intel application boards.

2.4 MIL to SIL, HDL coder : Generating code. 35

— Resource sharing and retiming for area-speed tradeoffs.

— Legacy code integration

While designing with HDL Coder in Simulink, the first step is to filter the
Simulink Library Browser, such that it only shows the model blocks that
are compatible with the HDL Coder. To this end, by typing "HDL LIB" in
MATLAB command prompt, one gets the Simulink Library Browser show-
ing only the supported blocks. At present, HDL Coder supports over 200
Simulink blocks, using these blocks the developer can design the required
communication and signal processing logic as a Simulink model file, by drag-
ging and dropping various blocks into the design. Core Simulink Blocks:
Basic and Array Arithmetic, Look-Up Tables, Signal Routing (Mux/Demux,
Delays, Selectors), Logic and Bit Operations, Dual and single port RAMs,
FIFOs, CORDICs, Busses. Signal Processing Blocks: NCOs, FFTs, Digital
Filters (FIR, IIR, Multirate, Adaptive), Rate Changes (Up and Down Sample),
Statistics (Min/Max) . Communications Blocks: Psuedo-random Sequence
Generators, Modulators / Demodulators, Interleavers / Deinterleavers, Viterbi
Decoders.

Furthermore, HDL coder automatically converts floating point numbers into
fixed-point by Float-to-Fixed Workflow and support functions are written in
MATLAB .m code so they can be integrated into the design. To check design
results via simulations, different MATLAB tools could be used, including
scopes, displays, etc. Blocks from Simulink Sources library can be used to
generate test signals for the design (sounds like an adaptation of MIL for
HDL Coder). Once the design results have been verified through simulations,
the next step is to generate the HDL codes, which is done through Workflow
Advisor, which comes with HDL coder. Through the Workflow Advisor, one

can select different parameters for the design including:

the target workflow frequency.

the targeted platform.

the targeted FPGA.

check the global settings, algebraical loops, sample time and blocks
compatibility.

36 Product process design and validation

4 % @

Synthesizable
VHDL / Verilog

HW-SW Co-design FPGA boards

ASIC

Fig. 2.15 HDL Corder keypoint.

2.4 MIL to SIL, HDL coder : Generating code. 37

— set basic options as: Vhdl or Varilog, the traceability of report as critical
path, etc ...

— set advance options as: coding style, clocks and ports, optimizations etc

— optimize general parameter, pipeline and the sharing resources.

— finally generate code.
The code shown is for the zero sequence production (block model showed in
figure 13): this allows to extend up to 15% the fundamental harmonic. The
complete model, that transform (d,q) to (phase-medium), the generated code is

shown in Appendix 3. Also, some report from HDL coder is show, that gives

info to embedded engineer designer as:

— Clock Summary
— Code Interface Report

— Timing And Area Report

High-level Resource Report

Critical Path Estimation

Optimization Report

Distributed Pipelining

Streaming and Sharing

Delay Balancing

Adaptive Pipelining

Traceability Report

Product process design and validation

-- File Name: /Users/andreapiccioni/Desktop/vediquesti/20.5.17/hdlsrc/ppp
Created: 2017-08-81 12:45:38

Generated by MATLAB 9.2 and HDL Coder 3.10

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL
USE IEEE.numeric_std.ALL;

ENTITY bem IS
PORT(Vu
Vv
Vw
Mc
i
END bem;

ARCHITECTURE rtl OF bem IS

-- Signals

SIGNAL EP_stagel_1_val
SIGNAL EP_stage2_val
SIGNAL EN_stagel_1_val
SIGNAL EN_stage2_val
SIGNAL TR_outl

SIGNAL Bit_Shift_outl
SIGNAL Extract_Bits_outl

IN signed(11 DOWNTO @);
IN signed(11 DOWNTO @);
IN signed(11 DOWNTO @);
OUT signed(11 DOWNTO @)

: signed(11
: signed(11
+ signed(11
: signed(11
© signed(13
¢ signed(13
: signed(11

DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

a);
e);
a);
a);
0);
a);
0);

sfix
sfix
sfix
sfix
sfix
sfix
sfix

BEGIN
---- Tree max implementation —-—

-=- <513>/EP
EP_stagel_1_val <= Vu WHEN Vu >= Vv ELSE
w;
EP_stage2_val <- EP_stagel_1_val WHEN EP_stagel_1_val >- Vw ELSE
---- Tree min implementation --—
-=- <513>/EN
EN_stagel_1_val <= Vu WHEN Vu <= Vv ELSE
w;
EN_stage2_val <= EN_stagel_1_val WHEN EN_stagel_1_val <= Vw ELSE
Vi

- <513>/TR
TR_outl <= (- (resize(EP_stage2_val, 14))) - resize(EN_stage2_val, 14);

-- «S13>/Bit Shift
Bit_Shift_outl <= TR_outl srl 1;

-- <513>/Extract Bits
Extract_Bits_outl <= signed(Bit_Shift_out1(11 DOWNTO @));

Mc <= Extract_Bits_outl;

END rtl;

Fig. 2.16 Balance envelope modulation generated code.

Bit Shift Extract Bits

Fig. 2.17 eg. Most critical path in bem subsystem

2.5 SIL: software in the loop. 39

Fig. 2.18 Pipeline fully auto-delays generated

2.5 SIL: software in the loop.

Once the code has been produced, through the process described in "MIL to
SIL", it only needs to be verified through the tools that allow the software
in the loop. Verification and validation techniques applied throughout the
development process enable you to find errors before they can derail your
project. Most system design errors are introduced in the original specification
but aren’t found until the test phase. When engineering teams use models to
perform virtual testing early in the project, they eliminate problems and reduce
development time by as much as 50%. Activities for verification, validation,
and test with Model-Based Design can be applied at every stage of the develop-
ment process, as shown. SIL is a critical step of designing FPGAs and ASICs.
Simulation allows the designer to stimulate his or her design and see how the
code that they wrote reacts to the stimulus. A great simulation will exercise all
possible states of the design to ensure that all input scenarios will be handled
appropriately. Did you forget an if statement somewhere? Did you remember
to give every possible case statement assignment? These are the types of errors
that are very easy to make when you do not simulate your design. Mentor
Graphics: ModelSim. the third part is needed. Digital waveforms are difficult
to analyze, an application specific analysis methods are needed, so how to get
test vectors to achieve 100% test coverage? ModelSim can be used to simulate
VHDL-code, to determine whether it is "right" thinking. Mentor Graphics was

40

Product process design and validation

the first to combine single kernel simulator (SKS) technology with a unified
debug environment for Verilog, VHDL, and SystemC. The combination of
industry-leading, native SKS performance with the best integrated debug and
analysis environment make ModelSim the simulator of choice for both ASIC
and FPGA designs. Features:

— Fast time-to-debug, easy to use, multi-language debug environment.

— Powerful Waveformcompare for easy analysis of differences and bugs.

— Coupled with HDL Designer and HDL Author for complete design
creation.

— High-level Resource Report

— For some platforms version of ModelSim is also integrated with a
"database" with facts about chips, eg. Altera MAX-chips, so one can
also do simulations that take into account the "time delay"and other

phenomena within the intended target circuit.

However, for a graphic issue it was not possible to see all the variables in all
the pipeline steps, so only the inputs and outputs are present, with a particular

interest as usual in common mode, as show in figure 19.

2.5 SIL: software in the loop.

41

E| Wave - Defaut

L /bmsgprove/Nd

£ /bmsgprove/Vg

B-L /bmsgprove/SIN

L /bmsgprove/COS
‘. /bmsgprove/Valphal2...
. /bmsgprove/Vbeta12sfix

‘. /bmsgprove/Vu

‘. /bmsgprove/Nv

3-“. /bmsgprove/Nw

-“. /bmsgprove/Nmu

‘. /bmsgprove/VNmv

% /bmsgprove/Vmy

-’ /bmsgprovefu_bemMc
Divide_core.vhd
Divide_iv.vhd
Divide.vhd

provediv_compile.do
provediv_pkg.vhd
provediv.vhd

NewtonPolynomiallVStage.vhd

1-530

1530

) 1978

11771

) 1022

11022

11771

31771

] 1022

-2

11021

1-1770

1-2044

) 1770

11533

-3

11532

-153;

1-1771

J-1533

-1

1511

L

]
6450 ns 6500 ns

6550 ns

LR

L

6600 ns

6650

]
n

L

6660 ns

A Vg

vd

Svp

Vv

Vw

) -45°

-15°

Fig. 2.19 Stimuli-Driven Test Bench in HDL Simulators

15°

With HDL Verifier, again, third party simulation tools such as ModelSim will
be required. HDL Verifier provides an elegant and integrated environment for
running HDL co-simulations with Simulink and third party tools. Additionally,
it also provides FPGA in the loop feature, enabling the developers to test

the design on actual hardware from within the Simulink environment. HDL

co-simulation with HDL Verifier lets one verify that the HDL code matches

42 Product process design and validation

theMatlabalgorithms andSimulinkmodels by providing visibility into the HDL
code (see figure 20). One can assess how differences between expected results

and HDL simulation could affect the design at the system level.

Algorithm

T
+ om_ delttu mq X | Compare Assert_Vemu Subsystem_mq Assert_Vmy Assert_Vmm

Test Bench Stimul : Difference 0 s -
HDL ; -

&
Verifier [+

54849 ns 1065597 s Now: 67,740 Delta: 1 Ready FixedStepDiscrete

Fig. 2.20 Control block stimuli-driven by HDL Verifier+ModelSim Co-simulation.

2.6 SIL to FIL, synthesizer tools.

Once the code is uniquely generated by the template and verified through the
processes described so far, it remains to give it a real meal to the FPGA board
in the analysis. To do this, you need third-party tools, based on the FPGA
manufacturer. In our case, Xilinx offers a complete synthesis package that
includes ISE Design Suite and Vivado Design Suite. The first one is essential
because it allows full access to hardware resources, while the second allows
the interface with the Mathworks environment through the Xilinx System
Generator tool, a detailed discussion later. By analyzing purpose, that is
interior permanent magnets motor control, not just the block in development is
to be considered. There is a need for SPI communication, an implementation
of the modulation, as well as an orchestra conductor who says the timings and
system states. To meet these requirements for DQ to ph-medium lock, other
subsystems owned by the Politecnico di Torino, handwritten by Eric Armando,
were used to complete the motor control. The situation under consideration is,
therefore: in the .vhdl pFARAD kart engine control project, the BEM block

2.6 SIL to FIL, synthesizer tools. 43

of the Politecnico will be deleted, replacing the subsystem generated by the
HDL coder for the generation of modulators. The types of blocks used and
their functionalities are described in the following bulleted list and shown as

ISE schemes in Figure 21:

— System time manager: Is the orchestra conductor, takes the nature of the
oscillator and transforms it into a complete architectural time handler.
Time management (clk, en, flag, etc) of the various subsytem is entrusted

to him.

— State manager, options: start up, AD offset, AD end of offset, stop, GO

or error. Select which kind of step are running into motor control.

— SPI communicaton block: Serial Peripheral Interface with double chan-

nel, 5 data each channel and a slave role.

— DQ to ph-medium, generated by HDL coder: take the (d,q) and (sin,cos)
from SPI and elaborate the modulations index send to PWM modulators.

— Three phase PWM: modulation of the indexes is sent by the block,

transforming them into the 6 leg commands.

— Manager IPM: Takes the leg commands and according to the status of
control processed by the State Manager, whether or not the commands

sent by the modulator are compressed.

In Figure 19 you can also see the operations that can be performed with the

ISE design suite tool:

— Synthesize and generate post-synthesis simulation model.

— Implement design, mapping resources and routing the path. Optimization
process.

— Generate the .msc file to program FPGA.

— Configure target device: pop up tool that allow to erase and program the
selected fpga.

44 Product process design and validation

SPI_DSP
ax.s so_osPo|— [T TT
e

wso oot | [T,

resa

€S NDSR0 RX_0_SP00150) E=—XLXN_288(150)

Sys_timer_manager State_Manager

== B el T AL EeE rs-.aum
=== san_otset

RESET-

Y I 1 sax_psso
-~ Ly Reser vl B
[T] - LA r‘r*’J o os_ose0
B o Feset_prt "

- i it End_ofe rsm, od 5. ose1
= Lw_r.. san s

wopusel— [pe> G r‘”— = SQX_DsP1
ot No_moo

Stato_DSP(110)

SaToR_Sne ——sample_sync MOS: 08Pt

- tae_FPGAT10)
St _DSS(11-08t%_FRGATT) P

_PROT_ADS9)
BN FROT A El—r

puse o331 Dube_diag ™o

i fr

——puke_ranager S0
IEFLE .50
ube_spiiosg ABILT_AD(S0)
| ABLIT ADIS 0
=Gz 0 59,
o8 _80 t—————ch80
s 7 Design Utiities
3 e 5 User Constraints
az0l — ouox = 8@ Synthesize - XST XLXN_314(15.0}—F= ™. =]
10 View RTL Schematic =Lt
-) View Technology Schematic = =
: i £2@ Generate Post-Synthesis Simulation Model e
N0 f———————tr_norm = #2@) Implement Design = TSP (150
 p—— 5 0@ Translate '
) Map
© £2E) Place & Route ‘ Manager IPM
deltitnu 22D Generate Programming File ager_
i = = = 1% _ Configure Target Device kB ———————— O
" s e @ Generate Target PROM/ACE File RESET—— s
RESET e % Manage Configuration Project (iMPACT)
Surtmor . €% Analyze Design Using ChipScope
omod——INo oo
S e TriPH_PWM_Modulator ol 2
No_mod——{Nomoa Voetat2sme(11 0) =X LXN_314(15:4) 0 = ol UH M . S
i = = G_fhult—————(G taut EXTSausDown [EXTShutDown)
Stat_mod——|START mog RESET- Remt uL UL u U UH_outi——U_H out
XLXN_283(15:4) Va1 o) VmU(T1 0) X LXN_308(15:4) : s o o ! 4 iR e
i » 2 3 UL UL Ut et
XLXN_29 a1} tr_nos nom v, /
g g L L v v.r v ot A
XLXN_288(15 4}, 010 vim(11.0) = XLXN_310(15:4) =y wH i
S\ X e Vi ou
cosqt — :
" (= LA W ey | W _{wr W_H_out. [W H oty
XLXN_295(15:4] vact1:0) VEI(1.0) e XL X N_312{15:4; =T @ ’ o

VRN 1280(1-0) X LX N_315(15:4)

Fig. 2.21 ISE main schematic blocks.

Once synthesized, optimized and programmed, the hardware has nothing
but to verify what has been implemented through the next step in product
development: FPGA in the loop. To do this, Xilinx offers its Xilinx System
Generator tool. In addition to bringing the programmer from SIL to FIL, in
a single Mathworks interface, there are other interesting features to focus
on. Xilinx System Generator is an FPGA programming tool specifically
focussed on Xilinx FPGAs, enabling the developers to work in the Simulink
environment and to generate parameterized cores particularly optimized for
Xilinx FPGAs. The tool need:

— Xilinx ISE Design Suite (System Edition)
— Xilinx Vivado HL (System Edition).

By default, the Xilinx Blockset contains over 90 DSP blocks:

— Adders

— Multipliers

2.6 SIL to FIL, synthesizer tools.

45

— Memories

— FFTs

— Filters

Moreover, the System Generator also includes the .m code and Black Box

blocks, which can be used to integrate .m code and "handwritten" VHDL

codes, respectively, directly into the Simulink design environment. For those

who have long programmed FPGA, perhaps before model-based design, this

interesting feature allows you to validate and test your handwritten .vhdl

modules. As an example in Figure 20, you can see the implementation of the
BEM.vhdl written by E. Armando, stimulated with the various DSP blocks

proposed by the Xilinx System generator. Obviously, it is possible to create

continuity with what is said in the previous paragraphs with the ModelSim

token, even if ISE provides a personal analysis tool.

i

ModelSim
x System
ModelSim Generator
(*
: Valfa
e 0 |—»{Reset
Vbeta
11— EN_BEM
C e Viod_ou
| T+ | vd WMod_out
—Coumter—
0/—»Vq ViwMod_out
sin|—p{ SIN
END_BEM
s|—»{COS
debug_a
0|—»{No_mod
debug_b
onstan) |—s{start_mod g_!
Constant4 Black Box

Fig. 2.22 BEM.vhdl by E.Armando, testing by black-box + ModelSim Co-simulation.

ool
GaewayOu
>

GaewayOufl
> oul-»
Gateway Out
o ol

GaewayOutl

> __out]»

GaewayOut2

> o]+

GaewayOutt

>___ou]»

GaewayOutd

>[__out|—»

GawwayOuMd

Scope

46

Product process design and validation

System Generator works quite similar to HDL Coder, users drag and drop vari-
ous blocks into the Simulink environment in order to design the overall system.
Users can then use MATLAB scopes and other sinks as well as elements of
Sources library to check the design results. Since System Generator is already
part of Xilinx ISE or Vivado HS, no additional synthesis tools are required
and the users can generate the bitstream directly from within the Simulink
environment. To this end, the System Generator token needs to be added to
the design. The System Generator token provides the users with functionality
quite similar to HDL Coder Workflow Advisor, in that it allows users to select
specific target workflow and platform. In order to check and verify the HDL
codes through simulations, the System Generator can be used to invoke the
default HDL simulator from Xilinx, which comes as part of the design suite
and here again, unlike HDL Coder and HDL Verifier; no third-party HDL simu-
lation tool is required. Nevertheless, System Generator is also compatible with
third party simulation tools such as ModelSim, thus providing an integrated
flow. Lastly, the System Generator also supports hardware in the loop feature,
which is the equivalent of FPGA in the loop feature of HDL Coder and HDL
Verifier. To this end, the Hardware Co-Simulation drop-down menu within the
System Generator token enables the users to perform tests on real hardware
directly from within Simulink. To summarize Matlab HDL Coder and Xilinx
System Generator both enable rapid prototyping of the FPGA design by uti-
lizing MATLAB and Simulink environment. Both of these packages come
with their associated pros and cons. The HDL Coder provides a complete
integrated environment for the design flow. It supports a larger number of
MATLABFunctions and Simulink Blocks. It also automatically converts the
floating point numbers to fixed-point. Furthermore, HDL coder provides the
means to generating target-independent Verilog and VHDL codes, which can
then be synthesized for various FPGA platforms. On the downside, the HDL
Coder alone is insufficient for synthesizing, simulating and verifying the HDL
codes. Additional MATLAB toolboxes and third-party software are required
to achieve these goals. The Xilinx System Generator comes as part of Xilinx
design suits and is specifically tailored for Xilinx products. It also supports a
sufficiently large number of DSP blocks, including those that support .m code,
HDL codes, and floating-point DSP. Other than MATLAB itself, no third party
software is needed, neither for generating HDL codes from Simulink blocks

2.7 FIL: FPGA in the loop. 47

nor for synthesizing and verifying the generated codes. On the downside, it is
only limited to Xilinx products and requires manual conversion of Simulink
floating-point numbers to fixed-point, which can be a time to consume and

CITor-prone process.

2.7 FIL: FPGA in the loop.

Not having a Xilinx System Generator compatible developer board, switching
the stimulus directly from the Simulink environment via JTAG or Ethernet to
the board is not possible. The need to stimulate FPGAs in order to validate the
architecture produced motivates the presence in controlling a dual SPI channel.
In fact, in the validation process in question, it will be an external DSP to
stimulate, via SPI, the FPGA engine control board.

48 Product process design and validation

—
¢ Programming
. —.G Debug >

]

\—

[AX122000104

lProg ramming
NSl

Fig. 2.23 Hardwere Control Unit: summary schematic about control and debug the fully
integrated system FPGA + DSC.

A simple laboratory test banch, figure 32, composed of:

— Laboratory 5V power supply.

— FPGA pFarad Motor-control board.
— TWR-56F8200 (MCU) by Freescale.
— Multilink and JTAG cable.

— PC and oscilloscope.

2.7 FIL: FPGA in the loop.

49

Write source code
Compile

Flash code to MCU
Debug code

Logging data to file
Graphs & Visualization

Control Panel

Field-tune parameters (no JTAG)

Remote control

CodeWarrior |
Developmient Studio®

IAR, KEIL, CW,
KDS...

limited
functionality

Plugins & custom communications & scripting

FreeMASTER

uC/Probe

Fig. 2.24 Freescale Freemaster and Code Worrior key skills.

Why do all this? Failing to stimulate Simulink, the Freescale board is a

tool that allows easy programming to give INPUT to the board, and easy

debugging, in order to validate the processes that take place in tasks handled

by the FPGA. Some features of Freescale’s programming (CW) and debugging

(FM) products are shown in Figure 33, in addition to their free-licenses, they

provide a truly user-friendly environment, one of the most intuitive MCU

products.

50 Product process design and validation

void- NewRefRampaOmega (void) Fraclé vd(Fraclé W_ramp)
{ E
Interrupt service routine at the end of the if (W_ramp < W_Aref) - Vd= KVF + mult(W_VF,W_ramp) ;
#pragma interrupt saveall ol 0 DeltaliNew; return Vd;
void Isr_ADCEndOfConversion(void) else if (W_ramp > W Aref) }
W_ramp -= DeltaWNew;
NewRefRampaOmega(); ..cocoooverrinnnns else
Ang +=mult(W_ramp,_TSNORM); W_ramp = W Aref;
Tx1@ = SinTaylor(Ang); memennssmennmnny }
Tx20 = CosTaylor(Ang); R Fhacié sinTaylor(Fracl6 Ang) Fracl6 CosTaylor(Fraclé Ang)
Tx40 = vd(W_ramp);
" Fraclé out; if (Ang==0) Ang=1
SPL INIL// Fraclé A,Aa,AngBU,A2abs; Ang += _MEZZOP;

/ Tx #1 a Frac32 St; / if(Ang>_MEZZOP) Ang=_ZERO;
ioct1(SPI_@, SPI_WRITE_DATA, Tx1@); AngBU = Ang; return SinTaylor(Ang);
ioctl(SPI_1, SPI_WRITE_DATA, Tx11); A2abs = (Ang<<l); }
asm{rep #6@ A2abs = abs_s(A2abs);

nop}; . Ang = - A2abs;

if (AngBU<@)

/] Tx #2 A = Ang;
ioCtl(SPI_a, SPI_WRITE_DATA, Tx28); else
ioctl(SPI_1, SPI_WRITE_DATA, Tx21); A = A2abs;
// Rx #1 calculates with 2*x (for beter precision of x*2)
Rx10 = ioctl1(SPI_@, SPI_READ_DATA, NULL); Aa = mult_r(Ang,Ang);
Rx1l = ioctl(SPI_1, SPI_READ_DATA, NULL); St = L_mac(L_deposit_h(SIN_A7),SIN_A9,Aa);
asm{rep #50 /] - - -

nop}; St = L_mac(L_deposit_h(SIN_A5),round(5t),Aa);

5t = L_mac(L_deposit_h(SIN_A3),round(5t),Aa);

St = L_mac(L_deposit_h(SIN_Al),round(St),Aa);

St = L_mult(round(St),A);
out= round (5t);

if (out > _MEZZOP-1) out = _MEZZOP-1;
if (out < _MEZZON+1) out = _MEZZON+1;
return (out<<1); return sine value

}

Fig. 2.25 MCU ISR and main called function.

Through Code Worrior then we will implement tasks for the INPUT generation,
which will be transmitted to the engine control card via SPI. Using the ISR,
called by the interrupt sent in turn by the FPGA slave board, we generate all

the required variables for the control:

— Vd: come from V/Hz control, it has linear dependence on velocity

through a specific coefficient.

Vq: freezing at zero.

— Vdc: to simulate the info from the voltage partition for measuring the dc

bus.

Sin (Angle) : using a Taylor series, is a representation of a function as an
infinite sum of terms that are calculated from the values of the function’s
derivatives at a single point.

Cosin (Angle) : add 90 degree at Angle variable, and call the same

generating sin-function.

2.7 FIL: FPGA in the loop. 51

SPI_masterDSC_slaveFPGA

PC56F82748 ‘\ - X_Spantan3 200A_VQ100 ™\

; , . : i \
{ CLKINO |3 8 \ 9 {72 CLKINO ! \
| PWMx3 (58 9 10 184 Clock_Sbrio ' ‘

sso (32! 16 2 {60/ CS1CN

SCLKO | 34! 20 1.3 159! SCLK_C_1 |

MISO0 |33 18 a i {62 MISO_C_1 |
R i

MOSIO 35 22 3 {61, MOSIC_1 :

i ss1 59 11 6 {65! CS2.C N |

| SCLK1 (36 1 5 {64 SCLKC.2 |

i MISO1 39 5 8 {71 MISOC_2 |
K . MOSIt 40 7 7 i

C.-
f

Fig. 2.26 SPI CORE to CORE pin-out.

Some of the functions that are called during the routine service interruption
are explained in Figure 34, for the complete display of MCU programming
sources C, refer to Appendix 4.

52

Product process design and validation

stlen g b g B t. ' A Ty

miso

o ol b Wil o

by e

e | |
(=]
2.00 Widiv 2.00 Vidiv
| 100 m¥ offset -3.800 v ofst

base -1.54 ps| Trigaer [Ci][DC]
500 ns/div | Stop 520 mY'
5.00 kS 1.0 GSis}Fronte Positivo,

Fig. 2.27 SPI test sending in repetition h5555 and hAAAA, one negates the other at binary

level.

Particular attention should be paid to the SPI line, as the source of communica-
tion between the two cards. In the diagram of Figure 26, it is possible to see a
complete pinout of the two communication channels, starting from the core of
the MCU to its connector, passing through the pinout of the FPGA board AMP
15 CT Wire-to-Board Connector and finally to the FPGA core. To test SPI
channel h5555 and hAAAA data are sent alternating and repetitive, not having
any particular problems as shown in Figure 27. It is clearly indispensable
to see in the actual reality the response to the stimuli imposed by the MCU
master, where the V / Hz task is processed each interrupt stroke mandated by
the FPGA slave board. In order to debug the appropriate scope on Free-master
can show the sent and received variables after slave-board processing. In figure
28 are show the follow tasks-results:

— Velocity control, 16-bit. Implemented in MCU.

2.7 FIL: FPGA in the loop. 53

— V/Hz control: Vd, Vg, sin and cosine generation. Implemented in MCU.
Vdc set in free master as variable. All send by CHI.

— DQ to ph-medium results, implemented in FPGA board, then sends to
MCU by CHI.

w_ramp. Ang Sin Ca Vg

¥y
[TIRIL

H
E 5 3

BEEEE
THHIN

—
—_—

|Axis
o

2000 u

Time [sec]

Fig. 2.28 DQ to phase-medium results, stimulated by V/Hz control running in MCU master.
Maximum hFFFF costant DC bus voltage.

54 Product process design and validation

MCU task:

wmmp — wmmp +A
Oramp = Oramp According to the set speed (2.28)

Oramp = WOramp — A

0+ = T - Wramp
sen(0) Set the angle and trigonometry (2.29)
cos(0)
Va=Vo+K-®
¢ ? mmg} V/Hz control, to set voltage. (2.30)
Vg =

So far, DC bus voltage has not been taken into account, since it has been con-
sidered constant. Now that part of the algorithm is also validated, simulating a
variable DC bus acquisition as in the case of automotive power source: where
the DC bus range can vary a lot, percent speaking. It is considered one of the
main problems in the electric vehicle. It has solutions like that of a BOOST
stage, before the inverter, at the expense of bulk and weights. Obviously, when
the Vdc drops, the modulators will grow, although their frequency will remain
constant, as the voltages Vd and Vq: will remain unchanged! The results of

the drop in bus voltage are shown in Figure 27.

2.7 FIL: FPGA in the loop. 55

—_— N — — —
sin cos

500

° -

2 "

-500

—Jtlllllllll[llllllllllIIlII[ll[IIl
T L) 1 T T U T T 1
5 10 15 20 25 30 35 40 45
Time [sec]

Fig. 2.29 DQ to phase-medium results, stimulated by V/Hz control running in MCU master.
Variable DC bus voltage.

56

Product process design and validation

2.8 FIL to HIL: road to power stage.

Given the comforting results of the virtual world, the process can continue in its
entirety, verifying its effective applicability in the physical world. The purpose
to date has been to obtain the modulants for the three legs of inverters. Once
generated, the modulants must be implemented through the known process
under the name of PWM, literally pulse with modulation. The three phase
modulator block, along with IPM manager, has no other task than discretizing a
continuous function in order to achieve the same average value. To understand
if the pre-existing subsystems interface optimally with the modulator generator,
derived from the model, the method is always the same as used in the loop’s
FPGA paragraph. With only one exception, now debugging the leg controls
generated, it will only be obtainable via oscilloscope due to bandwidth. In fact,
while the FPGA board will be powered by the usual digital signal controller,
the leg commands will only be available in the 15 pin connector called J2 (see

schematics in Appendix):
— Phase 1: High pin 1, Low pin 2.
— Phase 2 High pin 4, Low pin 5.
— Phase 3 High pin 6, Low pin 7.
The debug gives the desired results as shown in Figures 30,31 and 32. Un-

derlining the fixed 20kHz carrier frequency and the equivalent Space Vector

Modulation label and sector.

2.8 FIL to HIL: road to power stage. 57

10.0 psidiv 186V
10.0 psidiv] 200 kS 2GSls Edge MNegative

Fig. 2.30 SVM SECTOR 1 - CI: U High, C2: V High, C3: W High, C4: SPI int, F1:
differential mode Uh-Vh, F2: differential mode Vh-Wh

50| ps i i i . . le

B 3§

nebase 200 nsj Trigger
10.0 ys/div Stop 186V
200 kS 2GS/s Edge MNegative

F1 (C1-C2)|
1.00 Vidiv 1.0
10.0 psidiv

Fig. 2.31 SVM SECTOR 5 - C1: U High, C2: V High, C3: W High, C4: SPI int, F1:
differential mode Uh-Vh, F2: differential mode Vh-Wh.

58 Product process design and validation

50 |us

F1 (C1-C2)
1.00 Viidiv 1.0 i) 2.00 psidiv Stop 1.86V
2.00 psidiv 2.00 psidiv 40kS 2GS/s Edge Negative

2.00 Vidiv
-3.70V ofiset =i

Fig. 2.32 SVM SECTOR 6 - C1: U High, C2: V High, C3: W High, C4: SPI int, F1:
differential mode Uh-Vh, F2: differential mode Vh-Wh.

Moreover, dead-times is interesting to observe in figure 33., speech is very
much in vogue in literature, especially to reduce it and their compensation
in feed forward control. After validating the 6 leg commands, they must be
galvanically isolated, via optocouplers, in order to be able to run them through
power stage drivers safely.

2.8 FIL to HIL: road to power stage. 59

imebase 14.0 usf Trigg
5.00 ysidiv Stop 170V
2GSis Edge MNegative

Fig. 2.33 U high (pinl), U Low (pin2), V Low (pin 5), W Low(pin 7).

Chapter 3

pHIL, power hardware in the loop

3.1 Introduction to pHIL.

Since signal validation has met all specifications, it only needs to validate the
power part. To do this, the leg controls generated by the FPGA board, through
isolation and dedicated drivers for the intelligent power module in question,
have to be implemented. For a safety reason, in addition to the leg commands,
a feedback status from the power board is sent by the J2 (power-control
connector) to activate the faults strategies on the control-board. Moreover, as
control with a simple open-loop Volt-Hertz, no electrical feedback is monitored
by the sensors. This further increases the need for a good diagnosis strategy to
avoid breakdowns. For this reason, the states of the parts in question must be

defined, which allow the leg commands to be used:
— 1 Startup.
— 2 Offset
— 3 Stop.
- 4GO.
— 15 Error.
Basically, the V-Hz control is nothing more than a rotating vector that increases

in amplitude and rotation speed without any feedback of the electrical and
mechanical magnitudes: that is, in the open loop.

3.1 Introduction to pHIL. 61

MCU tasks FPGA tasks
Va=Vo+kWrest] [U VW
.%- Va=0 J l DQ to UVW PWM m’

Angle

Fig. 3.1 Implemented Volt - Hertz control strategy.

To select the correct speed reference ramp the user starts from slow ramp and
measure the currents. The ramp is selected so that the current remains within
the limits and it is constant during full flow acceleration. Obviously, control
will not start to modulate until both DSP and FPGA status are set to GO. In
addition to these conditions on control electronics states, for switching: the
power-board signal with SD label (shout down) must also not be active. The

power stage validation has been divided into two phases:

— pHIL without load..

— pHIL with induction motor.

Fig. 3.2 Power stage board schematics.

62 pHIL, power hardware in the loop

3.2 pHIL with no load.

3.2.1 Test bench for testing.

1 Variable DC power supply for Vbus sets to 30V.

1 Variable DC power supply for 12V.

1 Variable DC power supply for 5V.

3 Differential voltage probes.

1 Oscilloscope.

1 Laptop with Freemaster.

3.2.2 Results.

-

wl'ﬂ.lﬂ\‘ﬂil.[cﬁﬂr
p— Everpmherryousnity

Tntelligent
Power
Module

O +d "0
e Icx IS I = B

J N\

u v wW

uvw

Farad
:
| e e
—- s6F82 Je) oL R S—— IS S [) N R A
I
.'%’ 0o ctrl
20.0 psidiv Stop
=HAZNY il 50 kS 250 MS/s Edge Positive

X1=-92.0 psAX= 92.0 ps
X2=0.0 ps 1/AX= 10.87 kHz

Fig. 3.3 pHIL test bench, 30Vdc without load: three phases legs voltage referred to DC bus.

3.3 pHIL with IM load.

63

3.3 pHIL with IM load.

3.3.1 Test bench for testing.

1 Variable DC power supply for 12V.

1 Variable DC power supply for 5V.

3 Current probes.

1 Oscilloscope.

1 Laptop with Freemaster.

1 3ph Induction motor.

2 Variable DC power supply for Vbus sets to 30V, in series.

64

pHIL, power hardware in the loop

DC
S0URCE
12V I
r - - r" "\
b U
D R Intelligent
P 1 Power v
T v Module
O E W
E
. o e o k. .J
VW
vu
pFarad
TWR FPGA
— HheF82 Mot or
F%’ 0o ctrl
11
bV

Fig. 3.4 pHIL test bench with load.

3.3 pHIL with IM load. 65

3.3.2 Results.

q . TELEDYNE LECROY
‘ Everywherayoulook™

ry
Timebase -2.0 ms
500 mA/div 500 mA/div| 5.00 msidiv Stop 230 mA
0 mA offset 0.00 A offset] S0 kS 1MS/s Edge Positive

Fig. 3.5 pHIL test bench, Bus 60Vdc, modulation frequency 20kHz, with load and three
phases legs currents probes: Ipk-pk 2A at S0Hz, without mechanical load.

q‘ TELEDYNE LECROY

vhareyoulook

¥
=

y

L
b
Tl

<

c]
500 iv 500 maA/div 500 mAidiv| ms/div Stop 0 mA
0.00 A offset 0 mA offset 0.00 A offset) 50 kS 25MSis Edge Positive

Fig. 3.6 pHIL test bench, Bus 60Vdc, modulation frequency 20kHz, with load and three
phases legs currents probes: Ipk-pk 3A at 150Hz, with mechanical load.

66

pHIL, power hardware in the loop

3.4 In Closing

The purpose of the elaborate is to give a clear view of the state of the art in the
field of product development, in the specific case firmware development. By
accompanying the developer from the beginning, starting from a preliminary
model, to the actual implementation of the hardware, passing through the gen-
eration of model-based code. Through the passage of the various development
and validation phases, many errors can be corrected to avoid delays or recalls
of the final product. Nowadays, moving from the world of signals (virtual) to
real mode, it is possible thanks to the vastness of the commercially available
tools - all this safely and quickly. There is a lot of investment in inverter
development and validation, as it will be the key element of current and future
BEV and PHEV powertrain. The major companies are working to provide
increasingly sophisticated equipment for Testing and Developing in order to
pass stringent regulations and to guarantee the OEM duty cycle specifications.
Of course, further improvements in the process can be obtained by using in
pHIL:

— Battery emulator: which allows the setting of derating strategies and
chemical features.

— Motor emulator: which allows you to simulate faults in a realistic and
safe way.

References

[1] NXP Quick Start Guide, “TWR 56F8200 Tower System Module for
MC56F823xx and MC56F827xx”, Freescale.

[2] Mathworks, “HDL Coder Users guide”, Matlab.

[3] Graham Reith, MathWorks, “Design and Verification of FPGA and ASIC
Applications,” 2014.

[4] Tabrez Khan and Vidya Viswanathan, “Accelerating FPGA/ASIC Design
and Verification,” Matlab Expo 2017.

[5] Xilinx, “System Generator for DSP User Guide,” (v11.4) December 2,
2009.

[6] Auon Akhtar, “An Overview of MATLAB HDL Coder and Xilinx Sys-
tem Generator,” https://www.nutaq.com/matlab-hdl-coder-xilinx-system-
generator.

[7] www.mathworks.com/.../tagteam/72320hdl-coder.pdf

[8] “http://www.pe-ip.com/why-fpgas-are-better-than-dsps-for-motor-
control/”.

[9] Intel, “Top 7 Reasons to Replace Your Microcontroller with a MAX 10
FPGA”.

[10] Intel, “Five Ways to Build Flexibility into Industrial Applications with
FPGAs”.

[11] DOE/EE-0218, "Assessment of High-Performance, Family-Sized Com-
mercial Clothes Washers".

68

References

[12] Monmasson E., Cirstea, M., "FPGA Design Methodology for Industrial
Control Systems" - A review, IEEE Trans. on Industrial Electronics, Vol.
54, No. 4, August 2007.

[13] Le Roux, W., Harley, R.G., Habetler, T.G., "Detecting faults in rotors
of PM drives." Industry Applications Magazine, 1EEE, vol.14, no.2,
pp-23-31, March-April 2008.

[14] Parker, M., FPGA vs. DSP Design Reliability and Maintenance, Altera
white paper, May 2007.

[15] Intel, “FPGAs Provide Programmability and Performance for Next Gen-
eration Motor Control”.

[16] Shelley Gretlein, Gerardo Garcia and Joel Sumner, "DSPs, Microproces-
sors and FPGAs in Control", National Instruments.

[17] Julian Felix Wolfle, Jorg Roth-Stielow, "A hybrid discontinuous modula-
tion technique to influence the switching losses of three phase inverters."

[18] Antonino Fratta, Static conversion lessons.

Appendix A

Schematics FPGA Board.

Appendix B

Model in the loop results.

Appendix C

HDL coder generated code.

Appendix D

HIL .C test-bench.

Appendix E

Schematics ST IPM board.

